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Abstract We are interested in overgroups of the automorphism group of the Rado
graph. One class of such overgroups is completely understood; this is the class of
reducts. In this article we tie recent work on various other natural overgroups, in
particular establishing group connections between them and the reducts.
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1 Introduction

The Rado Graph R is the countable universal homogeneous graph: it is the unique
(up to isomorphism) countable graph with the defining property that for every finite
disjoint subsets of vertices A and B there is a vertex adjacent to all vertices in A and
not adjacent to any of the vertices in B .

We are interested in overgroups of its automorphism group Aut.R/ in Sym.R/,
the symmetric group on the vertex set of R. One class of overgroups of Aut.R/

is completely understood; this is the class of reducts, or automorphism groups of
relational structures definable from R without parameters. Equivalently, this is the
class of subgroups of Sym.R/ containing Aut.R/ which are closed with respect
to the product topology. According to a theorem of Thomas [5], there are just five
reducts of Aut.R/:

• Aut.R/

• D.R/, the group of dualities (automorphisms and anti-automorphisms) of R
• S.R/, the group of switching automorphisms of R (see below)
• B.R/ D D.R/:S.R/ (the big group)
• Sym.R/, the full symmetric group

Given a set X of vertices in a graph G, we denote by �X .G/ the switching
operation of changing all adjacencies between X and its complement in G, leaving
those within or outside X unchanged, thus yielding a new graph. Now a switching
automorphism of G is an isomorphism which maps G to �X .G/ for some X , and
S.G/ is the group of switching automorphisms. Thus the interesting question is
often for which subset X is �X .G/ isomorphic G, and for this reason will sometimes
abuse terminology and may call �X .G/ a switching automorphism.

Thomas also showed (see [6], and also the work of Bodirsky and Pinsker [1]) that
the group S.R/ can also be understood as the automorphism group of the 3-regular
hypergraph whose edges are those 3-element subsets containing an odd number
of edges. Similarly, D.R/ is the automorphism group of the 4-regular hypergraph
whose edges are those 4-element subsets containing an odd number of edges, and
B.R/ is the automorphism group of the 5-regular hypergraph whose edges are those
5-element subsets containing an odd number of edges.

One can see that G is any subgroup of Sym.R/, then G:FSym.R/ (the group
generated by the union of G and FSym.R/, the group of all finitary permutations on
R) is a subgroup of Sym.R/ containing G and highly transitive. The reducts D.R/

and S.R/ however are 2-transitive but not 3-transitive, while B.R/ is 3-transitive
but not 4-transitive. On the other hand we have the following.

Lemma 1. Any overgroup of Aut.R/ which is not contained in B.R/ is highly
transitive.

Proof. Let G with Aut.R/ � G 6� B.R/, and let G be the closure of G in Sym.R/.
Since G 6� B.R/, we have G D Sym.R/ by Thomas’ theorem. Since G and G

have the same orbits of n-uples, G is highly transitive. ut
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Now for a bit of notation. With the understanding that R is the only graph under
consideration here, we write v � w when v and w are adjacent (in R), R.v/ for the
set of vertices adjacent to v (the neighbourhood of v), and will use Rc.v/ forRnR.v/

(note that v 2 Rc.v/). We say that a permutation g changes the adjacency of v and
w if .v � w/ , .vg 6� wg/. We say that g changes finitely many adjacencies at v if
there are only finitely many points w for which g changes the adjacency of v and w.

Given two groups G1; G2 contained in a group H , we write G1:G2 for the
subgroup of H generated by their union.

In Sect. 2, we present various other natural overgroups and tie recent work and in
particular establish group connections between them and the reducts.

2 Other Overgroups of Aut.R/

Cameron and Tarzi in [2] have studied the following overgroups of R.

(a) Aut1.R/, the group of permutations which change only a finite number of
adjacencies.

(b) Aut2.R/, the group of permutations which change only a finite number of
adjacencies at each vertex.

(c) Aut3.R/, the group of permutations which change only a finite number of
adjacencies at all but finitely many vertices.

(d) Aut.FR/, where FR is the neighbourhood filter of R, the filter generated by
the neighbourhoods of vertices of R.

One shows that all these sets of permutations really are groups, as claimed. For
Auti .G/, this is because if C.g/ denotes the set of pairs fv; wg whose adjacency is
changed by g, then one verifies that C.g�1/ D C.g/g�1

and C.gh/ � C.g/ [
C.h/g�1

.
The main facts known about these groups are:

Proposition 1 ([2]).

(a) Aut.R/ < Aut1.R/ < Aut2.R/ < Aut3.R/.
(b) Aut2.R/ � Aut.FR/, but Aut3.R/ and Aut.FR/ are incomparable.
(c) FSym.R/ < Aut3.R/ \ Aut.FR/, but FSym.R/ \ Aut2.R/ D 1.
(d) S.R/ 6� Aut.FR/, and Aut.FR/ \ D.R/ D Aut.FR/ \ S.R/ D Aut.R/.

Proof. (a) is clear.
(b) For the first part, let g 2 Aut2.R/. It suffices to show that, for any vertex v,

we have R.v/g 2 F.R/. Now by assumption, R.v/g differs only finitely from
R.vg/; let R.v/g nR.vg/ D fw1; : : : ; wng. If we choose w such that wi 62 R.w/

for each i , then we have

R.vg/ \ R.w/ � R.v/g;

and we are done.
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For the second part, choose a vertex v, and consider the graph R0 obtained
by changing all adjacencies at v. Then R0 Š R. Choose an isomorphism g from
R to R0; since R0 is vertex-transitive, we can assume that g fixes v. So g maps
R.v/ to R1.v/ D Rc.v/ n fvg. Clearly g 2 Aut3.R/, since it changes only one
adjacency at any point different from v. But if g 2 Aut.FR/, then we would
have R1.v/ 2 FR, a contradiction since R.v/ \ R1.v/ D ;.

In the reverse direction, let R00 be the graph obtained by changing all
adjacencies between non-neighbours of v. Again R00 Š R, and we can pick
an isomorphism g from R to R00 which fixes v. Now g changes infinitely many
adjacencies at all non-neighbours of v (and none at v or its neighbours), so
g 62 Aut3.R/. Also, if w is a non-neighbour of v, then R.v/ \ R.w/g D
R.v/ \ R.wg/, so g 2 Aut.FR/.

(c) Note that any non-identity finitary permutation belongs to Aut3.R/ n Aut2.R/.
For if g moves v, then g changes infinitely many adjacencies at v (namely, all
v and w, where w is adjacent to v but not vg and is not in the support of g). On
the other hand, if g fixes v, then g changes the adjacency of v and w only if g

moves w, and there are only finitely many such w.
Finally, if g 2 FSym.R/, then R.v/g differs only finitely from R.v/, for any

vertex v 2 V ; so g 2 Aut.FR/.
Thus the left inclusion is proper: Aut2.R/ is contained in the right-hand side

but intersects FSym.R/ in f1g.
(d) The graph R0 in the proof of (b) is obtained from R by switching with respect

to the set fvg; so the permutation g belongs to the group S.R/ of switching
automorphisms. Thus S.R/ 6� Aut.FR/.

Now any anti-automorphism g of R maps R.v/ to a set disjoint from R.vg/;
so no anti-automorphism can belong to Aut.FR/. Suppose that g 2 Aut.FR/ is
an isomorphism from R to �X .R/. We may suppose that �X is not the identity,
that is, X ¤ ; and Y D V n X ¤ ;. Choose x and y so that xg 2 X

and yg 2 Y . Then R.x/g 4 Y D R.xg/ and R.y/g 4 X D R.yg/. Hence
R.xg/ \ R.x/g � X and R.yg/ \ R.yg/ � Y . Hence

R.xg/ \ R.x/g \ R.yg/ \ R.y/g D ;;

a contradiction. ut
On the other hand, results of Laflamme, Pouzet and Sauer in [4] concern the

hypergraph H on the vertex set of R whose edges are those sets of vertices which
induce a copy of R. Note that a cofinite subset of an edge is an edge. There are three
interesting groups here:

(a) Aut.H/.
(b) FAut.H/, the set of permutations g with the property that there is a finite subset

S of R such that for every edge E , both .E n S/g and .E n S/g�1 are edges.
(c) Aut�.H/, the set of permutations g with the property that, for every edge E ,

there is a finite subset S of E such that .E n S/g and .E n S/g�1 are edges.
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Clearly Aut.H/ � FAut.H/ � Aut�.H/, and a little thought shows that all three
are indeed groups. Moreover one will note that for Aut�.H/ and FAut.H/ to be
groups, both conditions on g and g�1 in their definitions are necessary. To see this,
choose an infinite clique C � R, and also partition R into two homogeneous edges
E1 and E2: for every finite disjoint subsets of vertices A and B of R there is a vertex
in E2 adjacent to all vertices in A and not adjacent to any of the vertices in B . Then
it is shown in [4] that there exists g 2 Sym.R/ such that Cg D A, and Eg is an
edge for any edge E . But clearly .A n S/g�1 is not an edge for any (finite) S .

As a further remark let H� be the hypergraph on the vertex set of R whose edges
are subset of the form E [ F where E induces a copy of R and F is a finite subset
of R. Equivalently these are the subsets of R of the form E�F where E induces
a copy of R and F is a finite subset of R (this follows from the fact that for every
copy E and finite set F , E n F is a copy). Then observe that Aut.H�/ D Aut�.H/.

We now provide some relationships between these LPS groups and the CT
groups.

Proposition 2. (a) Aut.H/ < FAut.H/.
(b) Aut2.R/ � Aut.H/ and Aut3.R/ � FAut.H/.
(c) FSym.R/ � FAut.H/ but FSym.R/ \ Aut.H/ D 1.

Proof. (a) This follows from part (c).
(b) If we alter a finite number of adjacencies at any point of R, the result is still

isomorphic to R. So induced copies of R are preserved by Aut2.R/. Similarly,
given an element of Aut3.R/, if we throw away the vertices where infinitely
many adjacencies are changed, we are in the situation of Aut2.R/.

(c) The first part follows from Proposition 1 part (c) and part (b) above. For the
second part, choose a vertex v and let E be the set of neighbours of v in R (this
set is an edge of H). Now, for any finitary permutation, there is a conjugate of it
whose support contains v and is contained in fvg[E . Then Eg D E [fvgnfwg
for some w. But the induced subgraph on this set is not isomorphic to R, since
v is joined to all other vertices. ut

We shall see later that FAut.H/ < Aut�.H/, but we present a bit more
information before doing so. In particular we now show that an arbitrary switching
is almost a switching isomorphism.

Lemma 2. Let X � R arbitrary and � D �X be the operation of switching R with
respect to X . Then there is a finite set S such that �.Rn S/ is an edge of H, namely
isomorphic to the Rado graph.

Proof. For E � R and disjoint U; V � E , denote by WE.U; V / the collection of
all witnesses for .U; V / in E . Note that if E is an edge, then WE.U; V / is an edge
for any such sets U and V . Now for C � R, denote for convenience by CX the set
C \ X , and by C c

X the set C n X .
Thus if �.R/ is not already an edge of H, then the Rado graph criteria regarding

switching yields finite disjoint U; V � R such that both:
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• WR.U c
X [ VX; UX [ V c

X / � X

• WR.UX [ V c
X; U c

X [ VX / \ X D ;
Define S D U [ V and E D R n S , we show that �.E/ is an edge of H.

For this let NU ; NV � E . But now we have:

WR. NUX [ NV c
X [ U c

X [ VX ; NU c
X [ NVX [ UX [ V c

X/

D WE. NUX [ NV c
X ; NU c

X [ NVX / \ WR.U c
X [ VX ; UX [ V c

X/

� X

In virtue of the Rado graph, the above first set contains infinitely many witnesses,
and thus WE. NUX [ NV c

X; NU c
X [ NVX / is non empty. Hence �.E/ contains a witness for

. NU ; NV /, and we conclude that �.E/ is an edge. ut
The last item above shows that any graph obtained from R by switching has a

cofinite subset inducing a copy of R. This can be formulated as follows: Let G be
a graph on the same vertex set as R and having the same parity of the number of
edges in any 3-set as R. Then G has a cofinite subset inducing R.

The next result is about the relation between the LPS-groups and the reducts.

Proposition 3. (a) D.R/ < Aut.H/.
(b) S.R/ 6� Aut.H/.
(c) S.R/ � Aut�.H/.

Proof. (a) Clearly D.R/ � Aut.H/ since R is self-complementary. We get a strict
inequality since Aut.H/ is highly transitive (since Aut2.R/ � Aut.H/) while
D.R/ is not.

(b) We show that R can be switched into a graph isomorphic to R in such a way
that some induced copy E of R has an isolated vertex after switching. Then the
isomorphism is a switching-automorphism but not an automorphism of H.

Let p, q be two vertices of R. The graph we work with will be R1 D R n fpg,
which is of course isomorphic to R. Let A; B; C; D be the sets of vertices joined to
p and q, p but not q, q but not p, and neither p nor q, respectively. Let � be the
operation of switching R1 with respect to C , and let E D fqg [ B [ C . It is clear
that, after the switching � , the vertex q is isolated in E . So we have to prove two
things:

Claim. E induces a copy of R.

Proof. Take U , V to be finite disjoint subsets of E . We may assume without loss of
generality that q 2 U [ V .

Case 1: q 2 U . Choose a witness z for .U; V [ fpg/ in R. Then z 6� p and z � q,
so z 2 C ; thus z is a witness for .U; V / in E .
Case 2: q 2 V . Now choose a witness for .U [ fpg; V / in R; the argument is
similar. ut
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Claim. �.R1/ is isomorphic to R.

Proof. Choose U; V finite disjoint subsets of R n fpg. Again, without loss, q 2
U [ V . Set U1 D U \ C , U2 D U n U1, and V1 D V \ C , V2 D V n V1.

Case 1: q 2 U , so q 2 U2. Take z to be a witness for .U2 [ V1 [ fpg; U1 [ V2/ in
R. Then z � p; q, so z 2 A. The switching � changes its adjacencies to U1 and V1,
so in �.R1/ it is a witness for .U1 [ U2; V1 [ V2/.
Case 2: q 2 V , so q 2 V2. Now take z to be a witness for .U1 [ V2; U2 [ V1 [ fpg/
in R. Then z � q, z 6� p, so z 2 C , and � changes its adjacencies to U2 and V2,
making it a witness for .U1 [ U2; V1 [ V2/. ut
(c) Let X � R, � be the operation of switching R with respect to X , and g W R !

�.R/ an isomorphism. In order to show that g 2 Aut.H�/ we need to show that
if E is an edge of H there is some finite S such that .E n S/g and .E n S/g�1

are edges of H.

However the graph Eg (in R) is obtained from switching the graph induced by
�.R/ on Eg. Since the latter is a copy of R, Lemma 2 yields a finite S0 � R such
that Eg n S0 is an edge of H. If S1 D S0g

�1, then .E n S1/g is an edge of H.
Finally notice that g�1 is an isomorphism from R to �Xg�1 .R/, the above

argument shows that there is a finite S2 such that .E n S2/g
�1 is an edge of H.

Since cofinite subsets of edges are edges S WD S1 [ S2 has the required property. ut
Corollary 1. B.R/ < Aut�.H/

Proof. That B.R/ � Aut�.H/ follows from parts (a) and (c) of Proposition 3.
We get a strict inequality since Aut�.H/ is highly transitive (since Aut2.R/ �

Aut�.H/) while D.R/ is not. ut
Proposition 4. S.R/ 6� FAut.H/.

In view of S.R/ � Aut�.H/ (by Proposition 3), this yields the following
immediate Corollary.

Corollary 2. FAut.H/ < Aut�.H/.

Clearly we have the following immediate observation:

Note 1.
Aut.H/:FSym.R/ � FAut.H/

Hence, the Corollary yields yet that Aut.H/:FSym.R/ < Aut�.H/.

Proof (of Proposition 4). The argument can be thought of as an infinite version of
the one given in part (b) of Proposition 3.

We shall recursively define subsets of R:

• A D han W n 2 Ni
• B D hbn W n 2 Ni
• C D hcn W n 2 Ni
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and set D so that:

1. 8n8k � n an 6� bk and cn � bk .
2. 8n En WD fak W k � ng [ fbng [ fck W k � ng is an edge.
3. If � is the operation of switching R with respect to C , then �.R/ is isomorphic

to R.
4. D D R n .A [ B [ C / is infinite.

a0 a1 a2

b0 b1 b2

c0 c1 c2

The construction is as follows. First list all pairs .U; V / of disjoint finite subsets
of R so that each one reoccurs infinitely often. Start with A D B D C D D D ;
and at stage n, assume we have constructed An D fak W k � ng, Bn D fbk W k � ng,
and Cn D fck W k � ng satisfying condition (1) above, together with a finite set
D disjoint from An, Bn and Cn. Then given .U; V /, proceed following one of the
following cases:

(a) Suppose U [V � An[Bn[Cn and contains at most one bi (i.e. .U; V / is a type
candidate for the eventual Ei ). Then, choosing from R n .An [ Bn [ Cn [ D/,
add anC1 or cnC1 as a witness for .U; V / depending as to whether bi is in V or
U (add anC1 if there is no such bi at all). Then choose two more elements from
RnD to complete the addition of elements anC1, bnC1, and cnC1 as required by
condition (1). Also throw a new point in D just to ensure it will become infinite.

(b) Else add the elements of U [ V n An [ Bn [ Cn to D, and select an element of
R n .An [ Bn [ Cn [ D/ as witness to .U n Cn [ V \ Cn; V n Cn [ U \ Cn/.

The construction in part (b) will ensure that �.R/ is isomorphic to R. Indeed let
U and V be disjoint finite subsets of R, and without loss of generality U \ D ¤ ;.
Thus when the pair .U; V / is handled at some stage n, part (b) will add a witness d

in D to .U n Cn [ V \ Cn; V n Cn [ U \ Cn/. But then d is a witness to .U; V / in
�.R/.

Let g be the isomorphism from �.R/ to R.
Finally the construction in part (a) clearly ensures condition (2). However note

that in �.R/, bn is isolated in En, and therefore �.En/ is not an edge.
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Finally for any finite set S � R, choose n so that S \ En D ;. Then .En n S/g

is not an edge. Thus g 2 S.R/ n FAut.H/. ut
We now go back to Aut.FR/. One can readily verify that the automorphism g

produced in the reverse direction of Proposition 1 is in fact not in Aut.H/, thus
Aut.FR/ 6� Aut.H/. However we have the following.

Proposition 5. Aut.FR/ 6� Aut�.H/.

Proof. Fix a vertex v 2 R. Now partition Rc.v/ D E [ D, where E is an edge,
D is an infinite independent set. This is easily feasible since Rc.v/ is an edge. Now
define g 2 Sym.R/ such that:

(a) g � R.v/ is the identity.
(b) g � E is a bijection to D.
(c) g � D is a bijection to Rc.v/.

Now for any vertex w, R.w/g � R.v/ \ R.w/ so g 2 Aut.FR/. However, for any
finite set S of E , then .E n S/g is again an independent set, and thus certainly not
an edge.

Hence g 62 Aut�.H/ and the proof is complete. ut

3 Conclusion

The following diagram summarizes the subgroup relationship between the various
groups under discussion.

Aut(R)

D(R) S(R)

B(R)

Aut∗(H)

Sym(R)

Aut(H)

FAut(H)

Aut1(R)

Aut2(R)

Aut3(R)

(1)

F Sym(R)

Aut(FR)

We do not know if the inclusion is strict in Observation 1.
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