
87C. Karagiannidis et al. (eds.), Research on e-Learning and ICT 
in Education: Technological, Pedagogical and Instructional Perspectives,
DOI 10.1007/978-1-4614-6501-0_7, © Springer Science+Business Media New York 2014

           Introduction 

 Students of the twenty-fi rst century have been growing up in a highly digital world, 
where they learn and react very differently during the learning process in compari-
son to students not familiarised with technology. This is also due to the fact that 
computer games invade students’ lives from a very early age, making them signifi -
cantly accustomed to many of the computer’s functionalities. 

 At the same time, students continue to face diffi culties in computer science 
courses such as computer programming, even though their familiarisation with 
computers would suggest their learning of programming would become easier now-
adays. The extended research studies carried out the last two decades state that these 
diffi culties are still present and students seem to be even less interested in program-
ming (Lahtinen, Ala-Mutka, & Jarvinen,  2005 ). 

 The hindering of these diffi culties is important, as successful teaching and learn-
ing of computer programming can be extremely benefi cial for twenty-fi rst century 
generation students. It enables the development of various competences such as 
critical thinking, by allowing students to create their own programs, and of concept 
analysis and problem solving, as they are usually required to decipher a given 
scenario and interpret it into lines of code. Moreover, students learn to work in 
groups and collaborate with each other in their effort to develop executable pro-
grams while exercising in exchanging expertise and communicating ideas. Thus, 

      Educational Games for Teaching Computer 
Programming 

                Christos     Malliarakis     ,     Maya     Satratzemi     , and     Stelios     Xinogalos    

        C.   Malliarakis      (*)
  Department of Applied Informatics ,  University of Macedonia , 
  156 Egnatia Street ,  54006   Thessaloniki ,  Greece   
 e-mail: malliarakis@uom.gr  

        M.   Satratzemi       •     S.   Xinogalos      
  Department of Informatics ,  University of Macedonia , 
  156 Egnatia Street ,  54006   Thessaloniki ,  Greece   
 e-mail: maya@uom.gr; stelios@uom.gr  

mailto:malliarakis@uom.gr
mailto:maya@uom.gr
mailto:stelios@uom.gr


88

overall computer programming empowers students to become lifelong learners, a 
very important benefi t for this ever-growing world of knowledge since they can 
transfer their skills to a number of future work domains (engineering, computer 
science, etc.) (Law, Lee, & Yu,  2010 ). 

 An interesting proposal for alleviating the problems faced is the incorporation of 
educational games or serious games within computer programming courses. The 
term educational games is commonly used to describe computer games that are used 
as educational tools and provide interactive and appealing activities that attract stu-
dents’ interest for learning (Gunter, Kenny, & Vick,  2008 ). These games reinforce 
students’ intrinsic motivation through the sense of challenge; they pique their curi-
osity, enforce a sense of security as well as stimulate their imagination (Ho, Chung, 
& Tsai,  2006 ). Also, students are able to achieve specifi c goals and view the success 
results immediately, not only when they complete the game but also when they pass 
the game’s stages, a process that increases their self-confi dence and helps them trust 
their decision making skills. Hence, there is a need to readjust currently followed 
learning techniques according to these newly emerged technological trends that can 
more easily and effi ciently pull the new generation of students towards computer 
programming education. 

 The main purpose of this paper is to review existing educational games that aim 
to teach computer programming and correspondingly review how effectively they 
support students in achieving the educational goals that teachers set in each case. 
The rest of the paper is organised as follows: the next section provides information 
regarding the requirements that have been identifi ed in the literature regarding the 
development of educational games. The following section presents a review and 
comparative analysis of educational games for teaching computer programming 
elements, giving emphasis in features that correspond to the requirements identifi ed 
in the previous section. Finally, the paper concludes with an overview of the work 
done in the fi eld in terms of how well and to what extend the studied educational 
games cover the identifi ed requirements and suggests future work.  

    Educational Games Requirements Specifi cation 

 Our work was carried out following a rigorous review methodology, where we 
searched a variety of academic databases (e.g. Web of Science, Scopus, CiteSeer 
and Google Scholar) for identifying relevant papers. During this search, we used 
keywords such as: educational games, computer programming, requirements, facili-
tating tools, etc., in various combinations. Over 70 papers were originally identifi ed 
and in the end 20 were used for our review after thorough fi ltering as the most rel-
evant to our scope of interest. 

 We have studied thoroughly case studies that have proposed and developed frame-
works for educational games (Becker,  2010 ; De Freitas, & Jarvis,  2006 ; Salen & 
Zimmerman,  2004 ; Yusoff, Crowder, Gilbert, & Wills,  2009 ; Zualkernan,  2006 ). 
According to these works, the development of an educational game should be carried 
out after the examination of a number of aspects, where each aspect determines the 

C. Malliarakis et al.



89

features that should be supported in an educational game. All frameworks include 
similar requirements as concepts that are considered important. In this work, we 
choose to follow the one suggested by Becker ( 2010 ), because its concepts encompass 
all the ones included in previous frameworks. Thus, we consider it to be a more 
abstract superset of features that should be supported by all educational games. 

 Initially, it is suggested that the educational goals should be investigated across 
two axes by using a different viewpoint, so that their specifi cation will be complete. 
These axes are:

•     Cognitive axis , relating to mental competencies (Knowledge). Educational goals 
should make sure that the information received by the students begin from the 
fi rst category in the Bloom’s taxonomy (Knowledge) and end in the fi nal and 
most complex category (Evaluation) successfully.  

•    Emotional axis , relating to emotions or emotional areas (Attitude). Educational 
goals should enable students to handle given situations through the enticement of 
their emotions. For example, the need and thus the desire to free a prisoner dur-
ing a game motivates students to solve the assigned task faster and correctly so 
that they can experience the emotions followed by accomplishing the goal.    

 Additionally, it is important to select a proper framework that will guide the 
learning experience with the incorporation of educational games. The construction 
of a development framework requires the determination of various elements that 
together structure the framework’s components. For example, the processes of the 
real world that will need to be simulated into the game (which movements will be 
allowed, how will the virtual world be constructed, how will the players be repre-
sented, etc.) need to be clearly identifi ed. This is a very important step as it deter-
mines the educational scenarios that can be supported by the game’s environment 
and thus affects the entire learning process. 

 Following the framework’s specifi cation, an architecture will be constructed 
based on the components identifi ed that will have to be available in an authentic 
game environment. These components include:

•     The scenario ’ s space . Students are introduced to the game’s storyline once they 
logon to the environment with a short description of the plot as well as a brief 
overview of the basic activities they will have to execute.  

•    Relevant cases . Students are provided with a set of pre-solved similar cases from 
which they can get a better insight of the game’s knowledge and skills require-
ments and thus be better prepared for when it is their turn to solve assigned tasks.  

•    Information resources . Students can access information relevant to the task at 
hand whenever they are in need of assistance.  

•    Facilitating tools . A set of tools is included that students can use when they are try-
ing to execute a task and that help them build new knowledge. Additionally, the 
game provides tools that underpin student communication as well as discussion with 
the teachers regarding any questions, thoughts or refl ection on the virtual world.    

 Also, it is essential to distinguish  information  regarding the student, such as 
learning goals, learning style (holistic, analytical, etc.) as well cognitive limitations 
(e.g. behavioural competences that can affect their learning). 

Educational Games for Teaching Computer Programming



90

 Teachers should also be able to set  educational goals  that will have to be accom-
plished by the students during the game by assigning specifi c activities for them to 
participate in. This way, students achieve interim goals by successfully completing 
tasks that will lead them to absorbing the fi nal learning outcomes set by the teachers. 

 The above features will underpin the selection of an  authentic scenario  that will 
provide an attractive story to go along with the game’s virtual world. To this end, 
students should be presented with an interesting and motivating problem that needs 
solving and it is best if the plot is similar to the ones available in existing computer 
games. This way, students will be already familiar with the overall concept and the 
activities they will engage in will seem more like games than teaching exercises. 
Similarly, the individual  problems  that students will be called to solve during the 
game should be consistent with the educational goals as well as with any cognitive 
limitations that may be apparent to the teachers. This is one more reason why both 
these features are required to be supported in an educational game. 

 Another important feature is the constant and explanatory  feedback  provided to 
the students during their navigation through the game’s levels. This feedback should 
be represented in a form of messages that guide students towards understanding 
what they did right, what they did wrong and how they can achieve their goals, even 
through the mistakes they have made. This scaffolding technique ensures that stu-
dents realise why their actions did not lead to successful task execution and thus 
they will be able to perform better in their next endeavour. 

 Finally, a number of  generic conditions  need to be taken into consideration while 
designing and developing an educational game. Such is the location and type of the 
education to take place (e.g. offl ine, online, blended learning). For example, if the 
learning process will be realised entirely online, then the game requires all the edu-
cational material to be uploaded within the environment and communication tools 
should be very well supported and plentiful. Moreover, the course’s duration will 
determine how many hours students will spend on the game and how many scenar-
ios need to be constructed according to the elements that need to be taught in this 
duration. All of the above require adequate preparation from the teacher and proper 
confi guration of the environment so as to exploit all of the game’s benefi ts and fos-
ter knowledge and skills development by the students.  

    Educational Games for Computer Programming Education 

 This section presents a series of games that have been developed specifi cally for 
computer programming courses. The review of these games was carried out based on 
the specifi cations identifi ed and described in the previous section, in the cases where 
they were explicitly identifi ed by the relevant literature. Moreover, all chosen games 
have addressed both the cognitive axis and the emotional axis during their develop-
ment. Thus, in each game students start out by receiving pieces of information, and 
through their engagement with the game, they move on up the Bloom’s taxonomy 
to the evaluation step by refl ecting on their progress and fi nalising assignments. 
Also, the emotional axis is addressed via the game scenarios. All scenarios stimulate 
emotions that motivate students to go through all tasks in order to win. 

C. Malliarakis et al.



91

 Two major categories could be distinguished during the research, which sort 
educational games based on the educational goals they aim to support. The fi rst 
category includes games that focus on teaching specifi c computer programming units 
while the second category represents games that cover multiple educational goals 
and thus computer programming material. A review for each category is presented 
in the next two subsections, followed by a comparative analysis presented    in Table  1 .

      Educational Games Focused on Teaching 
a Specifi c Unit of Learning 

  Catacombs . It is a three-dimensional multiplayer game that aims to teach students 
how to declare variables and use simple and nested if statements and loops. According 
to the game’s scenario, each player represents a wizard that has to rescue two chil-
dren trapped within catacombs. Towards this goal, the wizards have to answer mul-
tiple choice questions trying to solve a given programming code that will help them 
complete their quests. The answers to the given questions automatically create exe-
cutable lines of code in a micro-language. If the answers are correct, the wizards 
progress through the game’s levels; otherwise they are given corresponding feedback 
as to what they answered wrong and are prompted to try again. The game records 
experience scores for each student and provides explanatory messages as a scaffold-
ing mechanism (Barnes, Chaffi n, Powell, & Lipford,  2008 ; Barnes et al.,  2007 ). 

  Saving Princess Sera . It is a two-dimensional game that enables students’ scaffold-
ing through explanatory messages directed to the player. Each player has to try and 
save a princess named Sera who has been abducted by a monster named Gargamel, 
on her sixteenth birthday. Students are required to complete a number of quests in 
order to progress in the plot of the game. Towards this goal, they complete lines of 
code that will result to an executable program or they have to correctly map existing 
lines of code to their proper position or order within a program employing a drag 
and drop functionality. This way, students learn the quick-sort algorithm along with 
simple and nested loops with the usage of a micro-language (Barnes et al.,  2007 ; 
Barnes et al.,  2008 ). 

  EleMental :  The Recurrence . It is a three-dimensional game that aims to teach stu-
dents how to execute recursion and depth-fi rst search transversal using the C# pro-
gramming language. The player has to navigate across a virtual binary tree by 
employing the depth-fi rst transversal and complete three quests by applying 
 recursion. Two avatars named Ele and Cera help students during the game in various 
ways. For example, once the code is written, Ele crosses the binary tree according 
to how the written code is deployed, while Cera explains exactly what the code is 
producing at a specifi c moment (Chaffi n, Doran, Hicks, & Barnes,  2009 ). 

  Wu ’ s Castle . It is a two-dimensional role playing game that aims to teach students 
loops and arrays through interactive activities. Each player is a wizard that can con-
trol an army of snowmen. Players recognise logical errors at lines of code written in 
the C++ programming language. The game allows arrays management through 

Educational Games for Teaching Computer Programming



92

changing the parameters inside the loops and movement of the characters through 
the execution of nested loops (Eagle & Barnes,  2009 ). 

  Robozzle . It is an online puzzle game that provides a series of predefi ned commands 
ready for use and does not show any actual code. According to the game’s scenario, 
users have to build functions that will help them achieve each given task in a grid 
and tiles virtual world. Users can run their functions and see how their hero will 
move across the world and can therefore easily detect what mistakes they have made 
and reprogram accordingly (Li & Watson,  2011 ). 

  LightBot . LightBot (Piteira & Haddad,  2011 ) is an online puzzle game similar to 
Robozzle. It includes a series of predefi ned commands and no actual code or pro-
gramming language. Additionally, users have to complete given tasks by building 
their own functions and moving the hero across a grid and tiles environment and 
light all the blue tiles. Once a task is completed, the user can move to the next level, 
which requires the construction of more complex functions. 

  TALENT . TALENT (Maragos & Grigoriadou,  2011 ) focuses on teaching if state-
ments and loops in the forms of algorithms by using a micro-language. Each player 
is an archaeologist that has to navigate across the virtual environment by completing 
a series of tasks and collect objects that are available at specifi c locations for their 
future exhibition at a museum. Towards this goal, students can drag and drop lines 
of code as well as write them in an editor whenever requested. As a scaffolding 
mechanism, TALENT provides an agent that acts as a mentor and helps students 
when needed as well as suggest what their next mission should be.  

    Educational Games Focused on Teaching Multiple Units 
of Learning 

  Robocode . It is a two-dimensional environment that aims to teach computer pro-
gramming using the Java language. The game comprises of a programming editor, 
robots and a virtual arena, and students are required to program a robot that will 
compete against one another in the arena. Students familiarise themselves with the 
basic commands of structured computer programming and object-oriented pro-
gramming (e.g. inheritance, polymorphism) while they try to build a robot ready for 
combat. During its construction, the robot inherits basic methods that can later be 
extended by students according to the behaviour they want their robots to have 
inside the arena (O’Kelly & Gibson,  2006 ). 

  M.U.P.P.E.T.S . It is a three-dimensional, Web-based and collaborative game that aims 
to teach object building and in general to familiarise students with the basic concepts 
of object-oriented programming using the Java language. Students create a robot that 
has to fi ght another robot inside a virtual arena, interact with the objects they build 
and write and compile their lines of code within the embedded development environ-
ment that includes a commands console (Phelps, Bierre, & Parks,  2003 ). 

C. Malliarakis et al.



93

   Ta
bl

e 
1  

  O
ve

rv
ie

w
 o

f 
th

e 
ed

uc
at

io
na

l g
am

es
 f

or
 c

om
pu

te
r 

pr
og

ra
m

m
in

g 
co

ur
se

s   

 G
am

e 
 Pr

og
ra

m
m

in
g 

el
em

en
ts

 
 Pr

og
ra

m
m

in
g 

la
ng

ua
ge

 
 Pr

og
ra

m
m

in
g 

ac
tiv

iti
es

 
 Sp

ec
ia

l c
ha

ra
ct

er
is

tic
s 

 C
at

ac
om

bs
 

 V
ar

ia
bl

es
; s

im
pl

e 
an

d 
ne

st
ed

 if
 

st
at

em
en

ts
; l

oo
ps

 
 M

ic
ro

- l
an

gu
ag

e  
 M

ul
tip

le
 c

ho
ic

e 
qu

es
tio

ns
; fi

 ll
in

g 
ou

t l
in

es
 o

f 
co

de
 

 T
hr

ee
 d

im
en

si
on

al
; m

ul
tip

la
ye

r;
 

su
cc

es
s 

sc
or

es
; s

ca
ff

ol
di

ng
 

w
ith

 e
xp

la
na

to
ry

 m
es

sa
ge

s 
fr

om
 th

e 
he

ro
 

 Sa
vi

ng
 S

er
a 

 If
 s

ta
te

m
en

ts
; r

ec
ur

si
on

 
 M

ic
ro

- l
an

gu
ag

e  
 Fi

lli
ng

 o
ut

 li
ne

s 
of

 c
od

e;
 m

ap
pi

ng
 

pa
rt

s 
of

 c
od

e 
in

 c
or

re
sp

on
di

ng
 

lo
ca

tio
ns

; m
ul

tip
le

 c
ho

ic
e 

qu
es

tio
ns

 

 Tw
o 

di
m

en
si

on
al

; s
ca

ff
ol

di
ng

 

 E
le

M
en

ta
l 

 R
ec

ur
si

on
; d

ep
th

-fi
 r

st
 s

ea
rc

h 
(D

FS
) 

al
go

ri
th

m
 

 C
# 

 D
ep

th
-fi

 r
st

 s
ea

rc
h 

al
go

ri
th

m
; m

ov
in

g 
th

e 
he

ro
 o

n 
a 

fa
nt

as
tic

al
 b

in
ar

y 
tr

ee
 

 T
hr

ee
 d

im
en

si
on

al
; s

ca
ff

ol
di

ng
 

 Pr
og

&
Pl

ay
 

 St
ru

ct
ur

ed
 c

om
pu

te
r 

pr
og

ra
m

m
in

g,
 

if
-s

ta
te

m
en

ts
, l

oo
ps

 
 A

da
, C

, J
av

a,
 O

C
am

l, 
Sc

ra
tc

h,
 C

om
pa

lg
o 

 C
om

pl
et

in
g 

ei
gh

t m
is

si
on

s 
 M

ul
tip

la
ye

r;
 in

fi n
ite

 s
ce

na
ri

os
; 

av
ai

la
bl

e 
 W

u’
s 

C
as

tle
 

 L
oo

ps
; a

rr
ay

s 
 C

+
+

 
 A

rr
ay

s 
m

an
ag

em
en

t; 
m

ov
em

en
t 

of
 th

e 
he

ro
; i

de
nt

ifi 
ca

tio
n 

of
 lo

gi
ca

l m
is

ta
ke

s 
in

 c
od

e 

 In
te

ra
ct

io
n;

 r
ol

e 
pl

ay
in

g 

 R
ob

oz
zl

e 
 Fu

nc
tio

ns
 

 N
o 

co
de

 u
se

d 
 C

re
at

in
g 

fu
nc

tio
ns

 th
ro

ug
h 

th
e 

he
ro

’s
 

m
ov

em
en

t 
 In

te
ra

ct
iv

e;
 a

va
ila

bl
e 

 L
ig

ht
B

ot
 

 Fu
nc

tio
ns

 
 N

o 
co

de
 u

se
d 

 C
re

at
in

g 
fu

nc
tio

ns
 th

ro
ug

h 
th

e 
he

ro
’s

 
m

ov
em

en
t 

 W
eb

 b
as

ed
; a

va
ila

bl
e 

 TA
L

E
N

T
 

 If
 s

ta
te

m
en

ts
; l

oo
ps

 
 M

ic
ro

- l
an

gu
ag

e  
 dr

ag
 a

nd
 d

ro
p 

lin
es

 o
f 

co
de

; w
ri

tin
g 

lin
es

 o
f 

co
de

 in
 a

n 
ed

ito
r 

 E
xp

la
na

to
ry

 m
es

sa
ge

s 

 R
ob

oc
od

e 
 St

ru
ct

ur
ed

 c
om

pu
te

r 
pr

og
ra

m
m

in
g;

 
ob

je
ct

- o
ri

en
te

d 
pr

og
ra

m
m

in
g 

 Ja
va

 
 W

ri
tin

g 
lin

es
 o

f 
co

de
 

 E
ve

ry
 r

ob
ot

 s
to

re
s 

da
ta

 o
f 

pa
st

 
ac

tiv
iti

es
; a

va
ila

bl
e 

 M
.U

.P
.P

.E
.T

.S
. 

 T
hr

ee
- d

im
en

si
on

al
 o

bj
ec

ts
; 

ob
je

ct
- o

ri
en

te
d 

pr
og

ra
m

m
in

g 
 Ja

va
 

 In
te

ra
ct

io
n 

w
ith

 th
e 

de
ve

lo
pe

d 
ob

je
ct

s;
 

w
ri

tin
g 

lin
es

 o
f 

co
de

; c
om

pi
le

 
 C

ol
la

bo
ra

tiv
e;

 th
re

e 
di

m
en

si
on

al
; 

co
m

m
an

ds
 p

an
el

; e
m

be
dd

ed
 

de
ve

lo
pm

en
t e

nv
ir

on
m

en
t 

 Pl
ay

L
og

o 
3D

 
 B

as
ic

 c
on

ce
pt

s 
an

d 
co

m
m

an
ds

 o
f 

st
ru

ct
ur

ed
 p

ro
gr

am
m

in
g 

 L
og

o 
 C

re
at

io
n 

of
 h

er
oe

s;
 n

av
ig

at
io

n 
ac

ro
ss

 
th

e 
“g

al
ax

y”
 b

y 
w

ri
tin

g 
co

m
m

an
ds

 
 In

te
ra

ct
io

n;
 m

ul
tip

la
ye

r;
 th

re
e 

di
m

en
si

on
al

; a
va

ila
bl

e 
 G

id
ge

t 
 A

na
ly

si
s 

an
d 

de
si

gn
 o

f 
ba

si
c 

al
go

ri
th

m
s 

 M
ic

ro
- l

an
gu

ag
e  

 Fi
xi

ng
 p

ro
bl

em
s 

an
d 

pr
og

ra
m

s;
 

in
te

ra
ct

io
n 

w
ith

 a
 p

er
so

na
lis

ed
 r

ob
ot

 
 W

eb
 b

as
ed

; e
xp

la
na

to
ry

 m
es

sa
ge

s 

Educational Games for Teaching Computer Programming



94

  Prog&Play . It is a library currently integrated in the Web-based, real-time multi- 
player strategy game Kernel Panic, which enables constant interaction amongst users. 
Students can program their own heroes and form alliances with each other aiming to 
prevail in the game. Prog&Play allows students to choose the language in which they 
prefer to code their programs amongst programming languages such as Ada, C, Java, 
OCaml, Scratch and Compalgo (Muratet, Torguet, Viallet, & Jessel,  2011 ). 

  PlayLogo 3D . It is a three-dimensional, role playing game that allows interaction 
amongst multiple users and aims to teach basic concepts of structured computer 
programming. Users are required to program their heroes by writing the corre-
sponding lines of code in the LOGO language, and navigate them across the envi-
ronment. More specifi cally, the virtual world consists of the spaceship X-15 located 
on a constellation of the Andromeda galaxy, where a contest is held each year 
amongst pilot-robots (Paliokas, Arapidis, & Mpimpitsos,  2011 ). 

  Gidget . It is a Web-based game where students can program using a simplifi ed pro-
gramming language created specifi cally for the game in order to learn how to design 
and analyse basic algorithms. A robot named Gidget has problems with a part of his 
software and thus cannot complete its tasks. Therefore, students are called in to help 
Gidget by either fi xing wrong lines of code, or by completing missing code within 
given programs. During these processes, students receive constant feedback of their 
progress (Lee & Ko,  2011 ). 

 The above table presents the study with a structured representation of features 
supported by the most commonly known educational games for computer program-
ming. The programming elements, characteristics as well programming activities 
identifi ed can be considered as concepts that describe the fi eld. Thus, future 
researchers and game developers should take them into consideration when design-
ing a new and advanced educational game for computer programming.   

    Discussion 

 In this section we provide an overview of the development of existing educational 
games for computer programming, and their limitations. The results are categorised 
based on the features identifi ed that should be taken into consideration during the 
design and development of an educational game for computer programming. 

  Educational goals . The educational goals seem to cover both the  cognitive  and  emo-
tional axes . Within the games, these goals are clearly focused in the computer pro-
gramming concepts that each game aims to teach. This is especially the case in the 
educational games that cover specifi c units of learning, and thus the desired learning 
outcomes are more clearly identifi ed. The emotional goals seem to be accomplished 
through the numerous attractive scenarios available in each game. 

 The  problems  students are required to solve are consistent with the set educa-
tional goals and their cognitive limitations. In the educational games focused in 
specifi c units of learning, students execute and complete quests that teach them 
knowledge that is relevant to the programming concepts set in the goals. As an 

C. Malliarakis et al.



95

example, the simple and nested loops in Catacombs are taught through the comple-
tion of lines of code, and their correct syntax allows students to pass to the next 
level, while the same concepts are taught in Wu’s Castle when students move their 
characters across the world and recognise logical errors. On the other hand, the sec-
ond category of educational games (e.g. Robocode, M.U.P.P.E.T.S, PlayLogo 3D) 
employs problems that allow students to interact with each other and execute mul-
tiple tasks that will teach them all the basic concepts of computer programming. 

  Framework . Educational games that focus on specifi c units of learning seem to have 
properly defi ned a framework for their employment in educational contexts. 
However, games that teach multiple and more complex units of learning, and thus 
cover multiple educational goals usually set several frameworks. It should be noted 
that the games Lightbot and Robozzle do not defi ne any framework. 

  Scenario ’ s space . All educational games present and work based on a  scenario  in 
order to attract and motivate students. In some cases  introductory information  is 
provided to the players in regard to the virtual world (e.g. PlayLogo 3D, Wu’s Castle). 

  Information resources . Most educational games provide  explanatory messages . The 
games where this feature is more fully supported are Catacombs, Saving Sera, 
EleMental: The Recurrence and Wu’s Castle. Moreover,  scaffolding techniques  are 
provided through these explanatory messages that appear while students are trying 
to solve their quests (e.g. Catacombs, Saving Sera, EleMental). 

  Facilitating tools . Tools where students can write requested lines of code exist in the 
Catacombs, Saving Sera, EleMental, Robocode and M.U.P.P.E.T.S games. In addi-
tion, multiplayer games (e.g. PlayLogo 3D, M.U.P.P.E.T.S., Prog&Play, Catacombs) 
include features where students can  communicate and interact  with one another. 

  Generic conditions . The generic conditions have been taken into consideration. This 
has been carried out more effi ciently in the educational games that cover specifi c 
units of learning rather than in the ones that teach multiple and complex computer 
programming concepts. On the other hand, they have not been considered at all dur-
ing the design of the Robozzle and Lightbot games. 

 It should be noted that none of the studied games provides  relevant cases  that can 
prepare students for the activities they will be required to execute. The existence of 
this feature would signifi cantly increase the quality of the games, since it would 
provide useful tutorials and guidelines for learners. 

 We also have to mention that many of the aforementioned information regarding 
these games derive exclusively from the relevant literature, since they are not avail-
able for access. This fact also results in our inability to exploit them in the learning 
process and actually test them against set educational goals in computer programming 
courses. Summing up, it seems that all studied games include scenarios that motivate 
learners, clearly indicate the educational goals that need to be reached and include 
problems that are set up as specifi ed above. Other features, such as facilitating tools, 
information resources, one or several frameworks and taking into consideration 
generic conditions are supported by the majority of the studied games. However, none 
of the games appear to support relevant cases to prepare learners before engaging with 
the environments or to act as manuals for when learners require guidance.  

Educational Games for Teaching Computer Programming



96

    Conclusions 

 The main implications derived from the analysis include that most games have been 
developed to cover programming concepts (such as variables, simple and nested if 
statements, loops, arrays, functions) with the exception of M.U.P.P.E.T.S. and 
Robocode that cover more complex concepts such as object-oriented programming. 
We do not consider the fact that the games do not tackle all programming concepts 
as a disadvantage, since they seem to successfully fulfi l the educational goals they 
set regarding the group of concepts they aim to teach. 

 Also, the study elaborated on the added values of using educational games in 
computer programming. Our research revealed a number of interesting principles 
that can help us understand why educational games can improve teaching and learn-
ing of computer programming. For example, games seem to have a facilitating role 
in the learning process during the teaching of specifi ed concepts and could play a 
small or a big part in the entire course’s implementation process, depending on the 
generic conditions. More specifi cally, depending on the nature of the course (online, 
offl ine, blended), materials, communications, exams, etc. could be supported on 
different levels by the games’ environments. To this end, educational games can 
provide a number of characteristics, such as storytelling, scaffolding and interactiv-
ity, which increase motivation for participation in class as well as attract students to 
complete their tasks through interesting scenarios. 

 We examined the educational games in terms of the educational value that they 
bring, and we derived that they can provide students with:

•    Clear educational goals and learning outputs, ensuring that they know what they 
have to do to achieve the required knowledge and skills.  

•   A familiar and immersive environment that attracts students’ attention facilitates 
their active participation and increases their motivation.  

•   Interesting scenarios with comprehensive problems they have to solve, which 
enable them to learn in a contextual manner (learning specifi c units of learning 
periodically).  

•   Tools that help them communicate and collaborate with their classmates, improv-
ing their group work skills and guiding them through the learning process by 
explaining the possible mistakes they make. These tools can be applied either 
with chat functionalities or with different types of interactions between the learn-
ers and the game while trying to achieve and fulfi l common goals.    

 Furthermore, the study’s fi ndings have implications regarding the design of 
future educational games focused on computer programming, listing and elaborat-
ing on the requirements educational game designers and developers should strive to 
support and thus setting the foundations for future holistic environments. 

 Educational games can also assist teachers teach programming in their courses 
by designing the game and setting up its parameters. For example, teachers can use 
educational games to plan their courses and monitor students’ interactions, progress 
and evaluation through their activities in the game. The establishment of the 
 educational goals, learning outcomes and the setting up of a scenario that will 

C. Malliarakis et al.



97

delineate the curriculum into units of learning also enables teachers to be better 
prepared and have a deeper knowledge of the materials they teach and get more 
skilled in course planning. 

 On the other hand, a signifi cant limitation identifi ed in the existing educational 
games focused on computer programming courses is the ability of the teacher to 
confi gure the environment according to the pedagogical goals related to the respec-
tive unit of learning. Additionally, the collaboration concept could be reinforced and 
better supported within multiplayer educational games so that they can teach more 
complex programming concepts that will be more effi ciently understood through 
team-based learning activities. 

 The evaluations carried out during the pilots studies, showed that the majority of 
learners expressed positive attitudes towards the examined environments. Thus, this 
enables the initial implications of our research to exploit the features considered 
important by the literature and presented throughout the paper during future design 
and development of educational games. 

 Such games will fully support all identifi ed specifi cations and features and will 
aim to teach in-depth more complex concepts, such as object-oriented programming.     

   References 

    Barnes, T., Chaffi n, A., Powell, E., & Lipford, H. (2008). Game2Learn: improving the motivation 
of CS1 students.  Proceedings of the 3rd International Conference on Game Development in 
Computer Science Education  (pp. 1–5). Miami, Florida.  

     Barnes, T., Richter, H., Chaffi n, A., Godwin, A., Powell, E., Ralph, T., et al. (2007). The role of 
feedback in Game2Learn.  CHI, 2007 , 1–5.  

    Becker, T. (2010). The character of successful trainings with serious games.  International Journal 
Of Emerging Technologies In Learning (IJET) ,  5 (SI3). Retrieved April 17, 2012, from   http://
online-journals.org/i-jet/article/view/1498     .   

   Chaffi n, A., Doran, K., Hicks, D., & Barnes, T. (2009). Experimental evaluation of teaching recur-
sion in a video game. In S. N. Spencer (Ed.),  Proceedings of the 2009 ACM SIGGRAPH 
Symposium on Video Games  (New Orleans, Louisiana, August 04–06, 2009).  Sandbox ‘09  
(pp. 79–86). New York, NY: ACM.  

   De Freitas, S., & Jarvis, S. (2006). A framework for developing serious games to meet learner 
needs. In  Proceedings Interservice/Industry Training, Simulation, and Education Conference , 
 Florida, USA  (pp. 1–11).  

    Eagle, M., & Barnes, Τ. (2009). Experimental evaluation of an educational game for improved 
learning in introductory computing.  ACM SIGCSE Bulletin, 41 (1), 321–325.  

    Gunter, G. A., Kenny, R. F., & Vick, E. H. (2008). Taking educational games seriously: using the 
RETAIN model to design endogenous fantasy into standalone educational games.  Educational 
Technology Research and Development, 56 (5/6), 511–537.  

    Ho, P. C., Chung, S.-M., & Tsai, M.-H. (2006). A case study of game design for e-Learning. 
In Z. Pan et al. (Eds.),  Edutainment  (LNCS, Vol. 3942, pp. 453–462). Berlin Heidelberg: 
Springer.  

   Lahtinen, E., Ala-Mutka, K., & Jarvinen, H. (2005). A study of diffi culties of novice programmers. 
 Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in 
Computer Science Education , June 27–29, 2005, Caparica, Portugal (pp. 14–18).  

    Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning motivation in e-Learning facilitated 
computer programming courses.  Computers & Education, 55 (1), 218–228. doi:  http://dx.doi.
org/  10.1016/j.compedu.2010.01.007    .    

Educational Games for Teaching Computer Programming

http://online-journals.org/i-jet/article/view/1498
http://online-journals.org/i-jet/article/view/1498


98

   Lee, M.J., & Ko, A.J. (2011). Personifying programming tool feedback improves novice 
 programmers’ learning.  Conference on International Computing Education Research (ICER)  
(pp. 109–116), Providence, RI, USA, August 8–9  

   Li, F.W.B., & Watson, C. (2011). Game-based concept visualization for learning programming. 
 Proceedings of the 3rd International ACM Workshop on Multimedia Technologies for Distance 
Learning  (pp. 37–42), Scottsdale, AZ, USA, December 01, 2011  

    Maragos, K., & Grigoriadou, M. (2011). Exploiting TALENT as a tool for teaching and learning. 
 The International Journal of Learning, 18 (1), 431–440.  

    Muratet, M., Torguet, P., Viallet, F., & Jessel, J.-P. (2011). Experimental feedback on Prog & Play: 
a serious game for programming practice.  Computer Graphics Forum, 30 (1), 61–73.  

    O’Kelly, J., & Gibson, P. (2006). RoboCode & problem-based learning: a non-prescriptive 
approach to teaching programming.  ACM SIGCSE Bulletin, 38 (3), 217–221.  

   Paliokas, I., Arapidis, C., & Mpimpitsos, M. (2011). PlayLOGO 3D: a 3D interactive video game 
for early programming education: let LOGO be a game. In  Proceedings of Third International 
Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES) , 4–6 May 
2011 (pp. 24–31).  

   Phelps, A., Bierre, K., & Parks, D. (2003). MUPPETS: multi-user programming pedagogy for 
enhancing traditional study.  Proceeding of the 4th Conference on Information Technology 
Education  (pp. 100–105), Lafayette, IN, USA, October, 2003  

   Piteira, M., & Haddad, S. (2011). Innovate in your program computer class: an approach based 
on a serious game. OSDOC: Open Source and Design of Communication Workshop ACM, 
New York, NY, USA (pp. 49–54).  

    Salen, K., & Zimmerman, E. (2004).  Rules of play: game design fundamentals  (pp. 56–84). 
Cambridge: The MIT Press. pp. 304–350.  

   Yusoff, A., Crowder, R., Gilbert, L., & Wills, G. (2009), A conceptual framework for serious 
games.  The 9th IEEE International Conference on Advanced Learning Technologies  
(pp. 21–23). July 15–17, 2009. doi:   10.1109/ICALT.2009.19    .  

    Zualkernan, I. A. (2006). A framework and a methodology for developing authentic constructivist 
e-Learning environments.  Educational Technology & Society, 9 (2), 198–212.    

C. Malliarakis et al.

http://dx.doi.org/10.1109/ICALT.2009.19

	Educational Games for Teaching Computer Programming
	Introduction
	 Educational Games Requirements Specification
	 Educational Games for Computer Programming Education
	Educational Games Focused on Teaching a Specific Unit of Learning
	 Educational Games Focused on Teaching Multiple Units of Learning

	 Discussion
	 Conclusions
	References


