
Chapter 2
An Advanced Constitutive Law in Multiphase
Flow Model for Simulations in Compressible
Media

C.H. Tsai and G.T. Yeh

Abstract The purpose of this investigation is to implement a new constitutive law
of saturation–capillary pressure into a fractional flow-based multiphase flow model
to simulate compressible subsurface flow problems. Using the new constitutive law
to describe the saturation–capillary pressure relations alleviates an undue constraint
on pressure distributions inherent in a widely used law. This makes the present
model able to include all possible solutions of pressure distributions in subsurface
flow modeling. Finite element methods (FEM) are used to discretize the three
governing equations for three primary variables—saturation of water, saturation of
total liquid, and total pressure. Four examples with different pressure distributions
are presented to show the feasibility and advantage of using the new constitutive law.
The results verify the feasibility and capability of the present model for subsurface
flow systems to cover all possible pressure distributions.

2.1 Introduction

In general, it is challenging to simultaneously measure degrees of saturation
and capillary pressures in subsurface flow systems. Therefore, a complete and
possible analytic model of constitutive law is essential for the multiple-phase flow
simulation. A widely used saturation–capillary pressure relationship for three-phase
flow was proposed by Parker et al. (1987a). Since the closed-form expression of the
saturation–capillary pressure relationship is quite simple, the model has been widely
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used in systems of two- and three-phase flows (e.g., Parker and Lenhard 1987b;
Kaluarachchi and Parker 1989; Celia and Binning 1992; White and Oostrom 1996;
Guarnaccia and Pinder 1997; Binning and Celia 1999; Suk and Yeh 2007; Suk and
Yeh 2008; Khoei and Mohammadnejad 2011).

An undue constraint in Parker et al.’s model, the product of the scaling factor
and capillary pressure between nonaqueous phase liquid (NAPL) and air must
be less than or equal to that between water and NAPL (Tsai and Yeh 2012).
This constraint has not been supported theoretically or experimentally. To our
knowledge, this constraint has not been discussed in the literature. Moreover,
due to the widespread use of Parker et al.’s model, many available multiphase
flow simulations may be incomplete. For problems with pressure distributions
that do not satisfy the constraint, negative saturations might be obtained and
thus leads the simulations stymied using fractional flow-based approaches (e.g.,
Binning and Celia 1999; Guarnaccia and Pinder 1997; Suk and Yeh 2007; Suk
and Yeh 2008). Possible solutions will be excluded without physical justifications
using the variable-switch technique (White and Oostrom 1996) in pressure-based
approaches (e.g., Kaluarachchi and Parker 1989; Celia and Binning 1992), i.e.,
the variable-switch algorithm implemented in those models would exclude some
prescribed conditions due to the use of Parker’s constitutive law. For example,
simulations with those models will exclude initial and boundary conditions that
might otherwise be possible.

A new constitutive relation between the degree of saturation and capillary
pressure was proposed to overcome the undue constraint (Tsai and Yeh 2012).
The main objective of this chapter is to implement the new constitutive law in a
compressible multiple-phase flow model using fractional flow-based approaches.
The implementation yields solutions even when the initial and boundary pressure
distribution does not satisfy the constraint. Had it been implemented in a pressure-
based approach numerical model, it will not have to exclude some possible
solutions.

In multiphase flow simulations, the fractional flow-based approach is widely
used due to two advantages. First, the primary variables in the fractional flow-
based approach are degrees of saturation and total pressure. Therefore, the change
of phase configuration, phase appearance, and phase disappearance are automated.
For example, the number of simulated phases in a three-phase flow problem can
degenerate from three to two or one and conversely extend from one to two or three
(Suk and Yeh 2008). Second, for incompressible three-phase flow problems, one
solves an elliptic-type equation for total pressure and two hyperbolically dominant
types of transport equations for degrees of saturation with the fractional flow-based
approach, instead of solving three strongly coupled nonlinear mixed hyperbolic and
parabolic-type equations with the pressure-based approach. Although this requires
an extra task of iterating boundary conditions, only two or three iterations will
suffice (Suk and Yeh 2008). From the viewpoint of numerical computation, the
fractional flow-based approach is quite efficient (Suk and Yeh 2008).

In this investigation, the fractional flow-based approach is employed to simu-
late compressible multiphase flow problems. The primary variables of the three
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governing equations are the saturation of water, the saturation of total liquid, and
the total pressure. Because the compressibility of each flow phase is considered, we
simulate one parabolic-dominant equation for total pressure and two hyperbolic-
dominant equations for degrees of saturation. Three governing equations and
compressibility are presented in Sect. 2.2. In Sect. 2.3, both Parker et al.’s and
Tsai and Yeh’s constitutive models are presented and discussions are made on
why the former results in the undue constraint while the latter does not. The
numerical discretizations with FEM for three governing equations are given in
Appendix A. The standard Galerkin FEM is used to discretize the governing
equation for total pressure, and either the standard Galerkin FEM or the upstream
FEM are used to discretize two equations for saturations of water and total liquid.
The resulting matrix is solved with the Bi-CGSTAB (vant der Vorst 1992). In
Sect. 2.4, four numerical examples are used to verify the feasibility and capability of
the present numerical model to include all possible conditions that are prescribed.
The conclusions are made in Sect. 2.5.

2.2 Problem Formulations

The present multiphase flow model is assumed to consist of a compressible media
and three compressible fluid phases consisting of water, NAPL, and air The porosity
is assumed constant in the simulation. Each phase is assumed to have an average
property, since each phase contains one component in this investigation. These
assumptions do not alter the key points to be addressed in this chapter. However, a
model without these assumptions is under development to make it more applicable
to real-world problems.

2.2.1 Governing Equations

The mass conservation equation for each phase in porous media is given as follows
(Yeh et al. 2010):

∂ (φρiSi)

∂ t
+∇ · (Mi)+∇ · (ρiφSiVs) = Qi, i = 1,2,3.

∂ρs (1−φ)
∂ t

+∇ · [ρs (1−φ)Vs] = 0, (2.1)

in which

Mi = ρiVi =−ρikrik
μi

· (∇Pi +ρig∇z) , i = 1,2,3, (2.2)
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where i is the subscript index relating to Phase 1 for water, Phase 2 for NAPL and
Phase 3 for air; φ is the effective porosity; t is the time, [T]; ρi is the density for

phase i,
[
M/L3

]
; ρs is the density for solid phase,

[
M/L3

]
; Qi is the source or

sink for phase i,
[
M/

(
L3T

)]
; Si is the degree of saturation for phase i;Mi is the

Darcy’s mass flux,
[
M/

(
L2T

)]
; vi is the Darcy’s velocity for phase i, [L/T]; vs is

the velocity for solid phase, [L/T]; k is the intrinsic permeability tensor,
[
L2
]
; kri

is the relative permeability for phase i; μi is the dynamic viscosity for phase i,

[M/L/T]; Pi is the pressure for phase i
[
M/L/T2

]
; g is the gravitational constant[

L/T2
]
; and z is the elevation, [L].

With some manipulations, Eq (2.1) becomes

φ
∂ (ρiSi)

∂ t
+ρiSi (∇ ·Vs)+∇ · (Mi) = Qi, i = 1,2,3. (2.3)

With small and vertical displacement (Yeh et al. 2010), Eq (2.3) becomes

φ
∂ (ρiSi)

∂ t
+ρiSi

(
αp

3

∑
j=1

∂ (S jPj)

∂ t

)
+∇ · (Mi) = Qi, i = 1,2,3, (2.4)

where αp is the compressibility parameter of the medium,
[(

T2L
)
/M

]
Substituting Eq (2.2) into Eq (2.4) and summing the resulting equations over

three phases one obtains the following equation for the total pressure:

Cpt
∂Pt

∂ t
+Cs1

∂S1

∂ t
+Cst

∂St

∂ t
−∇ ·κκκ · (∇Pt +ρg∇z) = Qt

− [(ρ1 −ρ2)S1 +(ρ2 −ρ3)St +ρ3] [αp ((P1 −P2)S1 +(P2 −P3)St +P3)] , (2.5)

in which

κκκ = k(ρ1kr1/μ1 +ρ2kr2/μ2 +ρ3kr3/μ3) , (2.6)

ρ̄ = κ1ρ1 +κ2ρ2 +κ3ρ3, (2.7)

κi = ρikri/μi
/ 3

∑
j=1

ρ jkrj/μ j, for i = 1,2 and 3, (2.8)

Pt =
P1+P2+P3

3

+
1
3

⎛
⎝

PC12∫

0

(κ1−κ2)dη+
PC13∫

0

(κ1−κ3)dη+
PC23∫

0

(κ2 −κ3)dη

⎞
⎠ , (2.9)
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Cpt = φS1
∂ρ1

∂P1
+φS2

∂ρ2

∂P2
+φS3

∂ρ3

∂P3
+(ρ1S1 +ρ2S2 +ρ3S3)αp, (2.10)

Cs1 = φS1
∂ρ1

∂P1
(1−κ1)

dPC12

dS1
−φS2

∂ρ2

∂P2
κ1

dPC12

dS1

−φS3
∂ρ3

∂P3
κ1

dPC12

dS1
+φ (ρ1 −ρ2)

+(ρ1S1 +ρ2S2 +ρ3S3)αp

[
PC12 +(S1 −κ1)

dPC12

dS1

]
, (2.11)

Cst = ϕS1
∂ρ1

∂P1
κ3

dPC23

dSt
+φS2

∂ρ2

∂P2
κ3

dPC23

dSt

−φS3
∂ρ3

∂P3
(1−κ3)

dPC23

dSt
+φ (ρ2 −ρ3)

+(ρ1S1 +ρ2S2 +ρ3S3)αp

[
PC23 +(St − 1+κ3)

dPC23

dSt

]
(2.12)

Qt = Q1 +Q2 +Q3 (2.13)

St = S1 + S2 = 1− S3 (2.14)

where κκκ is the total mobility, [T]; ρ is the mobility weighted average fluid density,[
M/L3

]
; κ1, κ2, and κ3 are, respectively, the fractional mobility for water, NAPL

and air; Pt is the total pressure,
[
M/T2/L

]
; S1, S2, S3, and St are, respectively

the saturation of water, NAPL, air, and total liquid; PC12 ≡ P1 −P2 is the capillary
pressure of waterNAPL; PC13 ≡P1−P3 =−PC31 is the capillary pressure of waterair;
and PC23 ≡ P2 −P3 is the capillary pressure of NAPLair Substituting Eq (2.2) with
Phases 1 and 3 into Eq (2.4) and with some manipulations, the transport equations
for the saturation of water S1 and the saturation of total liquid St , respectively, are
given as

(
φS1

∂ρ1

∂P1
−κ1Cpt +ρ1S1αp

)
∂Pt

∂ t
+

⎛
⎝φS1

∂ρ1
∂P1

(1−κ1)
dPC12
dS1

+ρ1φ −κ1Cs1

+ρ1S1αp

[
PC12 +(S1 −κ1)

dPC12
dS1

]
∂S1
∂ t

⎞
⎠

+

(
φS1

∂ρ1

∂P1
κ3

dPC23

dSt
−κ1Cst +ρ1S1αp

[
PC23 +(St − 1+κ3)

dPC23

dSt

])
∂St

∂ t

+Mt · dκ1

dS1
∇S1 +Mt · dκ1

dSt
∇St

=−κ1Qt +∇ ·κ1κκκ ·
(
(1−κ1)

dPC12

dS1
∇S1 +κ3

dPC23

dSt
∇St +(ρ1 −ρ)g∇z

)
+Q1

(2.15)
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and

−
(

φS3
∂ρ3

∂P3
−κ3Cpt+ρ3S3αp

)
∂Pt

∂ t
+

⎛
⎜⎝

φS3
∂ρ3

∂P3
κ1

dPC12

dS1
+κ3Cs1

−ρ3S3αp

[
PC12+(S1−κ1)

dPC12
dS1

]

⎞
⎟⎠ ∂S1

∂ t

+

(
φS3

∂ρ3

∂P3
(1−κ3)

dPC23

dSt
+κ3Cst +ρ3φ −ρ3S3αp

×
[

PC23 +(St − 1+κ3)
dPC23

dSt

])
∂St

∂ t

−Mt · dκ3

dS1
∇S1 −Mt · dκ3

dSt
∇St

=+κ3Qt +∇ ·κ3κκκ ·
(

κ1
dPC12

dS1
∇S1 +(1−κ3)

dPC23

dSt
∇St − (ρ3 −ρ)g∇z

)
−Q3,

(2.16)

in which

Mt = M1 +M2 +M3, (2.17)

where Mi is the total mass flux,
[
M/

(
L2T

)]
These three equations must be supplemented with the constitutive laws for the

relative permeability versus degree of saturation and the degree of saturation versus
capillary pressure.

2.2.2 Compressibility of Three Fluid Phases

The equations of state for water and NAPL are individually given as

∂ρ1

∂P1
= β1ρ0

1 , (2.18)

∂ρ2

∂P2
= β2ρ0

2 , (2.19)

where β1 and β2 are compressibility of water and NAPL, respectively,
[
T2L/M

]
and

ρ0
1 and ρ0

2 are the reference densities of water and NAPL, respectively,
[
M/L3

]
. In

addition, the compressibility of air is given as

∂ρ3

∂P3
=

M
RT

(2.20)

where M is the mole weight of air,
[
Mmole−1

]
; R is the gas constant,[

ML2T−2mole−1K−1
]
; and T is the absolute temperature, [K].
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2.3 The Constitutive Laws

The constitutive law relating the capillary pressure to the degree of saturation can
be derived based on the fundamental Young–Laplace equation (Laplace 1806).
The equation relating the relative hydraulic conductivity to the degree of saturation
can be derived based on the theory proposed by Mualem (1976).

2.3.1 Parker et al.’s Model for Three-Phase Fluids

Parker et al.’s three-phase model is an extension of the renown two-phase model
proposed by van Genuchten (1980).

2.3.1.1 The Relations of Saturation and Capillary Pressure

Based on the assumption that fluid wettability follows the sequence water →
NAPL → air, Parker et al. (1987a) extended the saturation–capillary pressure
relationship (van Genuchten, 1980) from two-phase fluids to three-phase fluids.
With the definition of the accumulated liquid saturation, a straightforward extension
of van Genuchten’s model results in the following relationship (Parker et al. 1987a):

S1 = 1 for hC21 ≤ 0 and S1 = [1+(α21hC21)
n]−m for hC21 > 0;

St = 1 for hC32 ≤ 0 and St = [1+(α32hC32)
n]−m for hC32 > 0;

S2 = St − S1; and S3 = 1− St (2.21)

in which

m = 1− 1/n, (2.22)

where m and n are the curve shape parameters; α32 is the scaling factor of capillary
pressure head between air and NAPL, [1/L]; α21 is the scaling factor of capillary
pressure head between NAPL and water [1/L]; hC32 is the capillary pressure head
between air and NAPL, [L]; and hC21 is the capillary pressure head between NAPL
and water [L].

From Eq. (2.21), it is seen that as the degree of saturation increases, the
scaled capillary pressure decreases. According to the definition of the total liquid
saturation, St is greater than or equal to S1. Thus, one can conclude that capillary
pressure between NAPL and air must be less than or equal to that between water
and NAPL as

(α32hC32)≤ (α21hC21) . (2.23)
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Obviously, Parker et al.’s model implies that the closed-form expression in Eq.
(2.21) is workable only if the products of the scaling factor and capillary pressure
head, (α32hC32) and (α21hC21), satisfy the constraint in Eq. (2.23). This constraint
seems to have little physical relevance. In other words, some possible distributions
of pressure head among phase fluids are excluded due to the constitutive law by
Parker et al., not due to physical justifications. To our knowledge, no literature exists
confirming the validity of Inequality (2.23).

2.3.1.2 The Relations of Relative Permeability and Saturation

In Parker et al.’s model, the relative permeability as a function of the degree
of saturation is proposed by Parker et al. (1987a), which is the modified van
Genuchten’s model of two-phase flow (van Genuchten 1980):

kr1 = S
1/2
1

[
1−

(
1− S

1/m
1

)m]2
, (2.24)

kr2 =
(
S̄t − S̄1

)1/2
[(

1− S̄1/m
1

)m −
(

1− S̄1/m
t

)m]2
, (2.25)

kr3 =
(
1− S̄t

)1/2
(

1− S̄1/m
t

)2m
, (2.26)

in which

S̄1 = (S1 − S1r)/(1− S1r), (2.27)

S̄t = (S1 + S2 − S1r)/(1− S1r), (2.28)

where S1 is the effective degree of saturation for water, S1r is the irreducible
saturation of water and St is the effective degree of saturation for total liquid.

2.3.2 Tsai and Yeh’s Model for L-Phase Fluids

Because of the undue constraint in Parker et al.’s model, a new model was proposed
to alleviate this constraint. The model was derived based on two hypotheses (Yeh
and Tsai 2011): (1) the capillary pressure function is homogeneous, i.e., it is
independent of phases and (2) the capillary pressure function is a function of the
accumulated degrees of saturation of two neighboring phases only, i.e. the capillary
pressure function is of degree 1. Then, it was postulated that the capillary pressure
is a unique function of a single variable defined as the ratio of the two total
accumulated degree of saturation (Tsai and Yeh 2012).
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2.3.2.1 The Relations of Saturation and Capillary Pressure

Specifically, analogous to the van Genuchen’s model (van Genuchten 1980),the
model proposed by Tsai and Yeh (2012) is given as follows:

St,i

St,i+1
≡Θi =

{
1 for hCi+1,i ≤ 0

[1+(αi+1,ihCi+1,i)
n]−m for hCi+1,i > 0,

i = 1,2, . . . ,L− 1;Θ0 = 0;ΘL = 1, (2.29)

where St,i is the total degree of saturation accumulated up to the i−th phase, St,i+1 is
the total degree of saturation accumulated up to the (i+ 1)−th phase, Θi is the ratio
of the total accumulated degree of saturation of the relatively wetting phase (i−th
phase) to that of the relatively non-wetting phase ((i+ 1)−th phase), αi+1,i is the
scaling factor between the (i+ 1)−phase and i−phase and hCi+1,i ≡ hi+1 −hi is the
capillary pressure head between the (i+ 1)−phase and i−phase, [L].

For three-phase flow (water-NAPL-air) problems, the expression of saturation–
capillary pressure head relationship (2.29) is given as follows:

Θ1 ≡ S1

St
= 1 for hC21 ≤ 0 and Θ1 ≡ S1

St
= [1+(α21hC21)

n]−m for hC21 > 0;

Θ2 ≡ St

1
= 1 for hC32 ≤ 0 and Θ2 ≡ St

1
= [1+(α32hC32)

n]−m for hC32 > 0;

S2 = St − S1; and S3 = 1− St , (2.30)

Examining Eq. (2.30), we see that both the numerator and denominator in the second
line are greater than or equal to those in the first line. Hence, it is not necessary that
(α32hc32) must be less than or equal to (α21hc21), i.e., Inequality (2.23) does not
have to hold The unjustified constraint on capillary pressures is therefore alleviated.

2.3.2.2 The Relations of Relative Permeability and Saturation

Based on Mualem’s model 1976), the relative permeability as a function of the
degree of saturation in this model is derived by modifying van Genuchten’s model
of two-phase flow (van Genuchten 1980):

kr1 = S̄1/2
1

{
S̄t

[
1−

(
1− S̄1/m

1

)m]}2
, (2.31)

kr2 =
(
S̄t − S̄1

)1/2
[(

1− S̄1/m
1

)m −
(

1− S̄1/m
t

)m]2
, (2.32)

kr3 =
(
1− S̄t

)1/2
(

1− S̄1/m
t

)2m
. (2.33)
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Equations (2.32) and (2.33) are identical to Eqs (2.25) and (2.26) in formality,
though they are derived from different relations of saturations and capillary
pressures.

2.4 Numerical Results and Discussion

Four numerical examples are presented to show the feasibility and advantage of the
present model. In Example 1, the initial and boundary pressure distributions satisfy
the constraint (α21hC21 ≥ α32hC32), and thus these two constitutive models (Parker
et al. 1987a; Tsai and Yeh 2012) are both executable. In the remaining examples
(Examples 2, 3, and 4), however, the initial and prescribed boundary pressure
distributions do not satisfy the constraint. Therefore, many available multiphase
flow models which used Parker et al.’s model (e.g., Suk and Yeh 2007; Suk and
Yeh 2008) either cannot yield solutions using fractional flow-approach or exclude
possible solutions without physical justifications using variable-switch technique in
pressure-based approach. In contrast, the present model yields simulations without
excluding possible solutions, showing the advantage and capability of using the
present model.

2.4.1 Example 1: Water Infiltration Problem

In this three-phase flow problem, water is infiltrated into a 40 cm long soil column
shown in Fig. 2.1. The initial pressure distributions among three phases in the
column satisfy the constraint, α21hC21 > α32hC32. The initial conditions are the
water pressure P1 = 7.156× 1015g/cm/day2, the NAPL pressure P2 = 7.415×
1015g/cm/day2, and the air pressure P3 = 7.465×1015g/cm/day2. Water infiltrates
into the top of column with a constant mass flux of 10 g/cm2/day and zero NAPL
and air mass fluxes. At the bottom of the column, the pressure distributions of
three phases are in equilibrium with the initial state. The boundary conditions are
thus specified as follows. At the top, the mass fluxes of water, NAPL, and air are
n ·M1 = −10g/cm2/day, n ·M2 = 0, and n ·M3 = 0, respectively. At the bottom,
the pressure of water is P1 = 7.156×1015g/cm/day2, the pressure of NAPL is P2 =
7.415× 1015g/cm/day2, and the pressure of air is P3 = 7.465× 1015g/cm/day2.
The fluid and material properties are given in Fig. 2.1 as well. The initial time-step
size is 5.0×10−5day, and each subsequent time-step size is increased by 10% until
a maximum time-step size of 1.0× 10−3day is reached.

The product of the capillary pressure and the scaling factor between NAPL and
water and that between air and NAPL satisfy the constraint (α21hC21 ≥ α32hC32).
Therefore, both the employments of Tsai and Yeh’s model and Parker et al.’s model
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n ⋅ M1= −10 g/cm2/day

n ⋅ M2= 0
n ⋅ M3 = 0

P1=7.156×1015 g/cm/day2

P3=7.465×1015 g/cm/day2

P2=7.415×1015 g/cm/day2

P1=7.156×1015 g/cm/day2

P3=7.465×1015 g/cm/day2

P2=7.415×1015 g/cm/day2

Initial condition

Z
er

o 
F

lu
x

Z
er

o 
F

lu
x

40 cm

1 cm

Finite element discretization 

Total number of nodes=82
Total number of elements=40

 

0
1=1.0 g/cm3

0
3=1.0×10−3 g/cm3

0
2=1.4 g/cm3

Fluid properties

1=841.0828 g/cm/day

3=15.81 g/cm/day
2=690.0828 g/cm/day

β2=4.086×10−21 cm day2/g
β1=6.162×10−21 cm day2/g

=1.557×10−19 day2/cm2M

RT

p=2.057×10−21 cm day2/g

Satisfying the constraint in
Parker et al.'s constitutive laws.

Remark

Material properties

=0.25

32=0.099 cm−1

21=0.11 cm−1

21h21>  32h32

31=0.044 cm−1

n=2.2
Sir=0

k= 4.27×10−8cm2

ρ
ρ
ρ
μ
μ
μ

α

α
α
α

α α

φ

Fig. 2.1 The problem description and relevant parameters of Example 1

yield solutions. Figure 2.2 shows the solutions for saturations of water, NAPL,
and air, as simulated with the present model and Parker et al.’s model. Since the
expressions of saturation–capillary pressure relations in the present model and those
in Parker et al.’s model are different, it is seen that the degrees of saturation for
all three phases are similar in trend but quite different in magnitudes. The present
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Fig. 2.2 Distributions of the degrees of saturation for Example 1: (a) water saturation (Tsai and
Yeh’s model), (b) NAPL saturation (Tsai and Yeh’s model), (c) air saturation (Tsai and Yeh’s
model), (d) water saturation (Parker et al.’s model), (e) NAPL saturation (Parker et al.’s model),
and (f) air saturation (Parker et al.’s model)

model yields more smoothly evolutional simulations than Parker et al.’s model.
As to which model yields more reasonable results, only extensive calibrations and
validations can resolve the question, which is beyond the scope of, and certainly is
not the objective of, this investigation. In addition, Fig. 2.3 shows the distributions
of density of air. The variation of air density providing a demonstration that
compressibility is considered in the present simulator.
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2.4.2 Example 2: Water Infiltration Problem

This example is similar to Example 1 except for the initial and bottom boundary
conditions. The main differences are the initial and boundary pressure distributions
do not satisfy the constraint (α21hC21 ≥ α32hC32) in this example while they do in
Example 1. This example is presented to demonstrate the feasibility and advantage
of using the Tsai and Yeh’s model over that of Parker et al.’s model for the multiple
flow problems of more than two fluid phases.

In many currently available pressure-based three-phase flow models that used
Parker et al.’s law, negative degrees of saturation are obtained with these prescribed
initial and boundary conditions. The variable-switch algorithm implemented in
those models would reject these prescribed conditions. It is obvious that the rejection
is due to Parker’s constitutive law used, not based on any physical grounds. There-
fore, simulations with those models will exclude initial and boundary conditions
that might otherwise be possible. On the other hand, in many currently available
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fractional flow-based three-phase flow models, the occurrence of negative degrees of
saturation would have stymied the simulation. In other words, an otherwise feasibly
prescribed initial and boundary pressure distribution would not produce simulations.

In this example, were Parker’s model used, negative degree of saturation for
NAPL would have resulted. On the other hand, the use of present model will
not result in negative degrees of saturation, and thus, the prescribed initial and
boundary pressure distribution would not stymie the simulation as demonstrated
in this example.

Figure 2.4 shows the domain of interest. Similar to Example 1, water infiltrates
into the top of the soil column with a constant mass flux of 10g/cm2/day and zero
NAPL and air mass fluxes. At the bottom of the column, the pressure distributions
of three phases are maintained at their initial values. The pressure distributions
are specified such that they do not satisfy the constraint (α21hC21 > α32hC32).
The initial and bottom boundary values are given as follows. The pressure of water
is 7.156× 1015g/cm/day2, the pressure of NAPL is 7.235× 1015 g/cm/day2, and
the pressure of air is 7.465× 1015g/cm/day2. The boundary conditions at the top
are the same as that in Example 1: the mass fluxes of water, NAPL, and air are
n ·M1 = −10g/cm2/day, n ·M2 = 0, and n ·M3 = 0, respectively. The fluid and
material properties are given in Fig. 2.4. The initial time-step size is 5.0×10−5day,
and each subsequent time-step size is increased by 10% until a maximum time-step
size of 1.0× 10−3day is reached.

Plausible solutions are obtained with the present model. The solution for degrees
of saturation in each phase is depicted in Fig. 2.5. It is seen that NAPL and air
are displaced downward from the top of the soil column, while water infiltrates
into the column, as expected. Additionally, because NAPL is squeezed by the
constant infiltration of water, it is observed that the peak of NAPL saturation moves
downward with increasing simulation times, as expected. The variations in air
density are shown in Fig. 2.6. It is seen that the air density increases while water
constantly infiltrates into the system, as expected.

The initial and prescribed boundary pressure distributions in Example 2 do
not satisfy the constraint inherent in Parker et al.’s model. Therefore, for such
pressure distributions, using Parker et al.’s model either will not yield solutions using
fractional flow-based models or may generate wrong solutions using pressure-based
models due to the switch of primary variables. In contrast, with the use of Tsai and
Yeh’s model, the present multiphase flow model is more physically realistic and is
capable of simulating the problems which cover all possible pressure distributions.

2.4.3 Example 3: NAPL Infiltration Problem

In Example 3, NAPL constantly infiltrates into a 165 cm long by 65 cm high soil
block shown in Fig. 2.7. The initial conditions of three phases are the following:
the water saturation is S1 = 0.1, the NAPL saturation is S2 = 0.1, and the air
saturation is S3 = 0.8. Since a 10g/cm2/day NAPL mass flux, zero water, and air
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Fig. 2.4 The problem description and relevant parameters of Example 2

mass fluxes infiltrate into an opening on the top, the boundary conditions therein are
specified as the mass flux of water is n ·M1 = 0, the mass flux of NAPL is n ·M2 =
−10g/cm2/day, and the mass flux of air is n ·M3 = 0. On the left side of the block,
the pressure distributions are specified as follows: the pressure of water is P1 =
7.234× 1015 g/cm/day2, the pressure of NAPL is P2 = 7.336× 1015 g/cm/day2,
and the pressure of air is P3 = 7.611× 1015 g/cm/day2. On the right side, the
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pressure distribution is the pressure of water is P1 = 7.087 × 1015 g/cm/day2,
the pressure of NAPL is P2 = 7.189× 1015 g/cm/day2, and the pressure of air is
P3 = 7.465× 1015 g/cm/day2. On the bottom, the boundary condition is specified
as the water saturation is S1 = 0.1, the NAPL saturation is S2 = 0.1, and the air
saturation is S3 = 0.8. The block is pumped with a flux rate −50cm3/day at five
well points 0.2 days after the infiltration began. The fluid and material properties
are given in Fig. 2.7 as well. The initial time-step size is 1.0× 10−4day, and each
subsequent time-step size is increased by 10% until a maximum time-step size of
1.0× 10−3day is reached.

The distributions of NAPL, water, and air saturation through time are given in
Figs. 2.8, 2.9, and 2.10, respectively. It is seen that the water and NAPL saturations
approximate to zero around the well due to the effect of pumping. In Fig. 2.8, the
pumping affects the distributions of NAPL contour obviously at 0.284 and 0.984
days but has little effects at 2.984 days. The continuous pumping leads the NAPL
saturation near well points to approximate zero and hence reduces its conductivity.
Therefore the infiltrated NAPL will not flow to the well. As a result, the pore space
near the well is occupied mostly by the air phase (Fig. 2.10) via its high conductivity.
Figure 2.9 indicates that the water saturation changes little through the entire domain
of interest except for a small region near the well. This example implies that a pump
and treat strategy of NAPL removal would not work for this particular case.

2.4.4 Example 4: NAPL Infiltration Problem

In this example, NAPL infiltrates into a 165 cm long by 65 cm highly unsaturated
block with zero mass fluxes of water and air shown in Fig. 2.11. The majority of the
block is filled with sands. Three additional materials are included in small portions
of the domain, which are clay, silt, and gravel. The initial conditions of three phases
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are: the water saturation is S1 = 0.2, the NAPL saturation is S2 = 0.1, and the air
saturation is S3 = 0.7. Since a 10g/cm2/day NAPL mass flux, zero water, and air
mass fluxes infiltrate into an opening on the top, the boundary conditions therein
are specified as: the mass flux of water is n ·M1 = 0, the mass flux of NAPL is
n ·M2 = −10g/cm2/day, and the mass flux of air is n ·M3 = 0. On the left and
right sides, the pressure distributions of three phases are specified as follows: the



2 An Advanced Constitutive Law in Multiphase Flow Model for Simulations... 45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

Fig. 2.8 Distributions of the degrees of saturation of NAPL for Example 3
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pressure of water is P1 = 7.351× 1015 g/cm/day2, the pressure of NAPL is P2 =
7.420× 1015 g/cm/day2, and the pressure of air is P3 = 7.611× 1015 g/cm/day2.
On the bottom, the boundary condition is specified as: the water saturation is S1 =
0.2, the NAPL saturation is S2 = 0.1, and the air saturation is S3 = 0.7. The fluid
properties are also given in Fig. 2.11. The initial time-step size is 1.0× 10−4day,
and each subsequent time-step size is increased by 10% until a maximum time-step
size of 1.0× 10−3day is reached.

The distributions of degrees of saturation for NAPL, water, and air are depicted in
Figs.2.12, 2.13, and 2.14, respectively. Two liquid phases (water and NAPL) behave
similarly in this highly heterogeneous system of media. When they reach the gravel,
they flow through it quickly because the permeability of gravel is much higher than
that of the sand. When they reach the silt, they flow on its surface and move sideway
and flow down with a small portion going through the silt. When they reach the very
impermeable clay, they almost completely float on its surface and flow sideway then
downward, with very little going through the clay. It is seen from Fig. 2.14 that as
NAPL infiltrates, air is to first move to both sides and then upward because of its
low density. As the air moves up, it bypasses the relatively impermeable silt and clay
but goes through the very permeable gravel quickly. The results show the capability
of the present model to generate reasonable simulations for the NAPL infiltration
problem.

2.5 Conclusions

In this investigation, the constitutive law proposed by Tsai and Yeh is successfully
implemented in a fractional flow-based multiphase flow model to simulate com-
pressible subsurface flow problems with different possible pressure distributions. To
demonstrate the feasibility and advantage of the developed model, four examples are
presented. The results clearly show the feasibility and advantage of implementing
the new constitutive law to simulate compressible flow problems, especially with
the cases that prescribed pressure distributions do not satisfy the constraint required
by Parker et al.’s model. With the implementation of the new saturationcapillary
pressure relationship, plausible solutions are obtained with all possible initial and
boundary pressure distributions. In summary, the implementation of the advanced
constitutive law makes the present multiphase flow model complete and physically
realistic to simulate the compressible flow problems with all possible pressure
distributions.

Acknowledgements Research is supported by National Science Council under Contract No. NSC
99–2116-M-008–020 with National Central University.
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Fig. 2.13 Distributions of the degrees of saturation of water for Example 4

Appendix A: Numerical Discretizations with FEM

The governing equation for the total pressure, Eq. (2.5), is discretized with the
standard Galerkin FEM as follows:

[Cp]

{
∂Pt

∂ t

}
+
[
Cp

s1

]{∂S1

∂ t

}
+
[
Cp

st

]{∂St

∂ t

}
+[DDp]{Pt}=

{
fp
}
, (A.1)
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Fig. 2.14 Distributions of the degrees of saturation of air for Example 4

in which

[Cp]i, j =

∫

Ω

(Cpt)∇Ni·∇NjdR, (A.2)
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(Cs1)∇Ni·∇NjdR, (A.3)
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Cp

st
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i, j =

∫

Ω

(Cst)∇Ni·∇NjdR, (A.4)

[DDp]i, j =

∫

Ω

∇Ni·∇NjdR, (A.5)

{
fp
}

i = −
∫

Ω

∇Ni• [ρg∇z]dR−
∫

B

n• [Ni (Mt)]dB+
∫

Ω

Ni [Qt ]dR, (A.6)

where [Cp] is the mass matrix associated with total pressure, [Cp
s1] is the mass

matrix associated with water saturation for total pressure, [Cp
st ] is the mass matrix

associated with total liquid saturation for total pressure, [DDp] is the dispersion-
diffusion matrix associated with Pt in the governing equation for total pressure, and
{ fp} is the flux due to advection, dispersion-diffusion, and gravity in the governing
equation for total pressure.

The governing equations for the saturations of water and total liquid, Eqs. (2.15)
and (2.16), are discretized by the standard Galerkin and the upstream FEMs. The
optimized weighting parameters for the upstream FEM are found in the literature
(e.g., Carrano and yeh 1995; Christie et al. 1976). Other more robust numerical
discretization methods may be employed, but that will not alter the key points
addressed in this chapter. The formulations are given as follows:

[
Cp

1

]{∂Pt

∂ t

}
+[Cw

1 ]
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∂ t

}
+
[
Ct

1
]{∂St
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+[DDT1]{St}+[DST1]{S1}= { f1} , (A.7)

and
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in which
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[
PC12+(S1−κ1)

dPC12

dS1

])
NiNjdR, (A.10)

[
Ct

1

]
i, j =

∫

Ω

(
φS1

∂ρ1

∂P1
κ3

dPC23

dSt
−κ1Cst +ρ1S1αp

[
PC23 +(St −1+κ3)

dPC23

dSt

])
NiNjdR, (A.11)
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[ADW1]i, j =
∫

Ω

Wi
dκ1

dS1
Mt •∇NjdR−

∫

Ω

Wi

[
d(κ1κκκ • (ρ1 −ρ)g∇z)

dS1

]
•∇NjdR, (A.12)

[ADT1]i, j =
∫

Ω

Wi
dκ1

dSt
Mt •∇NjdR−

∫

Ω

Wi

[
d(κ1κκκ • (ρ1 −ρ)ρ1g∇z)

dSt

]
•∇NjdR, (A.13)

[DDW1]i, j =
∫

Ω

∇Ni •
[

κ1κκκ • (1−κ1)
dPC12

dS1
∇Nj

]
dR+

∫

Ω

∇Ni •
[

κ1κκκ •κ3
dPC23

dS1
∇Nj

]
dR, (A.14)

[DDT1]i, j =
∫

Ω

∇Ni •
[

κ1κκκ • (1−κ1)
dPC12

dSt
∇Nj

]
dR+

∫

Ω

∇Ni •
[

κ1κ •κ3
dPC23

dSt
∇Nj

]
dR, (A.15)

[DST1]i, j =
∫

Ω

Ni

(
κ1Qt −Q1

S1

)
NidR, (A.16)

{ f1}i =
∫

B

Nin• [κ1Mt ]dB−
∫

B

Nin• [M1]dB−
∫

B

Nin• [κ1κ • (ρ1 −ρ)g∇z]dB, (A.17)

[
Cp

2

]
i, j = −

∫

Ω

(
φS3

∂ρ3

∂P3
−κ3Cpt +ρ3S3αp

)
NiNjdR, (A.18)

[Cw
2 ]i, j =

∫

Ω

(
φS3

∂ρ3

∂P3
κ1

dPC12

dS1
+κ3Cs1 −ρ3S3αp

[
PC12 +(S1 −κ1)

dPC12

dS1

])
NiNjdR, (A.19)

[
Ct

2

]
i, j =

∫

Ω

(
φS3

∂ρ3

∂P3
(1−κ3)

dPC23

dSt
+κ3Cst+ρ3φ−ρ3S3αp

[
PC23+(St−1+κ3)

dPC23

dSt

])
NiNjdR, (A.20)

[ADW2]i, j = −
∫

Ω

WiMt •
[

dκ3

dS1
∇Nj

]
dR+

∫

Ω

Wi

[
d(κ3κ • (ρ3 −ρ)g∇z)

dS1

]
·∇Nj dR, (A.21)

[ADT2]i, j = −
∫

Ω

WiMt •
[

dκ3

dSt
∇Nj

]
dR+

∫

Ω

Wi

[
d(κ3κκκ • (ρ3 −ρ)g∇z)

dSt

]
•∇NjdR, (A.22)

[DDW2]i, j =
∫

Ω

∇Ni •
[

κ3κκκ •κ1
dPC12

dS1
∇Nj

]
dR+

∫

Ω

∇Ni •
[

κ3κκκ • (1−κ3)
dPC23

dS1
∇Nj

]
dR, (A.23)

[DDT2]i, j =
∫

Ω

∇Ni •
[

κ3κκκ •κ1
dPC12

dSt
∇Nj

]
dR+

∫

Ω

∇Ni •
[

κ3κκκ • (1−κ3)
dPC23

dSt
∇Nj

]
dR, (A.24)

[DST2]i, j =
∫

Ω

Ni

(−κ3Qt +Q3

St

)
NidR, (A.25)

{ f2}i = −
∫

B

Nin• [κ3Mt ]dB+
∫

B

Nin• [M3]dB+
∫

B

Nin• [κ3κκκ • (ρ3 −ρ)g∇z]dB, (A.26)

where [Cp
1 ] is the mass matrix associated with total pressure for water saturation;

[Cw
1 ] is the mass matrix associated with water saturation; [Ct

1] is the mass matrix
associated with total liquid saturation for water saturation; [ADW1] is the advection
and gravity matrix associated with water saturation; [ADT1] is the advection and
gravity matrix associated with total liquid saturation; [DDW1] is the dispersion-
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diffusion matrix associated with water saturation; [DDT1] is the dispersion-diffusion
matrix associated with total liquid saturation; [DST1] is the matrix from the sink
or source; { f1} is the flux due to advection, dispersion-diffusion, and gravity; [Cp

2 ]
is the mass matrix associated with total pressure for total liquid saturation; [Cs

2] is the
mass matrix associated with water saturation for total liquid saturation; [Ct

2] is the
mass matrix associated with total liquid saturation; [ADW2] is the advection and
gravity matrix associated with water saturation; [ADT2] is the advection and gravity
matrix associated with total liquid saturation; [DDW2] is the dispersion-diffusion
matrix associated with water saturation; [DDT2] is the dispersion-diffusion matrix
associated with total liquid saturation; [DST2] is the matrix from the sink or source;
{ f2} is the flux due to advection, dispersion-diffusion, and gravity; Wi is the
upstream weighting function; Ni is the Galerkin interpolation function; n is the
outward normal vector; Ω is the region of interest; and B is the boundary. Note that
the subscripts 1 and 2 in the definitions of all matrices denote the first and second
equation of two saturation equations, respectively. By assembling Eqs. (A.7) and
(A.8), the resulting coupled matrix for saturations of water and total liquid is given
as follows:

[
Cw

1 Ct
1

Cw
2 Ct

2

]{ ∂ S1
∂ t

∂ St
∂ t

}
+

[
DDW1 +ADW1 +DST1 DDT1 +ADT1

DDW2 +ADW2 DDT2 +ADT2 +DST2

]{
S1

St

}
=

{
f1

f2

}
−
{

Cp
1

∂ Pt
∂ t

Cp
2

∂ Pt
∂ t

}
.

(A.27)

To obtain the solutions for the total pressure, saturations of water, and total liquid,
we use the Bi-CGSTAB method proposed by vant der Vorst (1992).
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