
Chapter 20
Tracking and Removing Modulated Harmonic Components
with Spectral Kurtosis and Kalman Filters

Jean-Luc Dion, Cyrille Stephan, Gaël Chevallier, and Hugo Festjens

Abstract This work describes an automatic method for removing modulated sinusoidal components in signals. The method
consists in using the Optimized Spectral Kurtosis for initializing Series of Extended Kalman Filters.

The first section is an introduction to vibration applications with Kalman Filters and modulated sinusoids. The detection
process with OSK is described in the second section. The third section concerns the tracking algorithm with SEKF for
amplitude and frequency modulated sinusoidal components. The last section deals with the complete process illustrated with
an experimental application on a rotating machine.

Keywords Kurtosis • Detection • Extended Kaman filter • Frequency modulation • Amplitude modulation •
Operational modal analysis

Acronyms

ARMA Auto Regressive – Moving Average
DOF Degree Of Freedom
EKF Extended Kalman Filter
SEKF Series of Extended Kalman Filters
OMA Operational Modal Analysis
OSK Optimized Spectral Kurtosis
PBF Pass Band Filter
PSD Power Spectral Density

20.1 Introduction

In the field of Operating Modal Analysis (OMA) applied on structures like helicopters or large structures in energy
production, vibration signals are composed with random sources and periodic signals due to rotating machines which can
not be shut down. It is a well-known problem that these harmonic components introduce mistakes in experimental modes
extraction by OMA algorithms. The present paper intended to solve this problem by tracking and removing modulated
sinusoidal signals in noisy records. The previous work has focused on the detection of sinusoidal components [1]. The
present work aims to remove these sinusoidal components by using Series of Extended Kalman Filter [2].
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Fig. 20.1 Block diagram of the
studied problem. Measured
signals Ym(s) are composed of
stochastic and deterministic
signals. The aim of the study is to
remove the deterministic part in
Ym(s)

In the field of vibrations, several works have already used Kalman filters for identification, detection, health monitoring
or tracking order. In identification and detection processes, Kalman Filters are performed for the localization of cracks on
rotating machines [3], for stiffness identification [4] or vibration force estimation [5,6]. Some health monitoring methods for
structures and rotating machines are based on Kalman Filters with varying Auto Regressive identification parameters [7–11].
Kalman Filters are also used in active vibration control [12–15] with real-time algorithms and non-stationary signals on
smart structures. Other works use Kalman filters to improve time-frequency analysis and order tracking techniques [16–20].
Order Tracking techniques for rotating machines are often based on Vold-Kalman Filter [21, 22]. Recent techniques aim to
improve the Vold Kalman Filtering for resampling techniques, high frequency resolution in Fourier analysis and crossing
orders detection [23–30]. Most of these works are based on shaft speed information, as an instantaneous frequency is often
measured by tachometers.

The whole process of measurement from an excitation source to measured signals can be depicted in a diagram (see
Fig. 20.1). In the rest of this paper, the structure is supposed to have a linear dynamic behavior. Then in a limited bandwidth,
the relation between inputs and outputs can be fully captured by its transfer function H(s), defined in the Laplace domain.

This structure is supposed to be excited by two kinds of input. The first one is created by a random source which delivers a
white noise. Thus it is a stochastic input named Es.s/. The second one is created by an unbalanced rotating machine. Contrary
to the first input, it delivers a signal whose amplitude and frequency are slowly modulated. As the signal slowly changes over
time, it has a phase and is deterministic. It is named Ed .s/, for deterministic input. Both inputs are not measured.

For a linear structure, the response Y.s/ of the structure can be separated into its stochastic and deterministic parts:

Y.s/ D Ys.s/ C Yd .s/ (20.1)

where Ys.s/ D H.s/Es.s/ is the response due to the stochastic input Es.s/ and Yd .s/ D H.s/Ed .s/ is the response due to
the deterministic input Ed .s/.

As errors are unavoidable in measurements, they have to be taken into account too. As for inputs, two kinds of observation
noise can distort signals. The first one is a random noise Ns.s/ which come from electronic flaws. Its probability law is
usually supposed to be Gaussian p.t/ D N.0; W / and is characterized in the frequency domain by a flat density of spectral
amplitudes, i.e. its energy is uniformly distributed among frequencies.

The second possible noise often results of an electrical field which produces a periodic component at a stable frequency,
but with modulated amplitude. Unfortunately this electrical field is also caught by sensors. For instance, in Europe
the spurious harmonic components at n�50 Hz are well known by experimental engineers. This added noise Nd .f / is
deterministic and is noticeable in signals as narrow components around its fundamental frequency and its harmonics. From a
structural point of view, they look like spurious low-damped modes. Unfortunately, this noise cannot be accurately predicted
because it highly depends on each experiment and on each sensor technology. This kind of noise is seldom taken into account,
although it can seriously alter signals if structural responses are weak.

In conclusion, the observed signals result in the sum of these noises added to structural responses:

Ym.t/ D Y.t/ C Nd .t/ C Ns.t/ (20.2)

that can be also separated into its stochastic and deterministic parts:

Ym.t/ D Ys.t/ C Ns.t/ C Yd .t/ C Nd .t/ (20.3)
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As a rule, OMA are designed for only stochastic input and noise measurement. It is a strong assumption for these algorithms
and is seldom respected. As a result, deterministic components in responses can strongly false results given by OMA
algorithms.

The purpose of the proposed method is to identify the deterministic part Yd .t/ and to substract it from Ym.t/. It will give
an approximation of the stochastic response which would be obtained if Ed and Nd were missing. Then this approximation
could be possibly used for OMA identification techniques, although here the focus will be made on the filtering process.
Here the term filtering means that the deterministic component of Yd .t/ is going to be filtered from the available signals
Ym.t/; without previous knowledge of the structure of Yd .t/.

In the present study, the detection and the tracking of sinusoidal components are performed without the knowledge of
frequencies of periodic signal or of a transfer function H.s/. Studied signals are assumed to be composed of random noise
and modulated sinusoidal components. Indeed, measured signals on rotating engines in operational conditions are:

s.t/ D b.t/ C P

k

pk.t/

W ith b.t/ D Ys.t/ C Ns.t/ and
P

k

pk.t/ D Yd .t/ C Nd .t/
(20.4)

The first term b.t/ is assumed to be mainly composed with the structural response under random excitation. The second
terms pk.t/ come from engines in operation and from spurious harmonic components of the electric power supply. The
signals pk.t/ are deterministic and assumed to be both amplitude and frequency modulated. The kth pseudo periodic source
is assumed to be composed of N modulated sines:

pk.t/ D
NX

iD1

ai;k.t/cos

0

@2�i

0

@f0;kt C �fk

tZ

0

mk.�/d�

1

A C 'i;k

1

A (20.5)

where:

ai;k.t/ the amplitude for the kth source and the ith sinusoid
f0;k the central fundamental frequency of the kth source
�fk the frequency deviation of the kth source
mk the reduced frequency modulation of the kth source with MAXfjmkjg � 1

'i;k the phase of the kth source and the ith sinusoid

In the proposed technique, the frequency modulation is assumed to occur slowly in a short range of variation.

d

dt

0

@�fk

tZ

0

mk.�/d�

1

A << f0;k With jmk.t/j < 1 and �fk � f0;k (20.6)

Two signals are sketched in the time domain in Fig. 20.2: signal A is a frequency and amplitude modulated sinusoid (Fig. 20.2
upper left) and signal B is a narrow bandwidth random noise (Fig. 20.2 lower left). Both signals share the same spectrum
magnitude (Fig. 20.2 right), although they have different phase spectras. Thus, for a given PSD or spectrum magnitude
where phase information is lost, the original temporal signal can not be identified: it could be either a modulated sinusoid
(deterministic) or a random noise (stochastic).

As a result, in the case of structural behavior identification, dynamic responses based on “output only” techniques have
to be free of such modulated sinusoidal signals. Thus, the purpose is to remove sinusoidal components, such as unbalanced
rotating machines speed or electrical current components, from the original signal. The method is built upon two main steps.

First, all sinusoidal components are detected with an Optimized Spectral Kurtosis (OSK) [1]. Thus, the number of
sinusoidal components is identified by the OSK. This process is described in Sect. 20.2.

Secondly, an EKF is built per detected central frequency. Then a set of EKFs is obtained and called a Series of Extended
Kalman Filters (SEKF). Its size is defined by the number of identified frequencies. State variables and variances in the EKF
are firstly identified with OSK data in order to initialize the SEKF process. This step is developed in Sect. 20.4.1.

Finally, each detected periodic signal is tracked and suppressed from the original signal with the help of a SEKF. These
steps are developed in Sect. 20.3 from a theoretical point of view, and numerical applications are exposed in Sect. 20.4.
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Fig. 20.2 Example of frequency and amplitude modulations of a sinusoid (Signal A: upper left), random noise in a narrow bandwidth (Signal B:
lower left): both signals have the same spectrum magnitude (right)

20.2 Detection of Modulated Sinusoidal Components

20.2.1 Definition of the Optimized Spectral Kurtosis Method

The detection of sinusoidal components is based on combining two kinds of information: statistical and spectral as developed
in a previous work [1]. The OSK consists in establishing a spectral description of Kurtosis.

First, the signal is filtered with a narrow Pass Band Filter (PBF) centered on the studied frequency.
Secondly, the Kurtosis of the filtered signal is computed and the numerical result defines the assumed nature of the signal

(included in the spectral bandwidth). In the i th Pass Band, the i th Kurtosis is defined by:

Ki D E

"�
Xfi � �

�

�4
#

(20.7)

where Xfi is the i th filtered signal obtained from the i th PBF, � D EŒX�, �2 D E
�
.X � �/2

�
and E.X/ is the statistical

expectation of X .
The complete spectral description of Kurtosis is obtained by translating the PBF along the entire frequency bandwidth.

In order to obtain an accurate spectral resolution, the used PBF is a sixth order Cauer Filter [31] for Real Time Computation
but could also be performed with an ideal PBF for Post-Processing Computation. In the case of a real time computation,
statistical expectations are computed with the following linear recursive technique:

EkŒY � D
�

1 � 1

k

�

Ek�1ŒY � C 1

k
yk (20.8)

where yk is the new data (realization of process Y ), Ek�1ŒY � the old expectation of Y and Ek the new expectation of Y .
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Fig. 20.4 Detection of sinusoidal components using Spectral Kurtosis. One frequency expected but 5 frequencies detected [1]

20.2.2 Testing of the OSK on an Experimental Bench

In order to test the OSK and SEKF in a real experiment, a test bench is set up (Fig. 20.3). The experiment is composed of
two masses insulated with flexible blades. The mechanical system can be described as a two DOF system in the bandwidth
0–100 Hz. The system natural frequencies are 9.7 and 36.7 Hz. The structure is simultaneously excited with a white noise
by the electrodynamic shaker and an amplitude and frequency modulated signal thanks to an unbalanced rotating machine
closed to 1,320 rpm (Fig. 20.3).

Figure 20.4 shows PSD and the OSK applied on a 131 s record of the accelerometer of the first floor with 262,144 (218)
samples. The sampling frequency is 2,000 Hz, the filter bandwidth is around 0.15 Hz, detection is defined for a Spectral
Kurtosis lower than two. Detected sinusoidal components are highlighted with “o” markers on both graphs when the OSK is
below two [1].

The results shown in Fig. 20.4 highlight expected observations. Frequency f b D 22 Hz is well detected as a sinusoidal
component and not as a structural response. The corresponding OSK at 22 Hz is lower than two. Duly, both structural eigen
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modes (9.7 and 36.7 Hz) are not identified as sinusoidal components. Nevertheless, other components, not initially foreseen,
are identified as sinusoidal components: the electric network frequency f r D 50 Hz, a low frequency around 5 Hz and two
frequencies: f r � f b D 28 Hz and f r C f b D 72 Hz.

These components are very small but are parts of the signal. The first one is due to the electric power frequency used for
the electric motor. The last two are due to the magnitude modulation between the rotation frequency of the engine and its
electric power frequency. These components are 100 to 100,000 times smaller than the main excitation at f b D 22 Hz.

Measurements have been realized with a piezoelectric accelerometer. Due to this technology, low frequencies are not
studied in the present work (even if a 5 Hz component is detected).

The next step consists in removing these components from the original signal.

20.3 Tracking of Modulated Sinusoidal Components

The filtering of modulated sinusoidal components into a composite signal cannot be carried out by classical spectral analysis
methods. ARMA filters [31] are not able to separate sinusoidal components and random noise into a same frequency
bandwidth. Liftering techniques in cepstral analysis [32] and curve smoothing introduce important distortions in phase
spectrum. Instantaneous phases of modulated signals should be accurately determined in order to be tracked. The Extended
Kalman Filter has been retained for this purpose.

20.3.1 Discrete State Space Formulation of an Amplitude and Frequency Modulated Sinusoid

The goal of this paragraph is to derive a state space formulation which is relevant on a short time scale.
A sinusoid whose amplitude and frequency are modulated over time can be described in the complex domain as an analytic

signal:

x.t/ D a.t/ exp .j�.t// (20.9)

where a(t) is the instantaneous complex amplitude and ˆ.t/ is the instantaneous phase. The discrete form of x.t/ at the time
step tn D n�t is xn D x.n�t/. The complex variable xn can be divided into its real and imaginary parts xn D x1;n Cjx2;n .
A sinusoid that slightly varies over time can be approximated by:

xn D anexp .j .2�fnn�t// (20.10)

where fn is the instantaneous frequency.
As the parameters fn and an of the sinusoid slightly vary over time, they are almost equal between two consecutive time

steps. Then a transition formulation can be given from xn to xnC1:

xnC1 � anexp .j.2�fnn�t// � exp .j.2�fn�t// (20.11)

This approximation is only true if modulations of an and fn are slower that the period of the sinusoid. This constraint is
assumed to be verified. Then a linear transition is obtained between the imaginary part x2;: and real part x1;: of xn and xnC1:

x1;nC1 D x1;n: cos .2�fn�t/ � x2;n: sin .2�fn�t/

x2;nC1 D x1;n: sin .2�fn�t/ C x2;n: cos .2�fn�t/
(20.12)

or written in a matrix form
�

x1;nC1

x2;nC1

�

D
�

cos .2�f
n
�t/ �sin.2�fn�t/

sin .2�fn�t/ cos .2�fn�t/

� �
x1;n

x2;n

�

(20.13)

The instantaneous amplitude an is given by

an D
q

x2
1;n C x2

2;n: (20.14)
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As an and fn should be allowed to vary over time, it is proposed here to use the following non linear state space formulation:

XnC1 D ˆ.Xn/ C Wn (20.15)

where Xn D .x1;nx2;nx3;n/T and Wn, the process noise. A state variable x3;n D 2�fn�t was added to track the evolution of
the instantaneous frequency fn. The transition between two time steps is composed by a sum of two parts: the stationary part
and the evolutionary part.

The stationary part links two successive points of a stationary sinusoid by ˆ(.). Then ˆ(.) is assumed as the non-linear
transition function and is given by ˆ.Xn/ D FnXn:

where Fn D
0

@
cos .x3;n/ �sin.x3;n/ 0

sin .x3;n/ cos .x3;n/ 0

0 0 1

1

A (20.16)

The two first components are related to the complex amplitude and are obtained by the previous linear relation. The third
component x3;nC1 D x3;n constrains the frequency not to change strongly between two time steps.

Up to now, the non-stationary behavior of the sinusoid was not modeled because it is not possible to express an exact
equation for this evolution. We suppose that Wn is a random variable whose probability law is Gaussian: Wn D N.0; Q/,
where Q is its variance matrix. Then the variations of amplitude and frequency are allowed by random values of Wn.

In a first glance, it could seem strange to choose a random variable for an effect which is generally deterministic. For
instance, the variation of frequency excitation of an engine is mainly deterministic. Anyway, this state space does not need to
represent accurately the evolution of a sinusoid on a long period, but only step by step. Then on a short time scale, a random
evolution of an and fn is enough to model a non-stationary sinusoid.

For a signal composed of M modulated sinusoidal components, the size of the state function is 3M .

Fn.Xn/ D

2

6
6
6
6
6
6
6
6
6
6
4

cos .x3;n/ �sin.x3;n/ 0 : : : 0 0 0

sin.x3;n/ cos .x3;n/ 0 : : : 0 0 0

0 0 1 0 0 0
:::

:::
: : : 0 0 0

0 0 0 : : : cos
�
x3C3.M�1/;n

	 �sin
�
x3C3.M�1/;n

	
0

0 0 0 : : : sin
�
x3C3.M�1/;n

	
cos

�
x3C3.M�1/;n

	
0

0 0 0 : : : 0 0 1

3

7
7
7
7
7
7
7
7
7
7
5

and Xn D

0

B
B
B
B
B
B
B
B
B
B
@

x1;n

x2;n

x3;n

:::

x1C3.M�1/;n

x2C3.M�1/;n

x3C3.M�1/;n

1

C
C
C
C
C
C
C
C
C
C
A

(20.17)

This state space formulation is non linear: the transition function ˆ.Xn/ is varying over time and depends on the frequency
modulation.

In reality, only the real part x1;n of the analytic signal xn can be observed. Unlike the transition phase, the observation
phase is completely linear

Zn D Œ 1 0 0 �Xn C Vn

Zn D x1;n C Vn

(20.18)

for one sinusoid and slightly more complex for M sinusoids

Zn D Œ1 0 0 : : : 1 0 0�Xn C Vn

Zn D x1;n C : : : C x1C3.M�1/n C Vn

(20.19)

where Vn is a noise observation random process.
Finally, a nonlinear discrete state space model has been derived to model the transition and observation of sinusoid

components mixed with random processes



XnC1 D ˆ.Xn/ C Wn

ZnC1 D HXnC1 C VnC1

(20.20)

where ˆ(.) is the nonlinear transition function given by ˆ.Xn/ D F.Xn/Xn and H (.) is the observation matrix given by:

H D Œ1 0 0 : : : 1 0 0�: (20.21)
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20.3.2 Application to the Extended Kalman Filter

Kalman filtering refers to a family of algorithms that track the temporal evolution of a dynamic model based on noised
measurements:



XnC1 D f .Xn; Wn/

ZnC1 D h .XnC1; VnC1/
(20.22)

described here in the discrete time domain. An efficient solution in terms of means and covariances can be derived when f .:/

and h.:/ are linear. Indeed it estimates the state probability distribution by its two first moments. Unfortunately, they are no
longer sufficient to characterize the distribution in the nonlinear case. Then some approximations have to be done in order to
find a practical solution.

The extended Kalman filtering is an extension of the classical Kalman filtering to problems with state dynamics governed
by nonlinear state transformations. Although it is not required here, it should be noticed that it can also handle a nonlinear
transformation from state variables to measurement variables. It generally exhibits a good robustness because it uses linear
approximation over small ranges of state space. Without any input control, the state model is defined by the first equation
in system (20.22) where Wn is the process noise assumed to be Gaussian with zero mean with a variance matrix Q. The
observation model is described by the second equation in system (20.22) where HXnC1 is the observation function and VnC1

the observation noise assumed to be Gaussian and zero mean with a variance R. State and observation noises are assumed
to be uncorrelated. The Extended Kalman Filter [2] is defined using predict and update phases. The predict phase gives an a
priori estimate of the state and covariance based on previous time step tn:

Predicted state OXnC1 jn D OFnjn OXnjn (20.23)

Predicted estimated covariance OPnC1jn D QFnjn OPnjn QF T
njn C Q (20.24)

And the update phase corrects the deviation of these estimations based on new observation at time step tnC1:

Innovation QYnC1jn D ZnC1 � H OXnC1jn (20.25)

Innovation covariance SnC1 D H OPnC1jn H T C R (20.26)

Kalman gain KnC1 D OPnC1jn H T .SnC1/
�1 (20.27)

Updated state estimate OXnC1jnC1 D OXnC1jn C KnC1
QYnC1jn (20.28)

Updated estimate covariance OPnC1jnC1 D .I � KnC1H/ OPnC1jn (20.29)

As the transition function ˆ is non-linear but differentiable, it is well locally approximated thanks to its

Jacobian W QFnjn D
�
rX .F .X/ X/T

�T
ˇ
ˇ
ˇ
ˇ
XD OXnjn

(20.30)

In the case of M modulated components, the first order derivative is required:

rXn D
�

@

@X1;n

@

@X2;n

� � � @

@X3M�1;n

@

@X3M;n

�T

(20.31)

and the approximation becomes a banded block matrix:

QFn D

2

6
6
6
6
4

QFn;1 0 : : : 0

0 QFn;2

: : :
:::

:::
: : :

: : : 0

0 : : : 0 QFn;M

3

7
7
7
7
5

(20.32)
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Fig. 20.5 Block diagram of the method. Four main steps in filtering process: filter synthesis (N filters computed off line), sinusoidal components
detection with OSK (real time or post-process of M components), Extended Kalman filtering (real time or post-process of M Kalman filters),
filtering process (real time or post-process of M modulated sinusoids)

where an elementary block is given by

QFn;i D
2

4
cos. Ox3i;n/ �sin. Ox3i;n/ � Ox1C3.i�1/;n sin. Ox3i;n/ � Ox2C3.i�1/;n cos. Ox3i;n/

sin. Ox3i;n/ cos. Ox3i;n/ Ox1C3.i�1/;ncos. Ox3i;n/ � Ox2C3.i�1/;n sin. Ox3i;n/

0 0 1

3

5 (20.33)

This state matrix is composed of 3M equations which could be described as M independent systems of 3 equations. The
complete EKF can be expanded in a series of M elementary EKM which could be computed in a same step or in M

independent steps. This point of view allows parallel computation of all EKM cells. The complete process is described in the
block diagram in next section, Fig. 20.5.
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20.4 OSK and SEKF in Operation

In this section, the aim is to propose a method for the filtering process of experimental signals as described in the block
diagram (Fig. 20.5).

The filtering process consists in removing detected and tracked sinusoidal components. The efficiency of the method is
due to the fact that the OSK allows an accurate initialization of the SEKF. The combination of OSK and SEKF techniques
could be performed into two different ways for real time computation or for post-processing computation. These two ways
are illustrated in Fig. 20.6.

In order to test the method, the previous Series of EKF have been applied on signals obtained with the test bench described
in Sects. 20.2.1 and 20.2.2. Previous results obtained in Sect. 20.2.3 have highlighted 4 modulated components. The tracking
of two of them is presented in this section. The first frequency (22 Hz) corresponds to the rotation of the engine and is
amplitude and frequency modulated. The second frequency corresponds to the electric power frequency (50 Hz) and is only
amplitude modulated.

20.4.1 Initializing the Series of Extended Kalman Filters

An important step for EKF is the estimation of initial parameters conditions. The first unknown parameter is the suitable size
of the SEKF. In a second step, for each EKF, several parameters and their variances have to be estimated. The efficiency of
the filtering process strongly depends on the quality of estimated initial parameters.

For each EKF, the initial values of nine parameters have to be set:

- Three parameters used for the sinusoidal component modeling,
- Three parameters variances (one per parameter),
- Three process noise variances (one per parameter).

The observation noise variance is defined for the complete SEKF.
For the proposed filtering method based on a SEKF composed of M EKF, 9M C2 initial conditions have to be estimated.

The very first parameter is the number M of EKF. This parameter is defined by the OSK and equal to the number of narrow
bandwidths in which detection occurs. The second one is the observation noise variance. The three parameters used to define
each sinusoidal component depends on the amplitude, the frequency and the phase of this component.

The estimated amplitude QAj of the j th detected component is determined from the DSP
ı

	k or the FFT
ı
sk results:

QAj ' 2
ı
s

kjfj Dfk

'
s

�f
ı
	

kjfj Dfk

: (20.34)

These two estimators overestimate the actual value of A. The higher the frequency is modulated, the larger the overestimation.
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SEKF 
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Filtering
Process

Ideal Filter
Synthesis for OSK

Filtering
Process

Real Time Data Acquisition After Data AcquisitionBefore Data Acquisition Time

Fig. 20.6 Chronogram of the 2 different ways for combining and computing OSK and SEKF: for real time computation and for post processing
computation
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The estimated frequency Qfj is determined from the OSK and equal to the center frequency fk of the narrow bandwidth
�fj in which the detection occurs.

The phase is not estimated and always set in the present method to 0. This lack of estimation is quickly vanished by the
specific efficiency of the Kalman Method for this kind of parameter [17].

The jth sinusoidal component modeling is also estimated:

8
<

:

x1C3.j �1/;0 D QAj

x2C3.j �1/;0 D 0

x3C3.j �1/;0 D �t2�fj

(20.35)

Due to the statistical properties of sinus functions, the estimated variances Q�2
1C3.j �1/; Q�2

2C3.j �1/ of the first two parameters are:

(
P1C3.j �1/;0 D �2

1C3.j �1/;0 D 1
2

QA2
j

P2C3.j �1/;0 D �2
2C3.j �1/;0 D 1

2
QA2
j

(20.36)

These estimators underestimate actual variances. The larger the amplitude modulation, the bigger the variance underestima-
tion. For robustness reasons in numerical applications, these parameters are chosen four times bigger.

The estimation of the third variance Q�2
1C3.j �1/ is based on the bandwidth �fj in which the detection j occurs:

P3C3.j �1/;0 D �2
3C3.j �1/;0 D .2��fj �t/2 (20.37)

The two first process noise variances Q1C3.j �1/ and Q2C3.j �1/ tend to zero since the modeling of amplitude modulated
component is linear. The third process noise variance deals with the frequency modulation and depends on the “velocity” of
the frequency modulation. The chosen estimation is:

Q3C3.j �1/ D
�

2��fj �t

fj T

�2

(20.38)

This approximation can be seen as a linear frequency evolution along �fj during the observation time T .
The observation noise variance R is simply chosen equal to the observed signal variance. This approximation is relevant

as long as the studied signal is mainly stochastic, i.e. the energy of sinusoid components is weak compared to the total energy
of the signal.

20.4.2 Numerical Results and Filtering Efficiency

The SEKF was performed on the previous experiment with two tracked sinusoids previously detected by the OSK. The first
component is around 22 Hz and the second around 50 Hz. For each component, the amplitude modulation is determined with
the instantaneous amplitude:

an D
q

x2
1;n C x2

2;n (20.39)

This amplitude could also be obtained by the complex analytic signal composed of the observed signal (real part) and its
Hilbert transform (imaginary part).

The frequency modulation is determined by the instantaneous frequency:

fn D x3;n

2��t
(20.40)

The SEKF provides an analytic signal fx1;n; x2;ng per sinusoid from the original signal. Thus one tracked signal is obtained
per sinusoid. Spectral amplitudes of these tracked signals show the main components at 22 and 50 Hz and lateral modulated
bands (Fig. 20.7).

The first tracked signal concerns the effect of engine rotation. It is characterized by its frequency and amplitude
modulations. As it can be observed on the Fig. 20.8, its instantaneous frequency fluctuates between 21.8 and 22 Hz.



222 J.-L. Dion et al.

Fig. 20.7 Spectrums of two tracked signals. Symmetric lateral bands are due to modulation effects on spectrums

Fig. 20.8 Time-frequency representation of the first tracked signal. Magnitude and frequency modulation are identified with a good accuracy
(instantaneous frequency is identified with 4 significant digits)

The second tracked signal is due to the electrical network and is only amplitude-modulated. This property could have
been foreseen since the 50 Hz due to the network is absolutely stable in frequency.

The very last step, the effective filtering process, is simply realized in removing the tracked signals from the initial
signal in the time domain. Figure 20.9 shows spectral amplitudes before and after the filtering process and for two tracked
components (22 and 50 Hz). Although the filtering process removes the 50 Hz component with efficiency, it does not show
the same behaviour on the 22 Hz component. This lower efficiency could be explained by the frequency evolution of 22 Hz
which makes the tracking harder. However, this component is twenty times lower after the filtering process, which is still a
significant improvement.



20 Tracking and Removing Modulated Harmonic Components with Spectral Kurtosis and Kalman Filters 223

Fig. 20.9 Spectrums before and after the filtering process. The two modulated sinusoidal components are successfully removed

20.5 Conclusion

An important difficulty in the application of Kalman filters is the initialization of state variables and variances. The most
important rule of the OSK is to initialize the computation of SEKF. The combination of the Optimized Spectral Kurtosis and
Series of Extended Kalman Filters allows a robust computational technique in tracking sinusoidal components. The filtering
process can be performed during or after the real time data acquisition. The complete signal filtering can be performed
automatically, even if the size of the SEKF is defined by the OSK. Inside the limits of our numerical and experimental tests,
the combination of OSK and SEKF allows a robust and efficient way for removing modulated sinusoidal components in
signals. The tested method is limited by the frequency modulation rate. Those limits are a new challenge for our work in
progress, especially for non smooth non linear systems.
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