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Preface

Topics in Model Validation and Uncertainty Quantification represents one of seven volumes of technical papers presented
at the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013 organized by the Society for Experimental
Mechanics, and held in Garden Grove, California February 11–14, 2013. The full proceedings also include volumes on
Nonlinear Dynamics; Experimental Dynamics Substructuring; Dynamics of Bridges; Dynamics of Civil Structures; Special
Topics in Structural Dynamics; and, Modal Analysis.

Each collection presents early findings from experimental and computational investigations on an important area within
Structural Dynamics. Model Validation and Uncertainty Quantification is one of these areas.

Model Verification and Validation (V&V), refers to technology developed to assess the accuracy of numerical predictions
and quantify the uncertainty and confidence with which predictions are made. V&V includes activities such as code
and calculation verification, the design of validation experiments, test-analysis correlation, uncertainty propagation and
quantification for both models and experiments, and finite element model updating.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Albuquerque, NM, USA Todd Simmermacher
Besançon, France Scott Cogan
Medford, MA, USA Babak Moaveni
Volos, Greece Costas Papadimitriou
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Chapter 1
Optimal Inequalities to Bound a Performance Probability

François M. Hemez and Christopher J. Stull

Abstract A challenging problem encountered in engineering applications is the estimation of a probability-of-failure based
on incomplete knowledge of the sources of uncertainty and/or limited sampling. Theories formulated to derive upper
probability bounds offer an attractive alternative because first, they avoid postulating the probability laws that are often
unknown and second, they substitute numerical optimization for statistical sampling. A critical assessment of one such
technique is presented. It derives upper probability bounds from the McDiarmid concentration-of-measure theory, which
postulates that fluctuations of a function are more-or-less concentrated about its mean value. Two applications of this theory
are presented. The first application analyzes a “toy” polynomial function defined in two dimensions. The upper bounds
of probability are calculated and compared to sampling-based estimates of the true-but-unknown probabilities. For this
function, the upper bounds obtained are too broad to be useful. These results are confirmed by conducting a similar analysis
on a real engineering system, where upper bounds of probability associated with resonant frequencies of a structural system
are estimated. A high-fidelity finite element model, previously validated using vibration measurements, is used to predict
the frequencies. In this application, the uncertainty is introduced by way of material properties and the effective preload
of a beam-to-column connection, modeled explicitly. These applications suggest that the theory not only leads to upper
bounds that are inefficient but that can also be sub-optimal if their numerical estimation is based on too few model runs. It is
concluded that this particular theory, while mathematically attractive, may not be well suited for engineering applications.

Keywords Concentration-of-measure • Probability-of-failure • McDiarmid diameter • Parametric uncertainty • Model
validation (Approved for unlimited, public release on September 15, 2012, LA-UR-12-24769, Unclassified.)

1.1 Introduction

An analysis of system reliability estimates a probability-of-failure, denoted as PF, where “failure” is defined as a condition
where the “demand” exceeds the “capacity” that an engineered system is capable of providing. Demand, for example, refers
to a peak stress resulting from an applied load, while capacity refers to a material yield stress criterion. Another application
would be to require that a performance metric, that defines the capacity C, meets a user requirement, or demand D. The
probability-of-failure can be written in a generic sense as:

PF = Prob [D ≥ C] , (1.1)
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PO Box 1663, Mail Stop T087, Los Alamos, NM 87545, USA
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Probability
Density Function

Performance

Demand, D

Capacity, C

Region that contributes to
the failure probability, PF

Fig. 1.1 Generic definition of a
probability-of-failure PF

where the symbol Prob[•] denotes a probability function. The probability-of-failure PF is shown graphically in Fig. 1.1 as
the shaded area, where the Probability Density Function (PDF) of encountering a demand that exceeds capacity is non-zero.
The failure probability integrates the area under the curve and the reliability R of the engineered system is, by definition,
equal to:

R = 1−PF. (1.2)

Equations (1.1) and (1.2) indicate that the probability laws of the random variables (C; D) must be known analytically or,
at a minimum, can be sampled a sufficient number of times, in order to estimate PF with reasonable accuracy. In many
applications, however, this is not possible. These include cases where the datasets available to estimate the pair (C; D), and
their uncertainties, are too sparse to be useful for numerical integration. Another commonly encountered situation is one
where the capacity C is estimated numerically by analyzing the output of a numerical simulation. The large computational
expense of running the model may prevent the accumulation of enough samples to yield satisfactorily converged statistics.
Also, the high dimensionality of an input space may make it difficult to numerically integrate the probability-of-failure (1.1).

This report evaluates another approach to bypass the challenge of sampling a high-dimensional space. This alternative
approach searches for an upper bound of the failure probability. Put forth by the Predictive Science Academic Alliance
Program (PSASP) Center at Caltech in Pasadena, California, it is a technique that relies on concentration-of-measure
inequalities [1]. The method derives an upper bound UP of the failure probability:

PF ≤ UP, (1.3)

without having to assume probability laws for the demand and capacity terms of Eq. (1.1). Such an upper bound can be
derived from a variety of theories. The technique of Ref. [1] is based on the concentration-of-measure theory that postulates
that “fluctuations” of a function are more-or-less concentrated about the mean value of the function. This assumption is taken
advantage of to derive the upper bound of probability UP.

The technique is evaluated because of the great potential that it offers. As alluded to, the upper bound is by construction,
valid irrespective of the probability laws of the variables (D; C). This is an attractive property in cases where the datasets
analyzed are so sparse that probabilities cannot be inferred reliably. It also is useful in situations where sampling the function
is computationally expensive. The examples discussed herein evaluate the upper bounds when applied to nonlinear functions
that are defined with two or three variables and fluctuate significantly within their design spaces. Nonlinearity, moderate
dimensionality, and large fluctuations characterize the class of function properties of interest for engineering applications.
The material modeling discussed in Ref. [2], for example, involves 7 parameters while the simulations of Refs. [3–5] are
defined with 20 variables, approximately. Higher-dimensional problems are, at this time, considered to be out-of-reach for
practical applications.

Unfortunately, the upper probability bounds derived using concentration-of-measure inequalities do not live up to their
promises, at least not for the examples considered in this work. The main two observations are that: first, the upper bounds
are too broad to be useful for sensible decision-making; and second, the computational cost of their estimation is prohibitive
even for the relatively low-dimensional problems considered. Furthermore, it is observed that the true-but-unknown failure
probability PF can exceed the upper bound UP if its estimation relies on too few samples or iterations, which can lead to a
dangerous, false sense of confidence.

After briefly overviewing the derivation of upper probability bounds in Sect. 1.2, two examples are presented. Section
1.3 discusses a “toy” problem where the upper bounds are estimated for the Rosenbrock function in two dimensions: a
polynomial whose numerical optimization is known to be challenging. The discussion includes a statistical convergence
study of UP that underscores the danger of “under-sampling.” The second application, discussed in Sect. 1.4, analyzes a
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more realistic engineering problem that involves a high-fidelity finite element simulation of structural vibration response.
Section 1.5 concludes the discussion and offers recommendations.

1.2 Concentration-of-Measure Inequalities of Probability Bounds

This section gives a brief summary of the derivations presented in Refs. [1,6] to establish the upper bound of a probability-of-
failure. The approach is based on concentration-of-measure inequalities [7]. We do not attempt to re-derive these results and
focus instead on the equations needed to understand the numerical implementations and applications of Sects. 1.3 and 1.4.

1.2.1 Upper Probability Bounds Based on Concentration-of-Measure Inequalities

The proposal of Ref. [1] for uncertainty quantification and system certification is that the fluctuation of a function is more-or-
less concentrated about its mean value. The extent of this concentration is controlled by a “diameter” quantity DF that can be
estimated experimentally or numerically. This concept of concentration is exploited to bound the probability that a function
exceeds its expected (or mean) behavior. Here, the function represents a complex engineered system whose performance
we wish to evaluate. The terminology “deviation from the mean,” likewise, indicates a variation away from the nominal
performance of the system. The probability of exceeding a given fluctuation represents the failure probability of the system.

The main result that is illustrated with several applications is that the probability of observing a fluctuation of a given
magnitude away from the mean value is bounded according to:

Prob [F(X)− μ ≥ δ ]≤ e
−2
(

δ
DF

)
2 , (1.4)

where F(•) is a real-valued function that depends on N input variables X = (X1; X2; . . .XN) and δ is the level of fluctuation
away from the mean value, denoted by μ , of the function:

μ ≡ E [F] =
∫

X∈([−1;+1])N

F(X) ·dX. (1.5)

Equation (1.5) implies a multi-dimensional integration in the space ℜN. Without loss of generality it is assumed that the
variables Xk are scaled in the interval −1 ≤ Xk ≤ +1. The symbol DF of Eq. (1.4) denotes the McDiarmid diameter of the
function that controls the extent to which fluctuations are concentrated (or not) about the mean value. To derive an upper
bound of probability at any level of fluctuation δ , it suffices to know the diameter DF that is formally defined as:

D2
F = ∑

1≤k≤N

D2
k, (1.6)

where Dk is a partial diameter that defines the influence on function values of the kth input variable Xk:

Dk = sup
{X,X∗∈U(k)}

(F(X)−F(X∗)) . (1.7)

Equation (1.7) seeks the maximum range of function F(•) over a specific space U(k). This space, within which the
optimization is performed, is the subspace of the hyper-cube domain ([−1;+1])N where the kth input variable Xk is
constrained to be constant:

U(k) =
{

X ∈ ([−1;+ 1])N such that Xk = constant
}
. (1.8)

Note that keeping the kth input variable constant and equal to a known value leads to a partial diameter Dk that becomes
conditioned on Xk. This is not what is meant in Eqs. (1.7) and (1.8). Instead, the optimization is defined in the N-dimensional
space ([−1;+1])N while enforcing the constraint that Xk remains constant and equal to an unknown value. This unknown
value of Xk must also be optimized while solving for Eq. (1.7).
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1.2.2 Numerical Implementation of the Technique

Often, an engineered system is designed such that its performance does not deviate “too much” from the nominal (or mean)
target performance. “Failure” can therefore be conceptually defined as exceeding a fluctuation of response that would be
detrimental to the required performance. The corresponding probability-of-failure is:

PF = Prob [F(X)− μ ≥ δ ] , (1.9)

and the reliability of the engineered system is defined, as before, by Eq. (1.2).
Equations (1.4) through (1.6) define a rather simple procedure to derive an upper bound of reliability. It rests on the ability

to evaluate, either experimentally or numerically, the McDiarmid diameter. Equation (1.6) indicates that DF accumulates the
partial diameters Dk in quadrature; the simplicity of this definition, however, is deceiving.

Estimating a partial diameter Dk can be viewed, in fact, as a two-level, nested optimization. The innermost optimization
optimizes the kth variable while the other variables are kept constant and equal to fixed values, that is, X1 = λ1,
X2 = λ2, . . .Xk−1 = λk−1, Xk+1 = λk+1, . . .XN = λN. The variable Xk is optimized to search for the maximum range

F(Max)
k (λ(−k))− F(Min)

k (λ(−k)) shown below, where the symbol λ(−k) denotes the vector of ℜN−1 defined as λ(−k) = (λ1;
λ2; . . .λk−1;λk+1; . . .;λN). (The subscript “-k” is used to indicate that all variables are included, except the kth one.) This first
step is embedded in an outer optimization that solves for the partial diameter Dk by optimizing the (N−1) variables of vector
λ(−k). These two steps must be repeated for each variable.

The numerical implementation of the nested optimizations (1.7) and (1.8) can be written as:

Dk = max
{λ(−k)∈([−1;+1])N−1}

F(Max)
k (λ(−k))−F(Min)

k (λ(−k)), (1.10)

where

F(Min)
k (λ(−k)) = min

{−1≤Xk≤+1}
F(λ1;λ2; · · ·λk−1;Xk;λk+1; · · ·λN), (1.11)

and

F(Max)
k (λ(−k)) = max

{−1≤Xk≤+1}
F(λ1;λ2; · · ·λk−1;Xk;λk+1; · · ·λN). (1.12)

It can be verified that substituting the minimum (1.11) and maximum (1.12) in Eq. (1.10) is equivalent to searching for the
maximum range, written as “sup(F(X)−F(X∗))” in Eq. (1.7). Equations (1.10) through (1.12) reveal that the calculation of
a partial diameter Dk requires the resolution of three optimization problems over different subspaces of ([−1;+1])N. This is
a rather expensive proposition since the resolution of these optimizations must be repeated for every variable X1, X2, . . .,XN

of the problem.
Three strategies are implemented to estimate the McDiarmid diameter. The first two algorithms, applied in Sect. 1.3 to

the two-dimensional Rosenbrock polynomial function and in Sect. 1.4 to the three-dimensional structural vibration problem,
rely on the formulation of Eqs. (1.10) through (1.12).

In the first strategy, the functions F(Min)
k (•) and F(Max)

k (•) are explored for several values of λ(−k) by solving the
minimization and maximization problems of Eqs. (1.11) and (1.12). After enough “samples” have been obtained, multi-

dimensional emulators are best-fitted to the pairs (λ(−k); F(Max)
k (λ(−k))) and (λ(−k);F

(Min)
k (λ(−k))). The emulators are defined

as polynomial models in subspace ([−1;+1])N−1. Their orders are kept as low as possible, provided that the goodness-of-fit
is acceptable, to avoid over-fitting the training data. These fast-running emulators are used to solve the optimization of Eq.
(1.10). The procedure is then repeated for every variable Xk of the problem.

The second strategy adopts a nested implementation of Genetic Algorithms (GAs) to optimize Eq. (1.10). The GA-based
implementation provided by the Global Optimization Toolbox in MATLABTM [8] is employed, where it is noted that the
default settings with respect to selection, crossover, and mutation functions are used for the analyses discussed herein. As
GAs are well-accepted in the numerical optimization community, only the details relevant to the nested implementation are
provided. First, the “outer” GA initiates a population of individuals. Each of these individuals is then passed to an “inner” GA
that searches the space associated with the kth parameter to determine the maximum range of the function, while keeping the
λ(−k) variables fixed. That is, each execution of the inner GA seeks the maximum range for a fixed subset of λ(−k) variables,
instead solving Eqs. (1.11) and (1.12) separately. After all individuals from the outer GA are evaluated in this manner, they
are ranked, selected, etc., and the procedure repeats for each population of individuals until termination of the outer GA.



1 Optimal Inequalities to Bound a Performance Probability 5

The third approach implemented for comparison with the first two consists of relying on a large number of Monte Carlo

samples, then, searching for the minimum and maximum values of functions F(Min)
k (•) and F(Max)

k (•). The implementation of
this sampling strategy is as follows. First, a predefined number of samples M, are generated from the space ([−1;+1])N. This
produces M vectors of randomly sampled variables, denoted as the “unprimed” samples. Next, for each of the M vectors,
only the kth variable is re-sampled; these new vectors are denoted as the “primed” samples. The final step is then to evaluate
the unprimed and primed samples and store the absolute value of the difference between the mth unprimed and the mth
primed evaluation (where m = 1,2, . . .,M). The maximum difference found among the M samples is then designated as the
partial diameter Dk. In this way, the two-step optimization is being condensed into a single step, whereby the λ(−k) variables
are held constant for two random (i.e. unknown) values of the kth variable. The quality of the estimation rests entirely on

whether or not the two random values of the kth variable generate the minimum and maximum values of functions F(Min)
k (•)

and F(Max)
k (•), for the “correct” values of the λ(−k) variables. Lastly, in order to assess the convergence properties of the

sampling strategy, the above procedure is repeated ten times.

1.3 Application to the 2D Rosenbrock Function

The first application of the concentration-of-measure inequality-based reliability is to a two-dimensional polynomial
function. It represents a “toy” problem that does not reflect the practical difficulties of real engineered applications. This
problem, nevertheless, offers the advantage of simplicity. It also allows for the assessment of convergence properties,
discussed in this section.

1.3.1 The Two-Dimensional Rosenbrock Function

The Rosenbrock function is a simple, analytic polynomial whose numerical evaluation is trivial. The results discussed are
obtained with an implementation developed with the software MATLABTM [8]. After estimating the McDiarmid diameter
described by Eq. (1.6), the upper bound in Eq. (1.4) is calculated where “failure” is defined as the probability that the
Rosenbrock function deviates from the mean value defined by Eq. (1.5) by more than a given fluctuation δ . The results are
presented as curves that show the upper probability bounds as a function of δ .

The Rosenbrock function in the N-dimensional space (X1; X2; . . .XN) is defined analytically as:

Y = ∑
k=1···(N−1)

(1−Xk)
2 + 100 · (Xk+1 −X2

k

)2
, (1.13)

where each variable Xk is scaled in [−1; +1]. In two dimensions, the function becomes:

Y = (1−X1)
2 + 100 · (X2 −X2

1

)2
. (1.14)

The Rosenbrock function is a benchmark test commonly encountered in numerical optimization because it varies rapidly
and defines “valleys” [9]. This makes it challenging to search for a global minimum using gradient-based optimization
algorithms. Another reason for selecting this function is the existence of previous work documented in Refs. [10, 11].
Reference [12] presents results obtained with a variant defined in 17 dimensions.

Figure 1.2 illustrates the Rosenbrock function in two dimensions. The formation of a “valley,” that makes numerical
optimization difficult, can be observed to be centered at the coordinates (X1; X2) = (0;0). The valley bifurcates into two
branches: one of them progresses towards the corner (X1; X2) = (+1;−1)while the other branch extends towards (X1; X2) =
(+1;+1). It can be verified that the global minimum of the Rosenbrock function is reached when Xk =+1 for all variables,
whether in 2D or for an arbitrary number of dimensions, which is the only point where the function is equal to zero. In two
dimensions, the maximum of the function over ([−1;+1])2 is equal to 404.

Another theoretical result [7] combines the minimum and maximum values to bound the McDiarmid diameter as:

1√
N

≤ DF

max
{X∈([−1;+1])N}

F(X)− min
{X∈([−1;+1])N}

F(X)
≤
√

N. (1.15)
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Fig. 1.2 Illustration of the
Rosenbrock function in 2D space

The numerical application of Eq. (1.15) indicates that the McDiarmid diameter is bounded in the interval 285.67 ≤ DF ≤
571.34. These bounds, although they are somewhat “loose,” can be used to assess the quality of estimations obtained with
different numerical implementations. The next statistics useful for the analysis are the mean and standard deviation. In 2D,
the mean value (μY) and standard deviation (σY ) are obtained analytically by integrating the function over the hyper-cube
space ([−1;+1])2. The intermediate derivations for these statistics are omitted for brevity and instead given as:

μY =
1

Volume
(
[−1;+ 1]2

) ·
∫ +1

−1

∫ +1

−1
(1−X1)

2 + 100 · (X2 −X2
1

)2
dX1dX2

≈ 54.667, (1.16)

and

σY =

√√√√ 1

Volume
(
[−1;+ 1]2

) ·
∫ +1

−1

∫ +1

−1

(
(1−X1)

2 + 100 · (X2 −X2
1

)2 − μY

)2
dX1dX2

≈ 65.433. (1.17)

It is noted that the standard deviation of the 2D Rosenbrock function is large relative to its mean value, due to the presence
of corners where values of the polynomial become large (see Fig. 1.2). This is a property encountered in other engineering
applications but is not important to justify the method, as indicated in Ref. [12] where it does not hold in the case of the
17D Rosenbrock variant. The mean and standard deviation values, μY and σY, are used to guide the selection of appropriate
function fluctuations δ in the analysis that follows.

1.3.2 Estimation of the McDiarmid Diameter and Upper Probability Bounds

The analysis begins by estimating the true-but-unknown failure probabilities using statistical sampling. Collecting this
information is, here, possible because the Rosenbrock function can be evaluated numerically in a fraction of second. These
highly accurate estimations of probability are used for comparison with the McDiarmid-based upper bounds of Eq. (1.4).

Figure 1.3 illustrates the empirical histogram of Rosenbrock function values. It is obtained from ten million (10 M)
uniform and uncorrelated samples of variables (X1; X2) in hyper-cube ([−1;+1])2. Analyzing 10 M samples suffices to
yield statistically converged estimates, an assertion that is verified by repeating the estimation ten times and observing that
the statistical estimates do not change in their fourth significant digit from one trial to the next. The resulting statistics are
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Fig. 1.3 Histogram of values
sampled for the 2D Rosenbrock
function

Table 1.1 Statistics of the 2D
Rosenbrock function estimated
with 10 M samples

Definition Symbol Estimate “Exact” value

Minimum value Y(Min) 0.00 0.00
Maximum value Y(Max) 404.00 404.00
Total range Y(Max)−Y(Min) 404.00 404.00
Mean value μY 54.67 54.67
Standard deviation value σY 65.43 65.43

listed in Table 1.1, where they are compared to the exact values presented in Sect. 1.3.1. The “exact” failure probabilities
are estimated from these samples in a frequentist manner, simply by counting how many values exceed a given level of
fluctuation δ relative to the mean value μY.

Next, the conditional functions F(Min)
k (•) and F(Max)

k (•) of Eqs. (1.11) and (1.12) are estimated numerically. Because the
function is defined in two dimensions, the symbol λ(−k) that denotes the combination of variables kept constant during the

optimization reduces to a single variable. The conditional functions F(Min)
1 (•) and F(Max)

1 (•) represent the minimum and
maximum of the Rosenbrock function, respectively, as variable X2 is kept constant and fixed to a known value. Likewise,

F(Min)
2 (•) and F(Max)

2 (•) are the minimum and maximum as variable X1 is kept constant. A total of 50,000 equally-spaced

samples are selected in the interval [−1; +1] to generate these constant values “X2 = constant” (for F(Min)
1 and F(Max)

1 ) or

“X1 = constant” (for F(Min)
2 and F(Max)

2 ).
Each time that one of these fixed values is selected for one of the variables, the other variable of the function is optimized

to search for F(Min)
k and F(Max)

k . It is emphasized that these are simple, one-dimensional constrained optimization problems.
They must, however, be repeated twice to search for the minimum and maximum values for each “sample” considered (which

here, is 50,000 evaluations). Once F(Min)
k and F(Max)

k have been evaluated numerically a sufficient number of times over the
design space, the partial function range Gk(•) is defined as:

Gk(λ(−k)) = F(Max)
k (λ(−k))−F(Min)

k (λ(−k)). (1.18)

Because the partial function range Gk(•) depends on a single variable, its functional dependency on X(−k) can be suggested
graphically. The run numbers are sorted in ascending magnitudes of X(−k) and the resulting values are shown in Fig. 1.4a,
b for G1(•) and G2(•), respectively. Figure 1.4a shows that the partial function range G1(X2) is smoothly varying, with the
exception of a sharp discontinuity at X2 = 0.19. Figure 1.4b suggests a quadratic functional form for G2(X1). Going back
to Eq. (1.10), it can be inferred that the partial diameter Dk is simply the maximum of function Gk(•), which can be read
directly from the figure. Of course, higher-dimensional problems necessitate a numerical optimization to estimate Dk from
the function Gk(•).
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Fig. 1.4 Sorted training data and polynomial emulators. (a) Left: partial function range G1(X2) versus X2. (b) Right: partial function range G2(X1)
versus X1

Table 1.2 “Exact” and
approximate values of the
McDiarmid partial diameters, Dk

McDiarmid partial diameter, Dk (no unit)

Input variable, Xk “Exact” value of the diameter Optimization-based estimation

D1 303.00 123.79
D2 400.00 400.00
DF 501.80 418.72

The next step is to develop a low-order polynomial emulator from the training data accumulated for each partial function
range Gk(•). This step is, here, not needed since the maximum values Dk can be read directly from Fig. 1.4a, b; the
polynomial emulators are nevertheless developed for consistency when solving higher dimensional problems as discussed in
[12]. Fourth-order polynomials are best-fitted to the 50,000 evaluations of functions G1(•) and G2(•). The goodness-of-fit
obtained for G1(•) is 8.60% Mean Square Error (MSE). Given that the function exhibits a discontinuity, this level of accuracy
is deemed appropriate. The goodness-of-fit of the fourth-order polynomial developed to emulate G2(•) is 5.29× 10−7%
MSE. Figure 1.4a, b visually compare the polynomial emulators to the training data. Clearly, the discontinuity of function
G1(•) in Fig. 1.4a cannot be approximated by a polynomial, irrespective of its order. What matters most, however, is that the
maximum of the data be represented appropriately because it is what the optimization is after.

The surrogate models shown in Fig. 1.4a, b are optimized to search for the maxima, which are the partial diameters Dk.
Results of the optimization are tabulated in Table 1.2 where they are compared to the exact solutions. It is observed that
the first partial diameter D1 is severely under-estimated; the second optimization converges to the correct value for D2. The
McDiarmid diameter DF is then calculated from Eq. (1.6) as:

DF =
√

D2
1 +D2

2 =

√
(123.79)2 +(400.00)2 = 418.72. (1.19)

This estimate complies with the interval 285.67≤ DF ≤ 571.34 of Eq. (1.15). Note that for the remainder of this discussion,
the value DF = 418.72 is used, as opposed to the correct answer listed in Table 1.2.

The upper bounds of failure probability defined in Eq. (1.4) are obtained for different levels of fluctuation δ using the mean
statistic of Eq. (1.16) and McDiarmid diameter of Eq. (1.19). Figure 1.5 compares the upper bounds to the true-but-unknown
probabilities estimated from 10 M uniform and uncorrelated Monte Carlo samples.

Levels of fluctuation ranging from 0 to 202 are used to display the results in Fig. 1.5. A fluctuation of δ = 202 represents
three standard deviations away from the mean value of the Rosenbrock function. It can be observed that, irrespective of the
magnitude of fluctuation δ used, the upper bounds are too conservative to be useful for sensible decision-making. This is
expected near the mean value, μY = 54.67, where the concentration-of-measure theory may not apply. But it should not be
the case in the “tail” of the distribution. For example, the upper bound is UP = 61.6% at the last level of fluctuation, δ = 202,
while the true probability is only PF = 2.2%.
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Fig. 1.5 Upper bounds UP and
estimated probabilities PF of the
2D Rosenbrock function
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Fig. 1.6 Sampling-based upper
probability bounds UP of the 2D
Rosenbrock function

1.3.3 Convergence Behavior of Sampling-Based Estimates

As mentioned at the end of Sect. 1.2.2, two other strategies are available to estimate the partial diameters Dk. The second
approach is based on the nested GA optimization described previously and the third approach is based on sampling the
hyper-space ([−1;+1])N, assuming uniform and uncorrelated probability distributions for the variables Xk, to search for

the minimum and maximum functions F(Min)
k (•) and F(Max)

k (•). A comparison with the optimization-based results reported
Fig. 1.5 is briefly discussed next.

Figure 1.6 compares the upper bounds UP of the GA optimization-based solution (dotted line) to five sampling-based
estimations obtained with different numbers of Monte Carlo runs (dashed lines). Including the replicates, the sizes of these
sampling-based simulations (i.e. 10×M) vary from M= 200 to M = 2 million samples, where it is noted that Fig. 1.6 reflects
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Fig. 1.7 Statistics of
sampling-based upper probability
bounds UP obtained with 200
runs only

the “best” sampling-based estimation of the upper bound UP (i.e. the maximum McDiarmid diameter) realized from the ten
replicates. The “true” failure probabilities PF, estimated via Monte Carlo sampling, are also included for reference (solid,
black line).

Comparing Figs. 1.5 and 1.6, it is seen that both optimization-based implementations yield very nearly the same upper
bounds. However, a somewhat counterintuitive result is also seen in that increasing the number of samples produces upper
bounds that converge to a solution that does not correspond to either of the optimization-based solutions. This is almost
entirely due to the underestimation of the first partial diameter D1, which is a common feature of both optimization-based
implementations.

A second observation that is somewhat more disconcerting is that the upper bounds obtained through sampling can
be smaller than the values provided by the optimization-based solver. This behavior opens the door to the possibility of
estimating a value UP that would not be an upper limit, therefore violating Eq. (1.3). Figure 1.7 illustrates that this dangerous
situation can manifest itself when only a 200 samples are used, where it is seen that the “worst” sampling-based estimation
of the upper bound (i.e. the minimum McDiarmid diameter) falls below the estimate of true probability-of-failure. This is
an unfortunate observation as it suggests that analyzing a small number of samples may not be a viable alternative to an
optimization-based solution.

1.4 Application to the High-Fidelity Model of a Three-Story Frame

In this section, the upper probability bounds are applied to an engineering application. The example is the linear vibration of
a three-story frame structure simulated numerically with a high-fidelity Finite Element (FE) model. The number of variables
is not significantly different from the dimensionality of the Rosenbrock function discussed previously. The main difficulty of
this application is to estimate the McDiarmid-based inequality, given that the FE model is computationally expensive.

1.4.1 Description of the Three-Story Frame Structure

The three-story structure of Fig. 1.8a is the system employed in this study. It consists of aluminum columns and plates
assembled using bolted joints. Each floor plate measures 30.5× 30.5× 2.5cm, and is connected to the floors above and/or
below by four aluminum columns measuring 17.7×2.5×0.6cm. Each connection comprises four bolts that act to sandwich
the end of the column between the floor plate and a 2.5× 2.5× 1.3cm end cap. The structure slides on rails that permit
movement in one direction only, as shown in Fig. 1.8b, which is referred to as the “weak” bending direction of the columns.
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ba

Fig. 1.8 High-fidelity finite element model of the three-story frame structure. (a) Left: frame structure. (b) Right: finite element discretization

Table 1.3 Definition of
uncertainty variables of the frame
structure

Variable, Xk Definition of variable

X1 Elastic modulus of all Aluminum-based components
X2 Mass density of all Aluminum-based components
X3 Bolt “radius of influence” for end cap connections

Additionally, a small column is suspended from the third floor, and a bumper mechanism is attached to the second floor.
Depending upon the amplitude of the force imparted by the shaker and the gap between the suspended column and bumper,
a contact nonlinearity may be introduced into the system. This capability is not exercised here.

Figure 1.8b illustrates the highly refined FE model developed using the commercially available software Abaqus
6.10-1 [13]. All floors and end caps are modeled with linear, hexagonal continuum elements (Abaqus C3D8R). The bottom
supports, suspended column, and bumper assembly are modeled with modified quadratic, tetrahedral continuum elements
(Abaqus C3D10M). The latter element is formulated to properly account for pressures associated with contact, an important
point to consider as all contact is modeled explicitly in the model. The vertical columns spanning between the base floor and
the other levels are modeled with shell elements (Abaqus S4R), due to their enhanced capability to capture bending behavior,
which is the dominant action experienced by those members.

Figure 1.8b indicates the high geometrical fidelity with which the three-story frame structure is discretized. The mechanics
are also modeled with high fidelity since all sources of contact and friction are represented explicitly. A mesh convergence
study, omitted herein for brevity, provides a mesh seed of 3 mm, which is slightly less than one-eighth of an inch. The
corresponding discretization, shown in Fig. 1.8b, yields predictions of the resonant frequencies that are “converged-enough”
relative to the overall level of experimental variability. Details on the modeling and analysis of the frame structure are
available from Ref. [14].

1.4.2 Upper Probability Bounds of the Three-Story Frame Structure

Table 1.3 presents the uncertain variables of the 3D FE model. The first two variables are straightforward in their meaning,
whereas the third variable warrants explanation. It denotes the “radius of influence” associated with the bolts that connect
the columns to the floors by way of the end caps. These radii are identified as red dots in Fig. 1.8b. The effect of this variable
is somewhat analogous to bolt torque. Varying the value changes the rigidity of the column-to-floor connection. That is, at
small values of the radius, the column-to-floor connections behave more like pinned connections (free to rotate) whereas for
larger values, the beam-to-floor connections behave more like fixed connections. At very large values, the columns begin to
act as rigid structural members.
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Fig. 1.9 Goodness-of-fit of
bending frequencies predicted by
the surrogate models

The question illustrated in this application is: given the modeling uncertainty embodied by the variables of Table 1.3, what
is the probability PF that a bending frequency of the structure deviates from the mean frequency by more than, say, three
Hertz? This question can be formulated as a reliability problem, where the probability of predicting a frequency is integrated
for all frequency values that exceed the mean statistic by, at least, 3 Hz. This true-but-unknown value of probability PF is
estimated, first, with Monte Carlo sampling. The question is then addressed using the McDiarmid-based inequality of Eq.
(1.4). Comparing the upper bound UP to the true-but-unknown probability PF assesses the usefulness of this approach for
decision-making.

Compared to the Rosenbrock function, the 3D FE model requires a significant computational demand to calculate the low-
frequency bending modes. To address this difficulty, a design-of-experiments is populated to generate the training datasets
needed to develop fast-running, polynomial emulators. These polynomial surrogates are defined as quadratic models:

Y = β0+β1X1+β2X2+β3X3+β12X1X2+β13X1X3+β23X2X3+β11X2
1+β22X2

2+β33X2
3, (1.20)

and yield the predictions of resonant frequency presented in Fig. 1.9. The figure plots the bending frequencies predicted by
the 3D FE model as a function of those predicted by the polynomial surrogates of Eq. (1.20). The fact that the points shown
are aligned with the 45◦-angle diagonal indicates that the polynomial equations emulate well the computationally expensive
FE model. The high goodness-of-fit lends credence to employing these surrogates. The optimization-based and sampling-
based evaluations of the McDiarmid diameter of Eqs. (1.6) and (1.10) through (1.12) are performed using the polynomial
surrogates of Eq. (1.20).

Figure 1.10 shows the empirical distribution of first bending frequencies predicted using Monte Carlo sampling. This
histogram is obtained by analyzing 10 M samples, replicated ten times. The mean and standard deviation statistics are
μY29.38Hz and σY = 2.51Hz, which gives 8.54 % variability relative to the mean. The statistics of minimum and maximum
function values are equal to 22.43 and 36.46 Hz, respectively. Using Eq. (1.15), the McDiarmid diameter should fall within
the bounds as:

1√
3
≤ DF

36.46− 22.43
≤
√

3, (1.21)

or 8.10≤DF ≤ 24.30. Table 1.4 indicates the partial diameters estimated from 10 M samples, replicated ten times. Combining
definition (1.6) and the results listed in the table yields a McDiarmid diameter of DF = 9.67Hz, which “clears” the inequalities
of Eq. (1.21).

Figure 1.11 depicts the upper probability bounds UP as a function of frequency fluctuation, δ . Solutions are obtained
with five sampling sizes, ranging from M = 300 to M = 3 million samples. The upper bound reached by relying on
numerical optimization is compared to the sampling-based bounds. Also included for comparison are the true-but-unknown
probabilities obtained by integrating the empirical histogram of Fig. 1.10 for each value of δ .

The first observation from Fig. 1.11 is that the sampling-based estimation of upper probability bounds converges toward
a solution that does not correspond with the optimization-based solution. A similar behavior was noticed for the 2D
Rosenbrock function discussed in Sect. 1.3. It is confirmed that, as in the latter case, the optimization procedure fails
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Table 1.4 Partial diameters Dk
of the 3D FE model estimated
from 10 M samples

Variable, Xk Variable definition
McDiarmid partial
diameter, Dk

X1 Elastic modulus of Aluminum components 6.56
X2 Mass density of Aluminum components 6.59
X3 Bolt “radius of influence” of end connections 2.67

to produce the optimal (i.e. largest) partial diameters (as approximated in Table 1.4), thus yielding a reduced McDiarmid
diameter. A second finding from Fig. 1.11, which has been consistently observed throughout this work, is the “looseness”
of upper bounds UP relative to the true-but-unknown probabilities PF. These two observations, and those from the previous
sections, make it difficult to justify using the McDiarmid inequalities to bound a failure probability.
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1.5 Conclusion

A bounding theory is investigated for its ability to derive an upper limit for a probability-of-failure. The approach investigated
is based on the McDiarmid concentration-of-measure theory, which postulates that fluctuations of a function are more-
or-less concentrated about its mean value. This is an attractive proposition because, first, the method avoids postulating
probability laws that are often unknown and, second, it substitutes efficient numerical optimization to slow-converging
statistical sampling. Two examples of the application of this theory are presented. The first one involves the two-dimensional
Rosenbrock function and the second example is a realistic engineering problem wherein a finite element model is employed
to simulate the vibration of a three-story frame structure.

Comparisons performed between the upper bounds and highly-accurate estimates of the true-but-unknown probabilities
indicate that these bounds are too “loose,” or conservative, for useful decision-making. The finding applies whether
fluctuations of the function are assessed near the mean value or in the tails of the statistical distributions. In addition, it
is observed that estimating the McDiarmid diameter is computationally expensive, which reduces the potential benefits if the
problem studied is defined in a high-dimensional space.

These observations suggest that the theory not only leads to upper bounds that are inefficient, but that can also turn out to
be sub-optimal if their numerical estimation is based on too few runs of the computational model. One explanation is that the
McDiarmid-based inequalities yield upper bounds that are not necessarily realized by any model of the family considered.
This means that there may not be any model, included in the uncertainty space defined for analysis, whose predictions reach
the upper bound UP of the inequality “PF ≤ UP.”

The Center of the Predictive Science Academic Alliance Program at Caltech has recently advanced another theory to
provide “tight” bounds of a probability-of-failure [15–17]. The main advantage of this novel theory over the approach
investigated herein is that the upper bounds, while optimal, are guaranteed to be reached by a model within the uncertainty
space defined. The recent work also comes with a numerical implementation that could yield significant computational
savings. Future work will investigate this novel theory, and the accompanying implementation, to provide upper bounds of a
probability-of-failure.
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Chapter 2
Remaining Fatigue Life Predictions Considering Load and Model
Parameters Uncertainty

Maurizio Gobbato, Joel P. Conte, and John B. Kosmatka

Abstract Fatigue-driven damage propagation is one of the most unpredictable failure mechanisms for a large variety of
mechanical and structural systems subjected to cyclic and/or random operational loads during their service life. Therefore,
monitoring the critical components of these systems, assessing their structural integrity, recursively predicting their remaining
fatigue life (RFL), and providing a cost-efficient reliability-based inspection and maintenance (RBIM) plan are crucial
tasks. In contribution to these objectives, the authors developed a comprehensive reliability-based fatigue damage prognosis
methodology for recursively predicting and updating the RFL of critical structural systems and/or sub-assemblies. An
overview of the proposed framework is provided in the first part of the paper. Subsequently, a set of experimental fatigue
test data is used to validate the proposed methodology at the reliability component level. The proposed application example
analyzes the fatigue-driven crack propagation process in a center-cracked 2024-T3 aluminum plate subjected to a sinusoidal
load with random amplitude. Four probabilistic models of increasing load amplitude uncertainty together with damage
evolution model parameter uncertainty and measurement uncertainty are considered in this study. The results obtained
demonstrate the efficiency of the proposed framework in recursively updating and improving the RFL estimations and the
benefits provided by a nearly continuous monitoring system.

Keywords Damage prognosis • Probabilistic damage detection and quantification • Bayesian inference • Load
uncertainty • Remaining fatigue life

2.1 Introduction

Integrated structural health monitoring and damage prognosis (SHM-DP) methodologies, coupled with sensor-based
nondestructive evaluation (NDE) techniques, are becoming fundamental engineering tools for (i) assessing the current
structural integrity of several mechanical and structural systems, (ii) predicting their remaining service life, and (iii)
providing cost-efficient reliability-based inspection and maintenance (RBIM) programs. As discussed earlier by the authors
[1, 2], in NDE-based SHM-DP methodologies, these objectives are achieved through (i) periodic or nearly continuous
NDE inspections, (ii) a rigorous probabilistic treatment of the NDE inspection results as well as all pertinent sources of
measurement uncertainty, (iii) mechanics-based predictive modeling techniques, and (iv) well-established component and
system reliability analysis methods. In order to obtain accurate and meaningful damage prognosis results, the NDE-based
SHM-DP system must be capable of accurately detecting all damage locations and, for each of them, correctly identifying all
damage mechanisms progressing in time. In this respect, fatigue-driven damage propagation is one of the most unpredictable
failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and/or random operational
loads during their service life [1, 2]. Therefore, monitoring the most critical sub-components of these systems, assessing
their structural integrity, recursively predicting the remaining fatigue life (RFL) of the entire system, and determining a cost-
efficient RBIM program are fundamental tasks. To this end, the authors developed a comprehensive reliability-based fatigue
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damage prognosis methodology for recursively predicting and updating the RFL of monitored structures and/or structural
sub-assemblies [1, 2]. The developed methodology is briefly overviewed herein in Sect. 2.2

In the second part of the paper, a set of experimental fatigue test data, available in the literature [3], is used to provide
an experimental verification and validation of the proposed framework at the local reliability component level [1]. The
experimental dataset consists of 68 crack propagation trajectories obtained from a series of fatigue tests performed on
68 nominally identical center-cracked 2024-T3 aluminum plates. The results obtained from this numerical application
emphasize (i) the importance and the benefits of a periodic NDE monitoring system, (ii) the efficiency of the proposed
recursive Bayesian updating scheme in making use of new NDE inspection results, (iii) the accuracy in predicting (after each
NDE inspection) the RFL of the monitored component, and (iv) the robustness of the proposed framework against increasing
levels of load uncertainty.

2.2 General Overview and Description of Proposed Framework for Remaining Fatigue
Life Predictions

As can be inferred from the flowchart in Fig. 2.1, the proposed reliability-based damage prognosis framework consists of five
analytical steps: Bayesian inference analysis, probabilistic load hazard analysis, probabilistic damage evolution analysis,
probabilistic global performance analysis, and damage prognosis analysis. Through these five analysis steps, it is possible to
estimate the RFL of a monitored structural or mechanical system every time a new set of NDE inspection results becomes
available. These inspection results, at time tp (p = 0, 1, 2, . . .), consist of the measured damage size vector, Ap

m = ap
m, at

the inspected damage locations [1, 2] In the first step of the proposed methodology, Bayesian inference analysis, ap
m is

used to compute the posterior joint PDF, f ′′
Ap

a |‚mat,‚
p
dam

(
ap

a
∣∣θmat, θ

p
dam

)
, of the actual damage size vector, Ap

a , conditional

on the material (‚mat) and damage evolution model (‚p
dam) parameters, as well as all the NDE measurement results up

to time tp. Simultaneously, ap
m is also used to provide the posterior joint PDF, f ′′Θp

dam
(θp

dam), of the damage evolution model

parameters (Θp
dam). These posterior PDFs are constructed as described in [1,2] by making use of (i) a probability of detection

(POD) curve [4,5] and (ii) a damage size measurement model [1,6,7] which respectively characterize, in probabilistic terms,
the detection capability and the measurement accuracy of the NDE technique.

The second step of the methodology, probabilistic load hazard analysis, defines the joint PDF of a vector of load intensity
measures, IM. In this study, the vector IM is defined as IM = {IMm, IMa}. The vector IMm characterizes the average
(mean) load intensity acting on the structure, while IMa defines the intensity/amplitude of the superimposed random load

Fig. 2.1 Schematic illustration of proposed damage prognosis framework
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(or load fluctuations) about the mean load [2, 8]. The joint PDF of IM is herein denoted as fIM(im) and is computed by
unconditioning the conditional joint PDF fIM|‚m,‚a (im |θm,θa ) with respect to (w.r.t.) the distribution parameter vectors
‚m and ‚a [2, 8].

The third step of the proposed methodology, probabilistic damage evolution analysis, aims at computing the conditional

joint PDF of the damage size vector A[p,q]
a at future times tq

p = tp + q ·Δτ , with tp being the current time, q ∈ {1, 2, . . .},
and Δτ a suitable fixed time interval related to the time-scale of the damage propagation process of interest [1, 2, 8]. This

conditional joint PDF, denoted as f
A[p,q]

a |‚mat,‚
p
dam

(
a[p,q]a |θmat, θ

p
dam

)
, is computed by unconditioning the conditional joint

PDF f
A[p,q]

a |‚mat,‚
p
dam,Ap

a ,IM

(
a[p,q]a |θmat, θ

p
dam,a

p
a , im

)
w.r.t. Ap

a and IM as described in detail in [1, 2, 8]. Since this study

focuses on the analysis of a mechanical component subjected to harmonic load, all time related parameters (tp, tq
p, Δτ) are

express in terms of number of load cycles (N). Current time, tp, is replaced by the current number of load cycles, Np; the
time interval between two consecutive damage propagation/prognosis evaluations, Δτ , is substituted with the number of load
cycles, ΔN; the future time tq

p is replaced by the number of load cycles Nq
p = Np + q ·ΔN with q ∈ {1, 2, . . .}.

The fourth step shown in Fig. 2.1, probabilistic global performance analysis, estimates the joint PDF of A[p,q]
a and a set

of properly selected global performance metrics/measures (collected in Ψ[p,q]
g ) at time tq

p = tp + q ·Δτ; i.e., the joint PDF

f
A[p,q]

a ,Ψ[p,q]
g

(
a[p,q]a , §

[p,q]
g

)
. As an illustration, the random vector Ψ[p,q]

g can collect a given set of natural frequencies of the

monitored structure, the reduced (due to damage) flutter velocity of an aircraft wing, etc. The joint PDF f
D[p,q]

L,G

(
d[p,q]

L,G

)
=

f
A[p,q]

a ,Ψ[p,q]
g

(
a[p,q]a , Ψ[p,q]

g

)
, with D[p,q]

L,G =
{

A[p,q]
a ,Ψ[p,q]

g

}
, thus contains both local (through A[p,q]

a ) and global (through Ψ[p,q]
g )

structural integrity information. The practical computation of this joint PDF is described in detail in [1, 8].

Once the joint PDF f
D[p,q]

L, G

(
d[p,q]

L, G

)
is determined, well established component and system reliability analysis approaches

are used (in the damage prognosis analysis step) to estimate the probability of failure, P
[
F[p,q]

sys

]
, of the entire system at

future times or, in equivalent terms, its RFL [1, 2]. The RFL, estimated at current time tp, is defined herein as RFL(tp) =

tF(p̄F, tp)− tp, where tF(p̄F, tp) is the predicted time at which the probability of system failure, P
[
F[p,q]

sys

]
, reaches the critical

threshold p̄F. For structures subjected to harmonic loads or other cyclic loading conditions, the RFL can be expressed as
RFL(Np) = NF(p̄F, Np)−Np where NF(p̄F, Np) is the predicted number of load cycles at which the probability of system
failure up-crosses the critical value p̄F.

It should be emphasized that, even though NDE measurement uncertainty is taken into account in the proposed
methodology, the probabilistic characterizations of all the quantities mentioned above are conditional on the particular
realization/scenario of NDE inspection results. The application of the proposed framework with a different realization (i.e.,
a different set) of NDE inspection results would lead to different outcomes. Therefore, in order to provide an unconditional
estimate of all damage prognosis results (i.e., Bayesian updating results, RFL, time-varying probability of failure), it is
necessary to perform multiple analyses across an ensemble of NDE measurement results. This approach, which will be
considered in future studies, provides a robust statistical analysis for assessing and evaluating the overall performance and
benefits of the proposed NDE-based SHM-DP methodology.

2.3 Application Example

A set of experimental fatigue test data, published in the literature [3], is now used to verify and validate the proposed
framework at the local reliability component level (i.e., single damage mechanism at a single damage location) [1, 2]
with special emphasis on the recursive Bayesian updating results and the RFL predictions. The dataset used consists
of 68 crack propagation trajectories obtained from fatigue tests performed on center-cracked 2024-T3 aluminum plates.
All the specimens tested had the same nominal geometry: length L = 558.80 mm, width w = 152.40 mm, thickness
t = 2.54 mm, and a center crack of initial length 2a0

a = 18.00 mm (see Fig. 2.2). The tests were performed under
load control using a sinusoidal input at 20 Hz which was producing a constant stress range of Δσ = σmax − σmin =
48.28 MPa with a stress ratio equal to Rσ = σmin/σmax = 0.2. Consequently, the load intensity measure vector IM =
{IMm, IMa} is defined as IMm = (σmin +σmax)/2 = 36.21MPa and IMa = Δσ/2 = 24.14MPa. However, in this study,
the amplitude of the sinusoidal load, IMa, is considered unknown and therefore treated as a random variable. Four
probabilistic models of increasing load amplitude uncertainty are defined and used to validate the proposed framework
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Fig. 2.2 Experimental dataset
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at the local reliability component level. The first probabilistic model, namely LU0, represents the deterministic case
where IMa(LU0) = Δσ/2 = 24.14MPa (i.e., the real experimental scenario) [2]. The second model, denoted as LU1U ,sp,
assumes the load amplitude to be uniformly distributed as IMa(LU1U ,sp) ∼ U [21.002, 27.037]MPa. The third one, namely
LU2U ,sp, considers IMa(LU2U ,sp) ∼ U [17.381, 29.451]MPa. Finally, the fourth and most severe probabilistic model,
LU3U ,sp, takes IMa(LU3U ,sp)∼U [9.656, 33.796]MPa. These probabilistic models were chosen such that ΔIMa(LU1U ,sp) =
27.037− 21.002 = 0.25 × IMa(LU0), ΔIMa(LU2U ,sp) = 29.451− 17.381 = 0.50 × IMa(LU0), and ΔIMa(LU3U ,sp) =
33.796− 9.656= 1.00× IMa(LU0).

Following previous research work on the same experimental dataset [9], each of the 68 crack propagation trajectories,
shown in, is curve-fitted with the well-known Paris-Erdogan law [10]

daa

dN
=C (ΔK)m (2.1)

where daa/dN, expressed in mm/cycle, represents the rate of crack propagation of the actual crack length (aa). C and m
are the two damage evolution model parameters to be determined by curve fitting each experimental crack propagation
trajectory. Lastly, the quantity ΔK, denotes the range of the stress intensity factor at the crack-tip within a given load cycle
[11]. The recursive Bayesian inference scheme, used in this study, requires the initial prior PDFs of the crack length, A0

a,
and the damage evolution model parameters, Θ0

dam, at time N0 = 0 cycles [1, 8]. These two initial prior PDFs are denoted
as f ′

A0
a
(a0

a) and f ′
‚0

dam
(θ0

dam), respectively. The random variable A0
a is assumed to be statistically independent of ‚0

dam and

its prior PDF is taken as the scaled Beta distribution defined in [8] while the initial prior PDF of ‚0
dam is derived from the

statistical analysis of the experimental dataset as described in detail in [11].
Among the 68 experimental trajectories, one sample trajectory [12] is selected and highlighted in Fig. 2.2. This sample

trajectory (unknown in a real-world application) is used as underlying true crack propagation path in the verification
and validation of the proposed damage prognosis Framework [2, 10]. This trajectory is used to randomly generate NDE
measurements, Ap

m, at evenly spaced intervals. These simulated measurements are consistent with the POD curve and the
damage measurement model described and used in [2, 10]. The values of the POD curve model parameters used in this
specific application example are taken as α̂0 = 11.0 and α̂1 = 5.0 (see Ref. [11]). On the other hand, the values of the sizing
model parameters used in the sequel are: β̂0 =−1.5mm, β̂1 = 1.2mm, and σ̂ε = 2.0mm (see Refs. [1,2,11]). In this specific
application example, the selected sample trajectory is monitored over the time window [0 200,000] load cycles and the
interval of time between two subsequent NDE inspections is taken as ΔN = 20,000 load cycles. At each NDE inspection, five
statistically independent NDE measurements (i.e., np

MS = 5 ∀ p ≥ 0) are taken and used in the proposed Bayesian inference
scheme [1, 2] to recursively compute the posterior conditional PDF f ′′

Ap
a |‚p

dam

(
ap

a
∣∣θp

dam

)
, the posterior unconditional PDF
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Fig. 2.3 Posterior PDFs of the
actual crack length, f ′′

Ap
a
(ap

a ),
estimated through the proposed
recursive Bayesian inference
scheme at N5 = 100,000 (i.e.,
p = 5) and N10 = 200,000 load
cycles (i.e., p = 10)
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Fig. 2.4 Comparisons between
the posterior mean, μ ′′(Ap

a ), of
the actual crack length and the
corresponding underlying true
crack length immediately after
each NDE inspection and for
each one of the four increasingly
severe levels of load uncertainty
considered in this study (i.e.,
LU0,LU1U ,sp, LU2U ,sp,LU3U ,sp)

f ′′
Ap

a

(
ap

a
)
, and the posterior joint PDF f ′′

‚
p
dam

(
θ

p
dam

)
= f ′′lnCp,mp(lnCp, mp). For the sake of conciseness, only a selected set of

the Bayesian updating results for f ′′
Ap

a
(ap

a ) is presented herein. More specifically, Fig. 2.3 shows the posterior PDFs of the
crack length at times N5 = 100,000 load cycles (i.e., immediately after the sixth NDE inspection) and N10 = 200,000 load
cycles (i.e., immediately after the 11th and last NDE inspection). As can be noticed, the higher the uncertainty in the load
the larger the variance of the posterior PDF and, in general, the larger the bias. However, the increase in the variance is
kept within very acceptable limits. These conclusions can be extended to any inspection time over the entire time window
[0 200,000] load cycles as illustrated by the four sub-plots in Fig. 2.4. The results provided in this latter figure demonstrate
the overall efficiency and robustness of the proposed recursive Bayesian inference scheme in tracking the true underlying
crack propagation path.
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Fig. 2.5 Remaining fatigue life
predictions obtained using
LU1U ,sp, ΔN = 20,000 load
cycles, np

MS = 5(∀ p ≥ 0),
σ̂ε = 2.0mm, and p̄F = 0.5 % All
PDFs are scaled to the same
height for better visualization

After each NDE inspection at time Np (with p ≥ 0), the crack propagation path is modeled and simulated using the

Paris-Erdogan law, as detailed in [2, 10], in order to estimate the PDF of the actual crack length, A[p,q]
a , at future load

cycle Nq
p = Np + q ·ΔN (with q = 1, 2, . . . , q̄). Once this information becomes available, it is then possible to compute the

time-varying probability of failure (p[p,q]F ), at the local reliability component level as [1, 2, 11]

p[p,q]F = P
[
A[p,q]

a ≥ ac

]
=

+∞∫

ac

f
A
[p,q]
a

(
a[p,q]a

)
da[p,q]a (2.2)

where ac denotes the pre-defined and deterministic critical crack length (taken as ac = 30.0 mm in this specific application
example). Equivalently, it is also possible to derive (see Refs. [2, 10]) the PDF of the number of cycles at failure (N p

F )
denoted as fN p

F

(
np

F

)
; i.e., the PDF of the number of cycles at which the pre-defined critical crack length is reached. With

this information in hand, the estimate (at time Np) for the RFL of the monitored mechanical component can be expressed
as RFL(Np) = NF(p̄F, Np)− Np = N p

F, p̄F
− Np = F−1

N p
F
(p̄F)− Np, where the term F−1

N p
F
(·) denotes the inverse cumulative

distribution function (CDF) of the random variable N p
F . Figure 2.5 shows the RFL results associated with the NDE monitoring

of the selected sample trajectory when the random sinusoidal amplitude load is assumed to follow the PDF model defined
earlier as LU1U ,sp. For the sake of clarity, only the results from the damage prognosis analyses performed at Np = p ·ΔN
(with p = 0, 2, 4, 6, 8, 10) are shown in Fig. 2.5. It is observed that the RFL predictions become progressively more
and more accurate (i.e., less bias) as new NDE data become available and are assimilated by the proposed framework.
For the particular case shown below, the initial coefficient of variation (COV) of the random variable N0

F at N0 = 0, —
equal to COV (N0

F) = 26.3% — is reduced to COV (N10
F ) = 1.5% at N10 = 200,000 load cycles (i.e., more than 17 times

smaller). Additionally, the value of the number of cycles at failure with a probability of not being exceeded of p̄F = 0.5 %
— i.e., NF(p̄F, Np) = N p

F, p̄F
= F−1

N p
F
(p̄F) — is also extended by 44.2 % from time N0 = 0 to time N10 = 200,000 load

cycles. In other words, the initial estimate for the fatigue life NF(p̄F, N0) = F−1
N0

F
(p̄F) = 138,092 load cycles is extended

to NF(p̄F, N10) = F−1
N10

F
(p̄F) = 199,093 load cycles. More formally, this relative gain in the predicted number of cycles at

failure at time Np can be defined as

δN p
F =

NF (p̄F, Np)−NF (p̄F, N0)

NF ( p̄F, N0)
, p ≥ 1 (2.3)

and its corresponding value can be computed after each NDE inspection at time Np (with p≥ 1). Figure 2.6 shows the relative
gain in the predicted number of cycles at failure for the four increasingly severe levels of load uncertainty considered in this
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Fig. 2.6 Relative gain in the
predicted number of load cycles
at failure after the NDE
inspections performed at times
p ·ΔN load cycles (with
ΔN = 20,000 load cycles and
p = 2, 4, 6, 8, 10)

Fig. 2.7 Difference between true
and predicted number of load
cycles at failure after the NDE
inspections performed at times
p ·ΔN load cycles (with
ΔN = 20,000 load cycles and
p = 2, 4, 6, 8, 10)

study (i.e., LU0,LU1U ,sp,LU2U ,sp,LU3U ,sp) and demonstrates how the proposed framework is a fundamental and powerful
analysis tool towards an optimal life cycle cost management of a given monitored system. Simultaneously, as shown in
Fig. 2.7, the difference between the true (nF,true) and the predicted number of cycles at failure progressively decreases as
new NDE results become available and are assimilated by the proposed framework. In particular, it should be noticed that
the predicted quantity NF(p̄F, Np) (with p = 2, 4, 6, 8, 10) is never larger than the underlying truth (i.e., nF,true). This study
thus demonstrates that the proposed methodology can lead to an extent of the initially predicted RFL with a consequent
economical gain without compromising the minimum safety requirements; however, in other practical scenarios, it could also
lead to an increase of safety by detecting a fault earlier than expected and therefore avoiding a very costly catastrophic failure.

2.4 Conclusions

A reliability-based damage prognosis framework for predicting the remaining fatigue life (RFL) of monitored mechani-
cal/structural components and/or systems was presented in the first part of this paper. The methodology relies on periodic
NDE inspections results to (i) assess and update the current state of damage of the monitored component/system, and (ii)
predict the probability distribution of the actual damage extent at future times. This information is then used to estimate
the probability of failure at future times or, equivalently, the RFL. The proposed framework is formulated to explicitly
account for the uncertainties related to: NDE detection capability and measurement accuracy, material model parameters,
damage evolution model parameters, and future operational loads. In the second part of the paper, a set of experimental
fatigue test data was used to provide a numerical verification and a first experimental validation of the proposed damage
prognosis framework at the local reliability component level. Load and damage evolution model parameters uncertainty
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were explicitly considered in this study. The results presented in this paper demonstrate how the proposed framework is
capable of recursively predicting and updating the RFL of a given monitored component It was also shown how a nearly
continuous NDE monitoring coupled with the proposed framework can lead to an extension of the initially predicted RFL
with consequent economical benefits over the service life of the monitored component/structure.
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Chapter 3
Fast Computing Techniques for Bayesian Uncertainty Quantification
in Structural Dynamics

Costas Papadimitriou and Dimitra-Christina Papadioti

Abstract A Bayesian probabilistic framework for uncertainty quantification and propagation in structural dynamics is
reviewed. Fast computing techniques are integrated with the Bayesian framework to efficiently handle large-order models of
hundreds of thousands or millions degrees of freedom and localized nonlinear actions activated during system operation.
Fast and accurate component mode synthesis (CMS) techniques are proposed, consistent with the finite element (FE)
model parameterization, to achieve drastic reductions in computational effort when performing a system analysis. Additional
substantial computational savings are also obtained by adopting surrogate models to drastically reduce the number of full
system re-analyses and parallel computing algorithms to efficiently distribute the computations in available multi-core CPUs.
The computational efficiency of the proposed approach is demonstrated by updating a high-fidelity finite element model of a
bridge involving hundreds of thousands of degrees of freedom.

Keywords Bayesian inference • Structural dynamics • Component mode synthesis • Surrogate models • HPC

3.1 Introduction

In structural dynamics, Bayesian inference [1–3] is used for quantifying and calibrating uncertainty models based on
vibration measurements, as well as propagating these modeling uncertainties in system simulations to obtain updated robust
predictions of system performance, reliability and safety [4]. The Bayesian tools for identifying system and uncertainty
models as well as performing robust prediction analyses are Laplace methods of asymptotic approximation and more accurate
stochastic simulation algorithms, such as MCMC [5] and Transitional MCMC [6]. These tools involve solving optimization
problems, generating samples for tracing and then populating the important uncertainty region in the parameter space, as
well as evaluating integrals over high-dimensional spaces of the uncertain model parameters. A moderate to very large
number of repeated system analyses are required to be performed over the space of uncertain parameters. Consequently, the
computational demands depend highly on the number of system analyses and the time required for performing a system
analysis.

To reliably update models, high fidelity FE model classes, often involving a large number of DOFs, should be introduced
to simulate structural behavior. For such large-order finite element models the computational demands in implementing
asymptotic approximations as well as stochastic simulation techniques may be excessive. The present work proposes methods
for drastically reducing the computational demands at the system, algorithm and computer hardware levels involved in
the implementation of Bayesian tools. At the system level, CMS techniques [7] are integrated with Bayesian techniques
to efficiently handle large-order models of hundreds of thousands or millions degrees of freedom and localized nonlinear
actions activated during system operation. Fast and accurate CMS techniques are obtained [8], consistent with the FE model
parameterization, to achieve drastic reductions in computational effort. The CMS allows the repeated computations to be
carried out in a significantly reduced space of generalized coordinates. At the level of the TMCMC algorithm, surrogate
models are adopted to drastically reduce the number of computationally expensive full model runs. At the computer hardware
level, parallel computing algorithms are used to efficiently distribute the computations in available multi-core CPUs [9].
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3.2 Bayesian Uncertainty Quantification and Propagation Framework

Consider a class Mm of structural dynamics models used to predict various output quantities of interest f (θ m|Mm) of a
system, where θ m is a set of parameters in this model class that need to be estimated using experimental data D ≡ {ŷ}.
Following a Bayesian formulation [2, 3] and assuming that the observation data and the model predictions satisfy the
prediction error equation

ŷ = f (θ m|Mm)+ e (3.1)

where the error term e ∼ N(0,Σ) is a zero-mean Gaussian vector with covariance Σ ≡ Σ(θ e) depending on the parameters
θe of the prediction error model class Me, the updated distribution p(θ |D,M) of the augmented parameter set θ = (θ m,θ e),
given the data D and the combined model class M = (Mm,Me), results from the application of the Bayes theorem as follows

p(θ |D,M) =
p(D|θ ,M)π(θ |M)

p(D|M)
(3.2)

where

p(D|θ ,M) =
|Σ(θ e)|−1/2

(2π)N/2
exp

[
−1

2
J(θ ;M)

]
(3.3)

is the likelihood of observing the data from the model class,

J(θ ;M) = [ŷ− f (θ m|M)]T Σ−1(θ e)[ŷ− f (θ m|M)] (3.4)

is the measure of fit between the experimental and model predicted properties, π(θ ) is the prior probability distribution of
the model parameters based on previous knowledge and/or user experience, and p(D|M) is the evidence of the model class.

The Bayesian probabilistic framework can also be used to compare two or more competing model classes and select
the optimal model class based on the available data. Consider a family Mi, i = 1, · · · ,κ , of κ alternative, competing,
parameterized FE and prediction error model classes, and let θ i ∈ RNθi be the free parameters of the model class Mi. The
posterior probabilities P(Mi|D) of the various model classes given the data D is [10, 11]

P(Mi|D) =
p(D|Mi)P(Mi)

p(D|M1, · · · ,Mκ)
(3.5)

where P(Mi) is the prior probability and p(D|Mi) is the evidence of the model class Mi. The optimal model class Mbest is
selected as the one that maximizes P(Mi|D) given by (3.5).

For large enough number of measured data, the posterior distribution of the model parameters in (3.2) can be
asymptotically approximated by a Gaussian distribution [3] centered at the most probable value θ̂ of the model parameters
with covariance equal to the inverse of the Hessian h(θ ) of the function

g(θ ;M) =− ln p(D|θ ,M) =
1
2

J(θ m;M)+
1
2
|Σ(θ e)|− lnπ(θ |M) (3.6)

evaluated at the most probable value θ̂ of the model parameters. The most probable value θ̂ maximizes the posterior
probability distribution p(θ |D,M) or, equivalently, minimizes the function g(θ ;M). For model selection, an asymptotic
approximation based on Laplace’s method is also used to give an estimate of the integral involved in the estimation of the
evidence p(D|M) in (3.2) and (3.5) [11]. For the case for which analytical expressions for the gradient of J(θ ;M) with
respect to the structural model parameters θm are available, computationally efficient gradient-based optimization algorithms
can be used to obtain the optimal value of the model parameters by minimizing the function g(θ ;M). Specifically, for
linear structural dynamics models and experimental data consisting of modal frequencies and mode shapes, such analytical
expressions are available and can be computed using efficient adjoint techniques (e.g. [12]). However, there are certain
classes of nonlinear systems where such analytical expressions or adjoint techniques are not applicable or it is inconvenient
to introduce within commercially available structural dynamics solvers. In such cases, non-gradient-based optimization
algorithms can be used to obtain the most probable value of the model parameters. Once the most probable value has
been computed, the Hessian required in the asymptotic approximation can be estimated using either higher-order adjoint
techniques [12], if applicable, or using numerical differentiation techniques.
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It should be noted that the asymptotic expression is approximate. Moreover, even for large number of experimental data,
it may fail to give a good representation of the posterior probability distribution in the case of multimodal distributions.
In addition, the asymptotic approximation fails to provide acceptable estimates for un-identifiable cases manifested for
relatively large number of model parameters in relation to the information contained in the data. For more accurate estimates,
one should use stochastic simulation algorithms (e.g. MCMC [5], Transitional MCMC – TMCMC [6], Delayed Rejection
Adaptive Metropolis – DRAM [13]) to generate samples that populate the posterior probability distribution function in (3.2)
and then evaluate the integrals involved in propagating uncertainties into robust predictions. Among the stochastic simulation
algorithms available, the transitional MCMC algorithm [6] is one of the most promising algorithms for selecting the most
probable model as well as finding and populating with samples the importance region of interest of the posterior probability
distribution, even in the unidentifiable cases and multi-modal posterior distributions. In addition, the TMCMC method yields
an estimate of the evidence p(D|M) of a model class M, required for model class selection [10, 14], based on the samples
generated by the algorithm.

The samples generated at the final stage of the TMCMC algorithm can further be used for estimating the probability inte-
grals encountered when interested in robust predictions of various performance quantities of interest. Specifically, consider
an output quantity q of interest in structural dynamics simulations. Posterior robust predictions of q are obtained by taking
into account the updated uncertainties in the model parameters given the measurements D. Let p(q|θ ,M) be the conditional
probability distribution of q given the values of the parameters. Using the total probability theorem, the posterior robust
probability distribution p(q|D,M) of q, taking into account the model M and the data D, is given by Papadimitriou et al. [4]

p(q|D,M) =
∫

p(q|θ ,M)p(θ |D,M)dθ (3.7)

as an average of the conditional probability distribution p(q|θ ,M) weighting by the posterior probability distribution
p(θ |D,M) of the model parameters. Let also G(q) be a function of the output quantity of interest q. A posterior robust
performance measure of the system given the data D is

E[G(q)|D,M)] =
∫

G(q)p(θ |D,M)dθ (3.8)

The evaluation of the multi-dimensional integrals in (3.7) and (3.8) cannot be performed analytically. Asymptotic
approximations are given in [4]. Alternatively, stochastic simulation methods can be conveniently used to estimate the
integral from the samples θ (i), i = 1, · · · ,N, generated from the posterior probability distribution p(θ |D,M). In this case, the
integrals (3.7) and (3.8) can be approximated by

f (q|D,M)≈ 1
N

N

∑
i=1

f (q|θ (i),M) (3.9)

and

E[G(q)|D,M)]≈ 1
N

N

∑
i=1

G(q(i)) (3.10)

respectively, where q(i) ≡ q(θ (i))

3.3 Fast Computing Techniques for Large Order Finite Element Models

3.3.1 Component Model Synthesis for Parameter Estimation in Structural Dynamics

At the system level, dynamic reduction techniques such as CMS can be implemented with Bayesian uncertainty quantification
and propagation framework in order to alleviate the computational burden associated with each model run in the re-analyses
required in the optimization and stochastic simulation methods. CMS techniques have been successfully employed for model
reduction in optimization and stochastic simulation algorithms involved in model updating [15, 16]. CMS techniques [7]
divide the structure into components with mass and stiffness matrices that are reduced using fixed-interface and constrained
modes. Dividing the structure into components and reducing the number of physical coordinates to a much smaller number of
generalized coordinates certainly alleviates part of the computational effort. However, at each iteration or TMCMC sampling
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point one needs to re-compute the eigen-problem and the interface constrained modes for each component. This procedure
is usually a very time consuming operation and computationally more expensive that solving directly the original matrices
for the eigenvalues and the eigenvectors. It was recently shown [8] that for certain parameterization schemes for which
the mass and stiffness matrices of a component depend linearly on only one of the free model parameters to be updated,
often encountered in finite element model updating formulations, the full re-analyses of the component eigen-problems are
avoided. The eigenproperties and the interface constrained modes as a function of the model parameters can be computed
inexpensively from the eigenproperties and the interface constrained modes that correspond to a nominal value of the model
parameters.

Specifically let Δ j be the set of structural components that depend on the j-th parameter θ j. Consider the case for which
the stiffness matrix of a component s ∈ Δ j depends linearly θ j and the mass matrix is independent of θ j, i.e. K(s) = K̄(s)θ j

and M(s) = M(s)
0 . It can be readily derived that the stiffness and mass matrices of the Craig-Bampton reduced system admits

the representation

K̂CB = K̂CB
0 +

Nθ

∑
j=1

K̂CB
, j θ j and M̂CB = M̂CB

0 (3.11)

where the coefficient matrices K̂CB
0 , K̂CB

, j and M̂CB
0 in the expansion (3.11) are assembled from the component stiffness and

mass matrices. It is important to note that the assembled matrices K̂CB
0 , K̂CB

, j and M̂CB
0 of the Craig-Bampton reduced system

in the expansion (3.11) are independent of the values of θ . In order to save computational time, these constant matrices are
computed and assembled once and, therefore, there is no need this computation to be repeated during the iterations involved
in optimization or TMCMC sampling algorithms for model updating due to the changes in the values of the parameter
vector θ . This is an important result which saves substantial computational effort since it avoids (a) re-computing the fixed-
interface and constrained modes for each component, and (b) assembling the reduced matrices from these components. The
formulation guarantees that the reduced system is based on the exact component modes for all values of the model parameters.

The aforementioned formulation can readily be extended to treat the more general case in which the stiffness and mass
matrices of a component depends nonlinearly on a single parameter, that is K(s) = K̄(s) f (θ j) and M(s) = M̄(s)ρ(θ j), where
f (θ j) and ρ(θ j) are scalar nonlinear functions of a parameter. In this case the linear representation (3.11) is no longer appli-
cable for such components. However, the reduced stiffness and mass matrices for each component as a function of the model
parameters can be readily obtained from the eigen-properties and constrained interface modes obtained from a single analysis
for a nominal value of the component parameter θ j. It turns out that substantial computational savings arise from the fact
that the re-analyses of the fixed-interface and constrained modes for each component required at each iteration or TMCMC
samping point is completely avoided. In this general case, the reduced stiffness and mass component matrices have to be
re-assembled in order to derive the Craig-Bampton reduced system matrices. Similar to the linear case [8], the computational
demands in FE model updating formulations are again substantially reduced without compromising the solution accuracy.

3.3.2 Surrogate Models

At the level of the TMCMC algorithm, surrogate models can be used to reduce the computational time by avoiding the full
model runs at a large number of sampling points in the parameters space. This is done by exploiting the function evaluations
that are available at the neighbour points from previous full model runs in order to generate an estimate at a new sampling
point in the parameter space. Surrogate models are well-suited to be used with MCMC algorithms, including the TMCMC
algorithm [6]. The kriging technique [17] is used to approximate the function evaluation at a sampling point using the
function evaluations at neighbor points in the parameter space. To ensure a high quality approximation, certain conditions
are imposed in order a surrogate estimate be accepted. Specifically, the estimate is accepted based on a minimum number of
neighbour design points that depend on the dimension of the uncertain parameter space. The surrogate point has to belong to
the convex hull of the design points so that an interpolation is performed, while extrapolations are prohibited. The neighbour
design points are selected as the ones closest to the surrogate estimate and also within the hyper- ellipse of the TMCMC
proposal covariance matrix scaled to include the minimum number of design points. The estimate is also accepted based on
local optimality conditions for the selected surrogate scheme, guaranteeing that the error in the surrogate estimate provided
by the kriging technique is smaller than a user-defined value. Details of the integration of the kriging technique within the
TMCMC algorithm can be found in [9]. An order of magnitude reduction in the number of full model runs involved in
TMCMC algorithm has been reported which results in additional computational savings.
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3.3.3 Parallel Computing Algorithms

At the computer hardware level, high performance computing (HPC) techniques can be used to reduce the computational
time. Most MCMC algorithms involve a single Markov chain and are thus not parallelizable. In contrast, the TMCMC
algorithm involves a large number of independent Markov chains that can run in parallel. Thus, the TMCMC algorithm is
very-well suited for parallel implementation in a computer cluster [9]. Specifically, parallelization is activated at every stage
of the TMCMC algorithm exploiting the large number of short, variable length, chains that need to be generated starting from
the leader samples determined from the TMCMC algorithm at the particular stage. Static and dynamic scheduling schemes
can be conveniently used to optimally distribute these chains in a multi-host configuration of complete heterogeneous com-
puter workers. The static scheduling scheme distributes the chains in the workers using a weighted round-robin algorithm so
that the number of likelihood evaluations is arranged to be the same for each computer worker. The static scheduling scheme
is computational efficient when the computational time for a likelihood evaluation is the same independently of the location of
sample in the parameter space as well as when surrogate estimates are not activated. The dynamic scheduling scheme is more
general, ensuring a more efficient balancing of the loads per computer worker in the case of variable run time of likelihood
function evaluations and unknown number of surrogates activated during estimation. Specifically, each worker is periodically
interrogated at regular time intervals by the master computer about its availability and samples from TMCMC chains are
submitted to the workers on a first come first serve basis to perform the likelihood function evaluations so that the idle time
of the multiple workers is minimised. Details of the parallel implementation of the TMCMC algorithm are given in [9].

3.4 Application on Finite Element Model Updating of a Bridge

The efficiency of the proposed fast computing tools in the Bayesian framework is demonstrated by updating a FE model of
the Metsovo bridge (Fig. 3.1a) using simulated modal data. A detailed FE model of the bridge is created using 3-dimensional
tetrahedron quadratic Lagrange FEs. An extra coarse mesh, chosen to predict the lowest 20 modal frequencies and mode
shapes of the bridge, results in a minimum 97,636 FEs and 562,101 DOF. The size of the elements in the extra coarse mesh
is the maximum possible one that can be considered, with typical element length of the order of the thickness of the deck
cross-section.

Let ωc be the cut-off frequency which represents the highest modal frequency that is of interest in FE model updating.
Herein, the cut-off frequency is selected to be equal to the 20th modal frequency of the nominal model. That is ωc = 4.55Hz.
For demonstration purposes, the bridge is divided into nine physical components with eight interfaces between components
as shown in Fig. 3.1b. For each component it is selected to retain all modes that have frequency less than ωmax = ρωc, where
the ρ values affect computational efficiency and accuracy of the CMS technique. The total number of internal DOFs before
the model reduction is applied and the number of modes retained for various ρ values are given in Table 3.1. For the case
ρ = 8, a total of 286 internal modes out of the 558,801 are retained for all 9 components. The total number of DOFs of the
reduced model is 3,586 which consist of 286 fixed interface generalized coordinates and 3,300 constraint interface DOFs
for all components. It is clear that a two orders of magnitude reduction in the number of DOFs is achieved using CMS.

a b

Fig. 3.1 (a) Metsovo bridge, (b) components of FE model of the bridge



30 C. Papadimitriou and D.-C. Papadioti

Table 3.1 Number of DOF and percentage modal frequency error for the full (unreduced) and reduced models

Reduced model (Retained modes)

ρ = 8 ρ = 5 ρ = 2
Full model ρ = 8 ρ = 5 ρ = 2 ν = 200 ν = 200 ν = 200

Internal DOF 558,801 286 100 31 286 100 31
Interface DOF 3,300 3,300 3,300 3,300 306 306 306
Total DOF 562,101 3,586 3,400 3,331 592 406 337
Highest percentage error (%) 0.00 0.02 0.17 1.10 0.20 0.30 1.20

Table 3.1 also shows the fractional error between the modal frequencies computed using the complete FE model and the ones
computed using the CMS technique for ρ = 2, 5 and 8. It is seen that the error fall below 0.02 % for ρ = 8, 0.17 % for ρ = 5
and 1.10% for ρ = 2. A very good accuracy is achieved for the case of ρ = 5.

For the specific application, a large number of generalized coordinates for the reduced system arises from the interface
DOFs. A further reduction in the number of generalized coordinates for the reduced system can be achieved by retaining only
a fraction of the constrained interface modes [18]. For each interface, it is selected to retain all modes that have frequency
less than ωmax = νωc, where ν is user and problem dependent. Results are computed for ν = 200. The number of interface
modes retained is given in Table 3.1. It can also be seen that the fractional error for the lowest 20 modes of the structure
fall below 1.20% for ν = 200. In particular, the value of ν = 200 and ρ = 5 gives sufficiently accurate results and the
number of retained interfaces modes for all interfaces is 306. The reduced system has 406 DOFs from which 100 generalized
coordinates are fixed-interface modes for all components and the rest 306 generalized coordinates are constrained interface
modes. Using CMS, the number of generalized coordinates is drastically reduced.

For demonstration purposes, the FE model is parameterized using five parameters associated with the modulus of elasticity
of one or more structural components shown in Fig. 3.1b. Specifically, the first two parameters θ1 and θ2 account respectively
for the modulus of elasticity of the pier components 3 and 7 of the bridge. The parameter θ3 accounts for the modulus of
elasticity of the components 1 and 2 of the deck, the parameter θ4 accounts for the components 4 and 5, while the parameter θ5

accounts for the components 6 and 8. The component 9 is not parameterized.
The estimation of the parameter values and their uncertainties of the FE model is based on modal frequencies and mode

shapes. Simulated, noise contaminated, measured modal frequencies and mode shapes are generated by adding a 1 and 3%
Gaussian noise to the modal frequencies and modeshape components, predicted by the nominal non-reduced FE models.
The added Gaussian noise reflects the differences observed in real applications between the predictions from a model of
a structure and the actual (measured) behavior of the structure. 38 sensors are placed on the bridge to monitor vertical
and transverse accelerations. The measured data contain the values of the ten lowest modal frequencies and modeshapes.
The model parameters are introduced to scale the nominal values of the properties that they model so that the value of the
parameters equal to one corresponds to the nominal value of the FE model.

The model updating is performed using the stochastic simulation algorithm TMCMC with the following settings of the
TMCMC parameters: tolCov = 1.0, β = 0.2 and 1,000 samples per TMCMC stage [6]. The number of FE model runs for the
five-parameter model class depends on the number of TMCMC stages which was estimated to be 19. The resulting number
of FE model re-analyses are 19,000. The parallelization features of TMCMC [9] were also exploited, taking advantage of the
available four-core multi-threaded computer unit to simultaneously run eight TMCMC samples in parallel. For comparison
purposes, the computational effort for solving the eigenvalue problem of the original unreduced FE model is approximately
139 s. Multiplying this by the number of 19,000 TMCMC samples and considering parallel implementation in a four-core
multi-threaded computer unit, the total computational effort for the model class is expected to be of the order 7 days. In
contrast, for the reduced-order models for ρ = 8, the computational demands for running the model class are reduced to
approximately 13 h (759 min), while for the reduced-order models for ρ = 8 and ν = 200 these computational demands are
drastically reduced to 14 min. It is thus evident that a drastic reduction in computational effort for performing the structural
identification based on a set of monitoring data is achieved from approximately 7 days for the unreduced model class to
14 min for the reduced model classes corresponding to ρ = 8 and ν = 200, without compromising the predictive capabilities
of the proposed parameter estimation methodology. This results in a factor of over 500 reduction in computational effort. It
should be noted that kriging technique further reduces the computational effort by approximately one order of magnitude so
that the updating of the 562,101 DOF finite element model, requiring 19,000 model runs, can be performed in 2 min which
is a remarkable reduction in computational effort.
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3.5 Conclusions

Asymptotic approximations and stochastic simulation algorithms (e.g. the TMCMC algorithm) used in Bayesian model
uncertainty quantification, calibration and propagation requires a large number of FE model simulation runs. For large size FE
models with hundred of thousands or even million DOFs and localized nonlinearities, the computational demands involved
in the optimization or TMCMC sampling algorithms may be excessive. Drastic reductions can be achieved at the system,
algorithm and computer equipment level. At the system level, CMS techniques that exploit certain schemes often encountered
in FE model parameterization are shown to be effective in completely avoiding the large number of eigen-problem re-analyses
within the components or interfaces, required during the application of the optimization or TMCMC sampling algorithms.
Thus parameterization consistent CMS techniques result in drastic reduction of the computational effort. At the level of
the algorithm, surrogate models are well adapted to the TMCMC algorithm for significantly reducing the number of full
model runs required, without sacrificing the accuracy in the surrogate estimates. At the computer hardware level, parallel
computing algorithms are also very well suited to be used with TMCMC algorithm to efficiently distribute the computations
in available multi-core CPUs. Application of the framework to uncertainty calibration of a structural model using vibration
measurements was emphasized in this work. The method has also been successfully applied to structural health monitoring
for identifying the location and severity of damage [8]. The fast computing techniques implemented within the Bayesian
framework can also be used for updating robust model-based predictions and reliability given monitoring data.
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Chapter 4
Bayesian Uncertainty Quantification and Propagation in Nonlinear
Structural Dynamics

Dimitrios Giagopoulos, Dimitra-Christina Papadioti, Costas Papadimitriou, and Sotirios Natsiavas

Abstract A Bayesian uncertainty quantification and propagation (UQ&P) framework is presented for identifying nonlinear
models of dynamic systems using vibration measurements of their components. The measurements are taken to be either
response time histories or frequency response functions of linear and nonlinear components of the system. For such nonlinear
models, stochastic simulation algorithms are suitable Bayesian tools to be used for identifying system and uncertainty models
as well as perform robust prediction analyses. The UQ&P framework is applied to a small scale experimental model of
a vehicle with nonlinear wheel and suspension components. Uncertainty models of the nonlinear wheel and suspension
components are identified using the experimentally obtained response spectra for each of the components tested separately.
These uncertainties, integrated with uncertainties in the body of the experimental vehicle, are propagated to estimate the
uncertainties of output quantities of interest for the combined wheel-suspension-frame system. The computational challenges
are outlined and the effectiveness of the Bayesian UQ&P framework on the specific example structure is demonstrated.

Keywords System identification • Uncertainty identification • Bayesian inference • Nonlinear dynamics •
Substructuring

4.1 Introduction

Structural model updating methods (e.g. [1]) are used to reconcile linear and nonlinear mathematical models of a mechanical
system with available experimental data from component or system tests. For complex structural dynamics models it is
often the case that these models are usually discretized linear finite element (FE) models for a large part of the structure
with localized nonlinearities in isolated structural parts. Examples include vehicle models that consist of linear structural
components, such as the body of the vehicle, and nonlinear structural components, such as the suspension and the wheel
components, which may exhibit strongly nonlinear behaviour. To build high fidelity models for such complex structures with
localized nonlinearities, one should reconcile linear and nonlinear structural models with experimental data available at both
the component and system level. This work presents the challenges of Bayesian uncertainty quantification and propagation of
complex nonlinear structural dynamics models and results of identification of nonlinear models of a small scale experimental
vehicle consisting of linear and nonlinear components. The goal is to build high fidelity models of the components to simulate
the behaviour of the combined system.

Bayesian techniques [2, 3] have been proposed to quantify the uncertainty in the parameters of a structural model, select
the best model class from a family of competitive model classes [4,5], as well as propagate uncertainties for robust response
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and reliability predictions [6]. Posterior probability density functions (PDFs) are derived that quantify the uncertainty in the
model parameters based on the data. For nonlinear structural models, the measurements are taken to be either response time
histories or frequency response functions of nonlinear systems. Computationally intensive stochastic simulation algorithms
(e.g., Transitional MCMC [7]) are suitable tools for identifying system and uncertainty models as well as for performing
robust prediction analyses. These algorithms require a large number of system analyses to be performed over the space
of uncertain parameters. However, for relatively large order FE models involving hundreds of thousands or even million
degrees of freedom and localized nonlinear actions activated during system operation, such re-analyses may require excessive
computational time. Methods for drastically reducing the computational demands at the system, algorithm and hardware
levels involved in the implementation of Bayesian framework have recently been developed. At the system level, efficient
computing techniques can be integrated with the Bayesian framework to handle large order models and localized nonlinear
action. Specifically, component mode synthesis and multilevel substructuring techniques can achieve substantial reductions
in computational effort.

At the system level, efficient computing techniques are integrated with Bayesian techniques to efficiently handle large
order models of hundreds of thousands or millions degrees of freedom (DOF) and localized nonlinear actions activated
during system operation. Specifically, fast and accurate component mode synthesis (CMS) techniques have recently been
proposed [8], consistent with the FE model parameterization, to achieve drastic reductions in computational effort. In
addition, automated multilevel substructuring techniques [9] are used to achieve substantial reductions in computational
effort in the re-analysis of linear substructures. At the level of the Transitional MCMC (TMCMC) algorithm, surrogate
models are adopted to drastically reduce the number of computationally expensive full model runs [10]. At the computer
hardware level, parallel computing algorithms are proposed to efficiently distribute the computations in available multi-core
CPUs [10].

In this work the Bayesian UQ&P framework is applied to identify models of linear and nonlinear components of a
small scale experimental model of a vehicle. The identification of the uncertainty models of the nonlinear wheel and
suspension components is investigated using the experimentally obtained response spectra. The uncertainty models for the
vehicle frame are also obtained using experimental data. The uncertainty is propagated to output quantities of interest for the
combined wheel-suspension-frame system. The computational challenges and efficiency of the Bayesian UQ&P framework
are outlined. The effectiveness of the framework on the specific example structure is discussed.

4.2 Review of Bayesian Formulation for Parameter Estimation and Model Class Selection

Consider a parameterized FE model class M of a nonlinear structure and let θm ∈RN
θ be the structural model parameters to be

estimated using a set of measured response quantities. In nonlinear structural dynamics, the measured quantities may consist
of full response time histories D = {ŷ

k
∈ RN0 ,k = 1, · · · ,N} at N0 DOF and at different time instants t = kΔt, where k is the

time index and N is the number of sampled data with sampling period Δt, or response spectra D = {ŷ
k
∈ RN0 ,k = 1, · · · ,N}

at different frequencies ωk, where kis a frequency domain index. In addition, let {y
k
(θ m) ∈ RN0 ,k = 1, · · · ,N} be the model

response predictions (response time histories or response spectra), corresponding to the DOFs where measurements are
available, given the model class M and the parameter set θ m ∈ RNθ . It is assumed that the observation data and the model
predictions satisfy the prediction error equation

ŷ
k
= y

k
(θ m|Mm)+ ek (4.1)

where the error term ek ∼ N(μ ,Σ(θ e)) is a Gaussian vector with mean zero and covariance Σ(θ e). It is assumed that the
error terms ek, k = 1, · · · ,N are independent. This assumption may be reasonable for the case where the measured quantities
are the response spectra. However, for measured response time histories this assumption is expected to be violated for small
sampling periods. The effect of correlation in the prediction error models is not considered in this study. The notation Σ(θ e)
is used to denote that a model is postulated for the prediction error covariance matrix that depends on the parameter set θ e.

Bayesian methods are used to quantify the uncertainty in the model parameters as well as select the most probable
FE model class among a family of competitive model classes based on the measured data. The structural model class
M is augmented to include the prediction error model class that postulates zero-mean Gaussian models. As a result, the
parameter set is augmented to include the prediction error parameters θ e. Using PDFs to quantify uncertainty and following
the Bayesian formulation (e.g. [2, 3, 11]), the posterior PDF p(θ |D,M) of the structural model and the prediction error
parameters θ = (θ m,θ e) given the data D and the model class M can be obtained in the form
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p(θ |D,M) =
[p(D|M)]−1

(2π detΣ(θ e))
NN0/2

exp

[
−1

2
J(θ )

]
π(θ |M) (4.2)

where

J(θ ) =
m

∑
r=1

[y(θ m)− ŷ]T Σ−1(θ e)[y(θ m)− ŷ]T (4.3)

is the weighted measure of fit between the measured and model predicted quantities, π(θ |M) is the prior PDF of the model
parameters θ and p(D|M) is the evidence of the model class M.

For a large enough number of experimental data, and assuming for simplicity a single dominant most probable model,
the posterior distribution of the model parameters can be asymptotically approximated by the multi-dimensional Gaussian
distribution [2, 11] centered at the most probable value θ̂ of the model parameters that minimizes the function g(θ ;M) =
− ln p(θ |D,M) with covariance equal to the inverse of the Hessian h(θ) of the function g(θ ;M) evaluated at the most
probable value. For a uniform prior distribution, the most probable value of the FE model parameters θ coincides with the
estimate obtained by minimizing the weighted residuals in (4.3). An asymptotic approximation based on Laplace’s method
is also available to give an estimate of the model evidence p(D|M) [11]. The estimate is also based on the most probable
value of the model parameters and the value of the Hessian h(θ ) evaluated at the most probable value.

The Bayesian probabilistic framework is also used to compare two or more competing model classes and select the
optimal model class based on the available data. Consider a family M = {Mi, i = 1, · · · ,μ}, of μ alternative, competing,
parameterized FE and prediction error model classes and let θ i ∈ RNθ i be the free parameters of the model class Mi. The
posterior probabilities P(Mi|D) of the various model classes given the data D is [4]

P(Mi|D) =
p(D|Mi)P(Mi)

p(D|MFam)
(4.4)

where P(Mi) is the prior probability and p(D|Mi) is the evidence of the model class Mi. The optimal model class Mbest is
selected as the one that maximizes P(Mi|D) given by (4.4). For the case where no prior information is available, the prior
probabilities are assumed to be P(Mi) = 1/μ , so the model class selection is based solely on the evidence values.

The asymptotic approximations may fail to give a good representation of the posterior PDF in the case of multimodal
distributions or for unidentifiable cases manifested for relatively large number of model parameters in relation to the
information contained in the data. For more accurate estimates, one should use SSA to generate samples that populate
the posterior PDF in (4.2). Among the SSA available, the TMCMC algorithm [7] is one of the most promising algorithms
for selecting the most probable model class among competitive ones, as well as finding and populating with samples the
importance region of interest of the posterior PDF, even in the unidentifiable cases and multi-modal posterior probability
distributions. In addition, the TMCMC samples θ (i), i = 1, · · · ,Ns drawn from the posterior distribution can be used to yield
an estimate of the evidence p(D|Mi) required for model class selection [7, 12, 13]. The TMCMC samples can further be
used for estimating the probability integrals encountered in robust prediction of various performance quantities of interest
[6]. In particular, if q(θ ) is an output quantity of interest conditional on the value of the parameter set θ , the posterior robust
measure of q given the data and taking into account the uncertainty in θ is obtained from the sample estimate

E(q|D,M) =
1
Ns

N

∑
i=1

μq(θ (i);M) (4.5)

where μq(θ (i);M) is the conditional mean value of q(θ ) given the model class.

4.3 Application to a Small Scale Laboratory Vehicle Model

In order to simulate the response of a ground vehicle an experimental device was selected and set up [14]. More specifically,
the selected frame structure comprises a frame substructure with predominantly linear response and high modal density
plus four supporting substructures with strongly nonlinear action. First, Fig. 4.1a shows a picture with an overview of the
experimental set up. In particular, the mechanical system tested consists of a frame substructure (parts with red, gray and
black color), simulating the frame of a vehicle, supported on four identical substructures. These supporting substructures
consist of a lower set of discrete spring and damper units, connected to a concentrated (yellow color) mass, simulating the
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Fig. 4.1 (a) Experimental set up of the structure tested, (b) dimensions of the frame substructure and measurement points

Fig. 4.2 (a) Experimental set up for measuring the support stiffness and damping parameters, (b) equivalent model

wheel subsystems, as well as of an upper set of a discrete spring and damper units connected to the frame and simulating
the action of the vehicle suspension. Also, Fig. 4.1b presents more details and the geometrical dimensions of the frame
subsystem. Moreover, the measurement points indicated by 1–4 correspond to connection points between the frame and its
supporting structures, while the other measurement points shown coincide with characteristic points of the frame. Finally,
point E denotes the point where the electromagnetic shaker is applied.

In order to identify the parameters of the four supporting subsystems, which exhibit strongly nonlinear characteristics, a
series of tests was performed. To investigate this further, the elements of the supporting units were disassembled and tested
separately. First, Fig. 4.2a shows a picture of the experimental setup and presents graphically the necessary details of the
experimental device that was set up for measuring the stiffness and damping properties of the supports, while Fig. 4.2b
shows the equivalent mechanical model.

The experimental process was applied separately to both the lower and the upper spring and damper units of the supporting
substructures and can be briefly described as follows. First, the system shown in Fig. 4.2 is excited by harmonic forcing
through the electromagnetic shaker up until it reaches a periodic steady state response. When this happens, both the history
of the acceleration and the forcing signals are recorded at each forcing frequency. Some characteristic results obtained in this
manner are presented in the following sequence of graphs. Next, Fig. 4.3a presents the transmissibility function of the system
tested, obtained experimentally for three different forcing levels. Specifically, this function is defined as the ratio of the root
mean square value of the acceleration to the root mean square value of the forcing signal measured at each forcing frequency.
The continuous, dashed and dotted lines correspond to the smallest, intermediate and largest forcing amplitude, respectively.
Clearly, the deviations observed between the forcing levels indicate that the system examined possesses nonlinear properties.
Moreover, neither the applied forcing is harmonic, especially within the frequency range below ω = 10Hz. To illustrate this,
Fig. 4.3b shows two periods of the actual excitation force applied for the same three excitation levels in obtaining the results
of Fig. 4.3a, which were recorder at a fundamental forcing frequency of ω = 4Hz.
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Fig. 4.3 (a) Transmissibility function of the support system, for three different forcing levels, (b) history of the external force applied with a
fundamental harmonic frequency ω = 4Hz

A number of models of the restoring and damping forces, say fr and fd , respectively, were tried for modeling the action
of the supports and compared with the experimental results. The classic linear dependence of the restoring force on the
displacement and of the damping forces on the velocity of the support unit was first assumed. However, critical comparison
with the experimental results using the Bayesian model selection framework demonstrated that the outcome was unacceptable
in terms of accuracy. Eventually it was found that an acceptable form of the restoring forces is the one where they remain
virtually in a linear relation with the extension of the spring, namely

fr(x) = k x (4.6)

while the damping force was best approximated by the following formula

fd(ẋ) = c1 ẋ+
c2 ẋ

c3 + |ẋ| (4.7)

As usual, the linear term in the last expression is related to internal friction at the support, while the nonlinear part is related
to the existence and activation of dry friction. More specifically, in the limit c3 → 0, the second term in the right hand side of
Eq. (4.7) represents energy dissipation action corresponding to dry friction. On the other side, in the limit c3 → ∞, this term
represents classical viscous action and can actually be absorbed in the first term.

4.4 Results

The value of the parameters appearing in the assumed models of the restoring and damping forces of the supports, like
the coefficients k, c1, c2 and c3 in Eqs. (4.6) and (4.7), are determined by applying the Bayesian uncertainty quantification
and calibration methodology. Results are obtained based on experimental response spectra values for both the displacement
and acceleration of either the wheel or the suspension component. It is assumed that the prediction errors in the Bayesian
formulation are uncorrelated with prediction error variance Σ = diag(Σ1,Σ2) = diag(σ2

1 I,σ2
2 I), where Σ1 = σ2

1 I and Σ2 =
σ2

2 I are the covariance matrices for the prediction errors corresponding to the displacements and accelerations, respectively.
The parameter space is six dimensional and includes θ = (k,c1,c2,c3,σ1,σ2). Parameter estimation results are obtained
using the parallelized and surrogate-based version [10] of the TMCMC algorithm [7] with 500 samples per stage. Eight
computer workers were used to perform in parallel the computations involved in the TMCMC algorithm. The computational
time required to run all 5,500 samples for the 11 TMCMC stages, without surrogate approximation, for the SDOF model
is approximately 7 h. Surrogate modeling [10] reduces further this time by approximately one order of magnitude. For
illustration purposes, results for the TMCMC samples projected in the two-dimensional parameter spaces (k1,c1) and (c1,c2)
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Fig. 4.4 Model parameter uncertainty: projection of TMCMC samples in the two dimensional parameter spaces

Fig. 4.5 Uncertainty propagation: displacement response spectra uncertainty along with comparisons with the experimental data for the
suspension component. (a) Moderate excitation level, (b) strong excitation level

are shown in Fig. 4.4 for the SDOF system, shown in Fig. 4.2b, corresponding to the suspension component. It is clear that
the uncertainties in the damping parameters c1 and c2 are relatively high and c1 and c2 are highly correlated along certain
directions in the parameter space.

The parameter uncertainties are propagated through the SDOF model to estimate the uncertainties in the displacement
and acceleration response spectra. The results are shown in Figs. 4.5 and 4.6 for the displacement and acceleration response
spectra, respectively and are compared to the experimental values of the response spectra. An adequate fit is observed.
Discrepancies between the model predictions and the experimental measurements are mainly due to the model errors related
to the selection of the particular forms of the restoring force curves in (4.6) and (4.7). The Bayesian model selection strategy
based on Eq. (4.5) can be used to select among alternative restoring force models in an effort to improve the observed fit.

The above procedure has been repeated for the wheel component to identify the uncertainties in the linear stiffness and
nonlinear damping model. In addition, the uncertainties in nine stiffness-related parameters of the frame component were
also estimated using the Bayesian methodology and the experimental values the first ten modal frequencies and the mode
shape components at 72 locations of the frame [15]. The linear finite element model has 45,564 DOFs. Due to excessive
computational cost arising in stochastic simulation algorithms, the model was reduced using a recently developed CMS
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Fig. 4.6 Uncertainty propagation: acceleration response spectra uncertainty along with comparisons with the experimental data for the suspension
component. (a) Moderate excitation level, (b) strong excitation level

method for FE model updating [8]. The reduced model has 30 DOFs, resulting in substantial computational savings of more
than two orders of magnitude. Due to space limitations, results of the parameter estimation are not shown here.

The estimates of the model parameter values and their uncertainties for each component are used to build the model for
the combined wheel-suspension-frame structure. The number of DOFs of the nonlinear model of the combined structure
is 45,568. The parametric uncertainties are then propagated to uncertainties in the response of the combined structure. The
CMS was again used to reduce the number of DOFs to 34 and thus drastically reduce the computational effort that arises
from the re-analyses due to the large number of TMCMC samples and the nonlinearity of the combined system. Selected
uncertainty propagation results are next presented. Specifically, the parameters of the wheel model and the model of the frame
structure are kept to their mean values and only the uncertainties in the model parameters of the suspension components are
considered. Such uncertainties are propagated to uncertainties for the acceleration transmissibility function at a point on the
wheel, the connection of the wheel with the frame and an internal point on the frame as shown in Fig. 4.7. It is observed that
a large uncertainty in the response spectra is obtained at the resonance region close to 3.4 Hz, which is dominated by local
wheel body deflections. The response in the resonance regions close to 58 and 68 Hz is mainly dominated by deflection of
the frame structure. It is observed that the uncertainties in the suspension parameters do not significantly affect the response
spectra at the resonance regions. As a result, response spectra obtained experimentally in these resonance regions for the
complete vehicle model are not expected to be adequate to identify uncertainties in the parameters of the suspension model.

4.5 Conclusions

A Bayesian UQ&P framework was presented for identifying nonlinear models of dynamic systems using vibration
measurements of their components. The use of Bayesian tools, such as stochastic simulation algorithms (e.g., TMCMC
algorithm), may often result in excessive computational demands. Drastic reduction in computational effort to manageable
levels is achieved using component mode synthesis, surrogate models and parallel computing algorithms. The framework
was demonstrated by identifying the linear and nonlinear components of a small-scale laboratory vehicle model using
experimental response spectra available separately for each component. Such model uncertainty analyses for each component
resulted in building a high fidelity model for the combined system to be used for performing reliable robust response
predictions that properly take into account model uncertainties. The theoretical and computational developments in this
work can be used to identify and propagate uncertainties in large order nonlinear dynamic systems that consist of a number
of linear and nonlinear components.
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the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program:
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Fig. 4.7 Uncertainty propagation: acceleration transmissibility function uncertainty for combined system. (a) Wheel DOF, (b) DOF at connection
between suspension and frame, (c) frame DOF
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Chapter 5
Probabilistic Damage Identification of the Dowling Hall Footbridge
Using Bayesian FE Model Updating

Iman Behmanesh and Babak Moaveni

Abstract This paper presents a probabilistic damage identification study on a full-scale structure, the Dowling Hall
Footbridge, through Bayesian finite element (FE) model updating. The footbridge is located at Tufts University campus and
is equipped with a continuous monitoring system that measures the ambient acceleration response of the bridge. A set of data
is recorded once an hour or when triggered by large vibrations. The modal parameters of the footbridge are extracted based
on each set of measured ambient vibration data and are used for model updating. In this study, effects of physical damage
are simulated by loading a small segment of footbridge’s deck with concrete blocks. The footbridge deck is divided into five
segments and the added mass on each segment is considered as an updating parameter. Overall, 72 sets of data are collected
during the loading period (i.e., damaged state of the bridge) and different subsets of these data are used to find the location
and extent of the damage (added mass). Adaptive Metropolis Hasting algorithm with adaption on the proposal probability
density function is successfully used to generate Markov Chains for sampling the posterior probability distributions of the
five updating parameters. Effect of the number of data sets used in the identification process is investigated on the posterior
probability distributions of the updating parameters.

Keywords Bayesian FE model updating • Adaptive metropolises hasting algorithm • Damage identification • Uncertainty
analysis • Dowling hall footbridge

5.1 Introduction

Although the deterministic FE model updating methods have been used for damage identification of several real-world, large-
scale structures [1–5], there are few applications of Bayesian FE model updating methods to full-scale complex structures
[6–8]. In this paper, the authors investigate the challenges of implementing a Bayesian FE model updating framework
for damage identification of a full-scale structure, the Dowling Hall footbridge. Information about deterministic structural
identification of this footbridge is available at [9–11]. In this study, damage on the footbridge is simulated by addition of
2.29 metric tons of concrete blocks on a small segment of the bridge deck. The effect of added mass will be similar to a
loss of stiffness (commonly used as damage indication) at segments of the bridge. The extracted modal parameters from
acceleration time histories of the damaged structure (loaded structure) are used to find the location and extent of damage
(added mass) through a Bayesian FE model updating scheme.

The footbridge is divided into five segments and the added mass of each segment is considered as a model parameter to be
calibrated in the model updating process. Model updating is performed to minimize the misfit between the measured modal
parameters and those from the FE model. An adaptive Metropolis-Hasting algorithm [12–15] is used to sample the posterior
probability distributions of the updating parameters given the data and model class. Impact of the amount of data used in the
updating process is investigated on the accuracy of probabilistic damage identification results. To do this, six different set of
damage identification results are obtained based on 1, 2, 5, 10, 36, and all 72 sets of identified modal parameters.

This paper is organized in the following order. In Sect. 5.2, the Dowling Hall Footbridge and its continuous monitoring
system are introduced. Section 5.3 explains how damage is simulated on the footbridge through addition of mass on a segment
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of bridge deck. A brief review of Bayesian FE model updating and the sampling techniques used is provided in Sect. 5.4.1
while the model updating results are reported in Sect. 5.4.2. Finally, the concluding remarks are presented in Sect. 5.5.

5.2 The Dowling Hall Footbridge and Its Continuous Monitoring System

The Dowling Hall Footbridge is located on the Medford campus of Tufts University. Figure 5.1 shows the south view of the
footbridge. The bridge consists of two 22 m spans and it is 3.9 m wide. It connects Dowling Hall on its eastern end to Tufts
main campus on its western end. The footbridge is composed of a steel frame with a reinforced concrete deck. More details
about the structural details of the Dowling Hall Footbridge can be found in [16].

A continuous monitoring system was designed and deployed on the Dowling Hall Footbridge in the fall of 2009 and
has been providing continuous data since January 2010. The monitoring system consists of eight accelerometers, which
are connected to a data acquisition device and a communication system that transfers the measured data wirelessly to a
host computer in the Department of Civil and Environmental Engineering at Tufts University. The monitoring program
continuously samples the acceleration channels at a 2,048 Hz sampling rate. A 5-min data sample is recorded once each hour,
beginning at the top of the hour or when the 1-s root-mean square (RMS) value of each acceleration channel exceeds 0.03 g.
The layout of the accelerometers is shown in Fig. 5.2. More information about design and deployment of this continuous
monitoring system can be found in [10]. Figure 5.3 shows the identified modal parameters of the first six most excited
vibration modes based on a preliminary test data performed in April 2009. In this plot, mode shapes are interpolated between
the sensor locations (indicated by empty circles) using a cubic spline. The data-driven stochastic subspace identification
(SSI-Data) method [17] is applied to the cleaned ambient vibration data for modal identification of the footbridge.

Fig. 5.1 South view of Dowling
Hall Footbridge

Fig. 5.2 Layout of
accelerometers on the bridge



5 Probabilistic Damage Identification of the Dowling Hall Footbridge Using Bayesian FE Model Updating 45

0

10

20

30

40

0
1

2
−1
0
1

f1=4.63 Hz, ξ1=1.0 %

0

10

20

30

40

0
1

2
−1
0
1

f2=6.07 Hz, ξ1=0.6 %

0

10

20

30

40

0
1

2
−1
0
1

f3=7.07 Hz, ξ3=0.7 %

0

10

20

30

40

0
1

2
−1
0
1

f4=8.90 Hz, ξ4=0.3 %

0

10

20

30

40

0
1

2
−1
0
1

f5=13.13 Hz, ξ5=0.8 %

0

40

0
1

2
−1
0
1

f6=13.56 Hz, ξ6=1.1 %

Fig. 5.3 Identified modal
parameters from preliminary
test data

5.3 Simulation of Structural Damage on the Footbridge

To simulate the effects of damage, a small segment of the footbridge was loaded with 2.29 metric tons (2,290 kg) of concrete
blocks for 72 h. Figure 5.4 shows the blocks on the bridge deck and safety measures that were considered for this test. Seventy
two sets of measurements (once every hour) were collected and their corresponding modal parameters were extracted that
represents the model parameters of the damaged structure. Figure 5.5 shows the effects of added mass on identified natural
frequencies of modes 1–6. The plot also shows the identified natural frequencies 24 h before and 24 h after the loading.
The grey dots correspond to the undamaged condition while the black dots refer to the damaged (loaded) condition of the
bridge. Significant drops of natural frequencies are observed for mode 1, 2, 3, and 4; yet natural frequencies of modes 5
and 6 remained almost unchanged. Note that all the natural frequencies that are identified from hourly recorded vibration
data are plotted in this figure. In the model updating process, some of these modal parameters are considered as outliers and
are excluded from the data used in updating. Detailed information about statistical information of modal parameters and the
rate of data loss due to different sources during loading period are provided in Table 5.1. The most reliably identified modes
are modes 3 and 4, and the most unreliable modes are modes 5 and 6. It should be noted that there are two closely spaced
vibration modes around the second natural frequency (at approximately 5.9 and 6.1 Hz); however, the simplified FE model
predicts only one mode at this frequency range. Therefore, a larger number of data for the second mode are excluded from
the identification process.
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Fig. 5.4 Concrete blocks loaded on footbridge’s deck for 3 days
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5.4 Bayesian FE Model Updating

The first step in the updating process consists of calibrating an initial FE model of the structure, created based on design
information, to a reference FE model that corresponds to “as built” properties of the structure in its undamaged/baseline state.
An initial FE model of the footbridge is created based on the design drawings and visual inspection of the footbridge, using
the MATLAB-based structural analysis software FEDEASLab [18]. The modal parameters extracted from the data recorded
at 4 a.m. of July 29, 2011 are selected as the reference modal parameters. The initial FE model is calibrated so that its
modal parameters best match to reference modal parameters using a deterministic sensitivity-based FE model updating. The
calibrated model, referred to as reference FE model, is assumed to represent the true undamaged condition of the footbridge.
In the Bayesian FE model updating performed in this study, the footbridge is divided to five segments and the added mass of
each segment is considered as an updating parameter. These five segments are shown in Fig. 5.6.
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Table 5.1 Statistics of identified modal parameters during loading
period

Mode Na
i Nb

o Nc
a μd

f σ e
f covf

f σ g
Φ covh

Φ

1 52 3 49 4.51 2.10 0.47 2.07 6.93
2 71 51 20 5.67 2.86 0.51 3.10 11.19
3 71 1 70 6.83 1.91 0.28 1.70 5.36
4 72 0 72 6.57 2.51 0.29 0.79 2.54
5 70 12 58 12.97 8.78 0.68 6.26 21.33
6 71 2 69 13.44 10.41 0.77 3.38 10.49
a Total number of identified modal parameters
b Number of outliers
c Total number of available modal parameters
d Mean of available natural frequencies (Hz)
e Standard deviation of available natural frequencies (%)
f Coefficient of variations of available natural frequencies (%)
g Standard deviation of available mode shapes (%), defined as the

average of the STD of each mode shape component
h Coefficient of variations of available mode shapes (%), defined as the

average of the COV of each mode shape component

Fig. 5.6 Five segments along the footbridge deck corresponding to the five updating parameters

5.4.1 Bayesian Formulation and Sampling

This section presents a summary of the Bayesian FE model updating formulation used in this study. More detailed
formulation of the Bayesian model updating process can be found in seminal publications on this topic [6, 7, 19–23].
According to the Bayes theorem, posterior probability distributions of updating parameters θgiven the measured data d
(modal parameters in this study) and the model class M can be obtained from the likelihood function p(d|θ,M), which is
the probability of measured data given the updating model parameters, and the conditional prior probability distribution of
model parameters p(θ|M):

p(θ|d,M) = cp(d|θ,M)p(θ|M) (5.1)

The normalization constant c is to ensure that the posterior probability density function (PDF) integrates to one. Only one
model class is considered in this study, thus conditioning on the model class Mwill be dropped hereafter.

Data vector d contains the identified modal parameters extracted from one set of measurements. Modal parameters are
assumed to be independently distributed from mode to mode and from natural frequencies to mode shapes. The likelihood
function can be written as:

p(d|θ) =
Nm

∏
m=1

p(ω̃m|θ)p(Φ̃m|θ) (5.2)

where Nm is the number of identified modes,ω̃m = 2π f̃ m is identified natural frequency and Φ̃m is the identified mode shape
of mode m. The eigen-frequency and mode shape errors are defined as:

eωm = ω̃2
m −ω2

m(θ) (5.3)

eΦm =
Φ̃m∥∥Φ̃m

∥∥ − ΓΦm(θ)

‖ΓΦm(θ)‖ (5.4)
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The matrix Γ picks the observed degrees of freedom from model-calculated mode shape Φm(θ). Assuming the errors are
zero-mean Gaussian distributed random variables, PDFs of the measured natural frequencies and mode shapes become:

p(ω̃m|θ) ∝ exp

(
−1

2

(
ω̃2

m −ω2
m(θ)

)2

σ2
ω2

m

)
(5.5)

p(Φ̃m|θ) ∝ exp

⎡
⎣− 1

2σ2
Φm

∥∥Φ̃m
∥∥2

(
Φ̃m∥∥Φ̃m

∥∥ − ΓΦm(θ)

‖ΓΦm(θ)‖

)T (
Φ̃m∥∥Φ̃m

∥∥ − ΓΦm(θ)

‖ΓΦm(θ)‖

)⎤
⎦ (5.6)

Inserting Eqs. (5.5) and (5.6) into (5.2) yields the following likelihood function:

p(d|θ) ∝ exp(−1
2

J(θ,d)) (5.7)

J(θ,d) =
Nm

∑
m=1

(
ω̃2

m −ω2
m(θ)

)2

σ2
ω2

m

+
Nm

∑
m=1

1

σ2
Φm

∥∥Φ̃m
∥∥2

(
Φ̃m∥∥Φ̃m

∥∥ − ΓΦm(θ )
‖ΓΦm(θ )‖

)T (
Φ̃m∥∥Φ̃m

∥∥ − ΓΦm(θ )
‖ΓΦm(θ )‖

)
(5.8)

In the case of having Nd independent sets of measured modal parameters, the probability p(d1 : dNd |θ) can be states as:

p(d1 : dNd |θ) = ĉ
Nd

∏
n=1

exp

(
−1

2
J(θ,dn)

)
(5.9)

The posterior PDF of Eq. (5.1) is a joint PDF, and therefore a multi-dimension integration is required to obtain the marginal
distribution of each model parameter:

p(θi|d) =
∫

Θ−i

p(θi,θ−i|d)dθ−i (5.10)

These probability distributions often cannot be calculated analytically and are usually sampled numerically. Markov Chain
Monte Carlo methods are used to sample complex multidimensional distributions. Among them Metropolis Hastings (MH)
algorithm is the most common method in the application of FE model updating [19, 23, 24]. The algorithm is based on
generating samples from a prescribed proposal probability density function and accepting the samples with a probability of
move. However, direct application of standard MH algorithm is not suited for applications where parameters with highest
probabilities are concentrated in small regions of the parameter space or in the case of sharply peaked or multi-modal
posterior PDFs.

To avoid these difficulties, adaptive Metropolis Hasting (AMH) algorithms have been proposed [23,24]. The adaption can
be done on proposal PDF or the target PDF. The adaption on target PDF such as AMH algorithm [23] or TMCMC algorithm
[24] incorporates a number of intermediate target PDFs that converge to the posterior PDF of Eq. (5.1). The advantage of
using these methods is their ability to sample the whole space and exploring all the peaks. However, the main disadvantage of
these methods is the high computational cost required in case of complex structural models where the numbers of updating
parameters increase. Another approach is to adapt the proposal PDF. Advantage of this method is that it is fast for identifiable
cases where the posterior distributions of updating parameters have unique clear peaks, thus samples quickly converge to the
highest probability region even when the region is sharply peaked. In this study, adaption on proposal PDF is selected instead
of target PDF. For efficiency, the adaption is performed once for each block of samples, with specific standard deviation for
its proposal PDF. The initial standard deviation is chosen to be relatively large, to let the samples take big jumps and be able
to approach the vicinity of the high probability regions quickly. Covariance matrix of the proposal PDF for the next block of
samples is tuned so that the samples acceptance ratio reaches the desired acceptance ratio value. Each block uses the standard
MH to generate samples.

5.4.2 Model Updating Results

Six cases of model updating are performed using different subsets (1, 2, 5, 10, 36, 72 sets) of the available identified modal
parameters. In all the cases, the prior distributions of segments’ masses are considered as independent uniform distributions
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Fig. 5.7 Distribution of samples
for segment 1 and 2: (a) all
samples, (b) first 6,000 samples

with the lower bound of 0 and upper bound of 6.8 tons. The block size in the AMH algorithm is 5,000 samples and the
desired acceptance ratio is 30%. Total number of samples is set to be 80,000 and the number of burn-in samples is 10,000.
Values of standard deviation for natural frequencies in Eq. (5.8) are considered as:

σω2
m
= COV2

ω̃m
ω̃2

m (5.13)

where COVω̃m is taken as the average of calculated coefficients-of-variation (COVs) in Table 5.1 for all six modes. The COV
of modes 2, 5, and 6 are then divided by 10 to account for their higher uncertainties. This factor is selected based on prior
knowledge of system identification studies of this footbridge [10, 11]. Standard deviations of mode shapes are computed
from:

σΦm =
√

NsCOVω̃m (5.14)

where it is assumed that the COV of each mode shape component is equal to the COV of the corresponding natural frequency.
Figure 5.7a shows the distribution of samples generated using the AMH algorithm for updating parameters 1 and 2 for the

case of two data sets. It can be seen that after the first block of samples, parameter space is sampled around almost zero for
segment 1 and 2.6 tons for segment 2. The added mass does not exceed 1.6 tons for segment 1 and remains between 2.1 and
3.0 tons for segment 2. Note that this graph only shows the accepted samples. Figure 5.7b zooms in the first 6,000 samples.
It is observed that the number of accepted samples is very low in the first 5,000 samples (first block). The proposal PDF
is wide for the first block and yields to a high rejection rate of the samples. Note that the posterior PDF in this case is not
sharply peaked and therefore getting close to the peak neighborhood is possible even with smaller block sizes.

Bayesian model updating is performed using the first, the first 2, 5, 10, 36, and 72 identified modal parameters. Figure 5.8
shows the posterior PDF of segment 2 identified for each of these six cases. It can be seen that using more data mitigate
the variations of updating parameters. This is a phenomenon that cannot be seen in deterministic model updating, where
uncertainty of model parameter does not reduce necessarily by adding more data. Smaller uncertainty on updated model
parameter would yield to more accurate prediction and detection of potential damage. It is worth noting that the identified
posterior PDFs show improvements in both bias and variation by adding more data especially when the total number available
data is small. The mean, mode, and standard deviation (STD) of samples generated for each updating case are provided
in Table 5.2. Substantial reduction can be observed on STD of samples by adding data especially in the first few cases.
However, the reduction of STDs becomes less significant as the number of data sets exceeds 36. Therefore, no drastic change
in estimated mass probability distributions would be expected if more data sets were available. Note that generating the
Markov Chains for the case of 1 data set is much faster than for the case of 72 data sets.
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Fig. 5.8 Effect of number of data sets on posterior probability distribution of segment 2 mass

Table 5.2 Statistics (mean [ton], mode or maximum a posteriori [ton], and standard deviation [ton]) of the five updating parameters for the six
considered cases

No. of θ1 θ2 θ3 θ4 θ5

data sets Mean Mode STD Mean Mode STD Mean Mode STD Mean Mode STD Mean Mode STD

1 0.71 0.07 0.845 2.38 2.77 0.388 0.32 0.00 0.318 0.39 0.00 0.352 0.08 0.01 0.073
2 0.16 0.01 0.169 2.60 2.74 0.115 0.09 0.01 0.093 0.21 0.03 0.200 0.07 0.01 0.064
5 0.05 0.00 0.047 2.50 2.55 0.059 0.03 0.00 0.029 0.12 0.01 0.122 0.08 0.04 0.062
10 0.02 0.00 0.019 2.46 2.49 0.040 0.01 0.00 0.012 0.06 0.00 0.065 0.06 0.03 0.046
36 0.01 0.00 0.005 2.47 2.48 0.018 0.00 0.00 0.004 0.02 0.00 0.016 0.01 0.00 0.006
72 0.00 0.00 0.003 2.52 2.53 0.013 0.00 0.00 0.002 0.01 0.00 0.006 0.00 0.00 0.003

5.5 Conclusions

A Bayesian FE model updating approach is implemented for damage identification of the Dowling Hall Footbridge. Damage
is simulated physically by loading a small segment of the footbridge deck with 2.29 metric tons of concrete block. The
location and extent of the added mass is determined probabilistically using Bayesian model updating. Adaptive Metropolis
algorithm is used to sample the posterior probability distributions of the five updating model parameters. The adaption is
performed on the proposal probability density function and the performance of the sampling technique is satisfactory.

Effect of the number of data sets used in the identification process is investigated by using different subsets (1, 2, 5, 10,
36, and 72 data sets) of available data. The bias and variation of model parameters are reduced by including more data set.
The reduction diminishes with increasing the number of data set. This is a phenomenon that cannot be seen in deterministic
model updating, where uncertainty of model parameter does not reduce necessarily by adding more data sets to the updating
process. Thus, model parameter updated using a probabilistic approach based on several sets of measurements would yield
to more accurate prediction and detection of potential damage.

Acknowledgements The authors would like to acknowledge partial support of this project by the National Science Foundation Grant No. 1125624
which was awarded under the Broadening Participation Research Initiation Grants in Engineering (BRIGE) program. The authors also acknowledge
Ms. Alyssa Kody for design and performance of the bridge load test and Ms. Rachele Pesenti for her help in programming the real-time module of
the data acquisition system. The opinions, findings, and conclusions expressed in the paper are those of the authors and do not necessarily reflect
the views of the individuals and organizations involved in this project.



5 Probabilistic Damage Identification of the Dowling Hall Footbridge Using Bayesian FE Model Updating 51

References

1. Huth O, Feltrin G, Maeck J, Kilic N, Motavalli M (2005) Damage identification using modal data: experiences on prestressed concrete bridge.
J Struct Eng 131(12):1898–1910

2. Teughles A, De Roeck G (2004) Structural damage identification of the highway bridge Z24 by FE model updating. J Sound Vib
278(3):589–610

3. Reynders E, De Roeck D, Bakir PG, Sauvage C (2007) Damage identification on the Tilff bridge by vibration monitoring using optical fiber
strain sensors. J Eng Mech ASCE 133(2):185–193

4. Moaveni B, He X, Conte JP, De Callafon RA (2008) Damage identification of composite beam using finite element model updating. Comput
Aided Civ Infrastruct Eng 23(5):339–359

5. Moaveni B, He X, Conte JP, Restrepo JI (2010) Damage identification study of a seven-story full-scale building slice tested on the UCSD-NEES
shake table. Struct Saf 32(5):347–356

6. Ntotsios E, Papadimitriou C, Panetsos P, Karaiskos G, Perros K, Perdikaris PC (2009) Bridge health monitoring system based on vibration
measurements. Bull Earthq Eng 7:469–483

7. Yuen KV, Beck JL, Au SK (2004) Structural damage detection and assessment by adaptive Markov chain Monte Carlo simulation. Struct
Control Health Monit 11:327–347

8. Simoen E, Moaveni B, Conte JP, Lombaert G (2013) Uncertainty quantification in the assessment of progressive damage in a seven-story
full-scale building slice. J Eng Mech ASCE, in press, doi: 10.1061/(ASCE)EM.1943-7889.0000610

9. Moser P, Moaveni B (2011) Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge. Mech Syst Signal
Process 25(7):2336–2357

10. Moser P, Moaveni B (2013) Design and deployment of a continuous monitoring system for the Dowling Hall Footbridge. Exp Tech 37(1):15–26
11. Moaveni B, Behmanesh I (2012) Effects of changing ambient temperature on finite element model updating of the Dowling Hall Footbridge.

Eng Struct 43:58–68
12. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines.

J Chem Phys 21:1087–1092
13. Hasting WK (1970) Monte Carlo sampling method using Markov Chains and their applications. Biometrika 57:97–109
14. Chib S, Greenberg E (1995) Understanding the Metropolis-Hasting algorithm. Am Stat 49(4):327–335
15. Haario H, Saksman E, Tamminen J (2001) An adaptive Metropolis algorithm. Bernouli 7:223–242
16. Bowman J (2003) Vibration testing and modal identification of the Dowling Hall Footbridge at Tufts University [Master’s thesis]. Department

of Civil and Environmental Engineering, Tufts University, Medford
17. Van Overscheen P, De Moore B (1996) Subspace identification for linear systems. Kluwer Academic, Boston
18. Filippou FC, Constantinides M (2004) FEDEASLab getting started guide and simulation examples. Technical report NEESgrid-2004-22.

Available from: http://fedeaslab.berkeley.edu
19. Beck JL, Au SK (2002) Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation. J Eng Mech

128(4):380–391
20. Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech 124(4):455–461
21. Sohn H, Law HK (1997) A Bayesian probabilistic approach for structure damage detection. Earthq Eng Struct Dyn 26:1259–1281
22. Katafygiotis LS, Beck JL (1998) Updating models and their uncertainties. II: model identifiability. J Eng Mech 124(4):463–467
23. Beck JL, Au SK (2001) Monitoring structural health using a probabilistic measure. Comput Aided Civ Infrastruct Eng 16:1–11
24. Ching J, Chen YC (2007) Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection, and model

averaging. J Eng Mech 133(7):816–832



Chapter 6
Considering Wave Passage Effects in Blind Identification
of Long-Span Bridges

S. Farid Ghahari, M. Ali Ghannad, James Norman, Adam Crewe, Fariba Abazarsa, and Ertugrul Taciroglu

Abstract Long-span bridges usually experience different input excitations at their ground supports that emanate from
differences in wave arrival times, and soil conditions, as well as loss of coherency in arriving waves. These spatial
variations can drastically influence the dynamic response; hence, this phenomenon must be considered in any vibration-based
identification method. There are numerous Multi-Input Multi-Output (MIMO) identification techniques that may be applied
to data recorded at long-span bridges that experience spatial variations in their input motions. However, inertial soil-structure
interaction effects severely reduce the accuracy of these techniques because the actual Foundation Input Motion (FIM) cannot
be recorded during earthquakes. In this study, we present an extension to a novel blind identification method that we had
developed earlier, which enables the method to handle multiple input motions. For the sake of simplicity, we only consider
wave passage effects—that is, all unknown input motions are assumed to be identical except for a known/unknown phase-
delay. This method comprises two steps. In the first step, the spatial time-frequency distributions of recorded responses are
used for extracting the mode shapes and the modal coordinates. This is achieved through a Blind Source Separation (BSS)
technique. In the second step, cross relations among the extracted modal coordinates are used for identifying the natural
frequencies, damping ratios, modal contribution factors, along with the unknown input motions through a least-squares
technique. Both simulated and experimental examples are provided, which suggest that the method is capable of accurately
identifying the dynamic characteristics of long-span bridges from recorded response signals without the knowledge of input
motions, even in the presence of wave passage effects due to phase-delays.

Keywords Blind system identification • Long-span bridges • Multiple input motions • Wave passage effects • Spatial
time-frequency distribution
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6.1 Introduction

Modal identification of civil structures subjected to strong ground shaking has been a subject of intense research for more than
four decades (see, e.g., [1] and references contained therein). Consequently, many different identification approaches have
been developed (e.g., [2]). System identification research is a multi-disciplinary field; and therefore, many of the existing
methods are common among mechanical, electrical, and structural engineering disciplines. Although there are a few studies
in which identification is carried out without the knowledge of input excitations [3,4]; all of the traditional techniques used for
identification of civil structures require the input motions to be known/measured. Yet, frequently, true input excitations are not
known, for example, due to Soil-Structure Interaction (SSI), or they are unmeasured because of inadequate instrumentation.
For structures affected by SSI, the Foundation Input Motions (FIMs) are significantly different from both Free-Field Motions
(FFMs)—which are recorded far from the structure—and from foundation responses [5]. Kinematic Interaction (KI)—which
is due to the difference between the stiffness of a nearly rigid foundation and the surrounding soil—causes the motion
experienced by the foundation (i.e., FIM) to differ significantly from the FFM. Inertial Interaction (II) due to the structure’s
mass and flexibility as well as the attenuating effects of soil also render the foundation responses to be different from FIMs.
Even in the absence of soil-structure interaction, in many real-life cases, the foundation responses are not recorded at all, or
recorded with a very low Signal-to-Noise Ratio (SNR).

Recently, two new identification methods have been developed with which the modal properties of a system can be
identified by using only its response (output) signals recorded during ambient vibrations [6, 7] or earthquakes [8]. The
method, which can be used for earthquake response signals [8], works in two steps: first the Spatial Time-Frequency
Distributions (STFDs) of the response signals are used to blindly identify the mode shapes and the modal coordinate signals.
Then, cross relations among the modal coordinates are employed to determine the system’s natural frequencies and damping
ratios. An extension of this technique for systems subject to multiple input motions (e.g., bridges) is presented here.

As indicated in many prior studies, the spatial variation of input motions—due to wave arrival times, soil conditions, and
coherency-losses—can have a significant effect on the seismic response of both long and short span bridges [9–12]. For
such cases, output-only MIMO identification techniques must be used. In the present study, we only consider wave passage
effects—that is, all unknown input motions are assumed to be identical except for a known/unknown phase-delay. This new
method shares the first step of our previously proposed technique [8] to extract mode shapes and modal coordinates from
recorded acceleration response signals. In the second step, the extracted modal coordinates are estimated through a nonlinear
least-squares technique from which natural frequencies, damping ratios, modal contribution factors, as well as input motions
can be identified. If the phase-delay is unknown, then its value can also be estimated by repeating the said process with
several phase-delays and by determining the one that minimizes the final value of the residual norm in the least-squares
analysis.

6.2 Proposed Identification Technique

Consider the idealized lumped mass system shown in Fig. 6.1, which provides a schematic representation of typical multiple-
span bridges with multiple piers and two abutments. Assuming stiffness-proportional damping, or by neglecting the effective
damping forces relative to inertial forces, the equation of dynamic equilibrium for this system can be written as [13]

Mẍ(t)+Cẋ(t)+Kx(t) =−
ng

∑
l=1

Mll ẍgl(t) (6.1)

where M, C, and K are mass, damping and stiffness matrices of the system, respectively. x(t) is a vector that contains the
internal displacement response of all Degrees Of Freedom (DOFs), while ẋ(t), and ẍ(t) are their corresponding velocity and
acceleration vectors. ll is a vector that assigns the influence of each input acceleration, ẍgl(t), on the system’s response; and
is a function of internal and boundary stiffnesses. ng is the number of all existing input motions. Using the modal expansion
theorem, the recorded internal accelerations can be stated as,

ẍ(t) =−
ng

∑
i=1

φi q̈i(t) (6.2)
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Fig. 6.1 Lumped model of a multi-span bridge

where φi and q̈i(t) denote the ith mode shape vector and modal acceleration, respectively; and n is the number of modes.

q̈i(t) is the relative acceleration response of a Single DOF (SDOF) system subjected to the excitation ẍ(t) = −
ng

∑
i=1

φi q̈i(t);

and it can be expanded as,

q̈i(t) =
ng

∑
l=1

q̈l
i(t) (6.3)

where q̈l
i(t) is the relative acceleration of the SDOF system corresponding to the ith mode subjected to β l

i ẍgl(t) where β l
i =

φT
i Mll/φT

i Mφi is the ith modal participation factor for the lth input acceleration. It follows that the absolute acceleration of
the ith modal coordinate for the lth input can be stated as,

q̈t,l
i (t) = q̈l

i(t)+β l
i ẍgl(t) (6.4)

Thus, the absolute acceleration response of the system can be written as,

ẍt(t) =
n

∑
i=1

ϕi

ng

∑
l=1

q̈l
i(t)+

ng

∑
l=1

ll ẍgl(t) , (6.5)

or

ẍt(t) =
n

∑
i=1

ϕi

[
ng

∑
l=1

q̈t,l
i (t)−

ng

∑
l=1

β l
i ẍgl(t)

]
+

ng

∑
l=1

ll ẍgl(t) (6.6)

Rearranging Eq. (6.6) yields

ẍt(t) =
n

∑
i=1

ϕi

ng

∑
l=1

q̈t,l
i (t)+

ng

∑
l=1

(
ll −

n

∑
l=1

ϕiβ l
i

)
ẍgl(t) (6.7)

The second term in Eq. (6.7) is a zero vector, because for each input motion ll =
n
∑

l=1
ϕiβ l

i . Therefore,

ẍt(t) =
n

∑
i=1

ϕi

ng

∑
l=1

q̈t,l
i (t) =

n

∑
i=1

φi q̈t
i(t) (6.8)

where q̈t
i(t) =

ng

∑
l=1

q̈t,l
i (t). It is possible, then, to state the modal coordinate q̈t,l

i (t) as a discrete Auto-Regressive model with

eXternal input (ARX) [8], as in

q̈t,l
i [k] = Aiq̈

t,l
i [k− 1]+Biq̈

t,l
i [k− 2]+β l

i Ciẍgl [k]+β l
i Digl ẍ[k− 1] , (6.9)
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where k is the time index. The coefficients in Eq. (6.9) are given by

Ai = 2e−ξiωniT cos(ωdiT ) , (6.10)

Bi = −e−2ξiωniT , (6.11)

Ci = 2ξiωniT, (6.12)

Di = ωniTe−ξiωniT
[

ωni

ωdi

(
1− 2ξ 2

i

)
sin (ωdiT )− 2ξi cos(ωdiT )

]
, (6.13)

where ξi, ωni, and ωdi = ωni

√
1− ξ 2

i are the damping ratio, and the undamped and damped natural frequencies of ith mode,
respectively; and T is sampling time. Thus, the absolute acceleration of the ith modal coordinate can be written as summation
of q̈t,l

i [k] for all input motions, as in

q̈t,l
i [k] = Aiq̈

t,l
i [k− 1]+Biq̈

t,l
i [k− 2]+Ci

ng

∑
l=1

β l
i ẍgl [k]+Di

ng

∑
l=1

β l
i ẍgl [k− 1] , (6.14)

Having the absolute acceleration modal coordinates, the unknown parameters (ξi, ωni, and β l
i ), the input motions (ẍgl) can

be identified through a nonlinear least-square technique. To wit, consider the minimization problem

min
z

‖G(z)‖2
2 (6.15)

where ‖·‖2 indicates the Euclidean norm of the matrix in the bracket, and

z ≡ [
ξ1 , . . . , ξn , ωn1 , . . . , ωnn , β 1

1 , . . . , β 1
n , . . . , β ng

n , ẍg1 , . . . , ẍgng

]
(6.16)

[G(z)]k,i = q̈t
i[k]−Aiq̈

t
i[k− 1]−Biq̈

t
i[k− 2]−Ci

ng

∑
l=1

β l
i ẍgl [k]−Di

ng

∑
l=1

β l
i ẍgl [k− 1] , (6.17)

Here, ẍglis a vector that contains the time history of the lth unknown input motion; and G(z) is an N × n matrix
where N denotes number of time samples. As long as the number of equations (N × n) is greater than the number of
unknowns (n+ n+ ng× n+ n×N), a nonlinear least-squares method can be employed to solve minimization problem posed
in Eq. (6.15). This condition is mostly satisfied for practical cases because

n+N > ng ×N + 2× n+ n× ng, (6.18)

or
N > n(2+ ng)/(n− ng) (6.19)

However, as Eq. (6.14) is recursive, it does not generate N completely independent equations for each mode. Moreover, in
order to obtain reliable results in least-squares techniques, it is important to have the number of equations to be far greater
than the number of unknowns. As such, only the wave passage effect will be considered in this study, which means that all
unknown input motions are assumed to be identical except for a known or unknown phase-delay. It is useful to note here that
the phase-delay parameter can be easily estimated based on the soil shear-wave velocity and the distance between piers. On
account of this simplifying assumption, Eq. (6.14) is rewritten as follows,

q̈t,l
i [k] = Aiq̈

t
i[k− 1]+Biq̈

t
i[k− 2]+Ci

ng

∑
l=1

β l
i ẍgl [k− δl]+Di

ng

∑
l=1

β l
i ẍg[k− δl − 1] , (6.20)

where ẍg[k] is the input acceleration and δl (with l = 1, . . . ,ng) denotes the time delay for each pier. Assuming a known
phase-delay, Eq. (6.17) can be rewritten as,

[G(z)]k,i = q̈t
i [k]−Aiq̈

t
i[k− 1]−Biq̈

t
i[k− 2]−Ci

ng

∑
l=1

β l
i ẍgl [k− δl]+Di

ng

∑
l=1

β l
i ẍg[k− δl − 1] , (6.21)



6 Considering Wave Passage Effects in Blind Identification of Long-Span Bridges 57

where
z ≡ [

ξ1,�, ξn , ωn1,�, ωnn, β 1
1 ,�, β 1

n ,�, β ng
n , ẍg

]
. (6.22)

For cases with unknown phase-delay, this parameter can be also identified using iterative nonlinear least-squares analyses.
Indeed, the phase-delay cannot be identified through direct nonlinear least-squares analysis, as it is an index; however, it may
be estimated iteratively by minimizing the final residual norm of several nonlinear least-squares analyses, as will be shown
later through both synthetic and experimental examples. The aforementioned identification technique is based on having
the modal coordinate signals, which are obtained through the first step of the identification method recently proposed by
Ghahari et al. [8]. The said method is based on a time-frequency Blind Source Separation (BSS) method [14, 15], and is
briefly described below.

6.2.1 Time-Frequency Blind Source Separation

Modal summation presented in Eq. (6.8) can be represented in matrix form as follows,

ẍt(t) = Φ q̈t (t) (6.23)

where Φ is the mode shape matrix, and q̈t (t) is a vector of time that contains the absolute acceleration modal coordinates.
Spatial Time Frequency Distribution (STFD) of Eq. (6.23) can be written using any quadratic time-frequency method. The
particular technique adopted here is the Smoothed Pseudo Wigner-Ville Distribution (SPWVD) [16] that yields the following
representation of the recorded signals

Dẍt ẍt (t, f ) = ΦDq̈t q̈t (t, f )ΦH (6.24)

where the superscript H denotes a Hermitian transpose. At each time-frequency point (t, f ), Dẍt ẍt and Dq̈t q̈t are STFD matrices
of response and modal coordinate signals, respectively. The absolute acceleration modal coordinates are disjoint (or quasi-
disjoint) signals in the time-frequency domain; that is, they have distinct time-frequency representation. Time-frequency
points at which only one modal coordinate is present are called auto-source points, and at such points Dq̈t q̈t (t, f ) is a diagonal
matrix that theoretically possesses only one nonzero diagonal element. The following criterion can be used to identify such
points, ∣∣∣∣

λmax [Dẍt ẍt (t, f )]
‖Dẍt ẍt (t, f )‖F

− 1

∣∣∣∣> ε , (6.25)

where ‖ · ‖F denotes the Frobenius norm, λmax[.] represents the largest eigenvalue of its argument matrix, and ε is a small
positive scalar (typically, ε = 0.001). Applying a Joint Approximate Diagonalization (JAD) [17,18] on all Dẍt ẍt matrices that
are calculated at all auto-source points, the mode shape matrix can be estimated. Having identified the mode shape matrix,
the absolute acceleration modal coordinates are easily calculated by simple matrix inversion at each time instant, as in

q̈t(t) = Φ−1 ẍt(t) (6.26)

6.3 Application Examples

6.3.1 Synthetic Simulation

A 10 DOF linear finite element model, shown in Fig. 6.2a, is used for assessing the proposed identification technique’s
performance and accuracy. This model, incidentally, is the same model that was previously used by Papadimitriou et al. [19].
Soil stiffness at both abutments is modeled by rotational and translational springs; however, rotational springs are neglected
here, as their stiffnesses are small in comparison to the bending stiffness of the deck. Values of the system parameters are
kyA = 1.1ky,kyE = 0.9ky where ky = 107 N/m. Bending rigidities of the deck elements are 0.95EI, 1.05EI, 0.9EI, and 0.95EI
for elements AB, BC, CD, and DE, respectively. Mass of the bridge is modeled by five lumped masses positioned at points
A–E with values mA = mE = 8×103 kg, and mB = mC = mD = 16×103 kg. This model is reduced using static condensation
as shown in Fig. 6.2b. Moreover, Rayleigh damping is considered with the damping ratios of the first and the last modes
set at 3 %. In addition to vertical deformation of the bridge under vertical input motions, this model can be also applied to
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Fig. 6.2 Single-span bridge used in this study (a) finite element model [19], and (b) condensed model

transverse motions under horizontal input. Natural frequencies of the system for modes one through five are 4.66, 17.39,
32.24, 38.65, and 45.14 rad/s, respectively. Damping ratios for modes one through five are 3, 1.78, 2.34, 2.66, and 3 %.
Finally, modal contribution factors related to the left and right abutments for modes one through five are (0.985, 1), (0.511,
-0.516), (0.581, 0.814), (0.750, -0.524), and (0.356, 0.176), respectively.

Horizontal accelerogram recorded in El Centro Array #9 during Imperial Valley earthquake, 1940 [20] is used as input
motion for summating dynamic response of the system. This dynamic analysis is carried out using the lsim command in
MATLAB [21] with a 50 Hz sampling frequency (the original accelerogram is digitized at a 100 Hz rate, but it was down-
sampled to reduce the computing time). To consider the wave passage effect, the right abutment is assumed to experience the
input acceleration 1 s after the left abutment. Considering the span length shown in Fig. 6.2a, this phase-delay corresponds
to a wave propagation velocity of 40 m/s. While this velocity is not quite realistic, it is used to demonstrate the phase-delay
effects on identification results. SPWVD of the input accelerations along with absolute acceleration responses of all DOFs
are shown in Fig. 6.3.

Application of the first step of the identification procedure yields the mode shapes and the modal coordinates. Identified
mode shapes are highly accurate, as evidenced by the Modal Assurance Criterion (MAC) values computed between the
identified and the analytical mode shapes, whose values are 0.990, 0.990, 0.997, 0.995, 0.955 for the first to the last mode,

respectively. This index is defined as MACi = (φa
l ·φ i

l )
2/
[∥∥φa

l

∥∥2∥∥φ i
l

∥∥2
]

for the ith mode, where φ i
l and φa

l denote the ith

identified and analytical mode shapes, respectively. Provided that the phase-delay is known, application of the nonlinear
least-squares procedure described earlier yields the natural frequencies, damping ratios, modal contribution factors as
well as the input excitation time history. However, proper bounds and initial values can improve the accuracy of results.
Table 6.1 displays the values set for initial values, lower, and upper bounds of natural frequencies, damping ratios, and
modal contribution factors of all modes. Also, a zeromean random signal with limited amplitude in [−1,1] is considered as
the initial estimation of the unknown input motion. In the second column of this table, the numbers in parentheses indicate
the mode number.

The dynamic parameters identified through the nonlinear least-squares procedure using a trust-region reflective algorithm
[22] are presented in Table 6.2. These values are obtained using 50 iterations, after which significant changes are not observed
in ‖G(z)‖2

2 as shown in Fig. 6.4. Note that the phase-delay is assumed as a known parameter in this example. As seen, while
identified values are acceptably accurate; the identified damping ratios are not exact. This is mainly due to errors accrued
during the first step (BSS), because the second step (least-squares) can be shown to produce exact results for exact modal
coordinates. Moreover, due to the scaling ambiguity, it is not possible to exactly recover the input motion with its original
Peak Ground Acceleration (PGA), because input motion depends on the modal coordinates used, which can be varied by
mode shape scaling. Figure 6.5 displays the initial guess, identified, and original input motions. After fixing the scaling
ambiguity, it is clearly observed that the proposed identification method is also able to extract the exact input motion with
very good accuracy.

To see difference between exact response of the system and response calculated by identified parameters, i.e. mode shapes,
natural frequencies, damping ratios, modal contribution factors, and input motions, Fig. 6.6 is presented. As it can be seen,
response signals reconstructed by identified parameters match well with their exact corresponding values; that is, parameters
cannot be identified more accurately as current values can almost exactly reconstruct response signals.

As mentioned earlier, phase-delay can also be identified by repeating the least-squares analyses with different phase-delay
values and by determining the particular value that corresponds to the minimum converged residual norm. Figure 6.7 displays
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Fig. 6.3 Time-frequency representations of (a) input acceleration, (b) DOF 1’s, (c) DOF 2’s, (d) DOF 3’s, (e) DOF 4’s, and (f) DOF 5’s absolute
acceleration
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Table 6.1 Parameters used in
the least-squares analysis

Natural frequency Damping Modal
(rad/s) ratio (%) contribution factor

Lower bound 1 0.1 −1, −1
Initial guess 10(1), 20(2), 30(3), 5 0.5, 0.5

40(4), 50(5)
Upper bound 50 10 1, 1

Table 6.2 Parameters identified
through the least-squares analysis

Natural frequency Damping Modal
Mode no (rad/s) ratio (%) contribution factor

1 4.77 2.09 0.965, 1.000
2 17.09 1.15 0.513, −0.513
3 32.27 1.53 0.571, 0.774
4 38.56 3.22 0.739, −0.522
5 45.66 2.46 0.425, 0.221

Fig. 6.4 Residual norm ‖G(z)‖2
2

vs. iterations

Fig. 6.5 (a) Initial guess,
(b) original, and (c) identified
input motions

the values of the final/converged residual norm for ten different values of phase-delays. To obtain comparable results, all
least-squares parameters—i.e. initial values, lower bounds, and upper bounds—were the same for all these ten cases; and the
residual norm values after 20 iterations were used. As seen, the minimum occurs for the 1-s phase-delay which is identical
to the exact value considered in this example.
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Fig. 6.6 Comparison between
the exact response of the bridge
and the reconstructed response

Fig. 6.7 Variation of final
residual norm versus phase-delay

6.3.2 Experimental Data: The Prototype Viaduct Bridge

In this section, application of the proposed identification technique is shown for a small-scale viaduct bridge. The prototype
bridge is 200 m long with three piers at equal spacing. This structure has been previously tested in other experimental
works with synchronous [23, 24] and asynchronous [25] inputs. The physical tests were performed on a specially designed
multiple support excitation test bed, which comprises of a set of five independent single axis shaking tables, specifically
designed to allow simulation of any type of multiple support excitation (left side of Fig. 6.8). The model bridge can be seen
mounted on the MSE experimental test bed in right side of Fig. 6.8.

This experimental bridge is a 1:50 scale model of the bridge prototype, in which there are four 50 m spans as shown
in Fig. 6.9. More details of this model can be found in [26]. The first three modes of vibration of this model has been
numerically calculated and shown in Fig. 6.10.

To excite the test model, an artificially generated time-history displacement was used, which was response spectrum
compatible in accordance with Eurocode 8 Part 1 (2004). For considering wave passage effects, this input motion is applied
with a 7 ms phase-delay at each pier from 1 to 5. Figure 6.11 displays the time histories of two input motions recorded at left
and right abutments. As seen, there is approximately a 29 ms phase-delay between these two points, which is very close to
4× 7 = 28ms. This phase-delay is chosen based on a surface velocity of 1,000 m/s for firm ground. As there are only three
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Fig. 6.8 Experimental test bed (left), and the model bridge on the test bed (right)

Fig. 6.9 Schematic representation of experimental test bed

Fig. 6.10 The first three analytical mode shapes of the test model

Fig. 6.11 Phase-delay measured by difference between input motions recorded at two abutments
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Fig. 6.12 Time-frequency representation of recorded acceleration response signals at points (a) 1, (b) 2, and (c) 3 on the deck

Fig. 6.13 (a) First and (b) second estimates of the auto-source points

Fig. 6.14 Identified first three mode shapes

sensors to record the response signals, recorded displacement signals are filtered with a low-pass Butterworth filter with a
cut-off frequency of 25 Hz, so that only the first three modes have a contribution. Figure 6.12 displays the time-frequency
representations of the acceleration response signals.

To extract mode shapes and modal coordinates, the separation approach proposed by Ghahari et al. [8] is employed on
the acceleration response signals—i.e., signals recorded at points 1, 2, and 3 on the deck. Figure 6.13a displays the auto-
source points selected using the criterion introduced in Eq. (6.25) with ε = 0.001. In order to increase the accuracy of
the identified mode shapes, it is expedient to limit the auto-source points around the dominant frequencies identified using
extracted modal coordinates. Thus, by repeating the auto-source selection with the same ∈ around ±%1 of each dominant
frequency, new auto-source points are chosen, which are shown in Fig. 6.13b. By employing the JAD technique on STFD
matrices corresponding to these newly chosen auto-source points, mode shapes are identified. Figure 6.14 shows the plan
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Fig. 6.15 Time-frequency representation of extracted modal coordinates of (a) first mode, (b) second mode, and (c) third mode

Fig. 6.16 Variation of final
residual norm versus phase-delay

Table 6.3 Identified parameters
from least-squares analysis

Mode no Natural frequency (Hz) Damping ratio (%)

1 5.62 0.41
2 10.50 0.70
3 16.36 1.35

view of identified mode shapes. In this graph, two ends of the mode shapes are virtually connected to zero, as abutment
response signals were not used for the identification process. As seen, the identified mode shapes are almost symmetric,
which is expected due to the geometry of the structure.

After identifying the mode shapes, modal coordinates are easily extracted through Eq. (6.26). Time-frequency repre-
sentations of the extracted modal coordinates are shown in Fig. 6.15. As seen, a dominant frequency is observed that
depicts the natural frequency of each mode. These are subsequently used as initial estimates of the natural frequencies
for the minimization process, which yields the natural frequencies, damping ratios, modal contribution factors, and the
input motions. Similar to the previous example, the optimization process is repeated several times with a different assumed
value of phase-delay in order to find the delay that yields the minimum value of the residual norm. Figure 6.16 displays the
converged residual norm for 15 different values of phasedelays that range from 0 to 14 ms. As seen, the minimum residual
occurs at 7 ms phase-delay, which is equal to the original value. The natural frequencies and damping ratios corresponding
to this phase-delay are displayed in Table 6.3. The identified natural frequencies are identical to those identified from the
ridges of time-frequency graphs shown Fig. 6.15. For verification of the damping ratios, an input-output MIMO identification
technique must be used, which is omitted here. However, a comparison between the estimated and the exact input motions
is presented, this is—albeit indirect—an evidence of the accuracy of the identified parameters. As it can be seen in Fig. 6.17,
while the identified input motion is not exact, it is very similar to its exact counterpart. Errors observed in this figure are
mainly due the following reasons:
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Fig. 6.17 Comparison between
exact and identified input motions

• The identified mode shapes are not exact as higher modes may have contributions to the response signals; and their better
resolution is limited because only three sensors are used.

• The number of unknown parameters in comparison to the known parameters is high, because only three modes have been
used in the optimization process.

6.4 Conclusions

Due to differences in wave arrival times, soil conditions, and loss of coherency in arriving waves, long-span bridges usually
experience different input excitations at their ground supports. Thus, identification of dynamic characteristics of these types
of structures cannot be accurate if they are not considered as multiple input systems. Although there are numerous Multi-
Input Multi-Output (MIMO) identification techniques, they are not applicable to structures that are interacting with their
surrounding soil media, because signals recorded on foundations are not the actual input motions due to feedback from
the superstructure’s response (dubbed inertial interaction). Recently, a new system identification technique was developed by
Ghahari et al. [8] to overcome this problem, which is based on Blind Source Separation (BSS) techniques. The said technique
works in two steps—viz., (i) time-frequency separation, in which mode shapes and modal coordinates are decomposed
from response signals; and (ii) estimation of natural frequencies and damping ratios, in which cross-relations among modal
coordinates are employed to identify the dynamic properties.

In this study, the second step of the said new BSS technique was extended to treat systems subject to multiple input
motions. To that end, a nonlinear least square technique was used to estimate the system’s dynamic characteristics and
the unknown input motions form extracted modal coordinates. For the sake of simplicity, only wave passage effects with
known phase-delays were studied here, and potential extensions in this regard are left for future studies. Both simulated
and experimental examples were provided, which demonstrated that the new method is capable of accurately identifying the
dynamic characteristics of long-span bridges from recorded response signals without the knowledge of input motions, even
in the presence of wave passage effects stemming from known/unknown phase-delays.
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Chapter 7
Quantification of Parametric Model Uncertainties in Finite Element
Model Updating Problem via Fuzzy Numbers

Yildirim Serhat Erdogan, Mustafa Gul, F. Necati Catbas, and Pelin Gundes Bakir

Abstract Analytical and numerical models that simulate the physical processes inevitably contain errors due to the
mathematical simplifications and the lack of knowledge about the physical parameters that control the actual behavior.
In this sense, parametric identification of civil engineering structures using uncertain numerical models should be subject to
a particular interest in terms of accuracy and reliability of identified models. In this study, model uncertainties are modeled
by fuzzy numbers and quantified using fuzzy model updating approach. In order to find the possible variation range of
the response parameters (e.g. natural frequencies, mode shapes and strains) using uncertain finite element model, successive
updating is employed. A simplified approach is proposed in order to facilitate the time consuming successive model updating
phase. The identified variation range of the response parameters is employed to construct the fuzzy membership functions for
each response parameter. Finally, fuzzy finite element model updating method (FFEMU) is used to obtain the membership
functions of the model parameters. Different sets of model parameters are chosen to represent different models in terms of
accuracy and these parameters are identified in the same way to investigate the model complexity. A two span laboratory grid
structure developed for simulating bridge structures is used to validate and demonstrate the proposed approaches. The results
show that the proposed approaches can efficiently be utilized to quantify the modeling uncertainties for more realizable and
quantitative condition assessment and decision making purposes.

Keywords Finite element model updating • Fuzzy numbers • Model uncertainties • Optimization • Inverse fuzzy
problems

7.1 Introduction

Identification of civil structures using structural health monitoring data has gained considerable attention with the
development of measurement technologies [1–3]. Model based methods such as Finite Element Model Updating (FEMU)
provide calibrated models, which better represent the actual behavior of structures [4, 5]. These models might be used for
different analysis like damage detection, reliability analysis, load rating calculation etc. in order to make reliable decisions
for the remaining life of the structure or retrofitting purposes [6–8]. However, the model and the measurement uncertainties
that directly affect the updating process have still to be considered in order to obtain reliable updated models, which provide
a variation range for model prediction in probabilistic sense. Quantification of these uncertainties is not a straightforward
task, especially when the degree of freedom of the structure is too high since it requires too many model calculations [9,10].
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The main objective of this study is to investigate and then demonstrate a model uncertainty quantification approach first
in the laboratory assuming that the measurement noise is time invariant and also less than certain real life civil engineering
structures since the experiments are conducted in a controlled laboratory environment. The impact of modeling uncertainties
on the response predictions are quantified by Fuzzy Finite Element Model Updating (FFEMU) method. Several measurement
data sets (e.g. strain readings, modal parameters) and updating model parameter sets are generated and used to update the
baseline FEM model of the structure. By this way, uncertainty amount in structural responses are compared for different data
sets in order to quantify the uncertainty effect on model predictions. A benchmark grid structure designed for investigating
structural health monitoring technologies and St-Id strategies at the University of Central Florida is used as the test structure
[11, 12]. A damage case is adopted in which the boundary conditions are turned to be flexible to simulate the damage at
the supports. In order to extract modal parameters for initial and damage cases, Complex Mode Indicator Function (CMIF)
is employed [11, 13]. However, many other methods can be used effectively for experimental modal analysis like subspace
based system identification techniques [14].

FFEMU method together with some proposed constraints which is required for the uniqueness of the inverse solution is
employed to quantify uncertainties in the model. A Gaussian Process model, which is the surrogate for the numerical model
is used to tackle with the computational issues. The results show that appropriate measurement sets should be generated
instead of involving the complete measurement in order to keep the uncertainty at certain levels. This is due to the fact that
the response parameters, which are more affected by the model uncertainties, cause the total uncertainty in the updated model
to increase. Hence, the uncertainty quantification methods should be employed for different measurement sets and compared
with each other to determine the appropriate data sets required for reliable models, particularly when both static and dynamic
data are utilized together.

7.2 Fuzzy Finite Element Model Updating

Fuzzy set theory [15] is one of the efficient ways to quantify parametric uncertainty involved in the input and output
parameters. Fuzzy numbers have been used as a tool in order to investigate the effect of uncertainties in different engineering
input/output systems [16, 17]. A general illustration of fuzzy forward and inverse analysis for an I/O system is given
in Fig. 7.1. In Fig. 7.1, the inputs and the outputs are the fuzzy parameters with different membership functions. Those
membership functions can be chosen depending on the assumed and/or the quantified uncertainty in the parameters with the
help of expert knowledge and the past experiences.

The equations for objective functions and related constraints that have to be strictly applied in order to make inverse
problem to have a unique solution and capture all uncertainty in model responses are given in Eqs. (7.1), (7.2), (7.3), (7.4)
and (7.5).

minf
(
θint

)
= r

(
θint

)T
Wr

(
θint

)
+ r̄

(
θint

)T
Wr̄

(
θint

)
(7.1)

θint =
[
θ,θ

]
(7.2)

r
(
θint)= γ

(
θint

)− γe

γe (7.3)

r̄
(
θint)= γ̄

(
θint

)− γ̄e

γ̄e (7.4)

[
λ int , φ int ,ε int ]= f model (θint) (7.5)

θ
( j+1)
i ≤ θ

( j)
i (7.6)

θ̄
( j+1)
i ≥ θ̄

( j)
i (7.7)

γnum
k

≤ γexp
k

∀ j ∈ [0, 1]k = 1, . . . .nm (7.8)

γ̄num
k ≥ γ̄exp

k ∀ j ∈ [0, 1]k = 1, . . . .nm (7.9)

f infeasible(θ) = f (θ)+H (7.10)
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Fig. 7.1 General structure of the
forward and the inverse fuzzy
problem

where, θint is the interval valued updating parameter vector, W is the weighting matrix, which might be determined intuitively
considering the relative accuracy of the measurements, γ = [λ, φ , ε] is the response vector, f (θ) is the objective function
and f model(θ) is the model function that governs the physical process. In Eq. (7.5), frequency, mode shape and strain
vectors are denoted by λ, ϕ and ε, respectively. The bar above and below the response quantities denotes the upper and
lower quantities. In addition to the objective function provided by Eqs. (7.1), (7.2), (7.3), (7.4) and (7.5), some additional
constraints have to be introduced to preserve the monotonic behavior of the fuzzy set. It should also be noted that the
optimization problem given Eqs. (7.1), (7.2), (7.3), (7.4) and (7.5) has to be solved for some specified numbers of α-level
in order to capture the nonlinear relationship between inputs and outputs. The equations (7.8) and (7.9) can effectively be
satisfied by assigning some penalties to the infeasible regions in the output space domain. In Eq. (7.10), the term H is a
number in which its value is very high compared to the objective function value. By this way, infeasible regions can be
disregarded.

7.3 Gaussian Process Model for FFEMU

Gaussian Process (GP) models are very efficient to develop approximate I/O computer models which require less
computational effort to calculate. Since FFEMU is a computationally expensive method, it is not allow the computer
simulation to be used directly due to time and cost constraints. Hence, surrogate models are efficient solutions to this problem
with the limitation in the number of input parameters. However, [18] states that the GP can effectively be implemented to
problems with 50 input parameters. This number is sufficient in most cases to identify a real life civil engineering structure.

Let x be the vector valued input parameter and the [Y (X1), Y (X2), . . . Y (Xn)] be the outputs based on n observations. In
order to choose appropriate observations for the input parameter x, Central Composite Design (CCD) can be utilized as
second-order design method [19]. If Y(x) denotes a Gaussian Process the mean and the covariance can be expressed by Eqs.
(7.11) and (7.12).

E [Y (x)] = q(x)T β (7.11)

Cov [Y (x), Y (x∗)] = σ2C (x, x∗ |ξ ) (7.12)

Where (x) are trend functions given by [1xT ]T for linear trend and 1 for constant trend; β is the vector of regression
coefficients, x∗ is the untested input, σ2 and C(x, x∗ |ξ) are the variance of overall process and the correlation function,
respectively. The governing parameters of the correlation function, which have to be determined together with β and σ2 to
create the GP model, are represented by ξ . The correlation function and the joint distribution function for Y expending on n
observation are given by Eqs. (7.13) and (7.14).

C (x, x∗) = exp

(
−

m

∑
i=1

ξi (xi − x∗i )
2

)
(7.13)

Y ∼ Nn
(
qT (x)β , σ2R

)
(7.14)
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If we know all the parameters governing the overall Gaussian Process, the mean and the covariance of the output can be
calculated by Eqs. (7.15) and (7.16) instead of solving linear system of equations or eigenvalue problems in which large
system matrices has to be handled.

E [Y (x∗) |Y ] = qT (x∗)β + rT (x∗)R−1 (Y−Fβ ) (7.15)

Cov [Y (x)Y (x∗) |Y ] = σ2 (C (x, x∗)− rT R−1r
)

(7.16)

In Eqs. (7.15) and (7.16), r is the vector of correlations between x and each of the observation points, r∗ is the vector of
correlations between x∗ and each of the observation points. F is a matrix with rows qT (xi). In this study, there is no need
to calculate covariance of the predictions since this information will not be used in the scope of our methodology. In order
to obtain the governing parameters ξ , β and the variance of the process σ2 of GP, maximum likelihood estimation (MLE)
might be employed which is required to solve optimization problem for each response variable only once. More details can
be found in [20].

7.4 Numerical Verification

The benchmark grid structure developed for bridge health monitoring studies is used to investigate the model uncertainties
for different experimental data sets. The grid structure has been designed to enable researchers to explore the use of different
sensor technologies, St-Id and damage detection algorithms under different conditions, which offer promise cases for real life
bridge structures. The girders and the columns of the grid have been constructed using steel sections S3×5.7 and W12×26,
respectively. The 3D cad model and plan view of the structure are given in Fig. 7.2. More details about the grid structure can
be found in [12].

Several static and dynamic tests have been conducted on the grid structure. The natural frequencies, mode shapes and
displacements obtained from different loading cases are involved in FFEMU procedure. The natural frequencies and mode
shapes are obtained by using Complex Mode Indicator Function (CMIF) method [11,13]. In static case, five different loading
conditions are considered. Single loads (671.6 N) are applied to different nodes for each static loading case. The nodes where
the single static loads are applied are as follows: (1) N3-N6-N9-N12 (2) N3-N9 (3) N6-N12 (4) N3-N6 (5) N9-N12. In order
to demonstrate the methodology, a damage case in which two supports located at nodes N7 and N14 are replaced with Duro50
elastomeric pads to simulate flexible boundaries. The experimental and the deterministically updated natural frequencies (the
natural frequencies which correspond to the α-cut level 1) are presented in Table 7.1.

The fuzzy response parameters obtained from updated fuzzy model are investigated for two main cases. In the first case,
different sets of experimental data which contain several numbers of measured dynamic and static responses are considered.
In the second case, different sets of updating parameters are used in fuzzy updating procedure in order to investigate the
effect of uncertainties in structural response parameters (e.g. natural frequencies, static displacements). The flexible boundary
conditions case with elastomeric pads is considered to be the damage case and use to demonstrate the fuzzy updating and
analysis concepts. In the first case, column stiffnesses are chosen as the updating parameters. The data sets used in FFEMU
is given in Table 7.2. Only results for the natural frequencies obtained from updated fuzzy model are presented in this paper.
However, same results can be deducted for both strain and mode shapes.

After employing Fuzzy FEM to the updated model, fuzzy valued response parameters are obtained for each data sets.
Membership functions of four predicted natural frequencies using updated fuzzy model are given in Fig. 7.3. The fourth
and the fifth frequencies are not illustrated in order to make the figure more tractable. As apparent in Fig. 7.3, given
frequencies are capable of illustrating the trend in uncertainty distribution for the increasing frequencies. The uncertainty in
the frequencies is increasing when the amount of data involved in the updating is increased. The deterministic values for the
first natural frequency which correspond to α-level 1 are very close to experimental one when the first six natural frequencies
and first mode shapes (f+1m) are included. The amount of imprecision is also very low for this frequency. This is same for
the f+ 3m together with slight increase in the uncertainty. This means that the effect of modeling uncertainties on the first
natural frequency is low and this frequency can be predicted more accurate using the updated model as expected. However,
the accuracy of predictions decreases and amount of imprecision increases when the strain data is included. This is due to
fact that the uncertainty sources coming from dynamic and static tests are different. In the static tests, there might be some
additional uncertainties due to loading. As opposed to static case, in dynamic tests there are some additional uncertainties
arising from slight nonlinearity in boundaries due to the loss of contact and lack of tension stiffness in supports. In static
tests, these problems are surpassed by adding some additional weights on support. However, first two natural frequencies and
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Table 7.1 Comparison of natural frequencies obtained from updated FEM and experiments

Experimental frequencies (Hz)Mode
number

Initial
FEM (Hz)

Deterministically
updated FEM (Hz) Initial case Damage case

1 21.52 22.65 22.72 14.31
2 26.22 27.60 27.67 18.50
3 32.69 34.10 34.13 26.12
4 40.72 42.57 42.15 32.25
5 62.73 64.54 65.18 37.68
6 66.52 67.99 68.27 47.68
7 93.98 94.02 95.36 61.18
8 96.47 96.70 97.90 65.50

Table 7.2 Data sets involved in the updating procedure

Data set Abbreviation Explanation

1 f +1m First six natural frequencies and first mode shape values
2 f +3m First six natural frequencies and first three mode shape values
3 f + ε (1 loading) First six natural frequencies and strain values from first loading
4 f + ε (3 loading) First six natural frequencies and strain values from the first three

loading
5 ε (3 loading) Only strain values from first three loadings
6 Full data First six natural frequencies, first three mode shape values and

strain values from first three loadings

mode shapes are affected less from these uncertainties and they can be predicted more precisely by means of FEMU through
the first few modal parameters.

The imprecision amounts given in Table 7.4 demonstrate the statements made in the previous paragraph. The imprecision
amount is low and the deterministic values are close to measurements for the data set f+1m. In Table 7.3, it is also apparent
that the imprecision increases dramatically for the first two frequencies with the increase in data due to the uncertainty
coming from other response variables. It should also be mentioned that while total imprecision may be less with fewer data
and more imprecision with more data, models calibrated with more data better represent the overall structural characteristics.

In the second case three sets of updating parameter are used to update the FEM of the benchmark grid structure. The
updating parameter sets are as follows: (1) Axial stiffness of the columns and the moment of inertia of the connections.
The connections are grouped as N2,N3 – N5,N6 – N9,N10 – N12,N13 – N11,N4 (Total 11 parameters) (2) Axial stiffness
of the columns and moment of inertia of the connections at nodes N2,N3,N4,N5,N6,N9,N10,N11,N12,N13. For this set,
the connections are grouped as N2,N3,N4,N5,N6 and N9,N10,N11,N12,N13 (Total 8 parameters) (3) Axial stiffness of the
columns (Total 6 parameters). Full data set is used as the measurement data for all updating parameter set. The fuzzy natural
frequencies obtained from fuzzy models updated using each sets of updating parameters and amount of imprecision are given
in Fig. 7.4 and Table 7.1, respectively.

As apparent in Fig. 7.4 and Table 7.1, the amount of uncertainty is decreased as the number of updating parameters is
increased. In addition, the deterministic values of response parameters which correspond to the α-cut level 1 are close to the
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Fig. 7.3 Updated natural frequencies using different SHM data set for the damage case

Table 7.3 Imprecision in the response for different data sets

Response/data set f +1 mode f +3 mode
f+ strain
(1 loading)

f+ strain
(3 loading)

Strain
(3 loading) Full data

f1 0.0101 0.0754 0.1404 0.2422 0.2449 0.3396
f2 0.0296 0.0471 0.1214 0.3366 0.3724 0.2751
f3 0.0218 0.0289 0.0380 0.0441 0.0388 0.0595
f6 0.0254 0.0513 0.1053 0.0852 0.1032 0.0928
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Fig. 7.4 Updated natural frequencies using different updating parameter set

Table 7.4 Imprecision in the
response for different updating
parameter sets

Response/data set 1. set 2. set 3. set

f1 0.0511 0.1034 0.3396
f2 0.0445 0.0814 0.2751
f3 0.0113 0.0310 0.0595
f6 0.0333 0.0620 0.0928

experimental values. However, more updating parameters bring some disadvantageous beside low uncertainty and accuracy.
The computational complexity increases with higher number of model parameters. In addition, the updated parameters might
not provide physically meaningful predictions for different loading conditions. Hence, number of updating parameters should
be restricted considering the geometric and material properties of the actual structure.

7.5 Conclusion

Results show that the uncertainty in the response variables increases as the number of experimental data used in FFEMU
increases. This can be explained with the fact that the uncertainty in all response variables contributes to total uncertainty
in the updated model. This is analogous to applying a high precision curve-fit to very few data points, say two data points.
As the number of data points increase, it can be obvious that the imprecision will increase, yet the overall characterization
of the entire data set will be better. The imprecision and uncertainty amount in model parameters are observed to increase
especially when strain data is used. This increment arises from the difference between the dynamic and the static test setup
and the global (modal) and local (strain) responses that these measurements represent. The difference in test setups and
responses lead to different uncertainty sources, reducing the reliability of individual parameter predictions. In static tests,
additional weights have been used to prevent the loss of contacts in supports while these weights were removed during
dynamic tests. Additionally, there is no tension stiffness in boundaries, which introduces nonlinearity in the supports of the
test structure. However, similar uncertainties can be expected to exist in real life structures. Hence, special care should be
paid for generating appropriate data sets to develop the updated models with the least uncertainty. This can be achieved
by ignoring some measurements such as dynamic response at boundaries or strain measurements of “virtually unstressed”
members. In addition, low weighting factors can be assigned to the measurements that increase the uncertainty in response
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predictions. Finally, more complicated models, which are not preferable in most cases, might be another solution in some
sense. As demonstrated in the second case, inclusion of more updating parameter lead lower uncertainty amount in the
response. However, inclusion of additional model parameters in updating process might not be feasible in all cases since it is
always possible to obtain physically inconvenient model parameter values. By this way, the degree of freedom of the updated
model is increased which may provide unfeasible response predictions for different loading conditions.
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Chapter 8
Quantifying Maximum Achievable Accuracy of Identified Modal
Parameters from Noise Contaminated Free Vibration Data

Eric M. Hernandez

Abstract This paper derives exact results for the maximum achievable accuracy when estimating modal parameters from
free vibration signals contaminated by Gaussian white noise. These limits are found through the Cramer-Rao lower bound.
The paper compares the exact findings with previous approximate results found in the literature. Comparisons are drawn
with results from stochastic simulations of a Fourier domain approach for estimation of natural frequency and damping in
single degree of freedom system.

Keywords Estimation • Cramer-Rao • Fisher information • Uncertainty quantification • Damping

8.1 Introduction

Identification of modal properties of structures based on their measured response is essential for many applications in
structural dynamics, vibration based structural health monitoring and control. In some cases noise contaminated free
vibration response measurements are available and one wishes to identify modal parameters from these. Free vibration
response of a classically damped multi-degree of freedom linear structural system is given as

z(x, t) = ∑
i
φi(x)yi(t) (8.1)

where

yi(t) = e−ξiωn,it
[(

ẏo,i +ξiωn,iyo,i

ωd,i

)
sinωd,it + yo,i cosωd,it

]
(8.2)

and φi(x) is the modal amplitude of the ith mode at location x. ξi and ωn,i are the modal damping ratio and modal circular

frequency of the ith mode and ωd,i = ωi

√
1−ξ2

i . The main objective of this paper is to obtain an expression for the
maximum achievable accuracy when estimating modal parameters based on analysis of measurement signals given by

s(x, t) = z(x, t)+ν(t) (8.3)

where ν(t) is the measurement noise. This problem has been studied previously, although not with the specific interest in
structural dynamics by Wigren and Nehorai [3]. In their study some assumptions were made, specifically (A1) noise is a zero
mean white Gaussian random process, (A2) the signal is measured until it fades away, (A3) sampling is sufficient (Nyquist
frequency is higher than signal frequency), (A4) low damping in the signal and (A5) low spectral interference. Gersch [1]
also studied a similar problem, however, with emphasis in the case of a system excited by a white noise, and no free vibration
present. In our case, we are studying the complementary problem, namely no excitation, only free vibration. In this paper
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we relax the assumptions imposed in [3] and derive exact expressions for the Cramer-Rao lower bound for modal frequency,
damping ratio and initial conditions.

8.2 Fisher Information

The Fisher information is a metric on the amount of information that an observable random variable X carries about an
unknown parameter θ upon which the probability of X depends. The probability function for X , which is also the likelihood
function for θ, is a function f (X ;θ); it is the probability mass (or probability density) of the random variable X conditional
on the value of θ. The Fisher information matrix is defined as

I(θ) =−E

[
∂ 2 ln f (X ,θ)

∂θ2

]
(8.4)

It can be shown [2] that the Fisher information matrix of a noise corrupted scalar signal s(t) dependent on multiple parameters
θi is given by

I(θ) =
1
σ2

N−1

∑
n=0

∂ s(n;θ)
∂θi

∂ s(n;θ)
∂θ j

(8.5)

where σ2 is the variance of the additive zero mean noise.

8.3 Cramer-Rao Lower Bound

If f (X ;θ) satisfies the regularity condition

E

[
∂ ln( f (X ;θ))

∂θ

]
= 0 ∀θ (8.6)

where the expectation is taken with respect to f (X ;θ), then the variance of any unbiased estimator θ̂ must satisfy

Var(θ̂)≥CRLB =
1

I(θ)
(8.7)

This lower limit is known as the Cramer-Rao lower bound (CRLB). For the case of multiple parameters, the Fisher
information becomes a matrix and the CRLB is given by

CRLB = I(θ)−1 (8.8)

8.4 Cramer-Rao Lower Bound for a SDoF

For the special case of Eq. 8.3

s(t) = e−ξωnt
[(

ẋo +ξωnxo

ωd

)
sinωdt + xo cosωdt

]
+ν(t) (8.9)

the exact expression for the derivatives necessary to compute Eq. 8.5 are given by

∂ s
∂ω

= e−ξωnt [−ξt

(
ẋo +ξωnxo

ωd

)
sinωdt + t

(
ẋo +ξωnxo

ωd

)√
1−ξ2 cosωdt − ẋo

ωnωd
sinωdt

−xoξt cosωdt − xot
√

1−ξ2 sinωdt] (8.10)
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∂ s
∂ξ

= e−ξωnt [−ωnt

(
ẋo +ξωnxo

ωd

)
sinωdt +

(
ξ

(
ẋo

ωn
+ξxo

)(
1−ξ2)− 3

2 +
xo√

1−ξ2

)
sinωdt

−
(

ẋo +ξωnxo

ωd

)(
ωnξt√
1−ξ2

)
cosωdt − xoωnt cosωdt + xo

(
ωnξt√
1−ξ2

)
sinωdt] (8.11)

∂ s
∂ ẋo

=
e−ξωnt

ωd
sinωdt (8.12)

∂ s
∂xo

=
ξ√

1−ξ2
e−ξωnt sinωdt + e−ξωnt cosωdt (8.13)

to the best knowledge of the author this is the first time these expressions are derived explicitly in the literature. In [3],
it was shown that given some limiting simplifying assumption, namely, (A1) noise is a zero mean white gaussian random
process, (A2) the signal is measured until it fades away, (A3) sampling is sufficient (Nyquist frequency is higher than
signal frequency), (A4) damping in the signal tends to zero and (A5) low spectral interference, the CRLB of the parameters
[α,β,ω,φ] of a signal described by

y(t) = αe−βt sin(ωt +φ) (8.14)

can be compactly expressed

CRLB = σ2

⎡
⎢⎢⎢⎢⎣

8β 8β2

α 0 0
8β2

α
16β3

α2 0 0

0 0 16β3

α2 − 8β2

α2

0 0 − 8β2

α2
8β
α2

⎤
⎥⎥⎥⎥⎦

(8.15)

with

α =

√
y2

o +

(
ξωnyo + ẏo

ωd

)2

(8.16)

β = ξωn (8.17)

φ = arctan

(
yoωd

ξωnyo + ẏo

)
(8.18)

the extent to which the exact expressions derived by the author and the limiting simplified expressions derived in [3] differ
will be illustrated in the numerical section of the paper.

8.5 Fourier Domain Identification

In this section we derive Fourier domain expressions to estimate the frequency and damping of SDOF. The Fourier transform
of the free vibration response of a single mode in Eq. 8.2 is given by

Y (ω) = F(y(t)) =
∫ ∞

−∞
y(t)e−iωt dt = a

ωd

s2 +ω2
d

+ b
s

s2 +ω2
d

(8.19)

where

a =
ẏo +ξωnyo

ωd
(8.20)

b = yo (8.21)

s = ξωn + iω (8.22)



78 E.M. Hernandez

Then

Y (ω) =
aωd + b(ξωn + iω)

(ξωn + iω)2 +ω2
d

(8.23)

and

|Y (ω)|2 = (aωd + bξωn)
2 +(bω)2

(ω2
n −ω2)2 +(2ξωωn)2 (8.24)

To determine abscissa (which we denote ω∗) corresponding to the maximum value of Eq. 8.24 we solve the following
equation

∂ |Y (ω)|2
∂ω

= 0 (8.25)

which after some algebra results in the real and positive solution to the following fourth order polynomial equation:

− 2b2ω4 − 4βω2+(2b2ω4
n −βα) = 0 (8.26)

where

β= (aωd + bξωn)
2 (8.27)

α= 8(ξωn)
2 − 4ω2

n (8.28)

For the special (and very useful) case of y(0) = 0 and ẏ(0) = vo the solution of Eq. (8.26) is given by

ω∗ =ωn

√
1− 2ξ2 (8.29)

By examining the ratio

r =
|Y (ω∗)|2
|Y (0)|2 =

1
4ξ2 (8.30)

one can express the damping ratio ξ without prior knowledge of the undamped frequency as

ξ̂=
1

2
√

r
(8.31)

Substituting this result into Eq. 8.29 one can estimate the undamped frequency as

ω̂n =
ω∗√
1− ξ̂2

=
2ω∗√

4r−1
r

(8.32)

Note that are independent of the magnitude of the initial velocity.

8.6 Numerical Illustration

In this section we proceed to illustrate the theoretically exact CRLB for frequency and damping and compare it with results
from stochastic simulations on a SDoF subject to a unit initial velocity given noise contaminated measurements. The noise is
Gaussian with zero mean and standard deviation σ = 0.01. Figure 8.1 illustrates the CRLB induced coefficient of variation
versus the coefficient of variation obtained from implementation of Eqs. 8.31 and 8.32 in the context of stochastic simulations.
Every point in the figure represents 1,000 stochastic simulations (this number was found to be satisfactory and convergent in
the mean and variance). The time step used for the simulations was Δt = 0.01 s and the total simulation time t = 10 s.
Figure 8.2 illustrates, for a range of natural frequencies and damping ratios, the ratio between the CRLB induced coefficient of
variation for natural frequency and damping ratio. As can be seen it is clearly verified that the damping ratios are significantly
more difficult to estimate than natural frequencies for all values examined. Also it is interesting to note that the ratio is
practically independent of frequency.
To conclude, consider Fig. 8.3 which illustrates the difference between the approximation provided in [3] and the exact
results derived in this paper for the natural circular frequency. As can be seen the difference is not negligible.
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right corresponds to the marginal at a natural frequency of 1 Hz

10−3

10−2

10−1

100

0 5 10 15 20 25 30 35 40
fn(Hz)

ξ=0.01

ξ=0.10

ξ=0.40

CoVx

CoVw

Fig. 8.2 Ratio of CRLB induced
coefficient of variation as a
function of fundamental
frequency and damping ratio

0 5 10 15 20 25 30 35 40
10−8

10−6

10−4

10−2

100

102

104

fn(Hz)

CRLB
ωn

Asymp. Approx. (eq.15)
Exact (eq.10)

Fig. 8.3 Comparison of exact
and approximate CRLB for the
natural circular frequency.
Results are shown for a damping
ratio of 0.01

8.7 Conclusions

The paper derives exact expressions for the Cramer-Rao lower bound for natural frequency, damping ratio, and initial
conditions of a single degree of freedom system subject to initial conditions. To the best knowledge of the author, this
is the first time these results are explicitly presented in the literature. It was shown that, similarly to the case of random
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vibrations [1], noise contaminated signals contain significantly less information about damping in comparison to the
information contained about natural frequency. This was quantified by comparing the respective coefficients of variation
induced by the CRLB.
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Chapter 9
Using P-Box and PiFE to Express Uncertainty in Model Updating

Ramin Madarshahian, Juan M. Caicedo, and Boris A. Zárate

Abstract This paper proposes the use of probability bounds with the Pseudo-inverse Finite Element (PiFE) method for
structural model updating. The technique estimates the probability bound of structural parameters based on dynamic or static
features such as modal parameters or static displacements. Two methods are explored for the calculation of the probability
bounds: (i) Naı̈ve method and (ii) all possible combinations. The capabilities of the technique are explored using a two degree
of freedom structural system where the stiffness is considered uncertain. Results indicate that both the Naı̈ve and all possible
combination techniques are applicable with PiFE and produce bounds that include the cumulative distribution function of
the structural parameters. The probability bounds found with the all possible combinations method was narrower for this
particular example.

Keywords Uncertainty • Model updating • Interval method • P-box • PiFE

9.1 Introduction

Mathematical models of structural systems such as finite elements are frequency used to predict the structure’s behavior.
Updating of these models based on experimental data is important when the structural system being modeled is already
existing and some of the characteristics of the system are unknown [1–3]. Dynamic tests are an attractive alternative as a
source of data for model updating because these tests can be performed without the need to close the structure [4,5]. The data
obtained from these tests provides modal information of a structure [6–8] that can be then used to improve the characteristics
of a numerical model. There are different model updating approaches available on the literature depending on the type of data
available and the type of structural model [9–13]. Some of these techniques recognize that the need to include uncertainty on
their approach by using probability methods [14, 15]. For example, Beck and Katafygiotis [16] and Katafygiotis and Beck
[17] proposed a Bayesian framework for model updating that has been used and extended by many other researchers. These
methods seek to describe a particular structural parameter (or model) in terms of a probability distribution [18]. However, one
can argue that even defining the type of probability density function is difficult in many cases. Many applications assume a
distribution because that is the best that can be done based on the information available. An alternative to express uncertainty
is to define boundaries (or interval) of input data regardless of knowing the type of distribution [19, 20]. This open the
possibility for experienced analyst to consider an interval that expresses uncertainty without the need to define a distribution.
For example, when measuring the length of an object with a meter stick marked off in millimeters, a person can define an
interval between 9.99 and 10.1 cm even if that person does not have enough information or experience to make a judgment
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about the probability distribution of the numbers in this interval. All in all considering a variable as an interval is good
alternative, when we have lack of information about the data distribution of particular parameter.

This paper presents the expansion of the Pseudo-inverse Finite Element (PiFE) to identify stiffness characteristics using
intervals. The method does not assume any distribution for the structural parameters nor the features characterizing the
structure (i.e. natural frequencies and mode shapes). Rather an interval for them is assumed. The method generates a
probability box (P-box) bounding the cumulative distribution function of the structural parameters [21]. The methodology is
tested using a 2 DOF numerical model. A probability density function is defined for the stiffness of the structure to generate
natural frequencies and mode shapes used as input data for the proposed technique. The distribution of the parameters is
considered unknown in the updating process and it is only used for comparison with the resulting P-box.

9.2 Pseudo-inverse Finite Element (PiFE)

PiFE is an inverse method to identify parameters of structural systems (e.g. mass density, moment of inertia, etc.) based
on static or modal data. The method is called PiFE because it is applied in a similar way to the finite element method.
The following paragraphs describe the general idea of the method and the derivation for a 2 DOF system using a set of
identified natural frequencies and mode shapes. Modal data can be found using one of the many available modal identification
techniques such as the Stochastic Subspace Identification [22] or the Eigensystem Realization Algorithm [6, 23, 24]. More
information about how to expand PiFE to complex structures can be found in [25–27]. The eigenvalue problem for a system
with no damping is [28]. (

K −Mω2
i

)
φi = 0 (9.1)

where K, and M are stiffness and mass matrix respectively, and ωi, and φi are i-th natural frequency and mode shape of the
structure respectively found experimentally. Equation (9.1) can be rewritten such that all unknown parameters are located in
new defined vector Θ and then other known parameters are gathered in a matrix Δi, called identification matrix.

Γi = ΔiΘ (9.2)

where the matrix Γi is a vector with the same numbers of rows as degrees of freedom (DOF) calculated as Γi = Mωiφi.
This formulation is attractive because the identification matrix Δi in Eq. (9.2) because can be written for each element of the
structure, rotated from local to global coordinates, assembled to a global identification matrix for the whole structure in a
similar fashion as the application of the finite element method. Furthermore, it is possible to extend Eq. (9.2) to contain all n
available modes obtained experimentally:

Γ = ΔΘ (9.3)

where Γ = [ΓT
1 , . . . ,Γ

T
n ]

T , Δ = [ΔT
1 , . . . ,Δ

T
n ], and the superscript “T” represents transpose. The n available modes do not need

to be in order. For example, if PiFE was applied to a 4 DOF structure, it is possible to apply the technique with only the
second and fourth modes of a particular structure (i.e. there is no requirement to experimentally identify the first and third
mode). The vector Θ can be obtained after Γ is multiplied by pseudo-inverse of identification matrix Δ.

Θ = Δ†Γ (9.4)

where the superscript † denotes pseudo-inverse.

9.3 Interval Arithmetic and Associated Challenges

PiFE has been previously applied in a deterministic fashion where a set of identified natural frequencies and mode shapes
are used to estimate a set of structural parameters. However, performing a deterministic identification does not provide any
information about the related uncertainty on the identified parameters. One way common method to express uncertainty is
to probability distributions. Another possibility is to express the structural parameters by an interval which tells us about

its bounds. For instance
↔
X is a quantity between its lower bound

↼
x and upper bound

⇀
x which are real numbers and can be

represented by
↔
x . In a similar fashion that we deal with numbers we can define operators for intervals. For instance

↔
x × ↔

y

can be obtained by considering the maximum and minimum of
↼
x ×⇀

y ,
↼
x ×⇀

y ,
⇀
x ×↼

y and
⇀
x ×⇀

y . Also for more complicated
operators like inverse of a matrix which its arrays are interval several algorithm are proposed [29–31].



9 Using P-Box and PiFE to Express Uncertainty in Model Updating 83

Ignoring the dependency of variables of a particular function could result in overestimating the interval of the resulting

function. For example, consider the variables
↔
x= [1,5] and

↔
y= [1,5] and the function f (

↔
x ,

↔
y ) =

↔
x − ↔

y . If x and y are

independent and f (
↔
x ,

↔
y ) =

↔
x −↔

y= [−4,4]. However, if they are completely correlated such that
↔
x=

↔
y , the resulting interval

should be f (
↔
x ,

↔
y ) = f (

↔
x ,

↔
x ) =

↔
x − ↔

x= [0,0]. Although the resulting interval considering the two variables independent
still bounds the values of the correlated variables the interval could be so wide that it is not useful anymore. These interval
obtained by ignoring the dependency between the variables is called the naı̈ve solution. One approach to improve the results
is to simplify function before calculating the interval. Following the example described above this corresponds to simplifying
the function f (

↔
x ,

↔
x ) = 0. An alternative to the naı̈ve solution is to consider all possible combinations of our interval bounds

in our solution using real numbers arithmetic instead of interval arithmetic. It should be noted there are associated challenges
with this technique. For example, intervals in dominators should not change sign. In addition, this is only applicable to
monotonic functions. The application of intervals presented here all intervals are selected such that they do not change sign,
i.e. there is no zero in them, and all relationships between variables are constructed using four common arithmetic operators
and are monotonic. PiFE provide us suitable framework to apply interval arithmetic.

9.4 Validation Example

The 2 DOF structure shown in Fig. 9.1 is used to explore the capabilities of the proposed technique. The stiffness of the
two floors are considered the unknown parameters to be estimated using PiFE. Modal parameters (natural frequencies
and mode shapes) are required to implement PiFE. In an experimental setting these parameters are obtained by applying
modal identification techniques to acceleration records. The identification of the parameters to a series of acceleration
records would result in samples for the natural frequencies and mode shapes. In this particular example the samples are
obtained by assuming a probability distribution function (PDF) for the k1 and k2, sample for values of k1 and k2 and solving
the eigenvalue problem. The validation of the technique is performed by comparing the P-box from PiFE with the initial
probability distribution.

9.4.1 Modal Parameter Intervals

One could make an assumption for the probability of the bounds to implement the proposed technique. However, we decided
not to make this assumption and sample an assumed PDF for the spring constants to obtain samples for the bounds. The PDF
of the stiffness of the springs is considered as a normal distribution based on reported variability of materials due to process
of fabrication [32]. The parameters of the PDF are μk1 = 3 N

m , μk2 = 2 N
m and standard of deviation of 1% of mean value as

shown in Fig. 9.2.
The samples for the bounds are calculated using a two step approach. First, 100 samples of the stiffness constants are

considered to calculate 100 set of modal parameters and estimate one set of intervals. The modal parameters of the structure
might not follow a normal distribution because the function that relates the spring constants to modal data is not linear
(i.e. eigenvalue problem). However, assuming a unimodal distribution (i.e. a distribution with only one peak) is reasonable.

Fig. 9.1 Two DOF model and its
modal information
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Therefore, 90 % of the probable values will be located between −3σ to +3σ from the mean (where σ is the standard
deviation) based on the Vysochanskiı̈–Petunin inequality [33]. The process is repeated for a total of 1,000 set of intervals.

Figures 9.3, 9.4 and 9.5 show the histograms of the intervals for the obtained natural frequencies and modal coordinates for
each mass normalized mode. The X-axis of each figure represents the same range of values for easy comparison. The obtained
intervals are different for each natural frequency. Furthermore, they are different for different modal coordinates (even for
the same mode). One possible explanation for this behavior is the nonlinear relationship between the modal parameters,
stiffness and mass. The data described on these three figures is used as the input parameters for PiFE as discussed in the
following section. Similar plots could be found experimentally by analyzing different acceleration records and performing
modal analysis.

9.4.2 Application of PiFE and Naı̈ve Method

Solving Eq. (9.4) analytically for the 2 DOF model results in

{
k1 =C11 ×m1 +C12 ×m2

k2 =C21 ×m1 +C22 ×m2
(9.5)
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where C11,C12,C21, and C22 are functions of the modal coordinates and natural frequencies. These functions should be
analytically simplified to apply the naı̈ve method resulting in

C11 =

(
φ11ω2

1 (φ11 −φ21)+φ12ω2
2 (φ12 −φ22)

)(
φ2

21 +φ2
22

)

φ2
11

(
φ2

21 + 2φ2
22

)− 2φ12φ3
22 +φ4

21 +φ4
22 −φ11

(
2φ3

21 + 4φ21φ2
22

)
+φ2

12φ2
22 + 2φ2

21φ2
22

(9.6a)

C12 =
−φ21φ22

(
ω2

1 −ω2
2

)
(φ11φ22 +φ12φ21 − 2φ21φ22)

φ2
11φ2

21 + 2φ2
11φ2

22 − 2φ11φ3
21 − 4φ11φ21φ2

22 +φ2
12φ2

22 − 2φ12φ3
22 +φ4

21 + 2φ2
21φ2

22 +φ4
22

(9.6b)

C21 =

(
φ11ω2

1 (φ11 −φ21)+φ12ω2
2 (φ12 −φ22)

)(−φ2
21 +φ11φ21 −φ2

22 +φ12φ22
)

φ2
11

(
φ2

21 + 2φ2
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)− 2φ12φ3
22 +φ4

21 +φ4
22 −φ11

(
2φ3

21 + 4φ21φ2
22

)
+φ2

12φ2
22 + 2φ2

21φ2
22

(9.6c)

C22 =
ω2

1 φ2
21 + 2ω2

2 φ2
22

φ2
21 + 2φ2

22

− φ21φ22 (φ12φ22)
(
ω2

1 ω2
2

)(−φ3
21φ11φ2

21φ21φ2
22φ12φ21φ22φ11φ2

22

)
(
φ2

21φ2
22

)(
φ2

11

(
φ2

21 + 2φ2
22

)− 2φ12φ3
22 +φ4

21 +φ4
22 −φ11

(
2φ3

21 + 4φ21φ2
22

)
+φ2

12φ2
22 + 2φ2

21φ2
22

) . (9.6d)
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Fig. 9.6 P-box for spring
constants using the naı̈ve method

As it is clear from Eqs. (9.5) and (9.6a) even for a 2 DOF system the relationship between modal data and spring constants
is not simple. A P-box is calculated using Eq. (9.5) with the modal data presented in Figs. 9.3, 9.4 and 9.5. Each upper and
lower bound for the modal coordinates will result in a distribution for the upper and lower bounds of the spring constants.
Figure 9.6 shows the resulting P-box where the dashed lines represent the lower and upper bounds of probabilities for the
spring constants. The solid line indicates the original CDF. As expected, this CDF is bounded by the P-box. Notice that there
is no need to assume a distribution for the parameters being identified in the pcess of estimating the P-box. Furthermore, the
P-box does not indicate a specific probability distribution but rather an area that contains the CDF.

9.4.3 Application of PiFE and All Possible Combination Method

This method explores all the possible combinations of the bounds of the input parameters (i.e. modal parameters) to determine
the bounds of the unknowns (i.e. spring constants). For example, in the case of the 2 DOF problem there are two natural
frequencies and four modal coordinates. Therefore, there are six lower bounds and six upper bounds for a total of n =

6
∑

i=0

(
6
i

)
=

6
∑

i=0

6!
(6−i)!i! = 64 possible combinations for each sample set. Each of these n combinations are introduced to Eq.

(9.5) and using algebraic arithmetic (not interval arithmetic) n values of the parameters are obtained. The maximum and
minimum values are selected as upper bound and lower bound of the unknown parameters. This process is repeated for each
set of intervals considered. This method is only applicable to monotonic functions within the interval because non-monotonic
functions could result in a higher or lower value with a value of the parameter inside the bounds.

Figure 9.7 shows the resulting P-box (dashed line) and the original CDF (solid line) for each spring constant. The P-box
contains the original CDF indicating that all possible combinations method was effective in estimating the bounds of the
CDF.

9.5 Conclusions

This paper presents the implementation of two interval methods to the Pseudo-inverse Finite Element method (PiFE).
The proposed technique estimates the bounds of the cumulative distribution function of the unknown structural parameters
without the need of assuming any distribution. The method provides a region that contains the CDF of the structural
parameters. The Naı̈ve method uses the interval arithmetic to find the unknown parameters while all possible combinations
applies algebraic arithmetic. The methods were tested with a 2 DOF structure where the stiffness was considered uncertain.
Figures 9.6 and 9.7 shows the results for each method. As illustrated, the techniques estimated a probability box (P-box) that
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contained the underlain CDF of these parameters. The all possible combinations method provided a narrower P-box than the
Naı̈ve approach. A possible explanation for this is that the Naı̈ve approach does not consider the dependency between values.
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22. Zárate BA, Caicedo JM (2008) Finite element model updating: multiple alternatives. Eng Struct 30(12):3724–3730
23. Li P, Hu SLJ, Li HJ (2011) Noise issues of modal identification using eigensystem realization algorithm. Procedia Eng 14(0):1681–1689
24. Siringoringo DM, Fujino Y (2008), System identification of suspension bridge from ambient vibration response. Eng Struct 30(2):462–477
25. Madarshahian R et al (2012) Direct inverse finite element model updating. In: 2012 joint conference of the engineering mechanics institute

and the 11th ASCE joint specialty conference on probabilistic mechanics and structural reliability, Notre Dame
26. Caicedo JM (2003) Structural health monitoring of flexible civil structures. In: Civil engineering. Washington University in Saint Louis, Saint

Louis, p 160
27. Caicedo JM, Dyke SJ (2002) Determination of member stiffnesses for structural health monitoring. In: 3rd world conference in structural

control, Como
28. Chopra AK (2012) Dynamics of structures: theory and applications to earthquake engineering, 4th edn. Prentice Hall, Upper Saddle River,

p 944. xxxiii
29. Chen S-H, Yang X-W (2000) Interval finite element method for beam structures. Finite Elem Anal Des 34(1):75–88
30. Muhanna R, Zhang H, Mullen R (2007) Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics.

Reliab Comput 13(2):173–194
31. Zhang H, Muhanna RL (2009) Interval approach for nondeterministic linear static finite element method in continuum mechanics problems.

Int J Reliab Saf 3(1):201–217
32. Hess PE et al (2002) Uncertainties in material and geometric strength and load variables. Nav Eng J 114(2):139–166
33. Pukelsheim F (1994) The three sigma rule. Am Stat 48(2):88–91



Chapter 10
Robust Model Calibration with Load Uncertainties

D. Pereiro, S. Cogan, E. Sadoulet-Reboul, and F. Martinez

Abstract The goal of this work is to propose a model calibration strategy for an industrial problem consisting in a MW class
geared wind turbine power train subjected to uncertain loads. Lack of knowledge is commonplace in this kind of engineering
system and a realistic model calibration cannot be performed without taking into account this type of uncertainty. The
question at stake in this study is how to perform a robust predictive model of a dynamic system given that the excitations
are poorly known. The uncertainty in the latter will be represented with an info-gap model. The tradeoff between fidelity to
data and robustness to uncertainty is then investigated in order to maximize the robustness of the prediction error at a given
horizon of uncertainty. This methodology is illustrated on a simple academic model and on a more complex engineering
system representing a wind turbine geared power train.

Keywords Robust calibration • Model updating • Load uncertainty • Model fidelity • Transient analysis • Wind turbine

10.1 Introduction

Validating structural dynamic numerical models is a common engineering task. Confidence in simulation results is critical
for product development and risk management, and the preferred framework to quantify this confidence is model verification
and validation (V&V) [1]. The confrontation between numerical simulations and experimental observations often indicates
that the model is unsatisfactory and four different paradigms have been developed over the years to improve fidelity to data
based on model calibration strategies, namely:

1. Reference basis methods
A class of nonparametric identification methods that solve a constrained optimization problem to obtain perturbations of
the stiffness and mass matrices for the nominal finite element model based on a set of measured eigensolutions. Fidelity
to data is optimized [2–4].

2. Local deterministic methods
A class of parametric identification methods that solve a nonlinear constrained optimization problem to obtain
deterministic estimates of local stiffness and mass properties based on a set of measured eigensolutions, frequency
response functions, or time domain responses. Fidelity to data is optimized over the feasible design space [5–7].

3. Local stochastic methods
A class of parametric identification methods that solve a nonlinear constrained optimization problem to obtain statistical
estimates of local stiffness and mass properties based on a set of measured eigensolutions, frequency response functions,
or time domain responses. Here again, fidelity to data is optimized over the feasible design space [8, 9].
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4. Local robust methods
A class of parametric identification methods that solve a nonlinear constrained optimization problem to obtain either
deterministic or statistical estimates of local stiffness and mass properties based on a set of measured eigensolutions,
frequency response functions, or time domain responses. A robust satisficing approach is adopted to find an adequate
compromise between fidelity to data and robustness of to lack of knowledge in the system and its environment [10].

The first three paradigms have been studied extensively on both academic and industrial examples. As different as these
approaches are, they share the same fundamental hypothesis, namely that the best solution to the calibration problem is the
one that minimizes the defined test-analysis metric. While this assumption is commonplace, it fails to recognize that most
real world problems are plagued by various sources of lack of knowledge due to poorly understood physics. The fourth
paradigm has received relatively little attention by the structural dynamics community. It attempts to bring the impact of
lack of knowledge into the picture by analyzing the three fundamental components inherent in model-based prediction,
namely:

1. Fidelity to data
Quantifies the test-analysis distances based on either deterministic or stochastic metrics.

2. Robustness to lack of knowledge
Quantifies the impact of gaps in knowledge on the model prediction error.

3. Predictive looseness
Quantifies the confidence that can be accorded to the calibrated model given the range of model responses which are
consistent with the lack of knowledge.

The inherent antagonistic nature of these components leads to fundamental tradeoffs that forms the basis of the new model
calibration paradigm.

The present work is based on the concepts presented in [10] and serves to illustrate the relevance of robust parameter
calibration under load uncertainties. The focus in this paper will be on the tradeoff between fidelity to data and robustness
and the strategy is applied first on a single degree of freedom (SDOF) damped spring mass system under uncertain excitation.
Secondly, a simple but realistic wind turbine power train model is calibrated with respect to the measured transient response.
Wind turbine power trains are a suitable example to illustrate both the problem faced and the approach. The problem because
in the wind energy booming market the pressure on releasing newer, more powerful and more reliable machines is very high,
and the design requirements of a 20 year and over 90 % availability [11] must be assessed. A wind turbine is also a type of
machine which has to operate in a wide range of load conditions that are difficult, expensive or even impossible to measure in
detail. This type of device is suitable to illustrate the approach because in the authors opinion the robust parameter calibration
strategy presented here can be a step forward on the process of assessing models prediction credibility.

10.2 Robust Parameter Calibration

A numerical model can be denoted by:
y =M(q) (10.1)

The model M defines a relationship between y, the response feature of interest and q, model input parameters or decision
variables. The impact of lack of knowledge on model responses will be studied using info-gap models of uncertainty [12].
The uncertain variable is denoted by u, and the info gap model of uncertainty is defined as U(u0;α), hence:

y =M(q;u) , u ∈U (u0;α) (10.2)

where the parameter α is known as the horizon of uncertainty, while u0 is the nominal value of the uncertain variable. The
objective here is to study the robustness of the model fidelity to experimental data given uncertainty loads. The discrepancy
between reference and simulation data can be assessed with a metric D(q;u) defined as the norm of the difference between
the test data yTest with the results obtained from the model y:

D(q;u) =
∥∥yTest − y

∥∥
2 (10.3)
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where yTest ; y will be assumed here to be real vectors. Furthermore, let Dc denote the greatest level of discrepancy that can
be tolerated:

D(q;u)≤ Dc (10.4)

The robustness of the discrepancy with respect to uncertainty can now be formally defined as:

α̂ = Argmax
α≥0

max
U(u;α)

{D(q;u)/D(q;u)≤ Dc} (10.5)

The robustness function assesses the immunity of the discrepancy to uncertainty in u. Large α̂ means that discrepancy is
relatively insensitive to variations in the uncertain quantities u, while small α̂ means that small variations in the uncertain
quantities lead to large discrepancy.

Robust parameter calibration searches for a model design q which maximizes the robustness of the discrepancy for a given
horizon of uncertainty:

α̂(Dc,q) = max

(
α :

{(
max

u∈U(α)
D(q;u)

)
≤ Dc

})
(10.6)

According to Eq. 10.6 the robust calibrated parameter can be defined as:

q̂(Dc) = argmax
q

(α̂(Dc,q)) (10.7)

10.3 Application

10.3.1 SDOF System

The robust parameter calibration strategy is first illustrated on a single degree of freedom dumped spring mass system, where
the transient force applied is set to be uncertain.

System model The SDOF spring damper system under load can be described by the equation:

M · ẍ(t)+R · ẋ(t)+K · x(t) = F(t) (10.8)

The system and the reference values used in the model are described in Fig. 10.1. The system is assumed to be at rest at
t = 0.

Uncertainty model The load uncertainty is represented by an info-gap envelope bound model [12]. The amplitude of the
force step is allowed to vary by a specified fractional error from the estimated load. The estimated shape is defined as a
rectangular step function over a known time interval:

F̃(t) =

{
F0 t ∈ (0,T )

0 t /∈ (0,T )
;T ≥ 0; t > 0;F0 > 0 (10.9)

The info-gap model of uncertainty can be defined as:

U(α) =

{
F(t) :

∣∣∣∣
F(t)− F̃(t)

S(t)

∣∣∣∣≤ α;

}
,α ≥ 0 (10.10)

The time dependent function S(t) normalizes the load:

S(t) =

{
F0 t ∈ (0,T )

0.2 ·F0 t /∈ (0,T )
;T ≥ 0;t ≥ 0 (10.11)
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Fig. 10.2 (a) Envelope bound uncertainty model. (b) Robustness function

Regarding Eqs. 10.9–10.11, F(t) can be expressed as:

F(t) =

{
(1−α)F0 ≤ F(t)≤ (1+α)F0 t ∈ (0,T )

−0.2αF0 ≤ F(t)≤ 0.2αF0 t /∈ (0,T )
;T ≥ 0;t ≥ 0 (10.12)

The uncertainty model is graphically represented in Fig. 10.2a. The value of F0 is set to 4 N.

Performance requirement The performance requirement is defined as the fractional error of the system maximum response
amplitude at an uncertain load F(t) which is not greater than a specified critical discrepancy Dc:

|ρ(t)|=
∣∣∣∣∣
max

t
(xF(t))−max

t
(xF̃(t))

max
t

(xF̃(t))

∣∣∣∣∣≤ Dc (10.13)

Robustness function The robustness function is defined as:

α̂(Dc) = max

(
α :

{(
max

F∈U(α)
|ρ(t)|

)
≤ Dc

})
(10.14)
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which can be expressed as:

α̂(Dc) = max

(
α :

{
( max

F∈U(α)
|ρ(t)|)≤ Dc

})
= max

⎛
⎝α :

⎧
⎨
⎩

⎛
⎝
∣∣∣∣∣∣

max
t

max
F∈U(α)

(xF(t))−max
t

(xF̃(t))

max
t

(xF̃(t))

∣∣∣∣∣∣

⎞
⎠≤ Dc

⎫
⎬
⎭

⎞
⎠ (10.15)

Using the convolution integral ρ(t) [13] can be written as follows:

ρ(t) =
max

t

(∫ τ=T
τ=0 F0h(t − τ)dτ +α

∫ τ=T
τ=0 F0h(t − τ)dτ + 0.2α

∫ τ=t
τ=T F0h(t − τ)dτ

)

max
t

(∫ τ=T
τ=0 F0h(t − τ)dτ

) − 1 (10.16)

Since the objective is to maximize ρ(t), this implies calculating both the maximum and minimum of xF(t)) as a function
of t and α . Formally:

max
F∈U(α)

F(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1+α) ·F0 t ∈ (0,T )

0.2αF0 t /∈ (0,T )

(1−α) ·F0 t ∈ (0,T )

−0.2αF0 t /∈ (0,T )

i f h(t − τ)≥ 0

i f h(t − τ)< 0
(10.17)

Maximizing Eq. 10.16, leads to:

max
F∈U(α)

ρ(t) =
max

t

(∫ τ=T
τ=0 F0h(t − τ)dτ +α

∫ τ=T
τ=0 F0 |h(t − τ)|dτ + 0.2α

∫ τ=t
τ=T F0 |h(t − τ)|dτ

)

max
t

(∫ τ=T
τ=0 F0h(t − τ)dτ

) − 1 (10.18)

The numerator and denominator can be solved analytically. It should be noted that minimizing instead of maximiz-
ing (10.16), only affects on the sign of α . The corresponding robustness function is shown in Fig. 10.2b.

Robust parameter calibration A robust parameter calibration is applied to the present example. Selecting the system
stiffness as the decision variable, we have:

α̂(Dc,K) = max

(
α :

{(
max

F∈U(α)
D(K;F)

)
≤ Dc

})
(10.19)

The result is plotted in Fig. 10.3.
The robust calibrated model guarantees equal or smaller discrepancies than the nominal model at every horizon of

uncertainty.
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10.3.2 Wind Turbine Power Train Model

The robust calibration strategy is now applied to a MW class wind turbine power train model. This case study focuses on a
voltage dip which leads to electromagnetic torque variation. The experimentally measured torque in the elastic coupling is
used to formulate the discrepancy function.

System model For this application, a discrete model is adopted consisting in a one degree of freedom per body rotational
model. The system properties are the inertias of each part of the system, the low speed shaft (LSS) stiffness, the gear teeth
stiffness and the high speed shaft (HSS) elastic coupling stiffness. The gearbox support stiffness is modeled as a non linear
spring. Such a model is widely used to represent this kind of rotating devices [14,15]. As for the pitch, the control is assumed
to be negligible for the studied load case. The generator torque τEM is considered as a quadratic generator speed dependent
torque after the load case is trigered.

In the present case, a 9 dofs discrete model is considered with one degree of freedom per body rotational model
(Fig. 10.4a). The dynamic system to solve can thus be written as:

[I] ·{θ̈
}
+[C] ·{θ̇

}
+[K] · {θ}= {T} (10.20)

Where [I], [C], and [K] are respectively the inertia matrix, the damping matrix and the stiffness matrix. They depend on
inertias, stiffnesses and radii of the various elements of the system. The initial conditions consist in a torque applied to the
rotor and the generator. The generator torque depends on the load case rotational speed of the system. The initial positions
of the different parts of the system lead to the initial rotation vector. The initial rotational speed is set to a specified value.

The mathematical model is implemented in the Dymola software. Dymola (Dynamic Modeling Laboratory) is suitable for
modeling various kinds of physical systems. It supports hierarchical model composition, and acasual connections. Dymola
uses a modeling methodology based on object orientation and equations. The usual need for manual conversion of equations
to a block diagram is removed by the use of automatic formula manipulation. The equations must be expressed in a neutral
form without consideration of the computational order.

Uncertainty model A voltage dip is a generator related phenomena [16] and can be produced by a grid oscillation or even
manually triggered. It is a sudden and short drop in the generator torque τEM usually preceded by a sudden torque peak.
The torque drops nearly to zero during a period of time and then the control is activated again. A voltage dip is manually
triggered in a MW class wind turbine, and the torque in the HSS coupling τEC is measured. The electromagnetic torque in
the generator rotor τEM is difficult to measure, especially for the short duration torque transient that occur when the voltage
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dip is triggered. This short transient will be modeled using an info-gap model as a single 100 Hz sinus cycle of uncertain
amplitude AVD while the aerodynamic torque input τRS is assumed to remain constant at its nominal rate on the rotorside.
The generator torque input is given by:

τEM(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τN
EM t ∈ (0,0.4)

τN
EM · (1− t−0.4

0.01

)
+AVD · e−10·(t−0.4) · sin(2 · pi ·100 · (t − 0.4)) t ∈ (0.4,0.41)

τN
EM ·0.4 · sin(2 · pi ·100 · (t − 0.4)) t ∈ (0.41,0.65)

τN
EM ·

(
ωgen(t)

ωN
gen

)2
t > 0.65

; t > 0 (10.21)

The info-gap model for the uncertain torque transient sinus amplitude:

U(α) =

{
AVD :

∣∣∣∣
AVD − ˜AVD

˜AVD

∣∣∣∣≤ α;

}
,α ≥ 0 (10.22)

A comparison between the estimated generator torque input τ̃est
EM(t) (estimated) and the measured power output recorded

in the converter and divided by the rotational speed of the system τ̃exp
EM(t) (experimental) is shown in Fig. 10.4b.

Performance criteria The performance criteria is defined as the fractional error between the ratio of τN
EC and the maximum

torque values during the voltage dip for both measured and simulated responses in the HSS elastic coupling τEC.

|ρ(t)|=

∣∣∣∣∣∣∣∣

(
max

t
(τEC(t))

τN
EC

)
−
(

max
t
(τ̃EC(t))

τ̃N
EC

)

(
max

t
(τ̃EC(t))

τ̃N
EC

)

∣∣∣∣∣∣∣∣
≤ Dc (10.23)

The torque increase ratio is of a capital importance for the integrity of the gearbox. A large and sudden increase of the
torque in the gearbox generatorside output could lead to gear teeth or bearing failure [17].

Deterministic parameter calibration Before the robustness curve is calculated a deterministic parameter calibration is
conducted. Two model parameters (HSS elastic coupling stiffness KEC and third stage gear teeth contact stiffness K3rd GM

see Fig. 10.4a) are selected as calibration candidates attending to their influence in the torque response. The responses are
calculated for a 30 % parameter variations. The error for each point is calculated using the performance criteria defined in
Eq. 10.23. The result is plotted in Fig. 10.5a where the color scale represents the performance criteria value for each point
of the grid. The parameters which correspond to the better performance (lowest value of |ρ(t)|) are selected as reference
values. As can be seen in Fig. 10.5a, there is a valley defining a set of local minima, hence the deterministic solution is not
uniquely defined. Five sets of parameters – S1, S2, S3, S4 and S5 – corresponding to the region of minimums will be selected
and analyzed.

Robustness function A robustness analysis is conducted for both the baseline model (before calibration) and the
deterministic calibrated models, and a robustness curve is plotted for each selected point in Fig. 10.5a. The results are shown
in Fig. 10.5b, where the blue curve corresponds to the original model α̂Nom and the red curves corresponds to each of the
sets of parameters selected for calibration α̂S1−5 . The calibrated models show a much better performance for α = 0 than the
original model. The robustness curves (nominal and calibrated) cross at a certain α value (0.7 approximately), meaning that
a preference reversal occurs as the uncertainty horizon increases.

Robust parameter calibration A robust parameter calibration is now conducted for the power train model (Eq. 10.20) and
the uncertain torque transient (Eqs. 10.21 and 10.22). The baseline model defined by the point S3 is selected and the model
is robustly calibrated for different horizons of uncertainty using the same decision variables as before, that is to say, the HSS
elastic coupling stiffness KEC and the third stage gear teeth contact stiffness K3rd GM . For each horizon of uncertainty the
parameter set which minimizes the maximum discrepancy is calculated. The robust model parameter calibration is formally
defined:

α̂(Dc,K) = max

(
α :

{
( max

AVD∈U(α)
D(K;AVD))≤ Dc

})
with K = {KEC;K3rd GM} (10.24)
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The results are plotted in Fig. 10.6. The blue line corresponds to the calibrated model robustness curve α̂C, while the
dotted lines correspond to the robustness curves calculated with each set of calibrated parameters for a given α (α̂RC(α=0.1),
α̂RC(α=0.2), α̂RC(α=0.3), α̂RC(α=0.4), α̂RC(α=0.5), α̂RC(α=0.6), α̂RC(α=0.7)). The red curve links the points of the calibrated model
robustness curves at the α value at which each curve is calibrated, it will be denoted as the robust calibrated robustness curve
α̂RC. This red curve represents the minimum possible maximum discrepancy Dc for different values of α . Once again, the
robust calibrated models guarantee lower discrepancies than the deterministically calibrated model.

10.4 Conclusion

Model calibration is an important phase in the overall model validation process and serves to improve fidelity to data. Model
calibration methods generally seek to optimize fidelity. Meanwhile, the presence of lack of knowledge in the modeled physics
renders fidelity-based approaches suspect given that the purported calibrated performance can no longer be guaranteed. A
new robust calibration paradigm was proposed in [10] and forms the basis of ideas explored in this study which focused on
the tradeoff between fidelity to data and robustness to uncertainty. The strategy was illustrated on both an academic example
and on a more realistic industry related problem with load uncertainty. It was shown that the best deterministic model does
not necessarily provide the most robust predictions under lack of knowledge.
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Chapter 11
Simulating the Dynamics of the CX-100 Wind Turbine Blade: Model
Selection Using a Robustness Criterion

Kendra L. Van Buren, Sez Atamturktur, and François M. Hemez

Abstract Several plausible modeling strategies are available to develop finite element (FE) models of ever-increasingly
complex phenomena. Expert judgment is typically used to choose which strategy to employ, while the “best” modeling
approach remains unknown. This paper proposes a decision analysis methodology that offers a systematic and rigorous
methodology for comparing plausible modeling strategies. The proposed methodology departs from the conventional
approach that considers only test-analysis correlation to select the model that provides the highest degree of fidelity-to-data.
The novelty of the methodology lies in an exploration of the trade-offs between robustness to uncertainty and fidelity-to-data.
Exploring robustness to model imprecision and inexactness, in addition to fidelity-to-data, lends credibility to the simulation
by guaranteeing that its predictions can be trusted even if some of the modeling assumptions and input parameters are
incorrect. To demonstrate this approach, an experimental configuration is analyzed in which large masses are used to load
the CX-100 wind turbine blade in bending during vibration testing. Two plausible simulations are developed with differing
strategies to implement these large masses using (i) a combination of point-mass and spring elements or (ii) solid elements. In
this paper, the authors study the ability of the two FE models to predict the experimentally obtained natural frequencies, and
the robustness of these competing models to uncertainties in the input parameters. Considering robustness for model selection
provides the extent to which prediction accuracy deteriorates as the lack-of-knowledge increases. Therefore, the preferable
modeling strategy is the one that offers the best compromise between fidelity-to-data and robustness to uncertainty. To predict
the bending vibration of the CX-100 wind turbine blade, it is observed that the modeling strategy with solid elements is far
superior to the other one in its ability to provide a compromise between fidelity-to-data and robustness to the modeling
assumptions.

Keywords Info-gap decision theory • Model selection • Wind turbine blade • Model complexity • Test-analysis
correlation

11.1 Introduction

11.1.1 Motivation

The wind energy industry in the United States has consistently observed the design of larger wind turbines, with the largest
ones in 2011 produced with blades 61.5 m in length. In anticipation of this continued trend, blades 100 m in length are already
being pursued for future wind turbines [1]. Modeling and simulation techniques can be used to economically and efficiently
study the behavior of wind turbines produced at this massive scale, which enables designers to consider both aerodynamic
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and structural concerns early in the design process [2], and mitigate the increasing costs of full-scale testing [3]. Finite
element (FE) models calibrated against experimental data have gained acceptance for routine use in studying the static and
dynamic responses of wind turbine blades, as demonstrated by its inclusion in wind turbine design standards [4]. Further,
FE models are advantageous to study complex load cases that arise from in-service wind loading [5, 6], as compared to the
idealized loads that are implemented in full-scale experiments [7].

Assumptions and simplifications are routinely implemented in FE models to mitigate our lack-of-knowledge about the
underlying physics and to reduce the computation time needed to simulate complex phenomena. For example, it has been
proposed to simulate wind turbines using geometrically non-linear, one-dimensional beam elements when coupling FE
models of the wind turbine structural response with computational fluid dynamics models of the surrounding airflow [8].
Here, expert judgment is used to identify the need for geometric non-linearity (as opposed to material non-linearity), which
can account for large angle displacements as wind turbine blades are produced at larger scales. The use of one-dimensional
beam elements is necessary to reduce computation time and make the simulation of wind turbines at the plant scale feasible.
Current computing resources and code capabilities prevent the simulation of plant performance based on full-physics, full-
coupling, three-dimensional representations of the structural response and air flow, which renders these simplifications
necessary. As seen, FE models are only able to provide an approximation of reality due to the need for assumptions and
simplifications. The main concern that arises is the extent to which predictions of a numerical simulation can be trusted,
given that the models implemented rely on assumptions and simplifications.

Even though there may be a severe lack-of-knowledge about the best modeling strategy, recent wind turbine studies
continue to consider a model good quality when its predictions match physical experiments after calibration or validation
exercises. It is important to note that the model complexity, as influenced by the model form and number of parameters
used to define the model, will also affect the quality of model output [9, 10]. For example, when comparing the output
of four different wind turbine drive train models, Martins et al. [11] found that the model that accounted for mechanical
damping achieved the best agreement between measurements and simulations, while the less complex models provided
poorer agreement with the experimental data. Another study found it necessary to include non-linearity in the structural
response of a wind turbine blade to better match the deformation observed during experimental static testing [5]. However,
when the quality of numerical models are determined solely by their fidelity to experimental data, the modeling preference
strategy will typically lean towards FE models that are overly complex at the risk of over-fitting the experimental data
and at the cost of a poor generalization to other, non-tested settings [9]. This paradigm in modeling and simulation has
been formally recognized, and it can be shown that fidelity-to-data, robustness to assumptions and predictive capability are
antagonistic attributes of any family of models [12].

To quantify the effect on predictions of lack-of-knowledge introduced by modeling assumptions and simplifications, this
manuscript proposes a novel, non-probabilistic decision analysis framework rooted in info-gap decision theory (IGDT).
IGDT has surfaced as a useful method to study the influence of our ignorance on numerical predictions and the decisions
that they support [13]. The methodology proposed herein deviates from other model selection methods (see Sect. 11.1.2),
because it is non-probabilistic in nature, and is performed by assessing the trade-offs of fidelity-to-data and robustness of
predictions to our lack-of-knowledge. The basic premise is that a good-quality model, while it should be able to reproduce
the available measurements, should also provide predictions that are as insensitive as possible to the modeling assumptions
and simplifications. In the proposed methodology, model selection is achieved through a rigorous exploration of robustness
versus accuracy of predictions. Understanding these trade-offs is important for the development of robust numerical models
because it is the very mechanism through which the trustworthiness of predictions can be established.

The methodology proposed in this paper is demonstrated on the bending vibration of the CX-100 wind turbine blade
developed at the Sandia National Laboratories (SNL). In two earlier studies, the FE model of the CX-100 blade has undergone
rigorous Verification and Validation (V&V) assessments to ensure the credibility of predictions (see Mollineaux et al. [14]
for verification studies and Van Buren et al. [15] for the validation studies). These earlier studies are briefly summarized
in Sect. 11.2 for completeness. More recently, the CX-100 blade was dynamically tested at the National Renewable Energy
Laboratory (NREL) with large masses used to load the blade in bending. The added masses are represented in two alternative
configurations, using (i) point masses and stiffening springs or (ii) high-fidelity solid elements. The ability of these two
competing modeling strategies to replicate the experimentally obtained natural frequencies is discussed in Sect. 11.3. In
Sect. 11.4, the fundamental principles behind IGDT are presented, and the extent to which predictions of these two competing
models are robust to uncertainties in the model input parameters is quantified. The strategy that implements high-fidelity solid
elements is found to be both more accurate and more robust than the use of point masses. The practical implication of these
findings is that predictions, and their accuracy, can be trusted even if some of the modeling assumptions upon which the
solid-element FE model relies upon are incorrect.



11 Simulating the Dynamics of the CX-100 Wind Turbine Blade: Model Selection Using a Robustness Criterion 101

11.1.2 Related Literature

Model selection has been a widely pursued topic due to the lack-of-knowledge that arises in identifying an appropriate
modeling strategy [16]. The importance of model selection arises from the fact that different modeling strategies will affect
the quality of predictions. As early as the 1930s, it was observed that using the same data to train an algorithm and evaluate
its performance can lead to a false sense of confidence in the results [17]. One method to mitigate this shortcoming in model
selection is cross-validation, where experimental data are divided into at least two sets: (i) a calibration set, and (ii) at least
one (or more) hold-out sets. The calibration set of experimental data is used to update the model, and the model that is able
to best replicate the hold-out sets of data is considered to be the best choice. The data-splitting technique used to divide the
available experimental data into different sets is known to affect the model selection process [18].

In the last decade, Bayesian methods have been widely pursued for model selection, with several approaches rooted in
its theory, such as the intrinsic Bayes factor [19], fractional Bayes factor [22], deviance information criterion [23], and
asymptotic approaches [24]. One advantage of Bayesian approaches is that they will naturally take structural uncertainty
into account. Further, when sufficient experimental data are available, the “true” model will always be chosen by Bayesian
model selection [25]. One drawback, however, is that the development of defensible prior uncertainties is often difficult and
can affect the model selection outcome [26]. Despite the drawbacks to Bayesian approaches, many studies have successfully
demonstrated its use in model selection [27, 28].

Several other methods have also been proposed to address the question of model selection, for example the Akaike
information criterion [29], minimum description length [30], likelihood ratio tests [31], and information-theoretic measure
of complexity [29,32]. Myung [9] compares the performance of several model selection techniques, with the conclusion that
model complexity must be taken into account to ensure that an overly complex model is not selected. Recent studies have
also acknowledged the importance of robustness in model selection [27, 33, 34].

The current investigation proposes to address the question of model selection using IGDT, which requires the definition
of a family of models to demonstrate the trade-off of fidelity-to-data and robustness to our lack-of-knowledge [13]. Such
a family of models can originate from either a probabilistic or non-probabilistic description of the uncertainty and it is
referred to as an info-gap model. Previous studies have successfully demonstrated the usefulness of treating uncertainties
in an info-gap context, such as exploring the robustness of model predictions to uncertainties in connection stiffnesses
[35] and industrial applications [36]. Herein, IGDT will be applied to model parameters to answer the question of model
selection. The non-probabilistic treatment of uncertainty limits the assumptions that are applied in the analysis while
accounting for model complexity. In addition, explicitly addressing the robustness to uncertainty of model predictions
establishes confidence despite the lack-of-knowledge about the modeling assumptions and parameter values used in the
simulation.

11.2 Model Development and Experimental Campaign

11.2.1 Development of the CX-100 FE Model

This section provides a review of the development process of the FE model of the CX-100 blade, as discussed in-
depth by Mollineaux et al. [14] and Van Buren et al. [15]. The model is developed using an accurate description
of the geometry, obtained from design specifications of the wind turbine blade in NuMAD, preprocessor developed at
SNL, and imported into ANSYS version 12.1 with Shell-281 finite elements. The mesh discretization is based on an
element size of Δx = 8cm, which produces an overall solution uncertainty of 1.78% for the prediction of low-frequency
bending modes of the blade. This mesh size is chosen because the 1.78% numerical uncertainty is comparable to a 3-σ
experimental variability of 1.62%, estimated from free-free modal testing performed at the Los Alamos National Laboratory
(LANL) [37].

Six independent sections are defined in the development of the FE model: shear web, root, spar cap, trailing edge, leading
edge with balsa, and leading edge without balsa. With the exception of the shear web, because it is located inside the cross-
section of the blade, these sections are illustrated in Fig. 11.1. Isotropic materials with smeared cross-sectional properties are
used to define the material sections.

Modal testing performed at LANL in two configurations is used for calibration and validation studies: (i) free-free, where
the blade is suspended with straps, and (ii) clamped-free, where a 250-kg steel bookend fixture is used to fix the base of the
blade. The model parameters are calibrated to the free-free and clamped-free experimental natural frequencies in a two-step
procedure [15]. To mitigate the uncertainty in the fixity at the base of the blade, fictitious springs are introduced in an attempt
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Leading Edge
Leading Edge
with Balsa

Trailing Edge

Root

Spar Cap

Fig. 11.1 Illustration of the
ANSYS model showing different
sections of the blade

Fig. 11.2 Experimental fixed-free (left) configuration, mass-added (middle) configuration, and base fixture (right)

Table 11.1 Results of the
experimental modal analysis Mode

Fixed-free
frequency (Hz)

Mass-added
frequency (Hz)

First flap bending 4.35 1.82
Second flap bending 11.51 9.23
Third flap bending 20.54 12.72

to implement a boundary condition that is between the ideal “fixed” and “free” cases. The mode shape vectors are used to
validate the FE model, in which the modal assurance criterion is estimated to quantify the agreement of simulation results
to the experimental data. An overall correlation of 84% is observed for the free-free modes and 94% for the clamped-free
modes.

11.2.2 NREL Modal Testing of the CX-100 Wind Turbine Blade

The CX-100 wind turbine blade is attached to a 6,300 kg (7-ton) steel frame, effectively allowing for a fixed-free boundary
condition. Modal testing is performed using a roving impact hammer test procedure under two different setups: first, in a
fixed-free condition, and second with large masses clamped to the blade. A 582- and 145-kg mass are added on the blade
at the 1.60- and 6.75-m locations, respectively. Four uni-axial accelerometers and one tri-axial accelerometer are used to
collect data for hammer impacts at 65 locations: 47 in the flapwise directions, and 18 in the edgewise directions. Three test
replicates are performed with a linear average and 150 Hz sampling frequency. The acceleration response is collected with
4,096 sampling points without a window function due to the relatively long sampling period of 11 s [38].

The experimental setups and base fixture are shown in Fig. 11.2, and the first three flapwise frequencies are listed in
Table 11.1. It is important to note that the boundary condition provided in the NREL testing is different from the boundary
condition used in previous modal testing performed at LANL [15, 37]. The mass-added configuration, in which there is
significant mass loading and a change in the compliant boundary condition to a more rigid fixture, defines a different
configuration of the CX-100 wind turbine blade.
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Table 11.2 Comparison of prior and posterior uncertainty of the FE model parameters

Prior uncertainty Posterior uncertainty

FE model parameter Lower Upper Range Mean Std. dev. ±2σ range

Trailing edge, density 274.60 823.80 549.20 335.62 49.49 197.95
Leading edge, density 858.20 2,574.60 1,716.40 1,165.30 248.76 995.03
Spar, modulus 29.92 53.56 23.64 43.40 5.51 22.05
Z-spring 1.00 100.00 99.00 71.91 15.98 63.91
Spar, density 1,267.00 3,801.00 2,534.00 1,673.57 335.74 1,342.94

11.2.3 Fixed-Free Model of the CX-100 Wind Turbine Blade

Calibration of the fixed-free model is re-considered due to the more rigid structure used in the NREL experiments. Five
statistically significant parameters of the fixed-free FE model of the wind turbine blade are identified using a forward
propagation of uncertainty and sensitivity analysis. The influential parameters are: density of the trailing edge, density of the
leading edge, modulus of elasticity of the spar cap, translational springs used to model the boundary condition perpendicular
to the base fixity, and density of the trailing edge. The uncertainty bounds of the trailing edge density, leading edge density,
and spar cap density are increased from previous parametric studies [15], from ±25% bounds to ±50% bounds in the current
study after an exploratory design-of-experiments suggests that larger bounds are needed for the FE model to envelope the
experimental data. It is chosen to limit the increase of the parameter ranges to ±50% due to mode swapping when the
parameters are allowed to vary past these values. The upper and lower uncertainty bounds chosen for the spar cap modulus
reflect the posterior uncertainty obtained from previous free-free calibration. The uncertainty bounds of boundary springs are
determined from parametric studies of the fixed-free boundary condition. Measurements of the natural frequencies obtained
during the NREL testing are utilized to calibrate the FE model. Instead of performing calibration as an optimization of
model parameters to best-fit the experimental data, inference uncertainty quantification is performed to explore the posterior
probability distribution of these three parameters. To efficiently perform the inference uncertainty quantification, the FE
model is executed using a three-level, full-factorial design-of-experiments to provide the simulation data required to train
a fast-running Gaussian Process Model (GPM). A Markov Chain Monte Carlo (MCMC) algorithm is used to explore the
posterior distribution of parameters of the GPM emulator, where a statistical T-test retains only parameters that provide
frequency predictions sufficiently “close” to those measured experimentally. This methodology relies on the theory proposed
by Kennedy and O’Hagan [39] and the computational framework developed by Higdon et al. [40].

The results of the inference are summarized in Table 11.2. Columns 2–4 summarize the prior uncertainty, which represents
the range of values used in the full-factorial design to train the GPMs. Columns 5–7 provide the posterior uncertainty, which
are the statistics inferred from the MCMC search algorithm. The inference is successful at “learning” the value of the
parameters, as indicated by the reduction of the posterior uncertainty relative to the prior range.

A graphical representation of the posterior distribution is provided in Fig. 11.3, which plots the marginal distribution of
each parameter on the diagonal and a probability contour of the pairs of parameters in the off-diagonal boxes. The inference is
successful in reducing the uncertainty of the spar cap modulus of elasticity and the boundary spring constants. The clustering
of samples drawn towards the lower bound in Fig. 11.3 suggests that the algorithm may be attracted to values outside of
the initial range provided to the GPM. However, it is chosen to keep the current analysis due to the introduction of mode
swapping when the parameter values are allowed to vary outside of the prior range.

Table 11.3 compares the experimentally obtained natural frequencies to those predicted by the FE model with the
parameters set to the mean values of the posterior distribution. The simulation consistently under-predicts the experimental
results by 0.5–3.4%. Due to the relatively small error in the predictions of resonant frequencies, and the fact that the predicted
mode shape deflections correlate well with those measured experimentally, the accuracy of the calibrated fixed-free model is
deemed acceptable. The same model is used next to explore the mass-added configuration.

11.3 Model Development for the Mass-Added Configuration of the CX-100
Wind Turbine Blade

This section discusses the development of two competing FE models used to simulate the NREL mass-added configuration.
The two models pursued in this section are developed using different assumptions and simplifications, using either (i) a
system of fictitious point masses and stiffening springs, or (ii) three-dimensional solid elements that represent the geometry
of the added masses with high fidelity.
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Fig. 11.3 Marginal distributions
and correlation functions
corresponding to Table 11.2

Table 11.3 Comparison of
experimental and simulated
results for the fixed-free model

Mode Experimental (Hz) Simulated (Hz) Difference (%)

First flap 4.35 4.26 −2.1
Second flap 11.51 11.45 −0.5
Third flap 20.54 19.85 −3.4

Fig. 11.4 Illustration of the
blade cross-section with added
point masses and springs

11.3.1 Development of the Point Mass Model

A central point mass is added to approximate the added masses at each of the two locations. The point masses are then
connected by fictitious springs to the nodes of the blade to reflect the interaction between the blade and added masses.
This configuration is shown in Fig. 11.4. The use of springs in this modeling strategy is adopted because exploratory FE
simulations indicate that adding the point masses directly to the shell model of the blade introduces lower-order mode shapes
with local deformations at the cross-sections with masses added. Fictitious springs are therefore introduced to maintain the
rigidity of the blade cross-section at the locations where masses are added. This modeling strategy offers a compromise
between low computational times-to-solution and a reasonable representation of the vibration mechanics.

Table 11.4 lists the parameters used to develop the point mass representation added to the three-dimensional blade model
discretized with shell elements. The parameterization of this simplified modeling strategy results in the use of only six new
model parameters.
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Table 11.4 Parameters used to
develop the point mass
representation

Parameter Description

(1; 2) (Translation; rotation) springs at the 1.60-m section
3 Point mass at 1.60-m section
(4; 5) (Translation; rotation) springs at 6.75-m section
6 Point mass at 6.75-m section

Fig. 11.5 Effect of spring
stiffness coefficients on the first
three bending frequencies

Table 11.5 Comparison of
experimental and simulated
frequencies for the mass-added
model

Mode Experimental (Hz) Simulated (Hz) Difference (%)

First flap 1.82 1.45 −20.3
Second flap 9.23 8.85 −4.1
Third flap 12.72 11.59 −8.9

To preserve the calibrated, fixed-free model discussed earlier in Sect. 11.2.3, only the spring stiffness coefficients are
calibrated in the mass-added configuration (parameters 1, 2, 4, and 5 listed in Table 11.4). A parametric study is performed
to evaluate the effect of the spring stiffness on frequency predictions.

Figure 11.5 shows the frequency predictions as the spring stiffness values are varied from 10 to 10+10 N/m. As the spring
stiffness is increased, the natural frequencies also increase, due to the change in interaction between the blade and springs.
Around a value of 10+6 N/m, the natural frequencies plateau to values that consistently under-predict the experimental
natural frequencies. A calibration of the model parameters would likely converge to the upper bound of the spring stiffness
values because the parametric study in Fig. 11.5 is unable to form an envelope around the experimentally obtained natural
frequencies. Therefore, the value of 10+8 N/m is chosen for the spring stiffness, indicated by the vertical black line in
Fig. 11.5.

Table 11.5 compares the natural frequencies measured experimentally to those predicted by the mass-added FE model.
Again, the frequencies are consistently under-predicted by the model; however, the absolute differences for the first
three modes, 0.37, 0.38, and 1.13 Hz, demonstrate an acceptable fidelity-to-data despite the minimal calibration activities
performed after the model was modified to include the added masses.

11.3.2 Development of the Solid Mass Model

The second modeling strategy is to represent the added-mass configuration of the blade with the highest possible degree
of geometrical fidelity. Three-dimensional, solid elements are utilized to represent the geometry of the experimental setup,
implementing Solid-186 elements in ANSYS. Four sections are used to define the added masses. The sections are labeled
the 6.75-m mass, 1.60-m mass, and two 1.60-m offset masses in Fig. 11.6.

Four sections are used to model the added masses onto the blade, as shown in Fig. 11.6: one section for the wooden form
attached to the blade at the 1.60-m station, two symmetric sections for the hydraulic actuator system at the 1.60-m station,
and one section for the wooden form attached to the blade at the 6.75-m station. The wooden forms are modeled using the
geometry of the masses obtained from design specifications. The geometry of offset masses of the hydraulic actuator system
at the 1.60-m station is simplified into rectangular solids. Figure 11.7 compares the actual geometry of the experimental setup
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6.75-meter wooden
form 1.6-meter offset

masses

1.6-meter
wooden form

Fig. 11.6 Second modeling
strategy that includes solid
elements to represent the added
masses

Comparison of
offset masses

Fig. 11.7 Close-up of the offset
mass modeled at the 1.60-m
station

Table 11.6 Parameters used to
develop the solid-mass
representation

Parameter Description

(1; 2) (Elastic modulus; density) of 1.60-m section
(3; 4) Center of gravity (X; Y) coordinates of 1.60-m offset mass
5 Density of 1.60-m offset section
(6; 7) (Elastic modulus; density) of 6.75-m section

Table 11.7 Comparison of
experimental and simulated
frequencies for the solid-mass
model

Mode
Experimental
frequency (Hz)

Simulated
frequency (Hz) Difference (%)

First flap 1.82 1.44 −20.9
Second flap 9.23 9.29 0.7
Third flap 12.72 13.22 3.9

to the simplification implemented in the FE model. Due to its complicated geometry, expert opinion is used to identify the
center of gravity of the offset mass, which introduces uncertainty in the analysis.

It is emphasized that, while this modeling strategy provides a better representation of the masses than the point-mass
and spring system, the fundamental form of the model is still incorrect due to the assumption that the added masses can
be represented using four homogenized sections. Another important factor is the time-to-solution: the vibration analysis of
this model is significantly more expensive than the previous one. One objective of the investigation is to understand the
extent to which the point-mass model is able to deliver a similar accuracy and robustness as the solid-mass model, at lower
computational cost.

The parameters used to develop the solid-mass representation are listed in Table 11.6. The parameterization includes the
geometry of the outset masses, represented by the center of gravity coordinates that define the masses, which influences
the ability of the blade to bend in torsion. While the imperfect knowledge of the material parameters introduces parametric
uncertainty in the prediction of vibration response, the imperfect knowledge of the center of gravity coordinates introduces
numerical uncertainty due to the fact that the mesh changes each time that a different location of the center of gravity is
implemented. This re-meshing step also contributes to significantly increasing the computational cost of the analysis. A
close-up of the offset masses at the 1.60-m station is provided in Fig. 11.7, to highlight the good qualitative agreement
between geometries of the experimental setup and FE model representation.

With the masses represented using solid elements, the density is back-calculated such that the weights of masses
implemented in the FE model correspond to the weights of masses obtained experimentally. The elastic modulus of the
wooden forms is assumed based on the documented value for balsa wood. The agreement between predictions of the FE
model and experimental measurements is listed in Table 11.7.
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11.4 Analysis of Robustness to Uncertainty Applied to Models of the CX-100
Wind Turbine Blade

This section discusses IGDT and how it is employed to evaluate the robustness to uncertainty of model predictions. By
establishing robustness, one demonstrates the extent to which the predictions remain sufficiently accurate, even if some of
the modeling assumptions and parameter values used in the simulation are incorrect. Lack-of-robustness, on the other hand,
indicates that the expected level of accuracy obtained, for example, through calibration, may not be reached if some of the
assumptions and parameter values happen to be incorrect. Analyzing the robustness of the FE model does not necessarily
translate into a reduction of prediction uncertainty. It helps, instead, to identify a potentially dangerous situation whereby the
predictions, and their accuracy, are sensitive to aspects of the modeling that may be unknown and/or uncontrolled.

11.4.1 Conceptual Demonstration of Robustness Analysis

For the info-gap analysis presented, the allowable range of variation of model parameters is controlled using an uncertainty
parameter, α. The definition of α is not essential; what matters is that increasing its value defines a nested family of models.
For simplicity, the definition of α is kept unit-less: the same level of uncertainty, α, can be applied simultaneously to multiple
parameters from the two modeling strategies because it has no physical unit. The second attribute of the info-gap analysis is
the performance metric of the model, herein quantified using the root mean squared difference between simulation predictions
and experimental observations. A conceptual illustration is provided next to describe the evaluation of the robustness of the
competing FE models.

Consider a model defined using two uncertain parameters, u1 and u2. Figure 11.8a describes the nominal performance
of the model, where u1 and u2 are defined using initial, best guesses or nominal values. As uncertainty, α, is increased,
the parameters are allowed to vary within a range of permissible values (see Sect. 11.4.2 for how the bounds are chosen
for the parameters in our application). As a result, parameters are varied from their nominal settings to become u1 and
u2. Herein, the allowable range of variation of u1 and u2 is referred to as the uncertainty space. It is represented as a
two-dimensional rectangle of size (α1)

2 in Fig. 11.8b, c. With such changes in input parameters, the model performance
either improves or degrades. We would like, therefore, to explore the best and worst achievable performances as ũ1 and ũ2

are allowed to venture away from their nominal values but remain within the uncertainty space defined by the parameter
α1. The improvement of the performance obtained from the model is described as the opportuneness, and the degradation
of performance is the robustness. At any level of uncertainty α, the opportuneness and robustness points are obtained by
solving two global optimization problems that search for the best and worst performances, respectively, given the space of
allowable values for u1 and u2. Figure 11.8b, c illustrate the development of the robustness and opportuneness functions.

Figure 11.8d illustrates that as the uncertainty parameter, α , increases, the uncertainty space, also increases. If the
uncertainty space is defined to have nested intervals as α increases, as suggested in Fig.11.8d, then the opportuneness and
robustness curves will be monotonic functions because the global optimizations that they represent are performed within ever-
growing spaces. Figure 11.8e then shows the resulting opportuneness and robustness curves, developed from the evaluation
of best and worst performances at three levels of uncertainty. A particular focus is placed on the robustness curve, and its
shape, that are useful to evaluate the worst-case performance of the model under increasing uncertainty bounds. A “steep,”
or nearly vertical, robustness curve indicates that the predictions are insensitive to increasing levels of uncertainty, α. Such
an observation would be welcome as it would reinforce our conviction that the model can be applied with confidence even
if some of the assumptions used for its development are questionable. Observing, on the other hand, a robustness curve with
small slope, “Δα/ΔR,” which denotes a small improvement of robustness “Δα” relative to a change in performance “ΔR,”
indicates that the model predictions are sensitive to the values of u1 and u2 used in the simulation. Such a lack of robustness
would decrease the level of trust placed in the assumptions upon which the model relies.

11.4.2 Rationale for the Definition of Uncertainty

To promote a fair comparison of the two modeling strategies, the parameters are varied in such as way that the effect on
bending frequency predictions of the maximum parameter variation is consistent with the difference between the competing
models at their nominal setting. Doing so ensures that the effect on predictions of the allowable range of parameter variation
is consistent with the effect on predictions of varying the model forms of the competing modeling strategies. Because model
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Fig. 11.8 Illustration of the
successive steps of an info-gap
analysis of robustness.
(a) Analysis of nominal
performance. (b) Development of
the robustness function.
(c) Development of the
opportuneness function.
(d) Increased uncertainty space
for α3 ≥ α2 ≥ α1.
(e) Robustness and
opportuneness curves

selection is only applied to how the masses are modeled onto the existing shell representation, the info-gap analysis is
restricted to the model parameters used to define the added masses. The two models at their nominal configuration exhibit a
20% average percent variation in the first three flapwise frequencies. The models are held at their nominal configuration while
the weights of the masses are allowed to vary using the mass parameter for the point mass model, and the density parameter
for the solid mass model. Table 11.8 summarizes the results of the mass-only variation, where 0% variation indicates the
models held at their nominal setting.

The results presented in Table 11.8 are plotted in Fig. 11.9 for clarity. It is emphasized that the behaviors of the two
curves are slightly different, even though only the mass parameters are allowed to vary in the two models. The observed
difference is attributed to the combined effect of parameter variation and model form on frequency predictions. Figure 11.9
demonstrates that an 18% variation in masses is necessary to achieve the 20% variation observed between the two models at
nominal configuration. Thus, the lower and upper bounds of the variation corresponding to α = 1 are defined by allowing the
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Table 11.8 Effect on natural
frequency predictions of the
mass-only variation

Point mass model Solid mass model

Variation (%) ω1 ω2 ω3 ω1 ω2 ω3

−50 1.94 10.42 13.43 1.94 10.59 15.38
−25 1.64 9.64 12.38 1.63 10.00 14.04
0 1.45 8.85 11.59 1.44 9.29 13.22
+25 1.30 8.17 10.78 1.30 8.59 12.66
+50 1.20 7.60 10.06 1.19 7.96 12.24

Fig. 11.9 Comparison of
frequency prediction variation
due to mass-only variation

mass parameters to vary up to ±18%. Having defined the parameter variations corresponding to any value of α, the info-gap
analysis can be used to address the question of model selection.

11.4.3 Selection of the Mass Added Models

The info-gap analysis is performed for the competing FE models to explore the robustness of predictions obtained by each
one of them. Upper and lower bounds of model parameters are defined corresponding to the level of uncertainty being
evaluated, as suggested in Fig. 11.8 in the case of only two parameters. The uncertainty space is a hyper-cube defined from
the lower and upper bounds for the vector of parameters u. Its size, or volume, increases monotonically depending on the
level of uncertainty considered, α:

ũ(α) = (1± 0.2×α)u. (11.1)

The level of uncertainty, α, is multiplied by 0.2 such that when α = 1 the parameters are varied by ±20%, consistent with
the mass-added variation pursued in Sect. 11.4.2. The robustness and opportuneness functions are evaluated in increments
of α = 0.5. For each level of uncertainty evaluated, the “fmincon” optimization solver of MatlabTM is used to search for
the combination of parameters within the family of models that produces the worst-case (for robustness) or best-case (for
opportuneness) performance. It is emphasized that a new input deck, that includes re-meshing in the case of the solid
element model, is generated and submitted to ANSYS each time that a combination of model parameters is evaluated
during the optimization. Results of the ANSYS analysis must then be uploaded back in MatlabTM memory. This strategy
requires significant scripting to automate the procedure but avoids the development of statistical emulators that may introduce
unwanted approximations.

To ensure that the optimization is initiated with a high-quality guess, all combinations of the upper and lower bounds,
or “corners” of the hyper-cube space, are evaluated using a two-level full-factorial design-of-experiments. The optimization
is then initiated using the combination of model parameters that yields the maximum or minimum performance of the
full-factorial design. Because the objective is to compare the prediction accuracies of the two modeling strategies, model
performance is defined as the root mean squared error of natural frequencies for the first three flapwise bending modes:
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Table 11.9 Range of variation
for the parameters used in the
point-mass model

Parameter Description Nominal value ± Variation

1 Translation springs at 1.60-m section 10+8 10+6.4–10+9.6

2 Rotation springs at 1.60-m section 10+8 10+6.4–10+9.6

3 Point mass at 1.60-m section 582.46 465.97–698.95
4 Translation springs at 6.75-m section 10+8 10+6.4–10+9.6

5 Rotation springs at 6.75-m section 10+8 10+6.4–10+9.6

6 Point mass at 6.75-m section 144.7 115.76–173.64

Table 11.10 Range of variation
for the parameters used in the
solid-mass model

Parameter Description Nominal value ± Variation

1 Elastic modulus of 1.60-m section 8×10+9 6.4×10+9–9.6×10+9

2 Density of 1.60-m section 636.1 508.88–763.32
3 Center of gravity X coordinates of 1.60-m

offset mass
0.224 0.179–0.269

4 Center of gravity Y coordinates of 1.60-m
offset mass

0.480 0.384–0.576

5 Density of 1.60-m offset section. 229.0 183.2–274.8
6 Elastic modulus of 6.75-m section 8×10+9 6.4×10+9–9.6×10+9

7 Density of 6.75-m section 1,644.5 1,315.6–1973.4

Fig. 11.10 Info-gap robustness
and opportuneness curves of the
two modeling strategies

R =

√
3

∑
i=1

(
ωsim,i −ωexp,i

)2
, (11.2)

where R denotes the model performance metric, ωsim is the numerical prediction of natural frequency, and ωexp is the
experimental measurement of the same frequency.

Tables 11.9 and 11.10 define the parameters associated with the competing models, along with the ranges of variation
specified for the info-gap analysis at the level of uncertainty of α = 1. Note that the center of gravity parameter in Table 11.10
affects the definition of meshes used in the solid mass representation. It means that the uncertainty parameter, α, influences
both the material behavior (density, elastic modulus) and numerical uncertainty of FE predictions due to the changes that it
brings to the mesh discretization.

Figure 11.10 presents the results of the info-gap analysis performed on the competing FE models. The nominal
performance, associated with a level of uncertainty of α= 0, clearly demonstrates that the solid mass model better reproduces
the experimental data compared to the point mass model. Further, as the uncertainty parameter increases, the solid mass
model remains the preferable modeling strategy. Conversely, it can be stated that the solid mass model provides a higher
degree of accuracy at any level of modeling uncertainty, α. In fact, the robustness slopes of the competing models are
relatively consistent despite the different representations of reality. The result of this analysis demonstrates unambiguously
that the solid mass model is the preferable modeling strategy to utilize, despite the lack-of-knowledge associated with the
modeling assumptions and parameters used in the simulation.
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11.5 Conclusion

This manuscript discusses a decision analysis framework for model selection that considers the trade-offs in the ability of a
numerical simulation to, first, replicate the experimental data and, second, provide predictions that are robust to the modeling
assumptions identified in the model development process. Modeling assumptions are typically formulated when developing
numerical simulations, such as the use of fictitious boundary springs or implementing smeared properties for composite
materials instead of attempting to define the individual layers. Although such assumptions have become commonplace, their
effect on model predictions often remains unknown. Another common practice is to consider that a model achieves sufficient
“predictability” as long as its predictions reproduce the experimental measurements. Our contention is that assessing models
based only on their fidelity-to-data while ignoring the effect that the modeling assumptions may exercise on predictions is
not a sound strategy for model selection.

The framework discussed in this study is applied to competing models used to simulate an experimental configuration
of the CX-100 wind turbine blade in which masses are added to the blade. Experimental data obtained from a fixed-free
modal analysis performed at the National Renewable Energy Laboratory, with and without added masses, are utilized. The
wind turbine blade is bolted to a 6,300-kg steel frame to define the fixed-free configuration. Masses are added at the 1.60-
and 6.75-m sections to define the mass added configuration that enhances the flapwise bending vibrations. The FE model of
the blade, developed from a previous verification and validation study, is first calibrated to measurements of the fixed-free
configuration. Calibration results show that the FE model is able to replicate the experimental frequencies within an average
2% error. Two modeling strategies are then considered for implementing the masses onto the existing FE model, using (i)
point masses and stiffening springs and (ii) high-fidelity solid elements. To examine the predictive capability of the mass-
added FE models, limited calibration exercises are performed past the initial calibration to the fixed-free configuration. At
their nominal configurations, the point mass model reproduces the experimental data to within 11.1% average error, and the
solid mass model is within 8.5% average error for the first three flapwise bending natural frequencies.

An info-gap analysis is performed to address the question of model selection. An advantage of info-gap is that the
formulation of prior probability distributions can be avoided because the analysis substitutes numerical optimization to
statistical sampling. Further, the robustness to our lack-of-knowledge about the modeling assumptions and parameter values
is accounted for when evaluating the model performance. The info-gap analysis is performed through parameter variation,
where the maximum range of variation is chosen such that the change in model predictions is consistent with the change
induced by the differing modeling strategies. It is observed that the solid mass model is not only more accurate, but also
provides better behavior in robustness to modeling assumptions and unknown parameter values. Even though the solid
mass model is a more complex representation of reality, and comes with higher computational cost, the analysis concludes
unambiguously that it is the preferable modeling strategy for this application.
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Chapter 12
Defining Coverage of a Domain Using a Modified Nearest-Neighbor
Metric

Matthew C. Egeberg, Sez Atamturktur, and François M. Hemez

Abstract Validation experiments are conducted at discrete settings within the domain of interest to assess the predictive
maturity of a model over the entire domain. Satisfactory model performance merely at these discrete tested settings is
insufficient to ensure that the model will perform well throughout the domain, particularly at settings far from validation
experiments. The goal of coverage metrics is to reveal how well a set of validation experiments represents the entire
operational domain. The authors identify the criteria of an exemplary coverage metric, evaluate the ability of existing
coverage metrics to fulfill each criterion, and propose a new, improved coverage metric. The proposed metric favors
interpolation over extrapolation through a penalty function, causing the metric to prefer a design of validation experiments
near the boundaries of the domain, while simultaneously exploring inside the domain. Furthermore, the proposed metric
allows the coverage to account for uncertainty associated with validation experiments. Application of the proposed coverage
metric on a practical, non-trivial problem is demonstrated on the Viscoplastic Self-Consistent material plasticity code for
5182 aluminum alloy.

Keywords Model validation • Design of experiments • Predictive maturity • Coverage • Predictive maturity index

12.1 Introduction

Numerical models are often used to make predictions at a range of settings, known as the operational domain. The inability
of the model to match observations within this domain, known as discrepancy bias, is typically used to bias correct the model
[1,2]. This discrepancy bias is empirically trained from validation experiments, and is therefore dependent on the settings of
the validation experiments until sufficient information is available to retrieve the true discrepancy bias. Conducting validation
experiments in a limited region of the domain could result in a poorly trained discrepancy bias (Fig. 12.1), which in turn,
can result in overconfidence in model predictions, represented by the dashed line in Fig. 12.1, as well as model prediction
errors after bias correction, known as unforeseen forecasting errors [3]. The concept of forecasting errors is a well-known
phenomenon and tends to increase when extrapolating the predictions of a model far away from where the model has been
trained. To mitigate this problem, it is essential to conduct validation experiments at settings that provide a representation of
the entire operational domain. A quantitative measure of the ability of a set of validation experiments to represent the entire
domain is referred to as coverage.

Due to an increasing reliance on numerical models in decision-making, predictive capability metrics are needed to quantify
the degree of confidence that decision-makers can place in supporting numerical models [4]. While predictive capability
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Fig. 12.1 Potential error in
discrepancy estimation
(Reprinted with permission from
Hegenderfer [20])

is usually defined as the ability of predictions to reproduce experimental measurements, with little-to-no consideration for
quality of validation experiments, the Predictive Maturity Index (PMI) developed in [4] incorporates the concept of coverage.
It is the inclusion of coverage in the PMI that creates the importance of coverage metrics.

The PMI has recently been applied to the Preston-Tonks-Wallace model of plastic deformation [4], the Viscoplastic Self-
Consistent (VPSC) material model [5], and the nuclear fuel performance code, LIFEIV [6]. Recently modified by Stull et al.
[7], the PMI includes four attributes: coverage of the domain, discrepancy bias, robustness of predictions to uncertain model
parameters, and complexity of the numerical model. As one of four components in the PMI, coverage has a major role in
quantifying the predictive maturity of a model. Existing coverage metrics developed in Atamturktur et al. [8], Hemez et
al. [4], and Stull et al. [7] typically provide a satisfactory definition of coverage, but each metric is subjected to limitations
(discussed in detail in Sect. 12.3). With such importance placed upon coverage, it is important for coverage to be determined
using the most refined definition available.

In Sect. 12.2 of this manuscript, we identify four essential criteria for coverage. In Sect. 12.3, we present three coverage
metrics from the literature and investigate the ability of each metric to meet the identified criteria from Sect. 12.2. A new
coverage metric is discussed in Sect. 12.4 based on the metric developed in Atamturktur et al. [8]. The proposed metric is
applied to a non-trivial problem of polycrystal plasticity in Sect. 12.5. Section 12.6, provides an overview of the manuscript
and suggests alternative uses of the proposed coverage metric.

12.2 Characteristics of Ideal Coverage Definition

Four criteria can be identified as essential characteristics for any coverage metric:

1. Coverage should improve if a new validation experiment is conducted at new, untested settings within the domain;
2. Poorer coverage should result from a clustered arrangement of validation experiments that limits exploration to certain

regions of the domain, than an equal number of validation experiments spread more evenly throughout the domain;
3. Coverage should distinguish between interpolation and extrapolation, due to the lack of clear bounds for extrapolation

(see discussion below);
4. Coverage should be objective, not subjective.

The first criterion is based on the assumption that conducting new validation experiments at untested settings provides
additional information for calibration and validation, leading to a greater predictive maturity. If a validation experiment has
already been conducted at that setting, then a repeated validation experiment should provide no additional coverage, provided
that the experimental uncertainty is not reduced.

The second criterion is focused on even distribution of validation experiments as suggested by maximin, distance-based
experimental designs [9]. Williams et al. [10] find that design strategies that spread points throughout the domain, particularly
in input dimensions which have significant influence on the output of the model, result in lower average prediction errors.
This criterion therefore attempts to incorporate the benefits of space-filling designs into the coverage metric.

Although evenly distributed experimental designs result in predictions with lower average prediction errors, Williams
et al. [10] also find that experimental design strategies that concentrate runs near the boundaries of the domain tend to
control the maximum prediction error better. This placement of validation experiments at the boundaries of the domain,
similar to an entropy-based experimental design as described in [11], is the focus of the third criterion. While in the presence
of systematic error, a good experimental design tends to distribute experiments throughout the domain, experiments located
near the boundary of the domain are favorable in the presence of random error [11].

In the context of this work, “interpolation” refers to all predictions made within the region of validation experiments
defined by a convex hull, and “extrapolation” refers only to predictions made outside the corresponding range of validation
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experiments. Under this definition, it is assumed that the mechanics or physics do not change within the region of validation
experiments relative to those captured by the model. While interpolation is bounded, predictions made using extrapolation
lack clear bounds. Montgomery [12] warns that it is possible for a model to provide poor predictions outside of the region
of the available data even though the model may fit the observations well. Furthermore, experts assert that empirical models
should not be used outside the range of calibration experiments [13–15]. The Challenger space shuttle disaster (which was
caused by an O-ring failure) on January 28th, 1986, discussed in [16], exposes the dangers of extrapolation. Although there
was concern about the effect of low temperatures on O-ring performance and historical data from previous shuttle flights was
only available at temperature above 53◦F, experts failed to recognize the true effect of temperature and decided to launch the
shuttle as scheduled, at a temperature of 31◦F.

The fourth criterion is obvious; a coverage based upon hard evidence should be more credible and reliable than one
based on an individual’s opinion. Herein, the quality of any coverage metric is measured by the ability to satisfy these four
criteria.

12.3 Earlier Definitions of Coverage

This section reviews and compares coverage metrics defined earlier in published literature.

12.3.1 Atamturktur et al. [8]

Coverage is determined in Atamturktur et al. [8] using a sensitivity adjusted nearest-neighbor metric, in which control
parameter ranges that define the domain of interest are normalized between 0 and 1. Next, each control parameter dimension
is scaled according to the sensitivity of the model output. The degree of influence of each control parameter on the model
output is determined through a sensitivity analysis. Atamturktur et al. [8] exploits the correlation length of the Gaussian
Process Model (GPM), an emulator trained to replace the numerical model. The correlation length, which assumes a
value between 0 and 1, is used to approximate the sensitivity of each control parameter, where a greater sensitivity causes
the control parameter dimension to dilate, placing focus on more sensitive model inputs. This concept is analogous to the
V-optimal design of experiments [17].

After scaling the axes, the domain is covered by uniformly distributed grid points and each grid point is appointed to the
nearest validation experiment. Figure 12.2a shows the partitioning of the domain into nearest-neighbor regions. The distance
between each grid point and the associated nearest validation experiment is summed for all grid points and normalized by
the total number of grid points, as shown in Eq. (12.1).

ηc =
1
g ∑g

i=1 min(dE,i) (12.1)

Parameter ηc represents the coverage, g represents the total number of grid points, and min(dE,i) is the minimum distance
of the ith grid point to the nearest validation experiment. The result is a value that represents the average normalized and
sensitivity-scaled distance between each point in the domain to the corresponding nearest validation experiment. Decreasing
this value improves the coverage.

The nearest-neighbor metric of Atamturktur et al. [8] is sensitive to the addition of a new validation experiment as
well as the clustering of validation experiments. The metric is also objective. However, the metric is incapable of showing
preference to interpolation over extrapolation, as shown in Fig. 12.2b. Both grid point A and B are an equal distance from the
nearest neighboring validation experiment; while point A involves an interpolative prediction, point B involves extrapolative
prediction as it is located outside the region bounded by the dotted line. Furthermore, the nearest-neighbor metric supplies
a value with unclear physical meaning, whereas the coverage defined using the methods presented in Hemez et al. [4] and
Stull et al. [7], as discussed in the following sections, are physically meaningful and intuitive.



116 M.C. Egeberg et al.

Fig. 12.2 Division of domain
into nearest-neighbor regions

Fig. 12.3 Convex hull
encompassing validation
experiments

12.3.2 Hemez et al. [4]

In Hemez et al. [4], coverage is defined as the ratio of 2 multidimensional volumes defined by convex hulls, multi-dimensional
domains with the smallest convex volume including all the points of interest. One convex hull encompasses the validation
experiments while the other embodies the entire domain of interest. This is shown as:

ηc =
Volume(ΩCH)

Volume(ΩV )
(12.2)

where Volume(·) calculates the volume of a convex hull. ΩCH is the convex hull that surrounds the validation experiments
while ΩV is the convex hull that includes the entire domain. The metric proposed by Hemez et al. [4] has a profound ability
to show the distinction between interpolation and extrapolation. Moreover, the metric is objective. This metric however, is
controlled by the positioning of the experiments at the boundaries of the domain, where the addition of experiments within
the convex hull fails to reflect improvement in the coverage, as shown with experiment A in Fig. 12.3.

12.3.3 Stull et al. [7]

The metric defined in Stull et al. [7] creates a convex hull around each individual validation experiment rather than a single
convex hull containing every experiment. The coverage is then defined as the ratio of the summation of the convex hulls
surrounding the validation experiments to the convex hull defining the domain. This is defined as:
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Fig. 12.4 Possible effect of
adding validation experiments on
coverage metric proposed by
Stull et al. [7]

Fig. 12.5 Coverage of clustered
versus uniform arrangement of
validation experiments

ηc =
∑M

i=1 Volume(ΩE,i)

Volume(ΩV )
(12.3)

where ΩE,iis the convex hull surrounding the ith validation experiment and M is the total number of validation experiments.
If the convex hulls from more than one validation experiment occupy the same area, the area is only counted once.

The metric proposed by Stull et al. [7] is subjective as the size of the convex hull surrounding each validation experiment
is based on expert opinion.1 Furthermore, with this metric, a validation experiment could be added without improving the
coverage, if the existing convex hulls completely engulf the convex hull of an additional validation experiment, as shown in
Fig. 12.4.

Stull et al.’s [7] metric neither recognizes large unexplored regions in the domain nor differentiates between interpolation
and extrapolation as the validation experiments could be clustered in one region of the domain and achieve the same coverage
as a more distributed arrangement if there is no overlap of the convex hulls, as shown in Figs. 12.5 and 12.6.

The metric proposed by Stull et al. [7] should be given more credit than Figs. 12.4, 12.5, and 12.6 suggest, which
present carefully-chosen, problematic situations for this metric. Using expert opinion to vary the size of the convex hull
associated with each individual validation experiment may alleviate some limitations and provide an improved quantification
of coverage. However, doing so forces the metric to rely heavily on experimental opinion and increases subjectivity.

The discussion presented in this section is summarized in Table 12.1. Note that each metric fails at least one criterion but
each criterion is passed by at least one metric.

1 A more objective criterion could also be used, where the size of each convex hull surrounding a validation experiment is based on a sensitivity
analysis of the model; therefore, if the model predictions change rapidly around a point, then the size is made smaller.
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Fig. 12.6 Effect of
interpolation/extrapolation ratio
on coverage

Table 12.1 Criterion satisfaction
for Atamturktur et al. [8], Hemez
et al. [4], and Stull et al. [7]

Criterion Atamturktur et al. [8] Hemez et al. [4] Stull et al. [7]

1 Pass Fail Improved but imperfect
2 Pass Fail Improved but imperfect
3 Fail Pass Fail
4 Pass Pass Fail

Fig. 12.7 Example zone of
interpolation and extrapolation
for a two dimensional domain

12.4 Proposed Coverage Definition

Hemez et al. [18] suggests that better definitions of coverage could be developed and applied to the PMI to account for
the number, overall spread, and resolution of validation experiments. We attempt to account for the number and overall
spread of the validation experiments by incorporating the existing sensitivity-adjusted nearest-neighbor metric developed in
Atamturktur et al. [8] on the PMI and adding an extrapolation penalty. Moreover, we account for experimental uncertainty;
validation experiments with a low level of variability would provide a more favorable coverage than validation experiments
with a high level of variability.

12.4.1 Penalizing Extrapolation

The nearest-neighbor metric is modified to account for the dangers of extrapolation discussed in Sect. 12.2. A convex hull
encompassing the validation experiments is defined as in Hemez et al. [4], creating a zone of interpolation as well as a zone
of extrapolation, as shown in Fig. 12.7, where grid points (used to sample the operational domain) that lie outside the zone
of interpolation are subject to an extrapolation penalty equal to the minimum distance between the grid point and the zone of
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Table 12.2 PMI term
definitions [7]

Term Definition

Ψ1

{
tanh(γ1 ×ηc)

1

}
ηc < 1
ηc ≥ 1

Ψ2 tanh
((

NR
NK

)γ2
)

Ψ3 (1−δS)
γ3

Ψ4

[
1− tanh

(
γ4
αS

)]

Ψ5 e−[e−ηc×δS×e−αS ]

interpolation. This penalty is added to the distance between the grid point and the nearest validation experiment, as shown
in Eq. 12.4:

ηc =
1
g ∑g

i=1 min(dE,i)+ dZI,i (12.4)

where, dZI,i is minimum distance between the ith grid point and the zone of interpolation. Distances dE and dZI are shown
in Fig. 12.7. Applying this extrapolation penalty increases ηc and thus, reduces coverage. Through this penalty, validation
experiments are encouraged to be positioned nearer the boundaries of the domain, reducing the zone of extrapolation.

12.4.2 Accounting for Experimental Uncertainty

It is intuitive that a precise validation experiment with a low level of experimental uncertainty provides greater information
than a validation experiment with a high level of experimental uncertainty. Therefore, a coverage metric that attempts to
quantify the quality of a set of validation experiments should incorporate experimental variability. We propose a simple
method to account for experimental uncertainty in the nearest-neighbor metric. The experimental coefficient of variation
(standard deviation normalized with mean) is determined for each validation experiment and expressed as a decimal
percentage. Next, the distance between a grid point and a validation experiment is multiplied by the coefficient of variation
and added to the corresponding distance calculation. This is expressed as:

ηc =
1
g ∑g

i=1 min((1+UE)× dE,i)+ dZI,i (12.5)

where, UE is the coefficient of variation of validation experiment, E . Note that higher experimental variability increases ηc

reducing coverage.
Under this definition, each grid point is classified with the validation experiment that minimizes the sum of the distance

between the grid point and validation experiment with the additional uncertainty penalty. Therefore, a grid point may be
classified with a validation experiment, which is distance-wise further away than another validation experiment, but has a
lower level of experimental uncertainty.

12.4.3 Application to Predictive Maturity Index (PMI)

The PMI incorporates coverage, ηc, robustness, αS, scaled discrepancy bias, δS, and complexity, NK , under the following
definition defined in [7]:

PMI (ηC;NK ;δS;αS) =
5

∏
i=1

Ψi (12.6)

where ψi are shown in Table 12.2, with positive, user-defined coefficients γ1, γ2, γ3, and γ4. The purpose of the gamma values
is to weigh the effect of each attribute on the PMI. Each attribute is bounded between 0 and 1 so the PMI is naturally bounded
between 0 and 1.

In the current form of the PMI, improved coverage is indicated by a higher metric value. However, in the proposed
coverage metric, a lower value indicates improved coverage. Therefore, the functional form of coverage in the PMI must be
modified. From Table 12.2, coverage is included in two of the five terms in the PMI calculation: Ψ1and Ψ5. We propose the
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following definition for the Ψ1term to closely match the behavior of the existing definition:

Ψ1 = e−γ1(ηc) (12.7)

Using this definition, the Ψ1term is bounded between 0 and 1 with a higher value corresponding to a better coverage of the
domain and therefore, an improved predictive maturity. The term asymptotically approaches a value of 1 as the coverage
improves, preserving the asymptotic properties of the PMI.

The proposed coverage metric is implemented in the Ψ5 term exactly as the discrepancy attribute, where a lower value
indicates greater predictive maturity (Eq. 12.8). The Ψ5 term ensures that predictive maturity asymptotes to 1, or “perfect”
maturity, only if discrepancy and coverage both tend to zero. Hence, merely achieving “perfect” coverage (as ηc → 0) or
“perfect” predictions (as δ → 0) does not yield a PMI value equal to 1, both must occur simultaneously.

Ψ5 = e−[ηc×δS×e−αS ] (12.8)

This definition of the Ψ5 term aligns well with the current definition and produces a greater value when the coverage is
improved. All other terms of the PMI are unchanged.

12.5 Application to Viscoplastic Self-Consistent (VPSC) Code

The proposed coverage metric is implemented on the Viscoplastic Self-Consistent (VPSC) code for modeling stress-strain
response and textural evolution of 5182 aluminum alloy. The VPSC code developed in [19] predicts plastic deformations
considering both climb and glide dislocation at the single-crystal level. The multivariate C&G model has 2 control parameters
(temperature and strain rate), 12 calibration parameters, and 3 outputs (stress-strain response, and textural evolution at two
faces of the material). In [5], the 12 calibration parameters are calibrated against physical validation experiments measuring
stress at a strain equal to 0.6, textural evolution of the 001 pole, and textural evolution of the 101 pole. The 001 and 101 poles
represent orientations and are used to describe the structure of a crystal. In [20], these calibrated values are considered to be
“true” values to allow for a simulated Batch Sequential Design (BSD) study.

12.5.1 Batch Sequential Design (BSD)

In BSD, information from available experiments is used to select the optimum settings of future experiments in batches
of user-selected sizes. The proposed coverage metric is deployed on the experiments selected in [20] using the Expected
Improvement for Predictive Stability (EIPS) criterion. The EIPS criterion is an index-based criterion that stabilizes the
discrepancy bias using the Kullback-Leibler distance between the current and future distributions of discrepancy. The initial
experimental settings (batch 0) and BSD selected settings are shown in Fig 12.8. A GPM for the discrepancy bias is trained
using the data available from the initial experimental settings. Next, BSD is deployed to determine the optimal locations
of experiments in the first batch. These experiments are simulated by running the VPSC code using the settings of control
parameters (temperature and strain-rate) selected by BSD and the exact values of the calibration parameters determined in
[5]. With the addition of new experimental data, the model is recalibrated and the process is repeated until completion of the
tenth batch.

12.5.2 Results and Discussion

The operational domain is defined by temperatures between 200 and 550◦C and strain-rates between 0.001 and 1 s−1. The
experimental variation is set to 5% for all experiments. Since the VPSC code is multivariate, the metric value is determined for
stress-strain response, texture 001 evolution, and texture 101 evolution separately and also for the overall model by averaging
the coverage of each output. Each output has a unique sensitivity to the inputs, so the axis scaling is non-uniform between
outputs. The sensitivity of each control parameter to the model output is determined by the spatial dependence parameter, β ,
of the model output. The β parameter, trained using a GPM, describes the dependence of the output on each particular input;
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Fig. 12.8 Experimental settings
selected through BSD (marker
number denotes batch number)

Fig. 12.9 Coverage versus
number of batches

therefore, a control parameter with greater influence on the output will yield a larger β value than a control parameter with
less influence. This sensitivity is determined after the tenth batch, when the maximum information is available. The metric
value after each batch is shown in Fig. 12.9.

The coverage of each individual output as well as the overall model monotonically improves. Additionally, it becomes
apparent that the overall metric value converges to a value around 0.7, and the experiments added in batches 4–10
insignificantly improve the coverage as compared to batches 1–3. This is due to the fact that most experiments added
after the third batch are located near existing experiments (see clustering in Fig. 12.8). By doing this analysis, one may
better understand the extent to which adding experiments beyond the first three batches would not significantly improve the
coverage. This analysis may, therefore, avoid wasting valuable resources.

12.6 Conclusion

The proposed coverage metric is designed around four criteria established in Sect. 12.2: (i) coverage should improve if a
new validation experiment is conducted at new, untested settings within the domain, (ii) poorer coverage should result from
a clustered arrangement of validation experiments that limits exploration to certain regions of the domain, than an equal
number of validation experiments spread more evenly throughout the domain, (iii) coverage should distinguish between
interpolation and extrapolation, due to the lack of clear bounds for extrapolation, and (iv) coverage should be objective,
not subjective. This manuscript modifies the sensitivity adjusted nearest neighbor metric developed in Atamturktur et al.
[8] to encourage experimental designs with validation experiments nearer the boundaries of the domain, thus reducing
extrapolation. The authors propose a method to incorporate experimental uncertainty, thereby accounting for the quality
of each validation experiment. The authors also propose a new functional form of the Predictive Maturity Index (PMI) to
implement the proposed coverage metric. The proposed coverage metric is demonstrated on the multivariate Viscoplastic
Self-Consistent (VPSC) code.

The usefulness of the proposed coverage metric goes beyond implementation in the PMI. The metric can be used to
directly compare multiple designs of experiments with varying experimental uncertainties. Furthermore, the metric could be
implemented as a Batch Sequential Design (BSD) selection criterion to select the future settings of validation experiments.
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As a distance-based criterion, the metric could be combined with an index-based criterion to create a selection criterion,
similar to the Coverage Augmented Expected Improvement for Predictive Stability (C-EIPS) criterion developed in [20],
which simultaneously explores the entire domain and exploits regions with high variance in the discrepancy bias.

Future work includes applying the proposed coverage metric to additional numerical models. Also, the metric must be
applied to high-dimension models with an investigation of the computational demands of evaluating the metric at a high
dimension and sufficient grid size.
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Chapter 13
Orthogonality for Modal Vector Correlation: The Effects of Removing
Degrees-of-Freedom

Michael L. Mains

Abstract This paper reviews the weighted orthogonality property of modal vectors, the many Test-Analysis Model (TAM)
transforms that have been developed to reduce Finite Element Model (FEM) based mass matrices and the Modal Assurance
Criterion (MAC). These associated technologies have all been developed to try and correlate the FEM and experimentally
obtained mode shapes. A case study is presented where the Effective Independence method for Degree-of-Freedom (DOF)
selection was used to systematically reduce the DOF’s of the FEM and understand the effects of DOF reduction on MAC,
the Guyan TAM and the System Equivalent Reduction/Expansion Process (SEREP) TAM.

Keywords Modal correlation orthogonality TAM DOF

Nomenclature

[Q] Orthogonal matrix

[I] Identity matrix

λr Natural frequency of mode r

{φr} Mode shape r

[M] Mass matrix

[K] Stiffness matrix

[Mr] Diagonal matrix modal mass

[Kr] Diagonal matrix modal stiffness

{
xa

xo

}
Displacement vector at the full FEM DOF’s

{xa} Displacement vector at the a-set DOF’s

m Dimension of the full FEM DOF’s

a Dimension of the matching a-set FEM and test DOF’s
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o Dimension of the omitted FEM DOF’s (o-set)

N Number of target modes

[T ] mxa TAM transformation matrix

[Mred] Reduced mass matrix

[AOC] Auto-orthogonality check

[XOC] Cross-orthogonality check

[E] Matrix of experimentally obtained mode shapes

[Φ] Matrix of analytically obtained mode shapes

[Φa] a-set partition of the matrix of analytically obtained mode shapes

[Φo] o-set partition of the matrix of analytically obtained mode shapes

{ê} Vector of an expanded test mode shape

{e} Vector of a test mode shape

[Ê] Matrix of expanded test mode shapes

[E] Matrix of test mode shapes

[Koo] o-set matrix partition of the stiffness matrix

Kaa a-set matrix partition of the stiffness matrix

Koa oxa-set matrix partition of the stiffness matrix

Kao axo-set matrix partition of the stiffness matrix

Moo o-set matrix partition of the mass matrix

Maa a-set matrix partition of the mass matrix

Moa oxa-set matrix partition of the mass matrix

{q} Vector of modal coordinates

[P] Projector matrix

13.1 Introduction

The concept of using the weighted orthogonality property to determine correlation between FEM and experimentally
obtained modes shapes began in the 1960’s when Guyan [1] and Irons [2] applied the static reduction to the dynamics
problem. While this method has no error when used for developing a reduced stiffness matrix for linear and non-linear
statics problems it has been shown to introduce error when used to reduce mass and stiffness matrices for computing mode
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shapes and natural frequencies. O’Callahan [3] introduced the Improved Reduced System (IRS) in 1989 to try and improve
on the accuracy of Guyan reduction. Freed [4] showed that both Guyan and IRS introduce error in the frequencies of the
calculated mode shapes and that IRS was indeed an improvement over Guyan.

Allemang and Brown [5] approached the problem of modal vector correlation by applying the ordinary coherence
calculation associated with Frequency Response Function measurements to Modal Vectors. Their development of the Modal
Assurance Criterion (MAC) has many uses in modal analysis and many similar criteria have been developed to better
understand and compare the many vectors that are associated with structural dynamics [6] The primary advantage of their
technique for FEM and Test Modal Vector Correlation is that a reduced mass matrix from the FEM is not required.

Once computer horsepower and algorithms such as Lanczos [7] and Simultaneous Vector Iteration(SVI) [8] allowed
accurate and fast extraction of Mode Shapes from Larger FEM’s, Kammer [9] and O’Callahan [10] developed similar
methods that used a subset of modes to perform a model reduction that created minimal error in the mode shapes and
natural frequencies of the reduced model. The main difference between Kammer’s Modal Test-Analysis Model (TAM) and
O’Callahan’s System Equivalent Reduction/Expansion Process (SEREP) TAM can be viewed in the partition of the a-set rows
of the TAM transformation matrix. In Kammer’s Modal TAM the a-set partition is enforced to be identity while this may not
the case with SEREP. A simple way to think about this is that when the Modal TAM is used for modal vector expansion, the
a-set Degrees-of-Freedom (DOF’s) of the expanded modes are unmodified, whereas with the SEREP TAM the a-set DOF’s
of the expanded modes are smoothed. One issue with both of these methods is that the resulting reduced mass and stiffness
matrices are rank deficient and only the modes included in the analysis were extracted. Since the a-set DOF’s are often larger
than the number of modes that were extracted, this was seen as a deficiency. Kammer [11] developed the Hybrid TAM which
combined the Modal and Guyan TAM to overcome this obstacle. Mains [12, 13] observed the different combinations of
Guyan, IRS, Modal, SEREP and projector matrices could be combined to form eight different Hybrid TAM’s each resulting
in slightly different results for orthogonality comparisons. Most recently a new TAM was developed by Marinone [14] that
provides reduced matrices of full rank similar to what a Hybrid TAM using SEREP and Guyan or IRS might provide.

Freed [3] introduced the concept of the TAM which is the full FEM DOF’s (denoted by m) by the Test DOF’s (denoted
by the subscript a or commonly referred to as the “a-set”) transform matrix used by all the aforementioned methodologies
(except MAC) to reduce the mass matrix of the FEM to the a-set dimensions of the test. This transform can also be used to
expand experimentally derived mode shapes or operating data to the full FEM shapes. The TAM concept is a simple way
express and to see conceptually the similarities and differences amongst the various methods.

Because all of the above methods for vector correlation are so sensitive a-set DOF selection or sensor placement, much
research and development has been focused on pre-test Analysis sensor selection [15–17]. Much of pre-test Analysis focuses
on using the FEM target modes for developing the best a-set DOF’s and evaluating orthogonality using the various TAM’s
with respect to the reduced FEM modes [3,18–20]. Also, the Coordinate Orthogonality check (CORTHOG) was developed in
order to try and understand which DOF’s were contributing to the poor diagonal and off-diagonal terms or the orthogonality
checks [19].

Much current research work, known as VIKING [21–23], still uses the SEREP TAM but avoids any attempt at correlation
of FEM and Test altogether. Instead the TAM, using carefully selected test DOF’s (avoiding non-nodal or noisy DOF’s) and
Test data are used augment the FEM. The test augmented FEM is then used to try and calculate full field stress and strain
distributions, damage detection, Frequency Response Functions (FRF’s) at rotational or unmeasured DOF’s, etc.

13.2 Weighted Orthogonality of Modal Vectors

The word orthogonal comes from the Greek (orthos), meaning “straight”, and (gonia), meaning “angle”. In elementary
geometry, two vectors are orthogonal if they are perpendicular; their dot product is zero; if they form a right angle [24].
In some parameter estimation algorithms we use “orthogonal polynomials” to improve the conditioning of the numerics.
In linear algebra we have, an orthogonal matrix, which is a square matrix with real entries whose columns and rows are
orthogonal unit vectors and the transpose of the matrix times itself, is an identity matrix:

[Q]T [Q] = [Q][Q]T = [I] (13.1)

Thus the transpose of the matrix is also the inverse:

[Q]T = [Q]−1 (13.2)
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In Modal Analysis we have the undamped equations of motion described in an eigenvalue problem of the form:

−λ 2
r [M]{φr}= [K] {φr} (13.3)

The eigenvectors or mode shapes resulting from the eigenvalue solution to this problem posses a weighted orthogonality of
the form:

[Φ]T [M][Φ] = [Mr] = ModalMass (13.4)

[Φ]T [K] [Φ] =
[
λ 2

r Mr
]
= [Kr] = ModalStiffness (13.4a)

When the modal vectors are scaled to unity modal mass Eqs. (13.4) and (13.4a) become:

[Φ]T [M] [Φ] = [I] (13.5)

[Φ]T [K] [Φ] =
[
λ 2

r

]
(13.5a)

While the weighted orthogonality of modal vectors can be determined by Eqs. (13.4), (13.4a), (13.5) or (13.5a), it is
Eq. (13.5) that is most typically used for orthogonality checks. This is done since the diagonals are conveniently scaled
to one and the fact that most FEM codes scale their mode shapes to Eq. (13.5). For experimentally obtained modal vectors it
is not possible to obtain a mass matrix but it would be convenient to somehow use the FEM mass matrix to validate the FEM
and the experimentally obtained modal vectors, thus motivating the idea of the TAM.

13.3 Test Analysis Models (TAM)

The basic idea behind the TAM is to develop a transform between the full FEM m-set and the Experimental Modal Model
(EMM) a-set space. This can be written as: {xa

xo

}
mx1 = [T ]mxa {xa}ax1 (13.6)

where [T ]mxa is a TAM transformation matrix which maps the EMM a-set space to the full FEM m-set space.
Mass matrix reduction is accomplished by pre-multiplying the FEM mass matrix by the transpose of the TAM

transformation matrix and post-multiplying by the TAM matrix as follows:

[Mred]axa = [T ]Taxm [M]mxm [T ]mxa (13.7)

The Auto-Orthogonality check (AOC) often referred to as the Pseudo-Orthogonality (POC) is the triple product of the
experimentally obtained mode shapes transposed, multiplied by the reduced mass matrix, multiplied by the experimentally
obtained mode shapes:

[AOC]NxN = [E]TNxa [Mred]axa [E]axN (13.8)

To check the error introduced by the TAM reduction, the AOC can use the a-set partition of the analytically obtained mode
shapes:

[AOC]NxN = [φa]
T
Nxa[Mred ]axa[φa]axN (13.8a)

The Cross-Orthogonality (XOC) is the triple product of the experimentally obtained mode shapes transposed, multiplied by
the reduced mass matrix, multiplied by the a-set partition of the analytically obtained mode shapes:

[XOC]NxN = [E]TNxa [Mred]axa [E]axN (13.9)

Both AOC and XOC assume that the FEM and Test modes are scaled to unity modal mass. For perfect correlation between
FEM and test models one would hope that the AOC and XOC matrices would be identity, in reality that is never the case.
The industry standard for acceptable correlation is less the 0.10 on the off-diagonals and between 0.9 and 1.1 on the diagonal
or correlated modes.

Alternatively, modal vector expansion (typically expanding experimental mode shapes or operating shapes) to the FEM
space is accomplished by simply applying Eq. (13.6) to the shapes of interest:

{ê}mx1 = [T ]mxa {e}ax1 (13.10)
[
Ê
]

mxn = [T ]mxa [E]axn (13.11)
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While AOC and XOC could be computed using the expanded test modes [Ê] with the full FEM modes the computation is
more expensive and the results can be shown to be equivalent.

13.3.1 Guyan

The Guyan Reduction is the static superelement analysis applied to the dynamics problem. The Guyan Reduction was
historically used to reduce to the size of the FEM eigensolution. There are now better methods to perform large eigensolutions
(Lanczos [7], SVI [8], etc.). Guyan Reduction is still probably the most common way to reduce the FEM mass matrix. It
is typically required for Airplane and Satellite Ground Vibration Tests (GVT’s) and it is easy to perform in FEA software.
To see how Guyan Reduction is derived let’s start with the linear statics problem partitioned into our a-set DOF’s and the
omitted or o-set DOF’s: [

Koo Koa

Kao Kaa

]

mxm

{
xo

xa

}

mx1

=

{
fo

fa

}

mx1

(13.12)

Since the o-set are internal, it is assumed that no external forces are applied, since we can set fo to zero we can develop an
expression for xo in terms of xa:

[Koo]{xo}+[Koa]{xa}= {0} (13.13)

{xo}= [Koo]
−1 [Koa]{xa} (13.14)

Referring back to Eq. (13.6), the Guyan TAM can be written as:

{xa
xo

}
mx1 =

[
[I]

[Koo]
−1 [Koa]

]

mxa

{xa}ax1 (13.15)

where:

[TS] =

[
[I]

[Koo]
−1 [Koa]

]

mxa

=
[
[I]
[ts]

]
(13.16)

Note that the transform only contains stiffness terms, making the accuracy of this transform very sensitive to a-set quantity
and selection.

13.3.2 Improved Reduced System (IRS)

The IRS TAM was developed to try and improve on the Guyan reduction. Refer to O’Callahan’s [3] paper for the complete
derivation.

[TIRS] =

[
[I]

[tS]+ [tD]

]
(13.17)

where:
[tD] =− [Koo]

−1 [[Moa]+ [Moo] [ts]] [Maa] [Kaa] (13.18)

Note that the transform, while, more computationally expensive, does contain mass and stiffness terms, making this transform
more accurate and less sensitive to a-set quantity and selection.

13.3.3 System Equivalent Reduction/Expansion Process (SEREP)

The derivation of SEREP [10] begins with recalling the modal transform for the FEM:

{x}mx1 = [Φ]mxN {q}Nx1 (13.19)
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Partitioning the equation into a-sets and o-sets yields:

{xa
xo

}
mx1 =

[
Φa
Φo

]
mxN

{q}Nx1 (13.20)

{xa}ax1 = [Φa]axN {q}Nx1 (13.20a)

{xo}ox1 = [Φo]oxN {q}Nx1 (13.20b)

Solving for {q} in Eq. (13.20a) yields:
{q}Nx1 = [Φa]

+
Nxa {xa}ax1 (13.21)

where (+) denotes the pseudo-inverse of a matrix. Substituting (13.21) into Eq. (13.20) provides the relationship between
the a-set and full m-set (a-set and o-set) DOF’s as:

{xa
xo

}
mx1 =

[
Φa
Φo

]
mxN

[Φa]
+
Nxa {xa}ax1 (13.22)

[TSEREP] =
[[

Φa
Φo

]
mxN

[Φa]
+
Nxa

]
mxa

= [Φ]mxN [Φa]
+
Nxa (13.23)

When using this transform to reduce mass and stiffness matrices, N is typically less than a, resulting in rank deficient
matrices, but retaining the full accuracy of the original N FEM modes in frequency and full mode shape accuracy. When this
transform is used for test shape expansion the modes at the a-set are smoothed.

13.3.4 Modal

The Modal TAM [9] is very similar to SEREP, except that the a-set modes are unmodified (not smoothed). This is
accomplished by realizing there is a direct representation of {Xa}:

{xa}= [I]{xa} (13.24)

and substituting Eq. (13.21) into Eq. (13.20b) providing the relationship between the a-set and o-set DOF’s as:

{xo}= [Φo]oxN [Φa]
+
Nxa {xa}ax1 (13.25)

Referring back to Eq. (13.6), the Modal TAM can be written as:

{xa
xo

}
mx1 =

[
[I]

[Φo]oxN [Φa]
+
Nxa

]

mxa

{xa}ax1 (13.26)

defining the Modal TAM as:

[TModal ] =

[
[I]

[Φo] [Φa]
+

]

mxa

(13.27)

When using this transform to reduce mass and stiffness matrices, N is typically less than a, resulting in rank deficient
matrices, but retaining the full accuracy of the original N FEM modes in frequency and full mode shape accuracy. When this
transform is used for test shape expansion the modes at the a-set are unmodified.

13.3.5 Hybrid

The Hybrid TAM was developed by Kammer [11] to provide the exact modal representation provided by the Modal TAM and
the residual information provided by the Guyan reduction. The reduced matrices of the Hybrid TAM are not rank deficient
with the eigenvalue decomposition giving the mode shapes and natural frequencies that the Modal TAM would provide for
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Table 13.1 Summary of hybrid
TAM combinations

Hybrid no. Projector TAM combinations

1 Oblique Modal Guyan
2 Orthogonal Modal Guyan
3 Oblique SEREP Guyan
4 Orthogonal SEREP Guyan
5 Oblique Modal IRS
6 Orthogonal Modal IRS
7 Oblique SEREP IRS
8 Orthogonal SEREP IRS

the N target modes included in the aforementioned Modal TAM plus the additional information that the Guyan Reduction
would provide for the remaining model order (a-set minus the target modes (a−N)). The Hybrid TAM is given as:

[
THybrid

]
= [Ts] + [[TModal ]− [TS]] [P] (13.28)

The projector matrix [P] is given in both its oblique and orthogonal forms as:

[Poblique] = [Φa] + [Φa]
T [TModal ]

T [M] [TModal ] (13.29)

[Portho] = [Φa] [Φa]
+ (13.30)

Mains [13] observed that in addition to the oblique and orthogonal forms of the Hybrid TAM, that SEREP could be
substituted for the Modal TAM and IRS could be used instead of the Guyan TAM. Table 13.1 summarizes the eight different
Hybrid TAM’s combinations that are possible.

13.4 Modal Assurance Criteria (MAC)

In the absence of a reducible FEM mass matrix, correlation between modal vectors can be determined thru the use of the
MAC. One advantage of MAC is that because it doesn’t use a mass matrix, errors created by reducing a mass matrix are not
incorporated into the calculation. MAC was modeled after the development of the ordinary coherence calculation associated
with interpreting the quality of measured FRF’s. MAC is defined as the scalar constant relating the degree of consistency (or
linearity) between one modal vector and another:

MACij =

{
φ j
}H {φi}{φi}H {φ j

}
{

φ j
}H {φ j

}{φi}H {φi}
(13.31)

Refer to Allemang [6] for all the various forms the MAC can be expressed in.

13.5 Orthogonality Using SEREP

One interesting characteristic of the SEREP TAM is that only the information needed to develop a reduced mass matrix is an
accurate calculation of the FEM mode shapes and a specification of the a-set DOF’s.

Substituting the SEREP TAM of Eq. (13.23) into the general Eq. (13.7) for reducing mass matrices to the a-set results in:

[Mred ]axa =
[
[Φ][Φa]

+
]T

axm [M]mxm
[
[Φ] [Φa]

+
]

mxa (13.32)

[Mred ]axa = [Φa]
+T
axN [Φ]TNxm [M]mxm [Φ]mxN [Φa]

+
Nxa (13.33)
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Since the property of weighted Orthogonality holds true for the FEM modal vectors:

[I]NxN = [Φ]TNxm [M]mxm[Φ]mxN (13.34)

Equation (13.33) then reduces to:
[Mred ]axa = [Φa]

+T
axN [Φa]

+
Nxa (13.35)

Resulting in a SEREP reduced mass matrix that only used the FEM mode shapes at the a-set DOF’s. Note that this same
simplification does not work for the other TAM’s including the Modal TAM. This makes SEREP orthogonality easy and
convenient to compute since only the FEM modes are required. The other TAMS typically must be computed in FEM
software, sometimes with special scripts (referred to DMAP alters in Nastran) and exported to Correlation software for
orthogonality computations.

13.6 Previous Work

Freed [3] and Mains [12, 13] looked at the performance of the various TAM’s by investigating several of the different
TAM methods with several sets of sensors. From the analysis performed it was very difficult to determine if a given TAM
performed better than another. Mains [20] then looked at the effect of sensor cross-sensitivity and mis-alignment on modal
vector correlation. He found that it was very easy to find significant variations in the orthogonality calculations (values greater
than 0.1) for the normal amounts of error typically found in today’s transducers. This previous work strongly suggests that
it is very easy to see off-diagonal terms greater than 0.1 just from sensor selection error, poor choice of TAM or common
measurement errors. In other words off-diagonal terms greater than 0.1 can occur even if the FEM and test are perfectly
correlated.

13.7 Optimal DOF Selection and Decreasing DOF’S

13.7.1 Expected Results

Given an initial set of Orthogonal Modes from a FEM, one would expect that as we reduce the DOF’s the MAC and
Orthogonality will degrade. Given that MAC is missing the mass matrix it is expected that it will degrade quicker as a
function of decreased DOF, than orthogonality checks. Since Guyan is a static reduction ignoring the effects of the mass
matrix, we also expect it to degrade rather quickly as DOF’s are reduced. The IRS TAM tries to account for missing mass
yet, is will still degrade, but perhaps at a slower rate. Because Modal and SEREP include the target modes of interest they are
much less sensitive to sensor location and in fact may not degrade severely until the pseudo-inverse involved in both methods
becomes ill-conditioned. Because we are starting with perfectly correlated modes with no noise, we expect that the Hybrid
TAM’s will produce the same results as the as their Modal and SEREP cousins. As the studies grow to include modes that
are not exactly correlated, it will then be interesting to see how the Hybrid TAM’s perform. Figure 13.1 illustrates what result
we might expect from any FEM, with any set of target modes as the number of DOF’s are decreased in an optimal manner.
For each TAM it’s also expected that a different DOF selection method must be used to reach the optimal or minimum error.

13.7.2 Removing DOF’s Using Effective Independence

A FEM was built for an Aluminum plate of dimensions 290×250×8mm using 1116 CQUAD4 elements resulting in 1,184
nodes and 7,104 DOF’s. The first six flexible modes were used as target modes. For this study MAC, SEREP and the Guyan
TAM were used to reduce the mass matrix. DOF’s were first removed by removing all rotational DOF’s, then removing
DOF’s in the X and Y directions. DOF’s then were then removed one-by-one using the Effective Independence [15] as the
method of selection.

Because Effective Independence tries to maximize the amount of modal response, thus avoiding nodes of modes and
picking locations at the edges, instead of picking areas of high mass to stiffness ratio we see that MAC and Guyan degrade
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rather quickly. We see MAC rise above 0.1 on the off-diagonal as soon as 650 DOF’s and Guyan is above 0.1 at 410 DOF’s.
It’s expected that if a Genetic Algorithm was used with the proper fitness equation for MAC and for Guyan results could be
improved substantially (Figs. 13.2 and 13.3).

Much work has been done on pre-test and sensor placement algorithms [16,17] especially in the area of genetic algorithms
to select a near-optimal set of sensors for a fitness equation that is appropriate for the MAC or TAM orthogonality condition
that is to be met. It is expected that if a similar study was performed as above only using the appropriate fitness equation for
each TAM, then curves would be calculated that more closely meet the expected results presented in Fig. 13.1. Future work
would not only include using genetic algorithms to find optimal sensor sets, but also the introduction of various forms of
noise or modifications to see if the TAM methods blur or distort the expected changes in orthogonality.

13.8 Future Work

There are two areas where this study of DOF reduction can be expanded. Certainly the TAM’s that where omitted should
be included. It’s expected that IRS will outperform Guyan and that Modal and Hybrid TAM’s will give results very similar
to SEREP. This belief about the Modal and Hybrid TAM’s is held because we are using the original analytical vectors. It is
only when we introduce noise or modes that are not correlated with the target modes that we would start to see differences.
Also, any future study should include the use of the genetic algorithm for sensor selection since its optimization criteria are
better tailored to select sensors that minimize the error of each respective TAM and the MAC.
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Further, once performance of all TAM methods have been analyzed, different structures should be analyzed confirming
the author’s hypothesis, that the basic shapes of the curves shown in Fig. 13.1 don’t change substantially regardless of the
structure or the target modes.

Next, error needs to be introduced into the model. Perhaps that needs to be an error that creates a value of 0.1 in at least
one off-diagonal term of the orthogonality matrix. Each method then, as a function of optimal DOF, needs to be evaluated
on its accuracy of identifying the correct orthogonality check matrix.

13.9 Conclusion

While much work is yet to be done, it is believed that an understanding of which TAM to use for modal vector correlation
under different test and model validation circumstances can be determined. While Guyan reduction is the industry standard
for modal vector orthogonality determination, the author believes other methods should prove to be more robust given the
fact that Guyan reduction makes such a gross assumption about the effects of the mass at the o-set or unmeasured degrees
of freedom, while other methods are much more forgiving. It is also believed that the rather arbitrary requirement that the
diagonal terms of the modal orthogonality must between 0.9 and 1.1 and that off-diagonal terms must be less than 0.1 can
more justifiably be set based on the number of DOF’s or sensors used to measure the test structure and the types target modes
(local or global) to be used, thus more reasonable requirements can be set based on a rigorous pre-test analysis.
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Chapter 14
CAE Model Correlation Metrics for Automotive Noise
and Vibration Analysis

Qijun Zhang, Shawn Hui, and Kurt Schneider

Abstract CAE models have become more and more critical for decision making in various stages of the product
development process with less hardware builds and shorten development time. To serve their purpose, it is important to
understand the CAE capability of a model. A metric is essential to quantify this capability as well as track its history for
improvement over the time. In particular, the noise and vibration sensitivity of a vehicle to a unit force or torque in a wide
frequency range is of interest. In this paper, various correlation analysis techniques are applied to the Frequency Response
Spectrum data from a CAE model and hardware test to develop a correlation metric. The comparison between Principal
Component Analysis, Canonical Correlation Analysis and the developed metrics in this paper is presented. The correlation
metrics developed in this paper also matches the subjective evaluation of our CAE capability for different measurement.

Keywords CAE • Correlation • Principal component analysis • Canonical correlation analysis • Noise and vibration

14.1 Introduction

In the production development process, CAE model has become more and more important, specifically in early stage when
hardware is not available. Even in the late stage, less hardware and more CAE is used due to the high cost of the prototype.
Quality CAE models capable to produce credible prediction are essential to support this process. To measure such quality a
methodology needs to be developed with engineering metrics. This metrics not only indicate the CAE capability level but
also identify the weakareas of CAE analysis. Over the time, it also provides a way to track the CAE capability improvement
for both management and technology development purposes.

In Noise and Vibration (NV) analysis of the automotive industry, various methods are used to solve different problems.
In high frequency range (400 Hz–10K Hz), Statistically Energy Analysis (SEA) is used for airborne noise analysis. In low
frequency (< 150Hz), Finite Element Analysis (FEA) is used for both vibration and noise analysis. In the mid-frequency
range (150–500 Hz), a hybrid method of FEA and SEA combination can be used for structure-borne noise analysis.

Regardless the methods or the frequency range, at the end, a frequency spectrum of either noise or vibration is of interest,
which will influence the customer perception ultimately.

Traditionally, a correlation between a CAE analysis and hardware test is a comparison of such frequency spectrum as
shown in Fig. 14.1. A visual comparison of these two curves will provide certain evaluation of the correlation level.

In this comparison, both the level of the peak and the frequency of the peak are important. This plot is only one load case
and one response. Even so, this single spectrum comparison already contains a wide frequency range with many peaks. A
data plot like this provides only a way for an objective evaluation of the correlation level, which certainly depends on each
engineer’s experience and judgment.

In real life, multiple load cases (excitation at different locations, such as torque on engine block, force on spindle, etc.)
and multiple responses (acceleration on seat track, steering wheel, noise in driver and passenger head space etc.) need to
be considered. Such comparison quickly becomes a lot more complicated. A systematic approach to quantify the difference
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between the test results and analysis results will not only provide a consistent objective measure of the correlation level but
also identify the area where the correlation level is low.

Another important aspect of the correlation is A-B comparison. Often time, it is desired to evaluate two or even more
design proposals and the best design is chosen based on CAE analysis. In this case, whether the CAE analysis predicts the
same difference between two designs as the hardware does is more important than the absolute correlation.

14.2 Statistical Analysis Methods [1, 2]

14.2.1 Principal Component Analysis

Consider a set of data (from either CAE or Test) [X ] = [{X1},{X2}, . . .{Xq}] with N observations (in rows, such as
location/direction), each row consists of q variables (in columns such as frequency). The sample covariance matrix [SX̃X̃ ]
is defined as:

[SX̃X̃ ] = [Sij]

Sij =
1

N − 1

N

∑
n=1

X̃ (n)
i X̃ (n)

j

X̃ (n)
i = X (n)

i − X̄i

X̄i =
1
N

N

∑
n=1

X (n)
i

i, j = 1 . . .q (14.1)

where Sii is the variance of X̃i, Sij the covariance between X̃i and X̃ j

The covariance matrix, [SX̃X̃ ], is a q× q symmetric matrix. It is reduced to a diagonal matrix ΛX̃ by pre-multiplying and
post-multiplying a unitary matrix EX̃ such that (prime denotes transpose)

E ′̃
X SX̃X̃ EX̃ = ΛX̃ (14.2)

The diagonal elements of [ΛX̃ ], λ1 ≥ λ2 ≥ ·· · ≥ λ p, p ≤ q, are the eigenvalues (also referred to as latent) of [SX̃X̃ ]. The
columns {ei} of [EX̃ ] are the eigenvectors of [SX̃X̃ ], where ‖ei‖= 1.

The principal component score (PC) {Pi} is the representation of [X̃ ] in the Principal component space with its rows
corresponding to observations,

{Pi}= [X̃ ]{ei} (14.3)
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Each originally observed deviation (row vector) can be written as

{
X̃i.
}
=

p

∑
j=1

{
e j
}

Pi j (14.4)

Each originally observed variable (column vector) can be written as

{
X̃. j
}
=

p

∑
i=1

{Pi}eji (14.5)

Usually only first a few PCs will capture the majority of the information contained in the original observed deviation. Rather
than requiring all q variables to describe the original observations, now we only need a few PCs. Also important is the original
q variables are all correlated, now these reduced components are orthogonal and in the decreasing order of significance. The
significance of each PC can be defined as the contribution using the latent from Eq. (14.2),

δi = λi/
p

∑
i=1

λi (14.6)

For correlation purpose between CAE data and Test data, we now only compare a few PCs instead of all the variables.
PCA is applied to CAE data ([X]) and Test data ([Y]) separately to produce two sets of PCs [PX] and [PY] as Eq. (14.3).

Since each is defined by different projections [EX̃ ] and [EỸ ], the direct correlation between them does not make good sense.
Also chances are the number of PCs required to make up 90 % accumulated contribution can be 5 or even more. Canonical
Correlation Analysis comes to play for further data reduction.

An alternative concept to Canonical Correlation Analysis is that the linear combination given as {ei} in Eq. (14.3) for ith
PC defines one dimension in the Principal component space. The PC is just a projection of the original data into this space.
Once this space is developed for the first set of the data, say Test data, we can project the second set of the CAE data to this
same space without conducting another PCA to the second data set. The correlation between the two sets of data becomes
the correlation between their projections to the same space.

14.2.2 Canonical Correlation Analysis

In statistics, canonical correlation analysis (CCA) is used to understand the correlation between two sets of multivariate
variables. That is to say we want to make sense of their cross-covariance matrices. We have two sets of variables,
X1, X2, X3, . . . , Xp and Y1, Y2, Y3, . . . , Yq, where p and q are the dimensionality of the two observation vectors respectively.
Suppose we found there are correlations among the variables, then canonical correlation analysis will enable us to find linear
combinations of the X’s and Y’s which have maximum correlation with each other. Such pairs of linear combinations are the
canonical variates and their correlation is called canonical correlation.

Typically, CCA is performed on the data matrices X(CAE) and Y(Test), where each of these two matrices consist of the
same N rows of observation vectors. Here the basic thrust is in the use of principal component scores. Suppose that the first
mx and my principal component scores are retained from Px and Py as Eq. (14.3),

Let
P = �PyPx� (14.7)

The covariance matrix of P is

SPP =
1

N − 1
P′P =

1
N − 1

[
P′

yPy P′
yPx

P′
xPy P′

xPx

]

=

[
Syy Syx

Sxy Sxx

]

(my+mx)×(my+mx)

(14.8)

The total covariance matrix is a block matrix where Syy and Sxx are the within-sets covariance matrices of Py and Px

respectively (which are diagonal matrix ΛX̃ as in Eq. (14.2)) and Sxy and Syx are the between-sets covariance matrices.
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The canonical correlation between Px and Py can be found by solving the eigenvalue equations

S−1
xx SxyS−1

yy Syxâ = ρ2â (14.9)

S−1
yy SyxS−1

xx Syxb̂ = ρ2b̂ (14.9’)

where the eigenvalues ρ2 are the squared canonical correlations and the eigenvectors â and b̂ are the normalized canonical
correlation basis vectors. The number of non-zero solutions to these equations is limited to the smallest dimensionality of Px

and Py, i.e., the smaller of mx and my.
The canonical correlations ρ1 > ρ2 > · · ·> ρs, where s = min(mx, my), correspond to the s pairs of canonical variates,

ui = Pyb̂i and vi = Pxâi i = 1,2, . . . ,s (14.10)

Together, they provide the s dimensions of relationship between the two sets of data. The s dimensions of relationship (ui, vi)
are nonredundant; the information each pair provides is totally unavailable in the other pairs.

Also noticed that the canonical correlations are in decreasing order so only the first a few are strongly correlated.

14.3 Noise and Vibration Engineering Metrics

In automotive NVtest and analysis, the response of the vehicle against multiple load conditions is of interest. The load
conditions include operational loads, such as Hard Acceleration, Cruising, and Coarse Road Surface. The operational loads
involve the variation of the excitation, which adds another uncertainty in the correlation. Another type of load condition is a
unit load, or the vehicle sensitivity measurement, such as a unit torque on the engine block or a unit force on spindle. In this
paper, we will focus on the sensitivity correlation.

Since most NV issues are due to either powertrain excitation or road input, following vehicle sensitivity will be considered,

Powertrain Vibration Sensitivity (A/T):
Acceleration at seat track, steering wheel and other body locations to a unit torque on engine block
Road Noise Sensitivity (p/F):
Noise at driver/passenger ear to a unit force on each spindle and each direction
Road Vibration Sensitivity (A/F):
Acceleration at the seat track, steering wheel and other body locations to a unit force on each spindle and each direction

Each one of these engineering metrics will have many spectra to form a large data set.
For statistical analysis as described above, we consider each frequency line as a variable, each response an observation.

A matrix can be used to represent each data set, with each row representing one observation and each column one variable
(frequency line). Various statistical analyses can be applied to this matrix.

In the traditional way, correlation is based on the comparison between CAE and test. When we compare a set of spectra,
the line plot as in Fig. 14.1 will be very crowded and not easy to draw any conclusion. Instead a color map as in Fig. 14.2
will be much better, where the horizontal axis is still the frequency, the vertical axis is the observations. Each horizontal row
represents one observation (one curve as in Fig. 14.1), with the color indicating the level.

This comparison does show the similarity between Test (Left) and CAE (Right). It also shows a similar change of the
response after certain components are disconnected (Top: baseline, Bottom: after disconnection). But still it is a subjective
evaluation with no metrics defined to measure how similar or how different the Test and CAE are.

14.4 Correlation Analysis and Metrics

When the data in Fig. 14.2 is arranged in a matrix form [X] with each row representing an observation and each column a
variable (frequency line in this case), then the statistical analysis as described above can be applied. In this example, a matrix
of 162× 198 is comprised for the test data from 162 observations with each having 198 frequency points. The matrix of the
CAE prediction has the same size. The correlation between them then becomes the comparison of these 162 observations in
a 198 dimension space. The comparison is difficult due to the large number of variables. A Principal Component Analysis
(PCA) will extract the most representative characteristics from the raw data so that the correlation will be on a much smaller



14 CAE Model Correlation Metrics for Automotive Noise and Vibration Analysis 139

Fig. 14.2 Test vs. CAE with 54 observations. A/T with 18 acceleration locations and 3 directions. Left: test, Right: CAE, Top: baseline, Bottom:
with components disconnected

set of data. In other words, we want to compare the dispersion patterns of these two sets of 162 point in a 198 dimension
space. By using principal component analysis, such comparison is simplified to a reduced, but most relevant subspace.

14.4.1 PCA Based Correlation Metrics

A PCA is applied to the test data matrix first. The latent (as defined above) and accumulated contribution of the first
12 Principal Components are shown in Fig. 14.3. Each Principal Component Score {Pi} as Eq. (14.3) is a vector, which
represents the characteristic of the data set across all the variables (frequency lines). This analysis shows that the variation
between observations (response at different locations and directions) has different characteristics at different frequency
(variable) such that no single Principal Component Score dominates the entire data population. To reach 90 % accumulated
contribution as many as 12 PC’s are required. Even so, the number of dimension is now reduced from 198 to 12.

Each PC is a vector (162× 1), which is actually a projection of the original data [X̃ ] to this Principal Component space

as in Eq. (14.3), where {ei} is a unit length vector
198
∑
j=1

e2
ji = 1.0. This also shows that the PC is a weighted average of all

variables (frequency).
Apply the same projection of {ei} onto the CAE deviation matrix Ỹ to produce a new vector

{Pi}=
[
X̃
]{ei} , {Qi}=

[
Ỹ
]{ei} (14.11)

where [Ỹ ] is the CAE deviation matrix in the same observation order as in the test.
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Fig. 14.3 PCA of the test data. Bar: latent of each PC, Line: accumulated contribution of each PC

0 20 40 60 80 100 120 140 160 180 200

Test(100,:)
Reconstruct Test(100,:)
Reconstruct CAE(100,:)

Fig. 14.4 Reconstructed observations compared to raw data. — test raw data, reconstructed test data with {Pi}, reconstructed CAE data with {Qi}

Even with a small set of PC’s, the majority information of the original data can be captured. As an example, the observation
#100 can be reconstructed using only 12 PC’s as shown in Fig. 14.4, which is very close to the original data,

Certainly if CAE is a perfect match to the test data, {Pi} = {Qi}. In reality, these two vectors are different. A correlation
coefficient is defined between these two vectors as below,

ρi =
∑n

j=1 (x j − x̄) (y j − ȳ)√
∑n

j=1 (x j − x̄)2
√

∑n
j=1 (y j − ȳ)2

(14.12)

where x j and y j are jth entry in {Pi} and {Qi}.
The correlation coefficient defined above has the range of −1.0 to 1.0, with 1.0 for a perfect match, 0 for completely

uncorrelated and −1.0 indicating a negative correlation (negative correlation could mean that the model prediction indicates
opposite direction as the test). In real cases, it is most often in the range of 0.0–1.0.



14 CAE Model Correlation Metrics for Automotive Noise and Vibration Analysis 141

Fig. 14.5 Correlation coefficient of the first five principal components

Fig. 14.6 The first 3 CV’s of canonical correlation analysis (Left: test, Right CAE)

The correlation coefficients of the first 5 PC’s are shown in Fig. 14.5.
The overall correlation coefficient is expressed as the weighted average of all ρi,

ρ = ∑12
i=1 wiρi (14.13)

where wi is the contribution of each PCs with ∑wi = 1.

14.4.2 Canonical Correlation Analysis

When a PCA is applied to the CAE data in the same way as to the test data, another 12 PCs are calculated. Following analysis
is between these two sets of PC’s. Even though the number of variables is greatly reduced after PCA (from 198 to 12), but it
is still too many for a correlation.

Canonical Correlation Analysis (CCA) is a method to measure the linear relationship between two multidimensional
variables. It finds the maximum correlation coefficient between these two sets of 12 PC’s from Test and CAE by finding and
applying a transformation to each. It then finds the next maximum, which is orthogonal to the previous projection, and so on.
This analysis will help to investigate the relationship between two large data sets.

As an example shown in Fig. 14.6, a 3D plot shows the top 3 CV’s (Canonical Variates as in Eq. (14.10)) of CCA for both
Test (left) and CAE (right) with x/y/z direction response separated. Each dot represents the top 3 CV’s for one observation.
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They are shown in three groups for X/Y/Z directions. First it shows that y direction response is significantly different from
x and z direction due to the separation in the pattern. This makes sense since the excitation is engine block torque in Y
axis, which will produce more translational response on vehicle body x and z direction than y direction. Secondly the scatter
pattern between CAE and Test is similar, which indicates a good correlation. Even further, the labeled dots closely match
also in this 3-d space, which represent each observation. For example, #62 for Y direction, #118 for X direction are in similar
locations between Test and CAE. This plot is a way to emphasize or magnify the similarity or difference between Test and
CAE. As an example, there is a black dot mixed in red dots on the left but not on the right. The black dot (for an observation
in X direction) is certainly an outlier, which is hard to identify in the raw data. In this case, though, this outlier turns out to
be a user error by mislabeling X as Y in the test data.

Figure 14.7 shows the Canonical Correlation of all 12 variates. The first few have very high correlation (close to 1.0).

14.5 Conclusion

In an effort to understand the correlation of the CAE model to the test data taken, Principal Component Analysis and
Canonical Correlation Analysis methods were used to evaluate how similar the model and the test data were. These methods
looked across multiple load cases such that a simple and objective statement of correlation could be made, relative to the
overall performance of the model as compared to test, rather than focusing on a single load case. This gives a view of the
capability of the CAE model as whole, against many potential loads and boundary conditions.
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Chapter 15
Damage Localization Using a Statistical Test on Residuals
from the SDDLV Approach

L. Marin, M. Döhler, D. Bernal, and L. Mevel

Abstract Mechanical systems under vibration excitation are prime candidate for being modeled by linear time invariant
systems. Damage localization in such systems, when the excitation is not measurable, can be carried out using the Stochastic
Dynamic Damage Locating Vector (SDDLV) approach, a method that interrogates changes in a matrix that has the same
kernel as the change in the transfer matrix at the sensor locations. Damage location is related to some residual derived from
the kernel. Deciding that this residual is zero is up to now done using empirically defined thresholds. In this paper, we
describe how the uncertainty of the state space system can be used to derive uncertainty on the damage localization residuals
to decide about the damage location. The results are illustrated in finite element models of a truss and of a plate.

Keywords Ambient vibration • Covariance analysis • Damage localization • Hypothesis testing • Load vectors.

15.1 Introduction

Alternative approaches to visual inspections of physical structures, such as bridges and buildings, have been provided by
vibration-based monitoring techniques. Sensors installed in the structures collect data and statistical approaches originated
from stochastic system realization theory for linear systems provide estimates for the parameters of interest. The time
evolution of the data is characterized by system matrices of the underlying linear system. The eigenstructure of those
matrices relate directly to some parameterization of interest for the monitoring of structures, usually the modal parameters
(natural frequencies, damping ratio and mode shapes), and subsequently to the finite element model (FEM). Fault detection
(damage detection for mechanical structures) and fault isolation (damage localization) can be inferred from changes in these
parameters.

Assuming that damage occurs, [1] presents alternate damage localization techniques using both finite element information
and modal parameters: the Stochastic Dynamic Damage Location Vector (SDDLV) approach. From estimates of the system
matrices in both reference and damaged states, the null space of the difference between the respective transfer matrices
is obtained. Then, damage is related to a residual derived from this null space and located where the residual is close
to zero. Empirical thresholds are currently used for decision without considering the intrinsic uncertainty, which happens
due to unknown noise excitation and limited data length in the identification of system matrices. The lack of uncertainty
consideration is critical: no information is available on the choice of threshold for deciding whether the lowest residual is
zero or not in practical situations. Nevertheless, sensitivity based methods, such as presented in [2] and [3], provide some
guidelines to derive uncertainty estimates for modal parameters, and an efficient sensitivity computation of these quantities
has been derived in [4–6].

This paper aims to replace empirical rules by sensitivity-based rules for applying some damage localization criterion,
and is organized as follows. In Sect. 15.2 the SDDLV approach is introduced as a method for stochastic damage localization

L. Marin (�) • L. Mevel
INRIA, Centre Rennes – Bretagne Atlantique, Campus de Beaulieu, F-35042 Rennes, France
e-mail: luciano.gallegos@inria.fr; laurent.mevel@inria.fr
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of mechanical structures from output-only signals. In Sect. 15.3, the covariance of the system matrices is propagated to the
damage localization residuals. In Sect. 15.4, numerical examples are provided. Finally, some conclusions of this work are
presented in Sect. 15.5.

15.2 The SDDLV Approach

The SDDLV, derived in [1, 7], is an output-only damage localization method based on interrogating changes δG in the
transfer matrix G of a system, which is related to a FEM to localize damage without using a detailed model. Typically, the
SDDLV is performed in two data sets: one from undamaged (reference) state and another from damaged state. Load vectors
of the null space of δG are then used for the computation of a stress field over the structure in order to indicate the damage
location: Stresses are measures of internal reactions to external forces applied on a deformable body, where (in the method
to be described) zero stress over elements of a structure indicates changes in the flexibility and consequently damage. The
basic principles and underlying models of the SDDLV are introduced in this section.

15.2.1 Dynamical Equation and State-Space Model

The behavior of a mechanical structure is assumed to be described by a linear time-invariant (LTI) system and represented
by the corresponding continuous-time state-space model

{
ẋ = Acx+Bce
η = Ccx+Dce

, (15.1)

where x ∈ R
n is the state, η ∈ R

r is the output, Ac ∈ R
n×n is the state transition matrix, Bc ∈ R

n×r is the input influence
matrix, Cc ∈ R

r×n is the output mapping matrix, Dc ∈ R
r×r is the direct transmission matrix. The fictive force e(t) acts only

in the measured coordinates and that re-produce the measured output, n is the system order and r is the observed outputs
coordinates. If all the modes of the LTI system were identified then n = 2d. In practice this is seldom the case, so what
one gets from identification is a reduced model order n � 2d. Since SDDLV is an output-only method, the non-identified
matrices Bc and Dc are used in order to derive properties of the transfer matrix [1]. Only the system matrices Ac and Cc are
relevant for system identification in this paper.

15.2.2 Damage Localization Procedure

The damage localization in mechanical structures with output-only data can be determined with the null space vectors for
the SDDLV technique. Like this, damage localization information from structural changes (stress over elements) is extracted
with the underlying idea of detecting changes in the flexibility. Note that while the transfer matrix is defined at the coordinates
defined by the sensors, damage can be localized at any point of the structure because the stress field generated from the sensor
coordinate loads covers the full domain.

Consider now the transfer matrix of model (15.1), which is given by

G(s)
def
= R(s)Dc, (15.2)

where

R(s)
def
= CcA−b

c [sI −Ac]
−1
[

CcA1−b
c

CcA−b
c

]† [
I
0

]
(15.3)

with G(s) ∈ C
r×r, b = 0,1,2 the output measurements (displacements, velocities, or accelerations respectively) and I the

identity matrix.
Using (15.2) for the damaged (variables with tilde) and reference states, respectively, and dropping the Laplace variables

s for simplicity, gives the difference in the transfer matrices δG = G̃−G. Neglecting Dc in (15.2) in both damaged and
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reference states (see [1] for more details), the desired null space of δG has the same null space of δRT = R̃T −RT . Then, the
null space of δRT is finally obtained from the Singular Value Decomposition (SVD)

δRT =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V1 V2

]H
, (15.4)

where U,Σ,V ∈C
r×r, Σ2 ≈ 0 and V = (v1, . . . ,vr) = [V(1) V(2)] the right singular vectors. Note that V(1): (v1,v2, ...,vt ) is the

nonzero singular vectors and V(2): (vt+1,vt+2, ...,vr) is the ideally zero singular vectors (in practice small), where a desired
load vector v in the null space of δRT is then any linear combination of the vectors in V(2), e.g. v = vr. For any chosen value
s, the load vector v = v(s) in the null space of δG(s) can be computed as described above, where only model (15.1) has been
used without using information about the geometry of the structure.

The computation of the stress implies knowledge of the model of the structure (coming e.g. from a FEM) and is a linear
function of displacement. The function that maps the displacement to the stress resultant is denoted as matrix Q ∈R

d×d , the

transfer matrix is Gmodel(s)
def
= (Ms2 +Cs+K)−1 of model of LTI system in the reference state, and the sensors mapping

matrix P ∈ N
d×r with 1’s where each line (position in the structure) and each column (sensor number) agree and zeros

elsewhere. Let this function be given by Lmodel(s) = QGmodel(s)P, such that the stresses S(s) ∈C
d for a chosen value s write

as [1]

S(s) = Lmodel(s)v(s). (15.5)

If an element at some degree of freedom j is damaged, the resulting stress S j(s) at coordinate j from the load v(s) is zero
[1]. Thus, the stresses in S(s) are considered as damage localization residuals, where the entries close to zero correspond to
elements that are potentially (but not necessarily) damaged.

15.3 Uncertainties on Damage Localization Residuals

System matrices Ac and Cc estimated from a finite number of data samples (e.g. using Stochastic Subspace Identification
(SSI) methods [8,9]) are used for the damage localization both in the reference and damaged state. Due to the reduced model
order that represents the identified bandwidth, what are obtained is the estimated matrices Âc and Ĉc and not the “true” system
matrices Ac and Cc. The input of system (15.1) is unmeasured noise, leading Âc and Ĉc to variance errors depending on the
data and the estimation method. A variance analysis of the system matrices obtained from Stochastic Subspace Identification
is made e.g. in [10] and expressions for their computation in the context of structural vibration analysis are given in [3,5,6].

When estimating the load vectors in the null space of δG and the related stress field, the uncertainty of the system matrices
is propagated to the uncertainty in the damage localization results. In this section, the variances of damage localization results
are evaluated in order to support the decision between undamaged and damaged elements.The decision if the stress S j(s) at
element j is zero (potentially damaged) or not is facilitated when knowing the variance of the estimate.

Note in this section that first-order matrices and derivation were dropped for simplicity. For further details, see [11, 12].

15.3.1 Covariance of R

In this section, the sensitivity of the matrix R in (15.3) with respect to the system matrices Ac and Cc is derived, which is
needed for the damage localization in (15.4). First, assume that the data is given by acceleration sensors (b = 2). Derivations
for displacement and velocity data (b = 0,1) follow analogously. A perturbation of R is linked to a perturbation of Ac and Cc

by the relation

vec(ΔR) =
[JAc JCc

][vec(ΔAc)

vec(ΔCc)

]
, (15.6)

and with notation Mre
def
=
[
Re(M) Im(M)

]T
and (15.6), the relation

cov
(
(vec(RT ))re

)
= JR cov

([
vec(Ac)

vec(Cc)

])
J T

R (15.7)
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holds for the asymptotic covariance of the real and imaginary parts of RT , where JR is defined as

JR =

[
Pr,r 0r2,r2

0r2,r2 Pr,r

][
Re(JAc) Re(JCc)

Im(JAc) Im(JCc)

]
.

15.3.2 Covariance of Damage Localization Residuals

In order to compute the covariance of the damage localization residual – the stresses S(s) from (15.5) for a chosen value s
– , the covariance of the load vector v is needed, which is a singular vector in the null space of δRT = R̃T −RT in (15.4).
In the following, the first-order perturbation of right singular vectors v in the null space is provided in order to obtain the
covariance of the stresses S(s)re in (15.8).

Let cov((vecRT )re) and cov((vec R̃T )re) from the reference and damaged state be given in (15.7) and the sensitivity in Jv.
Then,

ΣS
def
= cov(S(s)re) = JS(s)

(
cov((vec R̃T )re)+ cov((vecRT )re)

) J T
S(s), (15.8)

where

JS(s) = (Lmodel(s))Re Jv

with Lmodel(s) defined in Sect. 15.2.2.

15.3.3 Hypothesis Testing for Damage Localization

If the stress Ŝ j(s) over a finite element j is close to zero, the element is a candidate for being classified as damaged. The
values in the stress vector Ŝ(s) are complex values, whose real and imaginary parts can have different signs. One could for
example test if the real parts are close to 0 (neglecting the imaginary part if it is small), or, more general, if both the real and
imaginary parts are close to 0 for an element. For each element j, this corresponds to the hypotheses

{
H0 : Ŝ j(s) �= 0 (element is undamaged)

H1 : Ŝ j(s) = 0 (element is potentially damaged)
(15.9)

The elements in the vector Ŝ(s)re are asymptotically Gaussian distributed with non-zero mean under H0 and zero mean
under H1. A consistent estimate of the covariance Σ̂S of Ŝ(s)re can be obtained from (15.8). Then, testing H0 against H1 can
be done by computing the variables

χ̂2
j(1)

def
=

(Re(Ŝ j(s)))2

σ̂2
j

or χ̂2
j(2)

def
=

[
Re(Ŝ j(s))
Im(Ŝ j(s))

]T

Σ̂−1
j

[
Re(Ŝ j(s))
Im(Ŝ j(s))

]
, (15.10)

where σ̂2
j = Σ̂S( j, j) is the entry ( j, j) of Σ̂S and Σ̂ j is the covariance of

[
Re(Ŝ j(s)) Im(Ŝ j(s))

]T
.

Thresholds t1 and t2 are defined in
∫ ti

0 fχ2(i)(x)dx = 1−β, where fχ2(i)(x) is the probability density function of the central

χ2 distribution with i degrees of freedom (i = 1,2), and β is the probability of deciding that an element is undamaged while
it is potentially damaged (type II error of the hypothesis test (15.9)). Then, using the test χ̂2

j(1), H0 is rejected and H1 is
accepted for an element j (damage occurred), if χ̂2

j(1)≤ t1. Using test χ̂2
j(2), H0 is rejected and H1 is accepted for an element

j, if χ̂2
j(2)≤ t2.
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15.4 Numerical Application

Two numerical applications using simulated structures were used to validate the damage localization algorithm with
hypothesis test from Sect. 15.3.3 where both applications have threshold t2 = 2.16 computed at β = 0.34 to decide if an
element is potentially damaged or not (the horizontal line in Figs. 15.2, 15.3, 15.5 and 15.7). Recall that the residual (the
stress) is close to zero for damaged elements. Computational time in both applications was a few seconds after the uncertainty
computation of the system identification results with elapsed time around 30 s in each case.

15.4.1 Truss Structure

The first numerical application uses a simulated 25 DOF truss structure (Fig. 15.1) to validate the damage localization
algorithm. Damage was simulated by stiffness reduction on bars. For both the undamaged and the damaged state, a data
sample of length N = 25,000 of acceleration data (b = 2) was generated with added output noise using Gaussian white noise
excitation. From the output-only data, the system matrices and their covariances were estimated of the discrete-time state-
space system corresponding to (15.1), using SSI and the uncertainty quantification in [3]. In order to obtain the matrices Âc

and Ĉc of the continuous-time system and their respective covariances, a discrete to continuous transformation was made.
The Laplace variable s was empirically chosen near a pole of Âc to compute the stress Ŝ(s) in (15.5). The covariance Σ̂S of
Ŝ(s)re was computed from (15.8), and the corresponding χ2 was computed from (15.10).

First, the output was generated at six sensor positions in vertical direction at the lower chord (see Fig. 15.1) with 5 %
output noise added. Damage was simulated by decreasing the stiffness of element 16 by 20 %. From system identification,
not all of the 25 theoretical modes could be identified at model order n = 50. Four well-estimated modes were chosen in both
the undamaged and the damaged state using a stabilization diagram procedure [13], from where the matrices Âc and Ĉc and
their covariances are obtained in both states. From these system matrices, the real and imaginary parts of the stress values
and their covariance are computed for s = 2i. Once the identified modes are selected from the system identification for Âc

and Ĉc, the method is automated.
In Fig. 15.2, the values χ̂2

j(2) in (15.10) are computed on the real and imaginary parts of the stress and their covariance.
Two elements are below this threshold: the damaged element 16 as well as the undamaged element 23 that is a neighboring
element of 16 (see Fig. 15.1). It can be shown, in fact, that for the used sensor set element 23 is inseparable from element
16 at s = 0 [14], i.e. if the stress in 16 is zero, so it must be in 23. Although s = 2i (used here) is not zero, it is small and
the noted behavior is clearly manifested. The corresponding χ2-values are χ̂2

16 = 0.30 for element 16 and χ̂2
23 = 1.26 for

element 23. Thus, the lowest χ2-value corresponds correctly to the damaged element. The elements 1–15, 17–22 and 24–25
are correctly classified as undamaged. In Fig. 15.2, the χ2-values are only displayed until the value 300, while some of them
were at more than 105.

The theory shows that as the number of damaged bars increases the dimension of the theoretical null space decreases and
thus the estimation of vectors in the null space under noisy conditions becomes more difficult. In this case, a more precise
estimation of δRT is necessary, which requires more modes to be estimated from the system identification and thus more
sensors due to the constraint 2r ≥ n. In Fig. 15.3, results are presented for two damages in bars 3 and 18, where 12 sensors
(the present 6 sensors and more 6 sensors on the upper cord) were used. Twelve estimated mode pairs were chosen with both
damaged and undamaged cases. It should be noted that the estimated stresses in the damaged elements are small but different
from zero due to modal truncation and noise, which become more important when multiple damages are present. While the
resulting χ2 values of the damaged elements are the lowest and the value of bar 3 is correctly under the threshold, the values
of bar 18 exceeds it slightly.
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15.4.2 Plate

The second numerical application was simulated to validate the damage localization algorithm. The plate (Fig. 15.4) nodes
and positions “P” were spatially determined to locate undamaged and damaged regions for didactic reasons, unlike in reality.
With 81 DOF, the plate has 150 cm width, 100 cm height and 1 cm of thickness. Edges are fixed and do not have DOF.
The output was generated at ten sensor positions in nodes 16, 25, 29, 31, 47, 65, 70, 83, 95 and 98 with added 5 % output
noise. Downsampling filter on system loads (inputs) limiting the output frequency in 150 Hz was applied to avoid undesirable
folding frequencies (Nyquist frequencies) initially generated. From system identification at model order n = 30, matrices Âc

and Ĉc and their covariances are obtained in both states. From these system matrices, the real and imaginary parts of the
stress values and their covariance are computed for s = 1+ 140i. Once the identified modes are selected from the system
identification for Âc and Ĉc, the method is automated.

Two simulations were performed on the plate: the first is presented in Fig. 15.5 with damage in element 34 by decreasing
the stiffness in 50 %. Nine well-estimated modes were chosen in both the undamaged and the damaged state. The values
χ̂2

j(2) in (15.10) are computed on the real and imaginary parts of the stress and their covariance. Some elements are below
the threshold: the damaged element 34 as well as the damage elements around the damaged region (see Fig. 15.5). The
corresponding χ2-values is χ̂2

34 = 0.2 for element 34 and is correctly classified as damaged. Neighboring elements with
low results such as 25, 35–36, 45–47, 54–58 and 65–66 are near to the damaged region and also classified as damaged. In
Fig. 15.5, the χ2-values are only displayed until the value 6, while some of them were at more than 650.

Alternatively, damage position 34 and damaged region can also be visualized in Fig. 15.6. Each position “P” can be
composed by vertical axis as the first number and horizontal axis as the second number (i.e. vertical axis position 4 and
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Fig. 15.4 Plate with ten sensors

Fig. 15.5 χ2-test values with one damage – 5 % output noise, 10 sensors, 50 % stiffness in position P34

horizontal axis position 9 lead to the position P49). The damaged/undamaged scale vary from damaged state value −3
(in red) to undamaged state value 6 (in blue). The damage in position P34 as well as the damaged region are presented in red
as expected.

The second simulation on the plate has damage in position P66 by decreasing the stiffness in 50 %. Eight well-estimated
modes were chosen in both the undamaged and the damaged state. The values χ̂2

j(2) in (15.10) are computed on the real and
imaginary parts of the stress and their covariance. Some elements are below this threshold: the damaged element 66 as well
as some elements around (see Fig. 15.7). The corresponding χ2-values is χ̂2

66 = 0.60 for element 66. The elements 44–46 and
56–57 are located in the damaged region and also classified as damaged. The elements 24–25 are not around the damaged
position and in practical cases should be discarded after visual verification. In Fig. 15.7, the χ2-values are only displayed
until the value 6, while some of them were at more than 4,000.
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Fig. 15.6 χ2-test from Fig. 15.5 on a plate representation – damage in P34 (red region)

Fig. 15.7 χ2-test values with one damage – 5 % output noise, 10 sensors, 50 % stiffness in position P66

The damage position 66 in the plate and the correspondent damaged region is also presented in Fig. 15.8. The
damaged/undamaged scale values vary from damaged state value −2 (in red) to undamaged state value 8 (in blue). The
damage in position P66 as well as the damaged region are presented in red as expected.
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Fig. 15.8 χ2-test from Fig. 15.7 on a plate representation – damage in P66 (red region)

15.5 Conclusion

Deciding whether a damage localization residual is zero or not is no more based on empirical thresholds, but on uncertainty
bounds, which are now obtained for each element that is tested for damage separately, unlike in [1]. Thus, the intrinsic
uncertainty from the data is propagated properly for each evaluated element in the damage localization residual S(s). Then,
it can be decided if an element is potentially damaged or undamaged by using hypothesis test that takes into account the
uncertainties, which was successfully performed in two numerical applications. Choosing a different identification method
could yield a different performance. Future work includes the aggregation of the damage localization residual at different
values of the Laplace variable s using other statistical techniques and the validation of the method on a large-scale example
under realistic noisy conditions.
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Chapter 16
Robust Tolerance Design in Structural Dynamics

Chaoping Zang, Jun Yang, and M.I. Friswell

Abstract Tolerance is a major source of uncertainty and contributes significantly to the variation of dynamic responses,
worsening the repeatability of assembled products. A systematic tolerance design strategy is required to control this kind of
variation, and an approach for tolerance design based on robust design theory is proposed in this paper with a focus on the
optimization of the dynamic response. The approach is based on Taguchi’s method, and performed by the following steps:
(1) define the input and output parameters for the problem; (2) determine the effects of the control factors on the dynamic
responses of interest; (3) identify factors to be adjusted and transform the problem into a multi-objective optimization. A
benchmark tolerance design of a joint assembly of aero engine casings is used to verify the feasibility of the approach.

Keywords Dynamics • Robust design • Tolerance design • Taguchi’s method • Multi-objective optimization

16.1 Introduction

In practical industrial cases, an assembled structure usually cannot exactly meet the nominal design due to uncertain inputs
such as loads, material properties, and environmental factors. On the other hand, manufacturing and assembly tolerances,
as a major source of uncertainties, significantly contribute to the variability of assembled products that are built to the same
design, worsening the performance variation of the ultimate products. In the case of aero-engines, even though components
are all manufactured within the tolerance limits and assembly is performed according to the given handbook, the whole-
engine vibration of the final products can be quite different. In the worst case, disqualification may happen. Similar cases
can be found in the automobile industry, robotics [1], and other fields. Effective and efficient tolerance design to assure the
boundary of the system dynamic response has drawn considerable industrial attention and still requires investigation.

Conventional parameter optimization focuses on keeping the performance on target, ignoring the effects of input variations
(Fig. 16.1a). Clearly, the main task is to determine the optimal solution that simply brings the objective of interest on target.
But when uncertainties arise, deciding whether the performance of the solution remains on target is difficult. Large variations
may exist due to the uncertainty.

Robust design is different to conventional parameter optimization by focusing on both “on target” and also “low variation”
(Fig. 16.1b). The definition of robustness can be described as: “A product or process is said to be robust when it is insensitive
to the effects of sources of variability, even though the sources themselves have not been eliminated” [2]. It should be noted
that the optimization within robust design involves at least two targets – the mean and standard deviation of the response of
interest – forming a multi-objective problem. Solving the multi-objective problem directly leads to the Pareto set – a set of
optimal solutions – giving designers a choice to balance on target performance and low variation.

Robust design only attracted limited attention in dynamics applications until Zang et al. [3] optimized a tuned mass
damper using this strategy. Since then, a number of attempts, both in research and practical industry, have been made [4–6].
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On target, low variationOn target, large variation

a bFig. 16.1 Optimization result
types [3]. (a) On target, large
variation. (b) On target, low
variation

The most practical and efficient robust design methodology today is still Taguchi’s method, which has been widely accepted
and applied in various fields, such as chemistry [7], manufacturing [8], and electronics [9].

In this paper, a robust tolerance design methodology in structural dynamics is proposed based on Taguchi’s method.
By considering the tolerances for component manufacturing and assembly, the strategy aims to limit the range of dynamic
responses of the assembled products for the same nominal design, i.e. with a desired mean value. Generally, the method
involves two goals – to bring the nominal design on target and to limit performance variation within a tolerable range. Three
steps are required: define the input/output parameters for the problem; determine the effect of the control factors on the
responses of interest by an orthogonal array experiment and analysis of variance (ANOVA), and determine possible nominal
values; identify factors for adjustment and transform the problem into a multi-objective optimization problem.

16.2 Robust Tolerance Design Strategy

16.2.1 Robust Design Theory

In robust design theory, the input/output relation of a dynamic system should be investigated first, and this can be represented
by a P-diagram (Parameter-diagram), as shown in Fig. 16.2 [10]. Input parameters can be classified as signal factors (s),
control factors (x) and noise factors (z): signal factors are the trigger to generate responses; control factors are basically
design parameters that designers can choose; and noise factors are elements beyond designer’s control, but have an effect on
the output of the system. For example, during a vibration test of a cantilever beam, the impulse from the hammer is the signal
factor, the locations of the excitation and sensors are control factors, and the vibrations of the test table are noise factors.

By considering these three factors, the robust design problem is to determine the design variables with regard to
uncertainties, or mathematically ⎧

⎪⎪⎨
⎪⎪⎩

findx ∈ Ω
to minimize; {E( f (s,x,z)) ,σ( f (s,x,z))}
subject to : hk = 0(k = 1,2, . . . , l)

g j ≤ 0( j = 1,2, . . . ,m)

(16.1)

where E( f (s,x,z))and σ( f (s,x,z)) respectively reflect the mean and standard deviation of the desired output about control
and noise factors. The former reflects whether the system response is on-target, and the latter reflects its variation. This may
be compared to conventional parameter optimization, given by

⎧⎪⎪⎨
⎪⎪⎩

findx ∈ Ω
to minimize : f (x)
subject to : hk = 0(k = 1,2, . . . , l)

g j ≤ 0( j = 1,2, . . . ,m)

(16.2)

where x = [x1,x2, . . . ,xn] denotes the design vector, Ω the design domain of x, f (x) the objective function, hk= 0 the equality
constraints and g j ≤ 0 the inequality constraints. Clearly instead of simply considering the product performance target, robust
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Fig. 16.2 The P-diagram for a
dynamic system [10]

design also focuses on the control of variations due to the noise factors. Here, to examine the effect of uncertainties, methods
of uncertainty propagation from the literature [11] are used, and uncertainty is represented in probabilistic form.

16.2.2 Taguchi’s Method

Taguchi’s method is a three-stage design procedure: system design, parameter design, and tolerance design. In system design,
the target is to decide the requirements of the product, basically the functions and configurations of the product. The optimum
set of control factors to give the best nominal design, in addition to low variation, is identified in the parameter design stage.
Finally, tolerances are determined in the tolerance design stage, taking both costs and effects on the product response variation
into consideration. More attention has been paid to the parameter design stage, while far fewer technical professionals have
become proficient in the follow-on process known as tolerance design [12].

16.2.2.1 Orthogonal Array Experiment

Instead of a full factorial design of experiments, which requires large calculation effort, the orthogonal array experiment
needs only a fraction of the full factorial combination, dramatically reducing time and resource consumption. Also, it allows
an independent and efficient mathematical assessment of the effect on the objective of each variable. In this special matrix,
the columns are mutually orthogonal. That is, for any pair of columns, all combinations of factor levels occur, and they occur
an equal number of times. The number of combinations required for s parameters with r levels is s(r − 1) + 1, based on
the assumption that there is no interaction among the design parameters. The procedure of constructing orthogonal arrays is
given in [12].

16.2.2.2 Analysis of Variance (ANOVA)

The ANOVA process is used to decompose the main parameter effects and the random experimental effects (experimental
error). ANOVA has the mathematical capability to process the experimental data into sums of squares that hold the key to
the quantification of the main effect contribution for each design parameter. Furthermore, errors are represented by empty
columns in orthogonal array, just like other parameters. Two forms of analysis are used in this paper to quantify the variation
resident in the experimental parameters and the experimental error effects:

1. Sum of squares (SS): Indicates the differences associated with a parameter or error compared to the overall mean of the
data set, i.e.

SSparameterorerror = ∑n
i=1 (yi − ȳ)2 (16.3)

For example, the calculation of SS for parameter A with r levels is

SSA = (no.o f exp.at A1)(ȳA1 − ȳ)2 + (no.o f exp.at A2)(ȳA2 − ȳ)2 + (no.o f exp.at A3)(ȳA3 − ȳ)2 (16.4)

where no.o f exp.at Ai indicates the total number of experiments at level Ai, ȳAi is the average of the dynamic responses
at level Ai, and ȳ is the average of the dynamic responses of all experiments.

2. Mean of the sum of squares (MS): Quantifies the mean value of the sum of squares associated with a parameter or with
an error, obtained by dividing by the DOF allocated to the parameter or set of errors. The number of DOF for a parameter
with r levels is (r− 1), and the DOF for the error is (number of experiments −∑DOF of each parameter − 1). Thus
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MS =
SS parameter or error

DOF for the parameter or error
(16.5)

To test the significance of the parameter effects compared with the experimental error, the F-ratio is used, also referred to as
the variance ratio, given by

F =
MS
MSe

=
mean square due to design parameter

mean square due to experimental error
(16.6)

Some suggested generalized values for F ratios are

• F<1: the experimental error outweighs the parameter effect; the parameter is insignificant and indistinguishable from the
experimental error.

• F≈2: the parameters have only a moderate effect compared to the experimental error.
• F>4: the parameter effect is strong compared to the experimental error and is clearly significant.

In the proposed robust tolerance design strategy, the effectiveness of each parameter is determined by its F-ratio, and
insignificant parameters are eliminated.

16.2.2.3 The Application of Taguchi’s Method

To achieve the goal that dynamic performance should both be on target and possess low variation, the nominal design and
the tolerance of the design parameters are determined separately. The orthogonal array experiment and ANOVA is applied
to partially fulfill the first mission. More specifically, Taguchi’s method is used first to localize the most likely solutions to
bring the objectives on target, thus reducing the search space for further optimization.

Parameters are determined in Taguchi’s method using the following steps:

1. Define upper and lower bounds for each critical parameter under evaluation and the objectives, and then select the
appropriate orthogonal array;

2. Set up and run the experiments;
3. Conduct a formal analysis of variance (ANOVA) on the data, obtaining the sensitivity analysis of each parameter and

decide on the nominal design;
4. If necessary, set up a quality-loss function, and obtain the tolerance adjustment for each parameter.

Due to its efficiency and relatively high accuracy in examining the effect of the parameters on the objectives over the whole
design space, Taguchi’s method has attracted a lot of attention, and the orthogonal array experiment and ANOVA has shown
great practical use in applications.

16.2.3 Multi-objective Optimization

16.2.3.1 Calculation Strategy

Problems with only one target hardly exist in the real industrial world. Usually several (often competing) objectives are to
be simultaneously optimized, forming a multi-objective optimization problem. Instead of a single optimal solution set, there
tends to be a set of alternative solutions, each of which must be considered equivalent in the absence of further information
regarding the relative importance of each of the objectives in the solution vectors. Such a solution set is called the Pareto-
optimal set.

Traditionally, the core approach to solve a multi-objective problem is to turn it into a single-objective problem. One way
is to keep the most essential target and turn others into constraints. This may lead to the problem that only the response
corresponding to the kept target is optimum, while others just meet the upper or lower limit of the desired output. Another
approach is to form a weighted sum, combining multiple objectives into a single objective given by

y = ∑n
i=0 wiyi where ∑n

i=0 wi = 1, (16.7)
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n is the total number of objectives, yi the ith objective, and wi the ith weighted factor. Despite its easy implementation, the
fatal defect in obtaining the Pareto set via this approach has been pointed out decades ago [13].

Several stochastic optimization techniques, such as simulated annealing and ant colony optimization, have also been
used to generate the Pareto set. Unfortunately these methods often get stuck at a good approximation and do not guarantee
to identify the optimal trade-offs [14]. The application of evolutionary algorithms (EA) to multi-objective optimization is
computational efficient since it is easy to parallelize, enabling several members of the Pareto-optimal set to be found in
a single run. Many attempts have been made to develop efficient evolutionary multi-objective algorithms. Particle Swarm
Inspired Evolutionary Algorithm (PS-EA) [14] uses a synergistic combination of Particle Swarm Optimization (PSO) and
Evolutionary Algorithm (EA) to overcome the limitations of both strategies. The Strength Pareto Evolutionary algorithm [15]
is based on the theory of evolution strategies. The main feature of the algorithm is that it maintains diversity in the population
so that a well distributed wide spread trade-off front is reached, preventing premature convergence to a part of the Pareto
front. In [16] a Non-dominated Sorting Genetic Algorithm (NSGA) is proposed and stands out in its efficiency. The algorithm
uses elitism and a crowded comparison operator that keeps diversity without specifying any additional parameters.

16.2.3.2 The Application of Multi-objective Optimization

To simultaneously control the mean and standard deviation, multi-objective optimization is applied in the second stage of the
proposed strategy. Tolerances are considered as a major source of performance variation. Thus noise factors turn out to be the
actual value of the design parameters and the control factors are the nominal values and tolerances of the design parameters.

Another key requirement for the multi-objective optimization in robust tolerance design in structural dynamics is
to efficiently evaluate the mean and standard deviation of the system performance for each design candidate. The
system dynamic response cannot be written in simple closed form equations; accurate responses require either extensive
experimental data or simulation (if an FE model is available). To evaluate the mean and standard deviation in probabilistic
form requires many samples. Both factors lead to high costs in time and resources for uncertainty problems concerning
dynamics.

To obtain a relatively accurate function, instead of analyzing the whole design space, regression analysis is performed on
a small range. A second orthogonal array experiment, around the possible best solution given at the first stage, is set up and
the regression function of interest is formed. During the operation of the multi-objective genetic algorithm, the regression
function helps to evaluate the mean and standard deviation for each set of design candidates.

The optimization procedure using multi-objective genetic algorithm is as follows (see Fig. 16.3):

1. Initialize the first generation within given lower and upper bounds;
2. Evaluate the mean and standard deviation response for each design candidate;
3. Rank the candidates using a non-dominated sorting procedure;
4. Check whether the stopping criteria are satisfied (the stopping criteria can be either a certain number of generations, or a

certain desired target for the problem). If not, repeat procedure starting from 2).
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16.2.4 Proposed Tolerance Design Strategy

In summary, the detailed steps of proposed tolerance design strategy are as follows (see Fig. 16.4):

1. Define the problem – the three factors, design space and objectives;
2. Select the appropriate orthogonal array, and set up and run experiments;
3. Conduct a formal analysis of variance (ANOVA) on the data, obtaining the sensitivity of each parameter, determine the

nominal design for each parameter that brings the objective on target, and eliminate insignificant parameters;
4. Define the initial tolerance of each parameter and run experiments for regression analysis;
5. Perform the multi-objective optimization by the proposed strategy in Sect. 16.3.
6. Verify the optimal solutions.

16.3 Case Study: Joint Assembly of Two Aero-Engine Casings

The dynamic analysis of joint assemblies is a complex problem that contributes significantly to the performance variation
of joined products. Most of the literature has focused on the modeling the joints. In this case study, the effects of the joint
assembly on the dynamic response are controlled through the proposed tolerance design procedure. This work is based on
previous research, which indicated that the torque of bolts and nuts significantly influences the frequencies of some modes.
Figure 16.5 shows the influence of the torque variation on the first 12 modes of interests.
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Fig. 16.6 The assembled
structure and joint. (a) Whole
model. (b) Joint assembly

Table 16.1 The initial parameter
design space

Parameter Lower bound Upper bound

Torque/Nm 3 15
Number of bolt-nut pair 18 36
Assembly order In turn, diagonally, section diagonally (see Fig. 16.7)

Table 16.2 The targets for
modes 2 and 3

– Nominal design (Hz) Variation limit (Hz)

Second natural frequency 278 ±2
Third natural frequency 391 ±2

Table 16.3 The parameter levels Level

Parameter 1 2 3

Torque/Nm 5 9 13
Number of bolt-nut pair 18 27 36
Assembly order In turn Diagonally Section diagonally

16.3.1 Problem Definition

The structure shown in Fig. 16.6 consists of two casings jointed together by bolts and nuts (M6). Three parameters are
considered: assembly torque, number of bolt-nut pairs, and assembly order. Assuming that the minimum number of bolt-nut
pairs required for strength, sealing and other aspects is 18, and maximum number allowed in the structure is 36. The initial
design space is shown in Table 16.1. Since the first natural frequency remains relatively constant regardless of the torque
variation (see Fig. 16.5), the second and third natural frequencies are considered as targets here, shown in Table 16.2. For all
products, the mean of the second natural frequency should close to 278 Hz while the variation limit should be ±2Hz. For
the third natural frequency, the mean value should be close to 391 Hz, while the variation limit is ±2Hz.

16.3.2 Determine the Nominal Design

Parameters are determined to have three levels, and thus an L9 array is chosen. The levels of the parameters are shown in
Table 16.3. Experiment planning and the results are listed in Table 16.4, and the FRFs of the nine experiments are shown in
Fig. 16.8. Clearly the second and third natural frequencies vary dramatically in design space.

Sensitivity analysis for the first three natural frequencies is shown in Fig. 16.9. Each point on x-axis reflects a level of a
parameter. For example, “T 1” means the first level of Torque, “N 1” means the first level of the Number of bolt-nut pair,
and “A 1” means the first level of Assembly order. From Table 16.4 and Fig. 16.6 we can see that in design space, the first
natural frequency hardly varies, while for both the second and third natural frequencies the most influential parameter is the
torque. The other two parameters (the number of bolt-nut pairs and the assembly order) have some limited effects that are
further evaluated by ANOVA (see Table 16.5). Table 16.5 shows that for both the second and third natural frequencies, the
torque has significant effects compared with error, with F values larger than 6. The number of bolt-nut pairs has a strong
effect for the second natural frequency but a relatively moderate effect for the third natural frequency. However, for both
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Table 16.4 Experiment planning and results

No Torque/Nm Number of bolt-nut pair Assembly order F1/Hz F2/Hz F3/Hz

1 5 18 In turn 238.12 272.5 392.19
2 5 27 Diagonally 237.81 273.12 388.75
3 5 36 Section diagonally 238.44 276.88 387.5
4 9 18 Diagonally 238.44 273.44 392.81
5 9 27 Section diagonally 238.44 277.19 391.56
6 9 36 In turn 238.75 280.00 390.00
7 13 18 Section diagonally 238.44 275.62 393.75
8 13 27 In turn 239.06 286.56 394.69
9 13 36 Diagonally 239.06 292.81 394.38

a b c

20 28

Fig. 16.7 The assembly order for the bolts. (a) In turn. (b) Diagonally. (c) Section diagonally
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Fig. 16.8 FRFs of the L9 experiments

natural frequencies, the F values for the assembly order are less than 1, outweighed by the experimental error, which cannot
serve as a control parameter.

In summary, the torque and the number of bolt-nut pairs are two significant parameters that should be taken into further
consideration in design procedure. Regarding the targets listed above, the parameter combination T2N2 is chosen. As
for assembly order, the diagonal order is chosen according to the normal practice described in the aero-engine assembly
handbook.

16.3.3 Tolerance Design: Multi-objective Optimization

As determined in step (2), the torque for the joint assembly is 9 Nm, the number of bolt-nut pairs is 27, which means that
during assembly 27 out of 36 pairs should be guaranteed to work, and diagonally assembly is used. To examine the second
and third natural frequencies close to this design vector, another orthogonal array experiment is set up and carried out, and
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Fig. 16.9 Sensitivity analysis of first three natural frequencies. (a) Sensitivity analysis for natural frequency 1. (b) Sensitivity analysis for natural
frequency 2. (c) Sensitivity analysis for natural frequency 3

Table 16.5 ANOVA for the assembled casings

F2 F3

Factor SS d.o.f MS F SS d.o.f MS F

Torque 191.71 2 95.86 6.27 35.01 2 17.51 7.41
Number of bolt-nut pair 132.08 2 66.04 4.32 7.95 2 3.98 1.68
Assembly order 21.51 2 10.76 0.70 3.54 2 1.77 0.75
–
Error 30.59 2 15.29 – 4.72 2 2.36 –

regression analysis is performed afterwards. Again, an L9 orthogonal array is adopted, as shown in Table 16.6 along with
experiment results. To simulate the second and third natural frequencies in this parameter region, regression analysis is
performed for the two frequencies. The generated response surfaces are shown in Fig. 16.10 and the two functions are

Second natural frequency : 276.06+ 0.18 ∗T 2 − 3.91 ∗T − 0.01∗N2 + 0.46∗N + 0.07∗T ∗N (16.8)

Third natural frequency : 398.16+ 0.05∗T 2 − 1.05∗T − 0.003∗N2 − 0.22∗N + 0.03∗T ∗N (16.9)

Table 16.6 shows that an initial torque tolerance of 2 Nm about a nominal torque of 9 Nm, and 9 bolt-nut pairs about 27 bolt-
nut pairs, the largest variation in the second natural frequency can be as high as 15 Hz and the variation in the third natural
frequency is 5 Hz, far beyond the targets for the variation limit. A multi-objective optimization problem is then formed to
determine the final parameters. The design parameters and objectives of the optimization are listed in Table 16.7. Assuming
that the uncertain parameters both agree with 3σ theory, the input parameters are converted into probabilistic form, as shown
in Table 16.8. The resulting Pareto set is given in Table 16.9. Designers can choose the final solution from the set according
to the practical needs for the four objectives. For example, if Solution 6 is chosen, the assembly torque should meet a
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Table 16.6 Orthogonal array experiment for tolerance design

– Torque/Nm Number of bolt-nut pair F1/Hz F2/Hz F3/Hz

1 7 18 238.12 270.31 390.94
2 7 27 238.44 274.69 390.00
3 7 36 238.44 279.06 389.06
4 9 18 238.44 273.44 392.81
5 9 27 238.44 276.88 391.25
6 9 36 238.75 280.00 390.00
7 11 18 238.44 276.25 394.06
8 11 27 238.75 282.19 393.44
9 11 36 239.06 285.31 392.19
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Fig. 16.10 Regression analysis (a) Regression analysis for natural frequency 2 (b) Regression analysis for natural frequency 3

Table 16.7 Parameters for tolerance design

Inputs

– Lower bound Upper bound Objectives

Torque/Nm 7 11 F2/Hz 278
Tolerance of torque 0 2 ΔF2/Hz < 2
Number of bolt-nut pair 24 30 F3/Hz 391
Tolerance of number of bolt-nut pair 0 6 ΔF3/Hz < 2

Table 16.8 Converted input parameters

– Lower bound Upper bound

E(T) 7 11
σ 0 0.67
E(N) 24 30
σ 0 0.67

probabilistic distribution with a mean of 7 Nm and a standard deviation of 0.6 Nm, and number of bolt-nut pair should have
a mean of 29 and a standard deviation of 1. Such input parameters, lead to the second natural frequency with a mean of
276.48 Hz and a standard deviation of 0.57 Hz, and the third natural frequency with a mean of 390.21 Hz and a standard
deviation of 0.35 Hz.
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Table 16.9 Results of the optimization

– E(T) σ(T) E(N) σ(N) F2/Hz F3/Hz σ(F2)/Hz σ(F3)/Hz

1 8 28 0.4 1 276.93 390.86 0.58 0.26
2 7 24 0.6 1 274.54 391.10 0.52 0.25
3 7 25 0.5 1 274.95 390.94 0.50 0.25
4 7 26 0.5 1 275.35 390.75 0.48 0.26
5 7 25 0.4 1 274.98 390.92 0.49 0.22
6 7 29 0.6 1 276.48 390.21 0.57 0.35
7 8 26 0.4 1 276.14 391.17 0.62 0.24
8 9 27 0.2 1 277.62 391.55 0.57 0.17
9 7 26 0.6 1 275.40 390.76 0.51 0.28
10 7 28 0.6 1 276.10 390.41 0.57 0.32

Table 16.10 Verification experiments results

– Mean Deviation of target (%) Standard deviation Deviation of target (%) Number of experiments beyond ±2Hz

F2 276.76 0.36 1.05 37 2
F3 390.82 0.04 0.68 1.5 0
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Fig. 16.11 FRFs for the verification experiments. (a) Whole frequency range. (b) Zoomed frequency range about the second and third natural
frequencies

16.3.4 Optimization Verification

To demonstrate the feasibility of the tolerance design, 50 verification experiments are performed for solution 6 in Table 16.9.
The experimental results are listed in Table 16.10, which shows that after tolerance design, the means of the second and third
natural frequencies are very close to the targets. The FRFs are shown in Fig. 16.11. Compared to Fig. 16.8, the variation in the
second and third natural frequencies has been considerably reduced. The standard deviation of the second natural frequency
is relatively large, but out of 50 experiments only 2 are outside the target limits.
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16.4 Conclusion

This paper has discussed a novel strategy, where tolerance design is used to limit the variation in the dynamic responses.
The easy application in practical engineering problems is an important feature of the approach. Hence, the orthogonal array
and analysis of variance, through the classic Taguchi’s method, are applied. This approach has easy implementation and
high efficiency. High accuracy in the optimization is also required, and so a multi-objective genetic algorithm is used in the
second stage. Thus the method has two stages: the first uses Taguchi’s method to find the best parameter levels and then a
multi-objective optimization is used to determine accurate nominal values and tolerances for each design parameter. This
involves three steps: the input and output parameters for the problem are defined; then the effects of the control factors on
the dynamic responses are determined and their possible nominal values decided; finally factors whose tolerance should be
adjusted identified and the problem is transformed into a multi-objective optimization problem. The paper has demonstrated
the feasibility of this approach through a benchmark case study.
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Chapter 17
Uncertainty Propagation in Floating Raft System by FRF-Based
Substructuring Method for Elastic Coupling

Huang Xiuchang, Hua Hongxing, Chen Feng, and Xu Shiyin

Abstract The FRF-based substructuring method considering elastic coupling is investigated for predicting vibration
transmission and uncertainty propagation in floating raft system. The effects of various commonly encountered errors
of substructure FRFs, such as pole shifting, reciprocity violation, negative imaginary part of driving-point FRFs, on the
modeling results are investigated. The simulation results demonstrate that the noise on FRFs of raft can influence the
assembly FRFs of base and raft; while, some kinds of noises cannot be propagated to the assembly FRFs of machines
for the rigid machines are coupled through elastic isolators, bringing about impedance mismatch. The SVD cannot eliminate
the studied noises. The uncertainty in substructure FRFs can be amplified due to the coupling process. Propagation of
uncertainties of FRFs is quantified based on an analytical approximate moment method using the derivatives of substructure
FRFs and variance defined on these parameters. The moment method is of high efficiency and accuracy compared with
Monte Carlo probabilistic method.

Keywords Uncertainty propagation • Floating raft system • FRF-based substructuring method • Elastic coupling •
Moment method

17.1 Introduction

Floating raft system is a complex dynamic system composed of multiple flexible substructures connected by elastic media,
which is widely used in vibration isolation of the important equipment on ships or other industries. For dynamic modeling of
such a combined structure, Dynamic Substructuring (DS) methods were usually employed in order to reduce the complexity
of dynamical models and to reduce the size of computational models. One of the most widely used DS methods is Frequency
Based Substructuring (FBS). One desirable feature of FBS method is that either analytically derived FRFs or experimentally
measured FRFs may be used as the substructure model.

Experimental substructuring based on FBS approaches have become an important research issue due to their numerous
advantages. While, for the FRFs of substructures are always polluted with random measurement noise and several matrix
inversion operations are inherently required by the FBS approach, small errors can be significantly amplified, resulting
in large errors in the FRFs of the coupled system. Thus, researches are carried out to deal with the effect of the random
inaccuracieson the FRFs of the coupled systemand the uncertainty propagation of the inaccuracies; also, much effort has
been devoted to develop well-conditioned FBS methods, such as the coupling method proposed by Jetmundsen et al. [1],
which reduced the number of inversion computation to only once and greatly enhanced the robustness and tolerance to
data pollution; the Lagrange Multiplier Frequency Based Substructuring (LM FBS) method [2], which was proved to be
quite robust to errors in the measurements for the kernel matrix which is to be inversed is of good condition number; and
FRF-based substructuring method that takes joint effects into consideration by Liu [3], which is shown to have tolerance to
measurement noise for separating the joint apart and adopting the SVD (Singular Value Decomposition) algorithm.
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In the case of DS using experimental data, unaviodable measurement errors can directly affect the accuracy of the DS
analysis and the response of the coupled system. From previous experiences related to FBS, several common problems seem
to exist. Such as errors arising from additional stiffness caused by the suspension, added mass effect induced by the attached
measurement equipment and from measurement errors due to sensor and actuator location and orientation. Such errors will
result in pole shifting, reciprocity violation and offset antiresonances as well as noise polluted data in FRFs of substructures.
Investigation of effects of these typical problems can shed some light on the treatment of measurement.

On the other hand, it is of high interest to know the uncertainty on the FRFs of the coupled system given the uncertainties of
components. The hitherto developed approaches to investigate the uncertainty propagation from a number of inputs are based
on the probabilistic methods: the statistical probabilistic methods, such as Monte Carlo simulation method; and the analytical
probabilistic methods, such as the moment method and stochastic differential equation method. Iankov et al. [4] presented
a technique based on variance propagation through FRF-based coupling techniques to predict the uncertainty propagation
and applied it to a two-component carbody-subframe assembly model. Klerk and Voormeeren et al. [5, 6] introduced a
uncertainty propagation method based on the statistical moment method and uses the measured time data of the subsystems
as input to qualify the uncertainty of the coupled system’s FRFs.

The paper is to investigate some of these issues for floating raft system with the FRF-based substructuring method by
Liu [3]. Although extensive research has been carried out for substructures connected with rigid joints, problems concerning
complex flexible joints (rubber isolators), especially for floating raft system with two layers isolation and employing the
independent impedance characterization of complex joints, are rarely investigated. Whether the uncertainty propagation is
different for such a case is worth studying, also, the effects of mechanism of impedance mismatch introduced by the isolators
on the uncertainty propagation is to be unveiled.

17.2 Derivation of FRF-Based Substructuring Method for Floating Raft System

The floating raft system is shown in Fig. 17.1 and the modeling is based on the FRF-based substructuring method which uses
FRFs or impedance representations of these separate substructures [3]. The FRF representation of machines, raft and base
can be written as follows {
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}
(U = M,R or B) (17.1)

where the subscript i and c represents the internal DOFs (degrees of freedom) and the coupled DOFs, respectively.
The impedance matrix of lower and upper isolators can be analytically described as
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(17.2)

The modeling process includes two synthesis processes as shown in Fig. 17.1 [7]. For the first synthesis process of raft and
base connected through lower isolators, the result is
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For the second synthesis process of raft-base and machines connected through upper isolators, the FRF representation of the
complete floating raft system and some of the submatrices are listed as follows
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17.3 Uncertainty Propagation in Floating Raft System by FRF-Based
Substructuring Method

The derivation of the uncertainty propagation method was addressed in detail in [6]. The theory is applied to the FBS results
in Sect. 17.2. Taking uncertainty propagation of FRFs on the bases of the coupled system from uncertainties on the FRFs of
bases as an example, the uncertainty propagation yields as follows according to Eqs. (17.3) and (17.4)
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Pij is a matrix with the same size of G but only with one nonzero entry (i, j) as 1. And the square operations must be
performed elementwise (i.e. for N3 ×N3 elements in the FRFs of base and N3 is the number of lower isolators) for Eq. (17.5).

17.4 Numerical Simulation

The floating raft system is composed of two machines, a free-free boundary plate as raft and a free-free boundary plate
as base. Each machine connects with the raft through four isolators and raft connects with base through four isolators.
Dimensions of both machines are width ×length× height = 0.8m× 0.8m× 0.4m and dimensions of raft and base are
2.4m× 2m× 0.002m and 2.4m× 2m× 0.003m, respectively. All of them are made of steel with density, damping factor
and Young’s Modulus as 7,850kg/m3, 0.002 and 2.1× 1011 N/m2, respectively. Stiffness of upper and lower isolators is
2 × 106 N/m2 and 3.2× 106 N/m2, respectively. FE models of machines, raft and base are solved by using ANSYS to
generate the FRFs for all substructures. The modeling method has been verified by comparing the FRFs with those obtained
from the coupled system in ANSYS.

17.4.1 Noisy Simulated Data

The effect of the inaccuracies due to measurement noise in substructure FRFs is illustrated on the studied model where five
kinds of noise are artificially added to the exact data generated theoretically by using the modal data obtained from ANSYS.
Five perturbed FRFs for the substructures are generated and the FBS outcome is compared to those with the exact FRFs. The
exact FRFs are obtained according to the mode superposition method

Hpq(ω) =−ω2
R

∑
r=1

φprφqr

ω2
r −ω2 + j2ωξrωr

, j =
√−1 (17.6)

where R is the number of the retained eigenmodes in the substructure, ω is the excitation frequency, ωr is the associated
eigenfrequency for the eigenmode r of substructure.

(1) The effect of pole shifting in the substructure FRFs

To mimic measurement errors leading to pole shifting errors, the perturbed FRFs are constructed through modifying ωrin Eq.
(17.6) by the perturbed eigenfrequency ω ′

r = ωr(1+0.01). Figure 17.2 shows the comparison of assembly FRFs synthesized
from noise-contaminated FRFs with added noise for pole shifting in raft FRF. The inversion of D1 and D2 is performed by
SVD with an attempt to eliminate noisy data for raft and the threshold value is 0.002 [3]. The results are also plotted in
Fig. 17.2. It can be seen that the shifting of poles in raft itself can be reflected in the FRFs of coupled system, and SVD
cannot eliminate such kinds of errors. Also, the assembly FRFs from the exciting point to the points on both the excited
machine and the unexcited machine are compared. The results show that the former is hardly influenced, while the latter is
affected as those for points on raft and base.

(2) The effect of the error on substructure modeshapes

We assume that the FRF of raft is related to a slightly different perturbed modal basis φ ′
pr = (1+ 0.01npr)φpr, with 0.01

as the perturbation amplitude, and npr a randomly distributed set between -1 and 1. And the FRF of raft is generated anew
according to Eq. (17.6). FBS was performed and the assembled FRFs are compared to the reference FRFs in Fig. 17.3. It
can be seen that, the FRFs on the raft and base demonstrate some level of noise, while, it has little influence on the FRFs of
both machines. Thus the uncertainty in the modeshapes of raft can be propagated to the FRFs on base. Also, it is observed
that the FRFs at anti-resonances is severely changed due to this kind of noise, while the FRFs at resonances changes little,
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Fig. 17.2 FRFs from the exciting point to the first point on base (left) and on raft (right) for pole shifting of raft FRFs (—: is the reference result;
—-: the result with noise; -.-.-.: the result with noise by SVD, the same for all figures)

Fig. 17.3 FRFs from the exciting point to the first point on base (left) and on raft (right) for errors on mode shapes of raft

which means that the FRFs at antiresonances are more sensitive and severely affected by this kind of noise. Noise is most
detrimental to FRFs at antiresonances of the assembled system for the reason that FRFs at anti-resonances are relatively
small. The noise simulated here is approximately uniform across all frequencies, therefore the noise at anti-resonances is
relatively larger. Thus, there is a need for the reconstruction of the FRFs from extracted modal parameters to smooth the
noisy data. The measurements with offset connection DOFs are reasonably a serious problem.

(3) Measurement noise

To simulate measurement noise, a third data set for the raft FRFs is created by adding to the exact FRFs both additive and
multiplicative noise as follows

Hpq(ω) = ((1+ 0.02na)abs(H ′
pq(ω))+ 0.001ntnorm(H(ω)))exp( j ·ang(Hpq(ω))+ 0.02npπ) (17.7)

where, abs() and ang() represent the absolute value and the angle of a plurality; norm denotes 2-norm of a matrix; 0.02,
0.001, 0.02 π are respectively the proportional error amplitude, the additive error amplitude and the phase error; na, nt , npare
random numbers between -1 and 1. The synthesized FRFs by a noise-free base FRF and a raft FRF applied with noise level as
above mentioned are overlaid in Fig. 17.4. It can be seen that, the effect is similar to that of the noise on modeshapes of raft,
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Fig. 17.4 FRFs from the exciting point to the first point on base (left) and on raft (right) for measurement noise on FRFs of raft
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Fig. 17.5 FRFs from the exciting point to the first point on base (left) and on raft (right) for negative imaginary part of driving point FRFs of raft

while, the assembly FRFs are more severely influenced and the affected frequency range is enlarged to a lower frequency,
which makes the first resonance of the floating raft system (8.25 Hz) disappeared. The FRFs on the unexcited machines
are also affected to a much large extent. SVD is performed by adopting different threshold values and good outcomes for a
chosen value are plotted in Fig. 17.4. It is shown that SVD plays a limited role in this kind of noise.

(4) The effect of negative imaginary part of driving point FRF

As shown by FRFs obtained by modal superposition method according to Eq. (17.6) with p = q, the imaginary values of a
driving point FRF should always be positive for all frequencies as long as the modal dampings ζk are positive. In physical, if
the imaginary part of the driving point FRFs is not always positive at some frequency lines, it would imply negative damping.
This discovery motivated the investigation of changing the driving point FRFs of raft to its complex conjugate in a frequency
range 300∼330 Hz, making the imaginary part of the perturbed FRFs negative. The assembly FRFs are computed and the
results are plotted in Fig. 17.5 (the insert shows a magnification between 280 ∼ 350Hz). It can be seen that some problems
become apparent with larger amplitudes at resonances or spurious antiresonances and flat peaks in the perturbed frequency
region. The result differs with that reported for two rigidly coupled structures in Ref. [8] with very sharp glitches or noise
spikes. The FRFs on the unexcited machine also displays spurious antiresonances. Another interesting phenomenon is that
the spurious antiresonances and flat peaks are varied for different points in raft and base.
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Fig. 17.6 FRFs from the exciting point to the first point on base (left) and (N3 +1)st point on raft (right) for antiresonances reciprocity violations
of raft FRF
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Fig. 17.7 FRFs from the exciting point to the first point on base (left) and (N3 +1)st point on raft (right) for resonances reciprocity violations of
raft FRF

(5) The effect of reciprocity violations

Reciprocity is important to FBS solutions. Reciprocity violations are explored in two manners: first, by slightly changing the
measurement location, resulting in change of antiresonances; second, by slightly violating the linear time invariance (LTI) of
the model, resulting in small change of resonances. This could be caused by the suspension system settling or by the roving
of a shaker to a different location during testing. For the former, non-reciprocal FRF is created by using a nearby point of
point 1 on raft and the outcome FRF of the first row is not consistent with the first column, as the modal superposition
method implies, the poles of the outcome FRFs are the same while the antiresonances are slightly different; for the latter,
non-reciprocal FRF is created by giving a difference of 0.5 Hz to all resonances when obtaining the FRFs of the first row and
the first column, resulting FRFs with different poles. FBS was performed and the results are presented in Figs. 17.6 and 17.7,
respectively. For both cases, the assembly FRFs on raft and base are affected most, while those on machines are affected
little. It can be seen from the enlarged view in Fig. 17.6 that the predicted FRF is not so smooth and presents some false
peaks/antiresonances in some frequency bands. Examining Fig. 17.7, false peaks and antiresonances may also appear. The
explorations show that reciprocity violation caused by the experiment set up may introduce some errors.
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Fig. 17.8 Confidence interval of the amplitude for the assembly FRF of the first point on base (left) and the same FRF with confidential interval
(right)

17.4.2 Verification of the Uncertainty Propagation Method

The uncertainties on the base FRFs are chosen such that the FRF amplitudes have a proportional confidence interval (at the
95 % level) of ±2 % over the frequency range, while the confidence interval on the phase of the FRFs is taken at ±1◦. A
Gaussian distribution is assumed for the input variables. In the Monte Carlo method the system are coupled 1,000 times,
each time with a different, uncorrelated random error on the amplitudes and phases of the FRFs of the base. The results of
both methods are shown in Fig. 17.8. It can be seen that, an excellent resemblance between the Monte Carlo method and
the moment method is found. The moment method is therefore validated and it is far more efficient than the Monte Carlo
method. The CPU time of the moment method is less than 1 s, compared with the CPU time of over 50 min for the Monte
Carlo method. From the FRFs with confidential interval shown in Fig. 17.8, it can be seen that small errors in substructures’
magnitude result in a large deviation in assembly FRF, which means that the uncertainty is amplified.

17.5 Conclusion

Uncertainty propagation in floating raft system by the FRF-based substructuring method is investigated. The effects of five
kinds noises on the modeling results are explored. Simulation results demonstrate that the influence of noises can bring
about significant noise or false peaks/antiresonances in the assembly FRFs; the noise on FRFs of raft can influence the
assembly FRFs of base and raft; while, some kinds of noises cannot be propagated to the assembly FRFs of machines, this
is attributed to the fact that the substructures are connected through elastic isolators and the machines are very rigid, which
brings about impedance mismatch between machines and the other substructures. The SVD cannot eliminate the studied
noises. Uncertainty propagation of substructure FRFs is quantified based on the moment method, which is of high efficiency
compared with Monte Carlo method. The uncertainty can be amplified due to the coupling process.
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Chapter 18
Crossing and Veering Phenomena in Crank Mechanism Dynamics

Elvio Bonisoli, Gabriele Marcuccio, and Carlo Rosso

Abstract Modal analysis is widely used both on single components and mechanical complex assemblies and it is recognized
to be a fundamental step on the functional design process. From experimental point of view, a change in a system parameter
due to the need of describing a different assembly configuration, can require iterative measurements, and can be quite time
consuming. On the other hand, by evaluating the dynamic behaviour of the single component instead of the whole system,
it is not straightforward to forecast the general dynamics of the entire assembly: inertia and stiffness couplings give rise to
curious dynamic phenomena, namely crossing and veering of eigenvalue loci. Many theoretical studies on eigenvalue curve
crossing and curve veering, i.e. the coincidence of two eigenfrequencies or the abrupt divergence of natural frequencies
trends, have been carried out in recent years, but only few references on detailed test sessions and practical applications
are available. The present paper wants to give a better overview on the change of the dynamic properties of a system by
comparing global mode shapes to single component mode shapes. The examined structure is a crank mechanism, made of
a crankshaft joined to four connecting rods and four pistons. The chosen control parameter that is responsible of a change
in the dynamic properties of the system is the crank angle. Numerical models have been used to compute eigenvalues and
eigenvectors of the analysed structure, considering both FEM models and multibody approach. Finally, an original graphical
interpretation of the transition from component to system dynamics is presented by means of the MAC index.

Keywords Crossing and veering phenomena • Crank mechanism • Linearized dynamics • Coupled systems • LUPOS

18.1 Introduction

Crossing or veering phenomena [1] are becoming a growing cause of concern in many weakly interconnected mechanical
systems and practical applications. The parametric variation under which the modes trajectories tend to converge resulting
in mode switching in the transition zone can be chosen between system sizes, boundary conditions, materials or applied
loads. In all these cases, the essential requirement is a coupling factor either in mass matrix or stiffness matrix. Varying a
system parameter in a wide range might be seen unrealistic, but sometimes components show unexpected behaviours due to
geometric tolerances, variable operating conditions or kinematic reasons.

The effects of the switching point can be seen on practical applications concerning the design of long span bridges,
aircrafts wings, or bladed discs [2–5]. The frequency and damping of aforementioned structures are commonly portrayed
in terms of a family loci as a function of mean wind velocity. Aeroelastic characteristics of a wing with control surface
are influenced by a coupling factor represented by a hinge stiffness, and jumps in the flutter speed are strictly linked to the
behaviour in the transition zone where frequency curves veer away. In [6] a similar phenomenon for the tail wing is observed
between the first and second structural modes, dominated respectively by the first bending and the first torsion. When the

E. Bonisoli (�) • G. Marcuccio • C. Rosso
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
e-mail: elvio.bonisoli@polito.it; gabriele.marcuccio@polito.it; carlo.rosso@polito.it

T. Simmermacher et al. (eds.), Topics in Model Validation and Uncertainty Quantification, Volume 5,
Conference Proceedings of the Society for Experimental Mechanics Series 41,
DOI 10.1007/978-1-4614-6564-5 18, © The Society for Experimental Mechanics, Inc. 2013

175

mailto:elvio.bonisoli@polito.it
mailto:gabriele.marcuccio@polito.it
mailto:carlo.rosso@polito.it


176 E. Bonisoli et al.

tail is cantilevered, the corresponding rigid body torsional frequency ωφ = ∞, and the coupling between bending and torsion
modes is weak. For lower frequency range stiffness the flutter speed decreases. The rotation frequency at which it reaches a
minimum is almost the same as that for the mode shapes veering.

In [7] an experimental investigation on the vibrational characteristics of cantilevered angle-ply laminates made of
composite material is presented and the effects on the obtained mode shapes are underlined. The parameters under analysis
are two, namely the fibre angle and the aspect ratio, and both are responsible for a change in the degree of coupling and
in the slope of the flexural nodal line. The flexural-torsional coupling stiffness changes according to the different stackings
considered and its effect could be identified by analyzing the fringe patterns through holographic interferometry.

Such a modal interaction comes also from introducing in the model a possible cause of symmetry breaking. Following
this idea a localized lost of symmetry could be used to forecast a local damage in real structures like bridges and suspended
cable [8, 9].

Despite du Bois and Adhikari [10] have developed three normalized criteria for veering quantification (i.e. cross-
sensitivity quotient, modal dependence factor and veering index), it is still not clear which is the kind of interaction among
the modes. Furthermore, the aforesaid analytic indices are only valid when a linear variation either in the stiffness matrix or
mass matrix is considered. An attempt has been made in this paper in order to make more evident the dynamic behaviour
in the transition zone for more general and quite complex systems, and modal assurance criterion [11] has been used for
describing the entire phenomenon. During curve veering the interacting mode shapes are apparently different from those for
which relative eigenfrequencies are distinct, giving rise to modes hybridization [12].

In the present paper, based on numerical simulations, the hybridization of modes is depicted for a complex real structure
representing the crank system of an internal combustion engine (ICE). Different cases are taken into account, considering
both the effects of variable configurations of the system and the gradual presence of new components in the assembly
under examination. In automotive field and especially in the design studies of internal combustion engines, neglecting the
coupling between modes shapes and their interactions among reciprocating machines can lead to rough approximations
and unexpected breakings. The lack of information is basically due to two main reasons. Mathematical models usually
can be employed but they are based on too strong assumptions and cannot always meet the needs of nonlinear problems.
Experiments, on the other side, can make up for the need of more reliable results but are time consuming and cost-intensive.
Moreover, they are not always able to pinpoint the most important reasons of breakdown. Nevertheless, even if dynamic
failures are becoming rare thanks to detailed studies that since the beginning of the century provided on dynamic behaviour
of crankshaft [13], nowadays stresses and vibrations must be quantified in order to guarantee the structural integrity
of the components and higher durability. New and more strict requirements, namely lightweight structures, environment
issues, noise emissions reduction [14] demand for sophisticated analyses aimed to optimize component design [15].
Generally speaking component optimization consists of an analysis of the structure, involved excitations and iterative relevant
modifications, by which preferably resonant frequencies have to be avoided during operating conditions. Even if the matrix
size and the number of equations are greater, more accurate results can be obtained by considering the coupling effect of
axial, flexural and torsional vibrations [16, 17]. Large displacements are expected when excited frequencies and modes
shapes belonging to different subspaces are close.

Applying local modifications on structural properties of the analyzed component, may lead to unexpected global variations
on assembly modal properties. Designers and analysts would prefer to know a priori which are the main effects on the final
product.

The here in discussion offers new perspectives into the dynamics of a mechanical structure for damage detection purposes,
allows to improve the understanding of self-excited systems, and provides new insights in robust engineering design. The
paper is structured as follow: Sect. 18.2 describes the assembly has been employed and how it has been numerically modelled.
In Sect. 18.3 a brief overview on crossing and veering is presented. Section 18.4 deals with the gradual transition from
component to system modal properties, and Sect. 18.5 focuses on the identification of local and global modes. Finally, in
Sect. 18.6 conclusions are depicted and outcomes are summarized.

18.2 Crank Mechanism Modeling

In many fields finite element method (FEM) is nowadays considered mandatory to simulate, predict and characterize complex
systems. Achieving high durability, low level vibrations and restrained acoustic emissions are a main concern for many design
engineering problems. In this paper detailed numerical investigations on powertrain automotive components are reported.
Consider a four cylinders, four strokes cycle engine.
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Fig. 18.1 Crankshaft system:
(a) schematic representation, (b)
CAD model

Fig. 18.2 Main crank
mechanism components

The technical features of the structure (Fig. 18.1) under analysis are listed below:

• Firing order: 1-3-4-2;
• Four-stroke cycle;
• Connecting rod length (l): 145 mm;
• Cylinder bore: 82 mm;
• Piston stroke (r): 44 mm;
• Oscillating masses: 4.0 kg;
• Engine displacement: 1910cm3.

All geometrical and inertial data relevant for the analysis of the dynamic behaviour of the crank mechanism and
subcomponents have been either measured or computed by means of CAD software (Fig. 18.2). All computations herein
shown were performed by using a LUmped Parametric Open Source software (LUPOS), developed by the authors in
MATLAB R©. The detailed model is parameterised, thus enabling virtual prototype testing of various engine designs, as well
as allowing the designers to carry out a comprehensive investigation of the engine behaviour during the whole four-stroke
cycle.



178 E. Bonisoli et al.

The complete system can be described with a simplified FE model (∼380dof) made of masses and beams whose
section properties are chosen and updated in order to best represent the general dynamic of the same system according
to experimental data previously obtained. It is currently common practice to use beams and concentrated masses for
representing a crankshaft [13]. Euler-Bernoulli beam elements with axial, flexural and torsional properties, described in
textbook such as [18,19], are used. Rigid roto-translations are applied to all the components. Each bearing is represented by
a concentrated spring whose formulation is similar to CELAS elements [20]. Thus both multi-body and finite element
benefits are kept in the same code. This approach in engineering design allows to quickly compute and show up the
main dynamic properties of the system and their evolution when chosen parameters (relative displacement, size, materials,
boundary conditions) are varied.

18.3 Curve Veering and Mode Localization: Overview

It is well known that in order to predict the complete crankshaft dynamics under operating conditions more accurate models
are necessary; though, this analysis does not want to take into account crankshaft bent, engine block misboring, structural
damping, or bearing hydrodynamics effects, already analyzed in other references [21], but rather aims to show veering
phenomena and related effects on the dynamic behaviour along the entire engineering design process either of assemblies or
separate components. By performing transient dynamic analyses the real modal evolution of the system is either neglected
or kept hidden by the process itself.

In this case, the eigenproblem of the system for different values of a variable parameter, namely the crankshaft angle, is
solved. In the FE model structural damping is neglected and the equations for a n-dof system is given by:

[M]{ẍ}+[K]{x}= {0} (18.1)

where the mass matrix [M] and the stiffness matrix [K] are real, symmetric and positive definite or semi-definite positive
respectively. The n eigenvalues ω2 and eigenvectors {Φ} are calculated by evaluating the non trivial solutions:

det
(
[K]−ω2 [M]

)
= 0 (18.2)

The model chosen is aimed to put in evidence a real example of veering and crossing phenomena when a physical parameter
affecting the system is changed. The variation of this angle takes place every each combustion cycle and it is not due to a
variation of an external parameter but is strictly linked to the operating conditions. This means that every four strokes the
system will cross the starting configuration twice.

The eigenfrequencies in a range between 0 and 700 Hz for the free-free system are presented in Fig. 18.3. In this case
the free-free boundary condition is applied in order to check experimentally the numerical results. Similar results could be
evaluated according to actual boundary conditions obtained placing the crank mechanism in the engine block.
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Fig. 18.5 Veering criteria, between Φ2 and Φ3, for the simplest cyclic 3 dof spring-mass system, k12 = 1.02N/m : (a1)MDF, (a2)CSQ, (a3)VI

The loci appear to veer and cross in several places. Moreover, veering phenomenon seems to involve more than two modes.
Usually when this happens modes shape variation can not be easily shown in a graphical way and it is not straightforward
to distinguish and quantify the co-partecipation of the modes given at a reference configuration. The mode shape variation
throughout veering between two different configurations can be evaluated by means of the modal assurance criterion (MAC)
[11], defined as

MACi, j =

(
ΦT

i Φ j
)2

(
ΦT

i Φ i
) (

ΦT
j Φ j

) = cos2 αi, j (18.3)

in two different ways. The former, as shown in Bonisoli examples [12] compares all the modes for two different parameter
values, corresponding to the system just before and after the veering. If crossing happens the off-diagonal terms of
MAC[Φ i(δ1), Φ j(δ2)] shows perfect correlation whereas diagonal terms are proximate to zero. In case of veering a different
behaviour for diagonal and off diagonal term is shown, bringing to a plateau for those MAC values. The choice of values
for quantify the transition is not straightforward. The latter, here in presented, gives the correlation representation between
two chosen modes (Φ i, Φ j) changing a parameter δ j over its entire domain. By use of this second approach it is possible to
see the transition of the analyzed modes in the two-dimensional subspace spanned by them and quantify the misalignment
between mode Φ j pre-veering mode Φk post-veering.

For simple lumped parameters model, as in [22], veering and crossing pattern can be easily described (Fig. 18.4) and
veering indices [23] can be applied.

The mass matrix remains constant and serves as an orthonormalising matrix, whereas a linear variation is considered for
the stiffness matrix. Modal dependence factor, veering index and cross sensistivity quotient are show in Fig. 18.5.
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Fig. 18.6 Modal assurance criterion evaluation for the simplest cyclic 3 dof spring-mass system with k31 = 0.9÷1.1N/m: (a1) k12 = k23 = 1N/m,
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Fig. 18.7 AUTOMAC evaluation: (a) 7th mode, (b) 8th mode, (c) 9th mode, (d) 10th mode, (e) 11th mode, (f) 12th mode

On the main diagonal, the values displayed show the eigenvectors orthogonality, while on the cross diagonal it is possible
to distinguish the behaviour of the rotation angle between the two modes considered. Eigenvectors are modal mass unitary
normalized. It is interesting to note that the rotation angle spans less than 90◦ and after veering one mode is always inverted,
as recognized by du Bois [23]. By varying two parameters (k12, k31) of this cyclic structure it is possible to increase or
decrease the coupling between mode 2 and 3 and consequently change the domain region in which the two modes shows
high correlation (MAC > 0.7) (Fig. 18.6).

For a more complex model with free-free boundary conditions, as the one depicted in Fig. 18.1, interaction between
modes can be explained in a similar way. An AutoMAC evaluation for the first few modes, since a greater number of modes
is involved, allows to look for mode transformation (Fig. 18.7). For each bottleneck on the main diagonal, a veering is acting:
the greater the curvature radius, the weaker the veering affecting that mode. Then, an indeep analysis between pairs of
interacting modes enlight the exchange of modal properties among them.
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Fig. 18.8 Correlation valuation: (a) MAC[Φ9(α), Φ10(α)], (b) MAC[Φ9(α), Φ11(α)], (c) MAC[Φ10(α), Φ11(α)], (d) MAC[Φ23(α), Φ24(α)]

Weak veering takes place for mode 9th, more strong veering affects modes 10th and 11th, 14th and 15th, and at higher
frequency modes 23rd and 24th (Fig. 18.8).

In [23] a veering index VI, combination of two normalized criteria, is proposed as a measure of the presence and intensity
of curve veering between modes, considering either a variation in the stiffness matrix or mass matrix. It allows to precisely
detect where the transformation is taking place, but not to localize the parameter value for which the angle between the
modes becomes smaller. Moreover is not valid for systems in which both mass matrix and stiffness matrix are varying. Since
the two vectors throughout veering always remain in the same plane, it is possible to quantify the similarities among them
by using the Modal Assurance Criterion and comparing the MAC index for each configuration.

18.4 From Components Dynamic Requirements to System Dynamic Properties

Adding components to the system, the number of components modes are simply added to the number of system modes, with
complex veering-crossing phenomena, and great interactions are detected.

In a range from 0 to 1,000 Hz, the crankmechanism dynamics might be considered as the modal superposition of the
crankshaft modes, namely the first bending mode in plane xy at 291 Hz, the first bending mode in plane yz at 352 Hz, the
first torsional mode around 795 Hz (Fig. 18.9a), and groups of four local modes of piston/connecting-rod dynamics (PCR) at
231 Hz, at 375 Hz, and around 600 Hz (Fig. 18.9b).
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Fig. 18.9 Natural frequencies of the crank mechanism versus crankshaft angle, free-free case. Effects of piston-connecting rod (PCR) density on
global properties. (a) ρPCR = 0 %, (b) ρPCR = 0.01 %, (c) ρPCR = 1 %, (d) ρPCR = 10 %, (e) ρPCR = 50 %, (f) ρPCR = 100 %
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The transition from component to system and its effect on the eigenvalue problem has been generated by gradually adding
the pistons and connecting rod mass matrices to the global system mass matrix, and keeping constant the ratio between
density ρPCR and Young’s Modulus EPCR. In Fig. 18.9 veering phenomena become more and more evident by increasing the
ρPCR value.

Generally by only looking at the mode shapes on a FEM post-process and by trying to compare them visually can give
rise to mistakes and wrong conclusions. Considering the eigenfrequencies plot for the complete assembly (Fig. 18.9f), the
seventh mode is not the first global bending mode of the crankmechanism in plane xy, but one of the four piston/connecting-
rod bending modes; the modal properties of the first bending mode of the crankshaft alone (291 Hz) and the first bending
modes of piston/connecting-rod (231 Hz) in the system configuration are very similar.

18.5 Identification of Local and Global Modes

It becomes evident that modes strongly interact each other and might show different behaviours while a system parameter
is varying. Furthermore when converging loci get closer and suddenly veer away, related modes swap their properties.
Localization and veering are related to couplings that can be seen as physical (namely a spring in a 4-dof [23] or the PCR
component in the analyzed structure), or modal interactions [24]. In both cases these couplings can be translated, from
numerical point of view, into off diagonal terms either in the stiffness or mass matrix.

This makes hard to precisely define a component mode, to look for it in a system dynamics perspective through the
entire variable parameter range, and to transform the single component design into a more synergetic and globally optimized
process. However, modes patterns and frequency limits can be identified.

All the eigenfrequency loci plots (Fig. 18.9) do not allow to emphasize the great eigenvector transformation in act during
the four-stroke cycle. Due to the strong modal interaction, the seventh mode in the crank mechanism comes from the
hybridization of one of the four bending modes of the piston/connecting-rod in plane xy with the first bending mode in
plane xy of the crankshaft (seventh crankshaft mode); the MAC provides a clear and expected correlation between the 7th
crankshaft mode and the 11th system mode (Fig. 18.10a), when crankshaft and piston-connecting rods are weakly coupled,
i.e. ρPCR = 1%. As soon as the components become more strongly coupled (ρPCR = 10%), the first bending in xy plane
shows unambiguous similarities with 11th and 13th system modes (Fig. 18.10b). By increasing the coupling factor ρPCR up
to 100 % the link between system and component modes changes again. In all the cases depicted, the MAC puts in evidence
a non unique match between system and component.

Considering the configuration at the top dead centre (TDC = 0◦), the 8th mode of the crankshaft – the 1st bending mode
in plane yz – is similar to the 14th mode of the crank mechanism (Fig. 18.11b); the 9th mode of the crankshaft – the 2nd
bending mode in plane xy – is correlated with the 20th mode of the crank mechanism (Fig. 18.11c). Analogous reasoning
could be extended to higher frequencies (Fig. 18.11d, f–h).
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Fig. 18.10 MAC index evaluation between system and component (Φ7crankshaft, Φ [1:30]crankmechanism), free-free: (a) ρPCR = 1 %, (b) ρPCR = 10 %
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Fig. 18.11 MAC index evaluation between system and component (free-free): (a) MAC(Φ7crankshaft , Φ [1:30]crankmechanism), (b) MAC(Φ8crankshaft ,
Φ [1:30]crankmechanism) (c) MAC(Φ9crankshaft, Φ [1:30]crankmechanism), (d) MAC(Φ10crankshaft , Φ [1:30]crankmechanism), (e) MAC(Φ11crankshaft ,
Φ [1:30]crankmechanism), (f) MAC(Φ12crankshaft , Φ [1:30]crankmechanism), (g) MAC(Φ13crankshaft , Φ [1:30]crankmechanism), (h) MAC(Φ14crankshaft ,
Φ [1:30]crankmechanism)

The modal coupling seems to seriously influence the torsional mode, posing difficulties for modal correlation.
The expected correspondence between the 11th component mode and the 23rd system mode vanishes for high values

of coupling factor. The MAC values are lower (MAC ∼= 0.7), and the correlation involves a wider frequency spectrum
(Fig. 18.11e).

This can be explained in more detail by looking at the similarities between system modes and the pure first torsional
mode when the coupling factor ρPRC is changed. Figure 18.12a shows a high correlation (MAC ∼= 1) between the 23rd crank
mechanism mode and the 7th mode related to the only crankshaft in free-free conditions. By gradually increasing the ρPRC

value (Fig. 18.12b–e), the cosine of the angle between the eigenvectors is lowered (MAC ∼= 0.6) and is difficult to find only
one clear and distinct similarity. The torsional mode undergoes great changes due to the deep effect of interacting with
other local modes of pistons and connecting rods components and it results into two new hybrid modes at lower and higher
frequency (mode 22nd and mode 25th).

Table 18.1 summarizes all these observations.
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Fig. 18.11 (continued)

18.6 Conclusions

A clear numerical demonstration of crossing and veering phenomena for an actual world application has been given. By
means of MAC evaluations it is possible to localize veering parameter values, quantify the coupling between modes, and
get a more precise description of modal properties in the transition zone. This approach might be useful in characterizing
modified designs and to make more clear how they should be improved under dynamic response restrictions.

During the whole optimization process of design and validation of assemblies, it is important to consider wider frequency
range for each mode rather than to avoid single frequency values.

Moreover the example presented highlighted the need to take into account these aspects also in modal correlation and
model updating fields without neglecting changes into the assembly configuration.

Further numerical analyses, by means of more sophisticated FE models, followed by experimental validation, could
exemplify the benefit of the presented approach into global product design process.

Boundary conditions could play a similar role.
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Fig. 18.12 MAC index evaluation between system and component (MAC(Φ7crankshaft , Φ [1:30]crankmechanism), free-free: (a) ρPCR = 1 %, (b) ρPCR =
10 %, (c) ρPCR = 25 %, (d) ρPCR = 50 %, (e) ρPCR = 75 %, (f) ρPCR = 100 %

Table 18.1 Modes and
frequency comparison between
system and component

Component Crankshaft
(mode – freq.)

System Crankmechanism
(mode – freq. range [ fl , fu])

Δ fmax = max
(

fu,l − fCS
)
=

1
2π max |ωCS (α)−ωCM (α)|

Modes 7th(291 Hz) 15th–14th [348 Hz, 475 Hz] 184 Hz
8th(352 Hz) 14th–15th[348 Hz, 475 Hz] 123 Hz
9th(645 Hz) 20th[639 Hz, 681 Hz] 36 Hz

10th(716 Hz) 21st[716 Hz, 740 Hz] 24 Hz
11th(794 Hz) ∼22nd[805 Hz, 873 Hz] 79 Hz
12th(930 Hz) 23rd–24th[882 Hz, 900 Hz] 48 Hz
13th(1037 Hz) 25th[1,000 Hz, 1,175 Hz] 138 Hz
14th(1324 Hz) 27th–26th[1,218 Hz, 1,349 Hz] 106 Hz
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Chapter 19
Validating Low-Level Footfall-Induced Vibration Predictions in Steel
and Concrete Structures

Michael J. Wesolowsky, Julia M. Graham, J. Shayne Love, Jon K. Galsworthy, and John C. Swallow

Abstract Occupant footfalls are often the most critical source of floor vibration on the elevated floors of buildings. Floor
motions can disturb occupants, leading to frequent complaints and loss of functionality. In laboratory and healthcare facilities,
this issue can be more critical, as high-resolution imaging equipment with stringent vibration criteria is often employed.
Achieving these criteria requires sufficiently stiff and massive floor structures to effectively resist the forces exerted from
user traffic. The difficulty for engineers is predicting these low levels of vibration. Two commonly used analysis methods
to predict footfall vibration levels in steel buildings are the American Institute of Steel Construction (AISC) Design Guide
11, and The Steel Construction Institute (SCI) P354. The latter is more robust, as it can predict multi-modal time history
responses at any point on the floor. Dynamic footfall loading is determined by considering walkers moving along reasonable
pathways identified in the architectural floor plans. For concrete structures, The Concrete Centre (CCIP-016) proposes a
methodology similar to the SCI. In this study, three steel and one concrete building are instrumented to measure footfall-
induced vibrations. The measured values are compared to the predictions of the aforementioned methods, and the superiority
of the SCI-P354 and CCIP-016 methods is shown.

Keywords Footfall vibration • Vibration measurements • Model validation • Sensitive floors • Dynamic loading

19.1 Introduction

Advances in materials, construction, and design technology have led to the construction of lighter floor systems, which
are more susceptible to footfall-induced vibration. Meanwhile, improvements to imaging technology, including magnetic
resonance imaging (MRIs) and electron microscopes, have led to devices which have increasingly stringent vibration
requirements to ensure optimal performance. As a result, it is becoming more common for floor vibrations to be the governing
factor in the design of the structural system.

Footfall vibrations arise from the dynamic force imparted to the floor during a pedestrian’s gait. The resulting vibration is
then transmitted to other areas of the floor, within the bay and across bays. Therefore, footfall-induced vibrations originating
from walking in a corridor will affect the surrounding area, including bays other than the one containing the walker. The
challenge faced by engineers is to predict the magnitude of the vibrations in sensitive areas of the structure and, where
necessary, perform design alterations to mitigate vibrations that exceed design criteria.

Several methodologies have been proposed to estimate floor vibrations [1]. Unfortunately, there has been relatively few
validation studies published in which vibration levels predicted by a methodology are compared to vibration measurements
taken in existing structures. In this study, three commonly used methodologies, the American Institute of Steel Construction
(AISC) Design Guide 11 [2], The Steel Construction Institute (SCI) P354 [3], and The Concrete Centre (CCIP-016) [4]
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are used to predict the vibration levels of several steel and concrete buildings. The buildings were then instrumented with
accelerometers and/or velocity transducers to record the dynamic response of the floor. Scenarios with walkers of known
mass and pace were conducted to represent footfall loading cases.

19.2 Overview of Prediction Methodologies

19.2.1 American Institute of Steel Construction Design Guide 11

The modeling technique outlined by the American Institute of Steel Construction (AISC) Design Guide 11 has been
extensively used in North America for the past 15 years. For human comfort, the AISC method assumes the floor behavior
is governed by the resonant response of the fundamental floor mode. A frequency-dependent dynamic coefficient, fitted to
empirical data, is used to estimate the magnitude of the harmonic loading applied to the floor. A steady-state floor response
is calculated assuming the walker and vibration-sensitive receptor are both located at the position of the maximum modal
displacement (center of the bay) to produce a worst-case response. The amplitude of the vibration is then determined using
the modal damping assumed. A reduction factor is applied to this idealized resonant response to account for the inability of
a resonant response to build up in the time it takes a walker to transverse the bay under consideration, and the unlikelihood
that the walker and vibration-sensitive receptor are both at the position of the maximum modal displacement. The natural
frequency of the floor is estimated from the maximum static deflection of the bay under consideration due to the acting dead
and live loads. The total floor deflection is estimated by summing the deflections of the beam and girder elements. Such a
simplistic method cannot easily predict the natural frequency when the floor layout is irregular, such as would occur around
shafts and/or in non-rectangular buildings.

For sensitive equipment, the AISC uses a slightly different method. Three walking paces are considered: 50, 75, and 100
steps per minute (spm). An empirical force coefficient is estimated as a function of the walking pace, and the weight of
the walker. Simple beam theory is employed to calculate the floor deflection, and the natural frequency. The floor response
velocity is then calculated as a function of the force coefficient, floor natural frequency, and floor deflection.

19.2.2 Steel Construction Institute and Concrete Centre

The methodologies proposed by The Steel Construction Institute (SCI P354) and The Concrete Centre (CCIP-016) for
calculating footfall-induced floor vibrations are similarly derived. The methods recommend utilizing a Finite Element (FE)
model to predict the mode shapes and natural frequencies of the floor. FE modeling is advantageous since it allows the
calculation of many mode shapes, any of which can contribute significantly to the vibration of a specified floor region.
Moreover, irregular floor features (including non-rectangular bays, shafts, and different beams or slab thicknesses from bay-
to-bay) can easily be accommodated by the FE model. The predicted mode shapes and natural frequencies are then used to
estimate the generalized mass of each mode.

The response of each mode is assumed to be either resonant or impulsive, depending on the associated floor frequency.
Empirically determined frequency-dependent dynamic load factors are used to excite the floor along probable walking paths
as determined from the architectural drawings. The loading conditions are then used to develop a time series response for
each mode. The time series responses for each mode are then linearly superimposed to produce a total floor response at
any receptor point on the floor. A range of realistic walking frequencies and walking paths are considered to determine the
governing floor response. Spectral analysis can be performed on the predicted time-series responses to express the floor
behavior in a format appropriate for comparison with the relevant criteria.

19.3 Vibration Criteria

For human comfort, vibration criterion is normally expressed as the root mean square (RMS) response of each one-third
octave band from 1 to 80 Hz [5]. For sensitive equipment, the criteria may be expressed in one-third octave bands, or other
formats, including power spectral densities, peak-to-peak levels, etc. Over the past 25 years, generic vibration limits have
been developed which provide frequency-dependent sensitivities for wide classes of equipment, and are used extensively in
design for healthcare and research facilities [6]. These vibration criterion (VC) curves are internationally accepted as a basis
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for designing and evaluating the performance of vibration sensitive equipment and the structures that support them. The VC
curves range between Workshop (least stringent) through VC-G (most stringent), and are the basis for the comparisons in
this study (as seen throughout the comparison figures).

These curves were originally based on the ISO 2631-2 (1989) [7] base curve for human response to whole body vibration,
which is the threshold of human perception, but have since evolved. The ISO base curve is often referred to as the ISO-
Operating Room criteria. The above noted criteria are also specified as RMS velocities in one-third octave bands. The generic
vibration curves should not be used to replace manufacturers’ specifications for vibration requirements, but are beneficial
where manufacturers’ specifications are non-existent, incomplete, or where specific equipment has not yet been selected.

The AISC uses frequency-dependent peak accelerations for human comfort vibration criteria [2]. However, for low-level
vibration in sensitive spaces, it employs VC curves as the appropriate criteria.

19.4 Predicted and Measured Floor Vibrations

One concrete and three steel structures were considered for this study. For each structure, accelerometers were mounted to
the floor, and walking scenarios were conducted in nearby corridors or open spaces. Generally, the sensor was positioned near
the center of the bay, as this is typically where the maximum floor response occurs. A metronome was employed to ensure
the walker maintained a constant pace to facilitate direct comparison with the modeled results. Wherever possible, walkers
were employed who had masses of approximately 80 kg, which is consistent with the AISC, SCI and CCIP methods. If the
walker mass differed significantly from 80 kg, linear factors were applied to the results for comparison purposes. SAP2000
structural analysis software was employed to predict the dynamic properties of the steel and concrete floors for the SCI and
CCIP methods. FloorVibe [8] was employed to perform the AISC response predictions.

19.4.1 Steel Structure #1

Steel structure #1 is a hospital in the North-East United States that was undergoing renovations to install an MRI on an
elevated floor. Floor vibration measurements were taken to ensure the proposed MRI location satisfied the manufacturer-
specified vibration criteria. Figure 19.1 shows the architectural layout of the floor with the walking paths considered, as well

Path 1

Path 2

Sensor

Fig. 19.1 Walking paths for steel
structure #1
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Fig. 19.2 Predicted and measured floor response of steel structure #1 (a) walking path 1, (b) walking path 2

Path 1
Path 2

Sensor

Path 3

Fig. 19.3 Walking paths for steel structure #2

as the sensor location. The sensor is located at the proposed location of the MRI. The damping ratio was assumed to be 3%,
which is consistent with the SCI for fully fitted-out composite steel floors in normal use. Figure 19.2 shows the predicted and
measured footfall vibrations for three walking speeds. Since the walking paths and sensor location are not within the same
bay, comparisons with the AISC method are not appropriate.
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Fig. 19.4 Predicted and measured floor response of steel structure #2 (a) walking path 1, (b) walking path 2 (c) walking path 3

19.4.2 Steel Structure #2

Steel structure #2 is a hospital in the South-East United States that was undergoing major renovations and had been
experiencing floor vibration issues. Figure 19.3 shows the architectural layout of the floor, as well as the walking paths
and sensor location. The damping ratio was assumed to be 3% for this fitted-out floor. Figure 19.4 shows the predicted and
measured vibration levels. Since path 2 was located in the same bay as the sensor, it was possible to conduct a comparison
with the AISC methodology, which is done in Fig. 19.4b. Note that the AISC predicted value was plotted at the response
frequency predicted by FloorVibe.

19.4.3 Steel Structure #3

Steel structure #3 is long-span public concourse in Eastern Canada. The damping ratio was assumed to be 1.1%, which is
consistent with the SCI for buildings with bare floors and few furnishings. The measurements were collected at night to
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Path 1
Path 2

Sensor 1
Sensor 2
Sensor 3

Fig. 19.5 Walking paths for steel
structure #3

ensure a controlled testing environment. Two walking paths and three sensor locations are considered as shown in Fig. 19.5.
The predicted and measured results are shown in Fig. 19.6. Since paths 1 and 3 are located in the same bay as the sensor,
Fig. 19.6a, c show the AISC predicted response in addition to the SCI prediction and the measured results.

19.4.4 Concrete Structure

The concrete structure studied is a six-storey university building in the South-West United States that houses laboratory and
classroom space. Measurements taken on the first and third floors are presented herein, and are indicated as “site 1” and “site
2”, respectively. The damping is assumed to be 2% of critical, which is consistent with the CCIP for concrete floors that are
partially fit-out. Two walking paths were considered for each measurement site, as shown in Fig. 19.7. Figures 19.8 and 19.9
show the predicted and measured floor response at a walking pace of 120 spm. FloorVibe is not valid for concrete structures,
so AISC comparisons are not appropriate for this structure.

19.5 Discussion

The three steel structures studied showed that the SCI methodology can generally predict the vibration criteria accurately
to within one vibration class of the measured results. The CCIP methodology is also shown to compare well with the
measured results. For one-third octave frequencies well above or below the dominant frequency content, some experimental
and predicted response plots show discrepancy. At high frequencies, it becomes increasingly difficult to accurately predict
mode shapes, and their response to footfall excitation, which may account for this discrepancy. At low frequencies, the
floor is responding at frequencies below its predicted fundamental frequency. The narrow frequency bandwidths associated
with low-frequency one-third octaves combined with this off-resonant floor response, may partially account for the observed
discrepancies. The governing floor response generally occurs when the floor is excited at its natural frequencies, which the
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Fig. 19.6 Predicted and measured floor response of steel structure #3 (a) walking path 1 and sensor 1, (b) walking path 1 and sensor 2 (c) walking
path 2 and sensor 3

SCI and CCIP predict with sufficient accuracy. The AISC method is shown to significantly overestimate the floor response
for two of the three comparisons made. This overestimation may be partially attributed to the afore-mentioned overly-
conservative assumptions made by the methodology.

For the SCI and CCIP methodologies, knowledge of the FE predicted mode shapes enables the response at any floor
location to be predicted based on a person walking at any other location. Because of this modeling capability, realistic
walking paths can be selected based on the architectural layout of the floor. This ability is advantageous, since it often does
not consider the unrealistic worst-case response of a walker and vibration-sensitive receptor both being located at the center
of the same bay. For example, since nobody aside from the patient is allowed within an MRI room during its operation,
considering a walker within the MRI room is an unrealistic and overly-conservative design case. However, when using the
AISC, the designer is forced to make this unrealistic assumption and will therefore be likely to over-design the structural
system for this bay.

Since it is becoming more common for manufacturers of sensitive equipment to specify their own unique vibration criteria,
a prediction methodology must be able to accommodate many forms of output. The SCI and CCIP methodologies generate
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Fig. 19.8 Predicted and measured floor response of concrete structure, site 1 (a) walking path 1, (b) walking path 2

time series of the floor vibration, which can be post-processed to present the results in any desirable format, including one-
third octaves, narrow-band spectra, or peak-to-peak values. Conversely, the AISC methodology determines only the harmonic
response amplitude, assuming the floor responds uniquely at its fundamental frequency.

Damping is often challenging to estimate. The SCI and CCIP recommended damping values which depend on the floor
construction type, the presence and location of partitions, and the amount of furnishing present. Using these qualitative
descriptors, damping values between 1 and 5% of critical are typically recommended. When sensitive spaces are considered,
the AISC methodology assumes a floor response which is independent of the damping level; an assumption that the
methodology does not justify.
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The SCI and CCIP methodologies are shown to be more robust, and provide results consistent with measurements
collected from existing buildings. The measurements collected show that the AISC method can be overly-conservative,
and in many cases its limitations restrict its applicability.

19.6 Conclusions

Footfall vibrations on elevated floors can cause significant occupant discomfort and can result in poor performance of
sensitive equipment. Therefore, it is essential that suitable methodologies for predicting footfall vibrations are developed
and verified. The performance of three popular methodologies is compared to data collected from existing steel and concrete
structures. The methodologies considered are: the American Institute of Steel Construction (AISC) Design Guide 11, The
Steel Construction Institute (SCI) P354, and The Concrete Centre CCIP-016.

The SCI and CCIP methods are generally able to predict the vibration levels to within one VC class. These methods are
robust since they can accommodate irregular floor layouts by employing the Finite Element method to predict the dynamic
floor properties. The SCI and CCIP also enable the walker path and sensor location to be specified, which often eliminates
the unrealistic and overly-conservative design scenarios. These multimodal methods utilize linear superposition to generate
time series of the floor response, which can be post-processed to produce results that are easily compared with generic VC
criteria or any manufacturer-specified vibration criteria.

The AISC method uses simple beam theory to predict the fundamental bay frequency, which is assumed to dominate
the floor response. When the floor layout is irregular, it becomes cumbersome to estimate the fundamental frequency using
the AISC method. The AISC also assumes that the walker and sensor are both located in the center of the bay, regardless
of the relative locations of corridors and vibration sensitive spaces. This assumption is generally unrealistic and overly-
conservative. The output from the AISC method is expressed as a single RMS velocity value, which is assumed to vibrate at
the fundamental frequency of that bay. With this form of output, comparisons with manufacturer-specified vibration criteria
may not be possible.

The results of this study indicate that the SCI and CCIP methodologies are robust and provide reasonable estimates of the
floor vibration response. Conversely, the AISC method contains several unrealistic assumptions that are only valid for floors
with regular layouts.
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Chapter 20
Finite Element Model Updating of an Assembled Aero-Engine Casing

Chaoping Zang, Shuangchao Ma, and M.I. Friswell

Abstract In this paper, the finite element model updating technique based on first-order optimization is investigated and
applied to a jointed aero engine casing. Vibration modal testing is conducted and modal data, i.e. natural frequencies and
mode shapes, are obtained to update the FE models of two aero engine casings and their jointed structure. A two-step strategy
is proposed in the updating process. In the first step, model updating is carried out on the two single casings separately in
order to validate the casing component models. In the second step, the assembled casing is updated with emphasis on
updating joint parameters. The joints are modeled using a layer of continuous solid elements that have material properties to
be adjusted. The final updated FE model for the aero-engine casing is able to predict natural frequencies and mode shapes
close to the measured ones.

Keywords Model updating • Finite element modelling • Modal test • Sensitivity analysis • Jointed casing

20.1 Introduction

With the rapid development of digital computers, the finite element (FE) method has become one of the most important and
practical numerical analysis tools in product design and optimization in the mechanical and aerospace engineering industries.
Generally speaking, the accuracy of the model predictions based on the FE method largely depends on the quality of the FE
model. Once an FE model is generated, it should be subjected to a quality check to assess the accuracy of the predicted results
[1]. However, the accurate modeling of a real-world structure is still a challenging task in many cases, especially for complex
structures due to difficulties in the modeling of joints and boundary conditions. Thus, the results obtained from an FE model
often differ from the test results of an actual structure. This has lead to the development of model updating techniques, which
aim to improve the initial prediction capability of the FE model by means of adjusting some model parameters which are
considered to be uncertain.

The model updating method has been investigated thoroughly over the past 30 years [2–10] and many techniques have
been proposed. In general, model updating methods can be broadly classified into two groups: direct methods and iterative
(or parametric) methods. The former group [4–6], which are emerged first, are based on updating the stiffness and mass
matrices of elements directly without any iteration, and hence they are very fast in the updating process. However, due
to the incompleteness of the measurement data, the updated matrices do not always maintain the structural connectivity,
so that the updated model often has nonphysical meaning. In contrast, the iterative methods concentration the updating of
design parameters which leads to an indirect update of the stiffness and mass matrices. Therefore, the structural connectivity
can be easily maintained and parameter changes in the updated model can be physically interpreted. The iterative methods
[8–10] can be implemented easily using existing codes and are now widely used in model updating applications. For example,
Ahmadian et al. [8] investigated the model updating of joints in the AWE-MACE structure and obtained linear equivalent
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models that are valid within the usual range of vibration tests. Mottershead et al. [9] applied the iterative method to update
finite element models of welded joints and boundary conditions of a cantilever plate. The use of nodal offset dimensions
results in an updated model of the welded joint with physical interpretation.

Joint modeling or descriptions of joint dynamic properties has a significant role in the modeling of complex structures.
Up to now, many methods have been developed to construct predictive models of structures with joints and interfaces [11].
Generally, two groups of joint models are commonly employed in the literature: zero-thickness and thin layer elements
[12–14]. Joints modeled with zero-thickness elements, which sometimes refers to a lumped model, have properties that are
concentrated at a single point with no dimensions. The prominent examples of zero-thickness elements are lumped springs,
and frictional sliders which are commonly used to represent the force–displacement relationship in the joint interface [12].
These models are valid as long as the size of the joint patch is small in comparison to the smallest length of the connection
regions. The thin layer element in the second group of joint modeling is considered as a continuous element with very small
but finite thickness. They can use hexahedral or tetrahedral elements that are available in commercial finite element software
and the elements are assigned special constitutive relations. Recent research [8,13–16] shows that the thin layer concept with
a linear elastic constitutive relation is very well suited to model the linear behavior of joints.

In this paper, two steps are applied to relieve the difficulties in the modeling of complex structures. Firstly, the finite
element model updating technique based on first-order optimization is investigated to correct the FE model of each
component using the test data. Secondly, the joints are modeled with thin layer elements and the parameters of the joints are
updated with the test data from the assembled structure. The approach is validated using an assembly of two aero engine
casings as an example.

20.2 Methodology of the Two Step Updating Procedure

Generally speaking, the dynamic predictions from an FE model of a complex structure may differ from the practical
measurement of a real structure due to modeling errors, such as uncertainty in the material and geometrical parameters
(e.g. modulus, thickness, density and residual strain) and also in the joints and component assembly. A large number of
design parameters in the FE model may be required to be updated to correct these errors using the test data. The numbers
of transducers on the structure mean that the measured degrees of freedom are limited and therefore the measurements are
incomplete compared to the FE model. This creates difficulties to keep the physical meaning in the updating process of
such complex structures with many uncertain design parameters. Therefore, a two-step updating procedure is suggested as a
means to reduce the number of updating parameters at each step and keep the updating as meaningful as possible in practice.
Figure 20.1 shows the framework of the two-step updating procedure to update a joint assembly of two components. The first
step is to update each component separately with free-free boundary conditions in order to correct the component modeling
errors. The second step is to update the joints of the assembly of two updated components to have the right connection
parameters between the two components.

20.2.1 Planning of the Modal Test

In order to obtain effective test information for successful FE model updating, modal tests were conducted on both individual
casings and on their assembly under the free-free boundary conditions. Test planning was performed to select the suspension
placement of the structures and the transducer locations for informative data collection in order to guarantee efficient modal
tests.

Theoretically, under free-free boundary conditions, the test structure is not connected to any other object. However, this
is difficult to achieve in practice. In order to reduce the influence of the supports the attachment locations should be situated
on, or very close to, the nodal lines of all of the modes excited during testing. The optimum suspension locations for modal
testing are generally found to be in the regions of a structure where the average displacement in the modes of interest is the
lowest, which can be defined as [17] minimizing

Optimumsuspension : min

(
m

∑
r=1

ϕ2
jr

ω2
r

)
(20.1)

where m is the number of modes of interest, and ωr and φr are the r-th natural frequency and mode shape, respectively.
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Fig. 20.1 Framework of the two
step updating procedure

The Effective Independence (EI) transducer location optimization method, proposed by Kammer in 1991, is perhaps the
most popular tool to select the measurement DOFs. Using the EI method, the aim is to find the transducer locations to ensure
that the measured modes as linearly independence as possible. The approach does not consider any other requirement for
selection of measurement DOFs during the optimization procedure. Therefore, many DOFs selected using the EI method
will have a low response which will lead to a low signal-to-noise ratio. In order to overcome this problem, Imamovic [17]
proposed a modified method called the Average Driving DOF-Effective Independence method which is applied to select the
measurement DOFs having the higher response and meets the EI method requirements. The improved method minimizes a
modified Fisher information matrix given by

[
Eaddo f a

]
n×n

= [E]n×ndiag

(
m

∑
r=1

φ2
jr

)
) (20.2)

where m is the number of modes of interest and φr is the r-th mode shape.
The correlation between the measured and predicted mode shapes is quantified by the SCO (System Equivalent Reduction

Expansion Process-Cross-Orthogonality) parameter, which will generally have a higher value for two similar mode shapes
than the MAC correlation coefficient and, conversely, a lower value for two dissimilar mode shapes. The SCO is defined by:

Sco (i, j) =

∣∣∣{ψX,i}T
(
[φA]

+T [φA]
+
){

ψA, j
}∣∣∣

2

{ψX,i}T
(
[φA]

+T [φA]
+
)
{ψA,i} ·

{
ψX, j

}T
(
[φA]

+T [φA]
+
){

ψA, j
} (20.3)

where ψX,i the i-th is test eigenvector and ψA, j is the j-th analytical eigenvector. φA is the mass-normalized test or analytical
mode shape matrix.

20.2.2 Model Updating Process

The main purpose of FE model updating is to adjust parameters in the FE model to minimize the differences between the
analytical and experimental models in order that the predictions of the dynamic characteristics from the FE model match
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the measured data in the frequency range of interest. The model updating problem is essentially an optimization, where the
prediction error is given as

g = min
x

‖WiR(x)‖2
2 , where R(x) = { fe}−{ fa(x)} , xl ≤ x ≤ xu, (20.4)

g is the objective function, Wi is the weighting matrix, and R is the residual vector. The vector x represents the design
parameters that have specified upper and lower bounds. fe and fa denote vectors of the test and predicted dynamic properties,
respectively.

Using the first-order method [18], an unconstrained objection function outlined can be formulated from Eq. (20.4) as

Q(x,q) = g/g0 +
n

∑
i=1

Px (xi)+ q

[
m1

∑
i=1

Pf ( fi)+
m2

∑
i=1

Ph (hi)+
m3

∑
i=1

Pw (wi)

]
(20.5)

Where Q denotes a dimensionless and unconstrained objective function, g0 represents the reference prediction error selected
from the current group of design parameter sets. Px are penalties applied to the design variables, i.e. the Young’s modulus
and density of the structure and Pf , Ph, Pw are penalties based on the state variables, for instance, natural frequencies and
mode shapes. The constraint satisfaction is controlled by a response surface parameter, q.

The penalty functions are defined as

Pg (gi) =

(
gi

gi +αi

)2λ
(20.6)

Where λ is an integer and αi denotes a tolerance number.
To solve Eq. (20.5), an iterative method is used. At each optimization iteration, j, the design parameters are given by the

vector x( j). A search direction vector, d( j), is calculated, and the estimates of the design parameters are obtained as

x( j+1) = x( j) + s jd
( j) (20.7)

where the line search parameter, s j , corresponds to the minimum value of Q in the direction of d( j). This line search can be
solved using a combination of a golden-section algorithm and a local quadratic fitting technique. The search parameter s j is
usually limited to the range given by

0 ≤ s j ≤ smax

100
s∗j (20.8)

where s∗j is the largest possible step size for the line search at the current iteration, j, and smax is the maximum line search
step size.

20.2.3 Joint Modeling

The components are updated and validated with the test data in the first step. The second step is to model the joints and
update the joints parameters for the assembly of the valid components using the measurement data tested from the assembled
structure. In this paper, thin layer elements are employed to model the joints. For simplicity, the thin layer elements are often
formulated using a linear elastic constitutive relation, which generally has the form

⎧
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(20.9)

Where σ and ε represent the stress and strain respectively, and ci j, i, j = 1, . . .,6, represents the stiffness at each degree of
freedom. The behavior of the joint is governed mainly by the normal and shear stiffness, whilst the coupling terms have a
secondary effect [16]. Hence the coupling between the normal and shear stiffness will be neglected. Thus, the constitutive
relation further simplifies to
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The off diagonal elements are 0 and there are only 6 parameters which represent the normal and shear stiffnesses to be
identified.

20.3 Case Study: Model Updating of a Jointed Aero-Engine Casing

In order to demonstrate the effectiveness of the two-step strategy for updating complex structures, a joint assembly of two
aero engine casings is used. First, models of two single casings are updated individually with modal test data to reduce the
possible modeling errors of each casing. Then, the assembled model of both casings with bolts is updated with emphasis on
updating the joint parameters (Fig. 20.2).

20.3.1 Aero-Engine Casings and Modal Test

The investigated physical casings are shown in Fig. 20.4. Both individual casings are made of two separate parts (the upper
and the lower bodies) that are connected together with spot welds. Also, there are 36 identical bolt holes distributed at the
flange of the casings, which are used to assemble the casings, and 4 mounting bases placed at the upper part to fix attachments.
The FE model for each individual casing is developed using the ANSYS software tool. Modeling the spot weld, shown in
Fig. 20.3, is the most difficult task since there are many local effects such as geometrical irregularities, residual stresses and
defects due to the welding process, which are not taken into account in the FE modeling. Furthermore, the casing contains
many spot welds and modeling each of them in detail would require a major computational effort. Thus, the welded regions
are simplified to rigid connections. In order to save computational effort, the holes and the mounting bases are also removed
from the FE model. The FE model of the rear casing is show in Fig. 20.4, and is formed using ten-noded solid elements.
The model has 32,827 elements and 66,247 nodes. The Young’s modulus of the casing is 180 GPa and the mass density is
7,920kg/m3.

Free-free boundary conditions were employed for the measurements by supporting the casings with elastic bands.
A roving hammer test was chosen for the force excitation. Figure 20.5 shows that the optimum suspension locations of
the rear casing are within the blue regions, where is not easy to suspend the structure. Hence the casing was suspended by the
small flange. Figure 20.6 shows the optimum transducer locations for the rear casing. Clearly the best transducer locations
are in the middle region of the casing. In order to have sufficient spatial resolution to correlate with the finite element model,
a test model with 128 DOFs was established for the single casing, shown in Fig. 20.7. Two reference accelerometers were
placed at orthogonal directions. The frequency range of interest is 0–1,000 Hz and the number of spectral lines was set to
3,200, which provided sufficient resolution.

Fig. 20.2 The aero-engine
casings. (a) Front casing and (b)
rear casing
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Fig. 20.3 The spot weld

Fig. 20.4 The FE model of the
rear casing
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Fig. 20.7 The test model showing the impact and accelerometer locations

mode1:252.66Hz mode2: 252.70Hz mode3: 358.90Hz mode4: 359.00Hz mode5: 695.38Hz

mode6: 695.64Hz mode7: 851.86Hz mode8: 852.13Hz mode9: 874.76H mode10: 874.87Hz

Fig. 20.8 The predicted natural frequencies and mode shapes for the rear casing

20.3.2 Updating of the Casing Components Using Test Data

The predicted natural frequencies and mode shapes for the front and the rear casings are calculated from the FE models. The
modes of the rear casing are shown in Fig. 20.8. It can be seen that the natural frequencies appear in close pairs since the
casing is almost axisymmetric.

The initial mode pairing for the individual casings are given in Tables 20.1 and 20.2 and the corresponding SCO matrix
is visualized in Figs. 20.9 and 20.10. It can be seen that the modal properties from the initial FE models show significant
deviations from those of the test models. Many of the pairs of modes have been swapped and there is some coupling between
modes 9 and 10 of the front casing. Also, modes 9 and 10 of the real casing are in the wrong sequence. To improve these
unsatisfactory correlations, the suggested model updating procedure is applied.

The choice of the updating parameters is critical to improve the modeling of the casing. Physical properties of the elements
such as Young’s modulus and mass density could be chosen as updating parameters. As a general rule, only parameters that
the response is sensitive to should be selected, otherwise the updating process will be ill-conditioned since insufficient
information is available to estimate the parameters accurately. Among these parameters, only those having physical meaning
should be updated, otherwise the updated model may reproduce the data used for updating but might not accurately predict
the response of the casing under different conditions [11]. In order to determine the most sensitive parameters, an eigenvalue
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Table 20.1 The initial
correlation between the predicted
and measured modal data of the
front casing

Test mode no. FE mode no. Test freq./Hz Initial freq./Hz Error % Initial SCO/%

1 2 229.44 241.43 5.23 89.0
2 1 230.11 241.65 5.01 97.0
3 3 360.72 357.25 −0.96 81.6
4 4 361.36 357.34 −1.11 79.2
5 5 609.42 631.63 3.64 87.9
6 6 611.31 632.95 3.54 83.2
7 8 659.02 662.18 0.48 58.6
8 7 661.83 660.06 −0.27 90.6
9 10 675.51 691.72 2.40 58.8

10 9 677.57 690.47 1.90 57.0

Table 20.2 The initial
correlation between the predicted
and measured modal data of the
rear casing

Test mode no. FE mode no. Test freq./Hz Initial freq./Hz Error/% Initial SCO/%

1 1 247.20 252.66 2.21 94.6
2 2 248.26 252.70 1.79 70.7
3 4 361.27 359.00 −0.63 94.7
4 3 362.85 358.90 −1.08 92.9
5 6 684.11 695.64 1.68 97.0
6 5 686.02 695.38 1.36 96.7
7 8 731.93 852.13 16.42 76.4
8 7 733.84 851.86 16.08 82.9
9 13 771.46 956.28 23.96 72.2

10 14 773.79 956.57 23.62 65.5
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Fig. 20.9 The initial SCO for the front casing

sensitivity analysis to changes in the stiffness and mass of element were carried out. Figure 20.11 shows that the welded
connections regions and the top and bottom flange were more sensitive than other model regions. In the FE model, the
holes on the front and rear flange were removed and the welded connections was simplified as rigid connection. Hence, it is
consistent that the main modeling errors in the FE model are located at these three regions. As the mass change of the FE
model, compared with the actual structure, is very small, it was decided to select the Young’s modulus of the flanges and the
welded connection regions as the updating parameters, as shown in Fig. 20.12.

The objective function is formulated using the first ten natural frequencies, defined as

min
n

∑
i=1

Wi (1−ωe
i / ωa

i )
2 (20.11)

where ωe
i and ωa

i are experimental and analytical eigenvalues, respectively. The weights Wi are set to one.
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Fig. 20.10 The initial SCO for the real casing

mode 1 mode 3 mode 5

mode 7 mode 9 mode 11

Fig. 20.11 The sensitivity of the natural frequencies to the element stiffness for the rear casing

The updated results for the two individual casing are presented in Tables 20.3 and 20.4. It can be seen that the dynamic
behavior of both the front and rear casings have been improved significantly after updating. The highest absolute natural
frequency error is reduced from 5.32 to 1.41 % for the front casing and from 23.96 to 1.26 % for the rear casing. The updated
SCO is shown in Figs. 20.13 and 20.14 respectively. Although the SCO values have no significant improvement, all of the
modes are corrected to the right sequence. For the updated models, all of the Young’s moduli at the three regions become
smaller, which reflects that the simplifications in the initial FE model resulted in increased stiffness. The updated Young’s
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Fig. 20.12 The updating regions for the rear casing

Table 20.3 The updated results for the front casing

Test freq./Hz Updated freq./Hz Initial error/% Updated error/% Updated SCO/%

229.44 232.29 5.23 1.24 89.5
230.11 231.45 5.01 0.58 96.5
360.72 359.91 −0.96 −0.22 80.7
361.36 360.19 −1.11 −0.32 78.4
609.42 618.08 3.64 1.42 87.8
611.31 618.71 3.54 1.21 82.6
659.02 653.08 0.48 −0.90 59.4
661.83 652.51 −0.27 −1.41 90.6
675.51 673.02 2.40 −0.37 64.0
677.57 673.77 1.90 −0.56 62.4

Table 20.4 The updated results for the rear casing

Test freq./Hz Updated freq./Hz Initial error/% Updated error/% Updated SCO/%

247.20 248.66 2.21 0.59 94.9
248.26 248.71 1.79 0.18 72.5
361.27 360.66 −0.63 −0.17 94.6
362.85 360.53 −1.08 −0.64 92.5
684.11 684.67 1.68 0.08 97.7
686.02 684.30 1.36 −0.25 96.9
731.93 738.88 16.42 0.95 79.2
733.84 738.65 16.08 0.66 80.6
771.46 761.73 23.96 −1.26 72.7
773.79 765.14 23.62 −1.12 66.2
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Fig. 20.13 The updated SCO for the front casing
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Fig. 20.14 The updated SCO for
the rear casing

Fig. 20.15 The joined casing

Fig. 20.16 The FE model of the
joint

moduli of the top flange, bottom flange and the welded regions are 182, 169, and 105 GPa for the front casing respectively,
and 180, 174, and 100 GPa for the rear casing. Note that the Young’s moduli in the welded regions have a significantly
decrease, which indicts that the spot weld significantly weakens the structure’s stiffness.

20.3.3 Updating of the Joint Assembly Using Test Data

With the updated individual casing models, the jointed casing model updating can be performed with the emphasis on
the joints. The assembly is fabricated from components by using 36 M6 bolted joints, shown in Fig. 20.15.The thin layer
elements, which have material properties that may be adjusted, are used to model these bolted joints, shown in Fig. 20.16.
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Fig. 20.17 The initial SCO for the assembled casing

Table 20.5 The initial
correlation between the predicted
and measured modal data of the
joined casing

Test mode no. FE mode no. Test freq./Hz Initial freq./Hz Error/% Initial SCO/%

1 1 238.21 251.44 5.55 83.2
2 2 238.53 251.92 5.61 75.3
3 4 272.68 317.23 16.34 69.8
4 3 274.45 316.13 15.19 68.0
5 6 385.72 468.70 21.51 75.2
6 5 386.81 468.36 21.08 60.3
7 18 598.55 847.64 41.62 87.8
8 17 599.75 843.89 40.71 88.0

Table 20.6 The updated results
of the assembled casing/4 Nm

Test freq./Hz Updated freq./Hz Initial error/% Updated error/% Updated SCO/%

238.21 241.43 5.55 1.35 84.3
238.53 242.10 5.61 1.50 77.5
272.68 277.94 16.34 1.93 92.1
274.45 278.21 15.19 1.37 90.8
385.72 376.82 21.51 −2.31 80.5
386.81 376.42 21.08 −2.69 68.5
598.55 597.06 41.62 −0.25 88.8
599.75 594.50 40.71 −0.88 75.1

The assembled casing was tested 3 times with different torque levels of 3, 4, and 5 Nm for the tightness of the bolts. The
initial correlation between the predicted and measured modal data of the joined casing with the torque level of 4 Nm is
presented in Table 20.5 and the initial SCO is shown in Fig. 20.17. Clearly the initial frequency error is very significant; the
maximum frequency error is 41.62 % and modes 7 and 8 are in the wrong sequence.

As the behavior of the joint is governed mainly by the normal and shear stiffnesses, it was decided to select the elastic and
shear moduli of the joints as updating parameters. A permissible range of variation for the parameters was defined during the
updating. Since the joints usually introduce a local softening effect and sharply reduce the normal and shear stiffnesses, the
upper bound for the variation of the updating parameters was set to the initial value and the lower bound was set to 0.000001
of the initial value. The updated results are presented in Table 20.6. The maximal frequency error is reduced from 41.62 to
−2.69 %. The SCO values in Fig. 20.18 show little improvement. After updating, the normal and shear stiffnesses have been
reduced to 300 and 50 MPa, which shows a sharp decrease in the stiffnesses of the structure due to the joints.

Tables 20.7 and 20.8 give the updated results of the assembled casing with torques 3 and 5 Nm, respectively. The frequency
deviations in both cases, between the updated model prediction and the measurement test, are within 3 %. The updated normal
and shear stiffnesses are 240 and 52 MPa for the casing joined with 3 Nm and 400 and 57 MPa for the casing joined with
5 Nm. This shows that the torque of the joints has a significant impact on the normal stiffness.
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Fig. 20.18 The updated SCO for
the assembled casing

Table 20.7 The updated SCO
for the assembled casing/3 Nm

Test freq./Hz Updated freq./Hz Initial error/% Updated error/%

238.45 241.16 5.45 1.14
238.74 241.85 5.52 1.30
272.16 276.18 16.56 1.48
272.76 276.44 15.90 1.35
385.50 376.55 21.58 −2.32
386.47 376.19 21.19 −2.66
576.38 574.51 47.06 −0.32
577.15 574.04 46.22 −0.54

Table 20.8 The updated SCO
for the assembled casing/5 Nm

Test freq./Hz Updated freq./Hz Initial error/% Updated error/%

238.53 241.76 5.41 1.35
238.92 242.41 5.44 1.46
275.18 280.45 15.28 1.92
277.26 280.76 14.02 1.26
386.86 376.73 21.15 −2.62
387.47 377.17 20.88 −2.66
628.13 620.14 34.95 −1.27
630.84 622.77 33.77 −1.28

20.4 Conclusions

Model updating has been performed on a joined aero-engine casing. The thin layer elements are suggested to model the
bolted joints and this model was successfully updated for three different torque levels. The final updated FE model for the
aero-engine casing is able to predict natural frequencies and mode shapes that are very close to the measured ones. Therefore,
the jointed casing model may be reliably used for the analysis of the whole engine. The parameters of the joint model used
in this paper are heavily dependent on the experimental measurements. Parameters of the model have to be identified using
the test data. Thus, a big challenge is to analyze the dynamic characteristics of the structure accurately at the design stage.
Truly predictive models of the joints require further investigation.
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Chapter 21
Experimental Modal Analysis and Modelling of an Agricultural Tire

F. Braghin, F. Cheli, S. Melzi, S. Negrini, and E. Sabbioni

Abstract Traction properties of agricultural tires on deformable grounds are strongly dependent on the interaction between
tread elements with the soil, which is in turn function of parameters like tread design and inflating pressure. The present
paper presents a numerical model aimed at investigating tire performance and soil compaction under different conditions,
considering effects due to tangential and normal compliance of the terrain surface as well as tread design and inflating
pressure. In particular, the ground has been modelled as a deformable springs layer and the tire as a flexible ring reproducing
the tread geometry. Longitudinal and vertical dynamics of the tire are taken into account. Moreover, effect of tire carcass
deformation was included considering the in-plane eigenmodes of the tire identified through a series of experimental tests.

Keywords Tire model • Tire flexibility • Deformable soil • Modal identification • Numerical analysis

21.1 Introduction

Experimental [1–3] and numerical [4] analysis carried out in recent years on off-road tires, evidenced the role of inflating
pressure on several aspects of tire performance. In particular, inflating pressure deeply influences the shape and the dimension
of the contact area together with the position and sinkage of tread lugs with respect to the soil. As a consequence, inflating
pressure has a strong impact on the distribution of both normal and tangential contact stresses. These factors determine the
performance of a tire [5] in terms of: traction force and traction efficiency [6], soil compaction [7] and vibrations transmitted
to the tractor.

The work carried out by the authors aims at setting up a numerical model able to describe the interaction between tire
and soil a tread level, taking into account soil characteristics, effect of tire flexibility (in particular associated with inflating
pressure) and tread geometry. On this purpose, a model developed in recent years [8] by the authors was adopted. The
model allows to take into account the soil deformation and the 3D design of the tread pattern. In addition, with respect to
[8], the model was further developed including the description of tire structure flexibility, introduced by means of a modal
superposition approach.

The paper is organized as follows: the first section is focused on the description of the numerical model developed
to investigate the interaction between tire and deformable soil; the second part of the paper describes the experimental
campaign aiming at identifying the in-plane eigenfrequencies and eigenmodes of the tire. The last part of the work reports
some results of a numerical analysis, showing the effect of inflating pressure on traction performance, riding comfort and
soil compaction.
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21.2 Numerical Model

Evaluation of tire performance was carried out by means of a numerical model of the interaction between tire ad soil. The
model describes the motion of the tire in the vertical plane and considers the flexibility of the carcass and the 3D geometry
of the tread pattern design. The soil model allows to describes the normal and tangential contact stresses associated with the
relative motion between soil and tire.

21.2.1 Structure Model

The tire structure model describes the dynamics of the tire in the vertical plane. In particular the tire hub presents one single
degree of freedom (d.o.f.) represented by its vertical displacement. The tire is assumed to be mounted on a tractor and,
according to its weight distribution, part of the total mass of the tractor is assigned to the tire hub. Longitudinal speed of the
hub and slippage are imposed, that is longitudinal displacement and rotation of the hub are regarded as imposed inputs.

The flexibility of the tire carcass is reproduced by means of a modal superposition approach. The equations of motion for
the tire structure thus can be written as:
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(21.1)

Where m j, r j, k j represent the modal mass, the equivalent damping and stiffness of the modal coordinate q j respectively. As
previously mentioned, mhub is the mass of the hub and collects also part of the mass of the tractor. The terms Qhub and Q j

introduce the effect of external forces (weight and contact forces) acting on the system. External forces actually couple the
equations of motion.

21.2.2 Tread Model

Though the proposed model analyzes the dynamics of the tire in the vertical plane, a complete 3D description of the tread
design is included. The outer surface of the tire is divided into Nel elements through a rectangular grid; the grid presents
different spacing along circumferential and transversal direction. As an example, Fig. 21.1 shows the rectangular grid super-
posed to a picture of the tire analyzed in this work. Each element of the grid characterizes the local geometry of the tread
considering the area of four surfaces: front, rear, top and base. Front and rear surfaces represent the total lateral surfaces
of one or more tread lugs included in one element of the grid; in particular, normal contact stresses may contribute to the
development of the total thrust. Base and top surfaces are instead normal to the radial direction and respectively represent the
extremity of the tread lugs and the tread surface between lugs. In these tread regions, the main contribution to total traction
force is associated with tangential stresses.
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Fig. 21.1 Discretization of the tread surface and properties of the grid element
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Fig. 21.2 Normal contact stress
as function of the history of load
cycles
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21.2.3 Soil Model

The soil model is made up of a layer of springs whose compression, caused by the sinkage of the tire, gives rise to a
normal contact stress σ : the stress is assumed to be hydrostatic, i.e. even though sinkage is computed along a vertical axis,
the resulting pressure acts along three directions [9]. The relation between sinkage and normal stress depends on the time
history of the deformation of the terrain. Figure 21.2 describes the adopted model: the load phase follows a linear relation
whose slope KI is determined according to the experimental tests carried out with a standard penetrometer. The model takes
into account the increase of the soil stiffness associated with its compaction: assuming that a soil has been compressed at z′,
the unload phase from z′ to z′′ and further load phases back to z′ are described through a different linear relation whose slope
KII is assumed to be five times higher than KI.

As far as the tangential contact stress is concerned, a direct shear test has been carried out on a soil sample, to measure
the shear stress as a function of the relative displacement between soil layers and the normal stress [10]; thus an analytical
relation has been stated to fit the experimental data.

As it is shown in Fig. 21.3, the tangential contact stress τ increases along with the normal contact stress σ and the relative
displacement of the soil, until a value of 4 mm of displacement is reached, at this point the soil is supposed to fail.

21.2.4 Generalized Forces

Recalling Eq. (21.1), this paragraph is devoted to the determination of the terms Qhub and Q j which account for the effect
of external forces (weight and contact forces) acting on the system d.o.f.s. Figure 21.4 depicts the absolute position of point
Cik, geometrical center of the k−th area (Aik) of the i−th element of the grid (Fig. 21.1); each element is in fact characterized
by four surfaces (top, base, front, rear) so that k varies between 1 and 4. Figure 21.4 reports also the position of the tire hub
(point O) and the distance between Cik and O, named Rik. If point Cik happens to be below the undeformed soil level, it will
be characterized by a sinkage sik.
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The absolute position of Cik can be computed as follows:
{

xcik = xhub +Rik cosθik

zcik = zhub −Rik sinθik
(21.2)

Considering the flexibility of the tire structure, the radius Rik will be function of the modal coordinates, according to the
expression: ⎧
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(21.3)

In Eq. (21.3) of the term Φik, j is the element of j−th eigenvector corresponding to the location of Cik; modal coordinates
actually represents variation of the radius of the tire along the circumference.

Considering the vertical position of Cik, it is possible to compute the sinkage sik and the value of the contact pressure
σik acting on the k−th area of the i−th element. According to the procedure described in the previous paragraph, value
of the tangential stress τik can also be found. The virtual work of the external forces acting on the k−th area of the i−th
element(Aik) is given by:

δLik = [−mikg+(σik sinθik − τik cosθik)Aik]δ zcik − (σik cosθik + τik cosθik)Aikδxcik (21.4)

In Eq. (21.4) mik is the mass associated with the k−th area of the i−th element. Substituting Eq. (21.3) in Eq. (21.4), the
virtual work can be expressed as:
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(21.5)

Considering also the mass of the hub itself, the value of the generalized forces due to vertical displacement of the tire hub is
represented by:
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Also the value of Q j can be derived
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Since σik, and thus τik, are functions of the sinkage, which is itself function of both the vertical displacement of the hub and
of the modal coordinates, the equations of motion are coupled by the contact forces.
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21.3 Identification of Modal Parameters

To include the tire deformation in the model, a modal identification has been performed on a tire of size 460/85R34. As the
numerical model considers only in-plane forces, only the radial modes have been studied, considering two different inflation
pressures.

The inflation pressure exerts a high influence on the tire dynamic response, determining the tire stiffness; the first inflation
pressure inflation is 1.0 bar, which is generally used during field operation, the second inflation pressure inflation is 1.6 bar,
preferable on public asphalt roads.

During the experimental tests modes in the range 10–60 Hz have been identified, whose shapes are shown in Fig. 21.5.
The first mode corresponds to the expansion and contraction of the tire carcass, the second mode is the rigid displacement
of the tire, and the third, fourth, and fifth mode correspond to carcass shape deformation, presenting respectively two, three
and four lobes.

The modes shapes are poorly influenced by the inflation pressure, which has instead a significant effect on the tire stiffness.
Table 21.1 shows frequency and damping factor of the modes previously described as a function of the inflation

pressure. Due to the stiffness increase with the pressure, the modes frequency increases and the damping factor decreases,
proportionally to the mode order.
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Fig. 21.5 Shapes of the five modes experimentally indentified

Table 21.1 Frequency and damp factor of the identified modes

1.0 bar 1.6 bar
Frequency (Hz) Damp. factor (%) Frequency (Hz) Damp. factor (%)

0 lobe 11.2 5.8 11.8 5.8
1 lobe 26.5 4.4 26.1 2.2
2 lobes 39.3 3.1 42.4 3.6
3 lobes 46.3 1.3 51.9 2.8
4 lobes 56.3 4.8 62.2 3.8
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21.4 Simulation Results

The influence of the inflation pressure on tire performances has been studied, considering the tire moving at a speed of
7 km/h, with tire slip varying from 5 to 30%. Tire slip is defined as:

ε =
ωR− v

ωR
(21.8)

The tire performance has been evaluated considering three aspects:

1. The traction force developed at the contact interface,
2. The soil compaction after tire passage, whose influence is crucial on roots growth
3. The driver comfort, which has been evaluated considering the standard deviation of the vertical acceleration at the hub,

Fig. 21.6 shows the traction force as a function of the tire slip it is possible to observe the increase of traction force with slip.
Althrough the model does not consider the compaction of the soil between the treads it is able to account for the traction
force increment at high slip values. This behaviour is reproduced into the model by introducing a coefficient to reduce forces
generated on rear surface of lugs to about half of the front ones.

The traction force supplied is barely influenced by the tire inflation pressure; in fact, in the proposed model, contact forces
are mainly related to the mean sinkage, which is quite similar for both the considered inflation pressures as it is possible to
infer from Fig. 21.7. It is in fact worth noting that influence of inflation pressure on tire torsional stiffness is not included into
the model.

On the contrary the inflation pressure have a severe influence on the driver comfort, as shown in where the standard
deviation of the vertical acceleration as a function of the tire slip is reported. The model does not allow to evaluate the
vertical acceleration at the driver’s seat, as it is not modeled, hence the standard deviation of the vertical acceleration at the
hub has been considered as comfort index.
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A lower inflation pressure dramatically decreases the standard deviation of the vertical acceleration at the hub, supplying
a better filtering of the disturbance, as shown in Fig. 21.7.

The soil sinkage has been considered to evaluate the compaction level of the soil after the tire passage. The simulation
results are shown in Fig. 21.8, where the mean value and the maximum value of the sinkage are shown as a function of the
slip.

The mean value is related to the total vertical force on the tire, and it is almost the same for both the considered inflation
pressures as the vertical load on the tire, due to the tractor load, is the same; moreover it is possible to observe the sinkage
increase with the slip value, as the tire rotation digs the soil.

As far as the maximum sinkage is concerned, it is possible to observe that the inflation pressure affects its value thus
reducing the soil compaction.

21.5 Conclusion

In this paper a tire soil interaction model allowing to evaluate the performance of a tractor tire riding on a deformable soil
was presented, also including tire flexibility.

This model is suitable for estimating the traction force, the driver comfort and the vertical compaction of the soil’s layers.
Influence of inflation pressure was analysed through numerical simulations. An increase in inflation pressure involves

a larger value of the maximum soil sinkage, corresponding to a larger soil compaction, Moreover an increase in inflation
pressure involves a rise of the standard deviation of the vertical acceleration at the hub, which can be assumed to be related
to the driver comfort. Thus, as expected, a lower inflation pressure can improve comfort.

Furthermore this model can be used to carry out the optimal design of the tread pattern, since it considers the tire geometry.
A sensitivity analysis of the influence of tire characteristics on performances will be provided in future developments of the
work.
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Chapter 22
International Space Station Modal Correlation Analysis

Kristin Fitzpatrick, Michael Grygier, Michael Laible, and Sujatha Sugavanam

Abstract Modal analyses, model validations and correlations are performed for the different configurations of the
International Space Station (ISS). Three Dedicated Thruster Firings (DTF) tests were conducted during ISS Stage ULF4;
this paper will focus on the analysis and results of the DTF S4-1A, which occurred on October 11, 2010. The objective of
this analysis is to validate and correlate analytical models used to verify the ISS critical interface dynamic loads.

During the S4-1A Dedicated Thruster Firing test, on-orbit dynamic measurements were collected using four main
ISS instrumentation systems along with a Russian high rate sensor; Internal Wireless Instrumentation System (IWIS),
External Wireless Instrumentation System (EWIS), Structural Dynamic Measurement System (SDMS), Space Acceleration
Measurement System (SAMS) and Internal Measurement Unit (IMU). ISS external cameras also recorded the movement of
one of the main solar array tips, array 1A.

Modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and
mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were
performed to assess the accuracy of the analytical models for the configuration under consideration. Based on the frequency
comparisons, the accuracy of the mathematical model is assessed and model refinement recommendations are given.

Keywords Correlation • Modal analysis • Photogrammetry • International space station • Structural dynamics

22.1 Introduction

The on-orbit construction of the International Space Station (ISS) began in November 1998, and was completed in July of
2011. The ISS has been designed to operate for at least 15 years to conduct science and engineering projects. To maintain
its structural integrity during its construction and life span, structural loading distributions have been rigorously analyzed
through numerical simulations and included in the design of the structure and its mission operations [2,15,16]. The accuracy
of such analysis results is directly affected by the integrity of structural dynamic mathematical models and estimated input
forces.

On-orbit dynamic math models of ISS configurations are generated by combining component math models. Each
component model is required to be correlated with ground test data. However, it is expected that on-orbit math models
will still contain modeling inaccuracies due to differences in boundary conditions, mass distributions, and gravitational
fields [7, 15]. Uncertainty factors are used to compensate for inherent inaccuracies in the math models and the estimated
input forces [19]. The latter ISS configurations will have greater uncertainties due to the accumulation of component model
inaccuracies. Large uncertainties would restrict the ISS mission operations. This problem may be alleviated by correlating
on-orbit math models using test data measured in space. On-orbit testing of earlier ISS configurations, with ground testing
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Table 22.1 Configuration of ISS stage ULF4 S4-1A DTF

ISS stage ULF4
on – orbit event Date SM Aft

MRM1
Nad DC1 Nad

MRM2
Zen

Stbd SARJ
angle

Port SARJ
angle

Stbd HRS
angle

Port
HRSangle

S4-1A DTF 10/11/10 39P 23S 37P 24S 195 75 30 45

ISS stage ULF4
on – orbit
event

BGA 3B
angle

BGA 1B
angle

BGA 1A
angle

BGA 3A
angle

BGA 4A
angle

BGA 2A
angle

BGA 2B
angle

BGA 4B
angle

S4-1A DTF 279 70 279 70 270 90 270 90

of new hardware components, will lead to the verification of later, more complex configurations. This “phased configuration
verification” allows the use of the same uncertainty factors in predicting structural dynamic loads for all configurations.

This paper summarizes the on-orbit modal test and the related modal analysis, model validation and correlation performed
for the ISS Stage ULF4, DTF S4-1A, October 11, 2010, GMT 284/06:13:00.00. The objective of this analysis is to validate
and correlate analytical models with the intent to verify the ISS critical interface dynamic loads and improve fatigue life
prediction.

For the ISS configurations under consideration, on-orbit dynamic responses were collected with Russian vehicles attached
and without the Orbiter attached to the ISS. ISS instrumentation systems that were used to collect the dynamic responses
during the DTF S4-1A included the Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation
System (EWIS), Structural Dynamic Measurement System (SDMS), Space Acceleration Measurement System (SAMS),
Inertial Measurement Unit (IMU) and ISS External Cameras.

Experimental modal analyses were performed on the measured data to extract modal parameters including frequency,
damping and mode shape information. Correlation and comparisons between test and analytical modal parameters were
performed to assess the accuracy of models for the ISS configuration under consideration. Based on the frequency
comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given.

Section 22.2 of this report presents the math model used in the analysis. This section also describes the ISS configuration
under consideration and summarizes the associated primary modes of interest along with the fundamental appendage modes.
Section 22.3 discusses the details of the ISS Stage ULF4 DTF S4-1A test. Section 22.4 discusses the on-orbit instrumentation
systems that were used in the collection of the data analyzed in this paper. The modal analysis approach and results used
in the analysis of the collected data are summarized in Sect. 22.5. The model correlation and validation effort is reported in
Sect. 22.6. Conclusions and recommendations drawn from this analysis are included in Sect. 22.7.

22.2 Math Models and Dynamics

An ISS math model was created for the configuration of the ISS Stage ULF4 DTF S4-1A. This math model was generated
from collections of the latest ground test verified component models. The component models are represented by Finite
Element Models (FEMs) that also include internal and external Component Mode Synthesis (CMS) models. In addition, the
analyzed model incorporated, as closely as possible, the actual on-orbit boundary and interface conditions. The post-flight
modeling effort also attempted to account for the actual array orientations that were recorded during the event. The model
used in this analysis are linear and do not account for non-linearity that may be present.

The configuration of the ISS Stage ULF4 DTF S4-1A is outlined in Table 22.1. The configuration includes a Progress
docked to the SM Aft and DC1 Nadir ports, and a Soyuz docked to the MRM1 Nadir and MRM2 Zenith ports. Figure 22.1
illustrates the vehicle and element configuration for this event. The specific SARJ and BGA angles are presented in Table 22.1
and depicted in the math model MSC/PATRANTM view in Fig. 22.2. The ISS solar array, 1A, that was recorded during the
S4-1A DTF is also labeled in that figure.

Table 22.2 is the latest on-orbit ISS mass properties compared to the NASTRAN model. The associated global system and
truss modes (up to 5.0 Hz) are summarized in Table 22.3. The mode descriptions in the table were determined from kinetic
energy distributions and mode shape animation using MSC/PATRANTM.

22.3 On-Orbit Flight Testing: Dtf s4-1A

The purpose of the ISS Stage ULF4 S4-1A DTF test was to excite primary load inducing modes which would be recorded
by the ISS instrumentation systems. The test was conducted on October 11, 2010, GMT 284/06:13:00.00 and was comprised
of two firings. Firing 1 was an ISS Yaw firing designed to excite dynamic modes in the ISS XY plane, though other modes
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LAB
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Fig. 22.1 ISS stage ULF4 dedicated thruster firing S4-1A configuration

Fig. 22.2 ISS stage ULF4 S4-1A DTF math model PATRAN view

Table 22.2 Mass properties: ISS stage ULF4 S4-1A DTF configuration

24S AR ISS + 37P+23S+39P+24S after 24S docking

Center of gravity (in) Moments of inertia (Slug – ft2)

Description Mass (lbs) X Y Z Ixx Iyy Izz

VIPER properties 827,126 −160.9 −38.4 130.0 84,599,810 50,464,111 127,527,980
Loads model fv84ds 789,386 −161.6 −34.9 127.4 85,752,622 47,993,160 123,591,383
% diff −4.8 % 0.5 % −10.1 % −2.0 % 1.3 % −5.1 % −3.2 %
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Table 22.3 Mode descriptions:
ISS stage ULF4 S4-1A DTF
math model

Mode # Freq. (Hz) Mode description

10 0.061 Array OP/module XZ
17 0.092 Array IP/station XY
36 0.112 Station XY (slight)/array OP
44 0.114 Station XY
57 0.150 HRS out-of-plane
83 0.173 Truss XY
84 0.197 HRS IP/module XZ/truss XYZ

102 0.225 Truss YZ/module XZ
131 0.272 Station XY (JEM XY)
142 0.285 Station XZ
171 0.362 SM array IP/COL-JEM YZ
175 0.368 Truss YZ/module TOR/HRS torsion
211 0.385 HRS torsion
245 0.447 Modules-JEM YZ/truss XYZ
254 0.494 Station torsion X/truss YZ
256 0.513 Station torsion X – JEM XYZ/HRS accordion/

truss XYZ
276 0.553 Module XY/STBD truss XY/HRS accordion
286 0.578 HRS accordion
288 0.584 PHRS torsion/RSA tor X/truss YZ
297 0.637 EPS torsion
302 0.665 Station XZ
313 0.720 Truss XY bending
339 0.793 Module XY/Node 3 YZ/EPS IP
352 0.840 Module RSA YZ
353 0.843 Node 3 YZ/RSA XZ
355 0.888 Station XY/Soyuz MRM1 OP/EPS IP
359 0.928 HRS IP
368 0.994 Truss XZ/module XZ
371 1.030 Module XY (N3/N1/AL)
382 1.099 RSA XZ
443 1.174 Station XY/JEM EF
484 1.251 JEM XY/Node 3 XY/COL YZ
486 1.310 Module XZ
504 1.425 RSA XZ/COL XY/JEM EF XYZ
511 1.508 JEM YZ/APM YZ/RSA XZ
540 1.633 Station XY
549 1.672 Truss XY/station XYZ/RSA YZ
553 1.703 Station XY
625 1.834 SPDM MB2
646 1.956 Truss XY bending/more. . .
661 1.983 P3 torsion
674 2.037 Truss XY/SPDM MB2
723 2.171 Airlock YZ/SM XY
728 2.190 Station XY
803 2.434 Truss COL N2 JEM YZ/SM XY
819 2.560 Module XZ
833 2.754 SM XY/airlock YZ
834 2.785 SM XY/airlock YZ/PHRS IP
921 3.458 MRM YZ/N2 N3 airlock XY/S3 P3 torsion
931 3.722 Station XZ
935 3.769 Truss XYZ
951 4.001 Station XYZ
960 4.103 US LAB XY/Node 2 XY
979 4.264 EPS IP 2nd

1,003 4.564 Truss XYZ/station XY
1,008 4.703 Module XY
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Table 22.4 ISS stage ULF4 S4-1A DTF firings

S4-1A Array Event Description Thruster firing sequence Duration (S) Start time (S) Stop time (S)

Free drift 0.0 200.0
Firing 1 Yaw SM 12, 13, 14, 18, 19, 20 1.0 200.0 500.0
Firing 2 Pitch SM 21, 22, 23, 27, 28, 29 0.6 500.0 700.0

Return to attitude

Fig. 22.3 Service module thruster diagram

were also excited due to complexity of the ISS structure. Firing 2 was an ISS Pitch firing designed to excite dynamic modes
in the ISS XZ plane, which also excited other modes due to the complexity of the ISS structure. Both test firings used ISS
Service Module (SM) thrusters. The Service Module is a Russian Module located at the ISS aft, see Fig. 22.1. A breakdown
of each firing set is shown in Table 22.4. A diagram of the Russian Service Module thrusters is shown in Fig. 22.3.

22.4 On-Orbit Instrumentation Systems

22.4.1 Overview

During the ISS Stage ULF4 S4-1A DTF, structural responses were measured and recorded with a variety of instrumentation
systems that include: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS),
Structural Dynamic Measurement System (SDMS), Space Acceleration Measurement System (SAMS), Inertial Measure-
ment Unit (IMU) and ISS External Cameras. A detailed description of each of these systems is given in the following
sections.

Photogrammetry data, from the ISS External Cameras, was taken of the 1A solar array during the S4-1A DTF. The data
consists of a displacement time history response of two tracked points at the end the array. This data allows for an independent
analysis of the solar array wing’s modal parameters. Having a better understanding of the on orbit array mode frequencies
and damping allows for less uncertainty to be placed on array modes during loads analysis which feed into reducing solar
array position constraints during flight operations.
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Fig. 22.4 EWIS architecture

22.4.2 External Wireless Instrumentation System (EWIS)

The ISS truss segments outboard of the solar array rotary joint (S4, S6, P4 and P5) were outfitted with External Wireless
Instrumentation System (EWIS) accelerometers and Remote Sensor Units (RSUs) prior to launch [5]. The EWIS Network
Control Unit, which sends user commands to the RSUs, resides inside the LAB pressurized module and two NCU antennas
were externally mounted to the LAB via EVA. The EWIS architecture is shown in Fig. 22.4. The EWIS System has both
a Continuous Mode and a Scheduled Mode for data acquisition. The Continuous Mode aspect of EWIS records a 2 min
window of accelerometer data when a prescribed acceleration threshold is reached; such that 30 s prior to the threshold
exceedance and 90 s after the threshold exceedance is stored for download. The Continuous Mode also collects data and sorts
cycle counts into 200μg bins for the time period in between Scheduled Mode data takes, which is utilized for structural life
assessment. The Scheduled Mode allows for a user to command EWIS accelerometers to record at a set sampling frequency
for a prescribed length of time. The EWIS RSUs store the accelerometer data until a data take has completed. The RSUs then
transmit the data to the EWIS NCU via Remote Frequency (RF). The EWIS NCU then passes the data through a cable to a
Space Station Computer (SSC) where it is stored until it is downloaded to the ground via KU-band. Due to communication
programming issues to the outboard truss only the accelerometers on the S4 and S6 IEA truss segments recorded data during
the ISS Stage ULF4 S4-1A.

22.4.3 Internal Wireless Instrumentation System (IWIS)

The Internal Wireless Instrumentation System (IWIS) operates within the pressurized ISS modules [8]. The IWIS hardware
consists of Remote Sensor Units (RSUs) each connected by a cable to a single Triaxial Accelerometer (TAA). There is one
IWIS RSU that also connects to eight strain gages. The Triaxial Accelerometers and strain gages receive their power from
their connected RSU, which gets its power via a Green or Cobalt power brick connected to the Russian or US power system,
respectively. The EWIS NCU, which commands and receives data from the EWIS RSUs, also commands and receives data
from the IWIS RSUs via RF communication. The IWIS hardware configuration during the ISS Stage ULF4 S4-1A DTF is,
shown in Fig. 22.5, comprised of the EWIS NCU) six (6) Remote Sensor Units (RSU), six (6) triaxial accelerometer units,
eight (8) strain gages, and accelerometer mounting plates.

Similarly to EWIS Scheduled Mode programming, IWIS RSUs are programmed prior to an on orbit event with a
prescribed duration and sampling frequency. IWIS RSUs do not have a Continuous Mode they will only record data if
preprogrammed to do so. After a programmed data take is complete the measured data is stored in the IWIS RSU until it
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Fig. 22.5 IWIS sensor Configuration during ISS stage ULF4 S4-1A DTF

receives a command from the EWIS NCU to download via RF to the EWIS NCU. Once the EWIS NCU has received the
measured data it is passed to a SSC and later downloaded via KU-band, in the same manner as EWIS TAA data.

The IWIS accelerometers are temporarily attached to mounting plates that are installed on primary ISS structure. The
mounting plates are attached to the structure using a combination of adhesive and grey tape. The IWIS strain gages are
permanently mounted to the US Node 1 radial port struts. New IWIS components are scheduled to be implemented on orbit
in early 2013, which will allow accelerometer data to be recorded in MRM 1 and MRM1. Also, and IWIS TAA and RSU
will be installed in the MLM prior to its launch and connection to station.

22.4.4 Structural Dynamic Measurement System

The Structural Dynamic Measurement System (SDMS) was developed by The Boeing Company for NASA-JSC. The SDMS
is intended to measure on-orbit dynamic responses of the ISS Inboard Truss Segment and module-to-truss structure (MTS)
struts. SDMS is comprised of 33 accelerometers, 38 strain gage bridges, and 2 signal conditioning units (SCUs). The
accelerometers and strain gages are externally mounted on the five segments of the main inboard truss between the Solar
Alpha Rotary Joints (SARJs).

The SDMS accelerometers are proof-mass type and their locations are shown in the schematic of the five inboard truss
segments shown in Fig. 22.6. The accelerometers are mounted in groups of one, two, and three, on the truss primary structure.
Each strain gage-bridge uses four strain-gages to form a four-active-arm bridge circuit. A total of 152 strain gages were used
to generate all 38 strain-gage bridges. Each strain gage bridge generates a single strain measurement. The general locations
of the strain gage bridges are shown in Fig. 22.6. Electrical power is provided to the accelerometers and strain gages by two
SCUs. The SCUs are also used to amplify, filter, and digitize the signal output by the accelerometers and strain gage bridges.
Sensor data is stored on a memory buffer before it is downlinked directly to the ground by telemetry. The SDMS can be fully
operated by commands up-linked from the ground.

The SDMS has a fixed sampling rate and anti-alias filtering of 40 and 7.5 Hz, respectively. The SDMS system is capable
of recording approximately 10.5 min of data. The memory buffer is circular so that if over 10.5 min of data is recorded, the
data will be overwritten gradually starting from the buffer’s beginning. When data recording stops (and over 10.5 min of data
was collected), the last time step of the data collection immediately precedes the first time step that hasn’t been overwritten.
A more comprehensive discussion on the SDMS hardware can be found in [13].

22.4.5 Space Acceleration Measurement System (SAMS)

The Space Acceleration Measurement System (SAMS-II), Fig. 22.7, provides a continuous measurement of the ISS vibratory
acceleration environment from 0.01 to 300 Hz using a distributed, configurable set of tri-axial accelerometers. The
accelerometers are housed inside module racks, secondary structure, instead of on the main structure like IWIS. The sensors
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Fig. 22.6 SDMS accelerometer and strain gage locations

Fig. 22.7 SAMS ISS hardware

are in racks in order to provide microgravity data for a variety of science projects, rack system analysis and for the overall
ISS microgravity environment. Though these sensors are housed inside module racks, the frequency of interest for ISS loads
modal correlation <5 Hz, has been found to have comparable content as the IWIS sensors on the main structure. The SAMS
sensors that were recorded and used for the S4-1A DTF analysis are the US Lab sensors, F03 and F04, and JEM sensor, F05.

22.4.6 Russian Inertial Measurement Unit (IMU)

The IMU-D (Inertial Measurement Unit) is located in the MRM1 (Mini Research Module), a Russian Pressurized Module
connected to the FGB (Functional Cargo Block). The sensor samples at a rate of 2,400 Hz. This sensor can measure
acceleration +/-10 mg with a frequency range between 0.01 to 50 Hz. The data for a single event is recorded in three audio
files, one file for each coordinate direction. The data is downloaded to a Russian ground site and delivered to US NASA
personnel.
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Fig. 22.8 ISS cameras used for structural dynamics testing

22.4.7 ISS Photogrammetric System

The ISS photogrammetric system uses EVTCG cameras outside of the ISS structure. The photogrammetric system is
intended to be a non-contact instrument to record the dynamic deflections of low frequency space structures such as solar
arrays, EPS radiators, and antennas. The Image Science and Analysis Group at NASA-JSC perform the photogrammetric
processing of the recorded video footages to generate deflection time response histories. Daylight testing is the optimum
condition for photogrammetric processing. Ideally, photogrammetric data processing should involve video footages from
at least two video cameras to give a more accurate three-dimensional perspective of deflections. However, single camera
approximate processing is also possible using some assumptions on the nature of the deflections. The current ISS video
system and data processing method, Fig. 22.8, offer a time history with a sampling rate of 15 or 30 Hz and a resolution of
0.1 in.

22.5 Modal Analysis

22.5.1 Overview

The test data from all instrumentation systems was prepared for analysis. Time history data was converted, filtered, and
plotted as needed. The power spectrum density (PSD) of this data was calculated and plotted to investigate its modal content.
An attempt was made to synchronize data sets from different instrument system. This task was complicated by the fact that
there is no universal time management across the different instrumentation systems. Each system has a different time keeping
and standard that is not synchronized.

Modal analysis was then performed on all pre-processed data to determine the structural modal parameters, i.e.,
frequencies, damping factors, and mode shapes. Modal system identification was also performed separately on the
photogrammetry displacement data and MTS strut strain gage data.
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22.5.2 Modal Analysis Procedure

Traditional modal analysis methods using frequency response functions (FRFs) were not used since the input excitation
forces were not measured and the duration of free decay data is short. A special modal identification method [17] was
used on the accelerometer data, which has been developed for applications to large space structures. It is a time-domain,
free-decay method based on the Eigensystem Realization Algorithm (ERA) [14] and a time-domain zooming technique.
This method does not require input force measurements and characterizes nonlinearities with a series of linearized modal
parameters during the free-decay period.

To utilize the time-zooming technique, each data segment was first detrended to remove the constant and linear biases. The
detrended data was filtered by a number of bandpass filters to emphasize different frequency ranges. The filtered data was
then decimated to reduce the sampling rate. The intent of this combined filtering and decimation process is to emphasize the
frequency content of the data in certain bandwidths. This process is comparable to a frequency-domain zooming technique
used in the traditional modal analysis methods. It is again noted that the selected modal analysis process is based on a free-
decay method and applied to the free-decay portion of the data sets. The ERA modal extraction is applied to several data time
windows varying in length. This is performed to extract the most consistent modal content present in the data. The whole
process described herein has been implemented in a Boeing proprietary MATLABTM based Graphical User Interface (GUI)
software entitled “The Boeing Modal Refinement and Identification Tool” (The Boeing MoReID).

The Boeing Test Analysis Correlation Solutions (BTACS), another Boeing proprietary interactive engineering MATLABTM

based GUI, was used to extract modal parameters from the MTS strut strain gage and photogrammetry data. BTACS has a
system identification tool that extracts parameters through system realization using the Hankel matrix along with the singular
value decomposition method.

22.5.3 Sample Data Plots

The S4-1A Dedicate Thruster Firing Test consisted of two sets of thruster firings. Each set of firings was designed to excite
distinct sets of Truss and Module modes. Figures 22.9 through 22.14 show SDMS time history accelerometer data plots for
the yaw and pitch firings of the DTF test. Figure 22.9 is SDMS S3 (Starboard Truss Segment) ISS X direction accelerometer
data, which shows the Yaw firing (first firing at t = 60s) has higher magnitude in the ISS X direction than the pitch firing
(second firing at t = 360s), as expected. Figures 22.12 through 22.14 are the plots of the SDMS S0 (Center Truss Segment)
ISS Z direction accelerometer data, which show a higher acceleration magnitude during the pitch firing.
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22.6 Model Correlation and Validation

22.6.1 Overview

International Space Station integrated loads and dynamics verification and validation procedures are defined in Ref. [7].
Verification procedures are intended to insure that the on-orbit structure satisfies its structural requirements. Among others,
these requirements include the verification that the structure can accommodate on-orbit loads. The model of the structure
used in the verification of the on-orbit loads must be validated [19]. One of the requirements in the validation plan states
that test and analytical modal frequencies agree within 5 % for primary modes and within 10 % for secondary modes. The
model validation plans are intended (i) to prove that the on-orbit models satisfy the validation requirements or (ii) to refine
the on-orbit models so that they satisfy the validation requirements.
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22.6.2 Mode Correlation and Modal Analysis

The task of matching test and analytical modes is commonly performed by evaluating the Modal Assurance Criteria (MAC)
[21] and the Cross-Orthogonality (XOR) matrices [6]. Both MAC and XOR matrices are indicators that show the level of
correlation between test and analytical mode shapes. These indicators are only meaningful with a large number of mode
shape measurements spanning a wide spatial distribution. For the ISS, it is desirable to have two sensors in each ISS module;
at least one sensor at each side of an interface. This would aid in defining axial and bending modes. Furthermore, the addition
of three sensors placed in each ISS module would aid in defining ISS torsion modes. Such criteria are only partially met by
modes extracted from the IWIS, SDMS, EWIS, SAMS and IMU-D dynamic measurement systems.

In the computation of the XOR matrix, a reduced mass matrix, having degrees-of-freedom (DOFs) consistent with the
measurement DOFs, is needed. A reduced mass matrix for this particular problem requires a significant reduction from over
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several thousand DOFs (residual model) to less than 75 DOFs and was unavailable for this study. The computation of the
MAC matrix does not require the use of a reduced mass matrix. Thus, test-analytical mode correspondences based on the
MAC was used for the modes extracted from the ISS sensor systems.

It should be noted that the damping was very difficult to estimate with the type of on orbit test that was conducted and
the type of data that was available. In order to estimate modal damping with high confidence, free decay data created from
a test with several input sites is required. The S4-1A DTF had one input site, the SM thrusters, it is not feasible to conduct
an on-orbit dynamic test on the ISS with multiple input sites and nominal on-orbit dynamic events (i.e., vehicle dockings,
undockings) do not have the characteristics of this ideal data.

The analytical model and test data both exhibit high modal density above 1.5 Hz. Also, the data exhibits very low modal
amplitude above 2.0 Hz. Therefore, mode correlation above 1.5 Hz was very difficult.



234 K. Fitzpatrick et al.

Fig. 22.16 Tracked points of 1A, Left: camera image, Right: PATRANTM image
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Fig. 22.18 BTACS Sys ID result for 1A photo-g data of S4-1A DTF F1

The photogrammetry data that was collected on the 1A solar array wing, attached to starboard truss segment S4, using
ISS ETVCG cameras was analyzed independently from the accelerometer data. The Image Science and Analysis Group at
NASA JSC received the analog video and, using their image processing software, created discrete displacement time history
data sampled at 30 Hz. Modal parameters were extracted from this data and was used to assess the frequency and structural
damping of the fundamental US PV Array modes.
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Table 22.5 BTACS sys ID results/MAC for 1A photo-g data of S4-1A DTF F1

On-orbit Analytical
Mode
description Time Freq (Hz) % Damping Mode # Freq (Hz) MAC % Freq. Dif.

OP Beg 0.064 8.58 16 0.067 0.975 3.8
– Mid 0.066 1.90 – – 0.964 0.7
– End 0.068 0.34 – – 0.974 −1.1
IP Beg 0.097 2.96 20 0.096 0.953 −1.4
– Mid 0.100 2.05 – – 0.933 −3.9
– End 0.104 3.22 – – 0.975 −7.5
TOR Constant 0.096 0.81 30 0.1 0.984 4.5
OP Constant 0.146 0.64 60 0.151 0.955 3.6

100 200 300 400 500 600
−3

−2

−1

0

1

2

3
x 10−5

time (sec)

S
tr

ai
n

F1

F2

Fig. 22.19 SDMS MTS strain gage time history data S4-1A DTF

F1

F2

500

0.0 0.2 0.4 0.6 0.8 1.0

400

300

200

0.04 0.06 0.08 0.1 0.12
Frequency (Hz)

0.14 0.16 0.18 0.2

T
im

e 
(s

ec
)

100

Fig. 22.20 BTACS Sys ID result, EMAC>85% for MTS strain gage data of S4-1A DTF



236 K. Fitzpatrick et al.

Table 22.6 BTACS Sys ID results for MTS strain gage data of S4-1A DTF F1

Time (s) Freq (Hz) Damping EMAC (%)

75 0.079 1.26 92.7
99 0.080 1.69 93.7

123 0.082 3.67 94.8
135 0.081 6.82 95.4
159 0.093 5.45 97.1
189 0.094 7.61 96.8
210 0.095 5.22 93.9
216 0.097 5.09 95.8
282 0.109 2.51 94.4
303 0.111 1.77 94.4
318 0.113 1.1 93.4
321 0.114 0.33 91.7

Table 22.7 ISS stage ULF4 S4-1A DTF test/test correlation

Accel group

Firing 1 yaw Firing 2 pitch All w/o IMU-D Modules Truss Freq

Mode # Freq Mode # Freq MAC MAC MAC MAC % dif

1 0.084 1 0.1 0.977 0.977 0.987 0.969 18.4
2 0.104 1 0.1 0.985 0.987 0.99 0.984 −3.7
3 0.186 2 0.182 0.913 0.918 0.741 0.929 −2.5
8 0.308 5 0.304 0.96 0.957 0.974 0.957 −1.3

11 0.575 7 0.56 0.644 0.737 – 0.837 −2.7
14 0.771 9 0.748 0.68 0.729 – 0.801 −2.9
19 0.948 11 0.912 0.549 0.777 – 0.829 −3.8
24 1.481 14 1.55 – – 0.622 – 4.7

The SDMS MTS Strut Strain Gage data that was collected during the S4-1A data was also analyzed independently from
the accelerometer data. This data was used to investigate a low frequency mode that exhibits nonlinear characteristics. The
mode under investigation can range in frequency from 0.08 to 0.11 Hz depending on the amplitude of the response.

The following sections will give results for the photogrammetry array data, the MTS strain gage data and the accelerometer
data of the S4-1A DTF.

22.6.3 Stage ULF-4: Dedicated Thruster Firing S4-1A: Results

The analytical model was created in detail to match the ISS configuration during the time of the S4-1A DTF. The visiting
vehicles, the solar array rotary joints (SARJ) angles, the array angles and the ISS robotic arm location were all represented
in the NASTRAN system model, Fig. 22.15.

22.6.3.1 S4-1A Photogrammetry Results

The Image Science and Analysis Group (ISAG), at NASA JSC received analog video taken during the S4-1A DTF from
two ISS ETVCG cameras [18]. The cameras used were CP3 located on the S1 starboard truss segment and CP13 located
on the US Lab. The ISAG used their image processing software to track two points at the end of the 1A Solar Array Wing,
Fig. 22.16. One point was on the mast cap located at the end of the mast of the solar array. The second tracked point was on
the tip of the blanket box at the end of the solar array. The motion of each point was tracked in each video sequence and used
to compute the relative displacement of the SAW tip in each axis, defined by the plane of the array during the DTF. Due to
the high mathematical correlation between the axial and out-of-plane (OP) motion, the calculations were conducted in a way
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Table 22.8 Stage ULF4 S4-1A DTF: test/analysis correlation: accel data

Test data
Analytical
data

Mode Freq. Damp EMAC F1−F2 Mode Freq. Freq. Accel
# (Hz) (%) CMI MAC # (Hz) Diff (%) Group MAC Mode description

2-F1 0.104 4.011 79/61 0.985 44 0.113 9.3 ISEMLJ 0.862 Station XY/module & truss
1-F2 0.1 2.903 87/69 44 0.113 13.5 ISEMLJ 0.847 ”
1-F1 0.084 3.137 94/85 0.977 44 0.113 34.4 ISEMLJ 0.839 ”
3-F1 0.186 1.107 83/47 0.931 83 0.172 −7.9 ISEMLJ 0.889 Truss XY bending/module XZ
2-F2 0.182 1.416 94/69 0.931 83 0.172 −5.5 ISEMLJ 0.933 ”
3-F2 0.221 2.626 89/32 102 0.225 1.6 SE 0.731 Module & truss XZ

102 0.225 1.6 ISE 0.669 ”
7-F1 0.259 1.36 83/48 125 0.271 8.1 ISEMLJ 0.782 Station XY (JEM XY)

IMLJ 0.873 ”
8-F1 0.308 0.394 90/25 0.96 142 0.285 −7.5 ISEJ 0.789 Station XZ
5-F2 0.304 1.249 97/23 142 0.285 −6.3 ISEJ 0.811 ”
6-F2 0.404 1.464 82/3 175 0.368 −9 ISEMLJ 0.705 Truss YZ/module TOR X/HRS

Torsion
7-F2 0.56 1.639 76/19 0.742 254 0.494 −11.7 S 0.823 Station TOR X/truss XYZ

11-F1 0.575 1.157 84/58 254 0.494 −14 S 0.746 ”
8-F2 0.684 1.13 84/58 303 0.666 −2.6 I 0.885 RSA module XZ/COL JEM OB

Truss YZ
14-F1 0.771 0.484 87/37 0.741 313 0.719 −6.7 IS 0.83 RSA modules XY/COL JEM

YZ/truss XYZ
9-F2 0.748 0.318 83/54 313 0.719 −3.9 IS 0.811 ”

17-F1 0.853 0.627 80/57 354 0.86 0.8 IS 0.903 RSA module YZ/truss XYZ
16-F1 0.827 1.014 90/71 339 0.793 −4.2 IS 0.748 Station XY/EPS OP
18-F1 0.906 1.331 80/18 0.777 354 0.86 −5.1 IS 0.749 RSA module YZ/truss XYZ
11-F2 0.912 354 0.86 −5.7 S 0.869 ”
14-F2 1.55 0.411 81/40 511 1.508 −2.7 I 0.83 COL JEM YZ/mocules XZ second
25-F2 2.901 0.856 76/44 833 2.78 −4.2 IML 0.763 Module XZ (third bending)/truss XY
56-F2 4.572 0.31 84/17 962 4.109 −10.1 SE 0.703 US LAB N2 XY/RSA XZ/truss XYZ
57-F2 4.556 0.06 81/49 962 4.109 −9.8 IS 0.753 ”

Note: S-SDMS, I-IWIS, E-EWIS, M-IMU-D, L-SAMS Lab, J-SAMS JEM

Y

Z
X

Fig. 22.21 Sensor location mode shape diagram
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S4-1A F1 Mode 1: 0.084 Hz
S4-1A F1 Mode 2: 0.104 Hz
MAC = 0.97, Freq Dif = 22.9%

S4-1A F1 Mode 1: 0.084 Hz
Analytical Mode 17: 0.092 Hz
MAC = 0.731, Freq Dif = 8.7%

S4-1A F1 Mode 1: 0.084 Hz
Analytical Mode 44: 0.113 Hz
MAC = 0.839, Freq Dif = 34.4%

S4-1A F1 Mode 3: 0.186 Hz
S4-1A F2 Mode 2: 0.182 Hz
MAC = 0.913, Freq Dif = −2.5%

S4-1A F2 Mode 2: 0.182 Hz
Analytical Mode 83: 0.172 Hz
MAC = 0.933, Freq Dif = −5.5 %

S4-1A F1 Mode 1: 0.084 Hz
S4-1A F2 Mode 1: 0.1 Hz
MAC = 0.98, Freq Dif = 18.4%
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Fig. 22.22 Mode shape overlays, test/test and test/analytical (a through f). (a) S4-1A F1 Mode 1 vs. S4-1A F1 Mode 2, (b) S4-1A F1 mode 1 vs.
S4-1A F2 mode 1, (c) S4-1A F1 mode 1 vs. analytical mode 17, (d) S4-1A F1 mode 1 vs. analytical mode 44, (e) S4-1A F1 mode 3 vs. S4-1A F2
mode 2, and (f) S4-1A F2 mode 2 vs. analytical mode 83

which constrains the axial position to a fixed value of 0. This constraint is acceptable given that the motion of the array in
the axial direction is significantly less than the in-plane (IP) or out-of-plane (OP) motions.

The displacement time history data was detrended and the modal parameters were extracted and analyzed using the system
identification tool of BTACS. The BTACS system identification tool includes a method that extracts modal parameters within
a set window over a prescribed period of time within the data set, Fig. 22.17. The first firing set, Yaw direction, plumed the
1A array and provided the best data set for identifying the modal parameters. The second firing set, Pitch direction, was also
analyzed but did not provide as high a quality results as the data from the first firing. The first two modes identified in the
Yaw firing data showed an increase in frequency during the free decay of the array motion. The frequency shift overtime
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S4-1A F2 Mode 3: 0.221 Hz

a b

c d

e f

Analytical Mode 102: 0.225 Hz
MAC = 0.731 (SE), Freq Dif = 1.6 %

S4-1A F1 Mode 7: 0.251 Hz
Analytical Mode 125: 0.271 Hz
MAC = 0.782 , Freq Dif = 8.1%

S4-1A F1 Mode 8: 0.308 Hz
S4-1A F2 Mode 5: 0.304 Hz
MAC = 0.96, Freq Dif = −1.3%

S4-1A F1 Mode 8: 0.308 Hz
Analytical Mode 142: 0.285 Hz
MAC = 0.789 (ISEJ) , Freq Dif = −7.5%

S4-1A F2 Mode 6: 0.404 Hz
Analytical Mode 183: 0.368 Hz
MAC = 0.705, Freq Dif = −9.0%

S4-1A F1 Mode 14: 0.771 Hz
Analytical Mode 313: 0.719 Hz
MAC = 0.83 (IS), Freq Dif = −6.7%
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Fig. 22.23 Mode shape overlays, test/test and test/analytical (g through l). (g) S4-1A F2 mode 3 vs. analytical mode 102, (h) S4-1A F1 mode
7 vs. analytical mode 125, (i) S4-1A F1 mode 8 vs. S4-1A F2 mode 5, (j) S4-1A F1 mode 8 vs. analytical mode 142, (k) S4-1A F2 mode 6 vs.
analytical mode 183, and (l) S4-1A F1 mode 14 vs. analytical mode 313

can be seen in the BTACS system ID window in Fig. 22.18. The comparison results between the extracted modal parameters
from the data and the analytical modal parameters are summarized in Table 22.5. The first OP mode had a frequency range
from 0.064 to 0.068 Hz. The first IP mode had a frequency range of 0.097–0.104 Hz. There was also an array torsion mode
identified at 0.096 Hz which is closely spaced with the first IP mode and these modes appear to interact with each other.
There was also a second OP mode identified at 0.146 Hz. The results of the S4-1A photogrammetry analysis, along with
the analysis conducted on other arrays, will aid in reducing the restrictions in the solar array constraint matrices; used by
ISS ground personnel to select appropriate array angles to park solar arrays prior to a dynamic on orbit event (i.e. vehicle
docking).
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S4-1A F1 Mode 17: 0.853 Hz
Analytical Mode 354: 0.86 Hz

a b

MAC = 0.903 (IS), Freq Dif = 0.8%

S4-1A F2 Mode 25: 2.901 Hz
Analytical Mode 962: 2.78 Hz
MAC = 0.763 (Modules), Freq Dif = −4.2%
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Fig. 22.24 Mode shape overlays, test/test and test/analytical (m through n). (m) S4-1A F1 mode 17 vs. analytical mode 354 and (n) S4-1A F2
mode 25 vs. analytical mode 833

22.6.3.2 S4-1A MTS Strut Strain Gage Analysis

In 2011 a maneuver was conducted that produced loads that were 25% higher than predicted loads. An investigation into
the event found there was controller-structure-interaction; the controller was amplifying an excited structural mode. The
mode in question had previously been identified with on orbit data and was found to correlate well with the shape of the
corresponding analytical mode, having a MAC >0.9 repeatedly, but could range in frequency difference from 2 to 18%, even
during the same ISS stage. The mode is an ISS XY global mode, where the truss and pressurized modules make a scissor
like motion about the module-to-truss structure (MTS) struts. The MTS struts connect the pressurized modules to the truss
segments of the ISS. The analytical reconstruction of the event produced high bending loads at the Node 1 to Lab interface,
consistent with high MTS strut loads. SDMS MTS Strut strain gage data, for several on orbit events, was analyzed using
the BTACS system identification tool which includes a method that extracts modal parameters within a set window over a
prescribed period of time within the data set. This section will focus on the results of the data collected during the S4-1A
DTF.

The SDMS MTS Strut strain gage time history data, bandpass filtered 0.03–0.2 Hz, for the S4-1A DTF is shown in
Fig. 22.19. The first firing is a yaw firing which excited the low frequency ISS XY mode with more energy than the pitch
firing that followed. A visual of the frequency results of the system identification analysis is shown in Fig. 22.20. The modal
parameters were extracted from 12 time periods throughout the first firing. A modal assurance criterion (MAC) was calculated
between each extracted mode. The MAC values between each extracted mode were all above 0.92; confirming that the tool
was identifying the same mode over time with a changing frequency. The frequency of the mode shows a dependence on the
magnitude of the data that was used for the extraction. The frequency, damping and EMAC value of the extracted modes is
presented in Table 22.6: BTACS Sys ID Results for MTS Strain Gage Data of S4-1A DTF F1.

The investigation into the SDMS MTS strut strain gage data, which incorporated several data sets including the S4-1A
data, concluded that the mode was nonlinear. Being a nonlinear mode, the frequency of it’s free vibration is dependent upon
the free vibration amplitude. This amplitude dependent frequency characteristic was seen in the BTACS system identification
results where the frequency of the mode changed 44 % over the decay of S4 1A DTF Firing 1. The findings of the
MTS Strut Strain Gage data analysis will feed into updating the thruster control algorithm to avoid controller-structure-
interaction.

22.6.3.3 S4-1A Model Correlation

Using the Boeing MoReID Global ERA tool, modes were extracted from the combined accelerometer data sets of the S4-1A
DTF Firings 1 and 2. Each thruster firing set was treated as a separate on orbit data test. The first step in the correlation effort
was to compare the test modes extracted from Firing 1 with Firing 2 with the intent to show the consistency of the modes
extracted from each of the dynamic responses. Due to the different types of thruster firings there were some modes that were
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excited by one firing set and not the other. The MAC was calculated using all of the accelerometers, all the accelerometers
minus the IMU-D sensor, using only the pressurized module accelerometers and then using only the truss accelerometers.
The MAC was calculated using different sets of accelerometer groups in order to determine the effect each sensor group had
on the overall MAC value between the two firing sets; reason being the IMU-D and SAMS sensors have not been used for the
purpose of model correlation before. The Firing 1 test mode 1 and 2 are the same mode, extracted twice, at different times
within the data set, the overlay of the two mode shapes is presented in Fig. 22.22a. The difference in frequency of this mode
is due to the dependence this mode has on free vibration amplitude, as discussed in Sect. 22.6.3.2. In general, the results
shown in Table 22.7 show good MAC correlation for the modes that were extracted with a high level of confidence.

The test/analytical correlation for the ISS Stage ULF4 S4-1A DTF configuration is shown in Table 22.8. The test modes
that were excited from both firings and showed good correlation among themselves showed good MAC values with the
analytical model modes. The modes that were excited well in one firing and not in the other firing, modes with higher
frequency and mostly confined to one coordinate plane, also showed good MAC values when compared to the analytical
model. The range of frequency differences of the first mode is linked to the nonlinear behavior seen in the on-orbit test
mode, where the analytical model is a linear model and does not capture the nonlinear behavior of this mode. A diagram of
an extracted mode shape overlaying the ISS structure is shown in Fig. 22.21. That diagram is to aid in visualizing the other
mode shape comparisons displayed in Figs. 22.22a through f, 22.23g through l, and 22.24m through n.

22.7 Conclusions

On-orbit structural dynamic data was collected during the ISS Stage ULF4 S4-1A DTF using a variety of instrumentation
systems. The main intent of these analyses was to measure dynamic responses of the ISS in order to validate and correlate
analytical models. The main instrumentation systems that were utilized during the data collections included Internal Wireless
Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS), Structural Dynamic Measurement
System (SDMS), Space Acceleration Measurement System (SAMS), Internal Measurement Unit (IMU) and ISS EVTCG
Cameras. The photogrammetry data of the 1A Solar Array Wing was used to increase the confidence in the frequency
and damping of the fundamental array modes, which will feed into the development of less restrictive solar array constraint
matrices. The SDMS MTS Strut strain gage data was used to investigate a low frequency mode whose frequency is dependent
on the free vibration amplitude. The results of that study will feed into the update of the thruster control algorithm to
avoid controller-structure-interaction. Modal analysis was performed on all measured accelerometer data to extract modal
parameters including, frequencies, damping factors, and mode shapes. An analytical math model was developed to simulate
the on orbit configuration of the ISS during the time of the S4-1A DTF. The developed models incorporated, as closely as
possible, the actual on-orbit configurations including array angles, boundary and interface conditions. The identified test
modes were correlated and compared to analytical modes to verify the accuracy of analytical model.
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Chapter 23
Numerical Modeling of Vibration Induced Atomization of Liquids

Jesi Ehrhorn and William Semke

Abstract The numerical modeling of vibration induced atomization of liquids validates existing operating parameters of
known systems. A computational fluid dynamics analysis is performed which assists in model verification and reveals a
critical configuration of driving amplitude and liquid depth that must be fulfilled for atomization. In this configuration the
droplet kinetic energy exceeds the fluid resistance energy and the atomization process initiates. Verification and identification
of the parameters for atomization of a thin film of water is accomplished.

Existing literature on the operation of vibrating mesh nebulizers does not entirely explain the principles by which these
devices atomize liquids. Many previous studies assume a spray or extrusion mode of droplet generation, but it can be
demonstrated that the high frequency vibration of these devices is sufficient to produce aerosol droplets. A thin film of
liquid vibrated under the correct conditions will produce a fountain of atomized liquid droplets. The formation of standing
waves on the surface of a thin film have an oscillating frequency that is half the driving frequency, a wavelength that is equal
to a function of the driving frequency, a mean droplet diameter one-third the standing wavelength dimension, and are also
dependent of fluid density and interfacial surface tension.

Keywords Nebulizer • Numerical modeling • Atomization • Vibrating mesh • Computational fluid dynamics

23.1 Introduction

This research project is to define the conditions at which atomization initiates for vibrating mesh nebulizers. By defining the
conditions at which atomization will occur, it will be possible for future studies to work towards optimizing the design of a
vibrating mesh nebulizer in terms of cost and efficiency. This study explains a theory which proposes that a vibrating mesh
nebulizer produces an aerosol fountain of atomized particles simply by applying ultrasonic excitation to a thin film of liquid
medication. Liquid drugs used for aerosol therapy are typically water-based and thus the properties of the majority of these
fluids can be approximated as liquid water at room temperature.

Current literature on the performance of vibrating mesh nebulizers appear to make the claim that the devices operate under
a principle similar to an atomizing spray nozzle. To be more precise, this mode of operation would make it necessary for a
high-velocity “filament” of liquid medication to be extruded from each orifice and undergo primary and secondary droplet
breakup processes before a relatively uniform spray of droplets of appropriate size is realized. In general, this is actually a
reasonable theory as it is easy to visualize and a considerable amount of work has been done in the area of atomizing spray
nozzles, as well as the particle breakup phenomenon in relation to micron-order droplet sprays. A more simplified theory
often referred to as a “micropump” mode of operation, can be described as follows; a continuous body of liquid medication
exists between the vibrating actuator and the orifice plate. The actuator’s vibration transmits a displacement to the liquid
medication, which pumps it through the orifice plate in a periodic fashion.

A new proposed theory detailed in this paper is the ejection of micro-droplets via standing surface waves, commonly
referred to as capillary waves. The current study demonstrates that it is quite probable that the primary contributor to the
generation of micro droplets is the free surface vibration of a small volume of liquid. Many studies have clearly shown that
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thin volumes, or films, of various types of liquids exhibit a very pronounced surface wave phenomenon when a periodic
displacement excitation is applied. A few studies have confirmed a relationship between the driving frequency of this
excitation, the properties of the working fluid, and the wavelength of the resulting capillary waves. One respected theory
has survived for over four decades which relates the observed surface wavelength to the mean diameter of ejected droplets,
when the conditions for atomization are met or exceeded. Nearly all of these studies have dealt with working frequencies
orders of magnitude below that of current vibrating mesh nebulizers, but it has been stated and some evidence has been
provided that the mechanics involved will “scale up” to higher frequencies.

Within the primary focus of this study, which is to elucidate a physical mechanism for micro droplet formation in vibrating
mesh nebulizers, is a proposal of the necessary conditions by which atomization will occur. It is shown that a balance between
the kinetic energy of a single droplet and the surface tension energy along with a viscous resistance can be met or exceeded
in order to produce conditions sufficient for droplet ejection. The methods for testing this hypotheses include analytical
calculation based on equations from existing literature and computational fluid dynamics.

23.2 Literature Review

Several works of literature were produced during an era surrounding the 1950s on the potential mechanisms of vibration-
induced liquid atomization. Most of these studied focused on finite vibrating liquid films of varying thickness and the ejection
of droplets from the peaks of surface waves caused by reaching unstable amplitudes or some other condition sufficient for
rupture. In the case of an atomizer with a relatively low flow rate, the surface waves appear to “stand” in place while
oscillating. Thus, the term “standing surface waves” is appropriate for the system. A “capillary wave” is technically a wave
that travels across a surface (i.e. ripples), but the waves produced by ultrasonic atomizers are often referred to as capillary
waves. It is safe to assume that the waves traverse the surface of a small volume of liquid, potentially reflecting at boundaries
and experiencing some other forms of bulk motion, albeit at a velocity much lower than that of the wave oscillation and is
therefore negligible for most theoretical work.

In the paper “Ultrasonic Atomization of Liquids” by Robert J. Lang [1], published in 1962, one of the first claims of
droplet size being directly proportional to capillary wavelength is made. An equation, often referred to as Kelvin’s equation
for capillary wavelength, relating the two parameters in accordance with the working liquids properties is as follows:

λ3 =
2πσ
ρ f 2 (23.1)

where λ is the surface wavelength in meters, σ is the surface tension coefficient in N/m, ρ is the liquid density in kg/m3, and
f is the surface standing wave frequency in Hz. The equation is reduced and the observed phenomenon of surface vibration
frequency being half that of the base driving frequency (F) is taken into account, resulting in:

λ=

(
8πσ
ρF2

) 1
3

(23.2)

The use of half the base excitation frequency in determining the capillary wavelength results from the base excitation being
transmitted through the fluid body. Each positive-amplitude displacement of the actuator drives each rise of the capillary
wave peaks, which are alternating evenly across the surface. This implies that the actuator is at its lowest position when
the free surface is between peaks of oscillation, i.e. the surface appears flat. Thus, positive surface oscillation amplitude
peaks for either “set” of waves occur on every other positive actuator amplitude peak. The mathematical derivation of this
phenomenon is discussed at length in the paper “The Stability of the Plane Free Surface of a Liquid in Vertical Periodic
Motion” by Benjamin and Ursell [2], published in 1954; the basis of which is the experimental studies of Faraday [3] and
Lord Rayleigh [4], among others.
Further, Lang proposes that the mean diameter of ejected droplets is approximated by the relation:

D = 0.34λ (23.3)

This proportionality constant was obtained via an experiment in which a molten liquid wax is atomized and the generated
droplets rapidly cool in air, which are then collected and measured. In its molten state, the liquid wax is similar in fluid
properties to oils used in other atomization studies.
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Finally, Lang states that particle size tends to increase along with atomization rate and that these results were generated at
low atomization rates. The reason for this discrepancy is most likely the result of the conglomeration of smaller droplets into
larger droplets immediately after atomization, simply due to the inference that a higher density fog is more likely to have its
constituent droplets collide before spreading away from one another.

An aspect of standing surface waves worth considering is if the wave formation or shape is influenced by gravity. It
is generally accepted that at a fluid-fluid interface, surface waves shorter than a third of a certain critical wavelength are
not significantly influenced by gravity [5]. This critical wavelength can be described as a condition where the effects of
surface tension and the acceleration of gravity are equally responsible for the wave motion and shape. The equation for this
wavelength is as follows:

λm = 2π
√

σ
g(ρ −ρ ′)

(23.4)

Here, σ is the interfacial surface tension, ρ is the density of the heavier fluid and ρ′ is the density of the lighter fluid For
a water-air interface at room temperature, the wavelength at which gravity loses significant influence is a third of 17 mm,
approximately 5.7 mm. All systems referenced in the current study do not generate waves this length or longer. Another
early work of literature describing the formation of droplets from standing surface waves from a more theoretical standpoint
is “Ultrasonic Atomization of Liquids” by Peskin and Raco [6], published in 1963.

Technological advancements in high-speed photography led to further experimental study on ultrasonic atomization in the
1990s. Photographs of initiating ejected droplets were captured in many of these studies, but even today there are practical
limitations on camera speed when attempting to capture these effects for very high frequency ultrasonic cases. Thus, the
images available are of higher frequency cases than what was possible mid-century and are of much higher resolution, but
the scaled-up model approach must still be used. The most important evidence generated from contemporary photographic
study is clear sequences of still photos showing the detachment of droplets from the tips of surface waves [7].

The paper “Theoretical and experimental study of the behavior of liquid film free surfaces driven by transverse ultrasonic
vibrations” by Sindayihebura and Bolle [8], published in 1995, attempts to shed some light on the evolution of surface wave
patterns during atomization. It is stated that resonance of the free surface occurs at some critical amplitude of driving surface
excitation, and that the shapes of the surface vibration modes are independent of container boundary shape at any frequency
high enough for producing atomized droplets. Another important point is that the early wave formation can generally be
approximated linearly, while the progression of these weak surface waves to waves capable of ejecting droplets is a highly
nonlinear phenomenon with the droplet ejection itself thought to be a chaotic phenomenon. Theoretical calculation in this
paper shows that the excitation of unstable modes of vibration depends upon a dimensionless quantity relating the actuator
acceleration to gravity, known as the Froude number (Fr). The equation is given as:

Fr =
aoω2

g
(23.5)

where ao is the driving (actuator) displacement and ω is its angular velocity. So, there is a certain critical Froude number
below which the unstable modes cannot be excited. The value of the critical Froude number increases with both fluid viscosity
and excitation frequency. It is once again observed that an increase in driving frequency causes the surface wavelength to
decrease, further validating past studies.

The phenomenon of wave shapes or configurations as related to the container wall shape is further described in this
paper. At relatively low forcing amplitudes, it is very difficult to capture a good photograph of the wave pattern, but the
observed shape is similar to that of the container (i.e. a circular container producing axisymmetric wave forms). As the driving
amplitude increases, there is a chaotic transition state, then the boundary-independent square and hexagonal arrangements are
observed, which tend to be much more clearly defined due to the critical amplitude being reached, and thus the excitation of
surface resonance modes. The chaotic transition is most likely the superposition or interference between container dependent
and independent wave shapes. After the driving amplitude is increased to show the container-independent orderly wave
patterns, further increases result in the onset of atomization. A very interesting hypothesis provided for the approximately
square standing wave configuration is the notion that these shapes occur due to the intersection of perpendicular plane wave
modes. It follows that some form of polarization exists in the bulk body of water which guides the primary orientation of
these two-dimensional waves and that any similar three-dimension system will exhibit the same phenomenon. Thus, careful
consideration must be taken when analyzing the system in two dimensions. Finally, it is noted that much more complex
surface patterns are observed after atomization commences, which is believed to be largely due to nonlinear and/or chaotic
effects originating from boundaries or other localized regions within the fluid body, including additional complex surface
disturbances.
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Fig. 23.1 300 Hz vibrating tray setup at atomization inception [7]

Fig. 23.2 Frame-by-frame droplet ejection from a capillary wave tip [7]

Further contemporary work is carried out by Yule and Al-Suleimani in their paper “On droplet formation from capillary
waves on a vibrating surface” [7], published in 1999. The scaled-up system set up by Yule and Al-Suleimani is of great
importance to the present work which will be described in detail later. Their experimental setup, shown in Fig. 23.1 consists
of a circular tray of liquid water that is approximately 40 mm in diameter. It should be noted that the exact size of the
container is not nearly as important as the fluid depth (film thickness), which in this case is 2 mm. The driving amplitude is
higher than the critical amplitude for capillary wave formation, and therefore the waves are independent of the container and
can be analyzed in terms of expected and observed wavelengths. In this case, the driving frequency is significantly lower than
an ultrasonic case at only 300 Hz, but the system is scaled up to provide a more easily observed example of vibration-induced
droplet formation. The driving amplitude of vibrating container is 0.1 mm.

Exceptional photographs were taken of a vibrating surface clearly showing droplet formation from capillary waves
(Fig. 23.2).

The remainder of the paper attempts to explain why the droplet formation phenomenon is not consistent and orderly, as
it is observed that a single wave cell does not continuously produce droplet after droplet. Several oscillations of the surface
occur before another droplet is ejected from the unit area, during which time the cell undergoes a form of chaotic sloshing
and a redistribution of liquid volume to neighboring cells. It is also observed that the lack of wave momentum which occurs
prior to the next expected droplet ejection may cause a “near miss” in which a ligament stretches far enough upward but
inevitably falls back downward. In this case, the following oscillation generates an excess of momentum and a very long
ligament which may break up into two or three droplets of various sizes. Remembering that the droplet ejection process is
expected to scale up and even at these relatively low driving frequencies the described phenomenon are occurring on the
order of hundreds of times per second, it is reasonable to assume that this is a good estimate of what causes the distribution
of resulting droplet sizes.

Additional support for the calculation of capillary wavelength including a derivation which includes consideration of film
thickness can be found in “Visualization and Analysis of Liquid Film Surface Patterns Formed on Ultrasonic Atomisers”
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by Dobre and Bolle [9], published in 1999. “Theoretical and experimental study of transducers aimed at low-frequency
ultrasonic atomization of liquids” by Sindayihebura and Bolle [10] provides more background on this concept, as well as
“How Orderly is Ultrasonic Atomization?” by Al-Suleimani, Yule, and Collins [11].

In “Motion of Droplets on Solid Surface Using Acoustic Radiation Pressure” by Alzuaga, Manceau, and Bastien [12],
published in 2004, a very unique and important theory in the field of liquid droplet atomization is described. The authors have
devised a set of equations for balancing an emerging droplet’s kinetic energy with resistant energy from the fluid volume
surrounding it. The primary restriction of droplet ejection in liquids such as water and water-based medications is the surface
tension energy. This energy can be expressed simply as the surface tension coefficient multiplied by the surface area of a
droplet to be ejected, as follows:

Est = σSg (23.6)

The resistant energy due to viscosity is computed by first assuming that the flow region for a single droplet is circular in cross
section and its velocity distribution is similar to a laminar flow of the same diameter, where after some derivation results in:

Evis = 32πμor3
o f (23.7)

where μo is the dynamic viscosity coefficient of water at room temperature, ro is the droplet radius and f is the surface
oscillation frequency. As previously stated, the surface waves of a base-excited liquid film will tend to vibrate at a frequency
that is half that of the base excitation frequency. The relationship between these frequencies has been observed experimentally
in numerous studies, especially for cases involving lower audible frequencies. The droplet’s kinetic energy is simply
calculated as:

Ev =
1
2

ρVgv2 (23.8)

The quantities of energy of a droplet on the threshold of ejecting from the surface simply balance as:

Ev = Evis +Est (23.9)

Since water exhibits high surface tension energy in comparison to its unit viscous energy, when calculated the viscous energy
can often be left out of the balance because it is generally on the order of 1 % of the surface tension energy. Thus, the balance
simplifies to:

Ev = Est (23.10)

An application study of the droplet-energy balance method for determining the onset of atomization can be found in
“Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation” by Palan
and Shepard [13], published in 2006.

23.3 Analytical Study

All calculations are based on the properties of water at room temperature (about 20–22◦c). The surface tension is taken to be
0.072 N/m, the viscosity 0.001N · s, the density 1,000kg/m3, and all length, depth, or displacement quantities are expressed
as meters for all equations and simulations unless otherwise noted.

The system used for simulation purposes is assumed to be a representation of a wide cylindrical body of liquid water
which is vibrated normal to its free surface and is bounded by either no-slip conditions or displacement periodicity on its
outer boundaries. The size of the cylindrical body is calculated based on the expected wavelength given by Kelvin’s capillary
wave equation (Eq. 23.2) which is dependent on the base excitation frequency. Multiples of the wavelength quantities will
be used for the size of the CFD simulation models discussed later.

In three dimensions, the shape of the system can be visualized as a relatively thin cylinder with its lower surface on a radial
plane which is extruded in its axial direction. Figure 23.3 shows an isometric view of a solid model of the representative
system and an outline of the boundary conditions considered. The boundary conditions include the displacement base
excitation on the lower circular face as a time-variable sine function, an edge condition on the outer cylindrical face which is
dependent on the choice of solver, and a free-surface condition on the upper circular face which is calculated via the Volume
of Fluid (VOF) algorithm.
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Fig. 23.3 3D CAD model of fluid body, isometric view and overview of CFD boundary conditions, 2D plane view

Fig. 23.4 2D planar Flotran model mesh and constraint indicators

A key parameter which is the primary distinguishing factor between the model cases is the operating frequency; the case
studied in the proceeding analyses is a representation of the 300 Hz experimental setup of Yule et al. in which the excitation
amplitude is clearly defined and the formation of droplets is described and confirmed.

The Flotran Computational Fluid Dynamics (CFD) solver has been included within the ANSYS engineering analysis
software package for nearly two decades by the time of this writing. It is able to run simplified systems very efficiently and
has been very useful for this study. The Flotran solver includes the option to utilize the Volume of Fluid (VOF) algorithm
for analyzing fluid free surfaces. The algorithm is able to track the free surface by including elements that are full, empty,
or partially filled. The partially filled elements are treated as polygons which are bounded by at least one completely full
element and some combination of partially full or empty elements on the remaining sides.

The polygon is referenced as a volume fraction (denoted by Flotran as VFRC), which is simply the ratio between the size
of its filled space and the size of a complete element. An important concept to keep in mind is that for Flotran analyses, only
the properties of the working fluid are used for calculation. In more advanced solvers, a second fluid can be introduced as a
boundary to the primary fluid. The VOF method is most commonly used for liquid water and gaseous air interactions, so any
influence of the latter on the former is negligible and can simply be represented as a constant pressure for most applications.

In a Flotran analysis, the user must choose between 2D and 3D elements based on both the complexity of the model
required and the limitations of the software. The primary concern of the analysis required for this study is the behavior of the
free surface and because the geometry of the resulting surface waves are expected to be very small in relation to size of the
bulk fluid volume, a very small portion or slice can be used effectively to yield appropriate results. Since the liquid volume is
a simple film under base excitation which can be approximated as a short cylinder with a uniform surface response, it follows
that a simple axisymmetric model can be used. This is of great significance because a 2D model is much easier to constrain
and much less computationally demanding. In addition, the VOF option is only available for Flotran’s 2D element, which is
denoted as FLUID141 by ANSYS. This element provides basic flow data including velocity, temperature, and pressure in
addition to free surface tracking.

A 2D axisymmetric model was used for all Flotran calculation. The image capture (Fig. 23.4) shows an example of the
necessary mesh density and how the constraints have been placed. The left edge is constrained such that velocity in the
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Fig. 23.5 2D planar Flotran
model volume fraction location
(red is filled with water, blue is
empty space)

x-direction is always zero at this location, which is necessary for an axisymmetric model. The right edge is constrained in
the same way, acting as a “free slip” boundary to minimize its effects on the system. The upper edge is constrained as a zero
relative pressure boundary and the base is set to oscillate with a displacement in the y-direction.

This model in particular is a 300 Hz excitation case which corresponds to a system having a liquid depth of 2 mm.
The expected capillary wavelength is about 2.5 mm for this low frequency system, and the model is sized at 10 theoretical
wavelengths (25 mm) wide. The mesh edge length is set at 5 % of the expected theoretical wavelength (125μm) which is
a consideration noted in the ANSYS documentation to be appropriate for capturing the shape of a wave (20 elements per
wavelength).

In Fig. 23.5, the lower red-colored region is the initial location of the filled liquid water elements while the upper blue-
colored region is simply meshed empty space. A significant amount of empty space is necessary above the free surface so
that any fluid motion that occurs during the simulation is contained within the meshed region. In a VOF analysis, any fluid
contacting an undefined or simply defined boundary is taken to “spill into the environment” and is lost from the system. In
this case, the upper boundary is considered simply defined because it is only a zero relative pressure condition. Applying
zero velocity in the y-direction at this edge would contain liquid but would imply a non-slip wall, which is not an accurate
portrayal of the real system. The most important observation of this study in terms of CFD analysis is the formation of
capillary waves on the surface of the vibrating liquid film.

23.4 Results

The first step in the process of analyzing standing surface waves is to create a model that behaves as expected. Based on pho-
tography and sketches from previous work, the general appearance of such a system is known. The model generated showed
surface waves forming and oscillating on the surface of a fluid body was a planar rectangular system without axisymmetry
specified. The results showing fully developed standing surface waves generated can be seen in Fig. 23.6; in this case, the
model is driven at 300 Hz with a base excitation amplitude of 0.1 mm, its depth (later denoted as thickness) is 2 mm, and its
width (later denoted as model size) is 10 theoretical wavelengths. At 300 Hz driving frequency, a theoretical wavelength is
2.5 mm and therefore the model is 25 mm wide. The mesh edge length used is 0.125 mm and the time step is 0.1125 s.

Figure 23.6 is an example of a model with fully-developed surface waves; frame-by-frame observation of single wave
points on the surface confirmed that the surface of this system was responding at around 120–150 Hz, which is very close
to the theoretically expected response of exactly half the driving frequency. Velocity vector plots show the general state of
motion of the surface more clearly, since the standing waves are obscured by smaller waves traveling across the liquid surface
from the horizontal reflection off outer free-slip boundary. A representative velocity plot is shown in Fig. 23.7.

The time period between these local maximums of velocity and corresponding local minimums of displacement is found.
Doubling this value to account for a full wave oscillation period and taking the inverse yields the surface frequency. Further,
the expected wavelength for each case is verified by comparing the wave tips to an element plot of the same region. The peak
velocity of the surface is also captured.

23.4.1 Amplitude Variable

The interesting case of the 300 Hz excitation system mentioned in the Literature Review has been analyzed in terms of its
actuator amplitude. A spike in peak response velocity can be seen at the exact amplitude the previously mentioned study had
photographed droplets ejecting at. The data in Fig. 23.8 appears to be averaged at around 0.7 m/s except for a single anomaly.
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Fig. 23.6 Full development of standing surface waves

Fig. 23.7 Flotran velocity magnitude vector plot
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Fig. 23.8 Flotran CFD parameter test, driving amplitude varied, peak velocities plotted for 300 Hz case

A very interesting data point corresponding very closely to the actuator displacement used in the experiments of Yule et al.
of 0.1 mm.

The depth of the 300 Hz case was tested around the value reported to have been used by Yule et al. experimentally (2 mm).
The increments in Fig. 23.9 are 0.1 mm, except the two additional data points on either side of the spike. Yet again, there is
a spike at the experimental depth and no influence otherwise. It is important to note that the 300 Hz case data generated for
Fig. 23.9 was conducted at the displacement amplitude of 0.095 mm and that no velocity spike is observed for this depth test
using 0.1 mm as the amplitude.

The 300 Hz case was tested to show the influence of driving frequency, with all other parameters remaining at the standard
experimental values reported. To do this, the frequency was varied about the 300 Hz mark in 10 Hz increments, with a couple
more data points added around the observed spike (Fig. 23.10).
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23.5 Discussion

In order for a vibrating film of liquid to produce atomized droplets, it is necessary that a few conditions are met. The first
of these conditions is that the film be deep enough such that the surface can oscillate freely without interference from
the actuating base on which the film is held. Second, the actuator amplitude must be great enough to excite the vibrating
liquid surface to the point where the peaks of the standing waves have enough kinetic energy to overcome the resistant forces
associated with the fluid interface. The quantities of energy required for this threshold are largely determined by the properties
of the liquid, with surface tension being much more influential than viscosity for water and water-based liquids (like most
medications). Surface tension is the primary resistance to droplets escaping the surface of the liquid medication film and it
also plays a major role in determining potential droplet size. Higher surface tension leads to longer standing wavelength,
which the mean droplet diameter is proportional to. While raising the droplet size for a given actuating frequency increases
droplet kinetic energy, it also increases the resistant energy acting upon it. It follows that the final condition to be met
coincides with the previous condition, that the liquid’s properties are conducive to generating atomized droplets for the given
operating setup which includes film thickness (depth) and actuator amplitude as primary factors.

The vibrating film depth must be sufficient to support surface oscillations; this quantity is generally on the length order
of the standing waves produced. This basically means that a wave “aspect ratio” of about one-to-one is necessary in order
for the surface to oscillate freely. This means that a fully developed wave’s length will correlate closely with its critical peak
height, which should be a smaller quantity than the film thickness. Films that are an order of magnitude smaller than the
length of an expected standing wave will simply not begin to oscillate, and will “ride along” with the actuator or be flung off
entirely in bulk form. If a vibrating film produces atomized droplets at a given depth, increasing this depth beyond a certain
threshold will lead to sporadic droplet production and increasing it further will lead to excessive damping in the system
which halts the process entirely.

For a given liquid film or body depth, a certain range of actuator amplitude will result in surface oscillation leading to
atomized droplets. Below this range, surface vibration may not occur and above it, bulk motion of the fluid body will occur
and no atomization will result. It is entirely possible that certain systems will not have critical actuator amplitudes and will
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Table 23.1 Energy comparison of peak velocity generated in CFD run to threshold velocity
(0.97 m/s) of 300 Hz case, mean droplet diameter of 0.92 mm

Actuator amplitude, mm Peak CFD velocity generated, m/s % of required kinetic energy

0.060 0.703 53
0.080 0.656 46
0.090 0.729 57
0.095 1.48 234
0.100 0.886 84
0.120 0.738 58

either fail to produce surface waves, or will simply experience bulk motion of the liquid body. Such systems are beyond the
scope of this research.

A distribution of droplet sizes exists in all standing wave atomizers which implies that droplets significant larger than the
mean size are produced. As droplet size increases, kinetic energy increases along with resistant energy but kinetic energy
increases more quickly due to the nearly spherical shape of an ejecting droplet. Thus, larger droplets on the distribution will
tend to initiate the atomization process while destabilizing the entire liquid surface in a sort of chain-reaction.

Under the conditions described by Yule et al., the case of 300 Hz generates a peak velocity of 1.48 m/s using the previously
described CFD free-surface method. An exception to the conditions described in the literature is that a 0.095 mm actuator
amplitude is used instead of 0.1 mm, but such a small discrepancy is thought to either be experimental error or caused by
random variation in the experimental conditions, the reporting of said conditions or their interpretation. Whatever the reason
may be, this only represents a difference in the actuator amplitude that is only 0.005 mm or 5% of the measured actuator
amplitude.

The most important piece of information to take away from the current study is that of the compelling evidence of a tuned
system for each of these cases. The CFD analysis shows that a relatively wide range of actuator amplitude can be used with
little change in the peak velocity generated in the system. Of course, the exception is that one particular value of actuator
amplitude effectively doubles the velocity generated in the system. This marked increase in kinetic energy occurs at exactly
the conditions used for past experimental analysis and only at this specific set of parameters. This set of parameters, which
includes the liquid depth, actuator amplitude, and actuator frequency, coincides with a quantity of kinetic energy which
significantly surpasses the resistant energy of the liquid surface. Table 23.1 shows values from the 300 Hz actuator amplitude
CFD parameter analysis. In this case, the threshold ejection velocity for a droplet of mean diameter (approximately 0.92 mm)
is 0.97 m/s. The critical amplitude of this case is highlighted at 0.095 mm which clearly shows the excess kinetic energy
resulting from the doubling velocity present in their respective unique parameter configurations.

At the mean droplet diameter, the Flotran CFD analysis shows that the 300 Hz cases generate enough velocity to eject
droplets according to the energy balance in Eq. 23.9. These cases are likely to generate a very uniform surface wave pattern
and a corresponding droplet distribution that is more tightly centered on the mean droplet diameter than an ultrasonic case
due to a reduction in random disorder. The 300 Hz case with a driving amplitude of 0.095 mm is a unique set of conditions
that generated 234 % of the required kinetic energy for droplet ejection at the mean droplet diameter. Excesses such as those
mentioned may be required to successfully carry the ejected droplet away from the vibrating surface.

23.6 Conclusions

This study validates the process of vibration induced atomization of liquids by relating existing concepts of liquid atomization
to the operating parameters of known atomizing systems. By numerically altering these parameters, trends in response
conditions can be simulated and examined. The CFD analysis assists in model verification and reveals that there exists some
critical configuration driving amplitude and liquid depth must be fulfilled in order for droplet kinetic energy to exceed fluid
resistance energy so that the atomization process can initiate. The ability to numerical model and determine this unique set
of parameters is an efficient and useful design methodology discovery.
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Chapter 24
Dynamical Modeling and Verification of Underwater Acoustic System

Ahmet Levent Avşar, İstek Tatar, and Cihangir Duran

Abstract Sound generated by different sources in water can be determined by underwater acoustic systems. In order to
detect sound in water, the underwater acoustic system should be designed with respect to level and frequency characteristics
of sound. Therefore, resonance frequency of the underwater acoustic system is the most important design parameter
and it should be obtained by design iterations. During these iterations, resonance frequency of the underwater acoustic
system can be found by finite element method with related analysis. Also, this analysis should be verified by experimental
techniques. In this study, dynamical design and analysis of underwater acoustic system, which has 5 × 5 arrays of identical
tonpilz transducers and these transducers are attached to the carbon fiber reinforced composite, are detailed. Moreover, this
dynamical model of the underwater acoustic system is verified by experimental techniques, which are admittance, transmit
voltage response and received voltage sensitivity measurements.

Keywords Underwater acoustic • Transducer • Structural dynamics • Finite element • Admittance measurement

24.1 Introduction

It is very important to transmit the acoustic energy through water for different underwater communication applications [1].
Due to this reason, acoustic transmission devices should be designed carefully. Generally, this type of devices is called as a
sonar system and they can be active, passive or both [2]. If the sonar system is active, in other words, it generates underwater
sound, it is classified as a projector or transducer. Also, if it listens only to underwater sound, it is named as a hydrophone.
The basic working principle of these devices is that they convert pressure, due to sound wave, to electricity. Therefore, special
materials are used in these systems, such as piezoelectric or magnetostrictive materials [1]. This types of material are suitable
due to their nature, i.e., they can generate electricity because of stress in it or if voltage difference is applied these materials,
deformation can occur.

There are different types of transducers or hydrophones. In order to decide which transducer types are suitable for a
specific application, property of the acoustic noise in underwater should be known very well. Frequency range and amplitude
are two important properties to determine the characteristics of acoustic noise in underwater. Especially, transducer or
hydrophone types are decided by considering the frequency range of the acoustic noise. In Fig. 24.1 [3], it can be seen
the transducer or hydrophone types with respect to frequency. For lower frequencies, hydroacoustic or variable reluctance
type transducer can be used. Tonpilz, cylinder and sphere types are suitable for high frequency applications.

In order to increase the source level of the transmitted acoustic pulse, more than one transducer can be used to form an
array [4]. Moreover, the direction of the acoustic pulse can be arranged by constructing an array with identical transducer.
Also, if it is wanted to increase the response of the array in receiving mode, hydrophone arrays should be used and signal to
noise ratio is improved by these types of arrays [4]. In Fig. 24.2, transducer array and hydrophones line array are illustrated.
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Fig. 24.1 Frequency range of interest and transducer types [3]

Fig. 24.2 (a) Transducer array [4], (b) hydrophone line array [5]

In this study, dynamic characteristic of the underwater acoustic system, which is constructed by tonpilz transducers,
is investigated. In order to find dynamic characteristics of the system, finite element analysis is conducted in ANSYS
Workbench 14.0. After finding the dynamic characteristics of the system, finite element model is validated by special
measurement techniques, such as admittance measurement. Moreover, acoustic performance of the system is presented by
measuring the transmit voltage response (TVR) and receive voltage sensitivity (RVS).

24.2 Design and Production

24.2.1 Underwater Transducer Type Selection

In order to select the type of transducer, frequency range of interest should be decided. For this application, frequency range
is in between 10 and 50 kHz, therefore tonpilz type of transducer is selected and designed. Tonpilz, which is also called as
acoustic mushroom, has active materials between rigid radiating head mass and heavy tail mass [6], as shown in Fig. 24.3.
Active materials can be piezoelectric or magnetostrictive. The special property of this type of transducer is such that it can
be used as both projector and receiver.

During the design phase of tonpilz transducer, different modeling techniques can be used. The basic modeling technique is
“Simple Lumped Parameter Model”. In this technique, head and tail masses are modeled as a rigid mass and active materials
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Fig. 24.3 (a) Tonpilz transducer, (b) parts of tonpilz transducer [7]

Fig. 24.4 Geometry of the underwater acoustic system, (a) front view, (b) side and section view

are considered as a stiffness element. Geometrical and material details are ignored by this technique; however, it is very
fast and gives first intuitions about the tonpilz transducer properties. The most complex and accurate technique is “Finite
Element Modeling”. Different geometries, boundary conditions and material properties can be used by this technique. Also,
optimization and iteration processes can be run to reach the required properties of tonpilz transducer and arrays.

24.2.2 Underwater Acoustic System

Underwater acoustic system has 5× 5 arrays of identical tonpilz type of transducer. These transducers are attached to the
composite shell and this shell is glued to the case of the system. The geometrical model of underwater acoustic system can be
seen in Fig. 24.4. In the system, transducer case can be considered as rigid with respect to composite shell and transducers,
and is assumed that dynamical behavior of the system can be affected only by transducers and composite shell.

Composite shell is made up of carbon fiber reinforced materials. The main property of this type of composite shell is
that transverse passion ratio should be lower than 0.1 [8]. If transverse position ratio is lower than 0.1, transducer in the
array vibrates like a simple piston, as shown in Fig. 24.5 [9]. Due to this reason, mechanical coupling of the transducer
are minimized and acoustic efficiency of the system is increased. Material properties of the composite shell are found by
tensile and compression test. During the tensile test, Poisson ration is calculated to be 0.1. Moreover, this shell has isotropic
behavior and Young’s Modulus is approximately 60 GPa.

During the production of the transducer, piezoceramic disks are combined by epoxy glue to make the active stacks. Active
stacks consist of 6 PZT-4 piezoceramics. After production of the active stacks, head and tail mass of the tonpilz transducer are
attached to it. Finally, tonpilz transducers are produced and production process is validated by experimental methods, such
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Phase 1 Phase 2 Phase 3

Fig. 24.5 Deformation shape of
the transducer with composite
shell [9]

Fig. 24.6 (a) Transducer array,
(b) finite element geometry of the
system

as admittance measurements. After obtaining the tonpilz transducer, 25 transducers are aligned and glued on the composite
shell. Finally, other components of the underwater acoustic system are assembled together and sealed to prevent leakage of
water.

24.3 Finite Element Model of Underwater Acoustic System

The finite element model of the 5 × 5 array is constructed in ANSYS Workbench 14.0 [10]. In this model, only composite
shell and 25 transducers are taken into account; however, other components are not considered due to rigidity in the frequency
range of interest. The geometrical model of the 5 × 5 array can be seen in Fig. 24.6. Due to the symmetry only quarter part
of this array is used in ANSYS Workbench 14.0 to decrease the simulation time, Fig. 24.6.

Mesh of quarter part of the array is formed in ANSYS Workbench 14.0. Piezoceramics are meshed by SOLID 226 [10]
and SOLID 186 [10] is used for other components. This mesh has 79,000 nodes and 24,000 elements. After finishing the
mesh process, symmetry and fixed support boundary conditions are given in ANSYS (Fig. 24.7). Material properties of the
each components of the array are given in Table 24.1.

Finally, harmonic analysis is conducted for the frequency range of interest by using this finite element model. In this
analysis, 1 V is given to the middle transducer for driving the system. End of this analysis harmonic response of the system
is obtained and frequency response of the system is given in Fig. 24.8. Frequency axis of the frequency response graph is
normalized by resonance frequency. Also, deformation response of the system at resonance frequency is shown in Fig. 24.8.

Moreover, harmonic analysis is repeated for the same frequency range by giving 1 V to the all transducers. End of this
analysis harmonic response of the system is obtained and frequency response of the system is given in Fig. 24.9. Frequency
axis of the frequency response graph is normalized by resonance frequency. Also, deformation shape of the system at
resonance frequency is shown in Fig. 24.9.
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Fig. 24.7 (a) Mesh of the system, (b) boundary condition, fixed support

Table 24.1 Material properties of the array

Component name Material
Transducer ceramic PZT-4
Head mass of transducer Aluminum
Tail mass of transducer Steel
Tie rod Steel
Boot of transducer Carbon fiber reinforced composite
Housing Aluminum
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Fig. 24.8 (a) Frequency response of the middle transducer, (b) deformation shape of the middle transducer
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Fig. 24.9 (a) Frequency response of the array, (b) deformation shape of the array
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As seen from Fig. 24.8, due to material properties of composite shell, only one transducer vibrates like as a simple piston.
Also if all transducers are drive together, system behaves like a single tonpilz transducer. Other resonance peaks in both
Figs. 24.8 and 24.9 are caused by the dynamic properties of the composite shell.

24.4 Validation of Finite Element Model By Experimental Techniques

24.4.1 Admittance Measurement

In order to validate the finite element model, admittance measurement is using as one method. Especially, for micro
piezoelectric structures, it is not easy to find resonance frequency by familiar method, such as using accelerometer and
shaker. Also it is very hard to find dynamic properties of the high frequency piezoelectric structure by same methods.

If the equation of motion of the simple mechanical system (Eq. 24.1), which has mass, damper and spring, are compared
with equation of the electrical series resonant circuit (Eq. 24.2), it is seen that there is very good analogy with electrical and
mechanical system [1].

m
d2x

dt2 + c
dx
dt

+ kx = F sin(ωt) (24.1)

where, m is mass, c is damping, k is stiffness, F is force, x is displacement, t is time and ω is frequency.

l
di
dt

+ ri+
1
c

∫
idt =V sin(ωt) (24.2)

where, l is inductance, r is resistance, c is capacitance, V is voltage, i is current, t is time and ω is frequency.
By considering Eqs. 24.1 and 24.2, similarity of these two systems is given in Table 24.2 [1]. Therefore, if admittance of

the electrical resonant circuit is obtained, resonance frequency of the system is found easily by using this information. In
other words, similar relationship between mechanical mobility and electrical admittance can be seen.

Because of these reasons, admittance measurement is very common method for transducer characterization [11, 12] due
to the electrical-mechanical behavior of the piezoelectric material. Impedance analyzer is used to measure the admittance
of the piezoelectric structures [13]. By admittance measurement, conductance and susceptance of the structure is obtained,
i.e. real part of the admittance is conductance and susceptance is imaginary the part of admittance. Maximum frequency
of conductance is given the resonance frequency of the structure [14]. During the admittance measurement in air, only
middle transducer is used in one case and also in other case, all transducers are connected in parallel to find total system
characteristic. Comparison of the FEM results and conductance measurements are given in both Figs. 24.10 and 24.11.

In both Figs. 24.10 and 24.11, there are different resonance peaks than finite element model in conductance measurements.
This is caused by idealization in finite element model, in other words, it is not possible to model real boundary conditions and
contact between each parts in the system. Also dynamic characteristics of composite shell affect the results in experimental
studies.

24.4.2 TVR and RVS Measurements

The acoustic performance of the underwater acoustic system is measured in water. During the measurement, open water test
center, which is in the infrastructure of Meteksan Defense, is used, (Fig. 24.12a). Before measurement, the system is attached
to the setup and reference hydrophone is located in front of the system (Fig. 24.12b).

The middle tonpilz transducer in the underwater acoustic system is operated in the frequency range of interest and transmit
voltage response of the middle of the composite transducer is obtained. Moreover, total transmit voltage response of the
system is found by driving all transducers in parallel. The results are given in Fig. 24.13. Finally, receive voltage sensitivity
of the middle transducer and the system is found by driving the reference hydrophone in the frequency range of interest,
(Fig. 24.14). Frequency scale of the TVR and RVS graphs are normalized by resonance frequency and as seen from those
graphs, resonance frequency of the system are very close to results of the finite element analysis.
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Table 24.2 Similarity of the mechanical and electrical systems [1]

Mechanical Electrical
Mass Inductance
Compliance Capacitance
Resistance Resistance
Velocity Current
Force Voltage
Displacement Charge
Impedance Impedance
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Fig. 24.10 Comparison of the FEM result and conductance measurement in air for the middle transducer
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Fig. 24.11 Comparison of the FEM result and conductance measurement in air for the array

24.5 Discussion

Before developing underwater acoustic system, it is very important to understand the system behavior and generally structural
dynamics of this system plays critical role. If structural dynamics of the underwater acoustic system is not characterized very
well, it is not possible to use such system effectively. Resonance frequency and deformation shape at resonance frequency
are very important parameters. Therefore, the resonance frequency should be arranged by requirements of the application
for the active underwater acoustic systems. Moreover, the deformation shape of the underwater acoustic system should be
piston like movement near resonance frequency to generate acoustic wave in water effectively.
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Fig. 24.12 (a) Open water test center, Meteksan Defense, (b) test setup for TVR and RVS measurement
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Fig. 24.13 TVR measurement for the middle transducer and array
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Fig. 24.14 RVS measurement for the middle transducer and array

In this study, dynamic characteristic of the underwater acoustic system is investigated by finite element method and
experimental techniques. Finite element method is very fast and reliable method, if all parameters, such as boundary
conditions and material properties, are defined very well. It is possible to run trial and error study to determine the required
system properties. Transducer geometry, material properties of piezoceramic and composite shell can be found by finite
element analysis easily. The presented underwater acoustic system is analyzed in ANSYS Workbench 14.0 and requirement
for this system is achieved by iterations in this software. As explained in reference [9], transducers move like a simple
piston due to material properties of the composite shell and also system behaves as a single tonpilz transducer if all
transducer is drive as parallel. After obtaining the dynamic properties of the system, results of finite element are validated
by special measurement techniques for electroacoustic system. One method is admittance or impedance measurement and
the resonance frequency of the transducer, which consists of piezoceramic disks, are found by this method. In conductance
measurement, there are seen different resonance peaks and this is caused by idealization finite element modeling and dynamic
characteristics of the composite shell. Moreover, the underwater acoustic properties of the system are determined by TVR
and RVS measurements and resonance frequency of the system also can be seen in these measurements.
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