
Chapter 55
System Identification Using Kalman Filters

F. Abid, G. Chevallier, J.L. Blanchard, J.L. Dion, and N. Dauchez

Abstract The present study focuses on Model Order Reduction (MOR) methods of non-intrusive nature that can be seen
as belonging to the category of system identification techniques. Indeed, whereas the system to analyze is considered as a
black box, the accurate modeling of the relationship between its input and output is the aim of the proposed techniques.
In this framework, the paper deals with two different methodologies for the system identification of thermal problems. The
first identifies a linear thermal system by means of an Extended Kalman Filter (EKF). The approach starts from an a priori
guessed analytical model whose expression is assumed to describe appropriately the response of the system to identify.
Then, the EKF is used for estimating the model transient states and parameters. However, this methodology is not extended
to the processing of nonlinear systems due to the difficulty related to the analytical model construction step. Therefore, a
second approach is presented, based on an Unscented Kalman Filter (UKF). Finally, a Finite Element (FE) model is used as
a reference, and the good agreement between the FE results and the responses produced by the EKF and UKF methods in
the linear case fully illustrate their interest.

Keywords Model Order Reduction (MOR) • System identification • Extended Kalman Filter (EKF) • Unscented Kalman
Filter (UKF) • Finite Element (FE)

55.1 Introduction

The increasing complexity of mathematical models used to predict real-world systems has led to a need for model reduction,
which means developing systematic algorithms for replacing large-scaled models with far simpler ones that still accurately
capture the most important aspects of the phenomena being modeled. Model reduction techniques can be divided into two
main categories. Intrusive methods belong to the first. Their principle is based on projection techniques that map a large
number of degrees of freedom (DOFs) to a small number of generalized coordinates using an appropriate reduced-order
basis (ROB). They may be called “internal methods” as they require access to the governing equations to project them
onto the subspace spanned by the set of ROB vectors. Some of the basic and earliest methods in this category are Guyan
(static condensation) [6] and Craig and Bampton reduction [4] that combines the Guyan reduction and modal truncation.
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These classical methods have been commonly used in mechanical engineering problems for many years and can easily be
applied to the thermal domain as well. However, they are more suitable for processing linear systems. More recently, modern
reduction techniques such as either Singular Value Decompositions (SVD) or Proper Orthogonal Decomposition (POD)
were introduced in the last decades. The POD method is an a posteriori powerful technique for model reduction of large-
scale non-linear systems and it has been successfully applied for the simulation and control of complex systems [2, 11]. The
second category of reduction methods is of non-intrusive nature. This category can be viewed as belonging to the category
of system identification techniques aimed at developing models that describe mathematically the dynamic behavior of the
real system. System identification techniques drive a model, considered as a black-box, by operating directly only on input
data such as command law and output results. In this framework, this paper focuses on two methods based on Kalman
filters, namely the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) proposed by Sorenson [12], and
Julier and Uhlman [7, 8], respectively. These methods deal with both linear and nonlinear systems. The EKF applies the
standard Kalman Filter to nonlinear systems by simply linearizing all the nonlinear models. However, in practice, the use
of EKF has two well-known drawbacks [8, 9]. First, linearization can produce highly unstable filters if the assumptions of
local linearity are violated. Second, the derivation of the Jacobian matrices is nontrivial in most applications and often lead
to significant implementation difficulties, especially when the model construction step starts from a continuous state-space
form. However, the UKF is founded on the intuition that it is easier to approximate a Gaussian distribution than it is to
approximate an arbitrary nonlinear function [7].

In this study, both the EKF and UKF approaches are used to estimate a linear thermal transient model. To illustrate these
methods, a Finite Element (FE) model is considered as a reference. The accuracy of the identified system model is evaluated
by comparing its response with the numerical results produced by the FE reference model.

The rest of this paper is organized as follows. Section 55.2 presents the problem statement. The detailed ROM formulation
used in identification system technique is given in Sect. 55.3. We also briefly present principles of the EKF and UKF.
Section 55.4 contains results for the case study. A sensitivity analysis is conducted to evaluate EKF and UKF performance.
Conclusions and future work end this paper.

55.2 Problem Statement

In this study, a thermal transient problem is investigated and it is described by a Finite Element FE model of dimension
n (Eq. 55.1). A transient heat flux (�imp.t/) and a convective condition are considered as boundary conditions. Thermal
properties (conductivity k and heat transfer coefficient h) are assumed temperature- and time-independent, and radiative
effects are neglected. Initially the system is at a uniform initial temperature T0 and the surrounding temperature is Tout .
Hence, the linear system governing the FE model is:

ŒC � f PT g C ŒK� fT g D fF g (55.1)

where ŒC � and ŒK� are the heat capacity and the conductivity matrices. The notation fT g D ŒT1.t/ T2.t/ : : : Tn.t/�T stands
for the nodal temperature vector, f PT g D Œ PT1.t/ PT2.t/ : : : PTn.t/�T is the time derivative of the this vector, and fF g D
Œ�imp 0 0 : : : hTout �

T designates the heat flux vector of dimension n.

55.3 System Identification

55.3.1 Generalities

For an identification problem, where the model is considered as a black-box, temperature measurements or part of them are
known as well as the forcing term �imp, whereas the model operators are unknown. To deal with this category of problems,
system identification technique based on Kalman Filters variants is herein investigated. Both Extended Kalman Filter (EKF)
and Unscented Kalman Filter (UKF) are applied in order to identify a reduced-order model (ROM) for the direct linear
problem given in Eq. 55.1. The system identification procedure illustrated in Fig. 55.1 is performed in two steps:

(1) The measurements
(2) The model construction
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Fig. 55.1 System identification
procedure

55.3.2 Step 1: Measurements

In the standard (direct) heat transfer problem (55.1), the operators ŒC �, ŒK� and fF g are assumed known and fT g is
determined through a numerical integration method implemented in Matlab (e.g. Runge-Kutta method). This FE model
is considered as a reference and its numerical results are compared to the results of the identified system model to evaluate
its accuracy.

55.3.3 Step 2: Model Construction

The choice of the model, which consists in selecting a mathematical model to describe the input-output behaviour of the
system of interest, is a fundamental step. To begin, the FE reference linear model presented in Eq. (55.1) is first considered.
For the purpose of identification, the reference model is transformed into a time-invariant state space form:

� Px .t/ D Ax .t/ C Bu .t/

y .t/ D Cx .t/ C Du .t/
(55.2)

where x.t/ is the n � 1 state vector, A the n � n state transition matrix, B the n � p input-state matrix, C the m � n state-
output matrix and D the m � p direct transmission matrix. For physical systems, D is usually the zero matrix. The vector
u.t/ generally groups the applied forces in (55.1) and B is a matrix which maps the physical locations of the input forces
(p-input vector) to the internal variables of the realization. Similarly, y.t/ are physical sensor measurements (or numerical
observations at the DOFs of the reference FE model) yielded by temperature probes, and C is a matrix which constructs
these physical quantities (m-output vector) from the internal variables x.t/.
In D addition :

– The system is controllable if and only if the matrix �cont D ŒB ABI A2BI : : : I An�1B� 2 R
n�np is of rank n.

– The state x.t/ is observable if and only if the matrix �obs D ŒC I CAI C A2I : : : I C An�1� 2 R
mn�n is of rank n.

55.3.3.1 The Reduced-Order Model (ROM)

Model order reduction is closely related to system identification. It is therefore interesting to keep only the internal variables
that capture the essential dynamics of the system. To this purpose, the reference problem (55.1) is represented by a linear
reduced-order model (ROM) of dimension nr 6 n, in which fxrg D ŒTr1 Tr2 � � � Trnr

�T is the new temperature reduced-order
state vector. This latter consists of internal variables that are used to describe the dynamic relationships. If an orthonormal
basis change U such that U �1AU is a diagonal matrix is applied to the system (55.2), this system becomes:
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� Pxr .t/ D QAxr .t/ C QBu .t/

y .t/ D QCxr .t/
(55.3)

with QA D U �1AU ; QB D U �1B and QC D CU . If only one input u.t/ D �imp.t/ is applied, the constitutive reduced-

order model (ROM) further simplifies into: QA D

2
64

a1

: : :

anr

3
75; QB D

2
6664

b1

:::

bnr

3
7775; QC D

2
64

c11 � � � c1nr

:::
: : :

:::

cnr 1 � � � cnr nr

3
75. The coefficients

ai ; fi D 1; � � � ; ng depend on the time-constants �i ; fi D 1; � � � ; ng of the reference problem; ai D � 1
�i

.

55.3.3.2 Setting of Extended Kalman Filter (EKF)

In this section, the conversion of the continuous ROM (Eq. 55.3) into a discrete representation (Eq. 55.4) is performed using
EKF by means of an exponential discretization technique [3](see A.1). The resulting discrete ROM is given by Eq. 55.4:

8<
:

xk D
�

xrk

�k

�
D

� Qfdk
.xrk�1

; uk�1; �k�1/

�k�1

�

yk D Qhd .xrk
; �k�1/

(55.4)

where the Qfd
k

and Qhd are nonlinear evolution and observation functions at time k, the �k a np� stationary parameter vector

at time k; �k D
h
ea1T � � � eanr T ; b1

a1
� � � bnr

a2
c11 � � � c1nr cnr 1 � � � cnr nr

iT

k
.

55.3.3.3 Setting of Unscented Kalman Filter (UKF)

The continuous ROM in Eq. (55.3) can also be written as:

� Pxr D Qf .xr ; u/

y D Qh .xr /
(55.5)

where xr D �
Tr1 � � � Trnr

a1 � � � anr b1 � � � bnr c11 � � � c1nr cnr 1 � � � cnr nr

�T
is the extended reduced-state vector, the Qf

and Qh are the nonlinear evolution and observation functions. An implicit numerical integration method (Dormand-Prince
method) [5,10] is used in order to discretize Qf and therefore obtain a (discrete-time) recursive ROM. In the case of nonlinear
system, ai ; fi D 1; � � � ; nr g become time-dependent. To process it, we use the same ROM as in (55.5) and the UKF algorithm
is unchanged. Here, the advantage of UKF as regards the implementation simplicity is highlighted with respect to the EKF.
This latter methodology actually is not extended to the processing of nonlinear systems due to the difficulty related to the
analytical model construction step.

55.3.4 Basic Formulation of Kalman Filters

55.3.4.1 Extended Kalman Filter (EKF)

In this section, a nonlinear state-space model equivalent to the above model in Eq. (55.4) is considered:

�
xk D fk .xk�1; uk�1/ C w
yk D hk .xk/ C v

(55.6)

where xk is the extended state vector, whose distribution is assumed to be a Gaussian random variable, yk the noisy
measurement vector, uk�1 the known input at time k � 1, fk and hk the nonlinear process and the nonlinear measurement
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functions, and w and v the process and measurement noise, respectively. These latter are assumed to be uncorrelated zero-
mean Gaussian white noises with time-invariant covariance matrices Q and R. The idea of the EKF is to linearize the
nonlinear process fk and measurement function hk by a first order Taylor series (Jacobian) at each time step around the most
recent estimate of the state vector x. The resulting EKF algorithm is summarized in B.1.1, [12].

55.3.4.2 Unscented Kalman Filter (UKF)

The UKF represents an alternative to the extended Kalman Filter (EKF). The UKF is based on the fact that it is easier to
approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear function [7]. Instead of linearization
process using Jacobian matrices similarly the EKF approach, the UKF uses a deterministic sampling technique known as the
Unscented Transform (UT), proposed by Julier and Uhlmann [7, 8]. The idea of UT is to form 2n C 1 samples (or sigma-
points) that capture exactly the mean and covariance of the original distribution of x. These sigma-points are then propagated
through the non-linearity and the mean and covariance of the transformed variable are estimated from them. The UT scheme
is illustrated in B.1.2. Consider now the model in (55.6) used in Sect. 55.3.4.1. The distribution of the vector xk is assumed
to be a Gaussian random variable. The UKF is presented in B.1.3.

55.4 Numerical Results

A 10-DOF Finite Element (FE) model simulation is carried out to evaluate the performance of the EKF and UKF methods
regarding system identification. The problem is numerically simulated using ode23, a Matlab routine implementing a low-
order Runge-Kutta method with adaptative step size control. Initial conditions consist of a uniform temperature. The forcing
term u D �imp.t/ is a square signal applied at DOF 1 (cf. Fig. 55.2 (top)), and Fig. 55.2 (bottom) shows the simulation
results. As a first step, the Singular Value Decomposition (SVD) is used in order to determine the minimum number of
modes required to capture in the ROM the essential dynamics of the reference model (cf. Fig. 55.3). The Fig. 55.3 (top
left and top right) shows that the first two singular values are much greater than the rest (the numerical values are 14,040,
3,314, 885.9, . . . ). As such, the modal contribution is dominated by the first two modes. Hence, the reference model can be
represented by a two-order reduced model.
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Fig. 55.2 (Top) The square signal-forcing term of magnitude 10 W.m�1 and frequency 1 Hz applied to the reference model at DOF 1; (bottom)
Temperature evolution at all DOFs of the reference FE model; from DOF 1 to DOF 10
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Fig. 55.3 SVD computed on the
reference FE model;(top left) the
singular values (circle); (top
right) modal contributions of
Proper Orthogonal Mode (POM):
POM 1 (solid curve), POM 2
(dashed curve) and POM 3
(dashed-dotted curve); (bottom)
Temperature response at DOF 1:
FE response (solid curve), SVD
with 2 POM (dashed curve) and
SVD with 3 POM (dashed-dotted
curve)

55.4.1 Filtering Step

Now we apply EKF and UKF to the FE reference model. Our goal is to identify the discrete ROM by using known input
forcing vector u D �imp.t/, a square signal (see Fig. 55.2 (top)), and available temperature data collected at DOF 1 and 10 of
the FE reference model (see Fig. 55.2 (bottom)). For simplicity, the state and observation noise covariance matrices are set
as Q D �2

wIne�ne and R D �2
v
Im�m, where �2

w
and �2

v
are the state and observation noise variances. The notations Ine�ne and

Im�m denote the ne � ne and m � m identity matrices, and ne D 10; m D 2 stand for the dimension of the extended state
vector and observation vector. The initial state estimate covariance is set as P0 D p0 Diag.vect/, where p0 is the initial
state error variance and vect D Œ10; 10; 1; 1; 0:01; 0:01; 1; 1; 1; 1� a vector of dimension ne .

55.4.2 Sensitivity Analysis

In this study, we show how: (1) the initial state estimate covariance P0 representing the confidence in the initial state
estimate, (2) state model covariance Q representing the confidence in the Kalman model and (3) the observation covariance R
representing the confidence in the measurements, affect the performance of both EKF and UKF. The performance of the EKF
and UKF can be measured by: (1) comparison of the true observed and estimated temperature and the corresponding terms
in P (not shown here); (2) evolution of the identified parameters and the corresponding terms in P; and finally (3) the evolution
of the residual term, which is the difference between the predicted and true observed temperatures at DOF of observation
(1 and 10 in the reference FE model).

55.4.2.1 Sensitivity to the State Model Covariance

Figures 55.4–55.7, illustrate the sensitivity of EKF and UKF to the state covariance by comparing values from �w D 2:10�5

to �w D 2:10�9 and from �w D 10�2 to �w D 10�11, respectively. Increasing the state model covariance increases the
convergence speed (Fig. 55.4) and sensitivity to measurement (a significant decrease of the residual term when �w goes from
10�8 (dashed-dotted curve; error up to �6 %) to 10�5 (dashed curve; error up to �1:6 %) in Fig. 55.7 (left)). Increasing
the state model covariance too far results in parameter identification failure (dashed and solid curves in Fig. 55.6 (left)) and
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Fig. 55.4 Sensitivity analysis of EKF to state model covariance (�w parameter) for fixed �v D 10�3 and p0 D 10�6: (left) Parameter identification
(ea1T (top) and ea2T (bottom)); (right) Temperature evolution at DOF observation 1 (top) and 2 (bottom); FE response (solid curve), �w D 2:10�6

(solid curve), �w D 10�7 (dashed curve), �w D 10�8 (dashed-dotted curve) and �w D 10�9 (pink dotted curve)
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Fig. 55.5 Sensitivity analysis of EKF to model state covariance (�w parameter) for fixed �v D 10�3 and p0 D 10�6: (left) Measurement residual
of the estimation at DOF observation 1; and (right) Measurement residual of the estimation at DOF observation 2; �w D 2:10�6 (solid curve),
�w D 10�7 (dashed curve), �w D 10�8 (dashed-dotted curve) and �w D 10�9 (dotted curve)

solution divergence (blue solid curve in Figs. 55.4 and 55.5). In other words, when we are less confident in the Kalman
model, the gain K at update time in both EKF and UKF algorithm is sufficient large and hence observations play a significant
role in estimating the state (temperatures) but not in parameter identification.

55.4.2.2 Sensitivity to the Observation Covariance

Figures 55.8 and 55.9 illustrate the sensitivity of EKF and UKF to the observation covariance by comparing values from
�v D 10�1 to �v D 10�4 and from �v D 1 to �v D 10�4, respectively. Decreasing the measurement covariance magnitude
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Fig. 55.6 Sensitivity analysis of UKF to state model covariance (�w parameter) for fixed �v D 10�2 and p0 D 10�6: (left) Parameter identification
(a1 (top) and a2 (bottom)); (right) Temperature evolution at DOF observation 1 (top) and 2 (bottom); FE response (solid curve),�w D 10�2 (solid
curve), �w D 10�5 (dashed curve) and �w D 10�8 (dashed-dotted curve), �w D 10�11 (dotted curve)
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Fig. 55.7 Sensitivity analysis of UKF to state model covariance (�w parameter) for fixed �v D 10�2 and p0 D 10�6: (left) Measurement residual
of the estimation at DOF observation 1 ; and (right) Measurement residual of the estimation at DOF observation 2; �w D 10�2 (solid curve),
�w D 10�5 (dashed curve), �w D 10�8 (dashed-dotted curve) and �w D 10�11 (dotted curve)

increases the convergence speed. Decreasing the magnitude too far results in erratic parameter value (dotted curve; ea2T > 1

in Fig. 55.8 (left) and a2 > 1 in Fig. 55.9 (left)) or the solution fails to converge (dotted curve; ea1T in Fig. 55.8 (left), a1

in Fig. 55.9 (left)). Conversely, increasing the measurement covariance magnitude too far causes the identified parameters
to remain fairly constant at an erratic value (solid curve; ea1T < 0 and ea2T > 1 in Fig. 55.8 and solid curve; a1; a2 > 0 in
Fig. 55.9 (left)) and the solution fails to converge (solid curve in Fig. 55.9 (right)).
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Fig. 55.8 Sensitivity analysis of EKF to observation noise covariance (�v parameter) for fixed �w D 10�7 and p0 D 10�6: (left) Parameter
identification (ea1T (top) and ea2T (bottom)); (right) Temperature evolution at DOF observation 1 (top) and 2 (bottom); FE response (solid curve),
�v D 10�1 (solid curve), �v D 10�2 (dashed curve), �v D 10�3 (dashed-dotted curve) and �v D 10�4 (pink dotted curve)
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Fig. 55.9 Sensitivity analysis of UKF to observation noise covariance (�v parameter) for fixed �w D 10�8 and p0 D 10�6: (left) Parameter
identification (a1 (top) and a2 (bottom)); (right) Temperature evolution at DOF observation 1 (top) and 2 (bottom); FE response (solid curve),�v D
1 (solid curve), �v D 10�1 (solid curve), �v D 10�2 (dashed curve), �w D 10�3 (dashed-dotted curve) and �w D 10�4 (dotted curve)

55.4.2.3 Sensitivity to the Initial State Estimate Covariance

Kalman filters diverge (dotted curve in Fig. 55.10 (left)), or converge slowly (dotted curve in Fig. 55.11 (left)), because
the initial state covariance is very small. However, if p0 is very large, the filter converges to an erratic value (solid curve
ea1T ; ea2T > 1 in Fig. 55.10 (left); and a2 > 0 in Fig. 55.11 (bottom left)) or fails to converge (solid curve in Fig. 55.11 (top
left);a1 parameter).
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Fig. 55.10 Sensitivity analysis of EKF to initial state estimate covariance (p0 parameter) for fixed �w D 10�7 and �v D 10�3: (left) Parameter
identification (ea1T (top) and ea2T (bottom)); (right) Temperature evolution at DOF observation 1 (top) and 2 (bottom); FE response (solid curve),
p0 D 10�4 (solid curve), p0 D 10�5 (dashed curve), p0 D 10�6 (dashed-dotted curve) and p0 D 10�7 (dotted curve)
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Fig. 55.11 Sensitivity analysis of UKF to initial state estimate covariance (p0 parameter) for fixed �w D 10�8 and �v D 10�2: (left) Parameter
identification (a1 (top) and a2 (bottom)); (right) Temperature evolution at DOF observation 1 (top) and 2 (bottom); FE response (solid curve),
p0 D 10�4 (solid curve), p0 D 10�5 (dashed curve), p0 D 10�6 (dashed-dotted curve) and p0 D 10�7 (dotted curve)

To conclude, the best performance of EKF and UKF is obtained for the following values .�w D 10�6; �v D 10�3;

p0 D 10�6/ and
�
�w D 10�8; �v D 10�2; p0 D 10�6

�
, respectively. As the quotient �w

�v
is very small, that means more

confidence is attributed in the Kalman model, the model adopted for reduction is validated.

55.5 Conclusions and Future Work

This paper presents the EKF and UKF methods in order to identify a reduced order model for a linear thermal system based
on data produced by a FE numerical model. The sensitivity of these two methods with respect to state model covariance,
observation noise covariance, as well as to initial state estimate covariance is analyzed. This analysis shows that these three
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Kalman entries significantly impact the filter results and that judicious choices have to be made to guarantee convergence
and obtain the best performance and optimal values. This paper illustrates this behavior though the comparison between the
FE results and the responses produced by the EKF and UKF. A crucial advantage of the UKF with respect to the EKF is
that the implementation of the method for processing a nonlinear system can be done without difficulty by using the same
approach for the ROM construction as the one detailed in this paper.

This study has validated both of EKF and UKF methods through a 10-DOF FE linear model. Future studies will deal with
larger order FE models, first in the linear and then in the nonlinear domain, using UKF.

A.1 Model Construction Step Using EKF

The solution of Eq. (55.3) on the time interval
�
ti tf

�
is given by [1]:

xr .tf / D xr.ti / e
QA .tf �ti / C

tfZ
ti

e
QA .tf ��/ QB u.�/ d� (55.7)

where the exponential matrix is defined as e
QAt D

1P
kD0

1
kŠ

. QAt/k With ti D tk and tf D tkC1, (55.7) becomes:

xr.tkC1/ D xr .tk/ e
QA .tkC1�tk / C

tkC1Z
tk

e
QA .tkC1��/ QB u.�/ d� (55.8)

Simplifying the notation by writing k instead of tk and supposing u.t/ constant over the sampling interval Œtk tkC1� , the
discrete state space model is written as follows:

xrk
D QAd xrk�1

C QBd uk�1

yrk
D QCd xrk

	
QAd D e

QA T I QBd D
tkC1Z
tk

e
QA .tkC1��/ QBd� D

TZ
0

e
QA� Bd� I QCd D QC (55.9)

where xrk
is the state vector of internal variables at time k, yk the observation vector at time k, uk�1 the input data at

time k � 1, and . QAd
QBd

QCd / the constitutive matrices of the discrete reduced-order model: QAd D

2
64

ea1T

: : :

eanr T

3
75; QBd D

.e
QAd T � I /

2
64

b1

:::

bnr

3
75 D

2
664

b1

a1
.ea1T � 1/

:::
bnr

anr
.eanr T � 1/

3
775; QCd D QC D

2
64

c11 � � � c1nr

:::
: : :

:::

cnr 1 � � � cnr nr

3
75.

The objective of our procedure being the identification of parameters, they have to be included in the state vector. The
functions QAd and QCd are thereby nonlinear and will be denoted Qfd and Qhd , respectively. The discrete model is then given by:

8<
:

xk D
�

xrk

�k

�
D � Qfdk

�
xrk�1

; uk�1; �k�1

� �
yk D Qhd .xrk

; �k�1/

(55.10)
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B.1 EKF and UKF Algorithms

B.1.1 Extended Kalman Filter (EKF)

Extended Kalman Filter algorithm
Description:
1: Initialization:

State mean and covarianc at k D 0: Ox0 D E Œx0� and P0 D E
�
.x0 � Ox0/.X0 � Ox0/

T
�

2: Prediction phase

(a) The process model Jacobian: Fk D @fk

@x xDOxk�1

(b) Predicted state mean and covariance: Ox�

k D fk. Oxk�1; uk�1/ and P �

k D FkPkF T
k C Q

3: Correction phase

(a) Measurement model Jacobian: Hk D @hk

@x xDOx�

k

(b) Measurement update:
Measurement prediction: OykD hk

� Ox�

k

�
Innovation (Residual term): Qyk D yk � Oyk

Innovation covariance matrix: Mk D cov . Qyk/ D HkP �

k H T
k C R

(c) Updated state mean and Covariance:
Kalman Gain matrix: Kk D P �

k H T
k M �1

k

State update: Oxk D Ox�

k C Kk Qyk

Covariance update: Pk D .I � KkHk/ P �

k

B.1.2 Unscented Transform (UT)

Unscented Transform
Let x 2 R

n be a Gaussian random vector and y D g.x/ a general nonlinear function, g W R
n ! R

m; y D g.x/I E Œx� D NxI EŒ.x � Nx/

.x � Nx/T � D Pxx

1: Decomposition of the distribution in 2n C 1 sigma-points
f�i; !i giD0 ::: 2n D U T . Nx; Pxx/

where �0 D Nx I !0 D 	
.nC	/

�i D Nx C Œ
p

.n C 	/Pxx� I !i D 1

2.n C 	/

�iCn D Nx � Œ
p

.n C 	/Pxx� I !iCn D 1

2.n C 	/

9>>>=
>>>;

i D 1 : : : n

N.B. The term
�p

.n C 	/Pxx

�
i

represents the ith column vector of the matrix square root .n C 	/Pxx and is derived via the Cholesky
factorisation. The parameter 	 is a scaling parameter and !i an associated weight of each sigma-point.
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B.1.3 Unscented Kalman Filter (UKF)

Unscented Kalman Filter algorithm
Description:
1: Initialization:

State mean and covarianc at k D 0: Ox0 D E Œx0� and P0 D E
�
.x0 � Ox0/.x0 � Ox0/T

�
2: Prediction phase

(a) Generation of 2n C 1 sigma-points f�i ;k�1; !i giD0 ::: 2n D U T . Oxk�1; Pxk�1/

(b) Predicted state: ��

i ;k
D fk.�i;k�1; uk�1/ and Ox�

k
D

2nP
iD0

!i �
�

i ;k

(c) Predicted covariance: P �

xk
D 2nP

iD0

!i .�
�

i ;k
� Ox�

k
/.��

i ;k � Ox�

k
/T C Q

3: Correction phase

(a) Measurement update: Yi;k D hk.��

i ;k
/

(b) Measurement prediction: Oyk D
2nP

iD0

!i Yi ;k

(c) Innovation (Residual term): Qyk D Yi;k � Oyk

(d) Innovation covariance: Pyk D
2nP

iD0

!i Qyk QyT
k C R

(e) Cross covariance: Pxk yk D
2nP

iD0

!i .�
�

i;k
� Ox�

k
/.Yi;k � Oyk/T C R

(f) Updated state mean and Covariance:
Kalman Gain matrix: Kk D Pxkyk P �1

yk

State update: Oxk D Ox�

k C Kk Qyk

Covariance update: Pxk D P �

xk
� KkPyk KT

k
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