
Chapter 12
Test-Driven Reuse: Key to Improving Precision
of Search Engines for Software Reuse

Oliver Hummel and Werner Janjic

Abstract The applicability of software reuse approaches in practice has long suf-
fered from a lack of reusable material, but this situation has changed virtually over
night: the rise of the open source movement has made millions of software arti-
facts available on the Internet. Suddenly, the existing (largely text-based) software
search solutions did not suffer from a lack of reusable material anymore, but rather
from a lack of precision as a query now might return thousands of potential results.
In a reuse context, however, precisely matching results are the key for integrating
reusable material into a given environment with as little effort as possible. Therefore
a better way for formulating and executing queries is a core requirement for a broad
application of software search and reuse. Inspired by the recent trend towards test-
first software development approaches, we found test cases being a practical vehicle
for reuse-driven software retrieval and developed a test-driven code search system
utilizing simple unit tests as semantic descriptions of desired artifacts. In this chap-
ter we describe our approach and present an evaluation that underlines its superior
precision when it comes to retrieving reusable artifacts.

12.1 Introduction

Building high-quality software faster, cheaper, and more predictable with the help of
reusable software building blocks is not a new idea. The earliest publication usually
referenced in this context is Douglas McIlroy’s seminal paper on component reuse
[25] presented at the famous NATO conference in Garmisch in 1968 where amongst
other ideas the term “software engineering” was coined. The idea of “remixing”
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existing software parts in order to compose new systems [24] as one cornerstone of
a more engineering like software development approach [27] certainly fitted well
into the spirit of the whole event.

Software engineering research in general has come a long way since then and has
successfully identified a lot of reuse potential amongst various software engineer-
ing artifacts [9]. The systematic reuse of well-defined third-party software building
blocks (such as components [6] or services [7]) according to a well-defined speci-
fication (as e.g. envisaged in [1]) is one of the most challenging approaches since
it requires a precise matching of potential reuse candidates to a given specifica-
tion. However, most existing software search solutions are still text-based and do
neither reflect nor support the need to match reuse candidates with the syntactic
and semantic characteristics of a specification. Nevertheless, the programmatic syn-
tax and semantics make software search and retrieval significantly different from
plain text retrieval so that the techniques that have been successfully applied within
the information retrieval community are likely not to be sufficient in the context
of (reuse-driven) software retrieval. Software retrieval research has identified some
core challenges for implementing a sustainable reuse repository that requires to –

• Create and maintain a large enough software collection that makes searches
promising (the so-called repository problem [35]),

• Index and represent its content in a way that makes it easily accessible (the rep-
resentation problem [8])

• Allow characterizing a desired artifact with reasonable effort and precision (the
usability problem [10])

• Execute queries with high precision in order to retrieve the desired content (the
retrieval problem [32]).

While the open source movement, higher bandwidths and always increasing hard-
ware power seem to have mitigated the repository problem recently (cf. Sect. 5.2.2
as well), the other three challenges center around finding an optimal representation
of software artifacts that allows storing, retrieving and searching them in a precise
manner with little effort.

In the remainder of this chapter we present a practical solution to tackle all three
of these challenges. We especially describe how we increased the precision of soft-
ware searches from a reuse perspective based on ordinary unit tests as usually cre-
ated during every software development project anyway [4]. We have found that
well formulated test cases reveal enough syntactical information and semantics of
a desired component that they can be used as a query for software searches effec-
tively. Therefore, the current status of our test-driven reuse approach, first presented
in 2004 [15], is described in detail in Sect. 12.3. Moreover, we show how we inte-
grated this vision in a state of the art software search engine and into the developer’s
work environment through a plug-in for the popular Eclipse IDE. In Sect. 12.4 fol-
lowing thereafter, we explain how we evaluated our system in order to demonstrate
the feasibility of the test-driven reuse approach and compare it with a similar sys-
tem recently presented in the literature. Section 12.5 describes this and other related



12 Test-Driven Reuse: Key to Improving Precision of Search Engines... 229

work in more detail before we share our view of the most important open challenges
in the context of reuse-oriented retrieval and conclude our chapter in Sects. 12.6
and 12.7, respectively.

12.2 Foundations

Around the turn of the millennium, the state of the art in reuse-oriented software
retrieval could be characterized from two widely contrary viewpoints. While one
opinion was that most challenges related with reuse libraries have been solved al-
ready since repositories were supposed to be mere catalogs containing only a small
number of about 50 to perhaps 250 carefully selected components [31], the other
opinion claimed the exact opposite. Mili et al. realized in their well-known survey
on software retrieval approaches [26] that there is indeed a large variety of proto-
typical component library systems, but none of them would be able to overcome
the retrieval and usability problem mentioned in the introduction, as soon as the
amount of available components would increase considerably. The reason for this
pessimistic appraisal is simple: since the matching criterion (such as e.g. the appear-
ance of a keyword anywhere – i.e. even in comments – within a candidate) is rather
weak in most approaches, it is very likely that they return many irrelevant results
as soon as a critical mass of indexed material has been exceeded. In other words,
10 years ago, it was still unclear how to build internet-scale software search systems
(with potentially millions of entries) that would be able to deliver only those com-
ponents precisely matching an existing “gap” in an application under development.

Separating the useful from the useless results in growing collections is one of the
major challenges for all information retrieval approaches [3] and is usually referred
to as the precision of a search engine. More formally, precision is defined as the
fraction of relevant results amongst all results returned for a query. Obviously, it be-
comes tedious to determine the actual relevance of more than perhaps a few dozen
results so that evaluations of common search engines often limit themselves on in-
vestigating the precision of the first 20 results (the so-called top 20 precision [23]).
A similar challenge exists for the second central metric used in information retrieval
to evaluate search engines, the so-called recall, defined as the fraction of all relevant
elements that are returned for a given query out of all relevant elements contained
in a collection for that query. As a collection may actually contain thousands of rel-
evant results, it is often not possible to determine all of them and therefore the recall
cannot be determined as well.

The results of a systematic survey in which Mili et al. [26] analyzed existing
software retrieval solutions for their performance are presented and discussed in the
following. The authors were able to distinguish six seminal classes of software re-
trieval approaches that we will briefly explain after their enumeration. However, due
to a lack of access to most prototypes and the non-existence of standardized eval-
uation scenarios, Mili et al. were only able to estimate the potential performance
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(i.e. recall and precision) of these approaches on larger collections so that inter-
ested readers are referred to their publication for further details. The estimates they
published are as follows:

1. Information retrieval methods (Recall: high/Precision: medium)
2. Descriptive methods (Recall: high/Precision: high)
3. Denotational semantics methods (Recall: high/Precision: very high)
4. Operational semantics methods (Recall: high/Precision: very high)
5. Structural methods (Recall: very high/Precision: very high)
6. Topological methods (Recall: unknown1/Precision: unknown)

Software retrieval is a specialization of information retrieval and hence it makes
sense to reuse methods from the latter area to perform a simple, purely text-based
retrieval of software assets. Descriptive methods go a small step further and rely on
external textual descriptions (i.e. metadata) for an asset. Hence, Mili et al. denote
such descriptive methods as a subset of the information retrieval methods, but due
to the high use of this approach in practice and literature they created an additional
category. Denotational semantics methods use signatures (see e.g. [42]) or formal
specifications [43] of the indexed assets for retrieval. While signature matching is
widely seen as a practical tool in this context, as it uses the parameters and re-
turn values exhibited in the interface of an artifact for matching, software retrieval
based upon the matching of formal specifications suffers from a variety of disadvan-
tages (such as difficulties in creating and evaluating them). Operational semantics
approaches that rely on the execution of the indexed software with sample input val-
ues are certainly expensive to execute, however, they seem to be easily automatable.
Nevertheless, also appealing in theory, this approach definitively also comes with
some practical challenges: side effects, non-termination, the structure of used data
types, dependencies, etc. can cause serious problems. Hence, in this context, it is
no surprise that the most well-known implementation so far, called Behavior Sam-
pling [30], was merely applied to simple mathematical functions of the C standard
library. Structural methods finally do not deal with the code of the assets directly,
but rather with internal program patterns or designs. Since it is largely unclear how
to formulate queries for such an approach, it does not surprise that it has only rarely
been experimented with.

Overlap between the discussed classifications can appear at various places, e.g.
between (3) and (4) and (5) as the “sampling” of components typically needs a
specific signature or structure to work with. As visible in the list, Mili et al. still
defined topological methods as an independent class of approaches, however, since
their common denominator is the distance between the query and the candidates, we
would prefer to describe it as an approach for ranking search results that can (exclu-
sively) be used together with at least one concrete instance of the other approaches.

1 For topological methods it is difficult to define or estimate recall and precision. See [26] for more.
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12.2.1 State of the Art

As previously indicated, the premises for software search and retrieval have changed
considerably since the Internet and its users have made millions of open source com-
ponents [16] available for software developers and researchers alike in recent years.
Around the turn of the millennium, Seacord realized this potential and attempted to
fill a software repository with Java applets collected on the Web by an automated
crawler [36]. Also at that time, Ye was one of the first researchers recognizing that
software searches are not only hindered by technical weaknesses of search engines,
but by usability issues as well. He found that developers are often not even aware of
the chance that a reuse candidate might be stored in a repository (which was under-
standable though due to their relatively small size at that time) and hence proposed
and implemented a prototypical software search system (called CodeBroker) that
continuously monitors the work of a developer and proactively presents potentially
reusable candidates based on textual information from the comments athe developer
has been writing [41].

Also around that time, the World Wide Web witnessed the rise of large-scale
search engines helping to make its growing amount of data accessible. Inspired by
the success of Google’s PageRank algorithm [29], it was the ComponentRank ap-
proach of Inoue et al. [22] that breathed new life into the software retrieval commu-
nity with an automated search engine (known as Spars-J). While their basic retrieval
approach was still text-based and hence simple, it was their set of about 150,000
open source files that was far larger than every other collection before, together
with the clever ranking approach that created a new standard. Inoue et al. proposed
to rank those components higher in the result list of a search that are more often
used than others amongst the indexed files. Nevertheless, the overall precision of
the searches remains still too low from a specification-based reuse perspective as
long as merely keyword matching is applied. Almost simultaneously, Hummel and
Atkinson [16] demonstrated that general web search engines (such as Google) could
be used for software searches by enriching queries with special keywords (such as:
filetype:java AND “class stack”) that – though not working absolutely perfectly –
still delivers relevant source code with a high hit ratio.

However, although all seminal search approaches described before were avail-
able at that time, little work is known that would have tried to integrate them with
the upcoming large-scale software search engines described in the next subsection.
Consequently, a pure text-based retrieval still remained state of the art at that time.
The only visible progress was the idea of parsing source codes in order to extract the
names of objects and their methods to allow more focused searches for them (as e.g.
introduced by Koders.com). Hummel et al. have coined the term name-based re-
trieval for that technique [17]. Retrieval approaches such as signature matching [42]
or interface-based retrieval – the combination of signature and name-based retrieval
(also described in [17]) – did not find their way into any of this new generation of
software search engines. Numerous of them have been developed during the last
10 years and a good number is still available on the World Wide Web. As demon-
strated by the various software search engines that have been launched as well as
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shut down in recent years, operating such an engine is not per se a fast-selling item,
it rather seems to be related with a considerable risk to receive a lack of interest
when content and usability are not appealing enough to potential users. The prime
example in this context is certainly the failed high-profile attempt of IBM, Microsoft
and SAP to establish the so-called UDDI Business Registry (UBR) as a marketplace
for (web) services that was finally closed down in early 2006 containing barely a few
hundred entries of dubious quality [16]. However, even operating a popular search
engine does not guarantee its long-time survival as is underlined by the recent an-
nouncement of Google to shut down its code search engine in January 2012 [13].

In spite of that, various code search engines (academic as well as commercial)
have demonstrated that the advances in database and text search technology (such
as the Lucene framework [14]) have made the creation of “internet-scale” software
repositories a viable undertaking wherefore the repository problem can be regarded
as solved. In order to conclude this subsection, the following table summarizes im-
portant characteristics of some of these second generation software search engines.

Table 12.1: Overview of code search engines and directories

Name Year
No. of

artifacts
Retrieval

algorithms
Remarks

UDDI Bus. Reg. 2000
<500

services
Keyword match-
ing on metadata

Shutdown in 2006

Spars-J 2004 >105 Keyword match-
ing

Implements Com-
ponentRank

Koders.com 2004
>3·109

LOC
Keyword & name
matching

Commercial by
Black Duck SW

Google Codesearch 2006 >107
Keyword match-
ing/regular expres-
sions

Shutdown
January, 15 2012

Sourcerer 2007 >106 Keyword & name
matching

Eclipse integration
via CodeGenie
plug-in

A more comprehensive overview that demonstrates even more forcefully that top
notch software search engines today are easily able to index millions of artifacts can
be found in [19] and in another chapter of this book [5].

12.2.2 Remaining Challenges

From the four problems identified for reuse-driven software retrieval in Sect. 12.1,
state of the art software search engines thus have basically solved the repository
problem and the representation problem by creating internet-scale collections of
software assets that can be managed with common databases or state of the art
search frameworks such as the freely available Lucene [14]. However, the usability
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and the retrieval problem dealing with how to efficiently retrieve the artifacts that
are useful in a given context are still in the focus of interest in the research commu-
nity. Garcia et al. [10] have recently underlined this with their list of requirements
for a component search engine: amongst other challenges they see a simple query
formulation and a good retrieval quality at the heart of a successful and scalable
component search engine. Unfortunately, as has been shown recently [17], simple
keyword- or signature-driven searches may lead to tens of thousands of results from
which – in principle – each one matches the given query criterion. However, only
because a – in these two cases – relatively simple technical matching criterion is
fulfilled, a search result does not necessarily become relevant for the user (see e.g.
[26]). Consider, for example, that a search for a reusable “spreadsheet” component
merely delivers a test case for a spreadsheet because it naturally has to use a spread-
sheet and thus contains the term. A user presented with such a result would certainly
be disappointed and after inspecting perhaps five or ten similar results not consider
using the search engine again, as in a reuse context, it is important to get results
precisely matching a given specification [1].

Interestingly, most existing software search engines still rely on a simple key-
word matching so that they suffer from exactly this problem. Although it seems
possible to narrow down the search results considerably through adding more key-
words to a certain degree, beyond that there still existed no intuitive approach for
formulating interface-based or even specification-based queries in second genera-
tion software search engines as described in another chapter of this book [5]. Only
Google’s code search engine allowed the use of (rather complex) regular expressions
in order to describe the desired interface of a component.

12.3 Test-Driven Reuse

According to the classification of Mili et al. presented in Sect. 12.2, the test-driven
reuse approach Hummel and Atkinson have first introduced in 2004 [15], is a tech-
nique based on operational semantics and hence inspired by the ideas of Behavior
Sampling by Podgurski and Pierce [30]. Due to their random nature, Behavior Sam-
pling requires a relatively large number of samples even for simple functions and,
to our knowledge, was never used in practice.

What is extensively used in practice, on the contrary, is (or at least should be)
systematic software testing with targeted “samples” of a software’s functionality
derived with the help of some systematic approach such as equivalence class parti-
tioning. In case of so-called test-driven development [4], which is especially popular
in agile development communities, test cases are even created before any production
code is written and are used to monitor the production code’s degree of complete-
ness and correctness during development iterations. From this starting point it is
just a small step to imagine the usefulness of test cases in determining the fitness
for purpose of reuse candidate. Assume as an example that we need a component
offering the functionality of a typical spreadsheet application (such as Excel), i.e.,
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it should be able to organize cells and reference them in alphanumerical form (rows
as numbers, columns as alphabetic characters), hold values in these cells, use them
within formulas and hence allow calculations based on other cells’ values. A simple
JUnit 3 [4] test for such a functionality might look as the one depicted in List-
ing 12.1. It describes two things, namely first, the (rather brief) required interface
of the Spreadsheet component as shown by the UML class in Fig. 12.1 and second
a concrete description of the required functionality, against which potential reuse
candidates can be tested. Although the interface of this component is simple, it ob-
viously requires quite some code to manage the cells of a spreadsheet and to parse
and evaluate their contents.

Based on the above test case and the interface of the required component “hid-
den” within it, a search can be issued to an arbitrary software search engine. As soon
as results are delivered from there, it should be possible to compile and test them
against the JUnit test case. Whenever the test case can be compiled and executed
successfully against a reuse candidate, it can be assumed that a working implemen-
tation for the specified functionality has been found. Figure 12.2 summarizes this
“test-driven reuse cycle” as initially introduced in [15].

As depicted in Fig. 12.2, it is also possible to fully automate this cycle: a de-
veloper merely needs to specify the tests (step a) and then waits until the system
delivers successfully tested reuse candidates (step f). The steps b to e in between
can be automatically executed by an appropriate reuse system (we will explain a

Listing 12.1 JUnit test case testing (and hence describing) a simple spreadsheet component.
p u b l i c c l a s s S p r e a d s h e e t T e s t ex tends T e s t C a s e {

p r i v a t e S p r e a d s h e e t s h e e t ;
p u b l i c vo id se tUp ( ) {

s h e e t = new S p r e a d s h e e t ( ) ;
s h e e t . p u t ("A1" , "5" ) ;

}
p u b l i c vo id t e s t C e l l R e f e r e n c e ( ) {

s h e e t . p u t ("A2" , "=A1" ) ;
a s s e r t E q u a l s ("5" , s h e e t . g e t ("A2" ) ) ;

}
p u b l i c vo id t e s t C e l l C h a n g e P r o p a g a t e s ( ) {

s h e e t . p u t ("A2" , "=A1" ) ;
s h e e t . p u t ("A1" , "10" ) ;
a s s e r t E q u a l s ("10" , s h e e t . g e t ("A2" ) ) ;

}
p u b l i c vo id t e s t F o r m u l a C a l c u l a t i o n ( ) {

s h e e t . p u t ("A2" , "3" ) ;
s h e e t . p u t ("B1" , "=A1*(A1-A2)+A2/3" ) ;
a s s e r t E q u a l s ("11" , s h e e t . g e t ("B1" ) ) ;

}
}
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Spreadsheet

+ put(cell:String,value:String):void
+ get(cell:String):String

Fig. 12.1 The interface of a simple spreadsheet component as defined by the test case in List-
ing 12.1

concrete implementation in the next subsection). In step b the required interface of
the desired reuse candidate is extracted from the test case what leads to step c where
a query is derived to drive an arbitrary code search engine (we use our Merobase
search engine that is explained in more detail in Sect. 12.3.1). While in principle
it would also be feasible (if not easier) to search and test binary files, our current
implementation still focuses on source code files (because historically there used to
be little support for searching binary files in software search engines) that need to
get compiled against the test case in step d and in case this procedure was successful
are tested in step e.

Fig. 12.2 The test-driven reuse “cycle”

Figure 12.2 furthermore shows that the desired interface from the test case is not
always fully matched by a potential reuse candidate when it comes to compilation
in step d. As a matter of fact, it is not exactly matched in most of the cases so that
the test case will not compile out of the box with most results, which is of course
unsatisfying. As a way out of this dilemma, we have been developing a test-based
adapter [11] generator that is able to automatically “wrap” the reuse candidate with
the appropriate interface in order to make it compilable and executable. In principle,
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it simply creates all syntactically possible adapter “wirings” and selects the one that
successfully passes the specified test case, implementation details and a proof of
concept implementation can be found in another publication [21].

Feeding the example test from Listing 12.1 to Merobase, eventually yields four
successfully tested reuse candidates. One of them is particularly interesting as it
nicely demonstrates how a “real component”2 consisting of various classes (as il-
lustrated in the UML diagram from Fig. 12.3) can be discovered with our approach
through merely describing and testing its facade [11].

Sheet

+put(whichCell:String,value:String):void
+getLiteral(whichCell:String):String
...

Formula Evaluator

Tokenizer

Circular Reference Exception

Formula Parsing Exception

Fig. 12.3 Simplified structure of retrieved spreadsheet component as UML class diagram

The class ensemble discovered here consists of three main classes, enclosing two
inner exception classes, and comprises in total slightly more than 300 lines of code.
Obviously, the interface of the facade class does not match the interface specified by
the test case from Listing 12.1 and thus would not compile. Hence, our tool created
the adapter presented in Listing 12.2 that provides exactly the interface required by
the test case and forwards requests to the retrieved component.

12.3.1 Implementation

Garcia et al. [10] depict the necessity of integrating source code search into the
IDE of the developer, as this prevents a loss of concentration and a media-break for
switching to another tool (like e.g. a web browser). Of course, reuse-oriented IDE
plug-ins usually cannot work as standalone tools, but must connect to a software
repository server via the Internet. In this section, we explain how our group at the
University of Mannheim has tackled this challenge and describe our software search
engine Merobase and its associated Eclipse plug-in Code Conjurer [20]. While Mer-
obase distinguishes itself from other software search engines through its broad sup-
port of retrieval techniques, Code Conjurer is able to deliver proactive reuse recom-
mendations by silently monitoring a user’s work (i.e. the code a developer writes in
Eclipse) and triggering searches automatically whenever this seems reasonable. We

2 Result source (visited Dec, 14th 2011): http://www.purpletech.com/xp/wake/src/Sheet.java

http://www.purpletech.com/xp/wake/src/Sheet.java
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Listing 12.2 Automatically generated adapter for the Sheet result.
p u b l i c c l a s s S p r e a d s h e e t {

p r i v a t e a d a p t e e . S h e e t a d a p t e e ;

p u b l i c S p r e a d s h e e t ( ) {
a d a p t e e = new a d a p t e e . S h e e t ( ) ;

}

p u b l i c S t r i n g g e t ( S t r i n g w h i c h C e l l ) {
t r y {

re turn a d a p t e e . g e t ( w h i c h C e l l ) ;
} catch ( Run t imeExcep t ion e ) {

i f ( e i n s t a n c e o f Run t imeExcep t ion ) {
throw e ;

}
re turn n u l l ;

}
}

p u b l i c vo id p u t ( S t r i n g whichCel l , S t r i n g v a l u e ) {
t r y {

a d a p t e e . p u t ( whichCel l , v a l u e ) ;
} catch ( Run t imeExcep t ion e ) {

i f ( e i n s t a n c e o f Run t imeExcep t ion ) {
throw e ;

}
}

}
}

will explain this process in more detail in Sect. 12.3.1.2 Potentially reusable results
are shown in Code Conjurer’s recommendations view (cf. Sect. 12.3.1.2) where we
explain our tool in more detail. Figure 12.4 describes the overall process in our reuse
recommendation system, including our Merobase search engine, the Code Conjurer
plug-in and the virtual machines used for secure testing of retrieved candidates.

12.3.1.1 Merobase: A Search Engine Supporting Test-Driven Reuse

The index creation for our Merobase repository is driven by automated crawlers
that can harvest source and binary files from three different sources, namely CVS
and SVN repositories as well as from websites (via HTTP). While the repository
crawling requires a list of projects to download the files from the respective (open
source) repository, web crawling works with an extended version of Lucene’s Nutch
crawler [14] starting from some seed URLs. The index itself is also based on the
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Lucene framework [14] and currently contains about ten million files from well-
known open source hosting sites and the open Web (roughly 8 %), out of which
roughly 40 % are binary files (primarily Java archives, but some .NET binaries as
well). Special parsers for each supported programming language allow to extract
syntactical information, store it in the index and search for it later. In addition to
class and method names, we store operation signatures (i.e. parameter and return
types) and complete operation headers (i.e., operation signatures plus names) as
concatenated terms optimized for Lucene in the index. Details on their structure can
be found in another chapter of this book [5]. Currently, Merobase is able to work
with Java, C++ and C# sources, WSDL files, binary Java classes from Java archives
(JARs) and .NET binaries.

Whenever a user sends a request to the Merobase server (either through the web-
interface available at merobase.com or a client program like Code Conjurer access-
ing its web service based API), the above parsers and a special JUnit parser (able to
extract the interface of the class under test from test cases) are invoked and try to ex-
tract as much syntactic information from the query as possible. If none of the parsers
recognizes parsable code, however, a simple keyword search is executed. Based on
parsed syntactic information, Merobase supports retrieval by class and operation
names, signature matching and by matching the full interface of classes as described
before. Although preliminary results indicate that the latter indeed leads to a higher
precision with common “toy examples” [17] collected from the literature, the risk
of “over-specifying” desired components is certainly also real, as e.g. the previous
spreadsheet example has demonstrated: no candidate completely matched the rel-
atively simple interface we have specified. Nevertheless, the retrieved components
that were finally working successfully, were found amongst roughly 22,000 results
of a “relaxed” query that merely searched for the desired signatures (i.e. ignored
class and operation names in the interface). As searches for more complex inter-
faces often tend to deliver few results (as e.g. predicted by Crnkovic [6]), we have
integrated a number of strategies into Merobase for relaxing queries as well. Fur-
ther details on the index structure of Merobase, its content, and the applied matching
strategies are explained in another chapter of this book [5].

In case of a test-driven search, which is triggered when a JUnit test case (such
as the one in Listing 12.1) is submitted, Merobase automatically tries to compile,
adapt and test the highest ranked candidates. If a candidate is relying on additional
classes, the algorithm uses dependency information to locate them as well (as seen in
the spreadsheet example). As visible in Fig. 12.4, the actual compilation and testing
are not carried out on the search server itself, but on dedicated virtual machines
within sandboxes. These ensure that the executed code does not have the possibility
to do anything harmful to the user’s system or bring the whole testing-environment
down; in our publicly available system we have also deactivated network transfer
to prevent abuse. Another system continuously monitors the virtual machines (by
polling a special monitoring service provided by the sandboxes) and as soon as it
recognizes that one is not working properly, it simply replaces it with a new instance,
which takes about 30 s for replacing and restarting.
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Code
Conjurer Merobase TestEngine AdaptationEngine

search(testCase)

parse(testCase)

interface

search(interface)

candidate set

test(testCase,candidates[i])

adapt(testCase,candidates[i])

adapter

optopt [if adapter necessary]

test()

test result

test result

TestLoopTest Loop for all i candidates

result set

Fig. 12.4 Architecture for a test-driven software reuse environment

12.3.1.2 Code Conjurer: Test-Driven Reuse in Eclipse

Although the Merobase search engine is certainly a useful tool, its regular web in-
terface forces a developer to leave his development environment when he wants to
search for reusable artifacts. Even worse this requires the cognitive decision that
reuse is desired in a particular situation [41], which clearly disturbs the creative
thought process of software development. Thus, we have created the open source
tool Code Conjurer3 as a plug-in for the Eclipse IDE, installable through the Eclipse

3 Which is hosted on sourceforge.net and available at www.code-conjurer.org

www.code-conjurer.org
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Marketplace. It integrates Merobase’s interface-driven searches as well as the test-
driven search technology into a widely used development environment.

After Code Conjurer is installed, it presents itself with a small magic hat icon
and a reuse menu in the Eclipse toolbar. The default position of the reuse view as
visible in Fig. 12.5 is at the bottom of the workbench where it presents all necessary
information about reusable assets and performed searches. Code Conjurer neither
requires the user to learn any dedicated query language nor to consciously write any
queries at all. When activated, it simply extracts the queries from the current source
window a developer is working with. Since Code Conjurer focuses on Java, Java
classes and JUnit 3 test cases4 are supported as queries in this context.

For interface-base searches, Code Conjurer assists the developer with a non-
intrusive background agent, that searches for reusable artifacts. The algorithm judg-
ing when a search should be triggered is developed continuously and actually relies
most on changes of the interface description of the class under development. Hence,
Code Conjurer triggers background searches whenever a method is added to the
class, deleted or its signature is changed. Search results are presented in a tree view,
while next to them a code preview is offered for the selected item.

If the user decides to enable the test-driven search feature of Code Conjurer, the
background agent monitors changes to the interface of the so-called class under test
(CUT), which is – in contrast to the provided interface of the class in interface-
base search – the required interface of the JUnit test case written by the developer.
This approach is very close to the one propagated by Extreme Programming, which
encourages the developers to iteratively write tests that fail, then implement the de-
sired functionality and then add more tests that fail again. In our case, the developers
would not implement functionality, but reuse existing software assets.

When executing test-driven searches, Code Conjurer sends the JUnit test to Mer-
obase where the interface of the desired class is extracted from the code and used to
search for results. Retrieved candidates are distributed to special virtual machines
used for compilation and testing. After the execution of the tests against the candi-
dates, the test results are shown in Code Conjurer’s result view from where they can
be directly added to the working project via drag and drop. The example shown in
Fig. 12.5, shows the results of a test-driven search. They all required an adapter to
work with the provided test case (which is shown by a bar in yellow ochre. When
a result is chosen for reuse, the adapter is automatically integrated into the working
project along with the reusable class. In other words, the retrieved code is directly
usable and the test initially defined by the user can then be executed locally on the
retrieved code, in order to ensure that it has been integrated correctly.

4 The only requirement is that the tests should be written according to best SE practices (e.g. the
name of the test should reflect the class under test’s name).
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Fig. 12.5 Code Conjurer’s “window to the world”: the reuse view with a generated adapter

12.4 Evaluation

As the information retrieval community has experienced in its early years, objec-
tively evaluating retrieval tools is difficult [3]: as mentioned before, information
retrieval science envisages the usage of recall and precision to judge the usefulness
of an information retrieval tool. However, it is well accepted that the exact recall of
large-scale search engines cannot be determined easily, since it is usually not pos-
sible to identify all relevant candidates from a corpus with millions of entries. Text
retrieval reference collections that have been built with lots of effort hence normally
are using manually inspected retrieval results collected from various tools to estab-
lish a baseline for the recall, unfortunately, those collections do not (yet) exist for
software retrieval [20]. Another issue with test-driven search is that its precision is
by definition equal to 100 % (assuming the test cases are expressive enough) since
retrieved candidates can be directly integrated into the project under development.
Hence, we believe a first reasonable evaluation of test-driven reuse approaches is to
demonstrate its feasibility by applying it to a variety of search challenges found in
literature. Since recently another implementation of the approach has become avail-
able [33] and presented a similar evaluation we also compared its results with our
system in order to further underline the technical feasibility of the overall approach.

12.4.1 Assessing Reuse Challenges

For the evaluation of our approach we have collected a number of previously pub-
lished retrieval challenges from related literature and as far as necessary created
simple JUnit test cases (documented in their entirety elsewhere [18] due to their
size). We have used our stable initial test-driven reuse prototype and the Merobase
search engine to search for Java source codes and to execute the test cases. Since this
prototype is still testing all candidates sequentially and identifies feasible adapters
based on a brute-force approach [21] the times shown in the following table can be
seen as absolute worst cases for testing all potential candidates with a matching sig-
nature. The comparison following in the next subsection already demonstrates that
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more user-friendly search times of under 3 min can be achieved by parallelization
and optimization of adapter creation and of course by incremental result delivery.

The results are summarized in Table 12.2 that contains the interface specified in
the respective test case its first column. Columns two and three compare interface-
based retrieval where candidates have to match this interface exactly (including class
and operation names) with a signature-based retrieval where it is sufficient when a
counterpart with the matching parameters and return types can be found for each
specified method. We also show the number of components that passed the test vs.
the total number of candidates found by Merobase in each cell, e.g. for the interface-
based retrieval of a Stack, 150 components out of 692 candidates were able to pass
the test. The numbers below indicates how much time the prototype required to try
out all candidates retrieved by Merobase. Finally, the last column lists “synony-
mous” class names we have found amongst the successfully tested candidates using
(more relaxed) signature-based retrieval.

Table 12.2: Overview of successfully solved reuse challenges

Query Interface-
based

Signature-
based

Exemplary
result classes for
signature-based

harvesting

Stack (
push(Object):void
pop():Object

)

150/692

26 min 45 s

611/35,634

18 h 23 min

Stack,
MyStack,
ObjectStack,
Keller,
LIFO, Pila,
ObjectPool,
LifoSet

Calculator (
sub(int,int):int
add(int,int):int
mult(int,int):int
div(int,int):int

)

1/4

19 s

22/23,759

20 h 24 min

Calculator,
CalculatorImpl,
Molecule,
Arithmetic,
SimpleMath,
Operators

Matrix (
Matrix(int,int)
get(int.int):double
set(int,int,

double):void
multiply(Matrix):Matrix

)

2/10

26 s

26/137

5 min 25 s
Matrix

ShoppingCart (
getItemCount():int
getBalance():double
addItem(Product):void
empty():void
removeIt(Product):void

)

4/4

26 s

4/12

47 s
ShoppingCart
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Query Interface Signature
Exemplary

results

Spreadsheet (
put(String,String):void
get(String):String

)

0/0

3 s

4/22,705

15 h 13 min

Sheet,
Compiler,
Util

ComplexNumber (
ComplexNumber(double,
double)

add(ComplexNumber):
ComplexNumber

getRealPart():double
getImagineryPart():
double

)

0/1

3 s

32/89

1 min 19 s
ComplexNumber

MortgageCalculator (
setRate(double):void
setPrincipal(double):
void

setYears(int):void
getMonthlyPayment():
double

)

0/0

4 s

15/4,265

3 h 19 min

Loan,
LoanCalculator,
Mortgage

On the one hand, the results presented in the table demonstrate the capability
of the test-driven reuse approach as we were able to identify a number of artifacts
in our collection that are able to deliver quite complex functionalities (such as a
Spreadsheet or a Matrix) as specified in the test cases. On the other hand it also
demonstrates its largest two dilemmas, namely the problem of “over-specifying”
the desired artifact and the execution time. The more complex an interface becomes,
the harder it gets to find a perfectly matching implementation. Although, relaxing
the search criteria indeed increases the probability of success, it increases the time
required for testing so that it is still difficult to apply test-driven reuse in practice
where developers demand results within just a few seconds. In principle, however,
distributing the testing to a large number of virtual machines should decreases this
time significantly as is shown in the subsection following hereafter.

12.4.2 Comparison

Recently, the idea of test-driven software search has been adapted by Steven
Reiss [33] from Brown University with his tool S6 and by Lemos et al. at UC Irvine
with their Eclipse plugin CodeGenie [39]. We will give some more details on their
approaches in the following section on related work, but first we want to demon-
strate that our implementation is able to reproduce results similar to those reported
by Reiss. Unfortunately, at the time of writing, CodeGenie required triggering the
testing of each candidate manually within Eclipse so that we were unable to include
it into the comparison for reasons of security and effort.
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Table 12.3 presents the results of our comparison in five columns starting with
a reference to the used example. Columns two and three illustrate how many suc-
cessfully tested results have been discovered by Merobase within the first 500 can-
didates (using its “relaxed” search approach described before) without respectively
with automatic adaptation of mismatching signatures. The JUnit test cases we used
were created according to the test samples provided by Reiss in his paper [33], his
results are reproduced in the fourth column for a direct comparison, while the fifth
column is reserved for special remarks where necessary. Due to the limited number
of candidates and optimizations in terms of parallelization and adaptation, this time
Merobase required less than 3 min per example, which certainly seems a reasonable
number for practical use. This time we have executed the testing in a parallelized
environment (running on an AMD Opteron based server with a 2.6 GHz dual-core
processor and eight virtual machines) that yielded results comparable with Reiss’s
system that required between 15 and 169 s in a testing environment utilizing also
eight threads.

Table 12.3: Comparison of test-driven search implementations

Example

M
er

ob
as

e
un

ad
ap

te
d

M
er

ob
as

e
ad

ap
te

d

S6
[3

3]

Remarks

SimpleTokenizer 0 2 14/138

QuoteTokenizer 0 0 4/6

Robots – – 1/124 Not repeatable5

Log2 0 1 1/100

FromRoman 0 2 3/38

ToRoman 2 4 6/56

Prime 0 4 14/228

PerfectNumbers 0 1 5/28

DayOfWeek 0 0 0/89 3/5,000

Easter 0 0 1/6 Not repeatable6

MultiMap 0 0 2/165 3/10,000

UnionFind 0 2 1/149

TextDelta 0 7 1/249

5 Reiss’ tests required resources from the Web that are not available anymore.
6 We were not able to find results with Reiss’ tool either.
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The remarks for DayOfWeek and MultiMap in Table 12.3 were Merobase could
not find results within the first 500 candidates mean that it was able to discover
three working version in a larger set of candidates (5,000 resp. 10,000). However,
the expressiveness of this comparison is unfortunately still somewhat limited since
Reiss has used different search engines with different retrieval algorithms that finally
delivered different candidates. It nevertheless demonstrates that Merobase achieves
a similar performance as another contemporary tool and is also able to deal with
completely unbiased reuse challenges independently specified by someone else so
that the technical feasibility of test-driven reuse has been illustrated one more time.

12.5 Related Work

After some years of relative silence around the turn of the millennium, a new mo-
mentum has become visible in the software retrieval community in recent years and
other approaches implementing a test-driven reuse approach have been presented by
other researchers. To our knowledge, two research groups have been developing and
experimenting with appropriate tools. As already mentioned, Reiss has developed
S6 [33], a web-based search tool where a user can list search keywords, specify
the declaration of one or more method headers and add test samples that describe
the semantics of the desired operation. According to Reiss’s publication, S6 is also
able to “adapt” retrieved candidates by carrying out various internal program trans-
formations based on the abstract syntax tree of the potential result and to retrieve
numerous operations within one Java class. S6 is able to use its own search en-
gine called Labrador or a number of other code search engines such as Koders or
Sourcerer.

Sourcerer itself, which was developed by Bajracharya et al. [37] at the University
of California in Irvine implements a ranking approach similar to ComponentRank
[22] and is the foundation for another test-driven reuse tool called CodeGenie [39].
In contrast to S6, and similar to Code Conjurer, CodeGenie is fully integrated into
the Eclipse IDE and able to directly use JUnit test cases to drive a search for a miss-
ing Java method. In order to do so, CodeGenie analyses Eclipse’s compiler errors
and tries to find missing classes respectively their methods via the Sourcerer search
engine. The user can inspect the candidates delivered by Sourcerer and can request
from CodeGenie to “weave” them into his project where they can be tested as usual
with the help of JUnit. One of the main contributions of Sourcerer and CodeGenie is
probably their ability to work even with declaratively incomplete program files (so-
called slices) that can also be woven into the project under development. In contrast
to Code Conjurer that always integrates complete files and tries to resolve missing
dependencies also on a per file basis, CodeGenie thus seems to be more flexible,
as far as this can be determined without a direct comparison on the same data set.
Clearly, it would be interesting to see such a comparison (of course also including
the capabilities of S6) to better understand the advantages and disadvantages of all
three tools, however, this is yet to be done.
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Other recent approaches for increasing the precision of software searches in
large-scale repositories include the work of Grechanik et al. [12] who have built
a search engine that analyses the documentation of API calls (e.g. Javadocs) with
common information retrieval approaches in order to retrieve complete applications
that implement a desired high-level functionality (such as “record midi file”). It thus
avoids the need for exactly matching components and adaptation in the first place.
In terms of size of their search target, a number of innovative tools such as XSnippet
[34] or ParseWeb [38] reside at the other end of the spectrum as they mainly sup-
port developers in Eclipse through finding examples for object instantiations and
API calls. However, we are currently not aware of any other recent approaches that
also aim on retrieving reusable software building blocks according to a concrete
specification as test-driven reuse does.

12.6 Future Work

Although test-driven reuse marks another milestone for specification-based software
search and retrieval, there still exist many aspects with potential for improvement as
already illustrated by the three currently available approaches [19, 33, 39] with their
individual strengths and limitations. Since they only support the reuse and integra-
tion of Java source code so far, it is certainly interesting transfer the approach to
other programming languages, although we do not see any reason why this would
cause major problems. In order to make test-driven reuse applicable for the daily
work of a developer, however, it is necessary to further decrease the time until result
are delivered. This can of course be done by a further parallelization of test exe-
cution (with corresponding costs, of course), or by improving the adaptation gen-
eration and of course by optimizing the underlying search engine so that it simply
ranks potentially working results higher. Moreover, many advanced techniques from
information retrieval such as stemming, synonyms or hypernyms [3] have occasion-
ally been tried out for software search, but not yet systematically investigated so far
so that their effects are not yet clear. However, this problem has been plaguing gen-
eral information retrieval systems for years: for example, naively adding synonyms
as search terms, quickly leads to an explosion in the number of results and in turn
most likely to decreasing precision. Thus, one goal for the near future should be
the discovery of an optimal mix of heuristics that delivers an acceptable amount of
tested results within a reasonable amount of time. In other words, we still need to
find out which software retrieval algorithm works best for which usage scenario, as
there is still a lack of systematic evaluations as recently criticized [20].

Another challenging but not less important question is, whether and how com-
plex class ensembles or, in more general terms, complex components can be best
retrieved in a widely object-oriented world. There, today’s mainstream applications
are mostly composed of very fine-grained building blocks (i.e. the classes) and thus
composing an object-oriented program with the test-driven reuse approach would in
principle require a detailed specification for each desired object. On the one hand,
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creating each class individually is what needs to be done in object-oriented software
development anyway, however, on the other hand it clearly contradicts the idea of
composing preferably large components and hence defeats most of the benefits of
component-based development [40] that hides implementation details behind inter-
faces. “Carving” components from a bunch of objects currently only works auto-
matically as long as a hull (better known as a facade [11]), such as the Sheet class
from Figure and Listing 12.1, is coincidentally available and all its dependencies
can be resolved. To our knowledge, automated orchestration mechanisms as they
are intensively investigated in the web service community (e.g. in [28]) are not yet
supported by any of the current software (or service) search engines and prototypes.
A prerequisite for overcoming this challenge is of course being able to find all de-
pendencies a reuse candidate relies upon. While we have already discussed some
simple heuristics for this task, a systematic analysis of this area is also still open.

12.7 Conclusion

The contributions we have described in this chapter are manifold, we have presented
a novel approach hat uses ordinary (unit) test cases for search and retrieval of well
defined software building blocks in a reuse context. We have described the current
state of development of our proactive reuse recommendation tool and a search en-
gine that can be used to implement test-driven reuse in practice. Furthermore, we
have applied our tool to a number of realistic reuse challenges demonstrating that
the approach is technically feasible, which is also supported by two similar imple-
mentations published recently. Moreover, we have identified some interesting ideas
for improvement and once more realized that it is about time to carry out a system-
atic comparison of (not only test-driven) software search tools, based on a unified
reference collection.

Since testing still is (and will certainly remain for some time to come) the only
means by which software components can be judged as “fit for purpose”, we believe
that, together with a test-driven reuse approach, it can become the central driver for
component and service markets in the mid-term future. Thus, our basic idea is to
integrate the ability of testing components and services into future versions of soft-
ware brokers (such as the former UDDI Business Registry). In addition to delivering
components that syntactically match users queries, search engines enhanced in this
way will also be able to execute tests in order to filter out those reuse candidates that
are not fit for the desired purpose.

In contrast with current testing approaches, however, a new form of “blind test-
ing” is required to protect the interests of component providers and users in such a
commercial brokerage scenario. Thus, we propose a novel form of testing in which a
search engine only provides the user with an indication of whether a test was passed
or failed, but not with the actual results delivered by the component under test.
Moreover, it is important that the expected result of a test submitted by a user is also
not disclosed to the component since it could otherwise be used to return spoofed
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results that might influence a purchase decision [2]. Thus, search engines in our
future concept need to act act as a trusted broker between component providers
and potential users (i.e. buyers). This vision certainly has the potential to bring the
practice of software reuse closer to McIlroy’s long-felt desire of viable software
component marketplaces.
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