
Chapter 3
Archetypal Internet-Scale Source Code
Searching

Medha Umarji and Susan Elliott Sim

Abstract To gain a better understanding of what, how, and why programmers search
for code on the Internet, we conducted a web-based survey to understand the source
code searching behavior of programmers, specifically, their search motivations,
search targets, tools used, and code selection criteria. Data was collected from 69
respondents, including 58 specific examples of searches. We applied open coding to
these anecdotes and found two major archetypes and one minor archetype, as well
as, a range of sizes for search targets. The first archetype was searching for source
code that could be excised and dropped into a project. The second archetype was
searching for examples of source code to provide information, for example, using
the World Wide Web as an enormous desk reference. The targets of these searches
could vary in size from a few lines of code to an entire system. The minor archetype
was searching for reports and repairs of defects. Factors affecting the final selection
of a candidate piece of code included: peer recommendations; availability of help
from other programmers; and the level of activity on a project.

3.1 Introduction

With the increasing popularity of open source, a rapidly growing quantity of
source code is available on the Internet. Software developers are now using this
rich resource in their work. Evidence of this practice can be found in the num-
ber of project hosting sites, code repositories, and source code search engines that
have appeared. Among these are Koders.com with over 226 million lines of code
(MLOC), Krugle.com with over 2 billion lines of code, csourcesearch.net with over

M. Umarji (�)
Symantec Corporation, Mountain View, CA, USA
e-mail: medha_umarji@symantec.com

S.E. Sim
Many Roads Studios, Toronto, ON, Canada
e-mail: ses@drsusansim.org

S.E. Sim and R.E. Gallardo-Valencia (eds.), Finding Source Code on the Web
for Remix and Reuse, DOI 10.1007/978-1-4614-6596-6__3,
© Springer Science+Business Media New York 2013

35

mailto:medha_umarji@symantec.com
mailto:ses@drsusansim.org


36 M. Umarji and S.E. Sim

283 MLOC, and Google Code Search with over 1 billion lines of code. These source
code search engines treat Internet-scale code searching in much the same manner as
code search within a single project in an integrated development environment. But,
there are other kinds of searches that can take place on the Internet and we need to
know more.

This study was conducted to characterize Internet-scale source code searching:
What do developers look for? How do they find what they are looking for? What
tools do they use? When do they decide to search? To this end, we conducted a
questionnaire-based survey of software developers contacted using availability sam-
pling over the Internet. The design of this study is based on previous surveys by
Eisenstadt [3], and Sim, Clarke, and Holt [12]. Using an online questionnaire, we
collected data from over 70 programmers who were solicited using Google Groups
and mailing lists.

Their responses and anecdotes were analyzed systematically to find common
themes, or archetypes. An archetype is a concept from literary theory. It serves to
unify recurring images across literary works with a similar structure. In the context
of source code searching, an archetype is a theory to unify and integrate typical or
recurring searches. As with literature, a set of them will be necessary to characterize
the range of searching anecdotes.

We found that there are two major search archetypes and one minor one. The
first archetype was searching for a piece of code that can be reused. For example, a
text search engine, or a graphical user interface (GUI) widget. The second archetype
was searching for reference information, that is, for examples of code to learn from.
In this archetype, developers are using the World Wide Web as a very large desk
reference. The minor archetype was searching for reports and repairs of bugs, i.e.
patches. The two major archetypes had search targets that varied in size, while the
minor one did not. The search targets could be small-grained, such as a block of
code, medium-grained, such as a package, or large-grained, such as an entire system.
The results reported in chapter are an extension of the work reported in an earlier
paper [21].

3.2 Related Work

The work in this paper has evolved from past research and current trends in software
development. The two trends that motivate this research are the increasing avail-
ability of source code on the Internet, and the emergence of tools for accessing the
source code. The source code available on the web comes from open source projects,
web sites that support communities of practice, and language-specific archives.
Collectively, these sites contain billions of lines of code in countless languages. As
is the case with web pages, it can be difficult to locate a particular resource. General-
purpose search engines, such as Google and Yahoo!, can be used, but they do not
take advantage of structural information in the code. To fill this need, code-specific
search engines have been created. These software tools leverage the technology and



3 Archetypal Internet-Scale Source Code Searching 37

know-how from source code searching tools within programming environments.
However, code search on the Internet at times is more similar to code reuse than the
find function in an IDE. In this section, we will review the trends and results that
motivate and inform our research.

3.2.1 Source Code on the Internet

The open source movement has dramatically increased the quantity of source code
available on the Internet. While the open source concept has been around for
decades, it is only in the last 10 years or so that it has become commonplace.
For-profit corporations are now contributing source code and person-hours to open
source projects [5]. The most obvious benefit of the open source movement is that
it makes available a “rich base of reusable software” [15].

Communities of practice have evolved from this sharing of programs and knowl-
edge amongst people having common goals and interests, within the open source
world. A community of practice is formed by a group of people united by a joint
enterprise, who develop mutually beneficial social relationships in the process of
working towards things that matter to them [6]. Artifacts, advice/tips and other
relevant knowledge are contributed by members to provide a shared repertoire of
resources for the community.

In the open source world, project hosting sites, technology-specific mailing lists
and social networking sites are examples of such communities of practice. Source-
forge.net and freshmeat.net host thousands of projects and have an infrastructure
that supports the sharing of programs and knowledge. The infrastructure for these
projects is provided by developers, and so is the source code – all through extensive
collaboration over individual projects.

Technology specific mailing lists such as PHP.net and CPAN.org are a compila-
tion of code snippets, bug reports, patches, discussions and how-to guides related
to a specific technology or programming language. These sites are frequented by
developers who are interested in learning a particular language or technology, or
building on top of it. The lists contain not only source code, but also contributions of
helpful tips on what works, what doesn’t, and what is the best way to solve a certain
problem. Since it is the culture in open source to share software developed by using
open source technology, these archives of source code are increasing exponentially.

Blogs, social bookmarking and other social networking sites have the capability
to tag websites containing source code relevant to a particular topic and are excellent
sources of reference on latest technologies and trends.

3.2.2 Code Search Engines

General purpose search engines such as Google and Yahoo! are used for code search
most often. Users are familiar with these tools and due to their effectiveness in
retrieving documents on the web they are easily the most popular. However, they are



38 M. Umarji and S.E. Sim

effective in broad searches for functionality, when good search terms are available.
These search engines are not able to exploit the context and relationships between
source code snippets, as they treat source code like a bag of words.

Code-specific search engines index public source code, cache it in a repository
and enable users to search based on a variety of attributes such as class/function
names, code licenses, programming languages and platforms. While the search is
limited to the repository, the amount of code available is huge, many millions of
lines of code or classes.

Three of the major code-specific search engines are Krugle, Koders, and Google
Code Search. Like Google Code Search, Koders has options for searching by lan-
guage and license. It also allows users to explicitly search for class, function, and
interface definitions using regular expressions. Krugle returns links not only to
source code, but also to tech pages, books and projects. It has a visualization for
browsing code repositories and also supports tab-based searching. The searches
can be applied to different segments: source code, comments, and definitions (class
or method). Google Code Search includes support for regular expressions, search
within file names and packages, and case-sensitive search.

To leverage the advantages afforded by open source code, we need search capa-
bilities that are closely integrated with the way that software is developed in open
source. The code search engines do not support the social interaction processes that
are the lifeline of any project. For example, they do not search for keywords within
mailing lists or forums related to a particular topic, users have to use a general-
purpose search engine for that purpose. Neither do they support the formation and
sustenance of communities of practice that are so essential for learning and sharing
in any domain [6].

3.2.3 Source Code Searching

A study of software engineering work practices by Singer et al. [14] found that
searching was the most common activity for software engineers. Program compre-
hension, reuse and bug fixing were cited as the chief motivations for source code
searching in that study. A related study on source code searching by Sim et al. [12]
found that the search goals cited frequently by developers were code reuse, defect
repair, program understanding, feature addition and impact analysis.

Source code searching for program comprehension involves matching of words
or code snippets within an IDE or source code module to a search term, typically
using the Unix-based grep facility, the find command in Unix and also the File Find
command under Microsoft Windows [12]. It was also found that programmers used
only strings or regular expressions to form their search terms, even though they
were searching for semantically significant pieces of code. Grep is by far the most
popular search facility due to ease of specification of search terms, a command-
line interface, and a direct match with the search model of the programmer [13].
Programmers trust grep because it is successful most of the times, and the cost of
failure is insignificant.



3 Archetypal Internet-Scale Source Code Searching 39

Program comprehension tools can be categorized as (i) extraction tools such as
parsers (Rigi) [8], (ii) analysis tools for clustering, feature identification and slicing
(Bauhaus tool [2]), and (iii) as presentation tools such as code editors, browsers and
visualizations [16, 20].

Lethbridge et al. [13] in their study on grep discuss that searching within source
code is used for locating the bug/problem, finding ways to fix it and then evaluating
the impact on other segments. Sim et al. [12] found that programmers were most
frequently looking for function definitions, variable definitions, all uses of a function
and all uses of a variable.

However, none of these existing tools have capabilities to search for software
components based on functionality and purpose – which is the basic idea behind
Internet-scale source code searching.

3.2.4 Software Reuse

It is evident from the discussion so far that source code searching on the Internet has
more commonalities with the phenomenon of software reuse, than with traditional
source code searching for program understanding and bug fixing.

Reuse is a common motivation for Internet-scale source code searching [15].
Programmers do not want to “re-invent the wheel,” especially when the open source
world allows reuse to occur at all levels of granularity, starting from a few lines of
code, to an entire library; from a tool to an entire system.

Reuse in proprietary settings involved indexing and storing software components
in a way that would make retrieval and usage easy (for example, the structured clas-
sification technique, by Prieto-Diaz [10]). Complex queries had to be formed to
retrieve such components and the process of translating requirements into search
terms posed a cognitive burden for software engineers. Fischer et al. [4] also dis-
cuss the gap between the system model of the software and the user’s situation
model, which makes it difficult for the user to express a requirement in a language
that the system can understand. They also discuss the technique of retrieval by
reformulation – a continuous refinement process that forms cues for retrieval of
components that are not well-defined initially.

The problem of discourse persists through the open source era as the primary
method of searching continues to be keywords and regular expressions. Support
provided for locating and comprehending software objects does not scale up to the
actual potential for reuse even in open source projects.

Reuse of open source code occurs with an understanding that effort will be ex-
pended in contextualizing, comprehending and modifying a piece of software –
while traditionally, the reuse concept assumed little or no modification of compo-
nents. Another interesting difference is that in open source the options available for
a given search query are tremendous as opposed to a company-wide repository of
source code, which may or may not have relevant reusable code.



40 M. Umarji and S.E. Sim

3.3 Method

Online surveys have become increasingly common over the last decade, as Internet
usage has grown by leaps and bounds. Surveys have become an established empiri-
cal method, especially for human behavior on the Internet [19].

These studies have been conducted to improve understanding of why users
look for information, their search requirements, their search strategies, backgrounds
and experiences, and their comparative assessment of available search mechanisms
[9, 11, 18, 22]. Sim, Clarke, and Holt [12] conducted an online survey in late 1997
of source code searching among programmers that served as the model for this
research. Underpinning these research designs are traditional survey methods that
have been used in the social sciences for many years [1]. The design of this study is
presented in this section.

3.3.1 Research Questions

In this study, we wanted to gain an understanding of how software developers cur-
rently search for source code on the Internet. The search features on project hosting
sites and the emergence of source code-specific search engines hint at the kinds of
search taking place, but empirical data is needed. Therefore the research questions
for this study were as follows.

• What tools do programmers use to search for source code on the Internet?
• What do they look for when they are searching source code?
• How do they use the source code that is found?

Data on what tools are used provide information about the skills and tendencies
of programmers when searching the web. The search targets and usage patterns for
the code suggest new features. Answers to the last two questions were obtained from
the open ended questions, when analyzed resulted in search archetypes.

3.3.2 Data Collection

We designed an online survey with 11 closed-ended questions and 2 open-ended
questions. This chapter is focused on the results from one of the open-ended ques-
tions, which asked:

Please describe one or two scenarios when you were looking for source code on the Inter-
net. (Please address details such as: What were you trying to find? How did you formulate
your queries? What information sources did you use to find the source code? Which imple-
mentation language were you working with? What criteria did you use to decide on the best
match?)



3 Archetypal Internet-Scale Source Code Searching 41

Our goal was to cover a wide range of people that search for source code of-
ten, to get a representative sample. The population was any programmer who had
searched for source code on the Internet. However, it was not possible to obtain a
systematically random sample, and availability sampling also known as convenience
sampling was the chosen sampling technique.

Convenience sampling may pose a threat to external validity of the results. How-
ever, this was an exploratory study and the goal was to collect data on a variety of
behavior, and not its prevalence, so availability sampling was considered adequate
for this task. We solicited participants from a number of mailing lists and news-
groups. We attempted to solicit participants through open source news web sites,
but were declined. This strategy gave us access to a large number of developers and
users of open source software, as well as developers who worked on proprietary and
commercial software.

The survey was open for 6 months in 2006–2007 to collect responses. Invita-
tions to participate in the survey were posted to the Javaworld mailing list, and the
following mailing lists beginners-cgi@perl.org, comp.software-engg, comp.lang.c,
and comp.lang.java. We chose these web sites, because had they had users with a
variety of interests, the discussions were high technical in nature, and there was little
overlap between the groups.

3.3.3 Data Analysis

The data was analyzed using a combination of quantitative and qualitative tech-
niques. The multiple-choice questions were coded using nominal and ordinal scale
variables. For the open ended questions, the responses were text descriptions that
were analyzed qualitatively. We analyzed them for recurring patterns using open
coding [7] and a grounded theory approach [17]. Without making prior assumptions
about what we would find, we developed codes for categories iteratively and induc-
tively. The two authors analyzed the data separately, and we found a high level of
agreement in our categories. Subsequently, we combined our codes and refined the
categories for clarity of presentation.

3.3.4 Threats to Validity

The main shortcoming of this study is generalizability, i.e. the sample of respon-
dents is not sufficiently representative of the population. This is a basic problem
with empirical research in software engineering is there is not a reliable model of
population characteristics so that the representativeness of a sample can be assessed.



42 M. Umarji and S.E. Sim

This study is no exception. Furthermore, we only solicited participants from mailing
lists and newsgroups. Therefore, we are not trying to quantify the prevalence of cer-
tain types of behavior, nor are we using inferential statistics. Instead, we are looking
for a variety of search behaviors and patterns (or archetypes), which is appropriate
for an exploratory study.

3.4 Results

A total of 69 people responded to the survey and provided descriptions of 58 sit-
uations where they searched for source code on the Internet. The quality of the
responses varied greatly. Some respondents only filled in the multiple-choice ques-
tions. Others provided very terse descriptions of search situations. Yet others pro-
vided extremely detailed descriptions of more than one situation.

A majority of the developers that responded to our survey were programmers
in Java (77 %), C++ (83 %) and Perl (60 %). A few had contributed to an open
source project, though most were users of open source Applications. Within the
criteria guiding final selection of source code, 77 % users based their decisions on
available functionality, 43 % considered the licensing terms and 30 % considered the
amount of user support available. Amongst the information sources consulted while
searching for source code, documentation ranked highest, followed by mailing lists
and other people. Most of the respondents (59 %) had experience working on small
teams with 1–5 people.

3.4.1 Situations

We analyzed 58 scenarios of source code searching. They ranged in length from one
to ten lines. Figure 3.1 below is an example of a good response that we received.

The anecdotes were categorized among a number of dimensions. Clear patterns
emerged regarding two aspects of their searches: (i) what programmers were search-
ing for; and (ii) how they searched for it.

Sometimes; I did a source code searching when I don’t know how to use a class or a library.
For an example; I didn’t know how to create a window using SWT class. I did a Google
search with the description of what I want to do. I decided on the best match based on
whether I understand the example code.

Fig. 3.1 Example search description



3 Archetypal Internet-Scale Source Code Searching 43

3.4.2 Object of the Search

In terms of what programmers were searching for, anecdotes were categorized along
two orthogonal dimensions: the motivation for the search and the size of the search
target (Table 3.1). Some responses had multiple search targets and motivations, and
in such cases, each was coded separately. The most specific code that was appropri-
ate for the search was selected, based on the information given by the participant.
In Fig. 3.1, the motivation was coded as “reference example” and the size of search
target was coded as “subsystem”.

Code for reuse As-is reuse Reference example Row total

Block 8 4 12
Subsystem 21 11 32
System 5 2 7

Column total 37 22 51

Table 3.1: Purpose by target size

3.4.2.1 Motivations for Searching

Detailed analysis of scenarios showed that respondents were either searching for
reusable code (37) or reference examples (22). Reusable code is source code that
they could just drop into their program, such as an implementation of trie tree data
structure, quick sort algorithm, and two-way hash table. A reference example is a
piece of code that showed how to do something, for instance, how to use a partic-
ular GUI widget, what is the syntax of a particular command in Java. Searches of
this type essentially use the web as a large desk reference. These two motivations
emerged very clearly in the anecdotes, and almost all the scenarios could be neatly
classified into either of these two motivations.

A key difference between the two motivations is the amount of modification that
searcher intended to perform. Programmers seeking reusable code planned to find
pieces that could be dropped into a project and used right away. For example,

Needed to convert uploaded images of all types into jpeg and then [generate] thumbnails.
Due to timescales; it could not be done in house. . .

Those seeking reference examples intended to re-implement or significantly
modify the code found. One respondent wrote,

I typically search for examples of how to do things; rather than code to use directly. The
products that I work on are closed-source, one can’t [use] most open source directly.



44 M. Umarji and S.E. Sim

On occasion, the search that was seeking reusable code would fail and become
a search for reference information. A programmer needed a mutable string class in
Java, but the results from search engines either had only a minimal implementation
or an inappropriate open source license. He wrote, “. . . in the end I just rolled my
own,” and only used the other implementations for ideas.

3.4.2.2 Size of Search Targets

Across both types of searches, the size of the search target varied in a similar fashion.
The sizes of the search targets were classified as a block (12), a subsystem (32), or
a system (7). A block was a few lines of code, up to an entire function in size.

Common block-sized targets were wrappers and parsers (3), and code excerpts
(8). A number of the searches for code excerpts were for PHP and JavaScript. Pro-
grams in these languages tended to be small and plentiful, which meant it was eas-
ier to make use of a few lines of code. There were searches for a small section of
code that solved a specific problem, such as “encode/decode a URL” and “RSS feed
parser.”

A subsystem was a piece of functionality that was not a stand-alone application,
and the programmer searching intended to use it as a component. Categories of sub-
system targets are implementations of well-known algorithms and data structures
(14), GUI widgets (9), and uses of language features (6). Some examples from the
data include “a Java implementation of statistical techniques like t-test” and “wrap-
per code for the native pcap library.”

A system was an application that could be used on its own. Searchers often in-
tended to use these as a component in their own software. Respondents were “look-
ing for some big piece of code that would more or less do what I want. . . ” or some-
thing that would show them “how to do it.”

3.4.3 Process of Search

With respect to the process of search, anecdotes were categorized on the starting
point for the search, the tools used, and the criteria used to make the final selection.
In Fig. 3.1, the starting point was a recommendation from a friend, the tool used was
search.cpan.org, and no selection criterion was mentioned.

3.4.3.1 Starting Point for Search

A common starting point for Internet-scale code searches was recommendations
from friends to use a particular piece of software. Other potential starting points
were reviews, articles, blogs, and social tagging sites. When no such starting point
was available, programmers went straight to search tools.



3 Archetypal Internet-Scale Source Code Searching 45

3.4.3.2 Search Tools Used

By far, the most popular tool for finding source code on the web was general-purpose
search engines, such as Google and Yahoo! The search feature on specific web sites
and archives was also popular. Interestingly, the source code-specific search engines
were used only occasionally.

3.4.3.3 Selection Criteria

A number of common themes also emerged among the criteria that programmers
used to make a final selection among different options. Often the choices were lim-
ited, so there were few degrees of freedom in the final selection. Criteria that were
mentioned by the respondents were level of activity on the project, availability of
working experience, availability of documentation, and ease of installation. Surpris-
ingly, code quality and the user license for the source code were low priorities in the
selection criteria.

The results are presented as archetypal searches in Sect. 3.5 and as observations
about the search process in Sect. 3.6.

3.5 Archetypal Searches

By examining the motivations for search and the size of search targets, we found
common or more frequent relationships. These patterns, or archetypes, are presented
in this section, as well as, some unusual, but interesting searches.

3.5.1 Common Searches

The most common type of search was a subsystem that could be reused. Archetypes
1, 3, and 4 fell into this category. The next most common search, archetype 2, was
for a system that could be modified or extended to satisfy the needs of the project.
Archetypes 5–8 are searches for examples of how to do something, such as using a
component or implementing a solution. The final archetype is searching for reports
and patches for bugs.

1. Reusable data structures and algorithms to be incorporated into an implementa-
tion.
Eight of the reported searches were for algorithms and data structures, such as
“two-way hash tables,” “B+ trees,” “Trie trees,” and “binary search algorithm.”
were included at this level of granularity. We suspect that this was the most preva-
lent because there was a close match between the vocabulary for describing the



46 M. Umarji and S.E. Sim

object in code and the vocabulary for describing the search. Furthermore, abstract
data structures are a well-understood basic building block in computer science.

2. A reusable system to be used as a starting point for an implementation.
While creating a new system, developers often look for systems that they can
use as a starting point. There were seven such searches by developers who were
looking for “stand-alone tools” or a “backbone for an upcoming project” or just
a “big piece of code that does more or less what I want.” Examples of search
targets included an application server, an ERP package or a database system. We
conjecture that this type of search is common because a system does not need to
be de-contextualized before it is used in a new project. Also, systems are easy
to find because they typically have web sites or project pages that contain text
descriptions of the software. Finally, customizing an existing application saves a
lot of time in comparison to implementing from scratch.

3. A reusable GUI widget to be used in an implementation.
Developers often looked for widgets for graphical user interfaces and there were
seven searches of this kind in our data. Users searched by keywords of the func-
tionality that they desired, for example “inserting a browser in a Java Swing
frame.” Searches for functionality are somewhat independent of the source code
implementation underneath, but are mainly concerned with feature addition.
Other examples include a “Java interface for subversion” and a source code that
creates a “SeeSoft-like visualization.” We believe that searches for GUI wid-
gets are popular, because these components are easy to reuse. A software devel-
oper need only ensure that the widget is compatible with the GUI framework
being used on the project. As well, GUI widgets can be displayed visually, there-
fore, making it easier for a developer to quickly assess the appropriateness of the
search result.

4. A reusable library to be incorporated into an implementation.
There were six searches for a reusable library, sometimes called a package or
API. Programmers were generally looking for a subsystem that could be dropped
in and used immediately. Some examples of the searches were for “speech pro-
cessing toolkits,” “library for date manipulation in Perl” and “Java implementa-
tions of statistical techniques.”

5. Example of how to implement a data structure or algorithm.
In six instances, developers looked for source code snippets to verify their so-
lution or to aid reimplementation, e.g. “to verify the implementation of a well-
known algorithm.” There were six searches were for a piece of code to use as
a reference in order to develop the same functionality. An implementation was
more informative than a description or pseudocode, because the implementation
had been tested and could execute. Respondents believed that a reference exam-
ple would show them the right way to do something, and a running program had
a lot of credibility.

6. Example of how to use a library.
Developers looked for examples of how to use a library, for instance, “Some-
times, I did a source code searching when I don’t know how to use a class or
a library.” There were six anecdotes reporting this kind of search. Libraries and



3 Archetypal Internet-Scale Source Code Searching 47

APIs can be complex to use, with arcane incantations for calling methods or
instantiating classes. A reference example is easier to use than documentation,
because it gives the programmer a starting point that can be tweaked to suit the
situation.

7. Example of how to use features of a programming language.
In four anecdotes, respondents reported that reference examples of language syn-
tax and idioms were helpful when working with an unfamiliar programming
language. Users who haven’t programmed in a language before, or have for-
gotten parts of it, or are using the language in a new way (e.g. new hardware),
searched for source code to serve as a language reference. One respondent wrote,
“. . . mostly I look for code for syntax, I don’t always like to refer to books for
syntax if it is readily available on my desktop.”

8. A block of code to be used as an example.
Developers look at a block of code to learn how to do something. There were
four situations that described this type of search. Programmers were not look-
ing for reusable components, but their goal was to learn through examples, such
as “examples of javascript implementation of menus” and “examples of thread
implementation in python.”

9. Confirmation and resolution of bugs
There were five searches that were looking for solutions to a bug. Sometimes the
can be in the form of of a report or post to a form that confirmed the presence
of an actual bug. At other times, there was a patch that repaired the bug. Three
of the searches led developers to find relevant information in mailing lists and
forums. Developers prefer to search for a patch or quick-fix by forming natural
language queries with the keywords from an error message or keywords based on
the functionality deviation caused by a bug. The need for code in such situations
is very specific in terms of implementation language, platform, version informa-
tion, size of patch and licensing requirements. In the process of debugging, if the
problem seems to occur while compiling a library or at run-time, users examine
the source code of a library to determine the exact problem.

3.5.2 Uncommon Searches

There were a few uncommon searches that are worthy of attention. These were look-
ing for a system to be used as a reference example, seeking a reference example for
using a GUI framework or widget, and searching for examples of language syntax
usage.

While developing or modifying a system, programmers look at existing similar
systems for ideas. Searches for systems that can be understood and the logic/princi-
ples can be borrowed to construct new systems. Two searches were for systems with



48 M. Umarji and S.E. Sim

similar functionality as the current or to-be system. This technique was mainly used
in a proprietary environment or when it was easier to construct a new system rather
than adopt an existing one.

There were also two searches for examples of how to use GUI widgets. These
included searches for code samples on how to use a particular component from
Swing and Microsoft Foundation Classes.

Finally, there was one anecdote from a programming language designer who
searched to find examples “in the wild” of syntax from the language. This informa-
tion was used to evaluate requests for changes and suggestions for features.

3.6 Discussion

In this section, we explore how social interaction processes supported by the right
search tools can help programmers to arrive at the right code snippet, component or
exemplar.

As discussed previously, a typical search begins with a cue such as advice from
a colleague or use of the immensely popular general purpose search engines.

Search mechanism Count

Google, Yahoo, MSN search etc. 60
Domain knowledge 37
Sourceforge.net, freshmeat.net 34
References from peers 30
Mailing lists 16
Code-specific search engines 11

Table 3.2: Tools/information sources used in search

Our survey showed that 60 of the 69 respondents used general purpose search
engines (refer to Table 3.2). More than half the respondents relied on their domain
knowledge to find the right source code. Project hosting sites came next, with 34 of
the respondents using them for source code search.

Elements from the social network were used frequently especially peer refer-
ences (30) and mailing lists (16). In our descriptive data we observed that social
tagging sites (del.icio.us) and compilation sites created by a group of programmers
featured often.

Once users have access to the source code that matches their requirements, the
problem of narrowing down the list of retrieved items arises.



3 Archetypal Internet-Scale Source Code Searching 49

3.6.1 Documentation

An initial assessment is done using web pages and documentation, as one user put
it, “. . . (the core developer) had a good documentation of his code with lots of com-
ments too (by which I could also modify his code), hence I decided to use that
code.”

A piece of software with the required functionality may be eliminated if it can’t
be easily determined whether it has the required features and documentation. The
basic functionality has to be in place, and supported by requisite documentation.

3.6.2 Peer Recommendations

Peer recommendations were the most trusted and valued – especially if the person
has used the software before. For instance, one respondent stated that “. . . friends
recommended Graph.pm; searched for that on search.cpan.org, and found it was
just what I needed.” In the absence or inaccessibility of peer advice programmers
then look for availability of help from people within their online social network, or
within the project context.

3.6.3 Help from One’s Social Network

Help from a local expert, an electronic forum, a mailing list archive, or active
users who are doing similar tasks and are willing to answer questions is a major
consideration while choosing open source software. One respondent said he looked
for “. . . issues which are then found by people, solved and posted on mailing lists of
discussion forums.” A glance at the forums tells the users how friendly a project is
and how likely they are to obtain help when needed.

Availability of help is also determined from the project activity. Respondents
preferred large open source projects that were very active. For example, “The cri-
teria that I used were: (1) if the tool was in java (2) if the tool was web based (3)
the activity of the project.” Activity can be quantified as the number of contribu-
tors, frequency of builds and updates, traffic on newsgroups, and number of users.
Larger projects have more resources, are more responsive, and are more likely to
rank highly on these criteria.

Overall, social characteristics of the project, such as the level of activity, presence
of discussion forums, and recommendations by peers seem to have precedence over
characteristics of the source code, such as code quality (i.e. whether the code is peer
reviewed and tested), and reliability (Table 3.3).



50 M. Umarji and S.E. Sim

Criteria Count

Available functionality 54
Terms of license 30
Price 26
User support available 21
Level of project activity 18

Table 3.3: Criteria for selecting a code component

3.6.4 Feature Suggestions

Developers not only look for code, they also look for a social system through which
they can contribute their knowledge and expertise as well as learn from their coun-
terparts. As reported in Table 3.2, the domain knowledge and social networking are
key ingredients of the search process in addition to search engines.

We also observed that programmers use social tagging websites for techni-
cal information and applications. The current source code repositories should be
appended with a recommender system wherein programmers could obtain not just
code components, but also real subjective opinions of people who have used those
components.

3.7 Conclusions

The goal of this research study was to gain an understanding of Internet-scale
source code searching in order to inform the design and evaluation of tools for web-
based source code retrieval. We observed that programmers mainly search for either
reusable components or reference examples. The granularity of search targets varies
from a block of code to an entire system. Some directions for future research in this
area are: Which search engines are better than others with respect to code search?
Does search engine performance depend on types of tasks?

References

[1] D.A. deVaus. Surveys in Social Research. UCL Press, London, fourth edition.
edition, 1996.

[2] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program comprehension by
static and dynamic feature analysis. In Proceedings of the IEEE International
Conference on Software Maintenance., pages 602–611, 2001. TY - CONF.



3 Archetypal Internet-Scale Source Code Searching 51

[3] Mark Eisenstadt. My hairiest bug war stories. Communications of the ACM,
40(4):30–37, 1997.

[4] Gerhard Fischer, Scott Henninger, and David Redmiles. Cognitive tools for
locating and comprehending software objects for reuse. In Proceedings of
the 13th international conference on Software engineering, pages 318–328,
Austin, Texas, United States, 1991. IEEE Computer Society Press.

[5] R. Goldman and R.P. Gabriel. Innovation Happens Elsewhere: Open Source as
Business Strategy. Morgan Kaufmann Publishers, San Francisco, CA, 2005.

[6] Jean Lave and Etienne Wenger. Situated Learning: legitimate peripheral
participation. Cambridge University Press, England, 1991.

[7] M. B. Miles and A. M. Huberman. Qualitative data analysis. Sage Publica-
tions, Thousand Oaks, CA, 1994.

[8] H. A. Muller and K. Klashinsky. Rigi-a system for programming-in-the-large.
In Proceedings of the 10th international conference on Software engineering,
pages 80–86, Singapore, 1988. IEEE Computer Society Press.

[9] E. B. Parker and W. J. Paisley. Information retrieval as a receiver-controlled
communication system. Education for Information Science, pages 23–31,
1965.

[10] Ruben Prieto-Diaz. Implementing faceted classification for software reuse.
Communications of the ACM, 34(5):88–97, 1991.

[11] Soo Young Rieh. Judgment of information quality and cognitive author-
ity in the web. Journal of the American Society for Information Science &
Technology, 53(2):145–161, 2002.

[12] S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archetypal source code searches:
A survey of software developers and maintainers. In Proceedings of the 6th
International Workshop on Program Comprehension, page 180, Los Alamitos,
CA, 1998. IEEE Computer Society.

[13] Janice Singer and Timothy Lethbridge. What’s so great about ‘grep’? impli-
cations for program comprehension tools. Technical report, National Research
Council, Canada, 1997.

[14] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil.
An examination of software engineering work practices. In Proceedings of
the 1997 conference of the Centre for Advanced Studies on Collaborative
research, page 21, Toronto, Ontario, Canada, 1997. IBM Press.

[15] Diomidis Spinellis and Clemens Szyperski. Guest editors’ introduction: How
is open source affecting software development? IEEE Software, 21(1):28–33,
2004.

[16] Margaret-Anne D. Storey. Theories, tools and research methods in program
comprehension: past, present and future. Software Quality Journal, 14(3):
187–208, 2006.

[17] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research: Grounded
Theory Procedures and Technique. Sage Publications, Thousand Oaks, 1990.

[18] Louise T. Su. A comprehensive and systematic model of user evaluation of web
search engines: I. theory and background. Journal of the American Society for
Information Science & Technology, 54(13):1175–1192, 2003.



52 M. Umarji and S.E. Sim

[19] V. M. Sue and L. A. Ritter. Conducting Online Surveys. Sage Publications,
Thousand Oaks, CA, 2007.

[20] Scott R. Tilley, Dennis B. Smith, and Santanu Paul. Towards a framework for
program understanding. In Proceedings of the 4th International Workshop on
Program Comprehension (WPC ’96), page 19. IEEE Computer Society, 1996.

[21] Medha Umarji, Susan Elliott Sim, and Cristina V. Lopes. Archetypal internet-
scale source code searching. In Barbara Russo, editor, OSS, page 7, New York,
NY, 2008. Springer.

[22] H. Wang, M. Xie, and T. N. Goh. Service quality of internet search engines.
Journal of Information Science, 25(6):499–507, 1999.


	3 Archetypal Internet-Scale Source Code Searching
	3.1 Introduction
	3.2 Related Work
	3.2.1 Source Code on the Internet
	3.2.2 Code Search Engines
	3.2.3 Source Code Searching
	3.2.4 Software Reuse

	3.3 Method
	3.3.1 Research Questions
	3.3.2 Data Collection
	3.3.3 Data Analysis
	3.3.4 Threats to Validity

	3.4 Results
	3.4.1 Situations
	3.4.2 Object of the Search
	3.4.2.1 Motivations for Searching
	3.4.2.2 Size of Search Targets

	3.4.3 Process of Search
	3.4.3.1 Starting Point for Search
	3.4.3.2 Search Tools Used
	3.4.3.3 Selection Criteria


	3.5 Archetypal Searches
	3.5.1 Common Searches
	3.5.2 Uncommon Searches

	3.6 Discussion
	3.6.1 Documentation
	3.6.2 Peer Recommendations
	3.6.3 Help from One's Social Network
	3.6.4 Feature Suggestions

	3.7 Conclusions
	References


