
Chapter 1
Accurate Damping Estimation by Automated OMA Procedures

C. Rainieri and G. Fabbrocino

Abstract Systems and techniques for fast damage detection based on vibration analysis are becoming very attractive in
different engineering fields. Modal-based damage detection algorithms are well-known techniques for structural health
assessment. However, the lack of automated modal identification and tracking procedures has been for long a relevant limit
to their extensive use. The development of several automated output-only modal identification procedures in the last few
years has led to a renewed interest in modal-based damage detection. However, robustness of automated modal identification
algorithms, computational efforts and reliability of modal parameter estimates (in particular, damping) still represent open
issues. In this paper, a novel algorithm for automated output-only modal parameter estimation is adopted to obtain reliable
and very accurate modal parameter estimates. An extensive validation of the algorithm for continuous monitoring application
is carried out based on simulated data. The obtained results point out that the algorithm provides fairly robust, accurate and
precise estimates of the modal parameters, including damping ratios. This may potentially lead to a standardized, extensive
characterization of modal damping ratios in structures, which is useful to gain knowledge about damping mechanisms in
structures and to develop predictive models.

Keywords Vibration based structural health monitoring • Automated operational modal analysis • Damping • Second
order blind identification • Stochastic subspace identification

1.1 Introduction

Vibration based Structural Health Monitoring (SHM) techniques are again gaining in popularity nowadays thanks to the
recent development of several algorithms for automated identification [1] and tracking [2] of modal parameters based on
Operational Modal Analysis (OMA) methods. Damage detection techniques based on changes of the modal parameters of the
monitored structure over time are well-established methods for structural health assessment [3], in spite of some limitations
in terms of damage localization and, above all, quantification, as well as drawbacks related to sensitivity to measurement
quality and environmental and operational factors [4]. Nevertheless, the continuous monitoring of modal parameters has
a large potential in performance and health assessment of civil engineering structures [5]. Applications range from prompt
detection of damage and degradation phenomena [6] to post-earthquake health assessment and emergency management [7, 8].
An automated, accurate estimation of modal parameters plays also a primary role in the assessment of the dynamic behavior
of complex structural systems such as geotechnical [9, 10] and historical structures [11, 12]. Even if several solutions for
automated output-only modal identification are currently available, they show different performance in terms of robustness
and accuracy of estimates. This can be addressed also to the drawbacks [1] typically encountered in the algorithms:

• threshold based peak and physical pole detection;
• need of a preliminary calibration phase at each new application;
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• static settings of thresholds and parameters which may be unsuitable to track the natural changes in modal properties of
structures due to damage or environmental effects;

• sensitivity to noise, problems of false or missed identification.

Moreover, a number of algorithms do not provide damping estimates; whenever they are able to estimate modal damping,
the resulting values are usually very scattered. The fairly large scatter associated to damping estimates, in comparison with
that of natural frequency and mode shape estimates, is well documented in the literature. Even if the scatter can be partially
addressed to inherent limitations of the estimators and the adoption of an equivalent viscous damping model [13], appropriate
data processing procedures have to be adopted in order to minimize the estimation error and enhance robustness and accuracy
of automated modal identification algorithms also with respect to the problem of modal damping estimation.

A thorough performance assessment of automated modal identification algorithms is rarely reported in the literature.
However, the evaluation of the quality of modal estimates automatically extracted from measurements of the dynamic
response of structures under operational conditions is a fundamental step in view of proper post-processing of modal
parameters for damage detection and performance evaluation purposes.

In the present paper, a procedure for fully automated output-only modal identification, based on the combination of
different OMA techniques, is described. The idea behind the novel approach is the simplification of the analysis and
interpretation of the stabilization diagram for the separation of physical from spurious poles taking advantage of the Blind
Source Separation (BSS) [14] operated by the Second Order Blind Identification (SOBI) [15, 16] procedure. The main
objective of the novel strategy is a robust and accurate identification of modal parameters in operational conditions, including
modal damping ratios even if in the limits of the adopted estimator. Its key feature is the absence of any analysis parameters
to be tuned at each new monitoring application. In the development of the algorithm, specific attention has been devoted to
the control of response time and computational efforts [17], also through a reduction of the length of the analyzed records,
without affecting the quality of the estimates. This is relevant, in particular, for SHM applications in seismically prone
areas [2].

A thorough performance assessment of the algorithm is attempted based on automated processing of a large number
of simulated datasets. The herein illustrated results show that the algorithm is characterized by a high success rate. The
performance assessment based on simulated data is still in progress. However, the preliminary results seem to confirm the
robustness and accuracy of the algorithm, which therefore has a potential in the continuous vibration based monitoring of
civil structures.

1.2 Theoretical Background of the Automated Modal Identification Algorithm

The core of the novel automated modal identification algorithm is the Stochastic Subspace Identification (SSI) [18] method
for OMA. However, it is not directly applied to the multivariate time series of the structural response but, after a pre-
processing step, to the single sources obtained from the Joint Approximate Diagonalization (JAD) [19] of a number of time
shifted covariance matrices.

SSI is classified as a time domain, parametric modal identification method. When parametric system identification
techniques are used for the estimation of the modal parameters of structures, the definition of the model order, equal to twice
the number of eigenfrequencies, represents the key issue. The control theory provides several techniques to automatically set
the model order in a way able to maximize the prediction capacity of the identified model [20]. However, when SSI is applied
in the context of experimental modal analysis, the attention is not focused on the prediction capability of the model as such,
but on the possibility to get accurate and reliable estimates of the modal parameters. In order to find the modal properties of
the system it is worth plotting a stabilization diagram. The order of the system is over-specified and the search for vertical
alignments of stable poles allows for the discrimination of physical from spurious modes. Even if the stabilization diagram
plays a primary role in experimental modal analysis, the selection of physical modes in the alignments of stable poles is
often not straightforward, since the quality of the stabilization diagram depends on a number of parameters (number of block
rows, maximum model order) and thresholds (allowable scatter between the modal properties evaluated at consecutive model
orders) [18, 21] resulting in a relevant role of the analyst’s judgement.

The stabilization diagram represents a useful tool for bias errors identification [22], such as the bias of the model,
related to spurious modes, and the bias of the modes. Spurious modes can be classified as noise modes, which arise due
to physical reasons—measurement noise, characteristics of excitation -, and mathematical modes, due to over-estimation of
the system order. The stabilization diagram allows for the discrimination of most spurious modes, since they often do not
fulfil stabilization criteria like in the case of physical poles. Other spurious poles can be identified and removed according
to physical criteria, for instance, the expected damping ratio range. The bias of the modes can be associated, on the other
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hand, to the under-estimation of the system order, so that a single identified mode is actually the combination of different
modes (either physical or noisy). If the stabilization diagram is plotted until appropriately high values of the model order, the
splitting of one column in the stabilization chart into two separate columns, starting from a given model order, is a commonly
observed phenomenon. Thus, the mode estimate is biased below this model order since it is the result of the combination
of different poles. A bias of the modes may occur also if, for a given maximum model order, the number of block rows is
over-specified. In [23] it is shown how, for a given maximum model order, the quality of stabilization first improves and
then gets worse for increasing values of the number of block rows. Thus, it is possible to carry out a sensitivity analysis for
different values of the number of block rows in order to set it in a way able to minimize the variance of the modal parameter
estimates at different model orders.

Evaluation and control of the accuracy of modal parameter estimates are critical in view of modal based damage detection.
This basically relies on the comparison between the modal parameters or the modal model of a structure in a damaged state
and those in a reference (undamaged) state. Shifts of natural frequencies, increases in damping, changes in mode shapes
and other similar damage sensitive features are key parameters to assess the health state of the monitored structure [3].
A comprehensive review of these methods and the issues concerning the removal of environmental effects that also lead to
changes in the modal parameters are out of the scope of the present paper. A number of methods for removal of environmental
effects can be found in the literature [24, 25]. However, inaccurate identifications of modal parameters may still occur, thus
negatively affecting the performance of damage detection algorithms [26], eventually leading to false alarms or missed
identifications.

A number of simulation studies have pointed out how the modal parameter estimates provided by parametric methods
such as SSI are by far more accurate than those provided by non-parametric procedures [27, 28]. However, the automated
interpretation of stabilization diagrams is a very complex activity and a lot of research efforts have been spent on this
task [28]. In the present paper a novel approach to the automated output-only modal parameter identification is proposed
and it is extensively tested in order to assess the robustness, accuracy and precision of estimates in view of continuous
monitoring applications. The method is based on SSI and the selection of physical poles in the stabilization diagram by
clustering techniques, but it takes advantage of the BSS operated by SOBI at a preliminary stage in order to simplify the
interpretation of the stabilization diagram. In fact, as a result of the BSS phase, the raw data associated to the measured
structural response are transformed into sources [15] which can be well-separated (they show the contribution of a single
mode to the structural response), not well-separated (noise or minor contributions from other modes could be superimposed
to the contribution of the main mode) or just noise sources [17]. The sources are obtained through JAD of p time-shifted
covariance matrices until the sum of the off-diagonal terms is under a user-defined threshold t [19]. The idea under the
proposed approach for automated output-only modal identification is to take advantage of the BSS to simplify the analysis
of the data and the interpretation of the stabilization diagram by extracting the modal information from the single sources
and not the multivariate time series of raw data. The sources are analyzed one-by-one according to the SSI method and
the physical poles are separated from the spurious one by means of clustering techniques and mode validation criteria. The
interpretation of the stabilization diagram, therefore, becomes easier since it basically reports information about only one
mode at the time.

The flowchart of the proposed algorithm is shown in Fig. 1.1. The JAD phase leads to a preliminary discrimination
between modal contributions and noise. The sources, including both modal and noise sources, are then passed, one-by-
one, to the SSI-based step for the estimation of natural frequencies and damping ratios and identification of noise sources.
This step of the algorithm takes advantage of advanced clustering techniques [29] to identify the physical poles. For each
source, the poles provided by the SSI are grouped into clusters according to the hierarchical clustering method. The cluster
characterized by the largest number of elements is selected as representative of the mode. At the end of this phase a further
selection and validation of the poles in each cluster is carried out. Clusters that do not fulfil the validation checks are
removed from the dataset. In particular, the average damping ratio in each cluster has to be in the range 0�5% and the
corresponding coefficient of variation not larger than 10%. The first limitation is based on an empirical observation about the
behaviour of civil structures in operational conditions, which are usually weakly damped. The second limitation comes from
the observation that physical modes are characterized by small standard deviations, while spurious modes show much larger
values of this parameter [28]. Checks about the physical significance of the estimates are also carried out (for instance, checks
of the sign of damping). As a final stage, the natural frequency and damping ratio estimates in each cluster are normalized
in the range [0, 1] and a k-means clustering algorithm with k D 2 cluster is applied, allowing the presence of empty clusters.
This last step eventually removes still present spurious poles and slightly improves the accuracy of estimates. It is worth
pointing out that the validation criteria have to be applied after the hierarchical clustering stage, since they might remove all
the spurious poles and a number of physical poles could be separated and lost as a result of the clustering stage.

The final values of the natural frequency and damping ratio for the identified modes are obtained by a sensitivity analysis
with respect to the number of block rows in SSI, for a fixed value of the maximum model order in the stabilization diagram.
The cluster characterized by the minimum variance of the estimates when i ranges in a certain interval with a certain step �i
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Fig. 1.1 Flowchart of the
automated modal identification
algorithm

is finally selected as the one providing the best estimate of the modal parameters for a given structural mode. Mode shape
estimates are finally obtained, in the current stage of implementation, from Singular Value Decomposition (SVD) of the
output Power Spectral Density (PSD) matrix at the previously estimated frequency of the mode [30].

The previous considerations about the automated identification algorithm highlight how the source separation at the first
step makes the discrimination of physical and noise modes easier and more reliable. The sensitivity analysis with respect to
the number of block rows and the grouping of the poles in clusters leads to a robust identification of modal parameters and
to a quantification of the precision of the estimates.

1.3 Performance Assessment of the Algorithm Against Simulated Data

The performance of the proposed algorithm in terms of accuracy and reliability of estimates has been investigated through a
statistical analysis of the results obtained from simulated data continuously generated through the application of a Gaussian
white noise to a 4-DOF system. The mass and stiffness matrices of the system are given by Eqs. (1.1) and (1.2):

Œm� D

2
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5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 10

3
775 kg (1.1)
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0 �200 400 �200
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3
775

N

m
(1.2)

Œc� D a0 Œm� C a1 Œk� (1.3)

while Rayleigh damping is used to model structural damping. Thus, the damping matrix has been obtained as per Eq. (1.3).
The a0 and a1 coefficients in Eq. (1.3) have been computed by setting a value of 1% of the modal damping ratio for the
first and last mode of the system. Thus, the simulated 4-DOF system is characterized by the following modal properties
(Table 1.1):
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Table 1.1 Modal properties of
the simulated 4-DOF system

Mode # Natural frequency (Hz) Damping ratio (%)

I 0.668 1.00
II 1.137 0.88
III 1.526 0.92
IV 1.879 1.00

Table 1.2 Success rate of
automated modal identification
over 1000 runs

Mode # Success rate (%)

I 99.7
II 99.6
III 99.5
IV 99.8

Fig. 1.2 Sample sequence of
values of estimated natural
frequencies in 1000 runs

The system matrices and, therefore, the associated modal parameters have been kept constant in all runs in order to focus
the attention only on the uncertainties associated to inherent limitations of the estimator. The performance of the method
when uncertain system matrices are adopted, so that the modal parameters can slightly change at each run as an effect of the
deviation of the system matrices from their nominal values, is out of the scope of the present paper and it will be discussed
elsewhere.

The system response to Gaussian white noise N(0,1) has been simulated 1000 times. The input has been applied at
DOF #1. Each simulated dataset consisted of four measurement channels; the total record length was 3600 s and the
sampling frequency was 10 Hz. Gaussian white noise has been added to the system response in order to simulate the effect of
measurement noise. The obtained datasets, characterized by a SNR equal to 5 dB, have been then processed by the proposed
algorithm in order to automatically extract the modal parameters of the system. The analysis of the simulated datasets has
been carried out considering a number of block rows i ranging between 20 and 80 with �i D 2 and considering a maximum
model order of 16 in the construction of the stabilization diagram for each analyzed source.

The analysis of the obtained results has pointed out that the algorithm carries out automated output-only modal
identification in a very robust way. In fact, a success rate [31] larger than 99% has been obtained for all modes (Table 1.2).
Just in a few runs the modal parameters have not been properly identified (Fig. 1.2). However, such wrong estimates can be
easily removed through the analysis of the extreme values in order to identify modal parameter estimates, which are outside
the 3¢ range.

In Tables 1.3 and 1.4 the results obtained from application of the proposed algorithm to the simulated data after removal
of extreme values (associated to wrong modal parameter estimates) are summarized. They point out how the estimates are
very close to the nominal values in at least the 50% of the cases. In fact, the median values are very close to the nominal ones
and the interquartile range is very narrow and in the order of 0.001 Hz for natural frequency estimates and 0.1% for damping
ratios.

Larger errors are associated to damping estimates, as expected. However, the analysis of the scatter of the natural
frequency and damping estimates with respect to the nominal values point out that, with the exception of the previously
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Table 1.3 Summary of automated modal identification results (after removal of extreme values): natural frequencies

Mode # fnominal (Hz) �f (Hz) ¢ f (Hz) fmin (Hz) 25th centile 50th centile 75th centile 95th centile fmax (Hz)

I 0.668 0.668 0.000745 0.666 0.667 0.668 0.668 0.669 0.670
II 1.137 1.137 0.000901 1.135 1.137 1.137 1.138 1.139 1.141
III 1.526 1.526 0.001164 1.520 1.525 1.526 1.527 1.528 1.531
IV 1.879 1.879 0.001467 1.873 1.878 1.879 1.880 1.881 1.884

Table 1.4 Summary of automated modal identification results (after removal of extreme values): damping ratios

Mode # Ÿnominal (%) �Ÿ (%) ¢Ÿ (%) Ÿmin (%) 25th centile 50th centile 75th centile 95th centile Ÿmax (%)

I 1.00 1.02 0.11 0.70 0.94 1.02 1.10 1.21 1.36
II 0.88 0.89 0.08 0.67 0.84 0.89 0.94 1.02 1.13
III 0.92 0.93 0.07 0.73 0.88 0.93 0.98 1.05 1.15
IV 1.00 1.01 0.08 0.79 0.96 1.01 1.06 1.14 1.23

Table 1.5 Summary of
automated modal identification
results (after extreme values
removal): frequency scatter

Mode # �fmin (%) 25th centile 50th centile 75th centile 95th centile �fmax (%)

I 0.000025 0.04 0.07 0.13 0.23 0.36
II 0.000010 0.02 0.05 0.09 0.16 0.29
III 0.000036 0.02 0.05 0.08 0.15 0.38
IV 0.000006 0.02 0.05 0.09 0.15 0.30

Table 1.6 Summary of
automated modal identification
results (after removal of extreme
values): damping scatter

Mode # �Ÿmin (%) 25th centile 50th centile 75th centile 95th centile �Ÿmax (%)

I 0.02 3.7 7.4 12.8 22.5 36.1
II 0.01 2.8 5.9 10.3 17.6 28.0
III 0.01 2.6 5.5 9.0 15.5 24.3
IV 0.01 2.4 5.1 8.7 15.4 22.7

Table 1.7 Analysis of
coefficient of variation of
identified natural frequencies
(after removal of extreme values)

Mode # ”f,min (%) 25th centile 50th centile 75th centile 95th centile ”f,max (%)

I 0.0003 0.002 0.004 0.01 0.03 0.18
II 0.0002 0.002 0.006 0.01 0.03 0.09
III 0.0002 0.003 0.006 0.01 0.03 0.07
IV 0.0005 0.004 0.008 0.01 0.04 0.51

Table 1.8 Analysis of
coefficient of variation of
identified damping ratios (after
removal of extreme values)

Mode # ”Ÿ,min (%) 25th centile 50th centile 75th centile 95th centile ”Ÿ,max (%)

I 0.03 4.24 4.81 5.75 6.92 9.66
II 1.21 1.82 2.29 3.05 4.19 6.99
III 0.18 0.91 1.19 1.63 2.57 5.51
IV 0.15 1.18 1.52 1.99 3.28 9.14

mentioned extreme values which affect less than 1% of the estimates, in the 95% of the runs the error is lower than 0.25%
for frequencies (Table 1.5) and 23% for damping ratios (Table 1.6). Moreover, the typical scatter of damping ratio is in the
range [2%, 10%] (50% of the values of scatter associated to damping estimates are in this range).

The natural frequency and damping ratio estimates provided by the proposed algorithm are average values of the poles
grouped in a cluster representative of the identified mode. The analysis of their coefficient of variation shows that the modal
estimates provided by the algorithm are not only fairly robust and accurate, but also precise. In fact, the coefficient of variation
is typically well under 0.1% for natural frequencies (Table 1.7) and 10% (the rejection limit set in the algorithm) for damping
ratios (Table 1.8).

The distributions of the identified damping ratios after 1000 runs for the four modes are depicted in Fig. 1.3. The associated
means, modes and medians are reported in Table 1.9. They are very close each other and to the nominal values of modal
damping ratios. Taking into account the uncertainty associated to damping estimates, the mode of damping values is given
with one decimal place only.

The statistical analysis of the results can be eventually further refined by removing also outliers. However, the results after
outlier removal are very consistent with the previous ones (to this aim compare Tables 1.3, 1.4, 1.10 and 1.11). The marginal
refinements associated to outlier removal confirm the robustness and accuracy of the algorithm.
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Fig. 1.3 Histograms of modal damping ratio estimates (after removal of extreme values): mode I (a), II (b), III (c), IV (d)

Table 1.9 Comparison of mean,
mode and median of identified
damping ratios with the
corresponding nominal values
(after removal of extreme values)

Mode # Ÿnominal (%) �Ÿ (%) Ÿmedian (%) Ÿmode (%)

I 1.00 1.02 1.02 1.0
II 0.88 0.89 0.89 0.9
III 0.92 0.93 0.93 0.9
IV 1.00 1.01 1.01 1.0

Table 1.10 Summary of automated modal identification results (after outlier removal): natural frequencies

Mode # fnominal (Hz) �f (Hz) ¢ f (Hz) fmin (Hz) 25th centile 50th centile 75th centile 95th centile fmax (Hz)

I 0.668 0.668 0.000723 0.666 0.667 0.668 0.668 0.669 0.670
II 1.137 1.137 0.000863 1.135 1.137 1.137 1.138 1.139 1.140
III 1.526 1.526 0.001045 1.523 1.525 1.526 1.527 1.528 1.529
IV 1.879 1.879 0.001339 1.875 1.878 1.879 1.880 1.881 1.883
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Table 1.11 Summary of automated modal identification results (after outlier removal): damping ratios

Mode # Ÿnominal (%) �Ÿ (%) ¢Ÿ (%) Ÿmin (%) 25th centile 50th centile 75th centile 95th centile Ÿmax (%)

I 1.00 1.02 0.11 0.74 0.94 1.02 1.10 1.21 1.33
II 0.88 0.89 0.08 0.69 0.84 0.89 0.94 1.02 1.09
III 0.92 0.93 0.07 0.73 0.88 0.93 0.98 1.05 1.12
IV 1.00 1.01 0.07 0.82 0.96 1.01 1.06 1.13 1.20

1.4 Conclusions

A novel, hybrid approach to automated output-only modal identification for SHM applications has been described in the
present paper. It is based on the combination of selected OMA techniques and clustering strategies for the discrimination
between structural and noise modes and the selection of the dynamic properties of physical modes. Its performance has
been assessed against simulated data generated by a 4-DOF system excited by a Gaussian white noise. The results obtained
from 1000 runs have been analyzed in order to assess the performance of the algorithm in terms of robustness, accuracy and
precision. Encouraging results have been obtained, in particular as the possibility to estimate damping ratios in an accurate
and fully automated way is concerned. Further investigations are in progress to assess the performance of the algorithm in
the case of uncertain system matrices, when the modal parameters slightly change at each run as an effect of the deviation of
the system matrices from their nominal values. All these tests will provide an extensive characterization of the performance
of the algorithm in view of continuous, long term vibration based SHM applications.
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25. Lämsä V, Kullaa J (2008) Data normalization with partially measured environmental or operational variables. In: Proceedings of the fourth

European workshop on structural health monitoring, Cracow
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