
Chapter 6

EMS Planning and Management

Armann Ingolfsson

Abstract In this chapter I survey research on planning and management for

emergency medical services, emphasizing four topics: forecasting demand,

response times, and workload; measuring performance; choosing station locations;

and allocating ambulances to stations, based on predictable and unpredictable

changes in demand and travel times. I focus on empirical work and the use of

analytical stochastic models.

6.1 EMS Scope and Scale

Emergency medical services (EMS) refers to the provision of out-of-hospital acute

medical care and the transport of patients to hospitals for definitive care. In 1792,

Dominique Jean Larrey, a surgeon in Napoleon Bonaparte’s Imperial Guard, was

the first to develop ambulances [54], in the modern sense of specially equipped

vehicles for carrying sick or injured people, usually to hospital. In the 220 years

since, EMS has evolved and expanded to become a significant component of

modern health-care systems.

Table 6.1 provides a sense of the scale of EMS, with statistics on call volumes,

resources, and operating expenses in Canada [25, 2, 9]; London, England [38]; the

United States [17]; and rural Iceland, Scotland, and Sweden [23]. These statistics

suggest that a person in any one of these jurisdictions calls EMS an average of once

every 5 to 12 years and that the cost of providing EMS (financed through a

combination of public funding and user fees) ranges from US$40 to US$90 per

capita, per year.

A. Ingolfsson (*)

School of Business, University of Alberta, Edmonton, AB T6G 2R6, Canada

e-mail: armann.ingolfsson@ualberta.ca

G.S. Zaric (ed.), Operations Research and Health Care Policy,
International Series in Operations Research & Management Science 190,

DOI 10.1007/978-1-4614-6507-2_6, # Springer Science+Business Media New York 2013

105

mailto:armann.ingolfsson@ualberta.ca


EMS planning and management are challenging, because the volume, location,

and severity of EMS calls are highly variable, making it difficult to decide where to

position ambulances and their crews while they wait for their next call. Planning is

facilitated, however, by the ever-increasing quantity and quality of data collected

by modern EMS agencies, through computer-aided dispatch (CAD) and global

positioning system (GPS) technologies. CAD systems typically collect times

tamps for all the events associated with a typical EMS call that are shown in

Fig. 6.1 (from [5]), for the geographical coordinates of the ambulance at the time

of dispatch and for the call address. In addition to improving the real-time informa-

tion available to dispatchers, these data make it possible to model and predict call

volumes and response times more realistically. Partly because of the increased

availability of data, perhaps, the number of publications in the operations research

and management science (OR/MS) literature that includes “emergency medical

services” or “ambulances” as keywords has grown rapidly during the last decade, as

demonstrated in Fig. 6.2 (data obtained from the ISI Web of Science).

This chapter summarizes recent OR/MS contributions to EMS planning and

management. Several related survey articles have been published during the last

Table 6.1 EMS statistics

Region Canada

London,

England

United

States

Rural

Iceland,

Scotland,

Sweden

Year (2012) (2009) (2011) (2007)

Population (000) 5,104 7,754 313,625 586

Annual calls per capita 1/8.8 1/5.24 1/8.54 1/12.1

Ambulances per capita 1/8,954 1/8,615 1/3,858 1/5,581

EMS professionals per capita Not available 1/1,551 1/380 1/750

Annual operating expenses US$92 (Alberta), US$55 Not US$41

per capita US$64 (Toronto) available

Call 

Unit
begins
travel

Unit
arrives

at scene

Unit
departs
scene

Unit
arrives at
hospital

Unit
departs
hospital

Pre-travel delay
0.93 (0.64)

Travel time
4.02 (0.55)

On-scene time
20.1 (0.40)

Transport time
12.2 (0.53)

Hospital time
44.0 (0.45)

Response time

Unit service time

34.5% not
transported

Fig. 6.1 Events and time intervals for an EMS call, with median minutes (coefficients of

variation) for each interval, based on 2003 Calgary EMS data
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four decades, including general surveys on emergency response planning for EMS,

fire, and police [6, 56, 21]; a survey of OR/MS methods aimed at EMS practitioners

[20]; surveys that focus on optimal facility location models [3, 37]; and surveys

focusing on the use of simulation [28]. In comparison, this chapter places greater

emphasis on forecasting EMS demand, response times, and workload; EMS perfor-

mance measures; and the use of stochastic models to predict the performance of

EMS systems.

The remainder of this chapter is organized as follows. Section 6.2 addresses the

prediction of demand, response times, and workload. Section 6.3 summarizes EMS

performance measures, and Sect. 6.4 outlines stochastic models to predict the

performance of EMS systems. Section 6.5 discusses optimization models for station

planning and allocation of ambulances to stations.

6.2 Predicting Demand, Response Times, and Workload

Mathematical models of EMS systems require three components as input informa-

tion: (1) demand—how call volumes vary over time and space; (2) response times—

how the response time to a call varies with the distance that the ambulance must

travel and perhaps other factors; and (3) workload—how long an ambulance and its

crew will be occupied with a call. Researchers have started to use the call-by-call

data that modern EMS systems collect, together with road network information, in

order to investigate each of these components in detail.

Fig. 6.2 Number of OR/MS publications with keywords “emergency medical service” or

“ambulances”
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6.2.1 Demand

EMS call volumes vary predictably by month, day of the week, and hour of the day.

Figure 6.3 shows a typical weekly pattern for average call volumes, revealing a

regular diurnal cycle each weekday, higher volumes on Friday and Saturday night

(which carry on into early Saturday and Sunday morning), and lower volumes

on Sundays. This weekly pattern is crucial for planning purposes, particularly

for shift scheduling. Figure 6.4 displays the annual cycle for Calgary, Canada.

Other predictable patterns include higher-than-average volumes on certain holidays

(e.g., New Year’s Day) and during certain annual festivals or other special events.

See [7] for time series models that incorporate both seasonal patterns and special

events. Extreme weather events and natural or human-caused disasters are other

special events for which timing is more difficult to predict, but the impact on call

volume can be predicted to some extent [43].

It is commonly assumed in planning models that call volumes follow a stationary

or time-varying Poisson process. This assumption is supported by theoretical

arguments [27] and empirical evidence [22, 61]. It is often appropriate, however,

to view the Poisson arrival rate as a random variable, with a distribution that is

narrower for time periods closer to the present. To be more precise, suppose that the

call volume on day t + n (where call volumes are known up to and including day

t and n is the forecast horizon) is Yt + n, that the arrival rate for day t + n is Λtþn

¼ Btþnλtþn (where Bt + n has a mean of 1 and a standard deviation σBtþn
), and that

conditional onΛtþn ¼ λ, Yt + n is Poisson-distributed with mean λ. One can interpret
λt + n as a long-term average call volume for day t + n and Bt + n as a “busyness

factor” that perturbs the average call volume away from its long-term value,

Fig. 6.3 Average hourly call volume as a percentage of weekly volume, with 95% confidence

intervals (2000–2004 Calgary EMS data, adapted from [7])
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because of such factors as the weather. To the extent that these factors persist from

one day to the next, one would expect that information on the actual call volume on

day t should make it possible to forecast the call volume on day t + 1 with greater

accuracy.

As an example, Fig. 6.5 shows the root-mean-square forecast error (RMSE—the

square root of the average of the squared forecast errors) for daily EMS call

volumes in Calgary using five time series methods described in [7]. We focus on

Fig. 6.4 Average monthly call volume as a percentage of annual volume, with 95% confidence

intervals (2000–2004 Calgary EMS data, adapted from [7])
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Fig. 6.5 Root-mean-square forecast error for daily call volume forecasts from 1 to 21 days into

the future. (2000–2004 Calgary EMS data, from [7])
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Models 1 and 4. The average daily call volume was 174. If daily call volumes were

Poisson distributed with a mean of 174/day, then the standard deviation of the daily

call volumes, estimated by the RMSE, should be approximately
ffiffiffiffiffiffiffiffi
174

p ¼ 13:2 .
This estimate is likely to represent a lower bound on the achievable forecast

accuracy for two reasons: average call volumes are not constant but have seasonal-

ity and trend and because, as alluded to above, such factors as the weather tend to

increase call volume variability. Model 4 in Fig. 6.5 comes close to this lower

bound, however, with an RMSE of 14, which corresponds to an estimate of 0.027

for σBtþ1
; thus, the busyness factor for “tomorrow” has a standard deviation of 2.7%.

Put differently, call arrivals for tomorrow can be modeled as following a Poisson

process, the arrival rate of which is almost deterministic (and can be forecast using

Model 4) and conditional on call volumes up to and including today. In contrast,

when forecasting 14 days into the future, the RMSEs for Models 1 and 4 are both

18, corresponding to an estimate of 0.07 for σBtþ14
. Model 1 is a linear regression

model with an intercept and trend term and dummy variables for month of the year,

hour of the week, New Year’s Day, and a special event that occurs every year in

Calgary (the Calgary Stampede). Model 4 is a time series regression model, with

the same independent variables as Model 1, some interaction terms added, and error

terms that are modeled as an autoregressive process. (Models 2 and 3 are similar to

Model 4, differing only in which interaction terms are included. Model 5 is a

seasonal ARIMA model).

See Matteson et al. [40] and Vile et al. [58] for additional research on forecasting

the evolution of EMS call volumes over time. The spatial distribution of EMS calls,

which is also important for planning, has not been studied as much as call volume

forecasting has. See [53] for recent work on forecasting the spatial distribution of

EMS calls.

Each EMS call has an associated response time (R, the sum of the pre-travel

delay and the travel time in Fig. 6.1) and service time (S, the sum of the travel,

scene, transport, and hospital time in Fig. 6.1—the time interval during which an

ambulance and its crew are occupied with a call). These time intervals are important

for different reasons: the response time is the basis for most EMS performance

measures, and the service times determine the workload on the EMS system.

Response and service times potentially depend on all of the following factors:

• The time when the call arrived

• The location of the call (i) and the location of the responding ambulance (j)
• The system load, which I will consider to be the number of busy ambulances

when the call arrived

• The urgency of the call

In the remainder of this section, I summarize some of the available evidence on

whether and how response and service times depend on these factors, but there is

much that we have yet to learn about this issue. To illustrate the potential benefits of

further research, consider that average service times appear to increase with system

load, as discussed later in this section. Future research could address three types of

questions:
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Fundamental knowledge: Does average service time vary with system load? If so,

why? Does the strength and nature of the relationship vary among geographic

regions or depend on the way EMS service is organized?

Modeling: How can load-dependent average service times be incorporated into

mathematical models of EMS systems? How do the validity, tractability, and

scalability of different modeling approaches compare?

Implications for planning: How do the recommended number of ambulances and

the predicted system performance differ as a function of the incorporation of load-

dependent average service times?

6.2.2 Response Times

Travel time is usually the largest component of response time. Statistical analysis of

EMS travel times has focused either on predicting travel time based on the

characteristics of the links in a transport network that are included in the trip

(e.g., the length and the road type for each link) [59] or on predicting travel time

based only on the distance between the responding ambulance and the call location

[34, 5]. Both of these approaches incorporate dependence of travel time on

locations of the responding ambulance and call address. The latter approach is

more parsimonious, and the calculations needed to predict travel times are simpler

and require fewer data (e.g., Euclidean distance can be used instead of road network

distance, if desired). Focusing on the latter approach, Fig. 6.6 shows how estimated

medians and coefficients of variation of travel time vary with distance, based on

2003 Calgary data [5]. The median travel time curve is concave because average

speeds are typically higher for longer trips.
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Fig. 6.6 Parametric estimates of median and coefficient of variation of travel time functions with

nonparametric 95% confidence limits (2003 Calgary EMS data, from [5])
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EMS travel speeds tend to be higher for urgent calls [5, 59] and lower during

rush hours, but the rush-hour effect is less pronounced for urgent “lights-and-siren”

calls [59].

The pretravel delay can be decomposed into evaluation and dispatch time and

chute time (the time from dispatch until the dispatched ambulance starts its travel

toward the call address). Evaluation and dispatch times are shorter for urgent calls

[1], and there is some evidence (left panel of Fig. 6.7) that they depend on the

system load for nonurgent calls, perhaps indicating that dispatching is delayed for

nonurgent calls when the system is congested. Chute times tend to be shorter when

the system is more highly loaded (right panel of Fig. 6.7), because the responding

ambulance is more likely to be traveling rather than to waiting at a station.

If one can predict the response-time distribution for a representative set of

combinations of ambulance locations and call addresses, then one can plot proba-

bility of coverage maps, as shown in Fig. 6.8. Coverage refers to the proportion of

calls with response time below a time standard, such as 9 min (see Sect. 6.3 for

further discussion). The map on the right of Fig. 6.8 is based on the assumption that

all stations have an available ambulance, whereas the map on the left incorporates

the probability that an ambulance is available at each station, as calculated using the

Hypercube Queueing Model (a Markov chain model with a state variable for the

status of every ambulance; see Sect. 6.4 for further information). A visual compar-

ison of these two maps can help planners diagnose which regions of a city require

additional stations and which regions could benefit from more ambulances. The

lack of coverage in the northwest area of the city that is apparent on map (a), for

example, could be attributable to an inadequate number of stations in the area or an

inadequate number of ambulances allocated to those stations. Map (b), which is

based on the assumption of unlimited ambulance availability, indicates that cover-

age in the northwest could be increased considerably by allocating more

ambulances to the stations already in that area, without building any new stations.

In contrast, having unlimited ambulance availability appears not to address the lack

of coverage in the northeast, suggesting that it is necessary to build new stations in

order to improve coverage in that area.

Fig. 6.7 Means and 95% confidence intervals for evaluation and dispatch time and for chute time

(2008 Edmonton EMS data, from [1])

112 A. Ingolfsson



6.2.3 Workload

The most obvious reason for EMS service times to depend on the location of the

responding ambulance and the call address is that travel time, which depends on travel

distance, is part of service time. This dependence has driven generalizations of the

Hypercube Queueing Model [31], for example. The dependence of travel times on

travel distances should induce a dependence of travel times on the system load,

because, when the system is more highly loaded, the average distance from a call

address to the closest available ambulance should be higher. Considerably less

attention has been devoted to the study of service time components other than travel

time, but these other components also appear to depend on the system load. I have

already discussed how chute time appears to decrease with load, as shown in Fig. 6.7.

Hospital time is the component that appears to be most strongly influenced by system

load, as the right panel of Fig. 6.9 shows, revealing average hospital times that are

approximately 30 min longer when the system is most highly loaded [1], likely

because emergency departments (EDs) tend to be highly loaded when an EMS system

is highly loaded. In contrast, average length of stay in at least some hospital wards has

been found to be shorter under heavier load [32]. It is not clear why average hospital
times decrease at extreme loads, but the effect may be linked to protocols that operate

in EDs when the number of patients is deemed to have exceeded capacity.

I believe that further study should seek to determine if EMS service times

depend more on the locations of the responding ambulance (i) and the call address

(j) than they do on the system load and if the dependence on (i, j) can be captured

via the load (as is done in the repositioning model proposed in [1]). These issues

have modeling implications, because models with a single state variable for the

system load are likely to be more scalable than are models that keep track of

the address and the identity of the responding ambulance for every call in progress.
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Fig. 6.8 Probability-of-coverage map. Locations of ambulance stations are depicted as black

squares. The colors of the other locations (neighborhoods aggregated to a single point) indicate the

probability of coverage. Unshaded regions represent areas with sparse or no population. (a)

Closest available ambulance responds. (b) Closest station responds (2003 Calgary EMS data,

from [5])
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6.3 Performance Measures

Where EMS systems are publicly funded, their operations should presumably aim

to deliver maximum benefit to the public, given their budget. But measuring the

benefits that EMS systems provide is no straightforward matter. Ideally, the benefit

would be measured in such concrete and easily interpreted units as lives saved—

units that facilitate comparisons between competing uses of funds [15]. But this is

typically not the case. Most EMS systems use such system-wide response-time

statistics as the proportion of urgent calls with a response time within a certain time

standard. The US National Fire Protection Association, for instance, recommends a

target of 90% within 4 min for the first response to an urgent EMS call, followed by

an Advanced Life Support (ALS) response within 8 min [46, Sects. 5.3.3.4.2-3].

Reaching 90% of urgent urban EMS calls in 9 min is a common target in North

America [19]. The National Health Service in the UK sets targets of 75% in 8 min

and 95% in 19 min for urgent urban EMS calls [12]. The advantage of response-

time performance targets is the fact that response-time data are relatively easy to

collect and understand. There are disadvantages, however: the link between

response-times and medical outcomes is not clear, and response time standards

and percentages are necessarily arbitrary.

Optimization models for EMS station location and ambulance allocation

(discussed in Sect. 6.5) typically aim to maximize coverage, which corresponds

to the EMS response time being within a time standard. For the sake of simplicity,

some models assume a deterministic relationship between distance and response

time, implying that all call locations within a given distance from an available

ambulance are covered and that all locations that are further away are not covered.

Other models use a probability of coverage, pij, of a call location i by an available

ambulance at location j, where pij is estimated using such methods as the estimated

travel time distributions discussed in [5].

Fig. 6.9 Means and 95% confidence intervals for on-scene time and hospital time (2008

Edmonton EMS data, from [1]). On-scene times are shown separately for patients who were

transported to hospital (PT) and those who were not (PTC)

114 A. Ingolfsson



Planners must answer a variety of questions when recommending appropriate

EMS performance measures, including:

• Should one report response-time statistics or medical outcome statistics?

• When reporting response times, should one report averages, quantiles (such as

medians or 90th percentiles), or fractiles (the proportion of response times

within a time standard)?

• Should one use different standards for different call priorities?

• Should one use different standards for urban and rural areas?

• Should one report system-wide measures or separate measures for different

geographical regions?

The last two questions concern equity. Economies of scale typically make it more

difficult to achieve a response-time standard in city suburbs than in the more densely

populated downtown core and more difficult still in rural areas. As Felder and

Brinkmann [18] point out, the objectives of providing equal access to EMS versus

minimizing system-wide response times lead to different deployment patterns.

Response-time standards and actual performance typically differ for urban and

rural areas in the USA, UK, and Germany [18, 19], indicating that the standard

setters have decided against equal access. As Felder and Brinkmann [18] note,

although a policy of equal access may appear difficult to criticize, such a policy

does imply that lives are valued more highly in more sparsely populated areas.

As two examples of the political issues involved with access to medical care in

remote areas, the cities of Edmonton, Canada and Reykjavik, Iceland both have two

airports—an international airport that is relatively far from the city center and a

smaller domestic airport close to the center. In Edmonton, the decision has been

made to close the City Centre Airport, and in Reykjavik, there is a continuing debate

about whether to close all or part of its domestic airport. In both cases [26, 60],

advocates for rural areas have raised the issue of longer transport times to hospital

for patients that are flown to the city by air ambulance, pitting urban interest in

reducing sprawl against rural concerns about access to medical care.

Although the link between EMS response times and medical outcomes is not

always clear, this issue has been studied extensively for patients experiencing

cardiac arrest. A study by Valenzuela et al. [57] illustrates the type of knowledge

generated by medical researchers. They used data from Tucson, AZ, and King

County, WA, to fit logistic regression models that predict the probability of survival

as a function of various factors. One of their prediction equations was:

sðICPR; IDefibÞ ¼ 1= 1þ exp �0:260þ 0:106ICPR þ 0:139IDefibð Þð Þ ;

where s(. ) is the survival probability, ICPR is the duration from collapse to

cardiopulmonary resuscitation (CPR), and IDefib is the duration from collapse to

defibrillation. By combining this survival function with assumptions about such

factors as the proportion of cardiac arrests witnessed, the proportion of cardiac

arrest patients that receive CPR from a bystander, and estimates of the distribution

of EMS response time as a function of distance, Erkut et al. [15] estimated the
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relationship between distance and survival probability shown in Fig. 6.10. They

found that replacing coverage with a survival probability did not greatly complicate

optimization models for EMS station location and ambulance allocation. They also

found that coverage-maximizing models in which the relationship between distance

and coverage is probabilistic are much better proxies for maximizing the expected

number of survivors than are deterministic coverage models. Figure 6.10 compares

the shape of a survival probability function and a probabilistic coverage function.

Although the two functions have different shapes, they share two characteristics

that may explain why one is a good proxy for the other: (1) the benefit decays

gradually with distance from the closest ambulance, in contrast to a deterministic

coverage function that drops from one to zero at the coverage distance standard, and

(2) the benefit approaches and remains close to zero after a certain distance, in

contrast to a linear decrease in benefit that continues indefinitely, as implied by

minimization of average distance.

Work continues on the incorporation of survival probabilities in EMS planning

models (see, e.g., [47, 42, 44, 33]). Although a shift of focus from coverage to

medical outcomes appears to be relatively straightforward from the point of view of

mathematical modeling, shifting the focus of EMS planners to outcome-based

measures will likely involve challenges. One of these challenges is the collection

of information about events prior to the arrival of an ambulance at the scene (for a

cardiac arrest patient, e.g., was CPR administered and how long ago did the cardiac

arrest occur?), about medical outcomes after EMS has transferred care of the patient

to a hospital, and the linking of both types of information to the response-time data

that EMS agencies typically collect.

Fig. 6.10 Estimated survival probability and coverage probability as a function of distance for

cardiac arrest patients (adapted from [15])
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6.4 Performance Evaluation

In this section, I focus on the use of stochastic models to predict how EMS system

performance changes as the deployment of ambulances changes. To compute EMS

system performance measures, it is often convenient to condition on the call

location (j) and the location of the ambulance that responds to the call (i). One
first requires an estimate of the performance measure of interest for calls from j that
are responded to from i, which I will denote with pij. I leave the interpretation of pij
open, but it could, for example, represent average response time, proportion of calls

with a response time under 9 min, or the probability of survival. Second, one

requires the dispatch probability, fij, that an ambulance from location i responds,
given that the call is from location j.

I focus on stochastic models that can be solved analytically rather than simula-

tion models. Simulation models of EMS systems have been discussed by [30, 28,

39], among others. Both simulation models and analytical models have their uses,

and they can be utilized to complement each other. A primary advantage of

analytical models is their short computation time, which is important when using

such a model as a component in a procedure to search for optimal or near-optimal

deployment plans or as a component in a decision support system that allows EMS

planners to experiment with deployment policies and to (almost) immediately see

the likely consequences for system performance. Such a system would be

frustrating to use if one had to wait several minutes each time a change was made.

To simplify the discussion in this section, I assume that the model parameters do

not vary with time or with the system state. Some of the models that I discuss,

however, can incorporate time- or state-dependent parameters. For further informa-

tion, please refer to the references that I cite for each model.

To illustrate the models, I use an example with two single-vehicle ambulance

stations and two demand nodes (ambulance call locations), shown in Fig. 6.11.

(The figure shows all the input parameters that I use, but the simpler models do not

require all the parameters.) In this example, the demand nodes correspond to the

catchment areas around the two stations. I assume throughout that the closest

available ambulance responds to every incoming call. When both ambulances are

busy, with probability B, incoming calls are responded to by backup systems—for

example, by EMS supervisors or the fire service. The situation when all ambulances

are busy is sometimes referred to as “code red.”

1

2 stations, each with 1 unit

p = average busy fraction = 0.4

1/μ = average service time = 1 hr.

λ = total call arrival rate = 1 / hr.

γ = rate of reaching compliance = 10 / hr.

2
λ1 = 0.2/hr.

λ2 = 0.8/hr.

Fig. 6.11 Performance evaluation example
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The simplest model assumes that both stations have an available ambulance at all

times, which implies that f 11 ¼ f 22 ¼ 1, f 12 ¼ f 21 ¼ 0, and B ¼ 0. This is the model

implicitly used in such optimal facility location models as the maximal covering

location problem (MCLP) [8]. The simplest model that accounts for ambulance

unavailability is based on the assumption that at any given time, each ambulance is

unavailable with probability p (the “average busy fraction,” assumed equal to 0.4 in

our example) and available with probability 1 � p, independent of all other

ambulances. This binomial model is implicit in the maximum expected covering

location model (MEXCLP) [10] and implies that f 11 ¼ f 22 ¼ 1� p ¼ 0:6,

f 12 ¼ f 21 ¼ pð1� pÞ ¼ 0:24, and B ¼ p2 ¼ 0:16.
Up to this point, the only input parameter that I have used is the busy fraction p.

Next, suppose that we model the system as an Erlang B (i.e., M=M=2=2 ) loss
system, with arrival rate λ ¼ 1 per hour and service rate μ ¼ 1 per hour. Standard

calculations reveal that B ¼ 0. 2, the average ambulance utilization is 0.4 (I chose λ
and μ so as to obtain an average ambulance utilization equal to p), the probability of
both ambulances being free is 0.4, and the probability of one ambulance being free

is 0.4. We calculate the dispatch probabilities for demand node 1 as follows:

f 11 ¼ Prfboth ambulances freeg
þ PrfAmbulance1 free j one ambulance freeg Prfone ambulance freeg

¼ 0:4þ 0:5� 0:4 ¼ 0:6

f 21 ¼ PrfAmbulance 2 free j one ambulance freeg Prfone ambulance freeg
¼ 0:5� 0:4

By symmetry, f11 ¼ f22 and f12 ¼ f21. Observe that the probability of the closest

ambulance responding is the same (1 � p) as in the binomial model, but the

probability of the second-closest ambulance responding is different, because the

Erlang B model incorporates dependence—essentially, given that Ambulance 1 is

busy, the probability that Ambulance 2 is busy (0.2/(0.2 + 0.2)¼ 0.5) is higher than

the average busy fraction (p ¼ 0. 4).

Next, I use the Hypercube Queueing Model (HQM, [35]) to compute the

dispatch probabilities. Unlike the models I have considered so far, the HQM

views the two ambulances as distinguishable, taking into account that 80% of the

arrivals are to the Station 2 catchment area and that Ambulance 2 is therefore likely

to be busier than Ambulance 1. The HQM dispatch probabilities are obtained by

computing the steady-state probabilities for the Markov chain shown in Fig. 6.12;

they are shown, together with the dispatch probabilities from all the models, in

Table 6.2.

The HQM assumes that every ambulance returns to its home station at the

conclusion of every call. The final model that I discuss (introduced in [1]) assumes

instead that ambulances are repositioned based on the compliance table shown in

Fig. 6.13, which indicates that when only one of the two ambulance is free, that

ambulance should ideally be located at Station 2 (because Station 2’s catchment
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area has a higher call rate). This Markov chain model, the transition diagram of

which is shown in Fig. 6.13, has one state variable for the number of busy

ambulances and another state variable indicating if the system is “in compliance.”

When the system is out of compliance, I assume that an ambulance is moved to

another station, an action that takes 6 min on average, implying that the “rate of

reaching compliance” is γ ¼ 10 per hour.

Table 6.2 shows the dispatch probabilities and the code red probabilities B, as
computed with each of the five performance evaluation models. The bottom row of

the table also shows a possible performance measure, which could be thought of as

the probability that the response time R is within some time standard—that is,

pij ¼ PrfR � time standard j station i responds, call from location jg:

I show the conditional performance estimate for each combination of call location

and ambulance location at the bottom of the table, and display the system-wide

expected performance in the rightmost column. The system-wide performance is

computed using

#1 busy
#2 free

both free

#1 free
#2 busy

both busy

λ2

λ

μ

μ

λ

μ

μ

λ1

Fig. 6.12 Transition diagram

for the Hypercube Queueing

Model

Table 6.2 Dispatch probabilities

Model f11 f21 f12 f22 B Performance

Always

available

1 0 0 1 0 0.95

Binomial 0.600 0.240 0.240 0.600 0.16 0.69

Erlang B 0.600 0.200 0.200 0.600 0.20 0.67

HQM 0.660 0.140 0.260 0.540 0.20 0.65

Repositioning 0.448 0.352 0.085 0.715 0.20 0.70

p11 p21 p12 p22
0.95 0.5 0.95 0.5
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Performance ¼
X2

j¼1

λj
λ

X2

i¼1

f ijpij :

The optimistic “always available” model provides an upper bound on performance.

The Erlang B model predicts lower performance than the binomial model does,

because the dependence between the statuses of Ambulances 1 and 2 leads to a

higher code red probability. The HQM predicts lower performance than the Erlang

B model does because the HQM incorporates the inefficiencies that result from the

demand imbalance between the catchment areas for Stations 1 and 2, which leads to

better performance for the low-demand Station 1 region and worse performance for

the high-demand Station 2 region. The repositioning strategy is intended to address

this imbalance by favoring Station 2 when only one ambulance is available. We see

that repositioning is predicted to increase the performance by 5 percentage points,

compared to the “return to home station” that is implicit in the HQM.

The operation of the system is held constant in the first four rows of Table 6.2,

and changes in estimated performance are therefore attributable to improved model

realism as one moves down the rows in the table. In contrast, the performance

estimates for the last two rows show the impact of changing the way the system

operates, by repositioning ambulances based on the system state. The first four

models represent different trade-offs between model tractability and accuracy. The

HQM has a state space the size of which increases exponentially with the number of

ambulances, rendering that model intractable for systems with more than

36 ambulances [4, online supplement], based on typical computer storage capacities

available in 2009, but approximate versions of the HQM [36, 31, 4] improve its

scalability. The simpler “always available” and binomial models have been used in

station planning and ambulance allocation optimization models, in order to make it

possible to formulate and solve the models as mathematical programs.

both free, both
at same station

one free,
at Station 2

both busyλ

2μμ

one free,
at Station 1 λ

γ

μ

both free, one
at each station

λ λ
γ

in
compliance

out of
compliance

0 1 2

# of free 
ambulances

1 2

2 2 1

Compliance Table

Stations

Fig. 6.13 Transition diagram for the repositioning model
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Incorporating the HQM into a mathematical program is difficult, but the HQM can

be incorporated into optimization heuristics, such as the tabu search heuristic

discussed in [13]. The “always available” model remains relevant because it

facilitates decoupling station planning models from ambulance allocation models,

as discussed in Sec. 6.5.1.

The repositioning model is more scalable than the HQM, with a state space that

grows only linearly with the number of ambulances. As an example of the benefits

of repositioning policies in a real system, a simulation study of the Edmonton,

Canada EMS system [14] estimated that the use of repositioning increased the

percentage of urgent calls reached in 9 min or less from 77% to 85%. Repositioning

policies do increase workload for EMS staff, which may lead to back problems [45]

and increased fatigue, but these potential impacts require further investigation.

Studnek et al. [55] linked back pain among EMS professionals to various factors,

but failed to find a statistically significant relationship with call volume.

6.5 Station Planning and Ambulance Allocation

Having discussed the prediction of EMS model inputs, EMS performance

measures, and models to predict performance, I now turn to optimization models

designed to help planners decide where ambulance stations should be located and

how to assign ambulances and their crews to stations. The choice of locations for

ambulance stations is a long-term decision, but the assignment of ambulances to

stations can change over time to provide a better match for supply and demand on a

timescale of days and hours.

6.5.1 Station Planning

By ambulance station, I mean a structure in which ambulances can be stored,

cleaned, and restocked with medical supplies. Ambulance crews typically begin

and end their shifts at an ambulance station and return to an ambulance station

between calls. There are exceptions, however. In some systems, ambulance crews

wait for their next call in locations with no dedicated infrastructure. Other systems

have a single start station [30, 48], in order to increase efficiency in maintenance

and inventory.

I choose to focus on the typical situation, in which planners must decide where to

build ambulance stations. Perhaps the best-known model for this purpose is the

MCLP [8], which selects locations for q stations so as to maximize the proportion of

demand within a coverage distance standard of the closest station. This model is

based on several assumptions, including:
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• A coverage distance standard is an adequate proxy for a coverage time standard.

This assumption is relatively easy to relax—see the MCLP with probabilistic

response times (MCLP + PR) [11, 16].

• The system is to be designed from scratch. This assumption is also easy to relax,

by adding constraints to the MCLP or MCLP + PR integer program to account

for preexisting stations.

• Every station has an available ambulance at all times. This assumption implies

that the coverage values obtained from the MCLP and the MCLP + PR are upper

bounds on the coverage that can be achieved with a finite number of ambulances.

Such models as the MEXCLP [10], which relax this assumption, can be seen as

combining station planning and the allocation of ambulances to stations.

• All ambulance responses start from a station. In reality, however, ambulances

often respond while in transit.

Using the MCLP, the MCLP + PR, or other similar optimization problem

formulations to inform EMS station planning requires not only reliable data but

also good judgment [24]. How does one choose the potential station locations, for

example? If a municipality-operated EMS service constrains itself to locations with

publicly owned land where current zoning allows the building of EMS stations, then

the list of possible sites could be very short. It could be worthwhile to include more

potential sites and use the model to quantify the amount by which EMS response

times could be reduced by relaxing zoning regulations. Conversely, when EMS

operates separately from fire services, but the fire service provides first response to

EMS calls, one should perhaps include the current fire station locations and use the

model to find a set of EMS station locations that complement the fire stations in a

way that minimizes first response times.

Station planning and ambulance allocation are closely linked: on the one hand,

station locations constrain the way in which ambulances can be deployed. On the

other hand, the way in which ambulances are deployed determines the performance

of a plan that indicates where stations should be located. According to one point of

view, one should therefore develop models that simultaneously optimize station

locations and ambulance allocation. Another point of view is that it is natural and

appropriate to separate the two, given that station planning is a strategic issue,

whereas ambulance allocation is a tactical and operational issue. Furthermore,

integrated models may oversimplify ambulance allocation, because they do not

take into consideration how the allocation should change as a function of day of the

week and hour of the day in order to match demand patterns, for example.

6.5.2 Ambulance Allocation

Notwithstanding the need to consider how ambulance allocation should vary with

time to match daily and weekly demand patterns, I begin by discussing optimization

models for allocating ambulances to stations in a static situation. These models are
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based on the assumption that every ambulance will return to the station to which it

has been assigned at the conclusion of every call. Several such models are compared

in [16] the MCLP, the MCLP + PR, the MEXCLP, and variations of MEXLCP that

incorporate probabilistic response times and busy probabilities that vary by station.

Figure 6.14 shows how expected coverage, as evaluated using the approximate

hypercube model and incorporating stochastic response times, varies as the number

of ambulances that are allocated to a set of 16 stations increases from 1 to 25. The

more realistic models result in expected coverage that is considerably higher,

especially when the number of ambulances is larger than the number of stations.

All the models that [16] compare are formulated as mathematical programs, and

such formulations require some simplifications. Alternatively, one can formulate

the problem more directly, as follows:

P : maximize covðz1; . . . ; znÞ;

subject to
Xn

i¼1

zj ¼ q; zj 2 f0; . . . ; cjg ;

where cov(. ) is the expected coverage, evaluated with the approximate hypercube

model, for example; cj and zj are the capacity and the number of ambulances

assigned to station j, respectively; n is the number of stations; and q is the number

of ambulances to be allocated. Erdogan et al. [13] describe a tabu search heuristic to
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solve this problem, and report that the tabu search finds better solutions in less time

than does the mathematical programming-based heuristic discussed in [16].

Erdogan et al. [13] present one way of planning ambulance deployment over a

weekly time horizon. First, solve problem P repeatedly, for each hour of the week

and for every possible total number of ambulances, in order to generate expected

coverage curves like those shown in Fig. 6.15. Note that the input data for the

instances of P that are solved at this stage will reflect differences in average call

volume by hour of the week, and can also reflect other predictable changes in the

spatial distribution of calls or in travel speeds, for example. Second, incorporate

the maximum expected coverage values from the first stage into a linear integer

program that simultaneously determines how many ambulances to assign for each

hour of the week and weekly shifts for the ambulance crews. The solutions to P for

each hour of the week specify the way to allocate the ambulances to stations. This

procedure is an example of preplanned repositioning.Other examples of models for

preplanned repositioning include [50, 49, 52].

Finally, I mention the currently active research topic of repositioning based on the

system state, or real-time repositioning, which involves EMS dispatchers moving

ambulances in real time to fill “holes” in coverage. In Sect. 6.4, I mentioned

compliance table policies for real-time repositioning and a Markov chain model to

analyze the performance of these policies. Other researchers have investigated the

use of approximate dynamic programming to find optimal repositioning policies—

see [41, 51], for example.

Some of the issues regarding repositioning that could benefit from further study

include:

• If and how to integrate preplanned and real-time repositioning: All the work

done so far focuses on either preplanned or real-time repositioning (although the

approximate dynamic programming approach used in [41] could, in principle,

incorporate both types of repositioning).

• Trade-off between improvement in performance and increase in workload:

Workload is increased by repositioning, especially when done in real time for
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ambulance crews that are currently idle at a station. Empirical work could clarify

whether the increased workload increases fatigue, back pain, job satisfaction, or

has other undesirable consequences. Further modeling work could lead to tools

to help dispatchers decide if the increase in coverage resulting from a potential

ambulance move outweighs the increased workload.

• Suboptimality of compliance table policies: Compliance tables are already used

in practice for real-time repositioning, and they are simple to explain and to use.

Approximate dynamic programming approaches, which do not restrict the form

of real-time repositioning policies, could be used to investigate the performance

loss resulting from the use of a compliance table policy and to determine if

compliance table policies are optimal in some situations.

6.6 Conclusions and Policy Implications

The amount and scope of OR/MS research on EMS planning and management have

grown rapidly in recent years, perhaps fueled by the increased availability of

detailed EMS call data and persistent pressure on EMS providers to operate more

efficiently. Availability of EMS call data makes it possible to investigate the

accuracy of modeling assumptions used in the past and to improve understanding

of the way EMS systems operate. Although it is valuable to question modeling

assumptions and although computing power continues to increase, modelers should

not forget about parsimony and tractability. An ideal model is one that is no more

complicated than necessary to shed light on the health-care decisions or issues that

prompted the development or use of the model. A more realistic model is not

always a more useful model.

Although EMS data are more readily available than ever, the data collected are

not always the ideal data for informing the decisions of EMS planners. EMS call

data reports the journey of a patient from the moment the EMS agency receives a

call until EMS staff complete their care or until they transfer care to another part of

the health-care system. Linking EMS data to information about what happened to

the patient before and after the EMS call is necessary in order to develop and track

performance measures that emphasize medical outcomes rather than response

times. A greater focus on medical outcomes could help planners and policy makers

compare the consequences of competing uses of funds, particularly in jurisdictions

where EMS is part of a publicly funded health-care system. Measures of medical

outcomes, such as survival probabilities, can typically be incorporated into existing

EMS planning models without greatly complicating them, so the challenge lies in

collecting and analyzing the appropriate data—not in model formulation and

solution. Linking patient data collected by different agencies also presents

challenges in safeguarding patient privacy and confidentiality. In the absence of

reliable information about outcome measures, models that incorporate response-

time variability appear to provide better proxies for outcome measures than do

models based on deterministic distance-based coverage.
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