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    Abstract     Despite the introduction of 15 new antiepileptic drugs to the market since 
1990, around a third of the epileptic patients do not achieve seizure remission with 
current known medications. The chapter overviews current hypothesis on the causes 
of drug resistant epilepsy, with an emphasis on the most documented explanations. 
On the basis of those hypotheses, current approaches to the development of novel 
antiepileptic medications are overviewed, including adjuvant Pgp-inhibitors, devel-
opment of Pgp-non substrates, use of nanocarriers to circumvent active transport, 
design of multi-target directed ligands and adjuvant therapies with antioxidant and 
anti-infl ammatory medications. In line with current discussions on the matter, it is 
proposed that different hypothesis may serve as explanation for different subgroups 
of drug-resistant patients, and that—in the light of recent basic research—at least 
some of the hypotheses may be interrelated.  

  Keywords     Refractory epilepsy   •   Drug resistant epilepsy   •   Antiepileptic drugs   
•   Drug design   •   Transporter hypothesis   •   Target hypothesis   •   Intrinsic severity 
hypothesis   •   ABC transporters   •   Multi-target directed drugs   •   Nanocarriers  

14.1         Refractory Epilepsy: Current Explanations 

 According to the current defi nition from the International League Against Epilepsy 
(ILAE) the term refractory (or intractable, or drug resistant) epilepsy refers to the 
failure of adequate trials of two tolerated, appropriately chosen antiepileptic drug 
schedules (either as monotherapies or in combination) to achieve sustained seizure 
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freedom (Kwan et al.  2010 ). In the previous defi nition “appropriate” indicates an 
intervention that has previously been shown to be effective (preferably in random-
ized controlled studies) for the patient’s epilepsy and seizure type, while “adequate” 
indicates that the drug has been administered at adequate dosage for a suffi cient 
length of time. Regarding what constitutes and adequate period without seizures for 
a patient to be regarded as “seizure-free,” a minimum of three times the longest pre- 
intervention inter-seizure period or 12 months (whichever is longer) has been pro-
posed. Application of a standardized defi nition of refractoriness is not trivial, since 
depending on the defi nition chosen the frequency of drug resistant epilepsy varies 
considerably (between 10 and nearly 40 %) (Beleza  2009 ). What is more, as dis-
cussed later, general applicability of a given hypothesis of drug resistant epilepsy 
may critically depend on what we actually call “drug resistant epilepsy.” 

 Despite the fact that there are currently more than 20 available antiepileptic 
drugs (AEDs) and that 15 third generation agents have been introduced to the mar-
ket since 1990, the clinical need of refractory epilepsy remains unmet (Bialer  2012 ; 
Löscher and Schmidt  2011 ): there are still no solid evidence indicating improved 
effi cacy. There are currently four hypotheses explaining the nature of refractory 
epilepsy: on the one hand, the traditional transporter and target hypothesis (Löscher 
and Potschka  2005 ; Schmidt and Löscher  2005 ; Kwan and Brodie  2005 ; Remy and 
Beck  2006 ); more recently, the inherent severity hypothesis and the neural network 
hypothesis have also been proposed (Rogawski and Johnson  2008 ; Fang et al. 
 2011 ). Among them, the transporter hypothesis is so far, without a shadow of doubt, 
the most extensively studied. 

 The transporter hypothesis suggests that intractable epilepsy may have a pharma-
cokinetic basis. It states that drug resistance may emerge, as in other disorders, from 
intrinsic or acquired activation or over-expression of drug transporters involved in 
drug distribution, metabolism and elimination. Research supporting this hypothesis 
has focused in effl ux transporters from the ATP-binding cassette (ABC) superfam-
ily. Evidence abounds indicating high expression levels of members of this family 
such as P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), and multi-
drug resistance proteins (MRPs) at the neurovascular unit of nonresponsive patients 
(either at the blood–brain barrier or glial cells or neurons) (Tishler et al.  1995 ; 
Dombrowski et al  2001 ; Sisodiya et al.  2002 ,  2006 ; Aronica et al.  2003 ,  2005 ; 
Lazarowski et al.  2004 ; Calatozzollo et al.  2005 ; Kubota et al.  2006 ; Ak et al.  2007 ). 
Lack of effi cacy of those AEDs which are substrates of any of the up-regulated 
effl ux transporter would be a consequence of limited bioavailability of the therapeu-
tic agent in the brain or specifi cally at the epileptic focus. In fact, some studies 
showed reduced AEDs concentrations in the brain extracellular fl uid and epileptic 
tissue of refractory patients (   Marchi et al.  2005 ; Rambeck et al.  2006 ). A general 
pharmacokinetic mechanism underlying refractory epilepsy is consistent with the 
fact that available AEDs act through a wide range of molecular mechanisms. The 
transporter hypothesis has been fully verifi ed in animal models of epilepsy. Several 
animal models of epilepsy (chronic models) have provided evidence of Pgp over- 
expression in brain tissue from animals with refractory epilepsy (Zhang et al.  2012 ), 
and drug resistance has been reverted by co-administration of Pgp inhibitors together 
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with the AED (van Vliet et al.  2006 ; Brandt et al.  2006 ). Nevertheless, conclusive 
evidence of the validity of the transporter hypothesis in humans remains elusive. 
There are some (anecdotical) cases of patients who have showed improvement 
when AED were co-administered with Verapamil, a known Pgp-inhibitor (Summers 
et al.  2004 ; Ianetti et al.  2005 ; Schmitt et al.  2010 ; Pirker and Baumgartner  2011 ). 
It is still not clear, however, if the observed results are due to the intrinsic antiepi-
leptic activity of verapamil, to Pgp inhibition or another effect on AEDs pharmaco-
kinetics, and randomized control trials with more selective inhibitors are needed to 
obtain defi nitive proof of concept. The main argument against the transporter 
hypothesis is the fact that numerous but not all AEDs are substrates of human Pgp 
(Zhang et al.  2012 ). At this point one should bear in mind that current defi nition of 
drug resistant epilepsy requires only two adequate, appropriate, well-tolerated AED 
interventions to consider that a patient presents refractory epilepsy. It is then con-
ceivable that (if the transporter hypothesis were valid) a patient would be diagnosed 
as drug resistant if at least one of those two AEDs interventions does not include a 
Pgp-non-substrate (e.g., Carbamazepine). It has been suggested that the transporter 
hypothesis may be valid for a subgroup of the epileptic patients (Löscher and 
Delanty  2009 ). 

 The target hypothesis states that structural (transcriptional or posttranscriptional) 
alterations in AEDs molecular targets might explain pharmacoresistance. This 
hypothesis is based, essentially, in reported loss of sensitivity to voltage-gated 
sodium channel blockers such as carbamazepine and phenytoin in patients and ani-
mal models of epilepsy (Schmidt and Löscher  2009 ). It has been observed that the 
inactivation effect of Phenytoin on sodium channels is transiently reduced in kin-
dling models (Vreugdenhil and Wadman  1999 ), while the use-dependent effect of 
Carbamazepine and Phenytoin is permanently lost or reduced in the pilocarpine 
model and in temporal lobe epilepsy patients (Remy et al.  2003a ,  b ; Jandová et al. 
 2006 ). Numerous changes in the expression of sodium channels subunits have been 
described in animal models of seizure and epilepsy, and in epileptic patients 
(Bartolomei et al.  1997 ; Gastaldi et al.  1998 ; Aronica et al.  2001 ; Whitaker et al. 
 2001 ; Ellerkmann et al.  2003 ), suggesting seizures or epileptogenesis may alter 
AEDs targets. Mutations at accessory subunit β1 have been linked to a dramatic loss 
in the use-dependent effect of phenytoin (Lucas et al.  2005 ). On the other hand, 
associations between alterations at GABA 

A
  receptor subunits and resistance to phe-

nobarbital in animal models of temporal lobe epilepsy have been reported (Volk 
et al.  2006 ; Bethmann et al.  2008 ). The main objection to the target hypothesis is 
that, as has been already mentioned, there exist clinical AEDs associated to different 
mechanisms of action. Even those AEDs that share a common mechanism (e.g., 
GABA 

A
  receptor allosteric modulators) frequently bind to different sites of the 

same receptor. Thus, the target hypothesis by itself would only satisfactorily explain 
the phenomenon of multidrug resistance involving drugs that share their mechanism 
of action. 

 A third hypothesis, the hypothesis of the intrinsic severity, proposes the inherent 
severity of the disorder as determinant of the treatment outcome (Rogawski and 
Johnson  2008 ). It relies on epidemiologic data which indicates that the single most 
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important factor linked to the prognosis of epilepsy is the number of episodes at the 
early phase of the disorder (MacDonald et al.  2000 ; Williamson et al.  2006 ; 
Sillampää and Schmidt  2006 ; Mohanraj and Brodie  2006 ; Kim et al.  2006 ; Hitiris 
et al.  2007 ;    Sillampää and Schmidt  2009 ). Some limitations of the intrinsic severity 
hypothesis have been highlighted (Schmidt and Löscher  2009 ): the lack of studies 
on the biological basis of disease severity; the lack of genetic studies comparing 
patients with low seizure frequency versus patients with high seizure frequency at 
the disorder onset and; the fact that there are reports of nonresponsive patients with 
low frequency of episodes at the early phase of epilepsy (Spooner et al.  2006 ). 

 Very recently, a fourth hypothesis has arisen. The neural network hypothesis 
states that the adaptive remodeling of neural circuits that follows seizures may con-
tribute to the development of refractory epilepsy. However, one should remember 
that remodeling of neural circuits also occurs in responsive patients. Therefore, dif-
ferences between the degree of neural reorganization in responsive and nonrespon-
sive patients should be studied to support this latest explanation to drug resistance. 

 This short overview suggests that either different hypothesis may explain the 
drug resistance phenomenon in different subgroups of patients (understanding that 
refractory epilepsy is a complex, multi-factor phenomenon and conceiving that in 
some patients more than one factor may be present simultaneously) or that the pre-
vious hypothesis may be integrated (Schmidt and Löscher  2009 ), with the two fi rst 
hypothesis (partially) providing a biological basis for the others. Most importantly 
to the scope of this chapter, different hypothesis claim for different strategies to 
develop novel therapeutic answers. In the next sections we discuss potential impli-
cations of the fi rst three hypothesis in the fi eld of AEDs development.  

14.2     Possible Therapeutic Answers to the Transporter 
Hypothesis 

 The obvious answer to overcome effl ux transporter-mediated drug resistance is to 
develop therapeutic systems to circumvent this barrier to achieving adequate con-
centrations of the drug in its site of action. An excellent review on this matter has 
recently been published (Potschka  2012 ). The general strategies studied in the last 
15 years to overcome ABC transporters can be synthesized as (Talevi and Bruno- 
Blanch  2012 ): (a) modulation of ABC transporters (i.e., reversal of multidrug resis-
tance and down-regulation of transporters); (b) design of novel drugs which are not 
effl ux transporter-substrates; (c) bypassing drug transport (or the Trojan horse strat-
egy). Most of the research on these strategies has focused on the best known repre-
sentative of the ABC superfamily, Pgp (note that Pgp was purifi ed back in 1979 and 
it was not until 1990s that MRPs were identifi ed). However, it is now established 
that there exist numerous transporters involved in transport of endogenous and 
exogenous compounds and that the levels of expression of different ABC transport-
ers are interrelated (in some cases, a co-expression pattern has been observed; in 
others, an inverse relationship has been established) (Miller et al.  2008 ; Cisternino 
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et al.  2004 ; Bark et al.  2008 ; Choi et al.  1999 ; Bordow et al.  1994 ). Taking into 
consideration that the spectra of substrates of different ABC transporters overlap to 
a certain degree, it might be hypothesized that up-regulation of a given transporter 
might have a compensatory role in the transient or permanent disturbance of other, 
which might explain the observed development of tolerance to some interventions 
aimed at regulating Pgp function (van Vliet et al.  2006 ). One must consider that 
development of tolerance is not acceptable when dealing with long-term drug treat-
ments such as AEDs. 

 Regarding transporters modulation, the most advanced research relates to add-on 
therapies of specifi c inhibitors of ABC transporters, a strategy that was originally 
conceived for cancer treatment. Although preclinical and initial clinical results in 
the fi eld of cancer treatment were encouraging at fi rst, trials of fi rst, second and 
even third generation agents had to be stopped at clinical stage due to serious 
adverse effects (Deeken and Löscher  2007 ; Lhommé et al.  2008 ; Tiwari et al.  2011 ; 
Fox and Bates  2007 ). These results have called into question the general validity of 
this approach of overcoming cellular drug resistance by the use of transporters 
inhibitors, even though trials continue in order to fi nd more effective and safe inhib-
itors for Pgp and other transporters (Deeken and Löscher  2007 ;    Akhtar et al.  2011 ). 
At this point it is important to remember that ABC transporters comprise a con-
certed, complex effl ux and infl ux dynamic system whose substrates are not only 
drugs but also endogenous compounds (e.g., waste products) and toxins. They are 
implicated in the infl ammatory response to several stress and harmful stimuli, and, 
apparently, they have a role in neurodegenerative diseases such as Alzheimer’s and 
Parkinson’s disease (Hartz and Bauer  2010 ). Thus, their permanent impairment or 
disruption is likely to result in severe side effects (again, one should bear in mind 
the chronic nature of epilepsy, which demands long-term treatment). A similar out-
come to RNA interference technologies to down-regulate a given gene codifying a 
member of the ABC superfmailiy may be expected (Potschka  2012 ). Recent 
research has then focused on elucidating intracellular signaling pathways that con-
trol ABC transporters (their expression, intracellular traffi cking, activation and 
inactivation). It is proposed that fi nding the molecular switches of these transporters 
will allow selective modulation of transporters function and or expression for thera-
peutic purposes in different clinical scenarios (Hartz and Bauer  2010 ), which 
includes turning the effl ux mechanisms off for short, controlled periods of time. 

 Another strategy which should provide delivery of a drug to the brain without the 
toxic issues associated to the impairment of the effl ux transport is virtual screening 
or computer-aided design of novel AEDs which are not recognized by ABC trans-
porters (Demel et al.  2008 ,  2009 ). A review on in silico models for early detection 
of Pgp substrates has been recently published (Chen et al.  2012 ). A 2D QSAR 
model to detect anti-maximal electroshock seizures (MES) drug candidates (Talevi 
et al.  2007a ,  b ,  2012 ), an ensemble of 2D models to identify Pgp-susbtrates (Di 
Ianni et al.  2011 ) and a structure-based approach based on homology modeling of 
human Pgp were jointly applied in a virtual screening campaign to ZINC and 
DrugBank databases (Irwin and Shoichet  2005 ; Knox et al.  2011 ). From 360 com-
pounds predicted as Pgp-non-substrates anticonvulsants, ten diverse candidates 
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(Fig.  14.1 ) were acquired and tested in the MES test, with good results (Di Ianni 
et al.  2012 , submitted).

   The last strategy implies the application of a carrier system to “hide” the drug 
from the effl ux pump. Different carrier systems have been tested to increase the 
bioavailability of drugs to the brain, among them nanosystems (polymer nanopar-
ticles, nanogels, lipid nanocapsules, liposomes) (Bansal et al.  2009 ; Patel et al. 
 2009 ;    Bennewitz and Saltzman  2009 ; Alam et al.  2010 ,). An exhaustive review of 
all the carriers that have been tested in brain drug targeting to avoid recognition by 
transporters will deserve an entire chapter or even a book, so we are including some 

  Fig. 14.1    A series of novel anticonvulsants emerging from a multistep virtual screening campaign 
aiming at novel treatments for refractory epilepsy       
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examples for illustrative purposes. A 60-fold increase in the brain localization of 
doxorubicin (a known Pgp-substrate) in rats, when administered i.v. as polysorbate 
80-coated nanoparticles (compared to: i.v. administration in saline solution; in 
polysorbate 80 solution and; bound to nanoparticles without polysorbate 80 coat-
ing) (Gulyaey et al.  1999 ). Much more recently, a 2.6-fold increase in coumarin-6 
localization in the brain through encapsulation of the drug in poly(ε-caprolactone)-
block-poly(ethyl ethylene phosphate) nanomicelles was achieved (Zhang et al. 
 2010 ). Regarding specifi c application of this strategy to antiepileptic agents, different 
nanosystems have been studied for the delivery of Clonazepam, Diazepam, 
Phenytoin, Ethosuximide, 5-5-diphenyl hydantoin, carbamazepine, and valproic 
acid (VPA) and NMDA receptor antagonists (Fresta et al.  1996 ; Kim et al.  1997 ; 
Jeong et al.  1998 ; Nah et al.  1998 ; Ryu et al.  2000 ; Darius et al.  2000 ; Friese et al. 
 2000 ; Thakur and Gupta  2006 ; Abdelbary and Fahmy  2009 ; Varshosaz et al.  2010 ; 
Eskandari et al.  2011 ). A valid question would be whether this galenic artifi ces 
do improve availability of the drug in the central nervous system (CNS) and, if so, 
the molecular basis of such improvement. Unfortunately, most of this reports limit 
to physical characterization and in vitro behavior of the proposed systems. However, 
some of them explore the in vivo behavior of the nanosystems, with variable results. 
Darius et al. ( 2000 ) found that the brain tissue levels of VPA were not altered 
by administration with nanoparticles, though the nanosystem inhibits metabolism 
of VPA via mitochondrial beta-oxidation. Friese et al. ( 2000 ) reported that 
poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 prolong the 
duration of the anticonvulsive activity of NMDA receptor antagonist MRZ 2/576, 
presumably by prevention of active transport processes at the choroid plexus. More 
recently, Eskandari et al. ( 2011 ) have found an increased protective effect of VPA in 
the MES test when the drug was administered in nanostructured lipid carriers to 
rats. Intranasal administration of a dose of 4 mg/kg of nanostructured lipid carriers 
of VPA lead to almost three times higher brain concentrations than an intranasally 
administered solution of 30 mg/kg of the drug; brain–plasma ratio was also increased 
with the nanosystem (Table  14.1 ).

   Table 14.1    Increment of brain bioavailability of VPA when administered intranasally with 
nanostructured lipid carriers [adapted from Eskandari et al. ( 2011 )]   

 Formulation  Route 
 Dose 
(mg/kg) 

 Plasma 
concentration 
60 min after 
administration 
(μg/ml), 
mean ± SD 

 Brain concentration 
60 min after 
administration 
(μg/g) mean ± SD 

 Brain:plasma 
ratio 

 NLC of VPA  Intranasal  4  7.96 ± 2.9  64.35 ± 5.7  8.4 
 NLC of VPA  IP  20  11.35 ± 5.8  19.85 ± 8.5  1.65 
 Sodium VPA solution  Intranasal  30  3.87 ± 1.9  23.36 ± 8.3  6.77 
 Sodium VPA solution  IP  150  275.85 ± 39.5  112 ± 16  0.42 

   NLC  nanostructured lipid carriers,  VPA  valproic acid  
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   Prodrugs are another option to circumvent the blood–brain barrier, sometimes 
making use of infl ux transporters (e.g., dopamine is administered as its precursor 
 l -dopa, which is transported into the brain by the  l -type amino acid transporter and 
bio-transformed to dopamine in situ) (Mandaya et al.  2010 ). Numerous prodrugs of 
different anticonvulsant agents such as phenytoin, gabapentin, VPA and eslicar-
bazepine have been developed in order to improve bioavailability by regulation of 
drug absorption, distribution and elimination (Bennewitz and Saltzman  2009 ; 
   Trojnar et al.  2004 ; Bialer and Soares-da-Silva  2012 ). DP-VPA (  Fig. 13.2    ) was 
designed to be specifi cally activated at the epileptic focus. It is a prodrug of VPA in 
which the VPA moiety is covalently bound to a phospholipid, lecithin, leading to a 
50-fold increase in effi cacy in the pentylenetetrazol-induced seizures test (Trojnar 
et al.  2004 ). Similarly, our group has developed prodrugs of VPA with myo-inositol 
(Fig.  14.2 ) aiming at capitalizing the active infl ux of inositol enantiomers into the 
brain; the activity of these prodrugs in animal models of seizure is also increased 
compared to VPA, seemingly by improving CNS bioavailability (Bodor et al.  2000 ; 
Moon et al.  2007 ; Bruno-Blanch and Moon  2010 ). Whether these prodrugs interact 
with effl ux transporters and bypass up-regulated transporter molecules at the neuro-
vascular unit has yet to be studied.

   It is noteworthy that in the last few years it has been proven that, besides helping 
bypassing Pgp, many pharmaceutical excipients which are usually incorporated into 
carrier-systems can inhibit or modulate Pgp function by different mechanisms 
(Bansal et al.  2009 ). For example, it has been proposed that PEG and surfactans 
such as sorbitans and polysorbates can disrupt the lipid arrangement of the cellular 
membrane and that these perturbations have been shown to modulate Pgp activity 
(Lo  2003 ). This kind of modulation is interesting since it may increase drug bio-
availability in a transient manner, without the undesired effects of direct inhibition. 
Besides its possible role modulating transporters, cumulative evidence indicates 
that nanoparticle’s coating leads to adsorption of elements from the blood such as 
apolipoproteins, which in turn allows distribution to the brain by receptor-mediated 
transcytosis (Wohlfart et al.  2012  and references therein).  

  Fig. 14.2    Two prodrugs of VPA designed for improvement of VPA bioavailability at the epileptic 
focus: a prodrug of myo-inositol ( left ) and DP-VPA ( right )       
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14.3     Possible Therapeutic Answers to the Target Hypothesis 

 Several CNS disorders (either neurological or affective) present a complex etiology 
which includes a combination of polygenic, environmental, and neuro- developmental 
factors. Empiric evidence with effective treatments for some of such diseases (e.g., 
antidepressants) shows that searching for polyspecifi c, selective non-selective drugs 
(multi-target directed-ligands or “magic shotguns” or polyvalent drugs) may prove 
more safe and effective than the development of highly selective, single-target drugs 
(Roth et al.  2004 ). There are plenty examples of recent developments in the fi eld of 
CNS medications based on this new paradigm, including developing drugs for 
Alzheimer and Parkinson’s diseases (Cavalli et al.  2008 ; Youdim and Buccadfasco 
 2005 ), schizophrenia, depression and other mood disorders (Decker and Lehmann 
 2007 ; Wong et al.  2010 ). 

 There are many reasons why multi-target therapies are attractive in the fi eld of 
epilepsy. First, evidence indicate that—if total drug load is carefully watched—
some refractory patients may achieve seizure remission on poly-pharmacy, espe-
cially if the pharmacologic properties of the specifi c AEDs being combined is taken 
into account (Canevini et al.  2010 ; Kwan and Brodie  2006 ). A recent study on 131 
patients who underwent successful epilepsy surgery seems to indicate that, at least 
in the early postoperative stage, dual-therapy may be more effective than mono- 
therapy to achieve seizure remission (Zeng et al.  2012 ). Second, the normal function 
of neural networks may be more likely preserved by multiple small adjustments 
than by a single, strong perturbation, reducing not only the likelihood of central 
side-effects but also the induction of counter-regulatory processes which may relate 
with drug resistance (Löscher and Schmidt  2011 ; Bianchi et al.  2009 ). What is 
more: many currently used AEDs are in fact unintended multi-target agents (Bianchi 
et al.  2009 ). 

 In the light of the evidence that refractoriness may be in some cases related to 
modifi cations in drug targets, the design of novel multi-target AEDs seems as a 
natural answer to the second hypothesis of drug resistance, considering that it seems 
to be less likely that two distinct drug targets are altered simultaneously. Therefore, 
even if one target of a multi-target drug has lost sensitivity, one can speculate that 
the other/s will remain sensitive. 

 From the drug design perspective, in silico, rational approaches to develop mul-
tifunctional agents can be classifi ed in two strategies (Ma et al.  2010 ). On the one 
hand, the combinatorial approach, in which parallel Virtual Screening searches 
against each target of interest are conducted, retaining those hits that simultaneously 
gather all the structural requisites needed to interact with each individual target. In 
other words, the common hits from parallel Virtual Screening searches (one for 
every model associated to a particular target) are retained. In the background of 
multi-target drug discovery, the Virtual Screening for ligands for each individual 
target must be highly sensitive (i.e., a reduced number of false negatives should be 
observed) since the collective retrieval rate for multiple targets will tend to be rela-
tively low than when aiming to individual targets (one might speculate that, 
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naturally, it is more diffi cult to fi nd compounds that selectively interact with different 
targets without being excessively promiscuous). In contrast, when drugs that selec-
tively interact with a single target are being searched, in certain contexts one might 
sacrifi ce sensitivity in order to gain specifi city. The second strategy is the fragment-
based approach. Here, multiple elements or scaffolds that bind to each of the targeted 
targets are combined (usually through a linker) into a single, often larger molecule. 
The main drawback of this later approach relates to the poorer pharmacokinetic and 
toxicological profi le of the fi nal drug. Unless small, highly specifi c blocks/fragments 
are combined, it is unlikely that a given compound will gather the features for a CNS 
drug-like drug.  

14.4     Possible Therapeutic Answers to the Intrinsic Severity 
Hypothesis 

 If the intrinsic severity hypothesis was valid, AEDs research would face to elemen-
tal questions. Firstly, what are the determinants of epilepsy severity? And, if the 
answer to that initial question was answered, how could one control, through a 
therapeutic intervention, such determinants? During the last 10 years, basic research 
has begun to provide us some knowledge to attempt some very draft answers to 
these issues. 

 Acquired epilepsy is typically initiated by a brain insult followed by a latent, 
silent period whereby molecular, biochemical and cellular alterations occur in the 
brain and eventually lead to chronic epilepsy (Waldbaum and Patel  2010a ). In the 
last 10–15 years a link between epileptogenesis and oxidative stress, mitochondrial 
impairment and infl ammation has been established by a large body of studies 
(Waldbaum and Patel  2010b ; Waldbaum et al.  2010 ; Devi et al  2008 ; Liang and 
Patel  2006 ; Shin et al.  2008 ; Patel  2004 ; Sudha et al  2001 ; Vezzani and Granata 
 2005 ; Vezzani et al.  2011 ; Choi and Koh  2008 ). These phenomena seem to be both 
cause and consequence of seizures, constituting a vicious circle which results in a 
chronic disorder, e.g., infl ammatory mediators are released during seizures, and 
infl ammatory mediators take part in seizure generation and exacerbation. It is also 
interesting to note that chronic infl ammation and oxidative unbalance take part in 
the physiopathology of a diversity of neurological disorders. The brain combines a 
peculiar set of factors which makes it particularly vulnerable to reactive species: 
high rate of oxidative metabolism, low antioxidant defenses and abundant polyun-
saturated lipids (Devi et al  2008 ). 

 In line with the integrative approach towards explaining refractory epilepsy, a 
series of studies developed in the last decade agree that pro-infl ammatory signals 
and Reactive Oxygen Species play a role in the regulation of ABC transporters’ 
expression and activity. For example, exposing isolated rat brain capillaries to nano-
molar concentrations of ET-1 and TNF-α for long periods of time (above 4 h) 
increased Pgp-mediated transport compared to control levels, and after a 6-h 
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exposure Pgp transport was roughly doubled (Bauer et al.  2007 ). Von Wedel-Parlow 
et al. ( 2009 ) reported that Pgp levels were increased by TNF-α within 6 h but 
decreased later (Von Wedel-Parlow et al.  2009 ). Poller et al. reported similar results 
working with a human cell line of immortalized brain microvessels endothelial 
cells; they also noted that IL-6 treatment produced a slight decrease in Pgp mRNA 
expression (Poller et al.  2010 ). Regarding the infl uence of Reactive Oxygen Species 
on effl ux transporters expression levels, the fi rst evidence of up-regulation of Pgp 
came from in vitro experiments on primary culture of rat brain endothelial cells 
(Felix and Barrand  2002 ). Four hours after exposure to 100 μM H 

2
 O 

2,
  up-regulation 

of Pgp was observed at both mRNA and protein levels, which continue to increase 
up to a maximum at 48 h. A biphasic up-regulation was also observed after a 6-h 
hypoxia and subsequent reoxigenation (H/R) treatment; in this case, return to basal 
levels was observed following reoxigenation by 48 h. More recently, Robertson 
et al. ( 2009 ) reproduced the previous experiments comparing the effects of H 

2
 O 

2
  

H/R treatments in primary rat brain endothelial cells and immortalized rat brain 
endothelial cells. Although the production of Reactive Oxygen Species after H 

2
 O 

2
  

was more pronounced in immortalized cells lines, similar up-regulation of Pgp, at 
the protein level, was observed after the oxidative stress treatments in both types of 
cells. Similar results were obtained with other models, such as exposure to diesel 
exhaust particles or glutathione depletion (Hartz et al.  2008 ; Hong et al.  2006 ; Wu 
et al.  2009 ). 

 The discovery of the role of pro-infl ammatory mediators and oxidative stress in 
epilepsy explains current interest in immune, antiinfl ammatory and neuroprotective 
therapies as potential strategies to improve disease prognosis. For example, it was 
observed that ascorbic and lipoic acids ameliorate oxidative stress in experimental 
seizures (Santos et al.  2009 ; Militão et al.  2010 ). ACTH—a peptide that releases 
endogenous steroids in the patient—is used as a treatment for infantile spasms, a 
childhood refractory epilepsy; its effi cacy has been confi rmed in controlled trials 
(Pellock et al.  2010 ), while the use of other anti-infl ammatory therapies such as 
steroids remains controversial due to current lack of controlled clinical studies 
(Vezzani et al.  2011 ).  

14.5     Conclusions 

 There are currently four different hypotheses for drug resistant epilepsy. None of 
them seems to completely explain all cases of refractory epilepsy, but subgroups of 
unresponsive patients instead. At fi rst sight, each of them claims for a different 
therapeutic approach. Among the strategies proposed to overcome transporter- 
mediated refractory epilepsy, computer-aided research on new AEDs which are not 
recognized by ABC transporters, and circumventing transport by either prodrug 
design or nanoscale drug carriers seem as the best alternatives. Considering the 
effl ux transporters’ role in the disposal of potentially toxic endogenous and exoge-
nous compounds, we do not believe adjuvant inhibitory therapies as a feasible 
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option in the case of long-term treatments (e.g., AEDs). Still, one should consider 
that inhibition of a given transporter is often compensated by up-regulation of 
another member of the ABC superfamiliy. Regarding the target hypothesis, design 
of multi-target agents that introduce mild perturbations to several AED targets 
seems to be a good alternative for the treatment of those patients with certain altered, 
unsensitive target. Finally, considering the intrinsic severity hypothesis, and since 
infl ammation and oxidative stress seem to have a role in generation and exacerba-
tion of seizures, controlled trials on the possible effects of antioxidants, immune and 
anti-infl ammatory medication on epilepsy may have an impact on disease prognosis 
and severity, and consequently improve the chance of seizure remission. 

 Recent fi ndings on the effect of oxidative stress and infl ammation on ABC trans-
porters expression confi rm the idea that some (if not all) of the hypothesis of drug 
resistant epilepsy can be integrated. More research on the relationship between oxi-
dative stress and alterations to AED targets should be explored. Revealing the fi ne 
mechanisms that govern biochemical pathways and cellular events involved in epi-
leptogenesis (e.g., angiogenesis, infl ammation) would create new opportunities for 
the development of innovative antiepileptic medications.     
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