
Chapter 7
Quantification of Parametric Model Uncertainties in Finite Element
Model Updating Problem via Fuzzy Numbers

Yildirim Serhat Erdogan, Mustafa Gul, F. Necati Catbas, and Pelin Gundes Bakir

Abstract Analytical and numerical models that simulate the physical processes inevitably contain errors due to the
mathematical simplifications and the lack of knowledge about the physical parameters that control the actual behavior.
In this sense, parametric identification of civil engineering structures using uncertain numerical models should be subject to
a particular interest in terms of accuracy and reliability of identified models. In this study, model uncertainties are modeled
by fuzzy numbers and quantified using fuzzy model updating approach. In order to find the possible variation range of
the response parameters (e.g. natural frequencies, mode shapes and strains) using uncertain finite element model, successive
updating is employed. A simplified approach is proposed in order to facilitate the time consuming successive model updating
phase. The identified variation range of the response parameters is employed to construct the fuzzy membership functions for
each response parameter. Finally, fuzzy finite element model updating method (FFEMU) is used to obtain the membership
functions of the model parameters. Different sets of model parameters are chosen to represent different models in terms of
accuracy and these parameters are identified in the same way to investigate the model complexity. A two span laboratory grid
structure developed for simulating bridge structures is used to validate and demonstrate the proposed approaches. The results
show that the proposed approaches can efficiently be utilized to quantify the modeling uncertainties for more realizable and
quantitative condition assessment and decision making purposes.

Keywords Finite element model updating • Fuzzy numbers • Model uncertainties • Optimization • Inverse fuzzy
problems

7.1 Introduction

Identification of civil structures using structural health monitoring data has gained considerable attention with the
development of measurement technologies [1–3]. Model based methods such as Finite Element Model Updating (FEMU)
provide calibrated models, which better represent the actual behavior of structures [4, 5]. These models might be used for
different analysis like damage detection, reliability analysis, load rating calculation etc. in order to make reliable decisions
for the remaining life of the structure or retrofitting purposes [6–8]. However, the model and the measurement uncertainties
that directly affect the updating process have still to be considered in order to obtain reliable updated models, which provide
a variation range for model prediction in probabilistic sense. Quantification of these uncertainties is not a straightforward
task, especially when the degree of freedom of the structure is too high since it requires too many model calculations [9,10].
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The main objective of this study is to investigate and then demonstrate a model uncertainty quantification approach first
in the laboratory assuming that the measurement noise is time invariant and also less than certain real life civil engineering
structures since the experiments are conducted in a controlled laboratory environment. The impact of modeling uncertainties
on the response predictions are quantified by Fuzzy Finite Element Model Updating (FFEMU) method. Several measurement
data sets (e.g. strain readings, modal parameters) and updating model parameter sets are generated and used to update the
baseline FEM model of the structure. By this way, uncertainty amount in structural responses are compared for different data
sets in order to quantify the uncertainty effect on model predictions. A benchmark grid structure designed for investigating
structural health monitoring technologies and St-Id strategies at the University of Central Florida is used as the test structure
[11, 12]. A damage case is adopted in which the boundary conditions are turned to be flexible to simulate the damage at
the supports. In order to extract modal parameters for initial and damage cases, Complex Mode Indicator Function (CMIF)
is employed [11, 13]. However, many other methods can be used effectively for experimental modal analysis like subspace
based system identification techniques [14].

FFEMU method together with some proposed constraints which is required for the uniqueness of the inverse solution is
employed to quantify uncertainties in the model. A Gaussian Process model, which is the surrogate for the numerical model
is used to tackle with the computational issues. The results show that appropriate measurement sets should be generated
instead of involving the complete measurement in order to keep the uncertainty at certain levels. This is due to the fact that
the response parameters, which are more affected by the model uncertainties, cause the total uncertainty in the updated model
to increase. Hence, the uncertainty quantification methods should be employed for different measurement sets and compared
with each other to determine the appropriate data sets required for reliable models, particularly when both static and dynamic
data are utilized together.

7.2 Fuzzy Finite Element Model Updating

Fuzzy set theory [15] is one of the efficient ways to quantify parametric uncertainty involved in the input and output
parameters. Fuzzy numbers have been used as a tool in order to investigate the effect of uncertainties in different engineering
input/output systems [16, 17]. A general illustration of fuzzy forward and inverse analysis for an I/O system is given
in Fig. 7.1. In Fig. 7.1, the inputs and the outputs are the fuzzy parameters with different membership functions. Those
membership functions can be chosen depending on the assumed and/or the quantified uncertainty in the parameters with the
help of expert knowledge and the past experiences.

The equations for objective functions and related constraints that have to be strictly applied in order to make inverse
problem to have a unique solution and capture all uncertainty in model responses are given in Eqs. (7.1), (7.2), (7.3), (7.4)
and (7.5).
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Fig. 7.1 General structure of the
forward and the inverse fuzzy
problem

where, θint is the interval valued updating parameter vector, W is the weighting matrix, which might be determined intuitively
considering the relative accuracy of the measurements, γ = [λ, φ , ε] is the response vector, f (θ) is the objective function
and f model(θ) is the model function that governs the physical process. In Eq. (7.5), frequency, mode shape and strain
vectors are denoted by λ, ϕ and ε, respectively. The bar above and below the response quantities denotes the upper and
lower quantities. In addition to the objective function provided by Eqs. (7.1), (7.2), (7.3), (7.4) and (7.5), some additional
constraints have to be introduced to preserve the monotonic behavior of the fuzzy set. It should also be noted that the
optimization problem given Eqs. (7.1), (7.2), (7.3), (7.4) and (7.5) has to be solved for some specified numbers of α-level
in order to capture the nonlinear relationship between inputs and outputs. The equations (7.8) and (7.9) can effectively be
satisfied by assigning some penalties to the infeasible regions in the output space domain. In Eq. (7.10), the term H is a
number in which its value is very high compared to the objective function value. By this way, infeasible regions can be
disregarded.

7.3 Gaussian Process Model for FFEMU

Gaussian Process (GP) models are very efficient to develop approximate I/O computer models which require less
computational effort to calculate. Since FFEMU is a computationally expensive method, it is not allow the computer
simulation to be used directly due to time and cost constraints. Hence, surrogate models are efficient solutions to this problem
with the limitation in the number of input parameters. However, [18] states that the GP can effectively be implemented to
problems with 50 input parameters. This number is sufficient in most cases to identify a real life civil engineering structure.

Let x be the vector valued input parameter and the [Y (X1), Y (X2), . . . Y (Xn)] be the outputs based on n observations. In
order to choose appropriate observations for the input parameter x, Central Composite Design (CCD) can be utilized as
second-order design method [19]. If Y(x) denotes a Gaussian Process the mean and the covariance can be expressed by Eqs.
(7.11) and (7.12).

E [Y (x)] = q(x)T β (7.11)

Cov [Y (x), Y (x∗)] = σ2C (x, x∗ |ξ ) (7.12)

Where (x) are trend functions given by [1xT ]T for linear trend and 1 for constant trend; β is the vector of regression
coefficients, x∗ is the untested input, σ2 and C(x, x∗ |ξ) are the variance of overall process and the correlation function,
respectively. The governing parameters of the correlation function, which have to be determined together with β and σ2 to
create the GP model, are represented by ξ . The correlation function and the joint distribution function for Y expending on n
observation are given by Eqs. (7.13) and (7.14).
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If we know all the parameters governing the overall Gaussian Process, the mean and the covariance of the output can be
calculated by Eqs. (7.15) and (7.16) instead of solving linear system of equations or eigenvalue problems in which large
system matrices has to be handled.

E [Y (x∗) |Y ] = qT (x∗)β + rT (x∗)R−1 (Y−Fβ ) (7.15)

Cov [Y (x)Y (x∗) |Y ] = σ2 (C (x, x∗)− rT R−1r
)

(7.16)

In Eqs. (7.15) and (7.16), r is the vector of correlations between x and each of the observation points, r∗ is the vector of
correlations between x∗ and each of the observation points. F is a matrix with rows qT (xi). In this study, there is no need
to calculate covariance of the predictions since this information will not be used in the scope of our methodology. In order
to obtain the governing parameters ξ , β and the variance of the process σ2 of GP, maximum likelihood estimation (MLE)
might be employed which is required to solve optimization problem for each response variable only once. More details can
be found in [20].

7.4 Numerical Verification

The benchmark grid structure developed for bridge health monitoring studies is used to investigate the model uncertainties
for different experimental data sets. The grid structure has been designed to enable researchers to explore the use of different
sensor technologies, St-Id and damage detection algorithms under different conditions, which offer promise cases for real life
bridge structures. The girders and the columns of the grid have been constructed using steel sections S3×5.7 and W12×26,
respectively. The 3D cad model and plan view of the structure are given in Fig. 7.2. More details about the grid structure can
be found in [12].

Several static and dynamic tests have been conducted on the grid structure. The natural frequencies, mode shapes and
displacements obtained from different loading cases are involved in FFEMU procedure. The natural frequencies and mode
shapes are obtained by using Complex Mode Indicator Function (CMIF) method [11,13]. In static case, five different loading
conditions are considered. Single loads (671.6 N) are applied to different nodes for each static loading case. The nodes where
the single static loads are applied are as follows: (1) N3-N6-N9-N12 (2) N3-N9 (3) N6-N12 (4) N3-N6 (5) N9-N12. In order
to demonstrate the methodology, a damage case in which two supports located at nodes N7 and N14 are replaced with Duro50
elastomeric pads to simulate flexible boundaries. The experimental and the deterministically updated natural frequencies (the
natural frequencies which correspond to the α-cut level 1) are presented in Table 7.1.

The fuzzy response parameters obtained from updated fuzzy model are investigated for two main cases. In the first case,
different sets of experimental data which contain several numbers of measured dynamic and static responses are considered.
In the second case, different sets of updating parameters are used in fuzzy updating procedure in order to investigate the
effect of uncertainties in structural response parameters (e.g. natural frequencies, static displacements). The flexible boundary
conditions case with elastomeric pads is considered to be the damage case and use to demonstrate the fuzzy updating and
analysis concepts. In the first case, column stiffnesses are chosen as the updating parameters. The data sets used in FFEMU
is given in Table 7.2. Only results for the natural frequencies obtained from updated fuzzy model are presented in this paper.
However, same results can be deducted for both strain and mode shapes.

After employing Fuzzy FEM to the updated model, fuzzy valued response parameters are obtained for each data sets.
Membership functions of four predicted natural frequencies using updated fuzzy model are given in Fig. 7.3. The fourth
and the fifth frequencies are not illustrated in order to make the figure more tractable. As apparent in Fig. 7.3, given
frequencies are capable of illustrating the trend in uncertainty distribution for the increasing frequencies. The uncertainty in
the frequencies is increasing when the amount of data involved in the updating is increased. The deterministic values for the
first natural frequency which correspond to α-level 1 are very close to experimental one when the first six natural frequencies
and first mode shapes (f+1m) are included. The amount of imprecision is also very low for this frequency. This is same for
the f+ 3m together with slight increase in the uncertainty. This means that the effect of modeling uncertainties on the first
natural frequency is low and this frequency can be predicted more accurate using the updated model as expected. However,
the accuracy of predictions decreases and amount of imprecision increases when the strain data is included. This is due to
fact that the uncertainty sources coming from dynamic and static tests are different. In the static tests, there might be some
additional uncertainties due to loading. As opposed to static case, in dynamic tests there are some additional uncertainties
arising from slight nonlinearity in boundaries due to the loss of contact and lack of tension stiffness in supports. In static
tests, these problems are surpassed by adding some additional weights on support. However, first two natural frequencies and
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Table 7.1 Comparison of natural frequencies obtained from updated FEM and experiments

Experimental frequencies (Hz)Mode
number

Initial
FEM (Hz)

Deterministically
updated FEM (Hz) Initial case Damage case

1 21.52 22.65 22.72 14.31
2 26.22 27.60 27.67 18.50
3 32.69 34.10 34.13 26.12
4 40.72 42.57 42.15 32.25
5 62.73 64.54 65.18 37.68
6 66.52 67.99 68.27 47.68
7 93.98 94.02 95.36 61.18
8 96.47 96.70 97.90 65.50

Table 7.2 Data sets involved in the updating procedure

Data set Abbreviation Explanation

1 f +1m First six natural frequencies and first mode shape values
2 f +3m First six natural frequencies and first three mode shape values
3 f + ε (1 loading) First six natural frequencies and strain values from first loading
4 f + ε (3 loading) First six natural frequencies and strain values from the first three

loading
5 ε (3 loading) Only strain values from first three loadings
6 Full data First six natural frequencies, first three mode shape values and

strain values from first three loadings

mode shapes are affected less from these uncertainties and they can be predicted more precisely by means of FEMU through
the first few modal parameters.

The imprecision amounts given in Table 7.4 demonstrate the statements made in the previous paragraph. The imprecision
amount is low and the deterministic values are close to measurements for the data set f+1m. In Table 7.3, it is also apparent
that the imprecision increases dramatically for the first two frequencies with the increase in data due to the uncertainty
coming from other response variables. It should also be mentioned that while total imprecision may be less with fewer data
and more imprecision with more data, models calibrated with more data better represent the overall structural characteristics.

In the second case three sets of updating parameter are used to update the FEM of the benchmark grid structure. The
updating parameter sets are as follows: (1) Axial stiffness of the columns and the moment of inertia of the connections.
The connections are grouped as N2,N3 – N5,N6 – N9,N10 – N12,N13 – N11,N4 (Total 11 parameters) (2) Axial stiffness
of the columns and moment of inertia of the connections at nodes N2,N3,N4,N5,N6,N9,N10,N11,N12,N13. For this set,
the connections are grouped as N2,N3,N4,N5,N6 and N9,N10,N11,N12,N13 (Total 8 parameters) (3) Axial stiffness of the
columns (Total 6 parameters). Full data set is used as the measurement data for all updating parameter set. The fuzzy natural
frequencies obtained from fuzzy models updated using each sets of updating parameters and amount of imprecision are given
in Fig. 7.4 and Table 7.1, respectively.

As apparent in Fig. 7.4 and Table 7.1, the amount of uncertainty is decreased as the number of updating parameters is
increased. In addition, the deterministic values of response parameters which correspond to the α-cut level 1 are close to the
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Fig. 7.3 Updated natural frequencies using different SHM data set for the damage case

Table 7.3 Imprecision in the response for different data sets

Response/data set f +1 mode f +3 mode
f+ strain
(1 loading)

f+ strain
(3 loading)

Strain
(3 loading) Full data

f1 0.0101 0.0754 0.1404 0.2422 0.2449 0.3396
f2 0.0296 0.0471 0.1214 0.3366 0.3724 0.2751
f3 0.0218 0.0289 0.0380 0.0441 0.0388 0.0595
f6 0.0254 0.0513 0.1053 0.0852 0.1032 0.0928
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Fig. 7.4 Updated natural frequencies using different updating parameter set

Table 7.4 Imprecision in the
response for different updating
parameter sets

Response/data set 1. set 2. set 3. set

f1 0.0511 0.1034 0.3396
f2 0.0445 0.0814 0.2751
f3 0.0113 0.0310 0.0595
f6 0.0333 0.0620 0.0928

experimental values. However, more updating parameters bring some disadvantageous beside low uncertainty and accuracy.
The computational complexity increases with higher number of model parameters. In addition, the updated parameters might
not provide physically meaningful predictions for different loading conditions. Hence, number of updating parameters should
be restricted considering the geometric and material properties of the actual structure.

7.5 Conclusion

Results show that the uncertainty in the response variables increases as the number of experimental data used in FFEMU
increases. This can be explained with the fact that the uncertainty in all response variables contributes to total uncertainty
in the updated model. This is analogous to applying a high precision curve-fit to very few data points, say two data points.
As the number of data points increase, it can be obvious that the imprecision will increase, yet the overall characterization
of the entire data set will be better. The imprecision and uncertainty amount in model parameters are observed to increase
especially when strain data is used. This increment arises from the difference between the dynamic and the static test setup
and the global (modal) and local (strain) responses that these measurements represent. The difference in test setups and
responses lead to different uncertainty sources, reducing the reliability of individual parameter predictions. In static tests,
additional weights have been used to prevent the loss of contacts in supports while these weights were removed during
dynamic tests. Additionally, there is no tension stiffness in boundaries, which introduces nonlinearity in the supports of the
test structure. However, similar uncertainties can be expected to exist in real life structures. Hence, special care should be
paid for generating appropriate data sets to develop the updated models with the least uncertainty. This can be achieved
by ignoring some measurements such as dynamic response at boundaries or strain measurements of “virtually unstressed”
members. In addition, low weighting factors can be assigned to the measurements that increase the uncertainty in response
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predictions. Finally, more complicated models, which are not preferable in most cases, might be another solution in some
sense. As demonstrated in the second case, inclusion of more updating parameter lead lower uncertainty amount in the
response. However, inclusion of additional model parameters in updating process might not be feasible in all cases since it is
always possible to obtain physically inconvenient model parameter values. By this way, the degree of freedom of the updated
model is increased which may provide unfeasible response predictions for different loading conditions.
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