
Chapter 6
Krugle Code Search Architecture

Ken Krugler

Abstract Krugle was one of the earliest commercial portals for searching open
source software. This chapter reviews the history of Krugle from initial inception
to present day. It follows the search engine from the initial public version to the
enterprise offering, with a particular focus on lessons learned from design decisions
on topics such as web crawling, indexing, system architecture, and deployment.

6.1 Introduction

Krugle is a search engine for searching in source code and related technical in-
formation. There is a public site at Krugle.org, which has information on the top
3,500 open source projects, including project descriptions, licenses, software con-
figuration management activity, and most importantly the source code—more than
400 million lines and growing.

There is also an enterprise version, which runs inside of company firewalls and
provides the same search functionality against internal code and technical informa-
tion.

In this chapter, I’ll be describing the Krugle architecture, how it evolved over
time, and the lessons we learned during that process.

6.2 Background

In 2004 I got actively involved in my first open source project, the ill-fated Chandler
PIM. It slowly dawned on me that there were literally billions of lines of open source

K. Krugler (�)
Scale Unlimited, 14860 Uren St, Nevada City, CA, USA
e-mail: kkrugler@scaleunlimited.com

S.E. Sim and R.E. Gallardo-Valencia (eds.), Finding Source Code on the Web
for Remix and Reuse, DOI 10.1007/978-1-4614-6596-6__6,
© Springer Science+Business Media New York 2013

103

mailto:kkrugler@scaleunlimited.com

104 K. Krugler

code available, but no good way to find error messages, examples of API usage, or
even the source for an open source component being used.

At the same time, a friend at a startup mentioned to me that the most powerful
tool their developers had wasn’t a debugger, or an IDE, or a build system—it was
Google. This then led me to start thinking about how you’d create the ultimate pro-
grammer’s search tool, and (in a broader sense) what “search-driven development”
would look like.

In 2005 I started development of Krugle with a small team of friends. We got our
first round of venture capital funding in September, and unveiled the Krugle site at
the 2006 DEMO conference in February.

In 2006 we started work on the enterprise version of the product, which had a
very different architecture. This was released to beta customers in April 2007.

In 2008 we switched the public site from the original distributed architecture to
a version that uses a single large Krugle Enterprise appliance.

In 2011 the public site switched to the third version of our architecture, though
still running on a Krugle Enterprise appliance.

6.3 Initial Public Version

We collected three types of information—web pages, source code and project de-
scriptions. Each had its own collection, processing and searching infrastructure.

The web page and source code processing infrastructure was based on an early
version of Hadoop, running on a cluster of 14 slave servers and one master.

The project descriptions were extracted and processed on a single server, coordi-
nating with a MySQL database running on another server.

6.3.1 Web Page Crawling

We used Nutch to crawl technical web pages, collecting and extracting informa-
tion that would be of use to software developers. Examples of such “interesting”
pages included open source projects, programming tutorials, mailing lists, and bug
databases.

We modified Nutch to implement a “focused crawler.” The diagram below ex-
plains the fundamental steps in a focused crawl—the key point is that each “fetch
loop” only fetches a percentage of all known URLs, and the pages with the highest
estimated score are fetched first. This allows us to focus the crawler on areas of the
web that would prove most likely to contain quality pages (Fig. 6.1).

6 Krugle Code Search Architecture 105

Seed URLs

URL
State

Sort Focus

Fetch &
Parse

Fetched
Pages

Page
Score

Extract
Outlinks

Score
Outlinks

1

2 3

4

5

6

78

9

Focused Crawl
Workflow

Fig. 6.1 Focused crawl in initial public version

URL State Database This database (often called a “CrawlDB”) maintains one
entry for each unique URL, along with status (e.g. “have we fetched this page
yet?”), the page score of fetched pages, and the link score. The actual approach
used for this database varies, depending on the scale of the crawl, the availability
of a scalable column-based DB or key/value store, etc.

Page Score Every fetched page is processed by a page scorer. This calculates a
numeric value for the page, where higher values correspond to pages that are of
greater interest, given the focus of the crawl. A page scorer can be anything from
a simple target term frequency calculation to a complex NLP (natural language
processing) analyzer.

Link Score Every URL has a score that represents the sum of page scores from
all pages that contain an outbound link that matches the URL. Page scores are
divided up across all outbound links, thus the increase in a URL’s link score from
a page with many outbound links will be minimized.

Fetched Pages Database This is where all fetched pages are stored, using the
URL as the key. Typically this isn’t a real database, but rather an optimized,
compressed read-only representation.

With terminology out of the way, we can discuss the steps in a focused crawl
workflow.

106 K. Krugler

1. The first step is to load the URL State database with an initial set of URLs. These
can be a broad set of top-level domains such as the 1.7 million web sites with the
highest US-based traffic, or the results from selective searches against another
index, or manually selected URLs that point to specific, high quality pages.

2. Once the URL State database has been loaded with some initial URLs, the first
loop in the focused crawl can begin. The first step in each loop is to extract all of
the unprocessed URLs, and sort them by their link score.

3. Next comes one of the two critical steps in the workflow. A decision is made
about how many of the top-scoring URLs to process in this loop. The fewer the
number, the “tighter” the focus of the crawl. There are many options for decid-
ing how many URLs to accept—for example, based on a fixed minimum score,
a fixed percentage of all URLs, or a maximum count. More sophisticated ap-
proaches include picking a cutoff score that represents the transition point (el-
bow) in a power curve.

4. Once the set of accepted URLs has been created, the standard fetch process be-
gins. This includes all of the usual steps required for polite and efficient fetching,
such as robots.txt processing. Pages that are successfully fetched can then be
parsed.

5. Typically fetched pages are also saved into the Fetched Pages database.
6. Now comes the second of the two critical steps. The parsed page content is

given to the page scorer, which returns a value representing how closely the page
matches the focus of the crawl. Typically this is a value from 0.0 to 1.0, with
higher scores being better.

7. Once the page has been scored, each outlink found in the parse is extracted.
8. The score for the page is divided among all of the outlinks.
9. Finally, the URL State database is updated with the results of fetch attempts

(succeeded, failed), all newly discovered URLs are added, and any existing URLs
get their link score increased by all matching outlinks that were extracted during
this loop.

At this point the focused crawl can terminate, if sufficient pages of high enough
quality (score) have been found, or the next loop can begin.

In this manner the crawl proceeds in a depth-first manner, focusing on areas of
the web graph where the most high scoring pages are found.

In the end we wound up with about 50 million pages, and a “crawlDB” that
contained around 250 million URLs, of which about half were scored high enough
such that we would eventually want to crawl them.

6.3.2 Web Page Processing

Once we had fetched a web page (or document, such as a PDF) then we’d parse it,
to extract the title and text. Again, we leveraged the support that was already there
in Nutch.

6 Krugle Code Search Architecture 107

We also extracted information about source code repositories during the crawl,
which allowed us to build a large list of CVS and SVN repositories for the source
code crawler.

6.3.3 Web Page Searching

Finally, we used Nutch’s search support (built on top of Lucene) to support search-
ing these web pages. The actual indexes were stored on multiple page searchers,
since (at that time) a typical 4 core box with 8 GB of ram could comfortably han-
dled 10–20 M pages, and our index was bigger than that. Nutch provided the support
to distribute a search request to multiple searchers, each with a slice (“shard”) of the
index, then combine the results.

6.3.4 Source Code Crawling

The source code crawler was also based on Nutch. We added “protocol handlers”
for CVS and SVN, which let us leverage the distributed fetching and parsing support
that was built into Nutch.

The “crawlDB” for the source code crawler contained HTTP-based URLs to
SVN and CVS repositories. We manually entered many of these URLs that were
found via manual searching, but we also included URLs that were discovered dur-
ing the web page crawl as described previously. Finally, the project processing code
(see below) also provided us with repository information.

One of the challenges we ran into was deciding whether to only get the trunk of
project’s code, or some number of the tags and branches as well. Initially we just
went after the trunk, but eventually we settled on logic that would fetch the trunk,
plus the “most interesting” tags, which we defined as being the latest point release
for each major and minor version. Thus we’d go for the 1.0.4, 2.0 and 2.1.3 tags, but
not 1.0.1, 1.0.2, 1.0.3, 2.1.0, etc.

We also found out quickly that we needed to be careful about monitoring and
constraining the load that we put on CVS and SVN repositories. Due to a bug in
the code, we accidentally wound up trying to download the complete Apache.org
SVN repository—the trunk and all branches and tags from every project. This was
crushing their infrastructure, and the ops team at Apache wisely blocked our crawler
IP addresses, to prevent melt down. After some groveling and negotiations, plus
more unit tests, we were unblocked and could resume the crawl at a more reasonable
rate.

For some of the larger repositories, we looked into mirroring them, and eventu-
ally did set up an rsync of several. Unfortunately we were never able to negotiate
a mirroring agreement with SourceForge, which was the biggest single repository
that we needed to crawl. And the total number of unique repositories (more 100)

108 K. Krugler

made it impractical to negotiate that many data sharing deals, especially since many
of these repositories only consisted of a few projects.

The situation in 2012 would be better suited to specific data mirroring agreements
with a few repositories, given the larger number of code hosting sites that have
significant number of projects (e.g. Google Code, GitHub). Note, though, that we
would still need to crawl project descriptions independent of the code, as very few
hosting sites or projects have adopted the use of standardized project metadata such
as DOAP (description of a project) or fully specified Maven pom.xml files.

In the end, we wound up crawling over 130,000 projects found on more than 100
sites.

6.3.5 Source Code Processing

The meat of our system was the parsing infrastructure that we built, using ANTLR
3.0 grammars. We developed over 30 grammars, which we use to turn source code
into something internally we refer to as a “use-def tree.”

As an example of what ANTLR grammar looks like, heres a snippet from the
python.g file:

classdef
scope EnclosingScope;

: ’class’ (NAME->class(name={$NAME.text},
begin={start($NAME)},
end={stop($NAME)}))

{ $EnclosingScope::st = $classdef.st; }
(LPAREN testlist RPAREN)? COLON
{ $st.setAttribute("comments", comments()); }
suite
// catch comment in classes without func defs
{$st.setAttribute("containedComments",
comments());}

;

This tree, which we saved as XML, essentially tagged text in the source file as
being comments, code, or whitespace. In addition the code sections would be further
tagged as class definitions, function definitions, and function calls.

An example of the resulting XML for a Java file looks like:

<krugleparse version="0.3">
<uri>test/EndianUtils.udt</uri>
<language>Java</language>
<udt>
<c b="0" e="803"><![CDATA[/* * Licensed
to ï£¡ */]]></c>

6 Krugle Code Search Architecture 109

<pkg n="org.apache.commons.io" b="813" e="833">
<im n="java.io.EOFException" b="844" e="863"/>
<im n="java.io.IOException" b="873" e="891"/>
<im n="java.io.InputStream" b="901" e="919"/>
<c b="952" e="1636"><![CDATA[/** * Utility code
ï£¡ */]]></c>
<im n="java.io.OutputStream" b="929" e="948"/>
<cd n="EndianUtils" b="1651" e="1661">
<c b="1670" e="1748"><![CDATA[/* Instances
should ...*/]]></c>
<fd n="swapShort" b="2038" e="2046">
</fd>

In order to pick the right parser, we had a preliminary analysis step that used the
file name and regex patterns to determine the programming language.

We also ran additional tools over the code, including one that calculated ac-
tual lines of code, and another that extracted open source license information from
source file comments and non-code text files. These results were then fed back into
the project processing phase (see below) to add additional metadata to each project.

As part of a “virtuous cycle,” we also found URLs in comments, and added these
to the crawlDB. This in turn helped us find pages with references to additional code
repositories, which we could then crawl and parse—and the cycle repeats.

Finally, we processed the parse trees to create Lucene documents. Each XML
document for one source file would become one Lucene document, with many of
the fields (e.g. “function call”) being multi-valued, since one XML file could have
many separate sections for each type of entity identified in the source.

We stored the actual source code separately, in regular files. One of our chal-
lenges became the management of large amounts of data—we were using custom-
built filers (servers with lots of drives) to store many terabytes of source code, and
keeping everything in sync, up to date, backed up, and available for processing was
one of the major daily headaches. At this time Hadoop was not yet mature enough
for us to trust it with our data—in fact we lost all of our crawl data once due to a
bug in one of the first releases.

In the end we wound up with 2.6 billion lines of real source code in about 75 mil-
lion source files.

6.3.6 Source Code Searching

Finally, we again used Nutch’s search support to handle searching the source code.
A search request would be distributed to multiple code searchers, each with a slice
of the total index. Nutch would then handle combining the results.

We did wind up having to add a few enhancements to the search process, specifi-
cally enabling time limits on queries. The problem was that certain complex queries

110 K. Krugler

could take up to minutes to get results, and during this time they would cause all
other queries to “stack up,” leading to poor search performance for all users. Our
solution was to enable early search termination at a low level (in Lucene), where
after a specified amount of time the search would terminate even if it hadn’t reached
the end of the index. This would then return potentially different results, if the set of
documents found prior to termination didn’t include all of the top results that would
normally be returned, but we felt this was an acceptable tradeoff.

Source code searching required a special query parser, to support custom tok-
enization and other tweaks that we did to improve code searching. This query pars-
ing was handled by the master search server, before queries were sent out to the four
search slaves.

6.3.7 Project Crawling

Initially we were only “crawling” projects (scraping pages) to find the repository
information needed for our source code crawler. In early 2006, however, we realized
that rich project metadata was critical to providing context for source code search
results.

This changed the nature of our project crawling support, as it was no longer
sufficient to use a page to extra repository data—instead, we needed to create a web
mining system that could determine things like the project license.

The project crawl was all about discovering the URLs to project home pages.
This typically involved custom Python code to do a very specific “discovery crawl”
on an open source hoster site, e.g. Java.net. We also used data dumps from Source-
Forge.net and a few other sites that provided project listings in a format where we
could then easily construct project home page URLs.

6.3.8 Project Processing

Once the discovery crawl had found a number of project home page URLs, we
would web mine those pages to extract the project name, license, and other useful
metadata.

Each open source hosting site had its own HTML page format, which meant
writing detail extractors (again, in Python) for each hoster. As you might imagine
this wasn’t the most interesting thing to be working on, but it was critical for us to
have structured data about projects to help augment code search results, as other-
wise it was very challenging for end-users to understand and evaluate code search
results. Providing project details added context that significantly improved the user
experience.

The results of this web mining would be saved to a MySQL database, where our
librarian could review and correct any obvious errors. With over 130,000 projects it

6 Krugle Code Search Architecture 111

wasn’t possible to review each one, so we ranked projects by their size and level of
activity.

Packaging up the results included getting statistics out of the source code project
(see the source code processing section), determining the location of the source on
the code filer, and building a searchable index.

6.3.9 Project Searching

By the time we added support for projects as separate entities in the system, CNet
had open-sourced their enterprise search application (“Solr”). Solr provided a nice
layer on top of Lucene, which simplified the work we had to do to add project-
centric search support.

We created a Solr index schema that had the following fields, among others
(Table 6.1):

Table 6.1: Excerpt from solr index schema for projects

6.4 Public Site Architecture

The above describes a mixture of ad hoc back end systems, and the components
used to provide search services. The actual architecture used to handle both end
user (browser-based) queries and partner/enterprise API requests is a combination
of a few additional systems (Fig. 6.2).

112 K. Krugler

Fig. 6.2 Architecture of public Krugle site

6.4.1 Load Balancer

At the very top of the stack we had a load balancer, coupled with a firewall. All
requests, either from end users (browsers) or via the Krugle API would go through
a firewall and then to a load balancer, which would distribute the request to one of
four servers sitting in the web tier.

6 Krugle Code Search Architecture 113

6.4.2 Web Tier

The four web tier servers all ran identical versions of Perl code that acted as an
intermediary between the lower-level Krugle API (implemented in Java, uses XML)
and higher-level requests coming from web pages, partners, and external Krugle
Enterprise boxes.

This Perl layer gave us extra flexibility, which meant we could quickly fix prob-
lems in the lower-level API and add additional functionality without having to re-
build and redeploy the search infrastructure sitting below the web tier.

In retrospect I think we should have spent more time making sure the Krugle API
was correct and complete, versus back-filling and patching via Perl code in the web
tier. We didn’t have a good way to test the web tier layer, versus the many unit tests
we implemented against the Krugle API.

6.4.3 Master Searcher

The single main searcher used a bigger hardware configuration, with more memory.
The master searcher was responsible for the Krugle API, which was used by every-
body (web tier, partners, and Krugle enterprise systems) to interact with the search
indexes and data maintained by the public site.

The main searcher also ran the Solr search server responsible for project search
requests.

6.4.4 Page Searchers

We had four servers, each with one large/slow disk to store the web page content,
and a second faster disk to store to the search index. These four “slave” searchers
provided distributed search across the index, and a separate front-end process run-
ning on a master search server then combined the results.

6.4.5 Code Searchers

Similar to web pages, we had four servers, though each of these had two fast disks to
store to the search index. The actual code files were stored on a separate file server
called the code filer.

114 K. Krugler

6.4.6 Code Filer

All of the actual code files were stored on a separate “code filer”, which was a big
server stuffed with drives that were RAIDed together.

These files were fronted by the Lighttpd web server, which was configured to
require a time-limited token for authorized access.

6.4.7 Live Versus Stand-by Versus Dev Systems

The actual infrastructure was even more complex than what has been described
above. The code searchers, page searchers, master searcher and code filer all com-
prised a snapshot of the state of the system, for both code and data. As such, we had
three copies of these—one in production, one on standby, and one being provisioned
as the next “live” system.

6.4.8 Release Process

Whenever our “dev” system was sufficiently tested, we would do a “flip.” This con-
sisted of switching the VIPs (virtual IP addresses) for the master server and code
filer to the new system, which would then cause the web tier to start using the
new code and data. The previously live system would become the backup, which
we could easily flip back to if the new live system had serious problems. And the
previous backup system would become the new dev system, which we would start
provisioning as the next live system.

This continuous rotation of systems worked well, but at the cost of lots of extra
hardware. We also spent a lot of time pushing data around, as provisioning a new
server meant copying many terabytes of data to the searchers and the filer from our
back-end systems.

6.4.9 Post Mortem

The public search system worked, but required a lot of manual labor to build and
deploy updates to the data, and had a lot of moving pieces. This complexity resulted
in a lot of time spent keeping the system alive and happy, versus improving and
extended the search functionality.

In retrospect it would have made more sense to first focus on the Krugle En-
terprise system, and handle the public site via setting up multiple instances of these
servers, each with a slice of the total projects. Then the delta between a stock Krugle

6 Krugle Code Search Architecture 115

Enterprise system and the public site would have been a top-level “master” that
handles distributing search requests and combining the results.

We would still have needed a back-end system to handle crawling web pages and
handling search requests, but that’s a much more isolated problem, and one with
better existing support from Nutch.

6.5 Krugle Enterprise

The architecture described above worked well for handling billions of lines of code,
but it wasn’t suitable for a stand-alone enterprise product that could run reliably
without daily care and feeding. In addition, we didn’t have the commit comment
data from the SCM systems that hosted the project source code, which was a highly
valuable source of information for both searches and analytics.

So we created a workflow system (internally called “the Hub”) that handled the
crawling and processing of data, and converted the original multi-server search sys-
tem into a single-server solution (“the API”).

The enterprise version doesn’t support crawling web pages, and it relies on users
manually defining projects—specifying the repository type and location, the de-
scription of the project, etc. This information is still stored in a MySQL database.

6.5.1 SCM Comments

We added support for fetching, parsing and searching SCM comments that we re-
trieved from SCM systems. These comments were stored in the same Solr search
server used for project search, but in a different Solr “core.”

We created a Solr index schema that had the following fields, among others
(Table 6.2):

6.5.2 SCMI Architecture

Early on we realized that it would be impossible to install and run all of the many
different types of source code management system (SCM) clients on the enterprise
server. For example, a ClearCase SCM requires a matching client, which in turn has
to be custom installed.

Our solution was to define a standard protocol between the Hub and “helper” ap-
plications that could run on other servers. This SCM interface (SCMI) let us quickly
build connectors to many different SCM systems, including ClearCase, Perforce,
StarTeam, and git, as well as non-SCM sources of information such as Jira and
Bugzilla.

116 K. Krugler

Table 6.2: Excerpt from Solr index schema for SCM data

6.5.3 Performance

For an enterprise search appliance, a basic issue is how to do two things well at
the same time—updating a live index, and handling search requests. Both tasks can
require extensive CPU, disk and memory resources, so it’s easy to wind up with
resource contention issues that kill your performance.

We made three decisions that helped us avoid the above. First, we pushed a signif-
icant amount of work “off the box” by putting a lot of the heavy lifting work into the
hands of small clients called Source Code Management Interfaces (SCMIs). These
run on external customer servers instead of on our appliance, and act as collectors for
information about projects, SCM comments, source code and other development-
oriented information. The information is then partially digested before being sent
back to the appliance via a typical HTTP RESTful protocol.

Second, we use separate JVMs for the data processing/indexing tasks versus the
searching/browsing tasks. This let us better control memory usage, at the cost of
some wasted memory. The Hub data processing JVM receives data from the SCMI
clients, manages the workflow for parsing/indexing/analyzing the results, and builds
a new “snapshot.” This snapshot is a combination of multiple Lucene indexes, plus
all of the content and other analysis results. When a new snapshot is ready, a “flip”
request is sent to the API JVM that handles the search side of things, and this new
snapshot is gracefully swapped in.

On a typical appliance, we have two 32-bit JVMs running, each with 1.5 GB of
memory. One other advantage to this approach is that we can shut down and restart
each JVM separately, which makes it easier to do live upgrades and debug problems.

6 Krugle Code Search Architecture 117

Finally, we tune the disks being used to avoid seek contention. There are two
drives devoted to snapshots, while one is serving up the current snapshot, the other
is being used to build the new snapshot. The Hub also uses two other drives for raw
data and processed data, again to allow multiple tasks to run in a multi-threaded
manner without running into disk thrashing.

The end result is an architecture that looks like this (Fig. 6.3):

Snapshot
1

Snapshot
2

Raw
Data
Files

Parsed
Data,

Indexes

The Hub

External Data
Sources via

SCMIs

The API

Fig. 6.3 Architecture of Krugle enterprise

6.5.4 Parsing Source Code

During early beta testing, we learned a lot about how developers search in code,
with two in particular being important. First, we needed to support semi-structured
searches, for example where the user wants to limit the search to only find hits in
class definition names.

In order to support this, we had to be able to parse the source code. But “parsing
the source code” is a rather vague description. There are lots of compilers out there
that obviously parse source code, but full compilation means that you need to know
about include paths (or classpaths), compiler-specific switches, the settings for the
macro preprocessor in C/C++, etc. The end result is that you effectively need to be

118 K. Krugler

able to build the project in order to parse it, and that in turn means you wind up
with a system that requires constant care and feeding to keep it running. Often that
doesn’t happen, so the end result is shelfware.

Early on we made a key decision, that we had to be able to process files indi-
vidually, without knowledge of build settings, compiler versions, etc. We also had
to handle a wide range of languages. This in turn meant that the type of parsing we
could do was constrained by what features we could extract from a very fuzzy parse.
We couldn’t build a symbol table, for example, as that would require processing all
of the includes/imports.

Depending on the language, the level of single-file parsing varies widely. Python,
Java and C# are examples of languages where you can generate a good parse tree,
while C/C++ are at the other end of the spectrum. Languages such as C/C++ that
supports macros and conditional compilation are especially challenging. Dynamic
languages like Ruby and Perl create their own unique problems, as the meaning of
a term (is it a variable or a function) sometimes isn’t determined until run-time.

So what we wind up with a best guess, where we’re right most of the time but
we’ll occasionally get it wrong.

We use ANTLR to handle most of our parsing needs. Terr Parr, the author of
ANTLR, added some memoization support to version 3.0, which allowed us to use
fairly flexible lexer rules without paying a huge performance penalty for frequent
back-tracking.

6.5.5 Substring Searching

The second important thing we learned from our beta testing was that we had to sup-
port some form of substring searching. For example, when a user searches on “ldap”
she expects to find documents containing terms like “getLDAPConfig” , “ldapTime-
out” , and “find_details_with_ldap” .

We could treat every search term as if it had implicit wildcards, like “*ldap*” ,
but that is both noisy and slow. The noise (false positive hits) comes from treating
all contiguous runs of characters as potential matches, so a search for “heap” finds
a term like “theAPI” .

The performance hit comes from having to: (a) first enumerate all terms in the
index to find any that contain <term> as a substring, and then (b) use the resulting
set of matching terms in a (potentially very large) OR query. BooleanQuery allows a
maximum of 1,024 clauses by default—searching on the Lucene mailing list shows
many people have encountered this limit while trying to support wildcard queries.

There are a number of approaches to solving the wildcard search problem, some
of which are covered in the “Lucene in Action” book. For example, you can take
every term and index it using all possible suffix substrings of the text. For example,
“myLDAP” gets indexed as “myl”, “yld”, “lda”, and so on. This then lets you turn a
search for “*ldap*” into “ldap*”, which cuts down on the term enumeration time by
being able to do a binary search for terms starting with “ldap”, versus enumerating

6 Krugle Code Search Architecture 119

all terms. You still can wind up with a very large number of clauses in the resulting
OR query, however. And the index gets significantly larger, due to term expansion.

Another approach is to convert each term into n-grams, for example, using 3-g
the term “myLDAP” would become “myl”, “yld”, “lda”, “dap”, and so on. Then a
search for “ldap” becomes a search for “lda dap” in 3-g, which would match. This
works as long as N (e.g. 3, in this example) is greater than or equal to the minimum
length of any substring you’d want to find. It also significantly grows the size of the
index, and for long terms results in a large number of corresponding n-grams.

Another approach is to pre-process the index, creating a secondary index that
maps from each distinct substring to the set of all full terms that contain the sub-
string. During a query, the first step is to use this secondary index to quickly find
all possible terms that contain the query term as a substring, then use that list to
generate the set of sub-clauses for an OR query, similar to above. This gives you
acceptable query-time speed, at the cost of additional time during index generation.
And you’re still faced with potentially exceeding the max sub-clause limit.

We chose a fourth approach, based on the ways identifiers naturally decompose
into substrings. We observed that arbitrary substring searches were not as important
as searches for whole sub-words. For example, users expect a search for “ldap” to
find documents containing “getLDAPConfig”, but it would be very unusual for the
user to search for “apcon” with the same expectation.

To support this, we implemented a token filter that recognizes compound identi-
fiers and splits them up into sub-words, a process vaguely similar to stemming. The
filter looks for identifiers that follow common conventions like camelCase, or con-
taining numbers or underscores. Some programming languages allow other char-
acters in identifiers, or indeed, any character; we stuck with letters, numbers, and
underscores as the most common baseline. Other characters are treated as punctu-
ation, so identifiers containing them are still split at those points. The difference is
that the next step, sub-range enumeration, will not cross the punctuation boundary.

When we encounter a suitable compound identifier, we examine it to locate the
offsets of sub-word boundaries. For example, “getLDAPConfig” appears to be com-
posed of the words “get”, “LDAP”, and “Config”, so the boundary offsets are at 0,
3, 7, and 13. Then we produce a term for each pair of offsets (i,j) such that i< j.
All terms with a common start offset share a common Lucene index position value;
each new start offset gets a position increment of one.

6.5.6 Query Versus Search

One of the challenges we ran into was the fundamentally different perception of
results. In pure search, the user doesn’t know the full set of results, and is searching
for the most relevant matches. For example, when a user does a search for “lucene”
using Google, they are looking for useful pages, but they have little to no idea about
the exact set of matching pages.

In what I’m calling a query-style search request the user has more knowledge
about the result set, and expects to see all hits. They might not look at each hit,

120 K. Krugler

but if a hit is missing then this is viewed as a bug. For example, when one of our
users searches for all callers of a particular function call in their company’s source
code, they typically don’t know about every single source file where that API is used
(otherwise they wouldn’t need us), but they certainly do know of many files which
should be part of the result set. And if that “well known hit” is missing, then we’ve
got big problems.

So where did we run into this situation? When files are very large, the default
setting for Nutch was to only process the first 10 K terms. This in general is OK for
web pages, but completely fails the query test when dealing with source code. Hell
hath no fury like a developer who doesn’t find a large file they know should be a hit,
because the search term only exists near the end.

Another example is where we miss-classified a file, for example, if file xxx.h was
a C++ header versus a C header. When the user filters search results by programming
language, this can exclude files that they know of and are expecting to see in the
result set.

There wasn’t a silver bullet for this problem, but we did manage to catch a lot
of problems once we figured out ways to feed our data back on itself. For example,
we’d take a large, random selection of source files from the http://www.krugle.org
site, and generate a list of all possible multi-line (“code snippet”) searches in a
variety of sizes (e.g. 1–10 lines). We’d then verify that for every one of these code
snippets, we got a hit in the original source document.

6.5.7 Post Mortem

The Krugle enterprise search system is in active use today at a mixture of Fortune
100 and mid-size technology companies. The major benefits seen by customers are:
(a) increased code re-use, primarily at the project level; and (b) a decrease in time
spent fixing the same piece of code that exists in multiple projects.

A major challenge has been to provide potential customers with a way to quantify
potential benefits. There’s a general perception that search is important, e.g. it’s easy
to agree with statements like “If you can’t find it, you can’t fix it.” It’s difficult,
though, to determine how much time and money such a system would save, and
thus whether investing in a Krugle system is justified.

One additional and unexpected hurdle has been integration of Krugle systems
into existing infrastructure, primarily for authentication and authorization. Many
large enterprise customers are very sensitive about who can access source code,
and even between groups in the same company a lack of trust means that provid-
ing enterprise-wide access control that all parties accept often leads to protracted
engagements with significant profession services overhead.

Acknowledgements Portions of this chapter were adapted from a case study written by the author
that was previously published in the book “Lucene In Action, 2nd Edition” by Michael McCand-
less, Erik Hatcher, and Otis Gospodnetić.

http://www.krugle.org

	6 Krugle Code Search Architecture
	6.1 Introduction
	6.2 Background
	6.3 Initial Public Version
	6.3.1 Web Page Crawling
	6.3.2 Web Page Processing
	6.3.3 Web Page Searching
	6.3.4 Source Code Crawling
	6.3.5 Source Code Processing
	6.3.6 Source Code Searching
	6.3.7 Project Crawling
	6.3.8 Project Processing
	6.3.9 Project Searching

	6.4 Public Site Architecture
	6.4.1 Load Balancer
	6.4.2 Web Tier
	6.4.3 Master Searcher
	6.4.4 Page Searchers
	6.4.5 Code Searchers
	6.4.6 Code Filer
	6.4.7 Live Versus Stand-by Versus Dev Systems
	6.4.8 Release Process
	6.4.9 Post Mortem

	6.5 Krugle Enterprise
	6.5.1 SCM Comments
	6.5.2 SCMI Architecture
	6.5.3 Performance
	6.5.4 Parsing Source Code
	6.5.5 Substring Searching
	6.5.6 Query Versus Search
	6.5.7 Post Mortem

