On a Stability Property of the Generalized
Spherical Radon Transform

Dmitry Faifman

Abstract In this note, we study the operator norm of the generalized spherical
Radon transform, defined by a smooth measure on the underlying incidence variety.
In particular, we prove that for small perturbations of the measure, the spherical
Radon transform remains an isomorphism between the corresponding Sobolev
spaces.
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1 Introduction and Background

Throughout the note, we fix a Euclidean space V' = R?*! and consider the
Euclidean spheres X = S¢ C V,andY = SY C V*.Forp € Y, C, C X will
denote the copy of S~! C X givenby C, = {g € X : (g, p) = 0}. Let 04—1(q)
denote the SO(d)-invariant probability measure on C,. The set C, C Y and the
measure 04— (p) on it are defined similarly. Then the spherical Radon transform is
defined as follows:

R:C®(X) = C®(Y)

Rf(p) = /C £(@)doa—1(q).
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Let o be the unique SO(d + 1)-invariant probability measure on the incidence
variety Z = {(¢q,p) € X xY : (g, p) = 0}. Assume one is given a smooth, not
necessarily positive measure dy on Z, given by (g, p)o where u € C*°(2),
and which satisfies u(xq,+p) = u(q, p) (call such u symmetric). Introduce
Ru:C®(X) — C®(Y) by

Ruf)(p) = /C F@ 1. p)dos—1 ().

Introduce also the dual Radon transform RZ 1 C®(Y) —» C*(X) which is
formally adjoint to R, and given by

(RT)(q) = / (D). Yoy (p).

G

Let L2(PX) and L2(PY) denote the Sobolev space of even functions on X and Y,
respectively. It is well known (see [2]) that the spherical Radon transform extends
to an isomorphism of Sobolev spaces:

R: L*(PX) — Lf+@(]P’Y)
2

for every s € R. For general 1 as above, R, is a Fourier integral operator of order
2L (see [3,5]), and so extends to a bounded map R, : L2(PX) — L§+ﬁ (PY).
2

We look for conditions on pu so that this is again an isomorphism.

It follows from Guillemin’s theorem on general Radon transforms associated to
double fibrations [1], that RZR,L : C®(PX) — C*°(PX) is an elliptic pseudo-
differential operator of order d — 1 for all smooth, positive, symmetric measures
1 on Z (for completeness, this is verified in the Appendix). The dependence of the
principal symbol of RZRM on p was investigated in [5]. In this note, we analyze the
dependence on 1 of the operator norm of R[R,, : L;(PX) — L?Hd_l)(]P’X). We
then give a sufficient condition on a perturbation j of o so that R, : C*°(PX) —
C°°(PY) remains an isomorphism. Namely, we prove the following

Theorem. The set of C* measures yon Z for which R, : C*°(PX) — C®(PY)
is an isomorphism, is open in the C**T(Z) topology.

2 Bounding the Norm of RI R,

We start by recalling an equivalent description of the Radon transform. Consider the
double fibration



On a Stability Property of the Generalized Spherical Radon Transform 57
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Let oy = m«0 and oy = p«0 be the rotation-invariant probability measures on X
and Y, respectively. Then for f € C®(X), (Rf)oy = p«(o(x* f)). For smooth
symmetric measures d, dv on Z, given by u(gq, p)o and v(gq, p)o we can define
Ry C®(X) — C®(Y),RI': C®(Y) — C°(X) respectively by

(Ruf)oy = ps(uo(x* f))

and
(Rl g)ox = me(vo(p*g)).
d—1

It follows from [1] that both R, and RT are Fourier integral operators of order =5

Thus we restrict to even functions and consider R, : L*(PX) — L§+ 4+ (PY) and
2
R L§+L;1(IP’Y) — L?Hd_l)(]P’X).
As before, ¢ will denote a point in X and p a point in Y. We will often write

q € pinsteadof (g, p) =0 < q € C, < p e C,. In the following, the
functions f, g are even. We also assume d > 2.

Proposition 1. The Schwartz kernel of RT R, : L2 (PX) — L?

H_(d_l)(]P)X) is

K(q'.q) = a(q.q")

Cd
sindist(q’, q)
that is,

RIR, /() = [X F@K(q)dox ().

Here ¢, is a constant, and a(q, q’) is the average over all p € Y s.t. q,q' € p of
u(g, p)v(q’, p). More precisely,

0(q.q) = / 1. Mpo)v(d'. Mpo)dM
S0(d—1)

where SO(d — 1) = {g € SO(d + 1) : gq = q.89" = q'}, Cp, is any fixed copy
of S through q,q', and dM is the Haar probability measure on SO(d — 1).

Proof. Fix some ¢’ € X,and py € Y s.t. ¢’ € po. Let SO(d) C SO(d + 1) be the
stabilizer of ¢’ € X. For g € C*°(Y) we may write

Rg@) = [

p3q’

¢(P(d p)do—i(p) = /S o EPOG MpyaM
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where d M is the Haar probability measure on SO(d). Then taking

gp)=Ruf(p)= [ f@u@.p)doi-(q)
qep
we get

RIR, f) = |

S0(d)

= [ ([ oz Mpodos @) e’ Mpordnt
SO(d) q4€po

([ f@na Mpodosr@)v(a'. Mpoyam
q€Mpo

_ / doa-1(d) / FM@R(MG. Mpo)v(q'. Mpo)d M.
q€po S0(d)

Denote 6 = dist(G,q’), and S¢~! = {q : dist(¢’.q) = 6}. Let doi_,(¢) denote
the rotationally invariant probability measure on S, g ~1. The inner integral may be
written as

[, 1@ata.q)io} (o).

Here a(q,q’) = fso(d_l) w(g, Mpo)v(q', Mpo)dM with SO(d — 1) = Stab(q) N
Stab(qo) is just the average of (g, p)v(q’, p) over all (d — 1)-dimensional spheres
C, containing both ¢ and ¢’. Then

RIR,f6) = [

q4€po

doa(@ [, f@ata.q)dof @)

and since the inner integral only depends on 6 = dist(§, ¢’), this may be rewritten
as

/2
c [ dosin 20 [ f@ata.a)dol (@)
0 Se_

Finally, doy = ¢4 sin? ™! Gdeag_l, and so

1
RIR, @) =<t | oo f(@ala.q)dou(@)
x sin6
We conclude that the Schwartz kernel is

K(q'.q) = a(q.q").

Cd
sindist(q’, q)
O

We proceed to estimate the norm of RTR,,. Our main tool will be the following
proposition proved in Sect. C
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Proposition. Consider a pseudodifferential operator P of order m
P:L%,,(R") > LI(R")

between Sobolev spaces with x—compactly supported symbol p(x,&) in K C R”
S.1.

|DSp(x,§)] = Coo(l + [§)°.

There exists a constant C(n, s) such that

1712

2, @@y = C0s) - sup - Cool K.

loe|<n+LlIs|]+1

Proposition 2. The norm of RIR,, : L2, (PX) — L§(PX) is bounded from
above by
2d+1

IRTRuI = C Y 1D ptllooll DF Voo
J4k=0

Sfor some constant C dependent on the double fibration.

Proof. First introduce coordinate charts. Choose a partition of unity y;(g’) corre-
sponding to a covering of X by charts U;, and a function p : [0,00) — Ry with
support in [0, 1] s.t. p(r) = 1 for r < % Write

K(¢'.q9) =) Ki(q'.9)+ Li(q".q)

Ki(q'.q) = xi(q")p(sindist(q’, q))K(q', q)

and
Li(q'.q) = xi(qg")(1 — p(sindist(q’, ¢))) K(q'. q).

Let RVT Ru =Y Tk, + T1, be the corresponding decomposition for the operators.
First we will bound the norm of the diagonal terms, i.e., the operators defined
by K;. Fix i, and choose some point ¢’ € U;. Introduce polar coordinates (r, 1)
around ¢’ so that ¥ € S{~'(¢') and r = sin 6 for r < %, 0 = dist(q, q’). Note that
a(q’, (r,¥)) = alq’, (r,—v)). By Proposition 5, the corresponding symbol is

1 /
piq.§) = )(,-(q’)/o /Sd_l Me_i(s’wp(r)rd_ldrdl//.

For a given ¢’, introduce spherical coordinates ¢ = (¢, ¢1,...,¢,_,) 0 < ¢ < 7,
on Sfl_l(q’) in such a way that cos ¢ = y; Take & = (1,0,...,0). Then

1 T
i@ TE) = Cy / p(r)ri=2dr / (@ r. $)e T cos’2 gdp
0 0
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b g T 2
where m(q'.r.¢) = xi(@) [y - [y Jo dbi...dpaaa(q . r.d. 1, ... P4 5).
We then have m(q’,r,7/2 + ¢) = m(q’,r,7n/2 — ¢). Take t = cos¢ and
M(q',r,t) = m(q’, r,arccost). Then M(q’,r,t) = M(q’,r,—t) and

1 1
P T6) = Co [ o0y 2dr [ M@ e T - ) .
0 -1
Since M is even, we may write
1 1 s
P Te) =2 [ 0y dr [ Mg eosTr )T
0 0
and so for all multi-indices o
1 1 Vs
o pi(q' Té) = 2/ p(r)rd_zdr/ DG M(q',r,t) cos(Tre)(1 — 127 dt.
0 0
Define as in Appendix A
1 1 s
1(d,p,m) = / ,o(r)rd_zdr/ M(q'.r.t)cos(Trt)(1 —t*) "7 dt
0 0

then we can write

Dy pi(q'. T&) = 21(d. p. Dgm(q'.r.$))

and conclude by Proposition 3 that

C gatb
|P1(q/,T§0)| = Td—1 Z sup araa(ﬁbmi
a+b=<d
a<d/2,b<d—1
C .
<= 2 1D plleol D vlleo

jk=d

and similarly for all multi-indices o

o C j
DG p1(g Té) < == D 1D pllooll D*vloo:
Jtk<|a|+d

It is also immediate that

1 b4
|p1(q, T&)| < Cd/o P(r)rd_zdr/o Im(q’,r,$)ldp < Cllitlloollv oo



On a Stability Property of the Generalized Spherical Radon Transform 61
and similarly

D& pi(q . TEN <C > D! tllool DFvlloo.
jtk=<le|

So we can write

c .
IDEpi(g O < ———— > D/ plool D*vlco
1+ 15D Jthdld

for some universal constant C = C(d). Then choosing s = O and || = d + 1 in
Proposition 4 we get that

2d+1

j k
I T ||L2_(d_l)(IPX)—>Lg(IPX) =C E D7 tlloo | D"Vl 0o-
Jj+k=0

Now we bound the norm of the off-diagonal term, namely the sum of operators
corresponding to L;. They constitute a smoothing operator 77, (i, v); its Schwartz
kernel k(q¢',q) = (1 — p(dist(¢’,¢)))K(¢’,q) is a smooth function in both
arguments. Denoting by V/ : C®(X) — (T*X)®/ the j-th derivative obtained
from the Levi-Civita connection,

2

H /X dox (@) f(@k(g'.q)

L2, (PX)

2
= [ v [ am@s@n’ o dova)
X X
— [| [ anv@ @i kg’ o dova)
X X
< [ aox@) ([ 11@Paonio) [ 196k o))
= 1/ Bagy, /X V4 k(g ) Pdo (q)

and

sup\/ /X IVek(q'.q)Pdox(@) < C 3 107 pllooll D¥ vl
q/

j+k<d—1

So

i k
I Te(pe, V)||L2(IP’X)—>L2_ ex) = c D7 ool DVl 0o-
0 d—1
jk<d—1
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It is easy to see that the adjoint operator 77 (i, v)* : L%d_l)(]P’X)* — L3(PX)*
equals 7y (v, ) after the isomorphic identification L2(PX)* =~ L% (PX) for
s = 0,d — 1. Since the bound above is symmetric in @, v we conclude

j k
”TL(:U”V)||L2_(d_l)(IP’X)—>L%(IP’X) =C Z 1D il oo 1D v 00-
j+k<d—1

Finally

2d+1

IR} Ry ||<||ZTK1||+||TL||<C > 1D oo | DV oo
Jj+k=0

|

Theorem 1. Assume d > 2, and let py € C*°(Z) be such that R, : C*°(PX) —
C°(PY) is an isomorphism. Then there exists €9 > 0 (depending on the double
fibration), such that if ||t — pollc2a+1(z) < €0 then Ry, : C®°(PX) — C®(PY) is
an isomorphism (for all s ).

Proof. Since RT Ry, : L2 4, (PX) — L3(PX) (and likewise for Y) is elliptic,

it is an isomorphism. Let us verify that both of the maps RTR D L? Za- 1)(]P’X ) —
Li(PX) and R,R] : L* ;_,(PY) — L§(PY) remain an isomorphism for small

perturbations j of fg in the C??+1(Z) norm:

IR Ry =Ry Ruoll = IRy, + Ry,

110

)(Ruo + RM—MO) - RT RM() ”

< IR Ri=uo | + 1Ry Risoll + 1Ry Ris—o

so by Corollary 2, there is an ¢y > 0 s.t. all norms are indeed small when
i = mollc2a+1(z) < €o. The operator RMRg is treated identically, and we take
the minimal of the two €.

Since both RT’R and R, RT are elliptic operators, the dimension of the kernel
and cokernel are 1ndependent 0f s. It follows that RTR (L2(PX) — L? sra—1(PX)
and R Rﬁ LX(PY) — Lf 11 (PY) are 1som0rphlsms for all s. In particular,
Ker(R, : L*(PX) — L2+ 4~ (PY)) = 0 and Coker(R, : L*(PX)

S o S
L2+ +— (PY)) = 0, implying by the open mapping theorem that R, : L2(PX) —
S o
L2+ 4—1 (PY) is an isomorphism for all s. The result follows. O
S 5
Remark 1. Tt is unlikely that the result is sharp. For instance, in the case of d = 1
one only needs || — 1{|co to be small to conclude that R, is an isomorphism, while

the statement (although non-applicable for d = 1) would suggest bounding the
C3-norm.
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Appendix
A Some Integral Estimates

Fix some real 7 > 0. For an integer d > 2, a smooth function p : [0,00) — R
compactly supported in [0, 1), and smooth functions m(r, ¢),n(r,¢) : [0,00) x
[0, 7]R we define the integrals

1 1 de3
I(d,p,m):/o p(r)rd_zdr/o M(r,t)cos(Tre)(1 —t*) 7 dt

and
1 1
J(d, p,m) :/ p(r)rd_zdr/ N(r,t)sin(Tre)(1 — tz)d%}dt
0 0

where M(r,t) = m(r,¢) and N(r,t) = n(r, ¢) fort = cos ¢. We assume m is even
w.r.t. 5, namely m(r, 7 +¢) = m(r, 5 —¢) <= M(r,t) = M(r,—t); while n is
odd,ie. n(r,5 +¢) = —n(r,5 —¢) <= N(r.t) = —=N(r,—1).

Proposition 3. There exists a constant C = C(d, p) such that for d > 2 and all
even functions m

1(d. pm)] < — 3 sup |
PN = P 8r“3¢bm
a+b<d
a<d/2,b<d-1
and for odd functions n
C gatb
|J(d, p,n)| < T Z sup Wﬂ .
a+b<d

a<d/2,b<d-1
Proof. Induction on d. Start by verifying the bounds for d = 2. To bound
1 Ll
1(2,p,m) =/ ¢! —tz)_E/ p(r)M(r,t)cos(Trt)dr
0 0

we first integrate the inner integral by parts:

1 1
/ M(r,t)p(r)cos(Trt)dr = —i/ sin(Trt)(M(r,t),o’(r)+a£(r,t)p(r))dr
0 Tt 0 3r
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Let us bound separately

1
/o zm/ sin(Tro)M (r.0)p'(r)dr

and

/0 tm/ sm(Trt) (r t)p(r)dr.

Now

< C sup |m|

/1 sin(Trt)M(r,t)dt
! tv1—1¢2

M _ _am 1
and since 5~ T iy s

/% sin(Trt)M(r, t)dt
0 /1 —1¢2

1
M@r,1) |°

= Si(Trt)m

0

5 am 1 4
—i—/(; Sl(TVl‘)(g(r,t)F+M(F,Z)m)dt.

1—1

Now since Si is bounded, it follows that

/% sin(Tro)M(r,0)de | _
0 tv1—1¢2

am
%)

(sup |m| + sup

Thus

/ sin(Trt)M(r,t)p' (r)dr

/01 Vi-i2

D/ dr|p(r)| < C (suplml + sup

w5)

(sup |m| + sup

Similarly,

1
/0 tm/ sm(Trt) (r t)p(r)dr

om L %m
o | TP 5r0e | )

<C (sup
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Tracing back,

32
i )

‘+sup 8¢‘

1. pom) < T (suplm] + sup | 5"

Next we bound |J (2, p, n)|
1 1
J(2,p,n) :/ ¢! —12)_1/2dt/ N(r,t)p(r)sin(Trt)dr.

0 0

Integrate the inner integral by parts:
1 1 1

/ N, t)p(r)sin(Trt)dr = _ﬂ/ (1 —cos(Trt))(N(r,t)p'(r)

0 0

+aﬂ(r, t)p(r))dr.
ar

Let us bound separately

1
1 —cos(Trt))N(r,t)p' (r)dr
[ 2 [ = eosmrnmin. s
and
1
1 —cos(Trt —rt r)dr.
[ [ costrrn e op)
Now
(1 —cos(Trt))N(r,t)dt < Csupln|
<Csup|n
i tvV1—12 P
and since %7: g;dliandN(r O)—Owegetthat|atN(r t)|<Csup| |
f0r0<t<—so|N(rt)|<Csup| |t and
(1 —cos(Trt))N(r,t)dt ' om| (' dt n '
< C sup = pl=—1-
0 tv1-12 V1-12 ¢
Thus
1
1 —cos(Trt))N(r,t)p' (r)dr
[ 2 [ cosmriin. o

<C (sup|n| + sup

D/ drlp ()] < C (sup|n| + sup

n
sel)
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Similarly,
[ [ amcostrrin S porar| < ¢ (sup| 2|+ sup | )
cos(Trt))—(r r)dr su
= g Plor| TP [orag
and putting all together,
C on 3%n
|J(2,p,n)|§?(sup|n|+sup P )+sup ad)) ‘ 390 )

as required.
Next consider the case d = 3. We bound /, J simultaneously. Apply integration
by parts to the inner integrals:

1 1
I(3,p,m)=/ ,o(r)rdr/ M(r,t)cos(Trt)dt

1 in(T
:—/ r,o(r)a’r/0 %(r )msm(rrt)dt

sm(Tr)

—/ rp(r)yM(r, 1)
and similarly

1 ! L on 1 cos(Trt)
J(3,p,n) = —7/ rp(r)dr/o %(r,t)m . dt

__/ ro(r) (N( 1)cos(Tr) N(:’O))d

These first summands are

—/ (r)dr/ 59 )= ST = ; (2 0, z’;‘)

and

1 d
——/ ,o(r)afr/0 8¢>(r t)\/_tcos(Trt)dt I (2 0, 8:&)

the second summand for /

sm(Tr)

1 / ro(r)M(r. 1)

= T/ p(r)M(r, 1) sin(Tr)dr
0
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_ ——p( VM 1)cos(Tr)

/ (P (I M(r.1)

a
+p(r)a—M(r, 1)) cos(Tr)dr
r
is bounded by

C

T2 sup |m| + sup | —

Similarly since N(r,0) = 0, also the second summand for J

cos(Tr)

1 1
7 [ o

on
or

dr| < ¢ sup |n] + su
72 \SUP P75

thus we showed that

C(3.p) am  C(3,p) am
11(3,p,m)| < T J(2,p, a¢>)+ 2 sup [m| + sup P
and
C(3 p) C(3,p) on
|J(3, p,n)| < I12,p ’ﬁ)—i_ T2 (sup|n|+sup B_rD

and plugging the already proved estimates for d = 2 concludes the case d = 3.

Finally, for d > 3 we will apply induction. Again consider both integrals
simultaneously. Start by integrating by parts the inner integral: the boundary term is
zero (for J since n is odd), so

1
/ M(r,t)cos(Trt)(1 — tz)%dt
0

1
= %/0 sin(T'rt) (2_’;1(1 _12)% +(d = 3)M(r,1)t(1 _IZ)‘IZ_S) dt

1
/ N, 0)sin(Tre)(1 — 12T dt
0

1
= —%/ cos(Trt) (g—;(l — tz)d*?4 +(d =3)N@r, )t — 12)'12_5) dt
0
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Thus
: d-2 : 2y 4532
I(d, p,m) :/ p(r)r dr/ M(r,t)cos(Trt)(1—1t") 7 dt
0 0
Lt d-3 /1 Im 2y 454
= — rré > dr sin(Trt)—(1—1¢t7) 2 dt
= [ oo =ar [sinrrn Gra -
Cd ! d—3 ! 2\ d=5 .
+7/0 p(r)r /0 M(r,t)t(1 —¢t7) = sin(Trt)dt
and
: d-2 : : 2,452
J(d, p,n) :/ o(r)r dr/ N(r,t)sin(Trt)(1 —t~) 2 dt
0 0

1/1 i3 /1 an 2\ d=t
= —_ rré > dr cos(Trt)—(1 —1t%) 2 dt
NG [ cos(Trg (-1)

1 1
—% ,o(r)rd_3/ N(r,t)t(1 — tz)% cos(Trt)dt.
0 0

The first terms are %J(d —1,p, g—’;) and —%I(d -1, p, g—;), respectively.
In the second term, first change the order of integration:

C 1 1 s
= p(r)rd‘3/ M(r, 1)t(1 —12)% sin(T'rt)dt
T Jo 0
Cd 2, 4=5 1 . d—3
=T l(l —t*)y = dit | M(r,t)sin(Tre)r* > p(r)dr.
0 0

Now apply integration by parts to the inner integral. Since d —3 > 0 and p(1) = 0,
again there is no boundary term:

/ 1 M(r,t)sin(Trt)r?=p(r)dr

0

— /0 ldr—COS(TTt”) (rd_3p(r)i)—ﬂj(r,t)+(rd /()
+(d = 3)r"p(r)M(r,1))

Thus

Ca

[ ot [ w1 - sincren

_ bd N d—3 oM
T2/0 (1—1¢7) 2 dt/o drcos(Trt)r ,o(r) P (r,t)
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C 1 _ 1
+T—‘§/ (1—;2)%41;/ dr cos(Trt)(r'=3p/(r)
0 0

+(d =3)ri™p (r))M(r 1)

= Cd (d 2,rp(r), ) 4 %I(d —2,p0(r) +rp'(r),m)

and the corresponding term for J:

Cu

1 1
- ,o(r)rd_3/ N(r,t)t(1 — tz)% cos(Trt)dt
0 0

1 1
= _% t(1— tz)%dt/ N(r,t) cos(Trt)rd_3p(r)dr
0

__ G t(l—tz) - dt/ dr sm(Trt)
T Jo

( = -”p<r) (r 0+ @ (r) + (d = 3)r "—4p<r)>N<r,t))

= S =20 2 4 S 2,p00) + 70/, )

and we conclude by induction. O

B Guillemin’s Condition

For g € X, we denote by ¢ € X the unique point proportional to ¢ and distinct
from it. We will consider the projective space PX = RP¢, PY = RP‘ and the
projectivized incidence variety PZ = {(¢q, p) € PX x PY : (¢, p) = 0}.

Consider the projectivized double fibration

N
PX PY

Then any two fibers F,(PX) intersect transversally (since before projectivization,
the only non-transversal intersection was between fibers over antipodal points).
Denote Ny C T*(PX x PY), Ng € T*(X x Y) the conormal bundles of
W, E respectively. Since dimE = 2d — 1 and dim(X x Y) = 2d, the fibers
of Ng, Ny are one-dimensional. Recall that T, ) E = {(§,n) € Ty, X x T,Y :
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(¢,n) + (&, p) = 0}. Therefore, Ng over (¢, p) € E has its fiber spanned
by (p.q) € T;/X x T;Y. One thus has Ng\0 C (T*X\0) x (T*Y\0), and
p: Ng\O — T*Y\O given by ((¢, p),t(p,q)) — (p,tq) is an immersion, which

is two-to-one since p((q, p),t(p,q)) = p((q, p), (—t)(p,q)). The corresponding
map p : Ny\0 — T*PY\O is already an injective immersion. Thus Guillemin’s
condition is satisfied, and we conclude

Corollary 1. For any smooth positive measure € M*>®(PZ), RER,L 1 C*®°
(PX) — C*®(PX) is an elliptic pseudodifferential operator.

C Pseudo-Differential Operators

For a survey of the subject, see for instance [4].
We will study the norm of a pseudodifferential linear operator P : C*®°(R") —
C*°(R") which is given by its symbol p(x, &)

PF(x) = / £ p(x, ) £ (€)

where p € Sym™(K), i.e.,

1. pe C*®([R" xR")
2. p has compact x—support K C R"
3. DY D2 p(x.8)| < Cop(1 + |y

It is well known that for all s € R, P extends to a bounded operator between
Sobolev spaces

P:L%, (R") — LX(R")

We will trace the proof of this fact to understand the dependence on p of the operator
norm || P||.

Proposition 4. There exists a constant C(n, s) such that

1P, 12 <Clrs)  sup  CuolK]
e loe|<n+LIs|]+1

Proof. All the integrals in the following are over R". Start by integrating by parts:

)/dwfip(x,g)efw)) _ e

/dxp(x,é)ei(x’g) .
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So

‘ / dxp(x,£)e'™ | < min(|Z|7*Co(1 + [E])"| K|, Coo(1 + |E)™|K])

< 2(Coo + Cao) | KI(1+ E)" (1 + ¢
= C,|K|(1 + [E)" (1 + |£))~*

where C, = 21°/(Cgo + Cuo). We want to bound
Pu(x) = / dge'™ ) p(x, £)a(§).
Take v € L2 (R"), then
(Pu) = [[acs@)Pu) = [ ao@) [ axpucoeit=d
= / / dgdxi(g)e™ / dgi(€) p(x.§)e' ™
= [ [ asagi@ric) [ axpix.greits
so denoting

BE0) = (1+ )" (1 + [ ) / dxp(xf)e"‘*’s_g)‘

we have
(Pul = [ [ dgaca@dee 0+ )™+ )
= ([agaera+pre [doen)”
([ [agiora+ion® [doen)”
Now

(£, Q) < Col KI(1+ [EDT"(1 + [Z])* (1 + [ED™ (1 + |& — ¢y~
< Gl KI(1 + 1§ = g7
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Therefore,
[ 500 < a61s1 - K]
where
Aty = [ asa+lel
similarly
[ et < conisi - ehcal]
implying

|(Pu.v)| < A 1s| = @) Cal Kl V]
= 1PNz, iz < A1 Is] = | Cal K|

and this holds for all « s.t. A(n,|s| — |a|) = [dE( + [EDbI=ll < oo, ie.
|s| — || < =n <= |a| > n + |s|. We thus choose & s.t. |a| = ||s]] +7n + 1, and
recall that C, = 21°!(Cyo + Cyo) to obtain the stated estimate. O

We will also need the relation between the Schwartz kernel and the symbol.

Proposition 5. Suppose the Schwartz kernel of P is given by K(x, y), namely
(Pf(x). g(x)) = / dxdyK(x.y) f(y)g(x).
Then the symbol p(x,£) of P is given by
pee.) = [ 09K Gex = )ay.
Proof. Write for smooth compactly supported f, g
(Pf(x).g(x)) = / dxdge’™ ) p(x.8) f (§)g(x)
= [ dxdydge! 9 pr ) f0) 0

Thatis, K(x,y) = [ dge'“ ) p(x,§),and (Pf.g) = [ f(3)g(x)K(x, y)dydx.
Denoting by l;(x) = [d Eh(E)e’ ) the inverse Fourier transform, we can also

write K(x,y) = p(x,e)(x —y) < K(x,x —y) = p(x,)(y), so

p(x.8) = / DK (x.x — y)dy

as claimed. ]
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