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Abstract We present several sharp inequalities for the SL.n/ invariant ˝2;n.K/

introduced in our earlier work on centro-affine invariants for smooth convex bodies
containing the origin. A connection arose with the Paouris-Werner invariant ˝K

defined for convex bodies K whose centroid is at the origin. We offer two alternative
definitions for ˝K when K 2 C 2C. The technique employed prompts us to
conjecture that any SL.n/ invariant of convex bodies with continuous and positive
centro-affine curvature function can be obtained as a limit of normalized p-affine
surface areas of the convex body.
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1 Introduction

Besides the intrinsic interest in affine invariants originating in Felix Klein’s Erlangen
Program, the extension to the Brunn-Minkowski-Firey theory [20, 21], and very
recent connections between affine invariants and fields like stochastic geometry
[3, 7] and information theory [17, 27, 30], led to an intense activity in this area
of geometric analysis. The renewed interest in affine invariants has benefited also
from a systematic approach classifying them, as for example in [8, 15, 16, 18], and
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from their use in affine and affine Sobolev inequalities [10,11,19,23–26,28,39,40]
and problems arising in differential geometry [4–6, 9, 22, 35–38] which rely on
isoperimetric-type functional inequalities. The study of such inequalities constitutes
one of our primary goals of an on-going project.

The present paper spun as a follow-up of [34] in which we introduced new
SL.n/-invariants for smooth convex bodies. We started by searching for sharp
affine inequalities satisfied by one such invariant derived, in a certain sense, from
the centro-affine surface area. The resulting inequalities are the subject of the next
section. In the process, we encountered a connection to another SL.n/ invariant of
convex bodies defined by Paouris and Werner who also related it to information
theory [30]. In Sect. 3, we present two alternative definitions of this invariant.
We noted that an additional SL.n/ invariant of convex bodies of class C 2C is defined
with analogous techniques. This prompted us to conjecture that SL.n/ invariants
for convex bodies with continuous and positive centro-affine curvature function can
be obtained as limits of normalized p-affine surface areas of the convex body.

The setting for this paper is the Euclidean space Rn; n � 2; in which we consider
convex bodies containing the origin in their interior. Most of the time, we will also
require that the convex bodies have smooth boundary, i.e. C 1, with positive Gauss
curvature. We will denote the set of such convex bodies by Kreg. However, on
several occasions, we will relax the regularity of the boundary to class C 2 with
positive Gauss curvature and we will use the notation C 2C to indicate this latter
class of convex bodies. The preferred parametrization of a convex body K will be
with respect to the unit normal vector, u 7! XK.u/, making many functions on the
boundary @K to be considered as functions on the unit sphere Sn�1.

We will denote the Gauss curvature of a convex body by K and its centro-
affine curvature by K0. Geometrically, K�1=2

0 at a given point of @K is, up to
a dimension dependent constant, the volume of the centered osculating ellipsoid
at that point. Note that the centro-affine curvature is constant if and only if K

is a centered ellipsoid. This can also be seen from a lemma due to Petty [31]
since, analytically, as a function on the unit sphere, the centro-affine curvature is

the ratio K0.u/ D K.u/

hnC1.u/
; u 2 S

n�1, where h is the support function of K:

h.u/ D maxfx � u j x 2 Kg with x � u denoting the usual inner product in R
n.

Two additional notations are deemed necessary. First, N0.u/ WD K0
� 1

nC1 .u/N .u/ is
the centro-affine normal which is, pointwise, proportional to the (classical) affine
normal N .u/, [14]. Finally, we will use d�K to denote the cone measure of
@K which, given that the Gauss curvature of K is positive, can be expressed by

d�K.x/ D h.�.x//
1

K .�.x// d�Sn�1.�.x//, where � W @K ! S
n�1 is the Gauss

map of the boundary of K , hence the inverse of the parametrization X .
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2 Inequalities for a Second Order Centro-Affine Invariant

In [34], we introduced a class of SL.n/ invariants for smooth convex bodies in
R

n. For a fixed convex body K , these invariants were the first, second, and, for an
arbitrary integer k, the k-th variation of the volume of K while the boundary of the
body was subject to a pointwise deformation in the direction of the centro-affine
normal by a speed equal to a power of the centro-affine curvature at each specific
point. The p-affine surface areas introduced by Lutwak [21] for p greater than one
(later extended to the range 0 � p < 1 by Hug [13], to �n � p < 0 by Meyer-
Werner [29], and to �1 � p < n by Schütt-Werner [33]) are, via this method,
part of this class of invariants. To exemplify, and also bring the reader’s attention
to a particular such invariant which is one of the main objects of this paper, let us
consider the following deformation of a convex body K with smooth boundary:

8

<̂

:̂

@X.u; t/

@t
DK0

1
2 .u; t/ N0.u; t/

X.u; 0/ D XK.u/:

(1)

Then, the first variation of Vol.K/ is the centro-affine surface area of K:

d

dt
.Vol.K//tD0 D �

Z

@K

K
1
2

0 .�.x// d�K.x/ D �˝n.K/ DW ˝1;n.K/; (2)

see [34]. Recall that the centro-affine surface area of a convex body is the only one

among the p-affine surface areas, ˝p.K/ D
Z

@K

K
p

nCp

0 d�K; invariant under GL.n/

transformations of the Euclidean space. Moreover, pursuing an additional variation,
we obtain:

˝2;n.K/

WD �
�

d 2 Vol.K.t/

dt2

�

jtD0

(3)

D n.n � 1/

2
Vol.Kı/ � n � 1

2

Z

Sn�1

h
p
K0 s.h

p
K0; h; : : : ; h/ d�Sn�1 ;

where s.f1; f2; � � � ; fn�1/ is an extension of the mixed curvature function usually
defined on C 2, here smooth, support functions to arbitrary smooth functions
on the unit sphere S

n�1, see [32] page 115 and also [34]. For the reader
familiar with mixed determinants, the following can be taken as definition
for the function s.f1; f2; � � � ; fn�1/.u/ WD D...f1/ij C ıij f1/.u/; ..f2/ij C
ıij f2/.u/; : : : ; ..fn�1/ij C ıij fn�1/.u//; u 2 S

n�1; where D is a mixed determinant
and . : /i represents the covariant differentiation with respect to the i -th vector of a
positively oriented orthonormal frame on the unit sphere Sn�1.
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We will show in Proposition 1 that, in a certain sense, ˝2;n.K/ measures how far
K is from being a centered ellipsoid. In preparation, we call the Aleksandrov body,
Af , associated with a continuous positive function f on the unit sphere the convex
body whose support function hf is the maximal element of

fh � f j h W Sn�1 ! R support function of a convex bodyg:
If f is itself a support function of a convex body L, then Af is precisely the body L.
Moreover, in general, f D hf almost everywhere with respect to the surface area
measure of Af . We could not find where this notion first surfaced in the literature,
yet the work [9] gives an excellent background on this notion. We are now ready to
state the following comparison result which we will use in analyzing ˝2;n:

Lemma 1 (Monotonicity Lemma). Suppose that f is a strictly positive smooth
function on the unit sphere Sn�1 and that h is the support function of a convex body

K � R
n which belongs to Kreg. Then, denoting by m WD min

Sn�1

f

h
, respectively,

M WD max
Sn�1

f

h
, we have

m � n Vol.K/ �
Z

Sn�1

f s.h; h; : : : ; h/ d�Sn�1 � M � n Vol.K/ (4)

and, if the Aleksandrov body associated with f has continuous positive curvature
function, then

m2 � n Vol.K/ �
Z

Sn�1

f s.f; h; : : : ; h/ d�Sn�1 � M 2 � n Vol.K/: (5)

Proof. Since K belongs to Kreg, s.h; h; : : : ; h/ > 0 on S
n�1, thus mh � f � M h

implies directly (4). In fact, we will show that we also have

m � V.h; g; h; : : : ; h/ � V.f; g; h; : : : ; h/ � M � V.h; g; h; : : : ; h/; (6)

for any g support function of a convex body, denoted for later use by K2. Indeed,
if f itself would be a support function of a convex body, this claim is simply
due to the monotonicity of mixed volumes. If f is not a support function, then
there exists a large enough constant c so that f C ch is a support function of a
convex body, say L, with the Gauss parametrization. Moreover, L � K1, where
the latter is the dilation of K by the factor M C c. Then, from the monotonicity
of mixed volumes, we have that V.L; K2; K; : : : ; K/ � V.K1; K2; K; : : : ; K/.
Choosing to represent these mixed volumes through the notation emphasizing the
support functions of the two convex bodies, we have V.f C ch; g; h; : : : ; h/ �
V..M C c/h; g; h; : : : ; h/. Finally, using the linearity of mixed volumes, we obtain
V.f; g; h; : : : ; h/ C cV.h; g; h; : : : :; h/ � .M C c/V .h; g; h; : : : ; h/ which is,
after a trivial simplification, the right-hand side inequality of Eq. (6). Similarly,
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by considering the dilation K of factor .m C c/, we obtain a convex body K3

such that K3 � L and an argument analogous with the one above will imply
mV.h; g; h; : : : ; h/ � V.f; g; h; : : : ; h/.

We will now proceed to prove Eq. (5). Note again that if f would be a support
function of a convex body, the claim follows from the monotonicity of mixed
volumes. If f is not a support function, consider the Aleksandrov body associated
to f , Af , whose support function we denote by hf . Thus M h � f � hf � mh

and, SAf
-a.e., f ı �Af

.x/ D hf .x/, where �Af
is the Gauss map of @Af . As, by

hypothesis, Af has a continuous positive curvature function, and by using Eq. (6),
we have
Z

Sn�1

f s.f; h; :::; h/ d�Sn�1 D
Z

@Af

f .��1
Af

.x//s.f; h; : : : ; h/.��1
Af

.x// dSAf
.x/

D
Z

@Af

hf .��1
Af

.x//s.f; h; : : : ; h/.��1
Af

.x// dSAf
.x/

D
Z

Sn�1

hf s.f; h; :::; h/ d�Sn�1

D nV.f; hf ; h; :::; h/

� m � n V.h; hf ; h; : : : ; h/

D m

Z

Sn�1

hf s.h; h; :::; h/ d�Sn�1

� m

Z

Sn�1

m hs.h; h; :::; h/ d�Sn�1

D m2 � n Vol.K/: (7)

The second inequality can be proved similarly. ut
Consequently, we obtain the following inequalities for ˝2;n.K/.

Proposition 1. Let K 2 Kreg with the usual notations of h and K0 for the support
function, respectively, the centro-affine curvature of K as functions on the sphere
S

n�1. Then

1. ˝n;2.K/ � 0 with equality if and only if K is a centered ellipsoid.
2. If, in addition, the Aleksandrov body associated with f WD h

p
K0 has continuous

positive curvature function, then ˝n;2.K/ � .n � 1/n

2
.M � m/Vol.K/, where

M; m are the maximum and minimum of the centro-affine curvature of K .
The equality occurs if and only if K is a centered ellipsoid.
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Proof. 1. The first claim follows immediately from the Minkowski-type inequality
we detailed in Lemma 4.3 of [34]

�Z

Sn�1

f s.f; h; : : : ; h/ d�Sn�1

��Z

Sn�1

hs.h; h; : : : ; h/d�Sn�1

�

�
�Z

Sn�1

f s.h; h; : : : ; h/ d�Sn�1

�2

;

where f is an arbitrary smooth function on the sphere, while h is a smooth
support function of a convex body. It suffices to apply this inequality to the
second term of ˝n;2.K/ with f WD h

p
K0 to obtain

˝2;n.K/ � n.n � 1/

2
Vol.Kı/ � n � 1

2n

˝2
n.K/

Vol.K/

from which the result follows by Hölder’s inequality

Vol.Kı/ � Vol.K/

D 1

n2

�Z

@K

K0 d�K

�

�
�Z

@K

d�K

�

� 1

n2

�Z

@K

p
K0 d�K

�2

: (8)

Note that the equality is attained if and only if K0 is constant on S
n�1, hence if

and only if K is a centered ellipsoid.
2. By taking f D h

p
K0 with m � K0 � M , we can apply Eq. (5),

˝2;n.K/ D n.n � 1/

2
Vol.Kı/

�n � 1

2

Z

Sn�1

h
p
K0 s.h

p
K0; h; : : : ; h/ d�Sn�1 ;

� n.n � 1/

2

1

n

Z

@K

K0 d�K � n.n � 1/

2
m Vol.K/

� n.n � 1/

2
.M � m/ Vol.K/: (9)

Equality is attained if and only if M D m which implies, as before, that K is
a centered ellipsoid. Note that we have only used the left-hand side inequality
of Eq. (5). It so happens that the right-hand side inequality of Eq. (5) follows for
this choice of function f from the positivity of ˝2;n.K/ for any K 2 Kreg. ut
Further, the previous result implies additional isoperimetric-type inequalities.

Theorem 1. If K 2 Kreg, the following Gl.n/-invariant inequality holds
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1

n2
˝2

n.K/ � Vol.K/ � Vol.Kı/

� 2

n.n � 1/
minfVol.K/ � ˝n;2.K/; Vol.Kı/ � ˝n;2.K

ı/g C 1

n2
˝2

n.K/;

and equality occurs if and only if K is a centered ellipsoid.
If, in addition, K is such that the Aleksandrov body associated with f WD h

p
K0

has continuous positive curvature function and
M

m
� 1 C p

5

2
, the golden ratio,

then the following Gl.n/-invariant inequality holds:

1

n2
˝2

n.K/ � Vol.K/ � Vol.Kı/ � 1

n2
˝2

n.K/

�

1 � M � mp
M m

��1

with equality if and only if K is a centered ellipsoid.

Proof. The left-hand inequality follows immediately from Hölder’s inequality. In
fact, this easy remark motivated a search for an upper bound of the volume product
Vol.K/ � Vol.Kı/ in terms of the centro-affine surface area or, in other words, a
reverse isoperimetric-type inequality.

Toward this goal, note that the sign of ˝2;n.K/ translates into the following
Gl.n/-invariant inequality:

1

n2
˝2

n.K/ � Vol.K/ � Vol.Kı/ � 2

n.n � 1/
Vol.K/ � ˝n;2.K/ C 1

n2
˝2

n.K/;

with equality if and only if K is a centered ellipsoid. Apply the same inequality with
the roles of K and Kı reversed and use the fact that ˝n.K/ D ˝n.Kı/, [12,18,39].
Therefore,

1

n2
˝2

n.K/ � Vol.K/ � Vol.Kı/

� 2

n.n � 1/
minfVol.K/ � ˝n;2.K/; Vol.Kı/ � ˝n;2.K

ı/g C 1

n2
˝2

n.K/;

with equality if and only if K is a centered ellipsoid.
From Proposition 1,

2

n.n � 1/
Vol.K/ � ˝n;2.K/ � .M � m/ Vol2.K/

and
2

n.n � 1/
Vol.Kı/ � ˝n;2.K

ı/ � .M ı � mı/ Vol2.Kı/;
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thus

2

n.n � 1/
minfVol.K/ � ˝n;2.K/; Vol.Kı/ � ˝n;2.K

ı/g

� p
.M � m/.M ı � mı/ Vol.K/ � Vol.Kı/:

Here mı and M ı are the minimum, respectively, the maximum of the centro-affine
curvature of @Kı.

For any point of @K , x, there exists a point y on @Kı such that K0.x/�Kı
0.y/ D 1,

see [12], thus M � mı D 1 and m � M ı D 1 otherwise a contradiction with one of
the definitions of mı; M ı occurs. Hence

p
.M � m/.M ı � mı/ D

s

.M � m/

�
1

m
� 1

M

�

D M � mp
M m

;

which is less or equal to 1 if and only if M=m is less or equal to the golden ratio
above.

Thus

Vol.K/ � Vol.Kı/ � M � mp
M m

� Vol.K/ � Vol.Kı/ C 1

n2
˝2

n.K/

which implies the right-hand side inequality. The equalities follow as before from
M D m equivalent to constant centro-affine curvature along the boundary @K . ut

Note that in the next proposition we drop the smoothness assumption on the
boundary of K to class C 2.

Proposition 2. For any p > 1, and any K 2 C 2C with the origin in its interior,
we have

˝
nCp
p .K/

Voln�p.K/
� np�1

�
Vol.K/ � Vol.Kı/

�p�1 � ˝nC1.K/

Voln�1.K/
: (10)

The equality holds if and only if p D 1 or K is a centered ellipsoid.
The opposite inequality holds for p < 1, p ¤ �n.

Proof. Note that, for any p ¤ �n,

˝p.K/ D
Z

@K

K
p

nCp

0 d�K D
Z

@K

�
K

n
nC1

0

	 p�1
nCp

d�K; (11)

where d�K is the affine surface area measure, in other words the Blaschke metric,

of K . As the function x 7! x
p�1
nCp ; x > 0, is concave for p � 1 and convex

for p � 1, we apply the appropriate Jensen’s inequality for each range and the

normalized measure
1

˝.K/
d�K . If p � 1, we obtain
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�
nVol.Kı/

˝.K/

� p�1
nCp

� ˝p.K/

˝.K/
, ˝p.K/ � �

n Vol.Kı/
� p�1

nCp �˝ nC1
nCp .K/ (12)

with equality if and only if p D 1 or K is a centered ellipsoid. A re-arrangement
of terms, gives Eq. (10). The proof of the reverse inequality in the case p � 1 is
perfectly similar. ut
Corollary 1. For any convex body K 2 Kreg,

nn

�
2

n � 1
Vol.K/ � ˝n;2.K/ C 1

n
˝2

n.K/

�

� ˝nC1.K/

Voln�1.K/
� ˝2n

n .K/

Œ.2=.n � 1// ˝n;2.K/Vol.K/ C ˝2
n.K/=n�

n�1
;

with equality iff K is a centered ellipsoid.

Proof. Apply the previous result for p D 0 and, respectively, p D n, and use the
bounds on Vol.K/ � Vol.Kı/ from Theorem 1. ut
Corollary 2 (Isoperimetric-like Inequality). For any K 2 C 2C with the centroid
at the origin, and any T 2 Sl.n/,

Sn.TK/

Voln�1.K/
� n

!2n�3
n

max

(
˝2n

n .K/

˝nC1.K/=Voln�1.K/
;

�
˝nC1.K/

Voln�1.K/

�n�1
)

; (13)

where S.TK/ stands for the surface area of TK and !n is the volume of the unit
ball x2

1 C : : :Cx2
n D 1 in R

n. Equality occurs if and only if K is a centered ellipsoid
and T is the linear transformation of determinant one such that TK is a ball.

Hence

Proof. Consider p D n in the inequality of Proposition 2 to obtain

˝2n
n .K/ � nn�1ŒVol.K/ � Vol.Kı/�n�1 � ˝nC1.K/

Voln�1.K/
: (14)

From the classical isoperimetric inequality,

Voln�1.K/ � �
Voln�1.B/=Sn.B/

�
Sn.K/;

where B is the unit ball as above. On the other hand, by Blaschke-Santaló inequality,
Vol.K/ � Vol.Kı/ � .Vol.B//2.

Therefore

˝2n
n .K/ � nn�1 Vol3.n�1/.B/

Sn.B/

Sn.K/

Voln�1.K/
� ˝nC1.K/

Voln�1.K/
; (15)



350 A. Stancu

where all quantities, except S.K/, are invariant under linear transformations of

determinant one. Hence, the conclusion follows as nn�1 Vol3.n�1/.B/

Sn.B/
D !2n�3

n

n
:

To analyze the equality case one needs to take T to be the linear transformation of
determinant one minimizing the surface area of K and note that all other equalities
hold if and only if K is a centered ellipsoid.

We will now use p D 0 in Proposition 2, to obtain

˝nC1.K/

Voln�1.K/
� n Vol.K/ � Vol.Kı/ � n

V.B/

S.B/n=.n�1/
� S.K/n=.n�1/ � Vol.Kı/

� n
V.B/3

S.B/n=.n�1/
� S.K/n=.n�1/

Vol.K/
D n1� n

n�1 !
3� n

n�1
n

S.K/n=.n�1/

Vol.K/
;

(16)

relying again on Blaschke-Santaló inequality.
From here,

Sn.TK/

Voln�1.K/
� n

!2n�3
n

�
˝nC1.K/

Voln�1.K/

�n�1

; (17)

with the same condition for the equality case as above. ut
One can use K. Ball’s reverse isoperimetric ratio which gives an upper bound on

Sn.TK/

Voln�1.K/
by the corresponding ratio for the regular solid simplex in R

n (or the

solid cube in the centrally-symmetric case), [1,2], in the above corollary to get lower
bounds on the affine isoperimetric ratio of bodies in C 2C. However, these bounds will
not be sharp.

As in Corollary 1, one can drop the requirement that the centroid of K is at the
origin, consider K 2 Kreg, and use the upper bound on the volume product from
Theorem 1 instead of Blaschke-Santaló inequality, to obtain SL.n/ invariant lower
bounds on the isoperimetric ratio S.TK/n=Vol.K/n�1.

Finally, we include the next corollary, due to [30], which follows immediately
from Proposition 2.

Corollary 3. For any convex body K of class C 2C containing the origin in its
interior,

˝K � ˝nC1.K/

.nVol.Kı//nC1;
(18)

where ˝K WD lim
p!1

�
˝p.K/

nVol.Kı/

�nCp

is the affine invariant introduced by Paouris

and Werner in [30]. The equality occurs if and only if K is a centered ellipsoid.
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Note that in [30], for certain considerations, the invariant ˝K has been defined for
convex bodies whose centroid is at the origin, yet the above definition makes sense
for any convex body K of class C 2C containing the origin in its interior for which
one can show as in [30] that the limit exists.

3 More on the Paouris-Werner Invariant

Motivated by the earlier occurrence of ˝K , we would like to give here a couple
of other definitions of this invariant when K belongs to C 2C. To do so, let us also
recall that Paouris and Werner showed in [30] that ˝K is related to the Kullback-
Leibler divergence DKL of two specific probability measures P , Q on @K via the

relation DKL.P kQ/ D ln

�
Vol.K/

Vol.Kı/
˝

�1=n
K

�

; where, in slightly different terms

than in [30],

DKL.P kQ/ WD 1

nVol.Kı/

Z

@K

K0 ln

�

K0

Vol.K/

Vol.Kı/

�

d�K:

Hence, it is useful to note the identity

ln.˝K/ D � 1

Vol.Kı/

Z

@K

K0 lnK0 d�K; (19)

and note that, in this paper, we assume only that the origin is contained in the interior
of the convex body K .

Proposition 3. For any K of class C 2C containing the origin in its interior, and any
integer p > 1, the following Gl.n/-invariant inequalities hold

˝2
n.K/ �

�
˝n=3.K/

�4

.nVol.K//2
�
�
˝n=7.K/

�8

.nVol.K//6
� : : : �

�
˝n=.2p�1/.K/

�2p

.nVol.K//2p�2
� : : : ; (20)

or, alternately,

˝2
n.K/ � .˝3n.Kı//4

.nVol.K//2
� .˝7n.Kı//8

.nVol.K//6
� : : : �

�
˝n.2p�1/.K

ı/
�2p

.nVol.K//2p�2
� : : : ; (21)

˝2
n.K/ � .˝3n.K//4

.nVol.Kı//2
� .˝7n.K//8

.nVol.Kı//6
� : : : �

�
˝n.2p�1/.K/

�2p

.nVol.Kı//2p�2
� : : : : (22)

In all sequences, all equalities hold if and only if K is a centered ellipsoid (which is
the only reason why we did not include p D 1 in the statement).
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Proof. Note that Eqs. (20) and (21) are equivalent through the equality ˝q.K/ D
˝n2=q.Kı/, [12, 18, 39]. The same goes for Eq. (22) due to ˝n.K/ D ˝n.Kı/ and
interchanging the roles of K and Kı in the previous sequence of inequalities. Thus,
it suffices to prove (20).

We will use the concavity of the function x 7! p
x on .0; 1/ and Jensen’s

inequality as follows:

�
˝n.K/

nVol.K/

�1=2

D
�Z

@K

p
K0

d�K

n Vol.K/

�1=2

�
Z

@K

4
p
K0

1

n Vol.K/
d�K; (23)

thus
�

˝n.K/

nVol.K/

�1=2

� ˝n=3.K/

nVol.K/
;

which is, after raising both sides to power four, the first inequality of Eq. (20).
Re-iterate now the same argument for ˝n=3.K/:

�
˝n=3.K/

nVol.K/

�1=2

D
�Z

@K

4
p
K0

d�K

n Vol.K/

�1=2

�
Z

@K

8
p
K0

1

n Vol.K/
d�K; (24)

which translates into
�

˝n=3.K/

nVol.K/

�1=2

� ˝n=7.K/

nVol.K/
:

Hence

˝n.K/ � ˝2
n=3.K/

nVol.K/
� ˝4

n=7.K/

.nVol.K//3

and so on, the sequence is obtained by iterating the argument. ut
Theorem 2 (Alternative Definition of ˝K). For any K of class C 2C containing the
origin in its interior, the scaling invariant sequence

( �
˝n.2p�1/.K/

�2p

.nVol.Kı//2p

)

p2N; p�1

converges and

lim
p!1

�
˝n.2p�1/.K/

nVol.Kı/

�2p

D ˝K: (25)

Proof. By Eq. (22), the positive sequence

�
˝n.2p�1/.K/

�2p

.nVol.Kı//2p�2
is decreasing, thus

converges. Therefore, so does the sequence above whose general term differs from
general term of the former sequence by a factor of .nVol.Kı//�2.
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Let q WD n.2p � 1/; and, similarly with Proposition 3.6 in [30], consider

ln

"

lim
p!1

�
˝n.2p�1/.K/

�2p

.nVol.Kı//2p

#

D lim
p!1 2p ln

�
˝n.2p�1/.K/

nVol.Kı/

�

D � 2p

ln 2

d
dp

�
˝n.2p�1/.K/

�

˝n.2p�1/.K/

D � lim
p!1

2p

ln 2

d
dq

�
R

@K
exp

�

lnK
q

nCq

0

�

d�K

�
dq

dp

˝n.2p�1/.K/

D � lim
p!1 22p

d
dq

�
R

@K
exp

�

lnK
q

nCq

0

�

d�K

�

˝n.2p�1/.K/

D � lim
p!1 22p

�
R

@K exp

�

lnK
q

nCq

0

�

ln.K0/ n
.nCq/2 d�K

�

˝n.2p�1/.K/

D �n lim
p!1

R

@K
K

2p�1
2p

0 ln.K0/ d�K

˝n.2p�1/.K/

D �n

R
@K K0 ln.K0/ d�K

n Vol.Kı/
D ln.˝K/:

The last equality, due to Eq. (19), completes the proof. ut
Following from the monotonicity of the sequence (22), we have

Corollary 4. For any K of class C 2C containing the origin in its interior, and any
integer p � 1,

˝K � .nVol.Kı//2 � .˝n.2p�1/.K//2p

.nVol.Kı//2p�2
; (26)

in particular ˝K � .nVol.Kı//2 � ˝2
n.K/, with equalities everywhere if and only if

K is a centered ellipsoid.

Corollary 5. For any K of class C 2C containing the origin in its interior, and any
integer p � 1,

˝K � ˝Kı � .˝n.2p�1/.K/ � ˝n.2p�1/.K
ı//2p

.n2Vol.K/ � Vol.Kı//2p ; (27)
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in particular ˝K � ˝Kı � ˝2
n.K/ � ˝2

n.Kı/

.n2Vol.K/ � Vol.Kı//2
, with equalities everywhere if

and only if K is a centered ellipsoid in which case the right-hand sides of the two
inequalities are equal to 1.

The definition of ˝K can be extended to affine surface areas of negative exponent
using a similar result with Proposition 3:

Theorem 3 (Second Alternative Definition of ˝K). For any K of class C 2C
containing the origin in its interior, the sequence

(�
˝�.nC2p/.K

ı/

nVol.K/

�2p
)

p2N; p�1

converges and

lim
p!1

�
˝�.nC2p/.K

ı/

nVol.K/

�2p

D ˝�1
K : (28)

Proof. By applying again Jensen’s inequality for the concave function x 7! p
x,

x > 0, we have, for any integer p � 1,

Z

@K

K� n
2

0 d�K �
�R

@K
K� n

4

0 d�K

	2

n Vol.K/
�
�R

@K
K� n

8

0 d�K

	4

.n Vol.K//3

� : : : �
�R

@K
K� n

2p

0 d�K

	2p

.n Vol.K//2p�1
� : : : (29)

therefore the sequence of general term

�
˝�.nC2p/.K

ı/

nVol.K/

�2p

D
�

˝�n2=.nC2p/.K/

nVol.K/

�2p

D
 

1

n Vol.K/
� .˝�n2=.nC2p/.K//2p

.nVol.K//2p�1

!

is monotone. Interchanging K with Kı, we conclude that the sequence(�
˝�.nC2p/.K/

nVol.Kı/

�2p
)

p2N; p�1

is monotone.

We now proceed as in the previous theorem with

ln

"

lim
p!1

�
˝�.nC2p/.K/

�2p

.nVol.Kı//2p

#

D lim
p!1 2p ln

�
˝�.nC2p/.K/

nVol.Kı/

�
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D � 2p

ln 2

d
dp

�
˝�.nC2p/.K/

�

˝�.nC2p/.K/

D � lim
p!1

2p

ln 2

d
dp

�R

@K
exp

�
lnK

n
2p C1

0

	
d�K

	

˝�.nC2p/.K/

D n lim
p!1

�
R

@K exp

�

lnK
nC2p

2p

0

�

ln.K0/ d�K

�

˝�.nC2p/.K/

D n

R
@K K0 ln.K0/ d�K

n Vol.Kı/
D � ln.˝K/;

and, using Eq. (19), we complete the proof of the theorem. ut

While it is known that integrals of the form
Z

@K

�.K0/ d�K are SL.n/-invariant,

see also [16, 18], considering the results in [30], and others, including for example
the next theorem, we conjecture that the set of p-affine surface areas, with algebraic
operations, can generate, by taking the closure, all integrals of the above form.

Theorem 4. For any K of class C 2C containing the origin in its interior, the SL.n/-

invariant �.K/ WD exp

�
1

nVol.K/

Z

@K

ln.K0/ d�K

�

is the limit, as p ! C1, of

the sequence

8
<

:

 
˝� n

2p
.K/

n Vol.K/

!2p
9
=

;
p2N; p>1

:

Proof. The claim follows directly from

ln

"

lim
p!1

�
˝�n=2p .K/

�2p

.nVol.Kı//2p

#

D lim
p!1 2p ln

�
˝�n=2p .K/

nVol.Kı/

�

D � 2p

ln 2

d
dp

�
˝�n=2p .K/

�

˝�n=2p .K/

D � lim
p!1

2p

ln 2

d
dp

�
R

@K
exp

�

lnK� 1
2p�1

0

�

d�K

�

˝�n=2p .K/

D lim
p!1

22p

.2p � 1/2

�
R

@K
exp

�

lnK� 1
2p�1

0

�

ln.K0/ d�K

�

˝�n=2p .K/
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D lim
p!1

22p

.2p � 1/2

�
R

@K
K� 1

2p�1

0 ln.K0/ d�K

�

˝�n=2p .K/

D
R

@K
ln.K0/ d�K

n Vol.K/
D ln.�K/: �
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4. K. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, to appear

in J. Amer. Math. Soc.
5. K. Chou, X.-J. Wang, The Lp-Minkowski problem and the Minkowski problem in centroaffine

geometry. Adv. Math. 205, 33–83 (2006)
6. A. Cianchi, E. Lutwak, D. Yang, G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev

inequalities. Calc. Var. Partial Diff. Equations 36, 419–436 (2009)
7. P.M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies II.

Forum Math. 5, 521–538 (1993)
8. C. Haberl, M. Ludwig, A characterization of Lp intersection bodies. Int. Math. Res. Not. 2006,

1–29 (2006). doi:10:1155/imrn/2006/10548.
9. C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem. Adv. Math.

224, 2485–2510 (2010)
10. C. Haberl, F. Schuster, Asymmetric affine Lp Sobolev inequalities. J. Funct. Anal. 257,

641–658 (2009)
11. C. Haberl, F. Schuster, General Lp affine isoperimetric inequalities. J. Differential Geom. 83,

1–26 (2009)
12. D. Hug, Curvature Relations and Affine Surface Area for a General Convex Body and its Polar.

Results in Math. 29, 233–248 (1996)
13. D. Hug, Contributions to affine surface area, Manuscripta Math. 91, 283–301 (1996)
14. K. Leichtweiss, Affine Geometry of Convex Bodies (John Wiley and Sons, New York, 1999)
15. M. Ludwig, Minkowski valuations. Trans. Amer. Math. Soc. 357, 4191–4213 (2005)
16. M. Ludwig, General affine surface areas. Adv. Math. 224, 2346–2360 (2010)
17. M. Ludwig, Fisher information and matrix-valued valuations. Adv. Math. 226, 2700–2711

(2011)
18. M. Ludwig, M. Reitzner, A classification of SL.n/ invariant valuations. Annals of Math. 172,

1223–1271 (2010)
19. M. Ludwig, J. Xiao, G. Zhang, Sharp convex Lorentz-Sobolev inequalities. Math. Ann. 350,

169–197 (2011)



Some Affine Invariants Revisited 357

20. E. Lutwak, The Brunn-Minkowski-Firey theory. I: Mixed volumes and the Minkowski
problem. J. Differential Geom. 38, 131–150 (1993)

21. E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas. Adv.
Math. 118, 244–294 (1996)

22. E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski
problem. J. Differential Geom. 41, 227–246 (1995)

23. E. Lutwak, D. Yang, G. Zhang, Lp affine isoperimetric inequalities. J. Differential Geom. 56,
111–132 (2000)

24. E. Lutwak, D. Yang, G. Zhang, Sharp affine Lp Sobolev inequalities. J. Differential Geom.
62, 17–38 (2002)

25. E. Lutwak, D. Yang, G. Zhang, Volume inequalities for subspaces of Lp . J. Differential Geom.
68, 159–184 (2004)

26. E. Lutwak, D. Yang, G. Zhang, Optimal Sobolev norms and the Lp Minkowski problem. Int.
Math. Res. Not. IMRN 62987, 1–10 (2006)

27. E. Lutwak, D. Yang, G. Zhang, Cramér-Rao and moment-entropy inequalities for Renyi
entropy and generalized Fisher information. IEEE Trans. Inform. Theory 51, 473–478 (2005)
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