
Chapter 3
Fluid Pressure Redistribution Events
Within a Fault: Impact of Material Property
Correlation

Sean A. McKenna and Darin Q. Pike

Abstract Cellular automata (CA) models employ local rules to simulate large-scale
behavior. A previously developed CA model of fluid pressure redistribution events
within a 2D planar fault system undergoing compression is used to model the size
distribution of these events over time. Local fluid pressures exceeding a threshold
value cause a rupture (failure) of the surrounding rock, and the fluid pressure is
redistributed to surrounding cells. Spatial correlation of the fault compressibility
(β ) is varied over a range of nearly three orders of magnitude in a model domain
of 106 cells. The size distribution of all pressure redistribution events changes
from a power-law exponential form with a single slope when β is uncorrelated
to a power-law exponential form with two slopes at increasing correlation lengths
and then back to a single power-law exponential distribution that approximates a
uniform distribution as correlation lengths exceed the ergodic limit. The spatially
and temporally uniform pattern of events seen in the uncorrelated model rapidly
evolve to exhibit emergent behavior as the correlation length increases beyond
the grid cell size. Increasing spatial correlation leads to delays in the time to first
failure and decreases the time necessary for the ruptures to coalesce and span the
fault domain. The resulting spatial pattern of events demonstrates deviations from
the random point process associated with uncorrelated β towards increased spatial
clustering of events with increasing correlation of the β field. Vertical effective
permeability of the fault system at the point where connected failures span the
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domain shows that effective permeability is a nonlinear function of the correlation
length and is strongly controlled by the size (area) of the domain-spanning failed
cluster.

3.1 Introduction

The coupled processes of fluid flow and mechanical behavior of rocks in the
Earth’s crust are important in a number of geologic processes including earth-
quakes (Claesson et al. 2007; Sarr and Manga 2003; Rojstaczer et al. 1995),
geysers (Ingebritsen and Rojstaczer 1993), and crustal-scale fluid flow (Rojstaczer
et al. 2008; Miller et al. 2004). Coupled hydromechanical processes are also the
focus of a number of research areas driven by engineering applications including
CO2 sequestration (e.g., Rutqvist et al. 2007; Lucier et al. 2006), enhanced
geothermal energy production (Majer et al. 2007), and deep borehole injection of
fluids (Hsieh and Bredehoeft 1981; Healy et al. 1968; Zoback and Harjes 1997;
Rutledge et al. 2004). Here, we examine coupled hydromechanical processes in
a fault using a cellular automata model with a focus on the impact of spatially
correlated material properties on the evolution of fault system behavior.

The “toggle-switch” permeability model developed by Miller and Nur (2000)
considers permeability to be either zero or infinite, and changes between these
two extreme states, due to hydraulic fracturing and then resealing, are essentially
instantaneous. The fault is conceptualized as a fluid-saturated, two-dimensional
planar feature with spatially heterogeneous rock compressibility β . As compressive
normal stress is applied to the fault, the spatially heterogeneous β transforms the
stress into locally varying amounts of strain as exhibited by changes in the fluid
pressure within the fault. If the local fluid pressure exceeds a threshold rupture
pressure at any cell, the pressure is redistributed to the surrounding cells; the new
pressure is recalculated and again compared to the threshold rupture pressure. The
pressure redistribution continues until pressure in all cells is below the threshold
pressure. The normal stress continues and the strain is updated at the next time
step and the process continues. Miller and Nur (2000) used this model to study
how simple small-scale processes can describe the evolution of pore pressures in
a fault and lead to the development of large-scale fluid flow networks. Wang and
Manga (2010) postulated a process analogous to the toggle-switch idea for rapid
changes in the permeability and pore pressure redistribution of a magmatic melt due
to earthquake-induced fracturing. Claesson et al. (2007) observed rapid, earthquake-
induced changes in ground water flow systems followed by a less rapid fault-sealing
process.

To paraphrase the definition of a CA proposed by Mitchell (2009) in the context
of the pressure redistribution problem, a CA is a grid of cells, where each cell is
in one of two states (e.g., closed/open) depending on the current states of cells
within its local neighborhood. The two key components of a CA model are the
definition of the local neighborhood and the cell update rule. The cell update rule
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defines the state of the cell in the next time step as a function of the states within the
neighborhood at the current time step. The cell update rule is identical for all cells
at all times (i.e., spatially and temporally stationary). Taken as a whole, CA models
have large numbers of simple components that respond to conditions in the local
environment without any centralized or hierarchical controller. From these simple
cells, having limited intercell communication and all following the same simple,
local rule, complex behavior can arise at the macroscale (hundreds of thousands of
cells) that is not predictable from consideration of the cell update rule on its own.
The resulting macroscale behavior, which is unpredictable given the simple rule set
and the initial conditions, is termed “emergent behavior” (Mitchell 2009). We use
the toggle-switch model of permeability to demonstrate the evolution of emergent
behavior as a function of the spatial correlation length of β .

The CA model of Miller and Nur (2000) is analogous to many statistical physics
models that are characterized by initial localized failures that lead to a cascading
failure that spans the system (e.g., spring and block models of fracturing; sandpile
models of cascading failures; percolation processes for domain-spanning features).
We examine behavior of the cellular automata model under the condition of spatially
correlated material properties within the fault. This approach expands on previous
application of this model where only uncorrelated material properties were studied
(Miller and Nur 2000). This approach is contrary to the majority of applications
of cellular automata models and studies of self-organized criticality across a wide
variety of applications that rely on random uncorrelated properties, perturbations,
or failure thresholds (e.g., Ferer and Smith 2011; De Menech et al. 1998; Cowie
et al. 1993, 1995; Miller et al. 1996). There are notable exceptions to this assumption
of uncorrelated property fields including work on percolation networks with corre-
lation (e.g., Sahimi and Mukhopadhyay 1996). Our approach can be summarized as
local (quasi-independent) rules acting on connected (correlated) properties.

In this chapter, we define the CA model and the model of spatial correlation of
β within the fault. These two models are used to examine the impact of β spatial
correlation on the resulting timing, location, and size distribution of the pressure
redistribution events. The size distributions are fit with power-law models having
exponential decay at the largest sizes. Changes in the β spatial correlation lead
to complex spatial-temporal patterns of events that exemplify emergent behavior.
Insights on the impact of β spatial correlation on event initiation and fluid flow
patterns within the fault are summarized.

3.2 Cellular Automata Model

A previously developed CA model is used here (Miller and Nur 2000). Conceptu-
ally, a two-dimensional fault plane within the Earth’s crust is modeled as a lattice of
cells. Each cell has a different value of rock compressibility, and normal stresses
orthogonal to the fault plane place the fault in compression. The evolution of
the fluid pressure within each cell is the quantity of interest. The toggle-switch
permeability model is used, meaning that if the pressure in a cell is below a critical
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value, it is impermeable with respect to fluid flow (k∼0, where k is permeability).
Above the critical value, the cell is at failure and fluid can immediately migrate into
neighboring cells (k∼∞). This process results in the fluid pressure of all connected
cells being equilibrated to the same value. When the pressure of a cell falls below
the critical value, it has healed and is again impermeable until a future rupture (see
details in Miller and Nur 2000).

The relationship between the change in fluid pressure, Pf , and the plastic
deformation or fluid source causing the change is

∂Pf

∂ t
=

1
φ(βφ +β f )

[
k
v

∇2Pf − (φ̇plastic − Γ̇)
]
, (3.1)

where Γ̇ is the time-varying fluid source, φ̇plastic is the time-dependent porosity
reduction, k is the permeability, ν is the fluid viscosity, and φ is the porosity. The
compressibility of the rock matrix and the fluid are βφ and β f , respectively. Further
details on this pressure diffusion model are given in Segal and Rice (1995) and
Walder and Nur (1984).

The “toggle-switch” model of Miller and Nur (2000) limits the permeability
values to k = 0 and k ∼= ∞ depending on the local fluid pressure. Under the zero
permeability mode (k = 0), pressure redistribution by diffusion does not occur and
the following simplified pressure differential is used:

∂Pf

∂ t

∣∣∣∣
noflow

=
(Γ̇− φ̇plastic)i

φiβi
, (3.2)

where Pf is the pressure in the ith cell at time t and βi is the sum of matrix and fluid
compressibility for cell i. In the calculations to follow, (Γ̇ − φ̇plastic)i is constant
throughout time and space. A constant φ is employed and β is varied across the
domain making the spatial correlation of β the focus in the remainder of the chapter.

Prior application of the toggle-switch model to pressure redistribution considered
either (Γ̇− φ̇plastic)i or φiβi within each cell to be independently drawn from a uni-
form or Gaussian distribution (Miller and Nur 2000). Here, we follow this approach
by drawing βi from a Gaussian distribution while adding spatial correlation between
the cells defined through a Gaussian kernel (see below).

At each time step, a constant compressional strain increases Pf by decreasing
φplastic within each cell through Eq. (3.2). When Pf in a cell reaches a threshold
pressure, Pthresh, the cell “fails,” permeability suddenly increases from 0 to infinity,
and the pressure is redistributed to the four adjacent cells. Each cell within this
neighborhood (m = 4) is then assigned the same weighted average pressure,
computed as

P̄ =
∑m

i=1 (φβ )iPi

∑m
i=1 (φβ )i

. (3.3)
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Equation (3.3), coupled with the threshold pressure, is the cell update rule for the CA
model. Here, the local neighborhood for the CA model is defined as the 4 adjacent
(non-diagonal) cells in the grid. After the pressure redistribution, if all cells are
below the critical pressure, the system proceeds to the next time step via Eq. (3.2).
If, on the other hand, there are still cells with Pf > Pthresh, the pressure redistribution
process is repeated until Pf≤ Pthresh in all cells. The size of a pressure redistribution
event is measured as the number of cells involved in the pressure redistribution
starting from a single cell with Pf > Pthresh until all cells are below Pthresh. Many
of the cells involved in the redistribution event never reach failure; they are only
involved in the redistribution of the fluid pressure. These “event clusters” differ
from the definition of failure clusters of Miller and Nur (2000), where all cells in
the cluster must have reached failure at some point. The event cluster plots have the
same behavior as the failure cluster plots, but with larger sizes. Event clusters are
used here to be consistent with fluid pressure as the primary object of study.

3.3 Spatial Correlation

Statistical physics models typically apply local rules to fields of uncorrelated
properties. From application of these rules, a spatial correlation in the resulting state
arises. A classic example of this behavior is the standard percolation model (Stauffer
and Aharony 1994). The probability of any cell in the domain being conductive is a
random variable with correlation length equal to that of the grid spacing leading to
an uncorrelated random field. As the probability threshold for turning any cell in the
domain to being conductive increases, a point is reached where a connected path of
conducting cells spans the domain. At this point, the domain is said to “percolate”
and the correlation length of the percolating cells relative to the domain size is now
infinite.

Here, we examine the impact of another correlation length, that of the material
properties on which the CA rules operate, on the overall results of the CA model.
Spatial correlation is imposed on β by averaging a white-noise (uncorrelated)
multivariate Gaussian field with a kernel. Here the kernel, G(x,y), also has a
Gaussian shape and the resulting correlated fields are also multivariate Gaussian:

G(x,y) =
1

2π |Σ | 1
2

exp

(
−1

2
dΣ−1dT

)
, (3.4)

where d is the Euclidean distance vector (dx,dy) from any point to the origin of the
Gaussian function. For the isotropic fields considered here, the covariance matrix
Σ = σ2I, where I is the identity matrix and σ is the standard deviation of the
Gaussian kernel, is diagonal because the kernel is aligned with the grid axes. The
measure of the correlation length of the resulting field is the full width at half
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maximum, δ , defined as δ = σ
√

8ln(2). This is the width of the Gaussian kernel
used to create the correlated field at one-half the maximum kernel height. For each
δ , 15 individual realizations of the β field are created and used as input to the CA
model.

3.4 Results

Calculations were conducted on a grid of 1.0×106 (1,000×1,000) cells. Although
no explicit scale is assigned here, this model domain could be considered represen-
tative of a fault domain of tens to hundreds of meters on a side. The initial pressure
of each cell was independently set to a random number between 15 and 16 MPa—
an elevation-dependent starting pressure is not considered. The failure condition
was set to 28 MPa, an overburden pressure representative of an approximate 1.5 km
depth. The time step used was dt = 0.1 year, and the numerator of Eq. (3.2)
(Γ̇− φ̇plastic) was set to 1×10−5 year −1 for all cells. The values of βi had a mean of
0.01MPa−1 and standard deviation of 0.0025MPa−1 where φ = 0.02 and all spatial
variation is due to β .

Calculations were run with the following full width at half maximum values: δ =
0.39, 2.35. 4.71, 9.42, 18.8, 23.5, 47.1, 94.2 188, 235, and 471 grid cells. The lowest
δ value, 0.39, represents the uncorrelated case where the value of βi at each cell
is independent of its neighbors. The uncorrelated case is consistent with each cell
encompassing 99.7% of the full width (±3σ ) of the Gaussian kernel. Four example
β fields are shown in Fig. 3.1.

For each of the 165 input β fields (15 realizations for each of 11 values of δ ), the
CA model simulations were run from the initial pressure conditions until a domain-
spanning cluster of failed cells was reached. At every time step, the coordinates of
the centroid of the pressure redistribution event and the event (cluster) size in terms
of grid cells are recorded. Additionally, the final spatial distribution of the failed and
intact rock as well as the failed rock that is connected to the domain-spanning cluster
is recorded. Figure 3.2 shows example results from compressibility fields with three
correlation lengths: 0.39, 9.4, and 94 units. The spatial-temporal distribution of
the events is summarized in a two-dimensional plot by only showing the vertical
(y-dimension) location of each event as a function of time (Fig. 3.2). The time in
these plots has been normalized between the start of the simulation and the onset of
the domain-spanning cluster.

The domain-spanning clusters in the left column of Fig. 3.2 show that as δ
increases, the nature of the clusters changes substantially. At the lowest δ value
(Fig. 3.2, upper left), the cluster is rough-edged and surrounds isolated regions
of intact rock with a range of sizes. The black region is not at all continuous,
containing within it many intact (white) regions of various size as well as other
smaller, disconnected regions of failed rock (grey). In general, the domain-spanning
cluster and the regions of contained intact and failed rock occurring at multiple
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Fig. 3.1 Example of four realizations of the β field showing four different correlation lengths.
The values of δ are 0.39 (upper left), 9.4 (upper right), 94 lower left, and 235 (lower right). The
color scale is in units of 1/MPa

scales resemble a fractal object. Results from the next largest δ shown in Fig. 3.2
(9.4 cells) similarly show the domain-spanning cluster surrounding regions of white
and grey, with less variability in the size distribution of these surrounded regions.
Notably, there are no small white regions mixed evenly within the black as seen
in the upper image. Finally, at the largest δ value (94 cells), the domain-spanning
cluster is almost completely uninterrupted, with the exception of a single enclosed
area of intact (white) rock. There are only a few grey regions in the entire image.
The perimeter to area ratio of the domain-spanning cluster decreases as δ increases.

The spatial-temporal evolution of the events is summarized in the right column
of Fig. 3.2. For the uncorrelated case (upper image), there are 10–12 locations that
fail repeatedly over time plus additional events that occur at apparently random
locations. The intensity of these randomly located events increases with increasing
time until the domain-spanning cluster is formed. In general, the events appear
to remain local and have little impact on the formation of events in surrounding
locations. As δ increases to 9.4 cells (middle image), the pattern is similar to the
uncorrelated case with more locations (25–30) having early failures that repeat
continuously through time along with a more abrupt increase in the density of the
randomly located events at late times relative to the uncorrelated case. Additionally,
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Fig. 3.2 For three different values of δ (0.39,9.4, and 94, top to bottom) the images on the left
show the areas of rupture in black and grey at the time when the domain-spanning ruptured region
is reached. Cells within the domain-spanning cluster are black, other ruptured cells are grey, and
intact rock is white. On the right, the y-coordinate of the centroid of each rupture event is plotted
vs. normalized time, where time ranges from the start of the simulation to the point where the
ruptured material spans the domain, as illustrated in the images on the left
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the size of the neighborhood of locations where the failures are nearly continuous
from early time grows as time increases indicating an outward growth of the failure
locations from an original single nucleation point. At the largest δ (94 cells) in the
lower image, the pattern changes markedly such that there are a relatively small
number (10–12) of locations with repeating failures. A halo of failure locations
moves outward from these repeating locations as time increases and all failures
occur within one of these halos—there is no random component of failure locations
outside of these halos. There is a significant delay in the time to first failure relative
to the results from the smaller δ values; in this example, the first failure does not
occur until 20% of the simulation time has passed. These unexpected complex
patterns arising from operation of simple local rules on increasingly correlated
material property fields signify emergent behavior in fluid pressure redistribution
events.

Figure 3.3 plots the time to first failure, the first point when any cell has a pressure
above the failure threshold (28 MPa), and the time to reach the domain-spanning
(bottom to top) cluster. Since all cells start with similar pressures, the cells with the
smaller values of βi fail first. Increasing spatial correlation acts to increase the time
to the first rupture and decrease the time to reach the domain-spanning cluster. These
results show that correlated fields of rock compressibility can accommodate more
strain before failing than can uncorrelated fields, but once failure is initiated, there
is a more rapid progression to domain-spanning failure relative to the uncorrelated
case.

For δ values up to 10.0 units, the initial failure occurs nearly instantaneously
as the strain begins and there is no variation in this value between realizations.
Above a δ of 10.0, the initial failure is delayed to times beyond the initiation of
strain. Additionally, the variability in this time to initial rupture is nearly ±200 years
across the realizations for each δ . The variability in the results between realizations
becomes considerable as δ reaches one-tenth of the domain length (δ = 100). As a
rule of thumb, a correlation length of one-tenth the domain size is the ergodic limit.
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As correlation lengths go beyond this limit, the statistics (e.g., the mean β ) are no
longer constant from one realization to the next creating increased inter-realization
variability as seen here (see additional details on ergodic limits in Zhang 1999).

At each time step, each percolation cluster is recorded with its size. For each
value of δ , the number of clusters of each size is counted, summing over all time
steps up to the point of domain-spanning cluster formation. All 15 realizations are
aggregated, and these results are used to produce curves of the complementary
cumulative distribution function (1—CDF) in log–log space. Similar curves were
produced by Miller and Nur (2000), but their failure clusters were used instead of
event clusters, as noted previously. The event cluster curves are nearly identical to
failure cluster curves in terms of slope; they are merely shifted to the right. In the
case of uncorrelated values of β , the cluster size distribution value as a function of
cluster size, D(S), can be fit to (Miller and Nur 2000):

D(S) = S−α exp

(
− S

L

)
, (3.5)

where S is the cluster size, α is the power-law exponent, and L is a correlation
length distinct from δ . Both α and L are fit to the data. The best fit is obtained with
f (α,L) = log(D) using the Matlab function nlinfit (MATLAB 2011). To accurately
fit results with Eq.(3.5), the data must first exhibit linear behavior on the log-log
plot with slope of -α followed by an exponential decay at the largest sizes. This
equation does not provide the best fit to the data from correlated fields, especially at
larger values of δ . A noticeable deviation between these data and Fig. 3.8 of Miller
and Nur (2000) is that approximately 30%–50% of their clusters have size S = 2.
Here, there are no clusters of size S = 2 due to the redefinition of clusters and only
a negligible amount of them have size S = 3 or S = 4 (due to edge artifacts), and the
most frequently observed size is S = 5 consistent with the 5-point star pattern used
in the pressure redistribution process.

The results in Fig. 3.4 show the size distribution of the rupture events. As
δ increases, this distribution changes from a power-law model with exponential
roundoff at the largest sizes to a double power law with exponential roundoff and
finally back to the original single power law with exponential roundoff, but a much
shallower slope than the models for smaller δ values. Especially at higher values
of δ , it can be seen that the slope of the linear section changes prior to the onset of
exponential decay.

In order to better fit the results across the range of δ values, a piecewise function
with two power-law slopes prior to the exponential decay was constructed:

D(S) =

{
cS−α1 exp

(− S
L

)
exp

(
1
L

)
if S ≤ γ,

cS−α2γα2−α1 exp
(

S
L

)
exp

(
1
L

)
if S ≥ γ.

(3.6)

Compared to Eq. (3.5), α has been split into α1 and α2, and additional dependent
variables, c and γ , have been introduced. γ is the value of S where the change in
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Table 3.1 Variables c, α1, α2, L, and γ from Eq. (3.6) are fit to match the cluster size data
produced. The coefficient of determination, R2, is included for each δ . Also included is the
characteristic size of the compressibility field calculated as the area of a circle with diameter
δ : π(δ/2)2

δ c α1 α2 L γ π(δ/2)2 R2

0.392 2.25 – 1.22 370,000 0 0.121 0.9996
2.35 6.38 – 1.29 144,000 0 4.36 0.9990
4.71 3.26 0.972 1.35 111,000 150 17.4 0.9997
9.42 2.63 0.717 1.41 103,000 266 69.7 0.9998
18.8 2.30 0.525 1.39 99,100 710 279 0.9995
23.5 2.29 0.482 1.40 110,000 1,010 436 0.9996
47.1 2.32 0.386 1.30 150,000 3,350 1,740 0.9983
94.2 1.71 0.273 1.14 384,000 8,120 6,970 0.9926
188 0.778 0.145 0.427 147,000 14,600 27,900 0.9917
235 0.756 0.128 0.481 151,000 42,400 43,600 0.9974
471 0.230 0.0481 5.81 227,000 582,000 174,000 0.9941

slope from α1 to α2 occurs. The factor exp(1/L) has been added to ensure D(1) = c.
While the actual data will always be D(1) = 1, there are very few data points at
S = 1 and not restricting the model to go through this point by introducing the
variable c improves the overall fit. However, the model should be used for S ≥ 5,
the size of the pressure redistribution stencil, to avoid spurious results. When S ≤ γ
the log-log plot yields a slope of -α1. When S ≥ γ the slope changes to -α2 and
then decays exponentially for the largest S. The function is continuous, but there is
a discontinuity in the slope at S = γ . This function is recast using an approximation
of the Heaviside function for parameter estimation using the Matlab nlinfit function
(MATLAB 2011). The resulting fits of Eq. (3.6) to the size distributions are shown
in Fig. 3.4. The parameters used to fit the size distributions are shown in Table 3.1.
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Equation (3.6) provides excellent fits (R2 > 0.99) to the observed size distribution
for all values of δ . Up to the point of reaching the ergodic limit (δ ∼ 100), the
quantity π(δ/2)2 provides a reasonable lower bound on the estimated value of
γ; however, decreasing the number of estimated parameters by replacing γ with
π(δ/2)2 decreased the goodness of fit. The values of α1 define a decreasing negative
slope with increasing δ . The values of α2 remain above 1.0 and are relatively
constant up to the ergodic limit where they begin to decrease (a less negative
slope). The value of α2 at δ = 471 is somewhat of an outlier as it does not take
effect until the curve is already into the exponential decay region. In all cases, the
piecewise curve fits the data better than the single power-law function (3.5). The
curves produced from the data in Table 3.1 are plotted in Fig. 3.4 along with the
original data. The maximum cluster size for each realization is highlighted.

Figure 3.4 shows that for the uncorrelated case (δ = 0.39), 99% of all events
have a size of 100 cells or less, whereas for a correlation length of δ = 94, 99% of
the events have a size of 10,000 cells or less. This result shows the size distribution
moving from a power-law distribution ranging over multiple orders of magnitude to
a distribution closer to uniform with an exponential decay at the highest end. This
behavior is indicative of a wide range of cluster sizes merging to create a domain-
spanning cluster in an uncorrelated field and a much more uniformly sized set of
clusters joining to create the domain-spanning cluster at larger values of δ .

The spatial patterns of the event centroids are compared to a completely random
spatial point process using the distribution of nearest neighbor distances between
events at each time step. Specifically, the event locations are compared to the case
of complete spatial randomness (CSR). To satisfy CSR, data points must be an
uncorrelated random sample from a uniform distribution. When this is the case,
the nearest neighbor distance from a data point, r, on average is (Diggle 2003)

μ = 0.5(n−1A)
1
2 +(0.051+ 0.042n−

1
2 )n−1P, (3.7)

where μ is the expected value of r, n is the number of data points, A is the area of
the region considered, and P is its perimeter. As soon as observed patterns emerge,
CSR is no longer present.

Figure 3.5 shows the results of this analysis for three example simulations, with
the right image of Fig. 3.5 showing a closer look at the last half of the simulation
time. The y-axis shows the difference between the mean observed r and μ . In the
uncorrelated case, the difference is near zero for the majority of the simulation.
At 95% of the simulation time, there is a slight deviation towards negative values
indicating a slight clustering of the events. Results with a δ of 9.4 show moderate
spatial clustering of the events throughout the simulation until very near the end
when they become more spatially random. With a δ of 94, the spatial clustering is
extreme for the first 50% of the simulation and then moves towards a more random
pattern at the end. The results with δ = 94 show considerable variability with large
increases and decreases in the difference throughout time. Only events created under
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Fig. 3.5 Results of the spatial clustering analysis for three example realizations at three different
δ values. The right image is a zoomed in portion of the left image. Values near zero indicate spatial
randomness, while positive and negative values indicate regularity and clustering, respectively
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the uncorrelated case fit the pattern of complete spatial randomness throughout the
simulation.

The failure patterns within the fault at the point of domain-spanning percolation
are used to examine the effective permeability (vertical) of the fault. Steady-state,
single-phase, isothermal flow is simulated across the fault in the vertical direction
and the applied gradient and resulting flux are used to calculate the effective
permeability. The permeability of the failed regions is set to be four orders of
magnitude higher than that of the intact regions and the effective permeability of the
fault domain is normalized by the permeability value assigned to the failed regions
(Fig. 3.6). The connected high-permeability path across the fault ensures that all
mean effective permeability values are at least 60% of the maximum permeability
assigned to the failed regions.

For the uncorrelated case, the mean effective permeability is just over 70% of the
failed region permeability. The minimum mean effective permeability value occurs
at δ = 9.42 before rising again to a maximum of near 80% of the failed region
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permeability for δ = 492. This behavior is controlled by the proportion of the fault
domain that is contained within the spanning cluster, which also reaches a minimum
at δ = 9.42. At lower δ values, the spanning cluster is larger and complex with
multiple continuous pathways connecting the top and bottom boundaries as well
as many intact rock fragments contained within, or surrounded by, the spanning
cluster (e.g., Fig. 3.2, top left image). At δ values of 9.42, the number of pathways
connecting the top and bottom boundaries of the fault decreases to near 1 (e.g.,
Fig. 3.2, center left image) causing decreased mean effective permeability. For larger
values of δ , a single connected pathway remains, but it is larger and less complex,
containing less intact material, than at lower values of δ (e.g., Fig. 3.2, bottom left
images). Emergence of a single dominant flow path at larger correlation lengths
is consistent with results of Pyrak-Nolte and Morris (2000) in a study of fracture
stiffness and fluid flow.

3.5 Conclusions

Geologic media are commonly observed to have spatially correlated material
properties. In particular, within a fault, prior movement along the fault and a
changing stress history will lead to zones of preferential strength and weakness.
Simulation of pressure redistribution events within a fault using a CA model clearly
shows the impact of rock compressibility (β ) spatial correlation on both the size
distributions and the spatial and temporal patterns of the pressure redistribution
events.

Increasing the spatial correlation (δ ) of β leads to a field that can sustain larger
amounts of strain prior to the first failure. Higher δ values also decrease the time
until a fault-spanning cluster of failed material is achieved. As δ increases, the more
uniform distribution of event sizes leads to higher numbers of larger events and
faster connection of failed regions across the fault relative to the uncorrelated case.
Once a location ruptures, the surrounding area, having a similar compressibility,
is already at a similar fluid pressure and therefore the excess pressure is quickly
redistributed to the edge of this region and new ruptures occur in material with a
higher compressibility (more compliant material). This process results in the “halo”
effect of a central rupture location surrounded by a ring of associated failures (see
Fig. 3.2 center and bottom right images). The final pattern of intact and failed
regions within the fault results in an effective permeability for the fault that is a
nonlinear function of δ . At small to moderate δ , the failed region is complex and
more poorly connected than for the uncorrelated case leading to a minimum value of
the effective permeability. At the largest δ , a dominant, uninterrupted failed region
emerges that maximizes the fault effective permeability.

In almost all applications of CA models and other studies of self-organized
criticality, the material properties are represented as uncorrelated random fields.
This study demonstrates that local rules in a CA model operating on correlated



3 Fluid Pressure Redistribution Events Within a Fault. . . 71

properties lead to emergent behavior. This behavior is significantly different from
that seen on the standard uncorrelated fields. The emergent behavior identified here
is the evolution of increasingly complex spatial-temporal patterns of failure within
the fault as exemplified in the right-hand side of Fig. 3.2. As the amount of spatial
correlation increases, the event size distribution changes from a single power law
to a double power law and then back to a single power-law distribution. The slope
for the initial power law in the cases with double power-law behavior is always
shallower than for the case of uncorrelated material properties. In all cases, the
largest events fit a distribution model with exponential tailing.

The simulations done here are for rock compressibility fields with isotropic
spatial correlation. Future simulations will look at the impact of anisotropic
correlation patterns as may result from normal or strike-slip displacement along
the fault. The multivariate Gaussian model adopted here for the random fields is
parametrically and computationally efficient, but other, non-Gaussian, field models
may better represent aspects of observed faults. This study uses a CA model
with several simplifying assumptions to evaluate the impact of material property
correlation on fluid pressure redistribution. Some of those assumptions including
conceptualization of permeability as only being zero or infinite and the closed
boundary conditions should be reevaluated in future studies. Field observations of
earthquake activity in faults with high fluid pressures and microseismic activity at
subsurface injection sites should be able to provide information that can distinguish
between the independent and correlated property field models examined here.
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