
Chapter 4
Sparsity-Promoting Solution of Subsurface
Flow Model Calibration Inverse Problems

Behnam Jafarpour

Abstract Identification of heterogeneous hydraulic aquifer properties from limited
dynamic flow measurements typically leads to underdetermined nonlinear inverse
problems that can have many solutions, including solutions that are geologically
implausible and fail to predict future performance of the system. The problem
is usually regularized by incorporating implicit or explicit prior information to
stabilize the solution techniques and to obtain plausible solutions. A meaningful
regularization must be informed by the physics of the problem, distinct properties
of the formation under investigation, and other available sources of information
(e.g., outcrop, well logs, and seismic). This chapter proposes sparsity as an intrinsic
property of spatially distributed aquifer hydraulic properties that can be used to
regularize the solution of the related ill-posed inverse problem. Inspired by recent
advances in sparse signal processing, formalized under the compressed sensing
paradigm, proper sparsifying bases are introduced to describe aquifer hydraulic
conductivity distribution. Such descriptions give rise to a sparse reconstruction
formulation of the subsurface flow model calibration inverse problem, which can
be efficiently solved following recent algorithmic developments in sparse signal
processing. The compressed sensing paradigm specifies the conditions under which
unique solutions to underdetermined linear system of equations exist and can be
computed efficiently. Sparsity is a fundamental notion in compressed sensing, and
is often present in many natural images. In particular, sparsity is prevalent in
describing many spatially correlated aquifer properties. The practical implications
of compressed sensing are as far reaching as the solution of underdetermined system
of equations is in science and engineering. This chapter introduces the guidelines set
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forth by sparse reconstruction techniques and the compressed sensing paradigm and
incorporates them to formulate and solve ill-posed groundwater model calibration
inverse problems.

4.1 Groundwater Model Calibration

Development of underground hydrological, environmental, and energy resources
relies on accurate modeling and prediction of fluid flow and transport in these
heterogeneous and anisotropic porous environments. However, understanding sub-
surface physical, chemical, and biological rock properties and the related trans-
port processes is severely complicated by our inability to “see into the earth”.
Determination of rock hydraulic properties and the underlying flow and transport
processes inherently involves significant uncertainty because we can neither observe
nor easily access these properties from the surface (National Research Council
2000; Yeh et al. 2008). Data limitation results in extensive interpolation and
interpretation efforts that lead to the introduction of a significant level of uncertainty
and bias in characterizing subsurface flow property distributions.

To reduce the uncertainty in describing the subsurface flow and transport
properties, it is common to calibrate subsurface models against dynamic perfor-
mance data such as pressure and flow rates. Model calibration is accomplished by
formulating and solving an inverse problem where limited dynamic data is used
to infer a large number of unknown parameters. Since the number of unknowns
to identify is often overwhelmingly greater than the available data, the resulting
inverse problems tend to be severely ill-posed and have non-unique solutions.
In general, however, the true dimensionality of subsurface flow and transport
models is far less than the size of the discretized numerical models used to
describe them. This is attributed to the intrinsic geologic continuity that leads
to extensive spatial correlations in the rock physical property distributions. An
obvious way to improve the solution of ill-posed inverse problems is to collect
more independent data. However, data acquisition is an expensive endeavor that
is limited by economic constraints. In addition to increasing the data, advanced
computational tools may be used to reduce the number of unknown parameters
in the model calibration inverse problem. Several explicit and implicit parameter
reduction (parameterization) techniques are available to perform this. In this chapter,
a novel model calibration approach is proposed based on recent developments in
sparse signal processing and approximation theory, formalized as the compressed
sensing paradigm (Donoho 2006).

4.1.1 Flow Equations and Inverse Modeling Formulation

Mathematical modeling of multiphase fluid flow in porous media is widely used
to quantify and predict fluid displacement patterns in the subsurface environment.
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The general form of the governing equations for two-phase immiscible flow in
porous media can be derived from the mass conservation principle and Darcy’s law
as (Aziz and Settari 1979; Bear and Verruijt 1987)
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where subscripts w and n indicate wetting and non-wetting phases, λ represents
the phase mobility, B the volume of a phase as a function of pressure relative to
its volume at standard pressure, u the intrinsic permeability, φ the porosity of the
medium as a function in space, P the phase pressure, γ the phase density, Z the
gravity potential, S the phase saturation, and q sink and source fluxes.

The partial differential equations (PDEs) in (4.1) contain four unknown state
variables, i.e., Pw, Pn, Sw, Sn. For a given set of model inputs, the system is closed
by the following two constitutive equations that account for capillary pressure and
the physical saturation constraint in a fully saturated medium:

Pn −Pw = Pc (Sw)

Sn + Sw = 1. (4.2)

Forward integration of Eqs. (4.1) and (4.2) is used to compute pressure and
saturation solutions in time, as a function of model inputs.

Solutions to (4.1) and (4.2) are only reliable and meaningful when accurate
model inputs are used. Since direct measurement of rock hydraulic properties is
difficult, we frequently need to estimate these parameters by inverting scattered
point measurements and indirect data. An estimate for the unknown parameter
vector u can be obtained by minimizing a suitable objective function, such as

min
u∈RN

J (u) = (dobs − g(u))T C−1
d (dobs − g(u))+Reg(u)

s.t. f(u,x(u),z) = 0. (4.3)

Here, J is the objective function, u denotes the unknown parameters such as
permeability, dobs represents a vector of observed quantities, g(u) is the pre-
dicted observations, Cd refers to the covariance of measurement errors, f is a
constraint vector containing the conservation Eqs. (4.1) and (4.2), x(u) refers to
the dependent state variables, and z represents a vector containing other known
model input parameters. Note that in the above notation, ‖dobs − g(u)‖2

C−1
d

=

(dobs − g(u))T C−1
d (dobs − g(u)), and the term Reg(u) is used to represent a general

regularization term that will be discussed later. A major issue encountered when
solving the resulting inverse problem is the choice of parameterization. The standard
grid-based descriptions for the unknown field u often result in ill-posed inverse
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problems that have more unknowns than can be uniquely estimated from available
data. As a result, multiple solutions can be found that reproduce the observed
flow and pressure data but provide different predictions of the flow and transport
behavior in the future. In the last decade, however, significant progress has been
made in conditioning numerical groundwater and hydrocarbon reservoir models
to flow and transport data (see Kitanidis and Vomvoris 1983; McLaughlin and
Townley 1996; Carrera et al. 2005; Hill and Tiedeman 2007; Oliver et al. 2008).
Deterministic and stochastic inversion algorithms with varying levels of complexity
have been developed and applied to solve subsurface flow inverse problems. Two
common approaches for mitigating instability and non-uniqueness issues in solving
ill-posed inverse problems are (a) reducing the number of unknown parameters, i.e.,
parameterization (e.g., Jacquard and Jain 1965; Doherty 2003; Gavalas et al. 1976),
and (b) incorporating prior information in the form of constraints, i.e., regularization
(e.g., Tikhonov and Arsenin 1977; Tonkin and Doherty 2005; Hill and Tiedeman
2007; Oliver et al. 2008).

4.1.2 Parameterization and Regularization

Parameterization methods can be broadly classified into spatial and transform-
domain methods. Spatial parameterization methods were introduced to subsurface
inverse modeling as early as 1965 in the form of zonation (Jacquard and Jain 1965)
and have evolved into adaptive multiscale estimation methods (e.g., Chavent and
Bissell 1998; Grimstad et al. 2003; Aanonsen 2008). The general objective of this
approach is to identify spatial regions (zones) in the aquifer model that can be
aggregated and assigned a single constant property value for the inversion purpose.
The main difficulties in implementing zonation are related to the identification
of zones with similar properties and the non-geologic sudden discontinuities
at the boundaries of the identified regions. Transform-domain parameterization
methods reduce the redundancy in grid-based property descriptions by recognizing
that geologic features exhibit strong spatial correlations. Hence, adopting high-
resolution grid-based spatial descriptions for inverse modeling is inefficient since
the goal is to estimate spatially correlated geologic features from low-resolution
flow data. Several transform-domain parameterization techniques have been applied
to subsurface flow and transport inverse problems including principle component
analysis (PCA) (Gavalas et al. 1976), discrete cosine transform (DCT) (Ahmed et al.
1974; Jafarpour and McLaughlin 2009a,b), and discrete wavelet transform (DWT)
(Mallat 2008; Jafarpour et al. 2010; Sahni and Horne 2005). These methods attempt
to provide a compact representation of the parameters to substantially reduce the
number of unknowns in the inverse problem. A key issue in implementing these
techniques is identifying the significant basis components that explain the main
variability in the parameter fields. This issue has been elegantly addressed by the
recent developments in sparse signal processing, which is the central topic of this
chapter.
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Regularization of ill-posed subsurface inverse problems can also be carried out
by constraining the solution to honor explicit prior models, available static data,
and/or some global attributes of the parameter field such as smoothness (e.g.,
Tikhonov and Arsenin 1977; Constable et al. 1987; Tonkin and Doherty 2005). In
general, regularization serves two primary purposes: it (a) stabilizes the solution of
an ill-posed inverse problem and (b) constrains the solution to adequately reproduce
the observed data without generating unjustifiably complex artifacts (Constable
et al. 1987). By using prior information about the parameters, directly or indirectly,
regularization is applied to mathematically improve the behavior of the inverse
modeling objective function and/or implicitly reduce the dimensionality of the
parameter search space. Several regularization methods with varying levels of
sophistication have been applied to subsurface characterization inverse problems
(e.g., Tikhonov and Arsenin 1977; Portniaguine and Zhdanov 1999; Tonkin and
Doherty 2005; Hill and Tiedeman 2007; Oliver et al. 2008). In some cases (Jafarpour
et al. 2010), a combination of parameterization and regularization may prove
more effective as certain solution attributes (e.g., sparsity) may only be realized
and effectively exploited in a properly selected transform domain. An instance
of this combined case is discussed in more detail next. To motivate the use of
sparse reconstruction for model calibration, the fundamental concept and practical
implications of compressed sensing paradigm are briefly introduced first, followed
by a simple illustrative example.

4.2 Sparse Reconstruction and Compressed Sensing

Consider the problem of solving the system of equations ΦΦΦv = u, where ΦΦΦ ∈
R

M×N . In many realistic applications M � N, rendering the problem severely
underdetermined. From classical linear algebra for M < N, this system of equations
does not yield a unique solution. When the solution vector v is known to be
sparse (i.e., many of its components are zero), however, one may hope to find a
unique solution by taking advantage of the knowledge about the solution sparsity.
This situation is illustrated with a simple example in Fig. 4.1. In this figure, an
underdetermined linear system of equations with M = 4 equations and N = 20
unknowns is sketched. In this case, the true solution vector v has only S = 4
nonzero components. Without exact knowledge of its sparsity (i.e., the number
and location of its nonzero elements), v cannot be identified from the available
measurements. As shown on the bottom part of Fig. 4.1, if the sparsity structure
of the solution v is perfectly known in advance, the system can be reduced to
an even-determined M = N = 4 linear system of equations. For many sparse
vectors, an apparently underdetermined problem often may be reduced to an (even-)
overdetermined problem if the sparsity structure is known. However, in reality, exact
a priori knowledge about the sparsity structure in the solution is not available. That
is, while it may be known that a given problem is likely to have sparse solutions,
the exact sparsity structure is usually unknown. When the solution is sufficiently
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Fig. 4.1 Schematic illustration of how knowledge of solution sparsity can lead to finding a unique
solution of underdetermined linear system of equations: a key unknown is the sparsity structure,
which must be estimated along with the value of the nonzero (active) elements

sparse, with increasing number of independent measurements, it is less likely to find
solutions that are sparser than the true solution and that satisfy the measurement
constraints. In the limit, as the number of independent measurements exceeds a
certain threshold, the true solution becomes the sparsest solution that satisfies the
linear measurement equations. Compressed sensing (Donoho 2006) formalizes the
conditions under which unique solutions to sparse underdetermined linear systems
of equations exist and can be computed efficiently. A general approach to finding a
sparse solution to ΦΦΦv = u is to formulate and solve a minimization problem of the
form

(PJ) : min
v

J (v) s.t. u = ΦΦΦv (4.4)

in which J (v) promotes solution sparsity. A good choice for J (v) is the number of
nonzero elements of the solution vector v. This leads to the sparse reconstruction
problem

(P0) : min
v

‖v‖0 s.t. u = ΦΦΦv, (4.5)

where ‖v‖0 counts the number of nonzero components of v. Solving (P0) leads to
a combinatorial problem that requires an exhaustive search over all possible sparse
subsets of v, which is NP-hard (Natarajan 1995). There is a vast literature concerned
with finding a reliable, efficient, and robust solution approach to (P0). It can be
shown (Donoho and Elad 2003) that a solution v with the number of nonzero entries

‖v‖0 <
1
2

(
1+

1
μ (ΦΦΦ)

)
, (4.6)
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where

μ (ΦΦΦ) = min
1≤k, j,≤m,k �= j

∣∣φT
k φ j

∣∣
‖φk‖2

∥∥φ j
∥∥

2

(4.7)

is the mutual coherence of ΦΦΦ and φ j is the jth column of ΦΦΦ, is necessarily the
sparsest solution.

From Eqs. (4.6) and (4.7), the (nearly) orthogonal sensing matrix ΦΦΦ has low
mutual coherence; thus, the solution of �p-norm optimization (p ≤ 1) is equivalent
to that of �0-norm optimization. Examples of sparse sampling matrices with low
mutual coherence that are frequently used in sparse reconstruction literature are
the Gaussian and Bernoulli random matrices. Compressive bases such as DCT and
DWT also have incoherent columns and are examples of possible candidates for
sparse reconstruction.

Efficient approximate solutions known as pursuit algorithms have been devel-
oped to solve (P0). The main practical algorithms are classified as the greedy
algorithms (GA), also known as matching pursuit (MP) (Tropp and Gilbert 2007;
Mallat and Zhang 1993; Couvreur and Bresler 2000), and the convex relaxation
techniques (Santosa and Symes 1986; Chen et al. 1998; Rao and Kreutz-Delgado
2003; Karlovitz 1970; Gorodnitsky and Rao 1997). A greedy strategy for finding a
solution is to avoid the exhaustive combinatorial search by taking locally optimal
steps (Tropp and Gilbert 2007). In this approach, starting with an initially empty
matrix and v0 = 0, iterative construction of a k-term approximation vk is obtained
by maintaining a set of active columns and adding an additional column at each step.
The added column is chosen to maximally reduce the residual �2 error in approxi-
mating u with currently active columns (Tropp and Gilbert 2007). This procedure
is continued until a stopping criterion, usually an error threshold, is reached. The
computational complexity of the above greedy algorithm is significantly better than
an exhaustive search; however, the variants of this method mainly suffer from a lack
of robustness and guaranteed convergence to a sparse solution.

Convex relaxation methods (Chen et al. 1998; Donoho 2006) try to make the
problem more tractable by replacing the highly discontinuous �0-norm with a more
continuous sparsity-promoting penalty function. The �p-norm, i.e., J(v) = ‖v‖p =

(∑N
i=1 |vi|p)

1
p , with p ∈ (0,1], and J(v) = ∑ j v2

j/
(

β 2 + v2
j

)
, with β → 0 (referred

to as compactness constraint), are possible choices that behave similarly to the �p-
norm, for small p values (see Fig. 4.2). When the �p-norm with p ∈ (0,1] is used to
promote sparsity, a popular class of approximate algorithms to find a solution is the
iteratively reweighted least-squares (IRLS) technique (Chartrand and Yin 2008).
Note that although for p < 1 the norm definition is violated, the term �p-norm is
commonly used in the literature.

For p = 1, the problem reduces to a convex optimization problem of the form

(P1) : min
v

‖v‖1 s.t. u = ΦΦΦv, (4.8)

which is widely studied in the literature and recently formalized under compressed
sensing paradigm.
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Fig. 4.2 Behavior of |x|p for different values of p: (a) as p → 0, larger penalties are given to small
values of x (the function is convex for p ≥ 1). (b) Behavior of compactness constraint for different
values of β and as β → 0

For sufficiently sparse solutions when enough measurements are available and
the columns of ΦΦΦ are incoherent, the solution to the convex �1-norm minimization
problem is equivalent to the original problem in (P0). The main advantage of the
above convexification over other approximate solution techniques is mainly related
to the well-established efficient linear programming techniques (such as interior
point method) that can be used to solve the resulting optimization problem (Chen
et al. 1998). Several efficient methods have also been recently introduced for solving
the (P1) problem, including iteratively reweighted least-squares (Daubechies et al.
2004), iterated shrinkage algorithms (Daubechies et al. 2004; Figueiredo and
Nowak 2003; Elad et al. 2007), and step-wise algorithms such as least angle re-
gression (LARS) (Efron et al. 2004). Some of these greedy-type methods have been
applied to the general linear inverse problems in imaging applications (Daubechies
et al. 2004, 2008).

4.2.1 Illustrative Example

Let us now consider M direct observations of a parameter field u with dimension
N = 100. Under matrix transformation ΦΦΦ, the vector v is a S = 10-sparse repre-
sentation of u. Figure 4.3 displays the compressed sensing solutions for different
values of M. As can be verified from this figure, with inadequate observations, the
solutions are sparse, match the observed values perfectly, and have smaller �1-norm
than the reference vector. As M increases, it becomes more difficult to match the
increased number of measurements without increasing the �1-norm. At some value
of M, perfect reconstruction of the reference model is obtained because no solutions
with lower �1-norm can be found to reproduce the observations. Three observations
regarding this example are given as follows. First, replacing �0-norm with �1-
norm introduces a shrinkage property that, under equal observation match quality,
gives preference to solutions with underestimated coefficients. This implies that
the shrinkage property can lead to underestimated solutions in realistic problems
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Fig. 4.3 Compressed sensing solution of a simple underdetermined linear system of equations for
a S = 10-sparse parameter for different values of M; perfect reconstruction is achieved for M = 40;
top row shows the spatial representation of the reference (red) and estimated parameters (black);
the M observed elements are shown with blue dots; bottom row shows the reference (red) and
reconstructed (black) sparse solutions in the transform domain
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where perfect reconstruction is impossible due to observations noise. Second, the
convex nature of the problem implies that the identified solutions in each case
are the global minima. Third, the number of measurements required for perfect
reconstruction depends on the specifics of the problem, including the measurement
matrix and the measured components of the parameters. For Bernoulli and Gaussian
random measurements and sufficiently spare solutions, perfect reconstruction can
be achieved with a very high probability for M > O(S log(N/S)). For the example
shown in Fig. 4.3, the cumulative probabilities of perfect reconstruction over 1,000
trials with different number of random measurements are shown in Fig. 4.4 for both
S = 5 and S = 10. Perfect reconstruction with smaller number of measurements is
possible with lower probability, depending on the measured components.

While compressed sensing provides theoretical guarantees for solving under-
determined linear problems when the solution is sufficiently sparse, such general
conditions cannot be specified for nonlinear subsurface flow model calibration
problems. Nonetheless, the important guidelines derived from the linear case can be
used to facilitate the solution of nonlinear inverse problems. The most remarkable
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feature of the above sparsity-promoting algorithms is the selection property of the
�p-norm (for p ∈ (0,1]) that can identify the significant components of the solution.
This norm can be exploited to regularize nonlinear inverse problems where limited
observations are used to identify, from a large set of components with potentially
many irrelevant elements, a small subset with significant contribution in reproducing
the observations. In the next section, typical subsurface flow model calibration is
reformulated as a selection problem in which the sparsity-promoting nature of the
�p-norm is invoked to find the solution.

4.3 Sparsity-Promoting Groundwater Model Calibration

To formulate groundwater model calibration as a sparse reconstruction problem, a
sparse representation (approximation) of the unknown model parameters must be
available. An important step in this direction is to recognize that spatially correlated
features often have sparse representations in a properly designed transform domain.
In particular, geologic formations are piecewise continuous and exhibit strong
spatial correlations. Hence, a proper choice of decorrelating basis functions can
be applied to remove the spatial correlation, thereby substantially decreasing the
dimension of the parameter field. Such low-dimensional representations give rise
to reduced-order approximations that tend to preserve the most salient features of a
given geologic model while compromising insignificant details.

4.3.1 Sparse Representations of Aquifer Properties

Physical properties of geologic formations exhibit strong spatial correlations. This
strong correlation implies that the underlying physical property maps are amenable
to highly sparse or compact representations in a properly designed decorrelating
transform domain. Preconstructed compression bases and empirically learned
sparsifying transforms can be used to sparsely represent spatially variable aquifer
properties. While generic compressive bases can compactly approximate any given
image (property map), they are not as effective as sparse dictionaries that are
learned from reliable prior information for a particular application, e.g., subsurface
modeling. Sparse geologic dictionaries can be learned from reliable prior training
data and are more effective in capturing the expected variability in the formation of
interest.

4.3.1.1 Preconstructed (Generic) Sparsifying Transforms

Among notable preconstructed compression transforms are the discrete cosine
transform (DCT) that is used in the JPEG image compression (Ahmed et al. 1974;
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Britanak et al. 2006) and the discrete wavelet transforms (DWT) that is the basis
for the JPEG2000 compression standard (Daubechies 1988; Mallat 2008; Jafarpour
2011). In both methods, the property image is decomposed into its frequency
content. For most natural images, after transformation, only a fraction of the basis
components have significant contributions to reconstructing the original image,
implying that most natural images have sparse approximations in the DCT or DWT
domains.

The Discrete Cosine Transform

The DCT is a unitary linear transform that is widely used for image compression
because of its well-known near-optimal energy compaction and signal decorrelation
power. The one-dimensional forward DCT v(k),0 ≤ k ≤ N − 1, of a signal uN of
length N and its inverse transform can be expressed as (Britanak et al. 2006)

v(k) = α(k)
N−1

∑
n=0

u(n)cos

[
π (2n+ 1)k

2N

]
(4.9)

u(n) =
N−1

∑
k=0

α(k)v(k)cos

[
π (2n+ 1)k

2N

]
, (4.10)

where α(k1:N−1) =
√

2α(0) =
√

2
N . The DCT can be interpreted as a real-valued

case of the discrete Fourier transform (DFT) and inherits many of the properties of
the DFT. For an image with strong spatial correlation, the first few low-frequency
modes often adequately explain the main variability in the image. For example,
Fig. 4.5a shows the application of the DCT basis in compressing a channelized
permeability field. The DCT parameterization has recently been applied to inversion
of rock flow properties from flow data (Jafarpour and McLaughlin 2009a,b, 2008).
Extension of the DCT to more realistic three-dimensional problems with irregular
boundaries and unstructured grid systems is discussed in Bhark et al. (2011).

The Wavelet Transform

A wavelet is a function ψ(x) such that an orthonormal basis of wavelets ψ jk(x) =
2− j/2ψ(2− jx − k) can be generated by dilating and translating this function
(Daubechies 1988; Mallat 1989). The idea of the wavelet transform is to represent
any measurable, square-integrable 1-D function f (x) ∈ L2(R) as a limit of succes-
sive approximations, i.e.,

f = ∑
j,k

〈 f ,ψ jk〉ψ jk. (4.11)



84 B. Jafarpour

log−perm

20 40 60

50

100

150

200

250

RMSE=83

20 40 60

50

a b

100

150

200

250

RMSE=65

20 40 60

50

100

150

200

250

RMSE=44

20 40 60

50

100

150

200

250

log|DCT|

20 40 60

50

100

150

200

250

1 %

20 40 60

50

100

150

200

250

2 %

20 40 60

50

100

150

200

250

5 %

20 40 60

50

100

150

200

250

log−perm

20 40 60

20 40 60

50

100

150

200

250

RMSE=82

20 40 60

50

100

150

200

250

RMSE=62

20 40 60

50

100

150

200

250

RMSE=44

20 40 60

50

100

150

200

250

log|DWT|

50

100

150

200

250
20 40 60

1 %

50

100

150

200

250
20 40 60

2 %

50

100

150

200

250
20 40 60

5 %

50

100

150

200

250

Fig. 4.5 Compression power of the discrete cosine transform (a) and the discrete wavelet
transform (b). In each case, the first row shows the spatial representations, while the second row
displays the transformed coefficients; the first columns are related to the original images, while
the remaining columns show approximations with increasing number of retained coefficients (left
to right). The number on top of the plots in the second row shows the percentage of coefficients
retained in the approximated expansion. The DCT coefficients are usually clustered around the low-
frequency basis components (top-left corner), and the DWT coefficients have space localization
property. Both of these properties will be exploited to incorporate prior information in our sparse
reconstruction framework

Moreover, for j ∈ [1,2, . . .], ∑k∈Z〈 f ,ψ jk〉ψ jk expresses the difference between the
approximations of f with resolutions 2 j and 2 j−1. This leads to a multiresolution
analysis of L2(R) consisting of a ladder of spaces · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂
V−2 ⊂ ·· · and the existence of a function φ ∈ V0 such that φ0n(x) = φ(x − n)
constitute an orthonormal basis of V0.

Since φ generates a multiresolution analysis, it is called a scaling function. The
wavelet and scaling functions ψ and φ are related by

ψ(x) = ∑
n∈Z

(−1)nc(−n+ 1)φ(2x− n). (4.12)

For computation of the wavelet coefficients, a convolution followed by a “down-
sampling” is performed (Daubechies 1988) 〈 f ,ψ jk〉:

〈 f ,ψ jk〉= ∑
n

g(n− 2k)〈 f ,φ j−1n〉, 〈 f ,φ jk〉= ∑
n

h(n− 2k)〈 f ,φ j−1n〉, (4.13)

where h(n) = c(n)/
√

2,g(n) = (−1)nc(−n+ 1)/
√

2. Similarly, the scaling coeffi-
cients are

〈 f ,φ j−1m〉 = ∑
k

[h(m− 2k)〈 f ,φ jk〉+ g(m− 2k)〈 f ,ψ jk〉]. (4.14)
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Compared to Fourier-type methods, the DWT has the benefit of space-frequency
localization. This property is seen by comparing the first columns in Fig. 4.5a, b,
where, unlike the DCT coefficients, the wavelet coefficients reveal local spatial
information about the underlying features in the original spatial map. In inverse
problems, this localization benefit may be realized when sufficiently high-resolution
data is available to identify and resolve the local features in the solution (Jafarpour
2011). Nonetheless, this spatial localization may be exploited in the inversion to
incorporate prior sparse structures and/or to implement adaptive multiresolution
inversion.

4.3.1.2 Learned Sparse Geologic Dictionaries

As an alternative to generic compression bases, one can construct application-
specific sparse dictionaries from a training database. That is, using a training
database as prior knowledge, one can construct a matrix ΦΦΦ such that the projection
of the features in the training database onto ΦΦΦ becomes sparse. This approach is
widely used in computer vision and object recognition where a training database of
a specific object is available (e.g., face or fingerprint features). A learned dictionary
is more efficient for reconstructing an object that is similar to those in the training
database. In many subsurface characterization applications, such databases can be
readily constructed from prior knowledge using geostatistical simulation (Deutsch
and Journel 1998).

A relatively simple technique for learning sparse dictionaries from a prior
database is the K-SVD algorithm (Kreutz-Delgado et al. 2003; Aharon et al. 2006).
Suppose that a database of images containing L samples ũl=1:L is available. Either
of the following optimization problems can be solved to find a dictionary that yields
a sparse approximation to the samples in the database (Kreutz-Delgado et al. 2003;
Aharon et al. 2006):

min
ΦΦΦ,vl |Ll=1

‖vl‖0 s.t. ‖ũl −ΦΦΦvl‖2 ≤ ε, or (4.15)

min
ΦΦΦ,vl |Ll=1

‖ũl −ΦΦΦvl‖2 s.t. ‖vl‖0 = l0. (4.16)

Although there is no known practical algorithm for efficient solution of these equa-
tions, heuristic methods such as the method of directions (MOD) and K-SVD, have
been shown to perform reasonably well in finding an empirically learned dictionary
(Tropp and Gilbert 2007; Aharon et al. 2006). Unfortunately, the computational
complexity of these methods for large-scale problems is considerable. In image
processing application this issue is addressed through image segmentation to reduce
the dimension of the sparse dictionary.

A main difficulty in using learned dictionaries is that their efficiency depends on
the quality and representativeness of the prior database. Generic compression bases
such as DWT and DCT may be combined with learned sparse dictionaries to gener-
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Accounting for uncertainty in structural parameters can result in prior model realizations that have
very diverse continuity structure (right)

ate hybrid dictionaries that are robust against errors in the prior model (khaninezhad
and Jafarpour 2012). When the presumed prior information is incorrect, generic
bases with strong compression power are available to approximate the solution
of the inverse problem, an important advantage of the hybrid parameterization
approach.

4.3.1.3 Sparsity for Identification of Geologic Continuity

The selection property of the sparsity-promoting regularization is the fundamental
concept behind sparse inversion algorithms. A sparse reconstruction formulation
of an inverse problem is warranted if one expects the solution to be sparse.
Sparsifying transforms that were discussed above can be used to justify solution
sparsity. Another application in which solution sparsity is expected is when the
prior model of geologic continuity (e.g., variogram model) is unknown or uncertain,
resulting in very diverse datasets, with many irrelevant content. Figure 4.6 illustrates
a scenario where variogram model uncertainty can result in distinctly different
model realizations, to the extent that the continuity in most of the realizations
becomes irrelevant for reconstruction of the true property distribution. The diversity
(uncertainty) in the prior training dataset leads to a geologic dictionary with many
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Fig. 4.7 Top: diverse geologic dictionaries used to sparsely represent a diverse set of structural
continuity in a property field; sparsity is applicable since many of the elements used to represent
prior uncertainty are not expected to contribute to the solution. Bottom: approximate representation
of a reference model as a linear combination of a small subset from the diverse geologic dictionary

elements that have little or no contributions in reconstructing the true solution.
As a result, the problem is reduced to selection of very few relevant elements
from a diverse geologic dictionary, which can be achieved by sparsity-promoting
solution methods. Figure 4.7 shows an example diverse geologic dictionary obtained
by treating the variogram model parameters as uncertain random variables. This
geologic dictionary can be used to sparsely represent a property field with a given
continuity structure.

4.3.2 Sparse Model Calibration Formulation

In groundwater model calibration inverse problems, the relation between measur-
able quantities (e.g. flow rate and hydraulic head) and unknown parameters (e.g.,
permeability and porosity) is often nonlinear. While rigorous treatment of the
convergence behavior in nonlinear systems is nontrivial, new problem formulation
can still be developed to exploit sparsity and regularize the solution. Gradient-
based techniques may be used with nonlinear models to search for a sparse solution
by minimizing a sparsity-promoting regularized least-squares objective function as
discussed next.
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4.3.3 Nonlinear Model Calibration Using Sparse
Reconstruction

A sparsity-promoting version of the nonlinear inverse problem in (4.3) can be
expressed as

min
v

J (v) = ‖dobs − g(ΦΦΦv)‖2
C−1

d
+ γ2 ‖v‖p

p , (4.17)

where γ is a regularization parameter, u = ΦΦΦv, and an �p-norm approximation to
the �0-norm is used. Since ΦΦΦ is a known dictionary, one can compactly express the
problem as

min
v

J (v) = ‖dobs − g(v)‖2
C−1

d
+ γ2‖v‖p

p . (4.18)

When needed, the relation u = ΦΦΦv can be used to readily compute the spatial
parameter field (e.g., permeability distribution) u for any instance (iterate) of v.
This formulation of the model calibration inverse problem amounts to finding
sufficiently sparse solutions in the linear expansion functions ΦΦΦ. Gradient-based
optimization methods can be used to solve the above minimization, for example,
by using iteratively reweighted least-squares algorithm (Li and Jafarpour 2010).
However, care must be exercised when solving this minimization problem since
for p ≤ 1, the derivative of the �p-norm sparsity-promoting term is not defined for
zero components of v, a condition that is given the sparse nature of the solution. A
simple practical way to avoid this issue is to place a lower bound on the magnitude
of the components of v, i.e., |vi| ≥ ε .

4.3.4 Example Applications of Sparse Reconstruction

4.3.4.1 Example 1: Travel-Time Tomography

Consider a simple straight-ray cross-well tomography example to demonstrate the
effectiveness of sparse reconstruction for solving ill-posed subsurface characteri-
zation inverse problems. A simple straight-ray cross-well travel-time tomography
setup is shown in Fig. 4.8a. A uniformly spaced system of 10 sources is located
on the left end of the domain, and a symmetric array of 10 receivers is placed
on the right end of the interval. The resulting 100 arrival-time measurements are
used to infer the slowness structure of the medium (see Jafarpour and McLaughlin
2009c for additional details). The true slowness used to generate the synthetic
inversion data is shown in Fig. 4.8b. Denoting the spatial description of the medium
slowness as u and the travel-time tomography observations as dobs, the measurement
equations for this example can be written as dobs100×1 = ΨΨΨ100×2025u2025×1. Given
the compression property of the DCT basis for correlated spatial images (Jafarpour
and McLaughlin 2009a,b), the sparse reconstruction problem can be solved in a
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Fig. 4.8 Travel-time tomography example using compressed sensing reconstruction algorithm
in a 465-dimensional low-frequency DCT basis: (a) experimental setup with 10 transmitters
and 10 receivers resulting in a total of 100 measurements, (b) reference model with large-scale
continuity structure, (c) spatial representation of reconstruction results with increasing role of
sparsity regularization, and (d) reconstructed sparse solution corresponding to the results shown
in (c)

subspace defined by 465 low-frequency DCT basis components. That is, we write
the spatial description of the slowness as u2025×1 =ΩΩΩ2025×465v465×1, where v stands
for the DCT coefficients representing the slowness map and ΩΩΩ2025×465 denotes
the DCT forward transformation matrix (Jafarpour and McLaughlin 2009a,b). For
simplicity, the dimension subscripts are dropped hereafter, and the relation between
the unknown DCT parameters and arrival-time measurements is expressed as y =
ΨΨΨu = ΨΨΨΩΩΩv. Adopting the notation ΦΦΦ = ΨΨΨΩΩΩ, this equation is further simplified to
y = ΦΦΦv. The �1-norm regularization can now be applied to select and combine the
significant DCT components to construct a solution with the best match (in norm-2
sense) to the data. The convex �1 relaxation sparsity-promoting formulation of the
problem can be expressed as

min
v

J (v) = ‖u−ΦΦΦv‖2
2 + γ2‖v‖1 . (4.19)
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In Fig. 4.8c, the spatial representations of the inversion solutions with increasing
(from left to right) value of the regularization parameter, γ , are shown. The
corresponding DCT coefficients are depicted in Fig. 4.8d. The increasing trend
in the regularization parameter (left to right) results in increased sparsity of the
solution and in turn relatively larger data mismatches. It can be observed from
this example that promoting sparsity in the transform-domain appears to selectively
retain the relevant DCT coefficients and estimate their value to match the observed
data. It is this selection property of the sparsity penalty that can be exploited to
trim irrelevant components that may otherwise remain in the solution and generate
artifacts without affecting the data mismatch. When the regularization parameter
is too large, the shrinkage property of �1-norm regularization can lead to solution
underestimation (last column of Fig. 4.8c), which is an unintended by-product of
approximating �0-norm with �1-norm. In our recent publications (Li and Jafarpour
2010; Mohammad-khaninezhad et al. 2012a,b), some of the practical implications of
this approximation are discussed, and modified implementations are introduced to
mitigate this effect. The above example was used to illustrate how generic transform
domain sparse representations of subsurface features can be used to formulate and
solve regularized subsurface characterization inverse problems. Next, solution of
a nonlinear subsurface flow model calibration inverse problem is presented using
geologic dictionaries and a gradient-based minimization method.

4.3.4.2 Example 2: Groundwater Flow Model Calibration

The sparse nonlinear model calibration formulation in Eq. (4.18) is applied to
the top layer of the SPE10 model in this section. The model is two-dimensional
and has 60 × 220 = 13,200 grid blocks. The prior model realizations in this
case are constructed using the sgsim (Deutsch and Journel 1998) algorithm with
highly uncertain variogram model parameters to account for the uncertainty in
anisotropy direction. In this case, 3600 realizations are used to construct K = 500
K-SVD dictionary elements with a sparsity level of S = 50 (10%) (Mohammad-
khaninezhad et al. 2012a,b). This implies that all model realizations that are similar
to those in the prior library are expected to have S-term approximations in this
dictionary. Sample realizations from the prior model are shown in Fig. 4.9a. These
realizations have very different continuity structures with many patterns that are
not relevant to the reference model. The diverse geologic dictionary is used to
reflect the significant level of uncertainty that exists in the direction of continuity
in this example. As discussed in Mohammad-khaninezhad et al. (2012a,b), the
diversity of the dictionary provides additional support for solution sparsity as many
of the dictionary elements will have little or no contribution to the solution. For
this example, a two-phase (oil/water) simulation with 13 water injectors and 2 oil
producers is considered.

A gradient-based iteratively reweighted algorithm is used to solve the opti-
mization problem. The adjoint method is implemented for efficient computation
of the required gradients of the objective function with respect to the permeability
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using the top layer of the SPE10 model as an example: (a) samples from the initial realizations
with diverse continuity structure, (b) experimental simulation setup with 15 observation points
(wells), (c) reference log-permeability field, and (d) reconstructed log-permeability model

parameters. Since the permeabilities are linearly related to the K-SVD coefficients
(u = ΦΦΦv), the chain rule of differentiation can be conveniently applied to convert
the gradients with respect to the permeability field to the required gradients with
respect to the K-SVD coefficients. For brevity, only the final results are presented
in here; interested readers are referred to Mohammad-khaninezhad et al. (2012a,b)
for additional details about the K-SVD implementation, the problem setup, and
the algorithm used to solve the optimization problem. Figure 4.9b shows the
well configuration for this example, while Fig. 4.9c depicts the reference log-
permeability model. Figure 4.9d displays the log-permeability reconstruction results
from dynamic flow measurements collected every 15 days for a total of one year,
using the ell1-norm sparsity-promoting approach. The solution in this case uses
a small number of relevant elements from the dictionary to identify the large-
scale continuity trends in the reference log-permeability model. The estimated map
captures the general permeability trends in the field, with higher accuracy at the
vicinity of the observation points (well locations). The performance of the proposed
sparsity-promoting model calibration approach is also investigated in several other
examples (Jafarpour and McLaughlin 2009c; Jafarpour et al. 2010; Li and Jafarpour
2010; Mohammad-khaninezhad et al. 2012a,b). The preliminary results suggest that
sparsity-promoting model calibration methods hold significant potential to improve
the solution of ill-posed subsurface model calibration inverse problems. Additional
research is underway to explore some of the important properties of this approach
and its applicability to realistic field-scale problems.
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4.4 Conclusion

A novel subsurface flow model calibration workflow using recent advances in
sparse signal processing, known as compressed sensing, was presented. Since its
introduction, compressed sensing has received increasing attention in several fields
of science and engineering. Here, an overview of the approach and example applica-
tions of it were presented. Sparsity is a rich concept and is ubiquitous in subsurface
applications. Sparsity-promoting solution of model calibration inverse problems
can be achieved by taking advantage of the sparsity in properly designed/selected
transform-domain description of aquifer properties (e.g., in DCT and DWT bases
and in geologically learned sparse dictionaries). The selection property of the
sparsity-promoting inversion implies that the reconstruction results are less sensitive
to presence of inconsistent elements in a prior geologic dictionary since these
elements are typically given a zero coefficient (contribution) and are removed from
the reconstruction. In fact, the diversity of the prior geologic dictionary helps to
realize the sparsity of the solution since many of the existing dictionary elements
are likely to have little or no contributions to the solution. Overall, sparse model
calibration is a promising novel approach for improving the solution of ill-posed
subsurface inverse problems that is likely to attract further research attention to
develop more effective formulations and efficient implementations algorithms.
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