
Chapter 5
Analytic Modeling of Transient Multilayer Flow

Mark Bakker

Abstract An approach is presented for the semi-analytic simulation of transient
flow in systems consisting of an arbitrary number of layers. Storage in both aquifer
layers and leaky layers is taken into account. Flow in the system is generated by
wells and line-sinks. Wells and line-sinks may be open to an arbitrary number
of layers, which allows for the simulation of multi-aquifer wells, abandoned
wells, partially penetrating streams, and linear fractures that provide a hydraulic
connection between aquifer layers.

5.1 Introduction

The objective of this chapter is to present an analytic element approach for the
simulation of transient groundwater flow in multilayer systems. The approach
allow for the simulation of transient flow in systems consisting of an arbitrary
number of layers. The storage in both aquifer layers and leaky layers is taken
into account. In this chapter, the flow system may contain an arbitrary number
of wells and line-sinks. Wells and line-sinks may be open to an arbitrary number
of layers, which allows for the simulation of multi-aquifer wells, abandoned
wells, partially penetrating streams, and linear fractures that provide a hydraulic
connection between aquifer layers.

Application of an analytic approach has three major benefits over the application
of commonly used grid-based models. First, the model domain does not have to
be discretized areally in, for example, triangles or rectangles. This means that
the accuracy of the solution does not depend on the size of the computational
grid, hydrogeological features do not have to be fitted to the computational grid
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or vice versa, and the hydraulic head may be computed at any location in the
aquifer. Second, the head may be evaluated at any time while the accuracy does not
depend on a selected time step. And third, the model domain is infinite, avoiding
the problem of selecting boundary conditions along the boundaries of the model
domain, which is often difficult in the phreatic aquifer and almost impossible in
deeper aquifers. Meaningful results are obtained only when significant head changes
do not extend beyond hydrogeologic features that are not included in the model.

The approach for transient multilayer modeling presented in this chapter is a
culmination and extension of a number of techniques. It applies the theory for
transient multi-aquifer flow of Hemker and Maas (1987) and uses concepts of
the analytic element method for single aquifer flow (Strack 1989, 2003; Haitjema
1995) and multi-aquifer flow (Bakker and Strack 2003) and the Laplace-transform
analytic element method (Furman and Neuman 2003; Kuhlman and Neuman 2009;
Bakker and Kuhlman 2011). Analytic element solutions are computed in the Laplace
domain. A solution in the physical domain is obtained through numerical Laplace
inversion using the algorithm of De Hoog et al. (1982). The presented approach has
been implemented in the computer program TTim (ttim.googlecode.com). Several
benchmark problems are discussed, and a detailed example of a pumping well near
a meandering river in a multilayer setting is discussed at the end of this chapter.

5.2 Main Approximations

Aquifer systems are conceptualized as consisting of two types of horizontal layers:
aquifer layers and leaky layers. The Dupuit approximation is adopted for flow in
aquifer layers which means that the resistance to flow in the vertical direction
is neglected within an aquifer layer (e.g., Strack 2003), but flow is still three-
dimensional (Strack 1984). Flow in leaky layers is approximated as vertical. Each
layer is approximated as homogeneous. Changes in the transmissivity due to
unconfined conditions are not taken into account, as the transmissivity is constant
within an aquifer layer in both space and time. The presented approach is applicable
to systems that may be approximated as linear. Nonlinear conditions such as streams
that carry water only part of the year are not simulated.

5.3 Previous Work

Several approaches have been developed for the analytic solution of specific
problems of transient flow in multilayer systems (i.e., no time stepping or areal
discretization). Notwithstanding the elegance of many of these solutions, they are
not reviewed here. Only a few general approaches have been published that allow
for the analytic simulation of transient flow to wells in multilayer systems. Hemker
and Maas (1987) and Hemker (1999a,b) present a series of solutions for flow
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to wells with different types of boundary conditions using a Laplace-transform
approach. Superposition of these solutions is allowed as long as the boundary
conditions do not interfere with each other. Application of the approach of Hemker
and Maas (1987) for the simulation of abandoned wells (multi-aquifer wells with
a net zero discharge) is presented in Cihan et al. (2011). Veling and Maas (2009)
presented a solution strategy for three-dimensional flow in multilayer systems, i.e.,
the Dupuit approximation is not adopted and the head varies horizontally and
vertically within a layer. In all these papers, the inverse Laplace transform was
carried out numerically using either the Schapery or Stehfest algorithms (Schapery
1962; Stehfest 1970). Nordbotten et al. (2004) presented an analytic approximate
approach for the simulation of pumping wells and abandoned wells in aquifers
that are separated by aquicludes. Strack (2009) presented the generating analytic
element approach, which may also be used for the simulation of transient flow
(Strack 2006). Fitts (2010) developed a multilayer analytic element approach for
the simulation of transient flow that approximates both the areal leakage between
aquifers and the release from storage with radial basis functions but relaxes some
of the approximations adopted in this chapter, including a transmissivity that
varies with the head in unconfined aquifers and horizontal anisotropy. Furman and
Neuman (2003) and Kuhlman and Neuman (2009) developed the Laplace-transform
analytic element method for single-aquifer flow, which allows for the general
simulation of transient flow, and present examples of pumping wells near circular
inhomogeneities. Bakker and Kuhlman (2011) apply the Laplace-transform analytic
element method to simulate transient flow around impermeable walls in a single
aquifer and transient flow between a well and a stream in a two-aquifer system. The
cited papers on the Laplace-transform analytic element method compute the inverse
Laplace transform numerically with the algorithm of De Hoog et al. (1982), which
is also used in this chapter. Some advantages of this algorithm over, for example,
Stehfest and Schapery, are discussed later on in this chapter.

5.4 Mathematical Model

The governing system of differential equations in the Laplace domain is derived
here. The derivation is given in term of potentials and essentially follows the
derivation in terms of heads given in Hemker and Maas (1987). Consider aquifer
layer n sandwiched between leaky layers n on top and n+1 at the bottom (Fig. 5.1).
Three-dimensional Dupuit flow in aquifer layer n is governed by

Tn∇2hn = Sn
∂hn

∂ t
+ qb,n − qt,n+1 (5.1)

where hn(x,y) [L] is the head in aquifer layer n, Tn [L2/T] and Sn [−] are the
transmissivity and storage coefficient of aquifer layer n, qb,n [L/T] is the upward
leakage through the bottom of leaky layer n, qt,n+1 is the upward leakage through



98 M. Bakker

aquifer layer n

leaky layer n

leaky layer n+1

qb,n

q
t,n+1

q
t,n

q
b,n+1

aquifer layer n+1

aquifer layer n−1

Bn

Hn

x

z

Fig. 5.1 Numbering of
aquifer layers and leaky
layers in a multilayer system

the top of leaky layer n+1, ∇2 is the two-dimensional horizontal Laplacian, and t is
time. The horizontal components of the specific discharge vector, qx,n and qy,n, may
be obtained with Darcy’s law and do not vary vertically within an aquifer layer:

qx,n =−kn
∂hn

∂x
qy,n =−kn

∂hn

∂y
(5.2)

where kn is the horizontal hydraulic conductivity of layer n. The vertical component
of the specific discharge vector varies linearly within an aquifer layer between qt,n+1

at the bottom and qb,n at the top (see Fig. 5.1).
The discharge vector in layer n, with components Qx,n and Qy,n, is the vertically

integrated horizontal specific discharge vector. Qx,n and Qy,n may be written as

Qx,n = Hnqx,n =−∂φn

∂x
Qy,n = Hnqy,n =−∂φn

∂y
(5.3)

where φn = Tnhn is the discharge potential, Hn is the thickness of aquifer layer n,
and Tn = knHn. Equation (5.1) may now be written as

∇2φn =
1

Dn

∂φn

∂ t
+ qb,n− qt,n+1 (5.4)

where Dn = Tn/Sn is the aquifer diffusivity. Laplace transformation of (5.4) gives

∇2φ̄n =
p

Dn
φ̄n + q̄b,n − q̄t,n+1 (5.5)

where Laplace-transformed variables are indicated with a bar and p is the complex
Laplace-transform parameter.
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Once a solution is obtained for the Laplace-transformed potential, a solution for
the potential in the physical domain is obtained through solution of the Bromwich
contour integral (e.g., Sneddon 1972):

φn = L−1{φ̄n}= 1
2π i

∫ γ+i∞

γ−i∞
φ̄neptdp (5.6)

where γ is chosen to the right of any singularities in φ̄n. Integration of the Bromwich
integral is carried out numerically in the complex plane using the algorithm of
De Hoog et al. (1982).

5.5 Flow Between Aquifer Layers

An equation is derived for the upward flux from aquifer layer n through leaky layer
n to aquifer layer n− 1 by considering one-dimensional vertical flow through leaky
layer n (Fig. 5.1); this derivation closely follows (Hemker and Maas 1987). Flow in
the leaky layer is governed by

∂ 2η
∂ z2 =

σn

κn

∂η
∂ t

(5.7)

where η is the head in leaky layer n and κn [LT−1] and σn [L−1] are the vertical
hydraulic conductivity and specific storage of leaky layer n, respectively. The head
at the top and bottom of the leaky layer are equal to the head in the overlying and
underlying aquifers:

η(z = 0) = hn η(z = Bn) = hn−1 (5.8)

where Bn is the thickness of leaky layer n (see Fig. 5.1). Laplace transformation of
the differential equation and boundary conditions leads to the ordinary differential
equation and boundary conditions:

d2η̄
dz2 = α2

n η̄ (5.9)

η̄(z = 0) = h̄n η̄(z = Bn) = h̄n−1 (5.10)

where αn =
√

pσn/κn. The solution for η̄ is straightforward (e.g., Strack 1989)

η̄ =
h̄n−1 sinh(αnz)+ h̄n sinh[αn(Bn − z)]

sinh(αnBn)
(5.11)

so that
dη̄
dz

=
αnh̄n−1 cosh(αnz)−αnh̄n cosh[αn(Bn − z)]

sinh(αnBn)
(5.12)



100 M. Bakker

The Laplace-transformed vertical flux q̄t,n at the top of leaky layer n is obtained with
Darcy’s law as

q̄t,n =−κn
dη̄
dz

(z = Bn) =− κnαnh̄n−1

tanh(αnBn)
+

κnαnh̄n

sinh(αnBn)
(5.13)

The following new variables are introduced:

an =
αnBn

tanh(αnBn)
bn =

αnBn

sinh(αnBn)
(5.14)

The flux at the top of leaky layer n (5.13) may now be written as

q̄t,n =
−anh̄n−1 + bnh̄n

cn
(5.15)

where cn = Bn/κn is the resistance to vertical flow of leaky layer n. Similarly, the
flux at the bottom of leaky layer n is

q̄b,n =
−bnh̄n−1 + anh̄n

cn
(5.16)

For the special case that the top of the leaky layer is impermeable, a similar
derivation gives for η̄ and its derivative:

η̄ =
cosh[αn(Bn − z)]

cosh(αnBn)
h̄n (5.17)

dη̄
dz

= −αn sinh[αn(Bn − z)]
cosh(αnBn)

h̄n (5.18)

so that the vertical flux at the bottom of the leaky layer is

q̄b,n = dn
h̄n

cn
(5.19)

where
dn = αnBn tanh(αnBn) (5.20)

When aquifer layers n and n+ 1 are not separated by a leaky layer, the vertical
flux between aquifer layers is computed with a standard finite difference scheme.
The resistance to vertical flow cn between aquifer layers n and n−1 is computed as

cn =
Hn

2kv,n
+

Hn+1

2kv,n+1
(5.21)
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where kv,n and Hn are the vertical hydraulic conductivity and thickness of aquifer
layer n, respectively. The vertical flux between the aquifer layers is now computed as

q̄t,n = q̄b,n =
−h̄n−1 + h̄n

cn
(5.22)

Comparison with (5.15) and (5.16) shows that for this case, an = bn = 1.

5.6 System of Differential Equations

Consider once again the differential equation for aquifer layer n (5.5). Use of (5.15)
and (5.16) for the flux through the bottom and top of the aquifer layer, respectively,
gives

∇2φ̄n =
p

Dn
φ̄n − bn

h̄n−1

cn
+ an

h̄n

cn
+ an+1

h̄n

cn+1
− bn+1

h̄n+1

cn+1
(5.23)

or in terms of the transformed discharge potential

∇2φ̄n =−bnφ̄n−1

cnTn−1
+

(
an

cnTn
+

an+1

cn+1Tn
+

p
Dn

)
φ̄n − bn+1φ̄n+1

cn+1Tn+1
(5.24)

This differential equation is valid for any aquifer layer, except for the top layer
(n = 1) and the bottom layer (n = N).

The differential equation for aquifer layer 1 is obtained by substituting n = 1 into
Eq. (5.24). Three options are considered for the top of aquifer layer 1. First, aquifer
layer 1 may be bounded on top by an impermeable layer in which case the vertical
resistance of leaky layer 1 may be specified as c1 = ∞ and division by ∞ gives zero.
Second, aquifer layer 1 may be covered by a leaky layer, which is bounded on top
by a fixed water level equal to zero, in which case φ̄0 = 0. And third, aquifer layer 1
may be covered by a leaky layer, which is bounded on top by an impermeable layer,
in which case q̄b,1 reduces to (5.19) and the differential equation for aquifer layer 1
becomes

∇2φ̄1 =

(
d

c1T1
+

a2

c2T1
+

p
D1

)
φ̄1 − b2φ̄2

c2T2
(5.25)

Finally, the bottom aquifer layer is considered to be bounded at the bottom by an
impermeable layer (although the other two conditions as applied to the top aquifer
layer may be incorporated as well), which means that cN+1 = ∞ in the differential
equation for aquifer layer N.

The system of differential equations (5.24) for n = 1, . . . ,N may be written as a
matrix differential equation

∇2φ̄φφ = Aφ̄φφ (5.26)
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where φ̄φφ is a vector of which component n is φ̄n. As may be seen from (5.24), matrix
A is a tri-diagonal N by N matrix. For complex Laplace parameters p, A has N
complex eigenvalues wn (n = 1, . . . ,N) and N corresponding complex eigenvectors
vn (n = 1, . . . ,N) and may be factorized as

A = VWV−1 (5.27)

where column n of V is formed by eigenvector vn and W is a diagonal matrix with
corresponding eigenvalue wn on the diagonal of row n. Substitution of (5.27) for A
in (5.26) and multiplication of both sides with V−1 gives

∇2f = Wf (5.28)

where
f = V−1φ̄φφ . (5.29)

Equation (5.28) represents a system of N uncoupled differential equations, which
may be written as

∇2 fn = fn/λ 2
n n = 1, . . . ,N (5.30)

where λ 2
n = 1/wn is introduced for convenience. This differential equation is

referred to as the modified Helmholtz equation. The problem has now been reduced
to the solution of N uncoupled modified Helmholtz equations.

Once a solution for all fn is determined, a solution for φ̄φφ is obtained as a linear
combination

φ̄φφ =
N

∑
n=1

βn fnvn (5.31)

where βn are coefficients that are chosen to meet desired boundary conditions.

5.7 Laplace-Transformed Potential for Multilayer Wells
and Line-sinks

Two types of analytic elements are used in this chapter: wells and line-sinks.
Equations are discussed here for elements with either a unit impulse discharge or
a unit step discharge screened in layer s. The function fn for a well with discharge
Q(t) (positive for taking water out of the aquifer) and radius rw that fulfills (5.30) is
(e.g., Strack 1989)

fn =− Q̄
2π

λnK0(r/λn)

rwK1(rw/λn)
(5.32)

The Laplace transform of a unit impulse discharge at t = 0 is

Q̄ = 1 (5.33)
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while the Laplace transform of a unit step discharge at t = 0 is

Q̄ =
1
p

(5.34)

For a well with an infinitely small radius, (5.32) reduces to

fn =− Q̄
2π

K0(r/λn) (5.35)

The function fn for a line-sink is obtained through integration of the function for a
point sink with infinitely small radius along a line. This integration may be carried
out analytically near the line-sink using an infinite series expansion of K0(r/λn)
(Gusyev and Haitjema 2011), even when λn is complex (Bakker and Kuhlman
2011). Farther away from the line-sink, accurate results are obtained with Gaussian
quadrature integration, as the series expansion does not converge on a computer
with commonly used finite precision arithmetic (Bakker and Kuhlman 2011).

For both wells and line-sinks, the potential in the Laplace domain may be written
as (5.31). The coefficients βn need to be chosen such that the well or line-sink is
screened in the desired layer s by making sure that

Vβββ = es (5.36)

where βββ is a vector of which component n equals βn and es is a unit vector with all
zeros except for component s, which is equal to 1. To show that this does indeed give
the desired result, consider, for example, the behavior of (5.35) for r approaching
zero (Digital Library of Mathematical Functions, 2012, Eq. 10.30.3):

− Q̄
2π

K0(r/λn)∼ Q̄
2π

ln(r) for r → 0 (5.37)

Substitution of (5.37) for fn in (5.31) and application of (5.36) gives

φ̄φφ ∼ Q̄
2π

ln(r)
N

∑
n=1

βnvn =
Q̄
2π

ln(r)es for r → 0 (5.38)

so that near the well φ̄φφ indeed behaves as a well in layer s and not in the other layers.

5.8 Analytic Element Solution

In the previous section, equations were presented for the Laplace-transformed
potential for a well and line-sink with unit impulse or step discharge screened in one
layer. A solution in the Laplace domain is obtained though superposition of these
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potentials. The discharge of each potential is a free parameter. The free parameter
may be specified (e.g., the discharge of a well) or may be computed to meet a certain
boundary condition (e.g., the inflow into a stream segment is computed so that the
head at the center of a stream segment has a certain value). All free parameters
are determined simultaneously as, for example, the inflow of one stream segment
influences the head at another stream segment and vice versa. The construction
of the system of linear equations that needs to be solved to determine the free
parameters of an analytic element model is discussed elsewhere (e.g., Strack 1989).
Alternatively, a solution may be obtained iteratively by computing the parameters of
one element at a time while keeping the parameters of the other elements fixed and
by looping through all elements until the solution converges (Janković and Barnes
1999).

Multilayer wells and line-sinks may be used to model a variety of boundary
conditions, including the following five:

1. A well or stream with a head that is fixed through time.
2. A well or stream with a head that varies through time.
3. Wells or stream segments that are screened in a single layer for which the total

discharge is known.
4. A well that is screened in an arbitrary number of layers and for which only the net

discharge is specified. The discharge of the well in each screened layer needs to
be determined such that the head at the well screen is the same in each screened
layer. For an abandoned well, the net discharge is zero.

5. A linear fault with a negligible resistance to vertical flow that cuts through
multiple aquifer layers. Such a fault may be simulated with a string of line-sinks.
Each line-sink is open to multiple layers and has a zero net discharge.

Once an analytic element solution is obtained in the Laplace domain, it is con-
verted back to the physical domain through numerical integration of the Bromwich
integral (5.6) using the algorithm of De Hoog et al. (1982). One of the major
advantages of using this algorithm is that an accurate solution may be obtained for
one base-10 log cycle of time using a single set of M optimal Laplace parameters
p, where M is commonly between 30 and 40. This means that M analytic element
solutions need to be computed for each log cycle. Once these M solutions are stored,
the potential can be evaluated for any time within the log cycle. It is pointed out
that this is a major benefit of the De Hoog et al. algorithm. Most other commonly
used algorithms, including Stehfest and Schapery, require a solution in the Laplace
domain for a different set of p values for each time t, although Schapery only uses
1 real value of p and Stehfest uses on the order of 10–15 real p values.

Stepwise variation of the specified discharge or head of an element through time
is simulated using superposition. It is noted that the function fn for flow to a well
(5.35) may be evaluated for any Laplace-transformed discharge Q̄. However, back
transformation for a step function that starts at an arbitrary time t0 is difficult for
most if not all existing algorithms for inverse Laplace transformations, including
the ones mentioned in this chapter.
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Superposition through time is fast, however, when the De Hoog et al. algorithm
is used. The Laplace-transform solution needs to be computed for a few log
cycles after which superposition through time only requires the repeated back
transformation of a different linear combination of the Laplace-transform solution.

5.9 Benchmarking

The presented approach has been implemented in the free and open-source computer
program TTim, which is written in Python using the packages NumPy and SciPy
(Oliphant 2007; Pérez et al. 2011), among others. Some computationally demanding
functions are written in FORTRAN and compiled into Python extensions using f2py.
The design of TTim is based on the object-oriented design for analytic element
models developed by Bakker and Kelson (2009).

Implementation of transient multilayer wells in TTim was benchmarked against
results from MLU Lite, the free two-layer version of the commercial MLU code
(www.microfem.com/products/mlu.html), which is an implementation of the papers
by Hemker referred to earlier. Single layer and multilayer well solutions were also
benchmarked against numerical solutions (Louwyck et al. 2011). The line-sink
solution has been benchmarked against a row of wells and against a high-resolution
numerical solution obtained with MODFLOW (Harbaugh 2005). These benchmarks
are presented in the TTim manual (Bakker 2010). Two benchmark problems are
presented here. First, TTim is benchmarked against a solution for transient three-
dimensional flow in an unconfined aquifer by Neuman (1972), which shows the
delayed response of the water table. Second, TTim is benchmarked against an
analytic solution for periodic pumping in a multi-aquifer system, which tests the
capabilities of TTim for wells with a time-varying discharge in aquifer-aquitard
systems.

5.10 Benchmark Against Pumping Well in an Unconfined
Aquifer

Consider transient three-dimensional flow to a pumping well in an unconfined
aquifer. The well penetrates the aquifer fully, and the inflow is uniform over the
thickness of the aquifer. An analytical solution was presented by Neuman (1972),
who approximates the aquifer thickness as constant, which is reasonable when the
drawdown is small compared to the saturated thickness. Phreatic storage is taken
into account through the boundary condition at the top of the aquifer.

Neuman’s problem is solved with TTim by also using a constant transmissivity.
An unconfined aquifer is divided into ten model layers each with a thickness of
1 m, a hydraulic conductivity of 1 m/d, and elastic storage. A thin eleventh layer of

www.microfem.com/products/mlu.html
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Fig. 5.2 Dimensionless drawdown vs. dimensionless time at one aquifer thickness from a well in
an unconfined aquifer. σ = Selastic/Sphreatic. Black lines are copied from Fig. 2 of Neuman (1972),
while the crosses are computed with TTim. The dashed line is for the case σ = 10−3 when the well
drawdown is uniform rather than the inflow

1 cm thickness is added on top of the aquifer and has phreatic storage S = 0.1. Five
different values of the elastic storage coefficient are considered (see Fig. 5.2). The
ratio of elastic and phreatic storage is called σ .

In the TTim model, one well is screened in layers 2–11. The discharge is specified
for each layer to be 1 m3/d for a total of 10 m3/d. This facilitates comparison
with the solution of Neuman, who specifies a uniform inflow along the well face.
A comparison between the TTim solution and the Neuman solution is made for
the curves of Fig. 2 in Neuman (1972). This graph (shown in Fig. 5.2) shows
dimensionless drawdown vs. dimensionless time, both on a log scale, at the bottom
of the aquifer at a distance of one aquifer thickness from the well for an isotropic
aquifer. The effect of the delayed response of the water table is clearly visible in
Fig. 5.2, but it is noted that this effect is much less pronounced when the curves are
plotted on a linear scale rather than a log scale. The curves represent different values
of σ . The crosses in Fig. 5.2 represent the drawdown computed with TTim in the
bottom layer of the model; they compare well to the Neuman solution. The dashed
line is for the case that σ = 10−3 when the well drawdown is uniform (computed
with TTim) and only differs slightly from the uniform inflow case. The difference
between uniform head and uniform inflow may be larger for partially penetrating
wells, especially near the well.
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5.11 Benchmark Against Periodic Pumping
in a Multi-aquifer System

Consider periodic pumping in a system of three aquifers separated by two leaky
layers (aquitards). All aquifer layers are 10 m thick and all leaky layers are 2 m thick.
Aquifer and leaky layer properties are given in Table 5.11; the storage coefficient
of the leaky layer is set to zero to facilitate comparison with an exact solution. A
well is screened in aquifer 1 and has a discharge that varies periodically on a daily
basis as

Q = 1,000cos(2πt) (5.39)

In TTim, each day is divided into 100 equal intervals with constant discharge. The
head variation computed with TTim at a distance of five aquifer thicknesses from
the well is shown by the solid line in Fig. 5.3; the largest amplitude represents
aquifer 1, while the smallest amplitude represents aquifer 3. The exact solution for
this problem is obtained through application of matrix functions, as described by
Maas (1986), and is shown with dashed lines in Fig. 5.3. The exact solution is for
a well that has been pumping with a periodic discharge forever, while the well in
TTim starts pumping at time t = 0. Within a day, the effect of the different initial
conditions is negated and TTim matches the exact periodic solution closely.

Table 5.1 Aquifer data for
periodic pumping benchmark

Layer T (m2/d) Ss (m−1) c (d)

Leaky layer 1 – 0 ∞
Aquifer layer 1 200 1e-4 –
Leaky layer 2 – 0 100
Aquifer layer 2 100 1e-4 –
Leaky layer 3 – 0 200
Aquifer layer 3 100 1e-4 –

Fig. 5.3 Head vs. time at five
aquifer thicknesses from
periodic well. TTim solution
(solid) vs. exact solution
(dash). TTim well starts at
t = 0. Largest amplitude is
aquifer 1; smallest amplitude
is aquifer 3
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Fig. 5.4 Head vs. time in all
three aquifers at
(x,y) = (−50,0); drawdown
decreases with depth (upper
graph). Head along y = 0 at
t = 200 days for all three
aquifers; drawdown decreases
with depth. Dots represent
same case but with properly
sealed abandoned well (lower
graph)

The same aquifer system is used to demonstrate the effect of an abandoned multi-
aquifer well near a pumping well with a variable discharge. The pumping well is
located at (x,y) = (0,0) in layer 1. The discharge is 100 m3/d for 100 days, followed
by 100 days with a discharge of 200 m3/d, after which the pump is turned off. An
abandoned multi-aquifer well with a radius of 0.1 m is located at (x,y) = (50,0)
and is screened in all three aquifers. The head in the aquifer at (x,y) = (−50,0) is
shown as a function of time in the upper graph of Fig. 5.4; the drawdown is smaller
in deeper aquifers. In the lower graph of Fig. 5.4, the head is shown along the line
y= 0 at the end of pumping (t = 200 days). The drawdown is again smaller in deeper
aquifers. Note that the head is equal in all three aquifers in the abandoned well at
(x,y) = (50,0). The dotted line represents the same situation for the case that the
abandoned well is properly sealed.

5.12 Drawdown and Stream Depletion for a Well Pumping
near a Meandering River

The hypothetical problem of a pumping well near a meandering river is solved to
demonstrate some of the capabilities of the method (Fig. 5.5). Consider a stratified
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river
h=0m

well
Q=100 m3=d

k=2m/d S=0:11

k=1m/d S=0:00022

k=5m/d S=0:00043

k=10m/d S=0:00044

k=4m/d S=0:00025

×A

well

Fig. 5.5 A pumping well and an observation well near a meandering river (left). A cross section
along the dotted line (right)

aquifer that consists of 5 layers, each with a thickness of 2 m. The aquifer properties
of the five layers are given in Fig. 5.5. The top layer contains the phreatic surface and
has phreatic storage. The vertical hydraulic conductivity is 10% of the horizontal
one. The river is narrow and penetrates the top 4 m of the aquifer. The water level in
the river is constant, and there is no leaky bed, which means that along the river the
head in aquifer layers 1 and 2 equals the river level. The well is screened from 4 to
8 m below the top. The well starts pumping with a discharge 100 m3/d at time t = 0.
The head is uniform along the well bore and the radius of the well is 0.3 m.

The change of the head in the aquifer caused by the pumping well is simulated.
The aquifer is discretized vertically in 5 model layers. The river is modeled with
25 line-sinks that are screened in layers 1 and 2. The modeled part of the river is
continued (straight) for another 300 m south and 350 m north of the section shown
in Fig. 5.5. The outflow is uniform along each line-sink but varies with time such
that the head is zero at the centers of the line-sinks at all times. The well is screened
in layers 3 and 4, and the discharge in each layer varies such that the head is the
same at the well screen in both layers at all times.

The head change at point A is shown vs. time for all layers in Fig. 5.6. The
horizontal axis represents the time since pumping started and has a log scale. The
delayed response of the water table is clearly visible. The head decrease in layers
2–5 seems to plateau after about an hour, but the head decrease continues again after
the water table at point A starts to decrease. It seems that a steady-state situation is
approached after 1 year of pumping.
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Fig. 5.6 Head vs. time at
point A

Fig. 5.7 Head contours in layer 1 (left) and layer 3 (right) after 100 days of pumping

Contour plots of the head in layers 1 and 3 after 100 days of pumping are
shown in Fig. 5.7. In the left contour plot of Fig. 5.7, it may be seen that there is
drawdown on both sides of the river in layer 1. The maximum drawdown in layer 1
is approximately 55 cm and occurs slightly southeast of the well rather than exactly
above the well. The maximum drawdown in layer 1 on the opposite side of the river
is slightly more than 20 cm. The drawdown in layer 3 is shown in the right contour
plot of Fig. 5.7 and extends well beyond the river, which is screened in layers 1 and
2 only. The drawdown at the well is 2.5 m after 100 days of pumping. Head contours
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Fig. 5.8 Head contours in cross-section along part of the dotted line shown in Fig. 5.5 after 100
days of pumping. Horizontal and vertical scale are equal. Layer discretization is shown on left and
right axes

Fig. 5.9 Stream depletion vs.
time

after 100 days of pumping in a cross-sectional view along part of the dotted line in
Fig. 5.5 are shown in Fig. 5.8. The lines are created by contouring the heads at the
centers of the aquifer layers. The contour lines clearly show the drawdown below
the river and around the well screen.

The stream depletion, the induced recharge from the modeled river segment into
the aquifer, is shown vs. time in Fig. 5.9. In addition to the total river recharge, the
river recharge into layers 1 and 2 is shown separately. It takes approximately 6 days
until the recharge from the river segment has reached 50% of the well discharge
and 55 days until it has reached 80%. In the absence of any other aquifer features,
it is expected that the induced recharge will eventually be equal to the discharge
of the well. The induced recharge has only reached 96% of the well discharge
after 100 years of pumping. It needs to be realized, however, that only part of the
river is simulated in the model (the north–south length is 900 m). At the end of the
simulation, the first and last line-sink of the string start to supply water to the aquifer.
The remaining 4% of water is supplied by parts of the river or other hydrogeologic
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features that are not in the model and is supplied in TTim through the release of
storage. The omission of these distant features has a minor effect on the solution at
later time only.

5.13 Conclusions and Future Direction

An analytic element approach was presented for the modeling of transient flow
in multilayer systems. The approach is based on the Laplace-transform analytic
element method and may be applied to simulate transient flow in multilayer systems
consisting of an arbitrary number of layers while taking storage within both aquifer
layers and leaky layers into account. Analytic element solutions are computed in the
Laplace domain while the solution in the physical domain is obtained numerically
through application of the algorithm by De Hoog et al. (1982). This algorithm
may be applied to obtain an accurate solution for one log cycle of time using
a single set of ∼ 40 complex Laplace parameters, which allows for the efficient
computation of analytic element solutions including boundary conditions that vary
stepwise through time. Benchmark problems were presented for three-dimensional
flow to a fully penetrating well in an unconfined aquifer and for a periodic well in a
three-aquifer system. An example was shown for a multilayer well near a partially
penetrating meandering stream. The example consists of five aquifer layers with
different properties. The delayed response of the water table was simulated and the
stream depletion was computed. The presented approach is implemented in the free
and open-source computer program TTim (ttim.googlecode.com).

Application of the approach will benefit from development of analytic elements
for impermeable or leaky walls, infiltration areas, inhomogeneities, lakes or other
surface water features with a leaky bed, and vertical faults with different types of
boundary conditions. These elements have all been developed for steady multi-
aquifer flow (Bakker 2006, 2007; Anderson and Bakker 2008) and may be modified
for transient flow. Application of an integrated flux boundary condition, using
the approach of Strack (2009), and applied by Gusyev and Haitjema (2011) may
improve performance of some of these new elements.

Extension of the presented approach to nonlinear systems such as ephemeral
streams, drains, or aquifer layers that dry up may not be feasible. Some of these
problems may be simulated semi-analytically using, for example, the approach of
Strack (2006) or Fitts (2010). Strack (2009) presented an approach that allows for
analytic element modeling of flow in aquifers with continuously varying properties,
which has the potential to rival grid-based methods where a cell-by-cell variation of
aquifer properties is trivial.

Analytic element modeling of transient multi-aquifer flow is attractive, as
the input files are short and easy, and no grid, time-stepping, or closed model
boundaries are needed. Analytic element models are inherently parallel, so that
models with large numbers of analytic elements may be run on computer clusters

ttim.googlecode.com
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(Janković et al. 2006). The one-to-one correspondence between analytic elements
and hydrogeologic features naturally allow for step-wise modeling to gain insight in
the flow system.
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