
Chapter 9
Unconfined Aquifer Flow Theory: From Dupuit
to Present

Phoolendra K. Mishra and Kristopher L. Kuhlman

Abstract Analytic and semi-analytic solution are often used by researchers and
practitioners to estimate aquifer parameters from unconfined aquifer pumping tests.
The nonlinearities associated with unconfined (i.e., water table) aquifer tests make
their analysis more complex than confined tests. Although analytical solutions for
unconfined flow began in the mid-1800s with Dupuit, Thiem was possibly the first
to use them to estimate aquifer parameters from pumping tests in the early 1900s.
In the 1950s, Boulton developed the first transient well test solution specialized
to unconfined flow. By the 1970s, Neuman had developed solutions considering
both primary transient storage mechanisms (confined storage and delayed yield)
without nonphysical fitting parameters. In the last decade, research into developing
unconfined aquifer test solutions has mostly focused on explicitly coupling the
aquifer with the linearized vadose zone. Despite the many advanced solution
methods available, there still exists a need for realism to accurately simulate real-
world aquifer tests.

9.1 Introduction

Pumping tests are widely used to obtain estimates of hydraulic parameters charac-
terizing flow and transport processes in subsurface (e.g., Kruseman and de Ridder
1990; Batu 1998). Hydraulic parameter estimates are often used in planning
or engineering applications to predict flow and design of aquifer extraction or
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recharge systems. During a typical pumping test in a horizontally extensive aquifer,
a well is pumped at constant volumetric flow rate, and head observations are
made through time at one or more locations. Pumping test data are presented as
time-drawdown or distance-drawdown curves, which are fitted to idealized models
to estimate aquifer hydraulic properties. For unconfined aquifers, properties of
interest include hydraulic conductivity, specific storage, specific yield, and possibly
unsaturated flow parameters. When estimating aquifer properties using pumping
test drawdown data, one can use a variety of analytical solutions involving different
conceptualizations and simplifying assumptions. Analytical solutions are impacted
by their simplifying assumptions, which limit their applicability to characterize
certain types of unconfined aquifers. This chapter presents the historical evolution
of the scientific and engineering thoughts concerning groundwater flow toward
a pumping well in unconfined aquifers (also referred to variously as gravity,
phreatic, or water table aquifers) from the steady-state solutions of Dupuit to the
recent coupled transient saturated–unsaturated solutions. Although it is sometimes
necessary to simulation using gridded numerical models in highly irregular or
heterogeneous systems, here we limit our consideration to analytically derived
solutions.

9.2 Early Well Test Solutions

9.2.1 Dupuit’s Steady-State Finite-Domain Solutions

Dupuit (1857) considered steady-state radial flow to a well pumping at constant
volumetric flow rate Q [L3/T] in a horizontal homogeneous confined aquifer of
thickness b [L]. He used Darcy’s law (Darcy 1856) to express the velocity of
groundwater flow u [L/T] in terms of radial hydraulic head gradient (∂h/∂ r) as

u = K
∂h
∂ r

, (9.1)

where K = kg/ν is hydraulic conductivity [L/T], k is formation permeability [L2], g
is the gravitational constant [L/T2], ν is fluid kinematic viscosity [L2/T], h = ψ + z
is hydraulic head [L], ψ is gage pressure head [L], and z is elevation above an
arbitrary datum [L]. Darcy derived a form equivalent to (9.1) for one-dimensional
flow through sand-packed pipes. Dupuit was the first to apply (9.1) converging flow
by combining it with mass conservation Q = (2πrb)u across a cylindrical shell
concentric with the well, leading to

Q = K (2πrb)
∂h
∂ r

. (9.2)
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Integrating (9.2) between two radial distances r1 and r2 from the pumping well,
Dupuit evaluated the confined steady-state head difference between the two points as

h(r2)− h(r1) =
Q

2πKb
log

(
r2

r1

)
. (9.3)

This is the solution for flow to a well at the center of a circular island, where a
constant head condition is applied at the edge of the island (r2).

Dupuit (1857) also derived a radial flow solution for unconfined aquifers by
neglecting the vertical flow component. Following a similar approach to confined
aquifers, Dupuit (1857) estimated the steady-state head difference between two
distances from the pumping well for unconfined aquifers as

h2(r2)− h2(r1) =
Q

πK
log

(
r2

r1

)
. (9.4)

These two solutions are only strictly valid for finite domains; when applied to
domains without a physical boundary at r2, the outer radius essentially becomes
a fitting parameter. The solutions are also used in radially infinite systems under
pseudo-static conditions, when the shape of the water table does not change with
time.

Equations (9.3) and (9.4) are equivalent when b in (9.3) is average head
(h(r1)+ h(r2))/2. In developing (9.4), Dupuit (1857) used the following assump-
tions (now commonly called the Dupuit assumptions) in context of unconfined
aquifers:

• The aquifer bottom is a horizontal plane.
• Groundwater flow toward the pumping wells is horizontal with no vertical

hydraulic gradient component.
• The horizontal component of the hydraulic gradient is constant with depth and

equal to the water table slope.
• There is no seepage face at the borehole.

These assumptions are one of the main approaches to simplifying the unconfined
flow problem and making it analytically tractable. In the unconfined flow problem,
both the head and the location of the water table are unknowns; the Dupuit
assumptions eliminate one of the unknowns.

9.2.2 Historical Developments After Dupuit

Narasimhan (1998) and de Vries (2007) give detailed historical accounts of ground-
water hydrology and soil mechanics; only history relevant to well test analysis
is given here. Forchheimer (1886) first recognized the Laplace equation ∇2h = 0
governed two-dimensional steady confined groundwater flow (to which (9.3) is a
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solution), allowing analogies to be drawn between groundwater flow and steady-
state heat conduction, including the first application of conformal mapping to solve
a groundwater flow problem. Slichter (1898) also arrived at the Laplace equation
for groundwater flow and was the first to account for a vertical flow component.
Utilizing Dupuit’s assumptions, Forchheimer (1898) developed the steady-state
unconfined differential equation (to which (9.4) is a solution), ∇2h2 = 0. Boussinesq
(1904) first gave the transient version of the confined groundwater flow equation
αs∇2h = ∂h/∂ t (where αs = K/Ss is hydraulic diffusivity [L2/T] and Ss is specific
storage [1/L]), based upon analogy with transient heat conduction.

In Prague, Thiem (1906) was possibly the first to use (9.3) for estimating K from
pumping tests with multiple observation wells (Simmons 2008). Equation (9.3)
(commonly called the Thiem equation) was tested in the 1930s both in the field
(Wenzel (1932) performed a 48-h pumping test with 80 observation wells in Grand
Island, Nebraska) and in the laboratory (Wyckoff et al. (1932) developed a 15-degree
unconfined wedge sand tank to simulate converging flow). Both found the steady-
state solution lacking in ability to consistently estimate aquifer parameters. Wenzel
(1942) developed several complex averaging approaches (e.g., the “limiting” and
“gradient” formulas) to attempt to consistently estimate K using steady-state
confined equations for a finite system from transient unconfined data. Muskat (1932)
considered partial-penetration effects in steady-state flow to wells, discussing the
nature of errors associated with assumption of uniform flux across the well screen
in a partially penetrating well. Muskat’s textbook on porous media flow (Muskat
1937) summarized much of what was known in hydrology and petroleum reservoir
engineering around the time of the next major advance in well test solutions
by Theis.

9.2.3 Confined Transient Flow

Theis (1935) utilized the analogy between transient groundwater flow and heat
conduction to develop an analytical solution for confined transient flow to a pumping
well (see Fig. 9.1). He initially applied his solution to unconfined flow, assuming
instantaneous drainage due to water table movement. The analytical solution was
based on a Green’s function heat conduction solution in an infinite axisymmetric
slab due to an instantaneous line heat source or sink (Carslaw 1921). With the aid
of mathematician Clarence Lubin, Theis extended the heat conduction solution to a
continuous source, motivated to better explain the results of pumping tests like the
1931 test in Grand Island. Theis (1935) gave an expression for drawdown due to
pumping a well at rate Q in a homogeneous, isotropic confined aquifer of infinite
radial extent as an exponential integral

s(r, t) =
Q

4πT

∫ ∞

r2/(4αst)

e−u

u
du, (9.5)
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Fig. 9.1 Unconfined well
test diagram

where s = h0(r)− h(t,r) is drawdown, h0 is pretest hydraulic head, T = Kb is
transmissivity, and S = Ssb is storativity. Equation (9.5) is a solution to the diffusion
equation, with zero-drawdown initial and far-field conditions:

s(r, t = 0) = s(r → ∞, t) = 0. (9.6)

The pumping well was approximated by a line sink (zero radius), and the source
term assigned there was based upon (9.2):

lim
r→0

r
∂ s
∂ r

=− Q
2πT

. (9.7)

Although the transient governing equation was known through analogy with heat
conduction, the transient storage mechanism (analogous to specific heat capacity)
was not completely understood. Unconfined aquifer tests were known to experience
slower drawdown than confined tests, due to water supplied by dewatering the zone
near the water table, which is related to the formation specific yield (porosity less
residual water). Muskat (1934) and Hurst (1934) derived solutions to confined tran-
sient radial flow problems for finite domains but attributed transient storage solely to
fluid compressibility. Jacob (1940) derived the diffusion equation for groundwater
flow in compressible elastic confined aquifers, using mass conservation and Darcy’s
law, without recourse to analogy with heat conduction. Terzaghi (1923) developed a
one-dimensional consolidation theory which only considered the compressibility of
the soil (in his case a clay), unknown at the time to most hydrologists (Batu 1998).
Meinzer (1928) studied regional drawdown in North Dakota, proposing the modern
storage mechanism related to both aquifer compaction and the compressibility of
water. Jacob (1940) formally showed Ss = ρwg(βp + nβw), where ρw and βw are
fluid density [M/L3] and compressibility [LT2/M], n is dimensionless porosity, and
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βp is formation bulk compressibility. The axisymmetric diffusion equation in radial
coordinates is

∂ 2s
∂ r2 +

1
r

∂ s
∂ r

=
1
αs

∂ s
∂ t

. (9.8)

When deriving analytical expressions, the governing equation is commonly made
dimensionless to simplify presentation of results. For flow to a pumping well, it is
convenient to use LC = b as a characteristic length, TC = Sb2/T as a characteristic
time, and HC = Q/(4πT ) as a characteristic head. The dimensionless diffusion
equation is

∂ 2sD

∂ r2
D

+
1
rD

∂ sD

∂ rD
=

∂ sD

∂ tD
, (9.9)

where rD = r/LC, sD = s/Hc and tD = t/TC are scaled by characteristic quantities.
The Theis (1935) solution was developed for field application to estimate aquifer

hydraulic properties, but it saw limited use because at the time it was difficult to
compute the exponential integral for arbitrary inputs. Wenzel (1942) proposed a
type-curve method that enabled graphical application of the Theis (1935) solution
to field data. Cooper and Jacob (1946) suggested for large values of tD (tD ≥ 25),
the infinite integral in the Theis (1935) solution can be approximated as

sD(tD,rD) =

∫ ∞

r2/(4αst)

e−u

u
du ≈ loge

(
4Tt
r2S

)
− γ (9.10)

where γ ≈ 0.57722 is the Euler–Mascheroni constant. This leads to Jacob and
Cooper’s straight-line simplification

Δs ≈ 2.3
Q

4πT
(9.11)

where Δs is the drawdown over one log-cycle (base 10) of time. The intercept of
the straight-line approximation is related to S through (9.10). This approximation
made estimating hydraulic parameters much simpler at large tD. Hantush (1961)
later extended Theis’ confined solution for partially penetrating wells.

9.2.4 Observed Time-Drawdown Curve

Before the time-dependent solution of Theis (1935), distance drawdown was the
diagnostic plot for aquifer test data. Detailed distance-drawdown plots require many
observation locations (e.g., the 80 observation wells of Wenzel 1936). Reanalyzing
results of the unconfined pumping test in Grand Island, Wenzel (1942) noticed that
the Theis (1935) solution gave inconsistent estimates of Ss and K, attributed to the
delay in the yield of water from storage as the water table fell. The Theis (1935)
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Fig. 9.2 Drawdown data
from Cape Cod (Moench
et al. 2001), observation well
F377–037. Upper dashed
curve is confined model of
Hantush (1961) with S = Ssb,
lower dotted curve is same
with S = Ssb+Sy. Solid curve
is unconfined model of
Neuman (1974) using
Sy = 0.23

solution corresponds to the Dupuit assumptions for unconfined flow and can only
recreate the a portion of observed unconfined time-drawdown profiles (either late or
early). The effect of the water table must be taken into account through a boundary
condition or source term in the governing equation to reproduce observed behavior
in unconfined pumping tests.

Walton (1960) recognized three distinct segments characterizing different release
mechanisms on time-drawdown curve under water table conditions (see Fig. 9.2).
A log–log time-drawdown plot in an unconfined aquifer has a characteristic shape
consisting of a steep early-time segment, a flatter intermediate segment, and a
steeper late-time segment. The early segment behaves like the Theis (1935) solution
with S = Ssb (water release due to bulk medium relaxation), the late segment
behaves like the Theis (1935) solution with S = Ssb+ Sy (Gambolati 1976) (water
release due to water table drop), and the intermediate segment represents a transition
between the two. Distance-drawdown plots from unconfined aquifer tests do not
show a similar inflection or change in slope and do not produce good estimates of
storage parameters.

9.3 Early Unconfined Well Test Solutions

9.3.1 Moving Water Table Solutions Without Confine
Storage

The Theis (1935) solution for confined aquifers can only reproduce either the early
or late segments of the unconfined time-drawdown curve (see Fig. 9.2). Boulton
(1954a) suggested it is theoretically unsound to use the Theis (1935) solution for
unconfined flow because it does not account for vertical flow to the pumping well.
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He proposed a new mechanism for flow toward a fully penetrating pumping well
under unconfined conditions. His formulation assumed flow is governed by ∇2s = 0,
with transient effects incorporated through the water table boundary condition.
He treated the water table (where ψ = 0, located at z = ξ above the base of the
aquifer) as a moving material boundary subject to the condition h(r,z = ξ , t) = z.
He considered the water table without recharge to be comprised of a constant set of
particles, leading to the kinematic boundary condition

D
Dt

(h− z) = 0 (9.12)

which is a statement of conservation of mass for an incompressible fluid. Boulton
(1954a) considered the Darcy velocity of the water table as uz = −Kz

Sy

∂h
∂ z and

ur =−Kr
Sy

∂h
∂ r and expressed the total derivative as

D
Dt

=
∂
∂ t

− Kr

Sy

∂h
∂ r

∂
∂ r

− Kz

Sy

∂h
∂ z

∂
∂ z

, (9.13)

where Kr and Kz are radial and vertical hydraulic conductivity components. Using
(9.13), the kinematic boundary condition (9.12) in terms of drawdown is

∂ s
∂ t

− Kr

Sy

(
∂ s
∂ r

)2

− Kz

Sy

(
∂ s
∂ z

)2

=−Kz

Sy

∂ s
∂ z

. (9.14)

Boulton (1954a) utilized the wellbore and far-field boundary conditions of Theis
(1935). He also considered the aquifer rests on an impermeable flat horizontal
boundary ∂h/∂ z|z=0 = 0; this was also inferred by Theis (1935) because of his
two-dimensional radial flow assumption. Dagan (1967) extended Boulton’s water
table solution to the partially penetrating case by replacing the wellbore boundary
condition with

lim
r→0

r
∂ s
∂ r

=

{
Q

2πK(�−d) b− � < z < b− d

0 otherwise
, (9.15)

where � and d are the upper and lower boundaries of the pumping well screen, as
measured from the initial top of the aquifer (Fig. 9.1).

The two sources of nonlinearity in the unconfined problem are the following:
(1) the boundary condition is applied at the water table, the location of which is
unknown a priori, and (2) the boundary condition applied on the water table includes
s2 terms.

In order to solve this nonlinear problem, both Boulton and Dagan linearized it by
disregarding second-order components in the free-surface boundary condition (9.14)
and forcing the free surface to stay at its initial position, yielding
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∂ s
∂ t

=−Kz

Sy

∂ s
∂ z

z = h0, (9.16)

which now has no horizontal flux component after neglecting second-order terms.
Equation (9.16) can be written in nondimensional form as

∂ sD

∂ tD
=−KDσ∗ ∂ sD

∂ zD
zD = 1, (9.17)

where KD = Kz/Kr is the dimensionless anisotropy ratio and σ∗ = S/Sy is the
dimensionless storage ratio.

Both Boulton (1954a) and Dagan (1967) solutions reproduce the intermediate
and late segments of the typical unconfined time-drawdown curve, but neither of
them reproduces the early segment of the curve. Both are solutions to the Laplace
equation and therefore disregard confined aquifer storage, causing pressure pulses
to propagate instantaneously through the saturated zone. Both solutions exhibit an
instantaneous step-like increase in drawdown when pumping starts.

9.3.2 Delayed Yield Unconfined Response

Boulton (1954b) extended Theis’ transient confined theory to include the effect of
delayed yield due to movement of the water table in unconfined aquifers. Boulton’s
proposed solutions (1954b; 1963) reproduce all three segments of the unconfined
time-drawdown curve. In his formulation of delayed yield, he assumed as the water
table falls, water is released from storage (through drainage) gradually, rather than
instantaneously as in the free-surface solutions of Boulton (1954a) and Dagan
(1967). This approach yielded an integrodifferential flow equation in terms of
vertically averaged drawdown s∗ as

∂ 2s∗

∂ r2 +
1
r

∂ s∗

∂ r
=

[
S
T

∂ s∗

∂ t

]
+

{
αSy

∫ t

0

∂ s∗

∂τ
e−α(t−τ) dτ

}
(9.18)

which Boulton linearized by treating T as constant. The term in square brackets
is instantaneous confined storage, and the term in braces is a convolution integral
representing storage released gradually since pumping began, due to water table
decline. Boulton (1963) showed the time when delayed yield effects become
negligible is approximately equal to 1

α , leading to the term “delay index.” Prickett
(1965) used this concept, and through analysis of large amount of field drawdown
data with Boulton (1963) solution, he established an empirical relationship between
the delay index and physical aquifer properties. Prickett proposed a methodology
for estimation of S, Sy, K, and α of unconfined aquifers by analyzing pumping tests
with the Boulton (1963) solution.
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Although Boulton’s model was able to reproduce all three segment of the
unconfined time-drawdown curve, it failed to explain the physical mechanism of
the delayed yield process because of the nonphysical nature of the “delay index” in
the Boulton (1963) solution.

Streltsova (1972a) developed an approximate solution for the decline of the water
table and s∗ in fully penetrating pumping and observation wells. Like Boulton
(1954b), she treated the water table as a sharp material boundary, writing the
two-dimensional depth-averaged flow equation as

∂ 2s∗

∂ r2 +
1
r

∂ s∗

∂ r
=

S
T

(
∂ s∗

∂ t
− ∂ξ

∂ t

)
. (9.19)

The rate of water table decline was assumed to be linearly proportional to the
difference between the water table elevation ξ and the vertically averaged head
b− s∗,

∂ξ
∂ t

=
Kz

Sybz
(s∗ − b+ ξ ) (9.20)

where bz = b/3 is an effective aquifer thickness over which water table recharge is
distributed into the deep aquifer. Equation (9.20) can be viewed as an approximation
to the zero-order linearized free-surface boundary condition (9.16) of Boulton
(1954a) and Dagan (1967). Streltsova considered the initial condition ξ (r, t = 0) = b
and used the same boundary condition at the pumping well and the outer boundary
(r → ∞) used by Theis (1935) and Boulton (1963). Equation (9.19) has the solution
(Streltsova 1972b)

∂ξ
∂ t

=−αT

∫ t

0
e−αT (t−τ) ∂ s∗

∂τ
dτ (9.21)

where αT = Kz/(Sybz). Substituting (9.21) into (9.20) produces solution (9.18) of
Boulton (1954b, 1963); the two solutions are equivalent. Boulton’s delayed yield
theory (like that of Streltsova) does not account for flow in unsaturated zone but
instead treats water table as material boundary moving vertically downward under
influence of gravity. Streltsova (1973) used field data collected by Meyer (1962)
to demonstrate unsaturated flow had virtually no impact on the observed delayed
process. Although Streltsova’s solution related Boulton’s delay index to physical
aquifer properties, it was later found to be a function of r (Neuman 1975; Herrera
et al. 1978). The delayed yield solutions of Boulton and Streltsova do not account for
vertical flow within the unconfined aquifer through simplifying assumptions; they
cannot be extended to account for partially penetrating pumping and observation
wells.

Prickett’s pumping test in the vicinity of Lawrenceville, Illinois (Prickett 1965),
showed that specific storage in unconfined aquifers can be much greater than
typically observed values in confined aquifers—possibly due to entrapped air
bubbles or poorly consolidated shallow sediments. It is clear the elastic properties
of unconfined aquifers are too important to be disregarded.
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9.3.3 Delayed Water Table Unconfined Response

Boulton’s (1954b; 1963) models encountered conceptual difficulty explaining the
physical mechanism of water release from storage in unconfined aquifers. Neuman
(1972) presented a physically based mathematical model that treated the unconfined
aquifer as compressible (like Boulton 1954b, 1963 and Streltsova 1972a,b) and the
water table as a moving material boundary (like Boulton 1954a and Dagan 1967).
In Neuman’s approach, aquifer delayed response was caused by physical water
table movement, and he therefore proposed to replace the phrase “delayed yield”
by “delayed water table response.”

Neuman (1972) replaced the Laplace equation of Boulton (1954a) and Dagan
(1967) by the diffusion equation; in dimensionless form, it is

∂ 2sD

∂ r2
D

+
1
rD

∂ sD

∂ rD
+KD

∂ 2sD

∂ z2
D

=
∂ sD

∂ tD
. (9.22)

Like Boulton (1954a) and Dagan (1967), Neuman treated the water table as a
moving material boundary, linearized it (using (9.17)), and treated the anisotropic
aquifer as three-dimensional axisymmetric. Like Dagan (1967), Neuman (1974)
accounted for partial penetration. By including confined storage in the governing
equation (9.22), Neuman was able to reproduce all three parts of the observed
unconfined time-drawdown curve and produce parameter estimates (including the
ability to estimate Kz) very similar to the delayed yield models.

Compared to the delay index models, Neuman’s solution produced similar fits to
data (often underestimating Sy, though), but Neuman (1975, 1979) questioned the
physical nature of Boulton’s delay index. He performed a regression fit between the
Boulton (1954b) and Neuman (1972) solutions, resulting in the relationship

α =
Kz

Syb

[
3.063− 0.567log

(
KDr2

b2

)]
(9.23)

demonstrating α decreases linearly with logr and is therefore not a characteristic
aquifer constant. When ignoring the logarithmic term in (9.23), the relationship α =
3Kz/(Syb) proposed by Streltsova (1972a) is approximately recovered.

After comparative analysis of various methods for determination of specific
yield, Neuman (1987) concluded the water table response to pumping is a much
faster phenomenon than drainage in the unsaturated zone above it.

Malama (2011) recently proposed an alternative linearization of (9.14), approx-
imately including the effects of the neglected second-order terms, leading to the
alternative water table boundary condition of

Sy
∂ s
∂ t

=−Kz

(
∂ s
∂ z

+β
∂ 2s
∂ z2

)
z = h0 (9.24)
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where β is a linearization coefficient [L]. The parameter β provides additional
adjustment of the shape of the intermediate portion of the time-drawdown curve
(beyond adjustments possible with KD and σ∗ alone), leading to improved estimates
of Sy. When β = 0, (9.24) simplifies to (9.16).

9.3.4 Hybrid Water Table Boundary Condition

The solution of Neuman (1972, 1974) was accepted by many hydrologists “as
the preferred model ostensibly because it appears to make the fewest simplifying
assumptions” (Moench et al. 2001). Despite acceptance, Nwankwor et al. (1984)
and Moench (1995) pointed out that significant difference might exist between
measured and model-predicted drawdowns, especially at locations near the water
table, leading to significantly underestimated Sy using Neuman’s models (e.g.,
see Fig. 9.2). Moench (1995) attributed the inability of Neuman’s models to give
reasonable estimates of Sy and capture this observed behavior near the water table
due to the later’s disregard of “gradual drainage.” In an attempt to resolve this
problem, Moench (1995) replaced the instantaneous moving water table boundary
condition used by Neuman with one containing a Boulton (1954b) delayed yield
convolution integral:

∫ t

0

∂ s
∂τ

M

∑
m=1

αme−αm(t−τ) dτ =−Kz

Sy

∂ s
∂ z

(9.25)

This hybrid boundary condition (M = 1 in Moench (1995)) included the convolution
source term Boulton (1954b, 1963) and Streltsova (1972a,b) used in their depth-
averaged governing flow equations. In addition to this new boundary condition,
Moench (1995) included a finite radius pumping well with wellbore storage,
conceptually similar to how Papadopulos and Cooper Jr. (1967) modified the
solution of Theis (1935). In all other respects, his definition of the problem was
similar to Neuman (1974).

Moench’s solution resulted in improved fits to experimental data and produced
more realistic estimates of specific yield (Moench et al. 2001), including the use
of multiple delay parameters αm (Moench 2003). Moench et al. (2001) used (9.25)
with M = 3 to estimate hydraulic parameters in the unconfined aquifer at Cape Cod.
They showed that M = 3 enabled a better fit to the observed drawdown data than
obtained by M < 3 or the model of Neuman (1974). Similar to the parameter α in
Boulton’s model, the physical meaning of αm is not clear.
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9.4 Unconfined Solutions Considering Unsaturated Flow

As an alternative to linearizing the water table condition of Boulton (1954a), the
unsaturated zone can be explicitly included. The nonlinearity of unsaturated flow is
substituted for the nonlinearity of (9.14). By considering the vadose zone, the water
table is internal to the domain, rather than a boundary condition. The model-data
misfit in Fig. 9.2 at “late intermediate” time is one of the motivations for considering
the mechanisms of delayed yield and the effects of the unsaturated zone.

9.4.1 Unsaturated Flow Without Confined Aquifer Storage

Kroszynski and Dagan (1975) were the first to account analytically for the effect
of the unsaturated zone on aquifer drawdown. They extended the solution of
Dagan (1967) by accounting for unsaturated flow above the water table. They
used Richards’ equation for axisymmetric unsaturated flow in a vadose zone of
thickness L

Kr
1
r

∂
∂ r

(
k(ψ)r

∂σ
∂ r

)
+Kz

∂
∂ z

(
k(ψ)

∂σ
∂ z

)
=C(ψ)

∂σ
∂ t

ξ < z < b+L (9.26)

where σ = b+ψa − h is unsaturated zone drawdown [L], ψa is air-entry pressure
head [L], 0 ≤ k(ψ) ≤ 1 is dimensionless relative hydraulic conductivity, C(ψ) =
dθ/dψ is the moisture retention curve [1/L], and θ is dimensionless volumetric
water content (see inset in Fig. 9.1). They assumed flow in the underlying saturated
zone was governed by the Laplace equation (like Dagan (1967)). The saturated and
unsaturated flow equations were coupled through interface conditions at the water
table expressing continuity of hydraulic heads and normal groundwater fluxes,

s = σ ∇s ·n = ∇σ ·n z = ξ (9.27)

where n is the unit vector perpendicular to the water table.
To solve the unsaturated flow equation (9.26), Kroszynski and Dagan (1975)

linearized (9.26) by adopting the Gardner (1958) exponential model for the relative
hydraulic conductivity, k(ψ) = eκa(ψ−ψa), where κa is the sorptive number [1/L]
(related to pore size). They adopted the same exponential form for the moisture
capacity model, θ (ψ) = eκk(ψ−ψk), where ψk is the pressure at which k(ψ) = 1,
κa = κk, and ψa = ψk, leading to the simplified form C(ψ) = Syκaeκa(ψ−ψa). In
the limit as κk = κa → ∞, their solution reduces to that of Dagan (1967). The
relationship between pressure head and water content is a step function. Kroszynski
and Dagan (1975) took unsaturated flow above the water table into account but
ignored the effects of confined aquifer storage, leading to early-time step-change
behavior similar to Boulton (1954a) and Dagan (1967).
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9.4.2 Increasingly Realistic Saturated–Unsaturated
Well Test Models

Mathias and Butler (2006) combined the confined aquifer flow equation (9.22) with
a one-dimensional linearized version of (9.26) for a vadose zone of finite thickness.
Their water table was treated as a fixed boundary with known flow conditions,
decoupling the unsaturated and saturated solutions at the water table. Although they
only considered a one-dimensional unsaturated zone, they included the additional
flexibility provided by different exponents (κa �= κk). Mathias and Butler (2006)
did not consider a partially penetrating well, but they did note the possibility of
accounting for it in principle by incorporating their uncoupled drainage function in
the solution of Moench (1997), which considers a partially penetrating well of finite
radius.

Tartakovsky and Neuman (2007) similarly combined the confined aquifer flow
equation (9.22), but with the original axisymmetric form of (9.26) considered by
Kroszynski and Dagan (1975). Also like Kroszynski and Dagan (1975), their unsat-
urated zone was characterized by a single exponent κa = κk and reference pressure
head ψa =ψk. Unlike Kroszynski and Dagan (1975) and Mathias and Butler (2006),
Tartakovsky and Neuman (2007) assumed an infinitely thick unsaturated zone.

Tartakovsky and Neuman (2007) demonstrated flow in the unsaturated zone is
not strictly vertical. Numerical simulations by Moench (2008) showed groundwater
movement in the capillary fringe is more horizontal than vertical. Mathias and Butler
(2006) and Moench (2008) showed using the same exponents and reference pressure
heads for effective saturation and relative permeability decreases model flexibility
and underestimates Sy. Moench (2008) predicted an extended form of Tartakovsky
and Neuman (2007) with two separate exponents, a finite unsaturated zone, and
wellbore storage would likely produce more physically realistic estimates of Sy.

Mishra and Neuman (2010) developed a new generalization of the solution of
Tartakovsky and Neuman (2007) that characterized relative hydraulic conductivity
and water content using κa �= κk, ψa �= ψk and a finitely thick unsaturated zone.
Mishra and Neuman (2010) validated their solution against numerical simulations
of drawdown in a synthetic aquifer with unsaturated properties given by the model
of van Genuchten (1980). They also estimated aquifer parameters from Cape Cod
drawdown data (Moench et al. 2001), comparing estimated van Genuchten (1980)
parameters with laboratory values (Mace et al. 1998).

Mishra and Neuman (2011) further extended their 2010 solution to include a
finite-diameter pumping well with storage. Mishra and Neuman (2010, 2011) were
the first to estimate non-exponential model unsaturated aquifer properties from
pumping test data, by curve-fitting the exponential model to the van Genuchten
(1980) model. Analyzing pumping test data of Moench et al. (2001) (Cape Cod,
Massachusetts) and Nwankwor et al. (1984, 1992) (Borden, Canada), they estimated
unsaturated flow parameters similar to laboratory-estimated values for the same
soils.



9 Unconfined Aquifer Flow Theory: From Dupuit to Present 199

9.5 Future Challenges

The conceptualization of groundwater flow during unconfined pumping tests has
been a challenging task that has spurred substantial theoretical research in the field
hydrogeology for decades. Unconfined flow to a well is nonlinear in multiple ways,
and the application of analytical solutions has required utilization of advanced
mathematical tools. There are still many additional challenges to be addressed
related to unconfined aquifer pumping tests, including:

• Hysteretic effects of unsaturated flow. Different exponents and reference pres-
sures are needed during drainage and recharge events, complicating simple
superposition needed to handle multiple pumping wells, variable pumping rates,
or analysis of recovery data.

• Collecting different data types. Validation of existing models and motivating
development of more realistic ones depends on more than just saturated zone
head data. Other data types include vadose zone water content (Meyer 1962) and
hydrogeophysical data like microgravity (Damiata and Lee 2006) or streaming
potentials (Malama et al. 2009).

• Moving water table position. All solutions since Boulton (1954a) assume the
water table is fixed horizontal ξ (r, t) = h0 during the entire test, even close to
the pumping well where large drawdown is often observed. Iterative numerical
solutions can accommodate this, but this has not been included in an analytical
solution.

• Physically realistic partial penetration. Well test solutions suffer from the
complication related to the unknown distribution of flux across the well screen.
Commonly, the flux distribution is simply assumed constant, but it is known that
flux will be higher near the ends of the screened interval that are not coincident
with the aquifer boundaries.

• Dynamic water table boundary condition. A large increase in complexity comes
from explicitly including unsaturated flow in unconfined solutions. The kine-
matic boundary condition expresses mass conservation due to water table decline.
Including an analogous dynamic boundary condition based on a force balance
(capillarity vs. gravity) may include sufficient effects of unsaturated flow, without
the complexity associated with the complete unsaturated zone solution.

• Heterogeneity. In real-world tests, heterogeneity is present at multiple scales.
Large-scale heterogeneity (e.g., faults or rivers) can sometimes be accounted in
analytical solutions using the method of images or other types of superposition.
A stochastic approach (Neuman et al. 2004) could alternatively be developed to
estimate random unconfined aquifer parameter distribution parameters.

Despite advances in considering physically realistic unconfined flow, most real-
world unconfined tests (e.g., Wenzel 1942, Nwankwor et al. 1984, 1992, or Moench
et al. 2001) exhibit nonclassical behavior that deviates from the early–intermediate–
late behavior predicted by the models summarized here. We must continue to strive
to include physically relevant processes and representatively linearize nonlinear
phenomena, to better understand, simulate, and predict unconfined flow processes.
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