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    Abstract     Activating mutations in the K-Ras oncogene occur in approximately 
90 % of cases of pancreatic ductal adenocarcinoma, and tumors containing mutant 
K-Ras often acquire a dependency on the expression of the oncogene. Therapies 
that block the oncogenic functions of K-Ras could have clinical effi cacy for a dis-
ease that is currently refractory to all forms of treatment. This chapter describes the 
evidence, from both  in vitro  studies and studies using genetic mouse models, of the 
importance of oncogenic K-Ras and its downstream signaling pathways in driving 
pancreatic tumor formation and cancer cell growth.  

        Introduction 

 The decades-old observation that pancreatic ductal adenocarcinoma (PDA) is almost 
always associated with an activating mutation in the  KRAS  gene has focused atten-
tion on this oncogene as a key therapeutic target for this lethal disease. Many tumor 
cells containing  KRAS  mutations are considered to be K-Ras “addicted,” meaning 
that they depend on the oncogene in order to survive. Therapies that block K-Ras 
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signaling could therefore potentially benefi t almost all patients with PDA. Thirty 
years of study of the cell biology of K-Ras has yielded a wealth of information but 
an effective treatment for PDA is still elusive. This chapter describes how oncogenic 
K-Ras signaling is involved in almost every aspect of the initiation and progression 
of PDA from precursor lesions to metastatic disease. Oncogenic K-Ras induces 
numerous alterations that drive normal pancreatic cells to become invasive cancer 
cells and this provides many opportunities for therapeutic intervention. Understanding 
as much as possible about K-Ras signaling should allow us to determine where such 
intervention would prove the most effective in treating this disease.  

    The K-Ras Oncogene 

 Ras oncogenes were fi rst identifi ed in the 1970s as the sequences responsible for the 
transforming properties of the Harvey (Ha-MSV) and Kirsten (Ki-MSV) rodent 
tumor viruses. It was discovered that these recombinant retroviruses contained 
DNA sequences derived from the rat genome that encoded the  Hras  (Ha-MSV) and 
 Kras  (Ki-MSV) genes. Later  HRAS  became the fi rst oncogene isolated from human 
cancer cells by its ability to transform NIH3T3 mouse fi broblasts (Shih and 
Weinberg  1982 ; Goldfarb et al.  1982 ; Pulciani et al.  1982 ). The transforming 
sequences from human tumor cells were found to be homologs of the viral  v-h-ras  
and  v-k-ras  genes (Parada et al.  1982 ; Der et al.  1982 ; Santos et al.  1982 ). 

 Molecular cloning and sequencing showed that the oncogenes derived from 
tumor cells and the normal cellular  HRAS  and  KRAS  genes differed by only a single 
point mutation, most commonly in codons 12, 13, or 61 (Reddy et al.  1982 ; Tabin 
et al.  1982 ; Taparowsky et al.  1982 ; Santos et al.  1984 ). This information was used 
to screen a wide variety of different human tumors for the presence of oncogenic 
 RAS  mutations (Bos  1989 ). It is estimated that up to 30 % of human tumors contain 
 RAS  mutations making it the most frequently mutated oncogene in human cancer 
(Barbacid  1987 ). 

 There are three main isoforms of Ras proteins that are highly homologous. 
In addition to H-Ras and K-Ras, the third isoform N-Ras was identifi ed after the 
other two isoforms as the transforming gene present in a neuroblastoma cell line 
(Shimizu et al.  1983a ,  b ; Hall et al.  1983 ). K-Ras in fact exists as two alternatively 
spliced isoforms, K-Ras4A and K-Ras4B, which differ only in the sequence encoded 
by the fourth exon. K-Ras4B is considered to be the more relevant isoform to human 
cancer due to its more ubiquitous expression in tissues in both mice and humans 
(Pells et al.  1997 ; Plowman et al.  2006a ), and due to the fact that a  KRAS  knockout 
mouse has an embryonic lethal phenotype (Johnson et al.  1997 ; Koera et al.  1997 ) 
whereas a targeted knockout of exon 4A has no phenotype (Plowman et al.  2003 ). 
However, because the oncogenic mutations in  KRAS  occur in the shared fi rst and 
second exons, these mutations results in the production of oncogenic versions of 
both splice variants. Data regarding the importance of the K-Ras4A isoform  in vivo 
 is somewhat contradictory and more research is required to determine what role this 
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 isoform may play in oncogenesis (Patek et al.  2008a ,  b ; To et al.  2008 ; Plowman 
et al.  2006b ; Abubaker et al.  2009 ). 

 The Ras proteins are prototypical small GTPases (Scolnick et al.  1979 ; Shih 
et al.  1980 ; Tamanoi et al.  1984 ; Temeles et al.  1985 ) that act as molecular switches 
cycling between an active GTP-bound and an inactive GDP-bound state (Field et al. 
 1987 ; Satoh et al.  1987 ). When GTP-bound, Ras can interact with downstream 
effectors involved in numerous cellular pathways that control cell growth, differen-
tiation, and survival. The GTP/GDP cycle is controlled by guanine nucleotide 
exchange factors (GEFs) that activate Ras by promoting the release of GDP allow-
ing the more abundant GTP to bind (Wolfman and Macara  1990 ), and GTPase acti-
vating proteins (GAPs) that dramatically accelerate the intrinsic rate of GTP 
hydrolysis, thereby inactivating Ras and curtailing signaling (Trahey and McCormick 
 1987 ). Oncogenic mutations in the Ras protein render it locked constitutively in the 
active GTP-bound state by reducing the intrinsic GTP hydrolysis rate and rendering 
the protein insensitive to the action of GAPs (McGrath et al.  1984 ; Sweet et al. 
 1984 ; Gibbs et al.  1984 ; Manne et al.  1985 ; Trahey and McCormick  1987 ). 

 A defi ning feature of Ras proteins is that they are peripheral membrane proteins 
that associate with cellular membranes by virtue of a series of posttranslational 
modifi cations (Wright and Philips  2006 ). The extreme C terminus of Ras ends with 
a “CaaX motif” in which C is a cysteine, “a” is generally an aliphatic residue and X 
is one of a number of amino acids (Fu and Casey  1999 ). This CaaX motif renders 
Ras a substrate for modifi cation by farnesyltransferase, which catalyzes the addition 
of a 15-carbon farnesyl lipid to the cysteine of the CaaX motif (Schafer et al.  1989 , 
 1990 ). Subsequently the aaX amino acids following the farnesylcysteine are cleaved 
off by a protease, Ras converting enzyme 1 (Rce1) (Boyartchuk et al.  1997 ; Freije 
et al.  1999 ; Otto et al.  1999 ). The α-carboxyl-group on the farnesylcysteine is then 
methylated by isoprenylcysteine carboxyl methyltransferase (Icmt) (Clarke et al. 
 1988 ; Gutierrez et al.  1989 ; Hrycyna et al.  1991 ; Pillinger et al.  1994 ). This methyl 
esterifi cation neutralizes the negative charge of the carboxyl group and is therefore 
thought to increase the affi nity of the farnesylcysteine for the plasma membrane by 
reducing the repulsion of the carboxyl group by the negatively charged head groups 
of the inner leafl et of the phospholipid bilayer (Hancock et al.  1991 ). Correct mem-
brane association has been shown to be essential for both the biological and onco-
genic functions of Ras proteins (Hancock et al.  1989 ; Gutierrez et al.  1989 ; 
Willumsen et al.  1984 ). Therefore, disrupting the addition of the modifi cations that 
enable Ras to associate with membranes has been seen as an attractive way to inhibit 
the function of oncogenic Ras in cancer (Downward  2003 ).  

    Oncogenic K-Ras Effector Pathways and Pancreatic Cancer 

 The exchange of the nucleotide bound to Ras from GDP to GTP results in a confor-
mational change in the Ras protein that affects the affi nity of binding to effector 
molecules (Ito et al.  1997 ; Geyer et al.  1996 ). Conformational changes in Ras occur 
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in two areas of the protein within the highly conserved GTPase domain termed 
switch I and switch II (Milburn et al.  1990 ). A Ras effector is defi ned as a protein 
that preferentially binds to the GTP-bound form of Ras. Effectors interact with Ras 
via a Ras-binding domain (RBD). While no sequence homology exists between 
RBDs from different effectors, they all share an ubiquitin superfold topology 
(ββαββαβ) (Nassar et al.  1995 ; Geyer et al.  1997 ; Walker et al.  1999 ). Oncogenic 
mutations in Ras, such as the substitution of valine or aspartic acid for glycine at 
codon 12 (G12V or G12D), render the protein constitutively GTP-bound because 
residues with a side chain in this position sterically interfere with the geometry of 
the transition state of GTP hydrolysis in the presence of GAPs (Scheffzek et al. 
 1997 ; Krengel et al.  1990 ; Tong et al.  1991 ). Mutation of the glutamine at position 
61 is also oncogenic because this residue forms a hydrogen bond with the arginine 
at position 789 in GAP p120 (Scheffzek et al.  1997 ) and positions a catalytic water 
molecule for nucleophilic attack on the γ-phosphate of GTP (Buhrman et al.  2010 ; 
Scheidig et al.  1999 ), which is essential for GTP hydrolysis. These mutations there-
fore enable Ras to constitutively interact and activate downstream effectors. Thus, 
the oncogenic nature of Ras results from its ability to promote unchecked signaling 
down a variety of pathways that induce cell growth, proliferation, and survival. 

 The importance of Ras signaling in pancreatic cancer is highlighted by the fact 
that mutations in K-Ras are found extremely frequently in patient tumors. Early 
analysis of tumors revealed a prevalence of oncogenic mutations of K-Ras in pan-
creatic ductal adenocarcinoma (PDA) in excess of 90 % (Almoguera et al.  1988 ). 
However, recent evidence from analysis of the catalogue of somatic mutations in 
cancer (COSMIC) database (Forbes et al.  2011 ) suggests that the percentage of 
mutations in pancreatic cancer is 60 % (Prior et al.  2012 ). K-Ras mutations have 
been found to be present in early PanIN lesions and in surrounding areas of acinar- 
ductal metaplasia (ADM) (Shi et al.  2009 ; Kanda et al.  2012 ) consistent with the 
hypothesis that this mutation is an initiating event in PanIN formation. PDA is 
believed to originate from somatic mutations in  KRAS  during adulthood rather than 
during embryonic development. Indeed, although germ line mutations in  HRAS  and 
 KRAS  as well as other components of the downstream MAPK cascade have been 
found to be responsible for Noonan, LEOPARD, cardio-facio-cutaneous and 
Costello syndromes, that share similar features including facial abnormalities, heart 
defects, impaired growth and development, and, in some cases, cancer predisposi-
tion (Schubbert et al.  2007a ,  b ), none of these syndromes appear to predispose to the 
development of PDA. 

 While the requirement for K-Ras signaling in pancreatic cancer is clear, what is 
not fully understood is what effector pathways downstream of Ras are necessary 
and suffi cient to transmit its oncogenic signals. There are at least ten distinct func-
tional classes of putative Ras effectors (Fig.  1 ) (Repasky et al.  2004 ). Raf-1 kinase 
was the fi rst Ras effector to be discovered and remains the best characterized 
(Moodie et al.  1993 ; Warne et al.  1993 ; Zhang et al.  1993 ; Vojtek et al.  1993 ). The 
canonical pathway of Raf-1 activation occurs downstream of receptor tyrosine 
kinases (RTKs), such as the epidermal growth factor receptor (EGFR). When 
growth factors (such as EGF) bind to their cognate RTK, this induces dimerization 
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and cross-phosphorylation of tyrosine residues in the cytosolic domain of the RTK 
(Schreiber et al.  1983 ; Ushiro and Cohen  1980 ; Yarden and Schlessinger  1987a ,  b ; 
Zhang et al.  2006 ). The SH2 domain of the adapter protein Grb2 then binds to the 
phosphotyrosine residues in the RTK, and Grb2 in turn recruits the Ras GEF SOS 
to the plasma membrane via an SH3 domain in the Grb2 protein (Buday  1999 ). This 
recruitment enables SOS to interact with and activate Ras on the plasma membrane 
(Boriack-Sjodin et al.  1998 ). Ras-GTP is then able to bind and activate the effector 
Raf-1 by a mechanism that is not yet completely understood (Marais et al.  1995 ). 
Downstream of Raf-1 is the mitogen activated protein kinase (MAPK) cascade that 
includes MEK (MAPK/Erk kinase), Erk-1 and Erk-2. The Erk proteins are serine/
threonine kinases with a variety of different substrates. Once phosphorylated, the 
Erk proteins form dimers that translocate into the nucleus where their substrates 
include proteins in the Ets family of transcription factors.

   In addition to Raf-1, two other well-characterized effectors of Ras are phosphati-
dylinositol 3-kinase (PI3K) (Rodriguez-Viciana et al.  1994 ) and a group of exchange 
factors for the small GTPase Ral which includes RalGDS. PI3Ks are lipid kinases 
that phosphorylate the 3′ hydroxyl group of the inositol ring of phosphatidylinositol 
phosphates. Class 1A PI3Ks are activated downstream of RTKs and function 
primarily to generate the lipid second messenger phosphatidylinositol- 3,4,
5-trisphosphate (PIP 

3
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  Fig. 1    Effector pathways downstream of oncogenic Ras stimulate many cellular processes. The 
signaling pathways shown have known or speculated roles in oncogenesis. Outlined in  red  are 
pathways involved in pancreatic cancer       
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in the recruitment and activation of proteins containing plekstrin homology (PH) 
domains including serine/threonine kinases of the Akt family (Akt1, Akt2, and 
Akt3) and Pdk1 kinase (3-phosphoinositide-dependent kinase). Akt is activated by 
phosphorylation of two key residues, Thr308 by Pdk1 and Ser473 by the rapamycin-
insensitive mammalian target of rapamycin complex 2 (mTORC2) (Sarbassov et al. 
 2005 ). Active Akt is able to phosphorylate a number of different downstream targets 
to control cell proliferation, survival, and metabolism. Notably, Akt activates the 
rapamycin-sensitive mTORC1 complex which results in the phosphorylation of p70 
ribosomal protein S6 kinase 1 (S6K) and the eukaryotic initiation factor 4E binding 
protein 1 (4E-BP1), ultimately leading to an increase in protein synthesis (Inoki 
et al.  2002 ). PI3K signaling is antagonized by  PTEN , a tumor suppressor gene 
encoding a phosphatase for PIP 

3
  (Li et al.  1997 ; Steck et al.  1997 ). RalGDS func-

tions by acting as a GEF for the GTPases RalA and RalB. Effectors for Ral include 
components of the exocyst complex, which regulates vesicular traffi cking and exo-
cytosis (Moskalenko et al.  2002 ,  2003 ). 

 The Raf/MEK/Erk and PI3K pathways have the most well established roles in 
cancer development and progression. Mutations in the Raf isoform BRAF have 
been found to occur in 8 % of human cancers, most commonly in malignant mela-
nomas (41 %), thyroid cancer (45 %) and colorectal cancer (14 %). A single base 
missense mutation that results in the replacement of valine for glutamic acid at 
codon 600 (V600E, previously described as V599E (Kumar et al.  2003 )) in the acti-
vation segment of the kinase domain is responsible for at least 80 % of the BRAF 
mutations found in human cancer (Davies et al.  2002 ). The kinase activity of this 
mutant is greatly elevated; it is able to potently transform NIH3T3 cells and consti-
tutively stimulates Erk activity  in vivo  independent of RAS. Gain-of-function muta-
tions in the catalytic subunit of PI3K p110 (PI3KCA) also occur frequently in cancer. 
These mutations increase enzymatic function, enhance downstream signaling ele-
ments and promote oncogenic transformation (Kang et al.  2005 ; Samuels et al. 
 2005 ). However, mutations in effectors downstream of Ras are infrequent in pancre-
atic cancer, presumably because the pathways are suffi ciently activated through 
oncogenic Ras signaling.  BRAF  mutations are rare in pancreatic cancer (Jones et al. 
 2008 ). They have been reported to occur in tumors that also had a K-Ras mutation 
with a frequency of around 10 % (Ishimura et al.  2003 ). Mutations in  PI3KCA  have 
been found to occur in 9 % of patients with PDA (Janku et al.  2011 ). Amplifi cations 
and overexpression of  AKT2  were found in 10-20 % of pancreatic cancer cell lines 
and tumors (Cheng et al.  1996 ; Ruggeri et al.  1998 ).  EGFR  mutations are also rare, 
occurring in less than 3 % of patients, but have also been found to coexist with 
K-Ras mutations (Oliveira-Cunha et al.  2012 ). Point mutations in the tumor sup-
pressor  PTEN  are infrequently found in pancreatic cancer but functional inactivation 
of the gene occurs commonly by promoter methylation or inhibition of protein or 
mRNA synthesis (Ebert et al.  2002 ; Altomare et al.  2002 ; Asano et al.  2004 ). 

 EGFR genomic amplifi cations and overexpression are a common event in pancre-
atic cancer (Tzeng et al.  2007 ; Bloomston et al.  2006 ; Tobita et al.  2003 ; Fjallskog 
et al.  2003 ), as is expression of some of its ligands (Kobrin et al.  1994 ; Zhu et al. 
 2000 ). This observation is a little surprising as activating mutations in K-Ras, being 
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downstream, would be expected to a certain degree to circumvent the requirement for 
EGFR signaling. This appears to be the case in some other tumor types such as non 
small cell lung cancers where mutation in  KRAS  and  EGFR  are mutually exclusive 
(Shigematsu et al.  2005 ). It has been suggested that signaling through EGFR may still 
be necessary in the presence of oncogenic K-Ras to activate the other isoforms of Ras 
and also possibly any remaining wild type alleles of K-Ras (Ardito et al.  2012 ). In 
contrast, there are also studies that demonstrate a selective loss of the wild type allele 
of K-Ras in human tumors. Mutant allele specifi c imbalance, which can occur by 
either copy number gains or uniparental disomy, was found in 58 % of tumors includ-
ing pancreatic cancers (Soh et al.  2009 ). Similar fi ndings have also been found in 
mouse models (Qiu et al.  2011 ) and there is a growing body of evidence that suggests 
the wild type allele of K-Ras may function as a tumor suppressor (Zhang et al.  2001 ; 
Li et al.  2003 ,  2007 ; Hegi et al.  1994 ; Bremner and Balmain  1990 ). 

 Despite there being no known activating mutations found in the Ral pathway in 
cancer, it has been suggested that in human cells the Ral pathway may be the most 
important pathway downstream of Ras for cellular transformation (Hamad et al. 
 2002 ; Rangarajan et al.  2004 ). RalGDS appears to be required for the survival of 
Ras transformed cells in a mouse model (Gonzalez-Garcia et al.  2005 ). The two 
main substrates of RalGDS appear however to have different roles in oncogenesis. 
Ectopically expressed RalA is transforming and is required for K-Ras G12V  transfor-
mation, whereas RalB impedes transformation (Lim et al.  2005 ). However, RalB 
was found to be required for invasion and metastasis of two pancreatic cancer cell 
lines  in vivo  (Lim et al.  2006 ). In addition to this, RalA was found to be activated in 
a panel of pancreatic cancer cell lines (Lim et al.  2005 ) and both RalA and RalB 
were more frequently activated in pancreatic tumor samples than either Erk or Akt 
(Lim et al.  2006 ).  

    Mouse Models of Oncogenic K-Ras Driven Pancreatic Cancer 

 The importance of oncogenic K-Ras mutations in pancreatic cancer initiation and 
maintenance has now been verifi ed with several mouse models. In 2003, David 
Tuveson utilized a mouse harboring a conditional oncogenic allele of K-Ras G12D  
under the control of the endogenous K-Ras promoter (Jackson et al.  2001 ). 
Expression of the oncogene was blocked by a STOP element fl anked by LoxP sites 
upstream of the gene. Crossing of the  Lox-STOP-Lox-KRAS   G12D   mouse ( LSL- 
KRAS   G12D       ) to mice containing  Cre  recombinase under the control of pancreas spe-
cifi c promoters ( PDX-1-Cre  and  p48-Cre ) allowed for recombination of the STOP 
element and expression of the oncogene in a pancreas-specifi c manner (Hingorani 
et al.  2003 ). This was the fi rst example of the expression of oncogenic K-Ras from 
its endogenous locus in a mouse model of pancreatic cancer. These animals showed 
a phenotype that recapitulated the progression of human pancreatic ductal adenocar-
cinoma from early stage PanIN lesions to invasive metastatic  disease. This result 
was important because it helped to confi rm the PanIN progression model that had 
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been put forward from examination of human specimens (Brat et al.  1998 ; Hruban 
et al.  1999 ; Maitra et al.  2003 ). In addition, the result was groundbreaking because 
previous attempts to develop mouse models that targeted K-Ras G12D  to the pancreas 
with a variety of different pancreas-specifi c promoters (e.g., cytokeratin- 19, Elastase, 
Mist1) had failed to produce pancreatic lesions that resembled those seen in human 
PDA (Brembeck et al.  2003 ; Grippo et al.  2003 ; Tuveson et al.  2006 ). 

 The  LSL-KRAS   G12D   ;PDX-1-Cre/p48-Cre  mouse models have been subsequently 
combined with a variety of different fl oxed, loss of function and dominant negative 
alleles of tumor supressors (Hingorani et al.  2005 ; Izeradjene et al.  2007 ; Bardeesy 
et al.  2006 ; Aguirre et al.  2003 ; Vincent et al.  2009 ). The rapidly accelerated disease 
progression in these models helps confi rm the hypothesis that tumor suppressor 
genes such as p53, p16 INK4A , and Smad4 help keep oncogenic K-Ras-driven neopla-
sia in check. 

 These studies provided compelling evidence that K-Ras G12D  is required for PanIN 
formation; however, the requirement for PanIN progression and PDA maintenance 
had not been tested. To address this question, a mouse was created that contained an 
oncogenic allele of K-Ras that could be turned on or off by the administration or 
removal of doxycycline in the drinking water of adult mice ( p48-Cre;R26-rtTa-
IRES-EGFP;TetO-Kras   G12D  , referred to as iKras) (Collins et al.  2012 ). Removal of 
doxycycline from these animals after 23 weeks of K-Ras G12D  expression resulted in 
an almost complete reversion of PanINs after 2 weeks and a regeneration of the 
acinar cell compartment. Similar results were also observed when K-Ras G12D  was 
expressed for 3 weeks with concomitant cerulein treatment to induce pancreatitis 
(see next section). PanIN reversion was associated with a down-regulation in 
phospho- Erk1/2 levels. Surprisingly, however, switching off oncogenic K-Ras 
expression did not cause an increase in apoptotic cells as shown by staining for 
cleaved caspase-3. Instead, loss of PanIN and acinar regeneration appeared to occur 
by a process of ductal-acinar metaplasia (DAM), as cells co-expressing the acinar 
cell marker amylase and the ductal maker cytokeratin-19 were frequently observed. 
However, if K-Ras G12D  expression was induced for 5 weeks with concomitant ceru-
lein treatment, while removal of doxycycline resulted in PanIN regression there was 
an incomplete regeneration of the acinar cell compartment leaving a small fi brotic 
pancreas with fewer acini than expected. In these pancreata there was a dramatic 
increase in apoptotic cells upon doxycycline removal suggesting that either the 
regenerative capability of the pancreas decreases with the age of the mice or that 
more advanced stage PanIN lesions are not able to undergo DAM. Importantly, 
iKras mice crossed with p53 null mice produced disease that progressed to PDA and 
doxycycline removal resulted in complete regression of all tumors (Collins et al. 
 2012 ; Ying et al.  2012 ). 

 In some of these models, such as the  LSL-KRAS   G12D   ;p48-Cre  model (Hingorani 
et al.  2003 ), K-Ras G12D  expression occurs in every cell of the pancreas raising the 
question of why some cells undergo neoplastic transformation while other cells 
remain normal. This observation led to speculation as to what is the precise cell of 
origin of the PanINs observed. Although PanINs have an obvious ductal morphology 
it is possible that they arise from another cell type by a process of transdifferentiation. 
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One study sought to address this question by targeting K-Ras G12D  expression to different 
cell types in the adult pancreas using  Cre  drivers with different expression patterns 
(Gidekel Friedlander et al.  2009 ). Expression in  Pdx1   +   cells, which includes adult 
endocrine β cells, some ductal cells, acinar cells, and possibly adult progenitor/stem 
cells induced transformation resulting in PanIN formation. However,  proCPA1   +   cells 
were not effi ciently transformed by K-Ras G12D .  ProCPA1  encodes for the pancreas 
specifi c pro-carboxypeptidase A expressed mostly in acinar cells and possibly some 
centroacinar cells. The same result was observed for  insulin   +   cells. These results sug-
gest that a  Pdx1   +   cell is the most likely cell of origin for PDA. However,  insulin   +   cells 
of the endocrine lineage of the adult pancreas were able transdifferentiate and give 
rise to PDA under certain conditions, highlighting the plasticity of the pancreas and 
complicating the question of the cell of origin in human PDA. 

 The difference in the effi ciency of transformation of different cell types in the 
pancreas could occur because the threshold of Ras signaling required to transform 
is higher in some cells relative to others. One study showed that expression of a 
K-Ras G12D  transgene in adult acinar cells at higher levels than from the endogenous 
promoter was suffi cient to induce PanINs that progressed to PDA whereas endoge-
nous levels of expression was not. This study found higher levels of active Ras in 
pancreatic tumor samples than in untransformed areas of pancreas expressing 
K-Ras G12D  from the endogenous promoter suggesting that upregulation of Ras activ-
ity is necessary to bypass a transformation barrier in the pancreas (Ji et al.  2009 ). 
However, interpretation of these results is hindered by the in vitro assay used to 
determine the amount of active Ras that may not fully refl ect the level of Ras signal-
ing in intact cells. Two recent studies highlighting the importance of EGFR in the 
development of K-Ras driven pancreatic cancer lend some credence to this hypoth-
esis (Navas et al.  2012 ; Ardito et al.  2012 ). EGFR was found to be required for 
pancreatitis-dependent acinar cell-derived tumorigenesis and ADM following ceru-
lein treatment both  in vivo  and  in vitro . One of these studies implicated Erk activa-
tion downstream of EGFR signaling in this process, implying that the signaling 
downstream of K-Ras G12D  alone was insuffi cient to transform cells whereas in com-
bination with signaling through EGFR, a critical threshold could be reached to pro-
mote neoplasia (Ardito et al.  2012 ). However, a second study instead implicated 
signaling through Akt and Stat3 downstream of EGFR (Navas et al.  2012 ). Both 
studies agreed that mutations in p53 bypassed the requirement for EGFR signaling 
in tumor development, which may explain why the EGFR inhibitor erlotinib has 
shown poor effi cacy when combined with gemcitabine in clinical trials (Moore 
et al.  2007 ). A third study showed that concomitant expression of TGFα, a ligand 
for EGFR, and K-Ras G12D  accelerates the progression of PanIN lesions in a  p48- 
Cre;LSL-KRAS   G12D   mouse model (Siveke et al.  2007 ), suggesting that signaling 
through EGFR in combination with oncogenic K-Ras signaling may indeed help to 
bypass a transformation barrier in the pancreas. 

 Mouse models have also been used to address the question of which pathways 
downstream of Ras are the most important for malignancy. Upregulation of nuclear 
phospho-Erk (pErk) staining downstream of K-Ras G12D  expression is an early fea-
ture of mouse PanIN lesions, whereas normal pancreatic tissue is negative for pErk 
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staining (Ijichi et al.  2006 ; Guerra et al.  2007 ). However, paradoxically some cell 
lines and tumor samples have low levels of pErk due to a negative feedback mecha-
nism involving MAPK phosphatase 2 (Yip-Schneider et al.  1999 ,  2001 ). Activation 
of Akt has been found in up to 59 % of tumor samples (Altomare et al.  2002 ; 
Schlieman et al.  2003 ; Yamamoto et al.  2004 ). High levels of both pErk and 
phospho- Akt (pAkt) have been associated with reduced survival in patients follow-
ing surgical resection (Chadha et al.  2006 ). Recently it has been shown that expres-
sion of BRAF V600E , but not PI3KCA H1047R , in the adult mouse pancreas can induce 
PanIN formation (Collisson et al.  2012 ), and when combined with gain-of-function 
p53 R270H  the PanINs progress to PDA. However, a pancreatic specifi c deletion of 
 PTEN  during embryogenesis in mice did result in the formation of some PanINs 
and papillary ductal adenocarcinomas in a subset of animals (Stanger et al.  2005 ), 
and was able to synergize with K-Ras G12D  to accelerate the development of PDA 
(Hill et al.  2010 ). Rac1 is another small GTPase that is activated downstream of 
oncogenic Ras, either via PI3K signaling or via the Ras effector Tiam, and is a key 
component in the reorganization of the actin cytoskeleton induced by Ras onco-
genes (Bar-Sagi and Feramisco  1986 ; Ridley et al.  1992 ; Qiu et al.  1995 ; Nimnual 
et al.  1998 ; Rodriguez-Viciana et al.  1997 ; Lambert et al.  2002 ). Active Rac1 func-
tions to induce actin polymerization, and its overexpression has been detected in 
human patient samples of pancreatic cancer (Crnogorac-Jurcevic et al.  2001 ). Rac1 
has long been found to be to be required for Ras transformation and recently condi-
tional loss of  Rac1  in the pancreas was found to impair PanIN formation, early 
metaplastic changes and neoplasia-associated actin rearrangements in the  LSL-
KRAS   G12D   ;p48- Cre   mouse model (Heid et al.  2011 ). It was suggested that Rac1 may 
be required for F-actin rearrangements that take place during the ADM that pre-
cedes PanIN formation in this mouse model (Bi et al.  2005 ), and the PanINs that 
form in the absence of Rac1 may develop from an alternative cell type that does not 
require ADM (Heid et al.  2011 ).  

    Oncogenic K-Ras and Pancreatitis 

 Chronic pancreatitis is a signifi cant risk factor for PDA in humans (Lowenfels et al. 
 1999 ), which suggests that infl ammation plays a role in the progression of the dis-
ease. Mouse models have been used to show that infl ammation can act synergisti-
cally with oncogenic K-Ras G12D  in driving carcinogenesis. Cerulein is an analog of 
cholecystokinin which, when administered to rodents in supraphysiologic doses, 
stimulates the premature intracellular activation of pancreatic digestive enzymes, 
which causes tissue damage resulting in pancreatitis (Lampel and Kern  1977 ; 
Watanabe et al.  1984 ; Ohshio et al.  1989 ; Silverman et al.  1989 ; Niederau et al. 
 1985 ). Cerulein-induced acute pancreatitis is a well-studied animal model that has 
been used to examine the effect of acute pancreatitis on PanIN progression in the 
 LSL-KRAS   G12D   ;PDX-1-Cre  mouse model (Carriere et al.  2009 ). Two brief episodes 
of acute pancreatitis were suffi cient to accelerate pancreatic cancer development. 
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Thus, a brief infl ammatory insult to the pancreas, when occurring in the context of 
oncogenic K-Ras G12D , can enhance pancreatic malignant transformation. 

 Interestingly it has been shown that turning on K-Ras G12D  expression in adult 
pancreatic cells of mice or rats fails to induce the development of PanINs or PDA 
without concomitant or previous treatment with cerulein to induce pancreatitis 
(Guerra et al.  2007 ,  2011 ; Tanaka et al.  2010 ; Habbe et al.  2008 ; De La et al.  2008 ), 
whereas K-Ras G12D  expression during embryogenesis or early adulthood alone is 
suffi cient to induce PanINs that are able to progress to PDA (Guerra et al.  2007 ). 
Thus, these studies in mouse models suggest that adult cells of the exocrine pan-
creas may be refractory to transformation by oncogenic K-Ras and that pancreatitis 
produces a permissive environment that enhances transformation. 

 Although the molecular mechanism underlying the cooperation between onco-
genic K-Ras and pancreatitis remains to be established, one hypothesis is that pan-
creatic injury may induce a trans-differentiation or de-differentiation of cells to a 
less mature differentiated state similar to an embryonic progenitor cell that is more 
permissive to transformation. Cerulein treatment strongly induces ADM in the 
regenerating pancreas and could represent such a trans-differentiation event 
(Willemer et al.  1987 ). Pancreatitis and pancreatic regeneration have been found to 
induce expression of genes normally associated with undifferentiated pancreatic 
progenitor cells such as Sox9, Pdx1, E-cadherin, β-catenin, Notch components and 
Hedgehog components (Jensen et al.  2005 ; Fendrich et al.  2008 ; Sharma et al.  1999 ; 
Yoshida et al.  2008 ; Siveke et al.  2008 ). However, in a wild type pancreas, this 
response and the ADM observed is transient and the acinar cells rapidly regenerate. 
Somehow oncogenic K-Ras signaling seems to alter the fate of the regenerating 
cells so that they form PanINs instead of acini. Consistent with this, many of these 
pathways associated with the progenitor cell population remain active in PanINs 
and PDA including Sox9 (Prevot et al.  2012 ) and Notch (Miyamoto et al.  2003 ; 
Hingorani et al.  2003 ). Despite overwhelming evidence that oncogenic K-Ras sig-
naling and infl ammation synergize to promote pancreatic cancer development, there 
is some controversy regarding the contribution that cellular senescence plays in this 
process. It has been suggested that K-Ras G12D  expression in early PanINs either pro-
motes oncogene-induced senescence that can be relieved by limited episodes of 
pancreatitis (Guerra et al.  2011 ), or inhibits senescence induced in normal ductal 
cells by pancreatitis (Lee and Bar-Sagi  2010 ). It remains to be seen what is the rea-
son for these differences but it is possible that the age of animals used or the stage 
of PanINs observed could account for such discrepancies.  

    Oncogenic K-Ras and Developmental Reprogramming 

 It is not uncommon for tumors to display a reactivation of embryonic signaling 
pathways that are essential for development, such as the Notch, Hedgehog, and 
Wnt pathways. Indeed, pancreatic cancer exhibits several examples of this. 
Upregulated expression of Notch receptors and ligands has been observed in human 
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pancreatic cancer samples as has expression of the Notch target gene Hes1, which 
is usually restricted to centroacinar cells in the normal pancreas (Miyamoto et al. 
 2003 ). Aberrant cytoplasmic and nuclear expression of β-Catenin has been 
observed in human PanIN and PDA (Al-Aynati et al.  2004 ; Lowy et al.  2003 ), and 
canonical Wnt signaling has been found to be active in pancreatic cancer cell lines 
(Pasca di Magliano et al.  2007 ). Additionally, sonic hedgehog is abnormally 
expressed in pancreatic adenocarcinoma and PanINs (Thayer et al.  2003 ). The 
functional relationships between oncogenic K-Ras and these pathways have there-
fore been a subject of great interest. Activation of the Notch pathway by expression 
of the Notch1 intracellular domain (NICD) in adult acinar cells has also been found 
to synergize with oncogenic K-Ras expression in the pancreas to accelerate PanIN 
progression (De La et al.  2008 ). In contrast, another study suggested that Notch1 
functions as a tumor suppressor in the mouse pancreas (Hanlon et al.  2010 ). One 
explanation for these differing results could be due to the difference in timing of 
the Notch activation and loss in these models being either in adulthood or during 
embryonic development. These pathways are extremely complex and changes in 
the specifi c roles or activity level of individual components or alterations in the 
balance of activity of components could have unpredictable effects. Notch signal-
ing inhibits progenitor cell differentiation in the embryonic pancreas (Hald et al. 
 2003 ), so reactivation of Notch signaling may function to induce a more embry-
onic-like state in the pancreas that can synergize with K-Ras to enhance transfor-
mation. However, it is as yet unclear the precise role Notch signaling plays in 
pancreatic cancer development and progression, be it oncogenic or tumor suppres-
sive. Another developmentally important pathway that is reactivated in pancreatic 
cancer is the Wnt pathway. Despite this, stabilized β-catenin was found to impair 
K-Ras G12D  induced PanIN development following cerulein-induced pancreatitis in 
mice. In contrast β-catenin signaling was found to be important for acinar cell 
regeneration following cerulein-induced pancreatitis: a  p48-Cre; β- catenin   fl x/fl x   
mouse was found to have a signifi cant decrease in the acinar cell area 3 and 5 days 
following cerulein treatment (Morris et al.  2010 ). This suggests that oncogenic 
K-Ras signaling may function to suppress a β-catenin-driven acinar cell regenera-
tion program in favor of neoplastic transformation and PanIN formation and 
emphasizes how important the timing of pathway activation may be. Hedgehog 
ligands secreted from pancreatic cancer cells seem to have an important role in 
paracrine signaling to the adjacent stroma (Tian et al.  2009 ). Autocrine signaling 
which occurs via secreted sonic hedgehog binding to the 12 trans-membrane 
domain receptor Patched (Ptch), resulting in the activation of the Smoothened 
(Smo) seven trans-membrane domain protein, does not appear to be required for 
PDA development in mice. Despite this, expression of the  downstream target Gli1 
is required for survival of mouse and human pancreatic cancer cell lines (Nolan-
Stevaux et al.  2009 ). In contrast to the stroma, Gli expression in mouse PDA cells 
may depend on K-Ras signaling in a Smo independent manner, as depleting 80  % 
of K-Ras expression with  Kras -targeted siRNAs resulted in a signifi cant down-
regulation of the Gli1 and Ptch1 mRNAs in PDA lines.  
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    Oncogenic K-Ras and the Tumor Microenvironment 

 The microenvironment surrounding tumor cells consists of other cell types, soluble 
factors, signaling molecules, extracellular matrix, and mechanical cues (Swartz 
et al.  2012 ). It is becoming increasingly apparent how specifi c interactions with the 
microenvironment affect all aspects of tumor biology. In pancreatic cancer there is 
increasing evidence that the infl ammatory response to tissue damage following pan-
creatitis synergizes with oncogenic K-Ras and promotes cancer development 
(Fig.  2 ). An abundant desmoplastic stroma is one of the characteristic histological 
features of PDA (Chu et al.  2007 ; Neesse et al.  2011 ; Korc  2007 ; Mahadevan and 

  Fig. 2    Oncogenic K-Ras and injury in the form of pancreatitis synergize to induce development 
of PanINs that progress to PDA. If K-Ras G12D  is expressed during embryogenesis in an as yet 
unidentifi ed progenitor cell, PanINs form that progress to PDA with a long latency but do not 
require pancreatic injury. This process may or may not proceed through ADM. However, K-Ras G12D  
expression in adult acinar cells requires pancreatitis to develop into PDA. Injury induces ADM in 
the pancreas and K-Ras G12D  signaling diverts the metaplastic cells away from regenerative expan-
sion of the acinar cell population in favor of PanIN formation. PanINs promote expression and 
activation of infl ammatory mediators including GM-CSF, NFκB, Stat3, IL-6, IL-1α, and Cox2, 
which further synergize with K-Ras G12D  signaling and promote an immunosuppressive environ-
ment, which allows progression to PDA. Expression of tumor suppressors such as p53 and p16 INK4A  
is frequently lost during this progression       
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Von Hoff  2007 ). The desmoplastic stroma consists of extracellular matrix (ECM), 
activated fi broblasts, infl ammatory cells and tumor vasculature. Importantly, 
K-Ras G12D  expression in the pancreas in mouse models also induces a desmoplastic 
response that is found in association with PanINs and areas of PDA (Hingorani et al. 
 2003 ,  2005 ). Cyclooxygenase-2 (Cox-2) promotes infl ammation, and the expres-
sion of Cox-2 has been found to be upregulated in human PanINs and PDA (Maitra 
et al.  2002 ; Albazaz et al.  2005 ). Additionally, an anti-infl ammatory selective Cox-2 
inhibitor has been found to delay PanIN progression in the  PDX-1-Cre;LSL- 
KRAS    G12D         mouse model (Funahashi et al.  2007 ). Recently, the pro-infl ammatory 
NF-κB pathway has been shown to be required for PDA development in the  PDX- 
1-Cre;LSL-KRAS   G12D   mouse model (Maniati et al.  2011 ; Ling et al.  2012 ) as condi-
tional deletion of  IKK2  in the pancreas was found to inhibit both PanIN progression 
and K-Ras G12D  induced infl ammatory responses. NF-κB is constitutively activated 
in human pancreatic adenocarcinoma and human pancreatic cancer cell lines but not 
in normal pancreatic tissues (Wang et al.  1999 ; Fujioka et al.  2003 ). Oncogenic 
K-Ras G12D  expression in the pancreas has been shown to induce expression of IL-1α, 
which in turn results in constitutive activation of NF-κB (Ling et al.  2012 ). There is 
also some evidence to suggest that an NF-κB-mediated positive feedback loop is 
able to further enhance oncogenic Ras signaling (Daniluk et al.  2012 ).

   The protein signal transducer and activator of transcription 3 (Stat3) is another 
infl ammatory mediator that is aberrantly activated in human PDA (Scholz et al. 
 2003 ). Activation and phosphorylation of Stat3 was found to be transiently induced 
by acute cerulein treatment in the mouse pancreas and this pStat3 persisted in 
PanINs following cerulein treatment in pancreata that expressed oncogenic 
K-Ras G12D  (Fukuda et al.  2011 ). The observed pattern of pStat3 staining by IHC was 
found to correlate with expression of IL-6, a known activator of Stat3 downstream 
of Ras signaling (Ancrile et al.  2007 ). An increase in IL-6 mRNA was found in 
pancreata expressing K-Ras G12D  and the source of IL-6 was found to be infi ltrating 
macrophages (Lesina et al.  2011 ). Treatment of K-Ras G12D  expressing pancreatic 
acinar cells with an IL-6R/IL-6 complex but not IL-6 alone was able to induce pho-
phorylation of Stat3 however, implying IL-6 transsignaling rather than classical 
IL-6 signaling (Lesina et al.  2011 ). Pancreatic Stat3 deletion in a  Stat3   fl x/fl x   mouse 
ameliorated both spontaneous and pancreatitis-induced PanIN formation in the 
 PDX-1-Cre;LSL-KRAS   G12D   mouse model and the PanIN formed in the absence of 
Stat3 displayed reduced infl ammatory infi ltrates (Corcoran et al.  2011 ; Fukuda 
et al.  2011 ). Similar results were seen in an IL6 −/−  mouse strain (Lesina et al.  2011 ). 
Consistent with this, Stat3 defi cient acini were found to secrete less cytokines and 
infl ammatory mediators that are known Stat3 target genes in response to cerulein 
in vitro. Knockdown of  Stat3  in mouse pancreatic cancer cells dramatically reduced 
PDAC formation compared with control shRNA following orthotopic injection into 
syngenic recipient mice (Corcoran et al.  2011 ). Stat3 signaling has also been impli-
cated in controlling expression of matrix metalloproteinase 7 (MMP7), which has 
been found to be associated with metastatic disease in both humans and mouse 
models (Fukuda et al.  2011 ). This evidence all suggests that infl ammation plays an 
important role in the progression from PanIN to PDA. 
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 Recently oncogenic K-Ras signaling in the pancreas has been found to modulate 
the immune response in order to evade immune surveillance (Clark et al.  2007 ). 
The extensive stromal reaction surrounding PanINs and areas of PDA may pro-
vide an immunosuppressive environment that protects the transformed cells from 
T cells. Oncogenic K-Ras expressing PDECs, PanINs and PDA have been found 
to express GM-CSF (Pylayeva-Gupta et al.  2012 ; Bayne et al.  2012 ), which has 
been implicated in the regulation of proliferation and maturation of putative 
immunosuppressive Gr1 + CD11b +  myeloid cells (Barreda et al.  2004 ) that have 
been implicated in tumor-induced immune tolerance (Dolcetti et al.  2010 ; Bronte 
et al.  1999 ; Gabrilovich and Nagaraj  2009 ; Marigo et al.  2010 ). K-Ras G12D  express-
ing PDECs and cancer cells were found to induce the differentiation of progenitor 
Gr1 - CD11b -  cells to Gr1 + CD11b +  cells that were able to inhibit the proliferation of 
CD3 +  splenic T cells, and knockdown of GM-CSF in PDECs was found to both 
inhibit growth when engrafted into a wild type pancreas and increase the accumu-
lation of CD8 +  cytotoxic T cells into the pancreas (Pylayeva-Gupta et al.  2012 ; 
Bayne et al.  2012 ). 

 To confi rm that infl ammation in the pancreas promotes PDA, conditional knockout 
animals that have impaired regeneration of the pancreas following cerulein- induced 
injury have been found to display accelerated PanIN progression. It has been shown 
that Ezh2, a polycomb group protein and a member of the polycomb repressor com-
plex 2, is transiently upregulated during pancreatic regeneration, where it functions 
to suppress expression of p16 INK4A  and thereby promote cellular proliferation and 
regeneration. In the absence of pancreatic Ezh2, regeneration is impaired and the 
pancreas has a reduced ability to resolve cerulein-induced infl ammation. The ability 
of Ezh2 to inhibit expression of p16 INK4A  makes it a good candidate for a tumor sup-
pressor gene. However, loss of Ezh2 in the pancreas accelerated PanIN progression 
in the  p48Cre;LSL-KRAS   G12D   model (Mallen-St Clair et al.  2012 ). Thus, genetic 
alterations that enhance the infl amed state of the pancreas following damage are 
able to accelerate oncogenesis.  

    Oncogenic K-Ras and Pancreatic Cancer Cell Metabolism 

 One area of tumor biology that is receiving a lot of recent interest is alterations in 
metabolic pathways seen in cancer cells compared to normal cells. The Warburg 
effect was an observation made in the 1920s that under aerobic conditions, tumor 
tissues metabolize approximately tenfold more glucose to lactate in a given time 
than normal tissues (Warburg et al.  1924 ; Minami  1923 ). That is, the Pasteur effect, 
which is the inhibition of fermentation by oxygen, tends not to apply in tumor cells. 
Aerobic glycolysis is not an effi cient method of producing ATP so there has been 
much confusion and debate regarding the advantages upregulating this pathway 
might have to cancer cells. It has been suggested that the Warburg effect occurs 
because proliferating cancer cells require not only ATP but also an abundant quan-
tity of NADPH and macromolecular precursors needed to generate new cells such 
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as acetyl-CoA for fatty acids, glycolytic intermediates for nonessential amino acids, 
and ribose for nucleotides (Vander Heiden et al.  2009 ). Oncogenic Ras has been 
shown to promote glycolysis (Yun et al.  2009 ; Racker et al.  1985 ) and pancreatic 
cancer cells have been found by proteomic analysis to have increased expression of 
glycolytic enzymes (Zhou et al.  2011 ,  2012 ) compared to normal ductal cells. 
Recently the iKras p53 null mouse has been used to study the effects of oncogenic 
K-Ras on cancer cell metabolism in the pancreas (Ying et al.  2012 ). Withdrawal of 
K-Ras G12D  expression was found to signifi cantly affect intermediates in glucose 
metabolism including glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and 
fructose-1,6-bisphosphate (FBP), as determined by targeted liquid chromatography- 
tandem mass spectrometry (LC-MS/MS) metabolomic studies. This was accompa-
nied by a decrease in glucose uptake and lactate production and down-regulation of 
expression of genes for glucose transporters and rate-limiting glycolytic enzymes. 
As expected, steady-state metabolite profi ling and other methods showed that these 
changes in glycolytic fl ux were associated with a decrease in several intermediates 
of biosynthetic pathways such as hexosamine biosynthesis, protein glycosylation 
and ribose biogenesis through the nonoxidative arm of the pentose phosphate path-
way. The effects observed of removal of K-Ras G12D  were recapitulated by treatment 
with the MEK inhibitor AZD8330, highlighting the importance of MAPK signaling 
downstream of K-Ras in this phenomenon. 

 Autophagy is a process that mediates the lysosomal degradation of cytoplasmic 
components such as damaged organelles and unused proteins. It is a vital contribu-
tor to cellular metabolism as it provides nutrients from internal sources when exter-
nal sources are limited. Autophagy is considered to be a programmed pro-survival 
mechanism and therefore has a pro-tumor effect. However, there is some evidence 
to suggest that under certain conditions an “autophagic cell death” pathway may 
come into play to limit tumor growth (Levine and Yuan  2005 ; Hippert et al.  2006 ). 
It is known that pancreatic cancers have elevated levels of autophagy under basal 
conditions, despite the presence of abundant nutrients, and this has been correlated 
with poor outcome (Fujii et al.  2008 ; Yang et al.  2011 ). Also, genetic and chemical 
inhibition of autophagy was able to suppress the growth of pancreatic cancer cells 
 in vitro  and induce tumor regression in both pancreatic cancer xenografts and 
genetic mouse models (Yang et al.  2011 ). Data suggest that oncogenic Ras expres-
sion alters the requirement for autophagy within a cell and this may be attributable 
to an increase in the need for autophagic substrates for mitochondrial metabolism to 
preserve mitochondrial function (Guo et al.  2011 ). Another study suggested that the 
requirement for autophagy for the optimal growth and survival of K-Ras trans-
formed cells was to impair mitochondrial respiration by mitophagy thereby facili-
tating the induction of the Warburg effect (Kim et al.  2011 ). This hypothesis is 
supported by studies which show a reduction in glucose metabolism in autophagy 
defi cient MEFs (Lock et al.  2011 ) and that knockdown of K-Ras in a pancreatic 
cancer AsPC-1 cell line resulted in increased expression of mitochondrial genes 
(Ohnami et al.  1999 ).  
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    K-Ras Signaling In Vitro 

 While the majority of insight into the role of K-Ras signaling in pancreatic cancer 
development and progression has been garnered from  in vivo  studies using mouse 
models, there is a signifi cant contribution from  in vitro  experiments utilizing estab-
lished pancreatic cancer cell lines and RNAi technology. The concept of oncogene 
addiction suggests that cancer cells become dependent on signaling from one par-
ticular oncogene in order to survive. Knocking down K-Ras has been found to 
induce apoptosis in pancreatic cancer cell lines in agreement with this model 
(Fleming et al.  2005 ). The extent of addiction to K-Ras signaling has been thor-
oughly tested in a panel of pancreatic cancer cell lines containing K-Ras mutations. 
Surprisingly the effect of knocking down K-Ras in these cell lines was found to vary 
signifi cantly with some of the cell lines tested having very little dependency on 
K-Ras. Many of the K-Ras-dependent cells contained  KRAS  genomic amplifi ca-
tions, exhibited a classic epithelial morphology, and expressed E-Cadherin, whereas 
most K-Ras-independent cells appeared less uniformly epithelial and expressed 
little or no E-cadherin, suggesting that they may have undergone an epithelial to 
mesenchymal transition (EMT). From this study it was possible to identify a gene 
expression signature that can be used to accurately predict the K-Ras dependency of 
tumors in different tissue types (Singh et al.  2009 ). Such signature could prove use-
ful in the future to predict what patients would benefi t from therapies that target the 
Ras signaling pathway. 

 In one recent study a high-throughput loss-of-function RNAi screen was car-
ried out to fi nd genes with synthetic lethal interactions with oncogenic K-Ras, 
where knockdown of the gene would affect the viability of cell lines with onco-
genic K-Ras mutations but not those without (Scholl et al.  2009 ). The screen was 
carried out with a panel of cell lines both with and without K-Ras mutations 
including the pancreatic cell lines Panc-1 that contains a K-Ras G12D  mutation and 
BxPC3 that is wild type for K-Ras. The screen identifi ed  STK33 , a putative mem-
ber of the calcium/calmodulin- dependent protein kinase subfamily of serine/threo-
nine protein kinases. Knockdown of  STK33  in Panc-1 cells impaired colony 
formation in semisolid medium and decreased their ability to form tumors in 
immunocompromised mice but had no effect on BxPc3 cells. Despite the apparent 
importance of  STK33  in these cancer cell lines, no amplifi cations of the gene or 
signifi cant increases in gene expression were observed in cell lines with oncogenic 
K-Ras mutations. Knockdown of  STK33  was also found to decrease the phos-
phorylation of S6K1 serine/threonine protein kinase and its downstream substrate 
RPS6 in an oncogenic K-Ras dependent manner. There is evidence to suggest that 
this pathway may be involved in controlling apoptosis via the proapoptotic BH3-
only protein BAD which is known to be phosphorylated and inactivated by S6K1 
resulting in an inhibition of mitochondrial apoptosis (Scholl et al.  2009 ; Azoitei 
et al.  2012 ). Subsequent studies targeting STK33 both by siRNA and inhibitors in 
K-Ras mutant cancer cells were unable however to confi rm the observed synthetic 
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lethality (Babij et al.  2011 ; Luo et al.  2012 ). These discrepancies highlight the 
drawback to using siRNAs, where the risks for off-target effects and false positive 
results are high and the need for these studies to be carefully controlled.  

    Conclusions 

 Oncogenic K-Ras and several of its downstream effector pathways have been shown 
to have essential roles in all aspects of pancreatic cancer initiation, progression, 
invasion, and metastasis. The evidence suggests that any pharmacological agents 
able to completely block K-Ras signaling in pancreatic cancer should result in sig-
nifi cant tumor shrinkage and cell death and therefore have a signifi cant clinical 
impact on a disease that is so refractory to all currently available treatments. Despite 
substantial effort, all attempts to therapeutically target the mutated Ras protein 
directly with small molecules that could promote the hydrolysis of GTP have been 
unsuccessful. Therefore, the focus of drug discovery has concentrated on either 
downstream components of the Ras signaling pathway or the upstream pathway 
involved in the posttranslational modifi cation of the Ras protein. Effective inhibitors 
specifi c for many of the key components of the Ras/Raf/MEK/Erk and Ras/PI3K/
PTEN/mTOR pathways have been developed. Some, such as the orally available 
MEK1 inhibitor Selumetinib, have been tested in phase I and phase II clinical trials 
(Chappell et al.  2011 ). However, there are many more pathways downstream of Ras 
than just these two, and it is as yet unclear the specifi c importance of these indi-
vidual pathways in tumorigenesis. We do not know how many of these pathways 
will need to be inhibited to completely block oncogenic K-Ras signaling, and it 
seems likely that mutiple inhibitors would produce intolerable signifi cant side 
effects. The failure of inhibitors to farnesyl transferase (FTIs), the enzyme that cata-
lyzes the addition of a 15-carbon prenyl group to Ras, to show any effi cacy in clini-
cal trials serves as a cautionary tale to rational drug design. These FTIs, despite 
being very effective inhibitors of farnesyl transferase, failed because K-Ras was 
able to be alternatively prenylated by geranylgeranyltransferase (GGT), an enzyme 
that was not affected by FTIs (Whyte et al.  1997 ). Preclinical testing of FTIs was 
carried out using cells and tumors transformed with H-Ras, an isoform that is not a 
substrate for GGT (Appels et al.  2005 ; Brunner et al.  2003 ). The other enzymes in 
the posttranslational modifi cation pathway of Ras, Rce1, and Icmt are now of inter-
est as potential drug targets and have shown some promise in preclinical studies 
(Wahlstrom et al.  2008 ). Due to the potential diffi culties of targeting K-Ras itself, 
another approach has been to look for other signaling pathways specifi cally required 
for cell survival only in the presence of oncogenic K-Ras. Screens for such synthetic 
lethal interactions have identifi ed a number of potential drug targets (Scholl et al. 
 2009 ; Barbie et al.  2009 ), so there is hope that in the future these studies can gener-
ate effective therapies for K-Ras driven cancers.     
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