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Abstract I will give a presentation of an abstract approach to finite Ramsey theory
found in an earlier paper of mine. I will prove from it a common generalization of
Deuber’s Ramsey theorem for regular trees and a recent Ramsey theorem of Jasiński
for boron tree structures. This generalization appears to be new. I will also show, in
exercises, how to deduce from it the Milliken Ramsey theorem for strong subtrees.
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1 Introduction

The first result of pure finite Ramsey theory and a prototype of the many later results
of this area (see [5]) is the theorem proved by Ramsey in 1930. We recall it now to
remind the reader of the flavor of pure finite Ramsey theory. We will also refer to
this statement later on. For a natural number n, let Œn� D f1; : : : ; ng; in particular,
Œ0� D ;. The classical Ramsey theorem says that given natural numbers d , l , and
m, there exists a natural number n such that for each d -coloring, that is, a coloring
with d colors, of all l element subsets of Œn�, there exists an m element subset z of
Œn� such that all l element subsets of z have the same color.

In Sect. 2, we give an exposition of the abstract approach to pure finite Ramsey
theory developed in [7]; the main theorem, saying that a general pigeonhole
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principle implies a general Ramsey property, is stated as Theorem 9 (see also
Appendix 1). Most pure finite Ramsey theoretic results can be viewed as instances
of the machinery presented here. In the exposition, we make an effort to motivate
the main abstract notions and we also illustrate them with examples.

In Sects. 3, 4, 5, using arguments consisting mostly of formulating appropriate
definitions, we show that certain Ramsey-theoretic results for finite trees, one of
which is new, are particular instances of the general Theorem 9. These applications
of Theorem 9 to concrete situations are similar to each other, with the main
differences lying in the derivations used (more on it in the next paragraph). There-
fore, in the first two applications (the illustrations in Sect. 2 and Illustration 10),
we explicitly check all the details and provide pictures; in the third application
(a generalization of Deuber’s and Jasiński’s theorems, Sect. 4), we give all the
definitions, but carefully check the pigeonhole principle only; in the last application
(Milliken’s theorem, Sect. 5), we state all the definitions, but leave checking the
details to the reader in exercises. Recall that in [7], it is shown how, for example,
the classical Ramsey theorem, the Graham–Rothschild theorem, and a new self-dual
Ramsey theorem can be obtained as instances of Theorem 9.

In each of the many concrete Ramsey theorems (considered here and in [7]), the
same underlying algebraic structure turns out to be present, the structure of a normed
background given by Definition 1 (see also Appendix 1). A crucial element of such
structures is a truncation operator, which forms a basis for inductive arguments. In
the concrete situations involving trees and considered in the present paper, there is
a close connection between truncation operators and derivations on trees. Roughly
speaking there are two natural derivations on trees: cutting off the rightmost branch
and cutting off the highest leaves. These two derivations give rise to two types of
truncation operators, which lead to two types of normed backgrounds, which in
turn lead to two Ramsey theorems. Namely, the branch cutting derivation gives a
generalization of Deuber’s and Jasiński’s theorems, while the leaf cutting derivation
gives Milliken’s theorem.

For convenience, we adopt the following modification to the notation for the
operation of subtracting 1 among natural numbers: we set 0 � 1 to be equal to
0; for k > 0, k � 1 retains its usual meaning.

2 Abstract Approach with Illustrations

2.1 Abstract Ramsey Theory

A typical Ramsey-type theorem has the following form. We start with two families
F and P . (Elements of F and P are usually finite sets of functions, most frequently
some type of morphisms.) A set P from P and a number of colors d are given. The
conclusion of the theorem then asserts that there is a set F from F with a given
mapping (usually a type of composition) defined on F � P ,
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F � P 3 .f; x/ ! f : x;

such that for each d -coloring of the image ff : xW f 2 F; x 2 P g of F � P under
the mapping there exists f0 2 F with ff0 : xW x 2 P g monochromatic.

Below in the paper, we formalize this vague idea and we also give several
concrete examples that should convince the reader that Ramsey-type theorems do
indeed have this form. Here, as an illustration, we only phrase the classical Ramsey
theorem in a way that is compatible with the general framework above. It may be
useful for the reader to recall here the Ramsey theorem from the first paragraph
of the introduction. In the restatement of the Ramsey theorem to which we now
proceed, for natural numbers p and q, we identify p element subsets of Œq� with
increasing injections from Œp� to Œq� so that a subset z is identified with the unique
increasing injection whose range is equal to z. One can take F D P to be the family
of all sets produced as follows: fix natural numbers p and q and form the set of
all increasing injections from Œp� to Œq�. Fix natural numbers d , l , and m, and let
P 2 P be the set of all increasing injections from Œl � to Œm�. Then the classical
Ramsey theorem says that there is an n with the following property. For the set
F 2 F of all increasing injections from Œm� to Œn�, if we d -color the set

ff ı xW f 2 F; x 2 P g D all increasing injections from Œl � to Œn�;

then there exists f0 2 F such that ff0 ı xW x 2 P g is monochromatic.
Now we start the description of the abstract approach. Let A and X be sets.

Assume we are given a partial function from A � X to X :

.a; x/ ! a : x:

Such a function : will be called an action (of A on X ). No properties of the function
: are assumed to hold at this point. For F � A and P � X , we say that F : P is
defined if a : x is defined for all a 2 F and x 2 P , and we let

F : P D fa : xW a 2 F; x 2 P g:

We also write a : P for fag : P .
We will give a sequence of illustrations that contain the most rudimentary

examples of the general notions being introduced. The illustrations depend on each
other and lead to the classical Ramsey theorem.

Illustration 1 Let A D X be the set of all (strictly) increasing functions from
Œk� D f1; : : : ; kg to N n f0g, where k ranges over N. Given a; x 2 A D X with
aW Œl � ! N n f0g and xW Œk� ! N n f0g, let a : x be defined precisely when Œl �

contains the image of x and put

a : x D a ı x:
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Going back to the general situation, let F and P be families of non-empty subsets
of A and X , respectively. Assume we have a partial function from F � P to P :

.F; P / ! F � P

such that if F � P is defined, then it is given by the point-wise action of F on P ,
that is, F : P is defined and

F � P D F : P:

In such a situation, we say that .F ;P ; � / is a pair of families over .A; X; : /.
Introducing a restriction � of the point operation of sets in F on sets in P makes
the Ramsey condition (R) below more flexible, while a careful calibration of the
resteriction makes it possible to satisfy condition (�) of the next subsection. In
concrete situations, definitions of restrictions � are very natural.

Illustration 2 For k; l 2 N with 0 < k � l , let
�

l
k

�
stand for the set of all (strictly)

increasing functions from Œk� to Œl �. Let also
�

0

0

�
consist of one element—the empty

function. Since an increasing function from Œk� to Œl � is determined by its range,
�

l
k

�

can be identified with the set of all k element subsets of Œl �. Let F D P be the set
of all

�
l
k

�
with 0 < k � l or k D l D 0. Declare

�
n
m

�
�
�

l
k

�
to be defined precisely

when m D l , and let
 

n

l

!

�
 

l

k

!

D
 

n

k

!

:

It is clear that
�

n
l

�
�
�

l
k

� D �
n
l

�
:
�

l
k

�
. Note, however, that

�
n
m

�
:
�

l
k

�
is defined if we

assume only m � l .

The following condition is our Ramsey statement, which is just a formalization
of the statement from the beginning of this subsection:

(R) given d > 0, for each P 2 P , there is an F 2 F such that F � P is defined,
and for every d -coloring of F � P there is an f 2 F such that f : P is
monochromatic.

Illustration 3 In the special case of Illustrations 1 and 2, condition (R) says in
particular that given d > 0 and 0 < k � l there exists m � l such that for each
d -coloring of

�
m
l

�
�
�

l
k

� D �
m
k

�
there exists a 2 �m

l

�
such that the set

(

a ı xW x 2
 

l

k

!)

is monochromatic. This is the classical Ramsey theorem.
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2.2 Abstract Pigeonhole Principle

We introduce here our pigeonhole principle. The name is purely conventional as
the principle is not a simple abstraction of the well known pigeonhole principle
of Dirichlet. Rather it is a condition that is easy to check in concrete situations
and that implies, through inductive arguments encoded in Theorem 9, the Ramsey
condition (R).

We will need an important additional piece of structure. Let A; X , and an action
: be as above. Let @W X ! X be a function such that for a 2 A and x 2 X , if a : x

is defined, then a : @x is defined and

@.a : x/ D a : @x: (1)

Such a function @ is called a truncation. For P � X , we write

@P D f@xW x 2 P g: (2)

Introduction of the operator @ equips X with an additional structure and Eq. (1)
states that the action of A on X is implemented by homomorphism of this structure.
In applications to concrete Ramsey theorems, @ is always a form of derivation
leading from an object in X to another, less complex object in X . In this fashion, in
proofs, @ provides a foothold for inductive arguments.

Illustration 4 We continue the pervious illustrations, in particular, our notation is
as in Illustration 1. For x 2 X with xW Œk� ! N n f0g, define

@x D x � Œk � 1�:

(Recall here the convention for the notation k � 1 adopted in the introduction.) It is
easy to check that condition (1) is satisfied. Note also that, by Eq. (2), @

�
l
k

� D �
l�1
k�1

�
,

if k > 1, and @
�

l
k

� D �
0
0

�
, if k � 1.

Let .F ;P ; � / be a pair of families over .A; X; : / equipped with a truncation @.
We are ready to formulate our pigeonhole principle. For P � X and y 2 X , put

Py D fx 2 P W @x D yg: (3)

So Py is the set consisting of those elements of P that truncate to the same simpler
object y. Given a; b 2 A, we say that b extends a if for each x with a : x defined,
we have that b : x is defined and that it is equal to a : x. For F 2 F and a 2 A, let

Fa D ff 2 F W f extends ag: (4)

The Ramsey statement (R) above requires, upon coloring of F � P , stabilizing
the coloring on a copy f : P of P obtained by acting on P by some element f



318 S. Solecki
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m
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Fig. 1 Condition (P) in
Illustration 5

of F . Pigeonhole principle (P) below asks us to perform the following much easier
task. We fix an object y 2 X , which can be assumed to be simpler than objects in P .
We consider the elements of P that truncate to this fixed y, that is, we consider Py ,
and require stabilizing the coloring only on a copy f : Py of Py obtained by acting
on Py by an element f from F . The price to pay is that f has to act on y in a way
prescribed by an element a 2 A chosen in advance, that is, f is actually taken from
Fa for some a for which a : y is defined.

It is surprising that various concrete pigeonhole principles occurring in the
finite pure Ramsey theory have this form. We illustrate it below by the classical
pigeonhole principle used to prove the classical Ramsey theorem. In the following
sections, we will give more complex examples involving trees. Paper [7] contains a
number of further examples.

The following criterion on .F ;P ; � / is our pigeonhole principle:

(P) given d > 0, for all P 2 P and y 2 @P , there are F 2 F and a 2 A such
that F � P is defined, a : y is defined, and for every d -coloring of Fa : Py

there is an f 2 Fa such that f : Py is monochromatic.

Note that in the condition above Fa : Py is defined since F � P is assumed to be
defined and Fa � F and Py � P . Also, of course, the condition would not have
changed if we required the coloring to be defined on F : Py or even on F : P . It is,
however, crucial that f be found in Fa.

Illustration 5 In our special case from the earlier illustrations, a moment of thought
and a picture convince one that condition (P) boils down to the classical pigeonhole
principle. For the sake of practice, however, let us look at it carefully in detail. We
will be helped by Fig. 1.

For notational simplicity, in the argument below, we assume that k > 1 and leave
checking that the same argument works for k � 1 to the reader. We state condition
(P) in our special case:
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let d > 0, 1 < k � l and y 2 �
l�1
k�1

�
be given; let l 0 be the maximum of the range

of y; there exists m � l and an increasing function aW Œl 0� ! N n f0g such that for
each d -coloring of

(

f ı xW f 2
 

m

l

!

; f � Œl 0� D a; x 2
 

l

k

!

; x � Œk � 1� D y

)

there exists f 2 �m
l

�
with f � Œl 0� D a and such that

(

f ı xW x 2
 

l

k

!

; x � Œk � 1� D y

)

is monochromatic.
We claim that the condition above holds with a being the identity function from

Œl 0� to itself. Indeed, with this choice of a, the conclusion of the condition reads:
there exists m � l such that for each d -coloring of

(

f ı xW f 2
 

m

l

!

; f .i/ D i for i 2 Œl 0�; x 2
 

l

k

!

; x � Œk � 1� D y

)

there exists f 2 �m
l

�
with f .i/ D i , for i 2 Œl 0�, and with

ff ı xW x 2
 

l

k

!

; x � Œk � 1� D yg

monochromatic.
The elements of the set

(

f ı xW f 2
 

m

l

!

; f .i/ D i for i 2 Œl 0�; x 2
 

l

k

!

; x � Œk � 1� D y

)

differ only in the single value f .x.k// and this value comes from the set Œm� n Œl 0�.
Also x.k/ is an arbitrary element of Œl � n Œl 0�. So, in essence, we are d -coloring
Œm� n Œl 0� and are looking for an increasing function from Œl � n Œl 0� to Œm� n Œl 0� whose
values take the same color. This is just the classical pigeonhole condition, and we
can take m to be any number strictly bigger than l 0 C d 	 .l � l 0 � 1/.

Our goal is to state a theorem that condition (P) implies condition (R). Achieving
this goal, in Theorem 9, will require introducing more structure on .A; X; : ; @/ and
imposing additional conditions on .F ;P ; � /.
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2.3 Additional Structure and Additional Conditions

Let A; X , an action : , and a truncation @ be as above.
Let again .F ;P ; � / be a pair of families over .A; X; : /. Recall the notion

of extension for elements of A defined in the discussion preceding (4). We first
state two conditions on .F ;P ; � / that do not require introducing any additional
structure:

(A) if P 2 P , then @P 2 P ;
(B) if F 2 F , P 2 P , and F � @P is defined, then there is G 2 F such that G � P

is defined and for each f 2 F there is g 2 G extending f .

Strictly speaking conditions (A) and (B) are not needed to prove Theorem 9; one
can dispense with them at the expense of strengthening condition (P) slightly. (We
elaborate on it in Appendix 1.) However, in some situations, for example, in all the
situations in this note, conditions (A) and (B) hold, and whenever they hold they do
so in an obvious way (and they make strengthening of (P) unnecessary). Condition
(A) simply requires closure of P under truncation. As for condition (B), note that if
F : P is defined, then F : @P is defined. The reverse implication is false in general.
Condition (B) gives a substitute for this reverse implication: assuming something
stronger, namely that F � @P is defined, we can infer that G � P is defined for a G

that can simulate the action of every element of F .

Illustration 6 Recall that we have

F D P D
( 

n

m

!

W 0 < m � n or m D n D 0

)

:

We check conditions (A) and (B). It follows from the remark in Illustration 4 that P
is closed under @, so (A) holds. To check (B), let F D �

n
m

�
and P D �

l
k

�
. We assume

k > 1 and leave the trivial case k � 1 to the reader. We have

F � @P D
 

n

m

!

�
 

l � 1

k � 1

!

is defined precisely when m D l � 1, and we can take G D �
nC1

l

�
to witness the

conclusion of (B) since
�

nC1
l

�
�
�

l
k

�
is defined and each element of

�
n

l�1

�
is extended

by an element of
�

nC1
l

�
. We elaborate on this last point. Note that for each f 2 � n

l�1

�
,

that is, for each increasing f W Œl � 1� ! Œn�, there is increasing gW Œl � ! Œn C 1�

with g � Œl � 1� D f . In this situation, for each x 2 X (recall that X is the set of
all increasing functions from some Œk� to N), if f : x is defined, then the image of x

is included in Œl � 1�, and so g : x is defined and obviously

g : x D g ı x D f ı x D f : x:
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So, in our example, g extending f as an increasing function is equivalent to g

extending f as an element of A. A similar coincidence will be present also in the
subsequent illustrations.

To make the partial function : from A�X to X into an honest action, we assume
that we also have a partial function from A � A to A:

.a; b/ ! a 	 b;

such that for a; b 2 A and x 2 X if a : .b : x/ and .a 	 b/ : x are both defined, then

a : .b : x/ D .a 	 b/ : x: (5)

The operation 	 as above will be called multiplication. Equation (5) is the usual
equation defining, say, a group action on a set. As before, for F; G � A, we say
that F 	 G is defined if a 	 b is defined for all a 2 F and b 2 G and we let

F 	 G D fa 	 bW a 2 F; b 2 Gg:

Now, again as before, in addition to the partial function � from F � P to P ,
assume that we have a partial function � from F � F to F with the property that if
G � F is defined, then it is given point-wise, that is, G 	 F is defined and

G � F D G 	 F:

We now call .F ;P ; � ; �/ a pair of families over .A; X; : ; 	/.
We can now state our final condition on F , P , � and �:

(�) if F; G 2 F , P 2 P , and F � .G � P / is defined, then so is .F � G/ � P .

This condition is crucial. It says that F � .G � P / is never defined “by chance;” if
it is defined, then the product F � G is defined, as is its action on P . In concrete
situations, this condition is guaranteed by a natural calibration of the domains of the
operations � and �. Note that under the assumptions of (�), from Eq. (5), we have

F � .G � P / D .F � G/ � P:

In [7], a pair of families .F ;P ; � ; �/ over .A; X; : ; 	/ fufilling condition (�) is called
an actoid of sets.

Illustration 7 Recall again that

F D P D
( 

n

m

!

W 0 < m � n or m D n D 0

)

:
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Declare
�

n
m

� � �l
k

�
on F to be defined precisely when m D l and let

 
n

l

!

�
 

l

k

!

D
 

n

k

!

:

So � is equal to � defined earlier in Illustration 2. It follows that � is given pointwise.
To check (�), note that if

 
q

p

!

�
  

n

m

!

�
 

l

k

!!

is defined, then m D l and p D n, but in this situation

  
q

p

!

�
 

n

m

!!

�
 

l

k

!

is defined.

We require one more piece of structure that, roughly speaking, measures
complexity of objects in X . A function j 	 jW X ! D, where .D; �/ is a linear
order, is called a norm if for x; y 2 X , jxj � jyj implies that for all a 2 A

a : y defined ) .a : x defined and ja : xj � ja : yj/: (6)

Illustration 8 In our special case, X is the set of all increasing injections xW Œk� !
Nnf0g for k 2 N. Define j 	 jW X ! N, where N is taken with its natural linear order,
to be

jxj D
(

max image.x/ D x.k/; if k > 0I
0; if k D 0:

We check that this definition gives a norm. Let a 2 A, aW Œl � ! N n f0g. Note that,
for x 2 X , a : x is defined precisely when jxj � l and ja : xj D a.jxj/, if jxj > 0,
and ja : xj D 0, if jxj D 0. So given x1; x2 2 X with jx1j � jx2j, it is clear that if
a : x2 is defined, then so is a : x1 and

ja : x1j D a.jx1j/ � a.jx2j/ D ja : x2j; if jx1j > 0;

or

ja : x1j D 0 � ja : x2j; if jx1j D 0:

The additional conditions required to prove our theorem were stated as (A), (B),
and (�). The additional structure introduced above is consolidated in the following
notion.
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Definition 1. A normed background is a pair of sets A; X equipped with a
multiplication 	 and an action : fulfilling (5), with a truncation @ fulfilling (1), and
with a norm j 	 j fulfilling (6).

With some abuse of notation, a normed background as above will be denoted by
.A; X/.

2.4 The Theorem

Now we can phrase our theorem. To see how it follows from the somewhat more
general results of [7], the reader should consult Appendix 1. We write @t P , t 2 N,
for the result of applying truncation @ to P t times.

Theorem 9. Let .F ;P ; � ; �/ be a pair of families over a normed background
fulfilling conditions (A), (B), and (�). Assume that each P 2 P is finite and for
each P 2 P there is t 2 N such that @t P consist of one element. If .F ;P/ fulfills
(P), then it fulfills (R).

Note that the theorem above gives the classical Ramsey theorem on the basis of
Illustrations 1–8. In them, we checked all the assumptions of Theorem 9 except: for
P 2 P , P is finite and @t P has one element for some t 2 N. Finiteness of P is
clear. Note that @k

�
l
k

� D �
0
0

�
, so this last assumption is also fulfilled.

3 Trees and Another Illustration

Trees and Embeddings We state here basic definitions concerning trees. By a tree
we understand a finite, possibly empty, partial order such that each two elements
have a common predecessor and the set of predecessors of each element is linearly
ordered. So trees for us are finite trees. If a tree is non-empty, it has a smallest
element, which we call the root. Maximal elements of a tree are called leaves. By
convention, we regard every node of a tree as one of its own predecessors and as
one of its own successors.

Each tree T carries a binary function ^T that assigns to each v; w 2 T the largest
element v ^T w of T that is a predecessor of both v and w. After Deuber [2], we say
that a function f W S ! T , for trees S and T , is a morphism if for all v; w 2 S ,

f .v ^S w/ D f .v/ ^T f .w/:

So strictly speaking f is a morphism from the functional structure .S; ^S / to the
functional structure .T; ^T /.

For a tree T and v 2 T , let imT .v/ be the set of all immediate successors of v,
and we do not regard v as one of them. Let T .v/ be the tree whose elements are all
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the successors of v (with v among them, of course). Let htT .v/ be the cardinality of
the set of all predecessors of v (including v), and let

ht.T / D maxfhtT .v/W v 2 T g:

For a non-empty tree T , let br.T / be the maximum of cardinalities of imT .v/ for
v 2 T .

We will occasionally suppress the subscripts from various pieces of notation
introduced above if we deem them clear from the context.

A tree T is called ordered if for each v 2 T there is a fixed linear order of im.v/.
Such an assignment allows us to define the lexicographic linear order �T on all the
nodes of T by stipulating that v �T w if v is a predecessor of w and, in case v is not
a predecessor of w and w is not a predecessor of v, that v �T w if the predecessor of
v in im.v ^ w/ is less than or equal to the predecessor of w in im.v ^ w/ in the given
order on im.v ^ w/.

The simplest ordered trees are Œn� for n 2 N with their natural successor relation
and the unique ordering of the immediate successors of each vertex.

An embedding f from an ordered tree S to an ordered tree T is an injective
tree morphism such that

(i) It is order preserving between �S and �T ;
(ii) For each v 2 S , the set fw 2 imT .f .v//W w is a predecessor of f .v0/ for some

v0 2 imS .v/g forms an initial segment with respect to �T of imT .f .v//.

Note that preservation of order by f is equivalent to saying that for every v 2 S

and all w1; w2 2 imS .v/ with w1 �S w2 if w0
1; w0

2 in imT .f .v// are predecessors of
f .w1/ and f .w2/, respectively, then w0

1 �T w0
2. An embedding is leaf preserving if

each leaf of the domain is mapped to a leaf of the range. An embedding f W S ! T is
called strong if for v; w 2 S with ht.v/ D ht.w/ we have that ht.f .v// D ht.f .w//.
Note that each embedding from Œn�, n 2 N, to an ordered tree is a strong embedding.

Derivations on Trees There are two natural ways to trim an ordered tree. Let an
ordered tree T be given. Put

T � D fv 2 T W ht.v/ < ht.T /g; (7)

that is, T � is obtained from T by removing all of its highest leaves. Note that T �
with �T restricted to it is an ordered tree, and that the inclusion from T � to T is a
strong embedding.

Let x be the rightmost with respect to �T leaf of T , that is, x is the �T -largest
element of T , and let

T 0 D fv 2 T W T .v/ has a leaf different from xg; (8)
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that is, T 0 is obtained from T by removing from it a final segment of its rightmost
branch. The tree T 0 with �T restricted to it forms an ordered tree and the inclusion
T 0 � T is a leaf preserving embedding. If T 6D ;, then the set T n T 0 with the
inherited tree structure can be identified with Œp� for some p 2 N, p > 0, with its
natural tree order. If T 0 6D ;, there is a unique node v0 2 T 0 that has an immediate
successor in T n T 0. We call v0 the splitting node of T .

Examples of Trees and Embeddings We fix some notation concerning trees. After
Deuber [2], a non-empty tree T is called regular if for each v 2 T that is not a leaf,
jim.v/j D br.T / and for each leaf x 2 T , ht.x/ D ht.T /. Of course, each such tree
is fully determined by the value of two parameters: br.T / and ht.T /. For k; n 2 N,
k > 0, n > 1, let T k;n be the regular tree of height n and with branching number
k. By convention, for k 2 N, let T k;1 have exactly one node and T k;0 be equal to
the empty tree, and for n 2 N, n > 1, let T 0;n have exactly one node. We consider
T k;n to be an ordered tree with some linear order �T k;n . (All possible orders making
T k;n into an ordered tree lead to isomorphic ordered trees.) The tree T 1;n can be
identified with Œn� as an ordered tree.

We fix two natural ways of embedding T k;n into T k;nC1. First, there is a unique
embedding �� of T k;n into T k;nC1 with

��.imT k;n .v// � imT k;nC1 .��.v//;

for v 2 T k;n, and with �� mapping the root of T k;n to the root of T k;nC1, if T k;n is
non-empty. Note that htT k;n .v/ D htT k;nC1 .��.v// for v 2 T k;n. We write

T k;n �� T k;nC1 (9)

to indicate that we consider T k;n identified with its image under ��. There is also a
unique embedding �0 of T k;n into T k;nC1 with

�0.imT k;n .v// � imT k;nC1 .�0.v//;

for v 2 T k;n, and with �0 mapping the �T k;n -smallest leaf of T k;n to the �T k;nC1-
smallest leaf of T k;nC1, if T k;n is non-empty. This embedding comes from the
isomorphism between T k;n and T k;nC1.v0/, where v0 is the �T k;nC1-smallest
immediate successor of the root of T k;nC1. Note that the image of the set of all
leaves of T k;n under �0 is an initial segment with respect to �T k;nC1 of the set of
leaves of T k;nC1. We write

T k;n �0 T k;nC1 (10)

to indicate that we consider T k;n identified with its image under �0.
We give one more illustration. Its conclusion will be used in the sequel.
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Illustration 10 We prove the following, possibly folklore, generalization of the
classical Ramsey theorem.

Given d > 0, s 2 N, and a non-empty ordered tree S , there is a non-empty ordered
tree T with br.T / D br.S/ such that for each d -coloring of all leaf preserving
embeddings of Œs� to T there exists a leaf preserving embedding g0W S ! T such
that

fg0 ı f W f W Œs� ! S a leaf preserving embeddingg
is monochromatic.

The proof below consists essentially of stating definitions. All the checking that
needs to be done is routine and would be probably best left to the reader. However,
since this is the first example involving trees, we will perform all the verifications
carefully and explicitly.

Let k D br.S/. Since there is a leaf preserving embedding from S to T k;m with
m D ht.S/, we can assume that S D T k;m for some m. For n 2 N, set

T n D T k;n:

Normed Background Let X be the set of all (not necessarily leaf preserving)
embeddings from some Œm� to some T n. Let A consist of all strong embeddings
from some T m to some T n. (Strong embeddings were defined earlier in this section.
We will need this more restrictive notion of embedding for the normed background
we are defining to work.) For f 2 X and g; g1; g2 2 A declare that g : f is defined
if the image of f is included with respect to �� (as defined in Eq. (9)) in the domain
of g, and similarly declare that g2 	 g1 is defined if the image of g1 is included with
respect to �� in the domain of g2, and let

g : f D g ı f and g2 	 g1 D g2 ı g1:

Define @� on X be letting for f W Œm� ! T n,

@�f D f � Œm � 1�:

Note, after recalling the derivation (7), that @�f D f � Œm��. Let

jf j D
(

ht.f .m//; if m > 0I
0; if m D 0:

(11)

It is checked without any difficulty that .A; X/ with the operations defined above is
a normed background. The requirement that embeddings in A be strong is used in
checking that j 	 j is a norm.
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A Pair of Families Over (A, X ) Let S; T be ordered trees. Let

 
T

S

!s

and

"
T

S

#s

(12)

stand for the set of all strong embeddings and strong, leaf preserving embeddings,
respectively, from S to T . Since all embeddings from Œm�, m 2 N, to an ordered
tree are strong, we simplify our notation by setting

 
T

m

!

D
 

T

Œm�

!s

and

"
T

m

#

D
"

T

Œm�

#s

; (13)

that is,
�

T
m

�
and

�
T
m

�
stand for the set of all embeddings from Œm� to T and for the set

of all leaf preserving embeddings from Œm� to T , respectively.
Let F consist of sets of the form

�
T n

T m

�s
and

�
T n

T m

�s
with 0 < m � n or m D n D

0. Declare � to be defined precisely in the following situations:
�

T n

T m

�s � �T m

T l

�s
and

�
T n

T m

�s � �T m

T l

�s
, and define them to be

 
T n

T m

!s

�
 

T m

T l

!s

D
 

T n

T l

!s

and

"
T n

T m

#s

�
"

T m

T l

#s

D
"

T n

T l

#s

:

Let P consist of sets of the form
�

T n

m

�
and

�
T n

m

�
with 0 < m � n or m D n D

0. Declare � to be defined precisely in the following situations:
�

T n

T m

�s �
�

T m

l

�
and

�
T n

T m

�s �
�
T m

l

�
, and let

 
T n

T m

!s

�
 

T m

l

!

D
 

T n

l

!

and

"
T n

T m

#s

�
"

T m

l

#

D
"

T n

l

#

:

It is easy to see that these � and � when defined are given point-wise. This checking
boils down to showing that each strong embedding from T l to T n factors through
T m, and the same for strong, leaf preserving embeddings. Such factorizations are
easy to produce. Arguing by induction, we see that it is suffices to show their
existence for l < m D l C 1 � n. Since l < n, given a strong (leaf preserving,
respectively) embedding gW T l ! T n, there is 1 � j � n such that ht.g.v// 6D j ,
for each v 2 T l . Fix the largest 1 � i � l such that ht.g.v// < j for all v 2 T l with
ht.v/ D i , or let i D 0 if no such i exists. Let g1W T l ! T lC1 be an arbitrary strong
(leaf preserving, respectively) embedding such that for v 2 T l

ht.g1.v// D
(

ht.v/; if ht.v/ � i ;

ht.v/ C 1; if ht.v/ � i C 1.



328 S. Solecki

So there is no element of T l that gets mapped to a w 2 T lC1 with ht.w/ D i C 1.
Now it is easy to find a strong (leaf preserving, respectively) embedding g2W T lC1 !
T n such that g D g2 ı g1. (We do it so that ht.g2.w// D j for all w 2 T lC1 with
ht.w/ D i C 1.)

Note that

@�
 

T n

m

!

D @�
"

T n

m

#

D
8
<

:

�
T n�1

m�1

�
; if m > 1;

�
T 0

0

�
; if m � 1.

(14)

Using Eq. (14), we verify that F and P is a pair of families over .A; X/ fulfilling
conditions (A) and (B). Condition (A) is clear from Eq. (14). We verify condition
(B) for k > 1 in the calculation below, and leave the trivial case k � 1 to the reader.
Note that by Eq. (14), if

 
T n

T m

!s

� @�
 

T l

k

!

D
 

T n

T m

!s

�
 

T l�1

k � 1

!

is defined, then l D m C 1, so
�

T nC1

T mC1

�s
�
�

T l

k

�
is defined and each g 2 �

T n

T m

�s
is

extended by some h 2 �
T nC1

T mC1

�s
(that is, for each f 2 X if g : f is defined, then so

is h : f and h : f D g : f ); simply view T m as included in T mC1 via �� and take
hW T mC1 ! T nC1 to be any strong embedding with h � T m D g, that is, h extends
gW T m ! T n as an embedding. We handle the situation when

 
T n

T m

!s

� @�
"

T l

k

#

D
 

T n

T m

!s

�
 

T l�1

k � 1

!

is defined in the same way, except that in this case
�

T nC1

T mC1

�s
witnesses that (B) holds.

To see condition (�), note that if

 
T q

T p

!s

�
  

T n

T m

!s

�
 

T l

k

!!

is defined, then m D l and p D n, so

  
T q

T p

!s

�
 

T n

T m

!s!

�
 

T l

k

!

is defined, as required. We handle the situation when

"
T q

T p

#s

�
 "

T n

T m

#s

�
"

T l

k

#!

is defined in the same way.
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Condition (R) for the above defined pair of families clearly gives the statement

from the beginning of this illustration. Since for
�

T n

m

� 2 P we have .@�/n
�
T n

m

� D �
T 0

0

�

and
�

T 0

0

�
has exactly one element, by Theorem 9, it suffices to see condition (P).

Condition (P) We carefully check condition (P). Fix an element of P , which must
be of the form

�
T q

p

�
or
�

T q

p

�
. We consider the first case first. We assume p > 1

and leave p � 1 to the reader. To check (P), recall the pieces of notation set up

in Eqs. (3) and (4). Fix f0 2 @��T q

p

� D �
T q�1

p�1

�
. We need to find an element

�
T r

T q

�s

of F (it suffices, of course, to find r) and g0 2 A so that for each d -coloring of�
T r

T q

�s
g0

:
�

T q

p

�
f0

there is g 2 �
T r

T q

�s
g0

such that g :
�

T q

p

�
f0

is monochromatic. Note that
�

T r

T q

�s �
�

T q

p

�
is automatically defined.

We claim that g0 2 A equal the identity function T jf0jC1 ! T jf0jC1 does the
job, where jf0j is defined by Eq. (11). Checking (P) boils down to stating precisely
what elements the sets

�
T q

p

�
f0

,
�

T r

T q

�s
g0

, and g :
�

T q

p

�
f0

, for g 2 �
T r

T q

�s
g0

, consist of. Let

v0 be the smallest with respect to �T q element of the set imT q .f0.p � 1//, and keep
in mind that we are looking for r .

The set
�

T q

p

�
f0

consists of all f 2 �
T q

p

�
with @�f D f0. This last condition is

equivalent to saying that f � Œp � 1� D f0 and

f .p/ 2 T q.v0/; (15)

where Eq. (15) is a consequence of point (ii) in the definition of embedding between
ordered trees. Each such embedding f is completely determined by the value of
f .p/. Fix r � q, arbitrary for the moment. Let g be a strong embedding in

�
T r

T q

�s
g0

.

It is equal to the identity on T jf0jC1 and it is determined by strong embeddings gv

from T q.v/ to T r.v/, where v varies over the nodes of T q with ht.v/ D jf0j C 1.
Now, elements of g :

�
T q

p

�
f0

are embeddings g ı f W Œp� ! T r with f for which

Eq. (15) holds. Each such embedding is completely determined by the value

.g ı f /.p/ D gv0 .f .p// 2 T r.v0/:

Therefore, solving the problem of fixing the color on g :
�

T q

p

�
f0

amounts to the

following: d -color T r.v0/ (this is where the values of .g ı f /.p/ are coming from),
then find a strong embedding (this is gv0) of T q.v0/ (this is where the values f .p/

are located) to T r.v0/ so that the image of T q.v0/ is monochromatic. This can be
arranged using a form of the Halpern–Läuchli theorem ((HL2) with t D 1 from
Appendix 2) by taking r large enough since T q.v0/ and T r.v0/ are isomorphic to
T m and T n, where m D q � .jf0j C 1/ and n D r � .jf0j C 1/, respectively.
For v 6D v0, after identifying T q.v/ with T q.v0/ and T r.v/ with T r.v0/ via the
unique isomorphisms, we let gv be equal to gv0 . Note that so defined g is strong
(Fig. 2).
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[p]

p

f0

T q T r

id

f0 (p−1)
v0

T q (v0)

f

T q(v)

v

T r(v0) T r(v)

p−1

v0 v

gv0 gv

|f 0
|+

1

|f 0
|+

1

Fig. 2 Condition (P) in Illustration 10

The case P D �
T q

p

�
is handled analogously with the exception that for F one

takes
�

T r

T q

�s
for large enough r and one uses another form of the Halpern–Läuchli

theorem ((HL1) from Appendix 2). We leave it to the reader to re-check the details.

4 A Ramsey Theorem for Finite Trees

We prove the following theorem that extends the results of Deuber [2] and of
Jasiński [3]. Our proof differs from the arguments of these two papers.

Proposition 1. For non-empty ordered trees S; T and d > 0, there exists a non-
empty ordered tree V with br.V / D br.T / such that for each d -coloring of all leaf
preserving embeddings from S to V there is a leaf preserving embedding g0W T !
V such that

fg0 ı f W f W S ! T a leaf preserving embeddingg
is monochromatic.

As a direct consequence of the above result, one gets its version for embeddings
that are not necessarily leaf preserving by the following argument. Given ordered
trees S; T , let SC; TC be the trees obtained from S and T by adding one node on
top of each leaf of S and T , respectively. Apply now the above statement to SC; TC
obtaining V . Let V� be gotten from V by deleting from it all of its leaves. It is easy
to check that V� works by using the obvious observation that embeddings from S
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to T , from S to V�, and from T to V� are precisely restrictions of leaf preserving
embeddings from SC to TC, from SC to V , and from TC to V , respectively.

Deuber’s theorem [2] is the above result for embeddings that are not necessarily
leaf preserving and under the additional assumptions that br.S/ D br.T / and that
S is regular as defined in Sect. 3. Jasiński’s theorem is originally [3] stated for
boron structures as defined in [1], but can easily be rephrased in terms of trees, and
then it becomes equivalent to the above result with the additional assumptions that
br.S/ D br.T / and that for each v 2 S that is not a leaf jim.v/j D 2.

We show now how to derive Proposition 1 from Theorem 9.
Let k D br.T / and set T n D T k;n. Note that it is enough to prove the theorem

for T equal to some T n since every ordered tree T with br.T / D k embeds leaf-
preservingly into some T n.

We define an analogue of the set of natural numbers for the present Ramsey
situation. We view T n as an ordered subtree T nC1 via the inclusion �0 defined by
Eq. (10). This convention gives an increasing sequence .T n/n2N of ordered trees. Let
the direct limit (that is, the union, if T n is identified with its image in T nC1) of this
sequence be denoted by T 1. Observe that T 1 carries a linear order induced from
the linear orders �T n on the T n-s. We denote this linear order by �1. Each element
v of T 1 belongs to some T n. We call v a leaf if v is a leaf in some, or equivalently
all, T n to which it belongs. For an ordered tree S , each function f W S ! T 1 has
its range included in some T n. We call f a leaf preserving embedding if f is a
leaf preserving embedding to some, or equivalently all, T n in which the image of f

is included. Further, gW D ! T 1 for a subset D of T 1 is called a leaf preserving
embedding if the restriction of g to each D \ T n, n 2 N, is a leaf preserving
embedding, where D \ T n is taken with the tree order inherited from T n. For a leaf
x 2 T 1, let

Tx D fv 2 T 1W v �1 xg:
Note that Tx is an infinite set.

Normed Background Let Y consist of all leaf preserving embeddings f W S !
T 1, where S is an ordered tree. Let B consist of the empty function and of all leaf
preserving embeddings gW Tx ! T 1, where x is a leaf of T 1. It is easy to see that
for such a gW Tx ! T 1, we have g.Tx/ � Tg.x/. As always, for f 2 Y and g 2 B ,
let g : f to be defined precisely when the image of f is included in the domain of g

and let
g : f D g ı f:

Similarly for g1; g2 2 B , define g2 	 g1 to be defined precisely when the image of g1

is contained in the domain of g2 and let

g2 	 g1 D g2 ı g1:

We define a truncation using the branch cutting derivation on trees given by Eq. (8).
For f 2 Y with f W S ! T 1 define

@0f D f � S 0;



332 S. Solecki

where S 0 is given by Eq. (8). We define a norm j 	 jW Y ! T 1 [ f�1g, where T 1
is considered as a linear order with �1 and �1 is an element that is less than all
the elements of T 1, by letting for f 2 Y with f W S ! T 1

jf j D
(

max image.f /; if S 6D ;I
�1; if S D ;.

Observe that if S 6D ;, then jf j is the �1-minimal leaf x 2 T 1 such that
image.f / � Tx. It is easy to check that with so defined operations, .B; Y / becomes
a normed background.

A Pair of Families Over (B, Y ) For n 2 N, let xn 2 T 1 be the rightmost leaf of
T n and let vn 2 T 1 be the root of T n. Note that

Txn D T n [ fvnCkW k 2 N; k > 0g:

Define for 0 < m � n

"
T n

T m

#1
D fg 2 BWgW Txm ! Txn; g.T m/ � T n; and

g.vmCk/ D vnCk for all k 2 N; k > 0g:

Additionally, let
�

T 0

T 0

�1
consist of the empty function. Observe that the function

"
T n

T m

#1
3 g ! g � T m

is a bijection from
�

T n

T m

�1
to all leaf preserving embeddings from T m to T n.

Let G consist be the family of all subsets of B of the form
�

T n

T m

�1
, where n; m 2 N

and 0 < m � n or m D n D 0. Let Q be the family of all non-empty finite sets
Q � Y of the following form: there is an ordered tree S such that Q consists of
some leaf preserving embeddings from S to T 1. In such a situation, we say that Q

is based on S . As usual, declare
�

T n

T m

�1 � �T l

T k

�1
to be defined precisely when m D l

and let

"
T n

T l

#1
�
"

T l

T k

#1
D
"

T n

T k

#1
:

Declare
�

T n

T m

�1 � Q to be defined precisely when m is the smallest natural number
with the property that the images of all elements of Q are included in T m, and let
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"
T n

T m

#1
� Q D

"
T n

T m

#1
: Q:

We leave to the reader the easy check that .F ;Q; � ; �/ is a pair of families over
.B; Y /, that is, the operations � and � are given pointwise. The pair of families
fulfills conditions (A), (B), and (�). Condition (A) is clear. To see condition (B),
assume that

�
T n

T m

�1 � @Q is defined, that is, m is smallest such that the image of all
elements of @Q is included in T m. Let l 2 N be smallest such that the image of each

element of Q is included in T mCl . Then
�

T nCl

T mCl

�1
witnesses that (B) holds since

�
T nCl

T mCl

�1
� Q is defined and, as is easy to check, each leaf preserving embedding

from
�

T n

T m

�1
extends (as a function) to a leaf preserving embedding from

�
T nCl

T mCl

�1
.

Condition (�) follows immediately from an easy observation that if m is the smallest
natural number such that the image of each function in Q is included in T m, then
n is the smallest natural number with each function in

�
T n

T m

�1
: Q having its image

included in T n.
Note that condition (R) in this case is the theorem we are proving. Observe also

that if Q 2 Q is based on S , then @Q is based on S 0, and S 0 has one leaf fewer
than S if S 6D ;. Thus, @t Q has exactly one element (the empty function) for t

equal to the number of leaves in S . It follows that to get (R) it remains to check
condition (P).

Condition (P) Let Q 2 Q be based on S and let q 2 N be smallest such that all
elements of Q have ranges included in T q . The set @Q is based on S 0. We assume
S 0 is not the empty tree. (The case S 0 D ; is easier, and we ask the reader to handle
it after reading the current argument.) Let u0 2 S 0 be the splitting node of S , and
identify S n S 0 with Œp� for some non-zero p 2 N. (Recall here the discussion
following (8).) Fix f0 2 @0Q. Then f0W S 0 ! T q , f0 2 Y . Let

v0 D f0.u0/ 2 T q: (16)

To check (P), we need to find r 2 N and g0 2 B such that for each d -coloring
of
�

T r

T q

�1
g0

: Qf0 there is g 2 �
T r

T q

�1
g0

with g : Qf0 monochromatic. We will show that
large enough r works. Fix r � q. Now, we define g0. Find the �1-smallest leaf x

in T q such that the image of f0 is included in Tx. Note that v0 is a predecessor of x.
First we define g0W Tx ! T 1. Note that

Tx D .Tx \ T q/ [ fvqCkW k 2 N; k > 0g:

For the moment, we view T q as a subset of T r in the sense T q �� T r , as defined by
Eq. (9), and we let g0 be the identity on the elements of Tx \ T q that are not leaves.
Let g0 map leaves of Tx \ T q to leaves of T r in such a way that g0 on Tx \ T q is a
leaf preserving embedding to T r . Let g0.vqCk/ D vrCk for k 2 N, k > 0. It is clear
that g0 2 B .
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Consider the set E of all w 2 T q such that w is an immediate successor of a
predecessor of x and x <1 w. The set T q n T

q
x is partitioned into trees T q.w/ with

w 2 E . Therefore, each g 2 �T r

T q

�1
g0

is equal to g0 in Tx and is completely determined
by leaf preserving embeddings

gw D g � T q.w/W T q.w/ ! T r.w/; w 2 E:

Note that v0 given by Eq. (16) has an immediate successor in E . Let w0 be the
�1-smallest among them. For each f 2 Qf0 , f � S 0 is equal to f0 whose image
is included in Tx, while the image of f � .S n S 0/ is included in T q.w0/. So each
element of g : Qf0 being of the form g ı f W S ! T r is completely determined by

gw0 ı .f � .S n S 0//W S n S 0 ! T r.w0/:

Note that the identification of S n S 0 with Œp� makes f � .S n S 0/ into a leaf
preserving embedding from Œp� to T q.w0/. Thus, fixing the color on g : Qf0 amounts
to the following (with notation as in Eq. (13)): d -color

�
T r .w0/

p

�
, find a leaf preserving

embedding gw0 W T q.w0/ ! T r.w0/ so that gw0 :
�

T q.w0/
p

�
is monochromatic. This can

be achieved from Illustration 10 by taking r large enough as T r.w0/ and T q.w0/ are
isomorphic to T n and T m, where n D r � ht.w0/ and m D q � ht.w0/. We can let
gwW T q.w/ ! T r.w/ be arbitrary leaf preserving embeddings for w 2 E , w 6D w0.

5 Milliken’s Theorem in Exercises

We prove in this section the following result due to Milliken [4]. The reader may
consult [6] for another purely finitary proof of Milliken’s theorem.

Proposition 2. Let S and T be ordered trees. Assume that all leaves in T have the
same height. For d > 0, there exists an ordered tree V with br.V / D br.T / such
that for each d -coloring of all strong, leaf preserving embeddings from S to V there
is a strong, leaf preserving embedding g0W T ! V such that

fg0 ı f W f W S ! T a strong, leaf preserving embeddingg

is monochromatic.

The proof of Proposition 2 that we will give yields also the statement obtained
from Proposition 2 by replacing strong, leaf preserving embeddings by strong
embeddings in all places. This statement can also be obtained from Proposition 2
by a proof that is identical to the argument following Proposition 1. It suffices to
notice that, with the notation as in that argument, strong embeddings from S to T ,
from S to V�, and from T to V� are precisely restrictions of strong, leaf preserving
embeddings from SC to TC, from SC to V , and from TC to V , respectively.
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The proof of Proposition 2 is a somewhat more sophisticated version of the
argument in Illustration 10. Let k D br.T /. As before set T n D T k;n. View T n as
a subtree of T nC1 via the inclusion �� defined in Eq. (9). This inclusion is a strong
embedding. This way we obtain an increasing sequence .T n/n2N of ordered trees.
Let T1 be the union (direct limit) of this sequence. The range of each function
f W S ! T1 on an ordered tree S is included in some T n. We call f a strong
embedding if f is a strong embedding as a function from S to T n for some, or
equivalently all, T n in which the image of f is included. For v 2 T1, let ht.v/ be
equal to htT n.v/ for some, or equivalently, all T n with v 2 T n.

Normed Background Let Z consist of all strong embeddings f W S ! T1, where
S is an ordered tree. Let C consist of all strong embeddings gW T m ! T n, for some
m � n. For f 2 Z and g 2 C , let g : f be defined precisely when the image of f

is included in the domain of g and let

g : f D g ı f:

Similarly for g1; g2 2 C , let g2 	 g1 be defined precisely when the image of g1 is
contained in the domain of g2, and let

g2 	 g1 D g2 ı g1:

For f 2 Z with f W S ! T n define

@�f D f � S�:

Define a norm j 	 jW Z ! N, by letting for f 2 Y with f W S ! T1

jf j D max
v2S

ht.f .v//:

Exercise. Check that .C; Z/ is a normed background.

A Pair of Families Over (C; Z ) The pair of families described below extends the
one described in Illustration 10. Recall the sets

�
T
S

�s
and

�
T
S

�s
defined in Eq. (12). Let

H consist of all
�

T n

T m

�s
and

�
T n

T m

�s
where m; n 2 N and 0 < m � n or m D n D 0. Let

R consist of all non-empty sets of the form
�

T n

S

�s
and

�
T n

S

�s
, where S is an ordered

tree. Declare
�

T n

T m

�s � �T l

T k

�s
and

�
T n

T m

�s � �T l

T k

�s
to be defined precisely when m D l ,

and let

 
T n

T l

!s

�
 

T l

T k

!s

D
 

T n

T k

!s

and

"
T n

T l

#s

�
"

T l

T k

#s

D
"

T n

T k

#s

:

Similarly, declare
�

T n

T m

�s �
�

T l

S

�s
and

�
T n

T m

�s �
�

T l

S

�s
to be defined precisely when m D

l , and let
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T n

T l

!s

�
 

T l

S

!s

D
 

T n

S

!s

and

"
T n

T l

#s

�
"

T l

S

#s

D
"

T n

S

#s

:

The operations � and � are undefined in situations not specified above.

Exercise. Check that .H;R; � ; �/ is a pair of families over .C; Z/ fulfilling
conditions (A), (B), and (�). (Hint. This is almost identical to the argument in
Illustration 10.)

Exercise. Note that it suffices to prove Proposition 2 for T of the form T n (this is
where the assumption that all leaves in T have the same height is used) and check
that condition (R) for .H;R; � ; �/ implies Proposition 2 (as well as the statement
obtained from Proposition 2 by replacing strong, leaf preserving embeddings by
strong embeddings).

Exercise. Check condition (P) for .H;R; �; � /. (Hint. This follows from the
Halpern–Läuchli theorem for strong subtrees (HL1) and (HL2) from Appendix 2
and is similar to the argument for (P) in Illustration 10.)

6 Appendix 1: Conditions (A) and (B) Removed and the
Final Word on Normed Backgrounds

1. The following criterion (PC) is the strengthening of condition (P) allowing us to
get rid of conditions (A) and (B). It is obtained from (P) by replacing all occurrences
of P , except the one in F � P , by @t P for a fixed but arbitrary t 2 N.

(PC) given d > 0 and t , for all P 2 P and x 2 @tC1P , there are F 2 F and
a 2 A such that F � P is defined, a : x is defined, and for every d -coloring
of Fa : .@t P /x there is f 2 Fa such that f : .@t P /x is monochromatic.

The following result is [7, Corollary 4.4].

Theorem 11. Let .F ;S; � ; �/ be a pair of families with (�) over a normed
background. Assume that each P 2 P is finite and for each P 2 P there is t 2 N

such that @t P consist of one element. If .F ;P/ fulfills (P+), then it fulfills (R).

To see that Theorem 9 is a consequence Theorem 11, we note that (P) in the
presence of (A) and (B) implies (PC). To see this implication, we proceed by
induction on t . Condition (PC) for t D 0 is just (P). Assuming that (PC) holds for
t , we prove it for t C 1. Let P 2 P and x 2 @tC2P . By condition (A), @P 2 P .
So condition (PC) for t applied to @P and x gives F 2 F and a 2 A such that
F � @P is defined, a : x is defined, and for every d -coloring of Fa : .@tC1P /x there
is f 2 Fa such that f : .@tC1P /x is monochromatic. Now condition (B) gives
G 2 F such that G � P is defined and such that each element of F is extended by
an element of G. It follows that each element of Fa is extended by an element of
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Ga. Now it is clear that G and a witness that (PC) holds for t C 1.

2. The main algebraic structures in the paper are normed backgrounds. We list below
conditions that are more symmetric than those defining normed backgrounds. As
indicated by Lemma 1, they give a notion that is in essence equivalent to normed
background. All the normed backgrounds in the present paper and in [7] fulfill the
conditions below.

Let .A; X; 	; : ; @; j 	 j/ be such that 	 is a partial function from A � A to A, : is a
partial function from A � X to X , @ is a function from X to X and j 	 j is a function
from X to a set with a linear order �. Assume the following axioms hold for all
a; b 2 A and x; y 2 X :

(i) if a : .b : x/ and .a 	 b/ : x are defined, then a : .b : x/ D .a 	 b/ : x;
(ii) if a : x and a : @x are defined, then @.a : x/ D a : @x;
(iii) j@xj � jxj;
(iv) if jxj � jyj and a : x and a : y are defined, then ja : xj � ja : yj;
(v) if jxj � jyj and a : y is defined, then so is a : x.

The following result is [7, Lemma 4.5].

Lemma 1. (a) Assume .A; X; 	; : ; @; j 	 j/ fulfills conditions (i)–(v) above, then
.A; X/ with 	, : , @ and j 	 j is a normed background

(b) If .A; X/ with 	, : , @ and j 	 j is a normed background, then there is a function
j 	 j1 on X such that .A; X; 	; : ; @; j 	 j1/ fulfills conditions (i)–(v) above.

7 Appendix 2: The Halpern–Läuchli Theorem for Strong
Subtrees as a Restatement of the Hales–Jewett Theorem

We point out here that the Halpern–Läuchli theorem for strong subtrees (there
are other, more difficult, versions) and the Hales–Jewett theorem are identical
statements phrased in different languages. The importance of this translation for
the presentation here comes from the fact that the Hales–Jewett theorem is shown in
[7] to be one of the results that follow from the abstract approach to Ramsey theory.
So when using the Halpern–Läuchli theorem in the present paper we stay within this
approach. Justin Moore remarks that equivalence of these two statements (that is,
of the Hales–Jewett and the Halpern–Läuchli theorems) has been known for some
time.

We set up a dictionary for translating the Hales–Jewett theorem to the Halpern–
Läuchli theorem. Let S and T be ordered trees. Let f W leaves.S/ ! leaves.T / be
strictly increasing with respect the orders �S and �T (restricted to the leaves), and
be such that for each v 2 S there is w 2 T such that for any two leaves x; y of S

with v D x ^ y we have w D f .x/ ^ f .y/. Then there is a unique leaf preserving
embedding from S to T whose restriction to leaves.S/ is equal to f . We, therefore,
refer to such an f itself as a leaf preserving embedding. If in the above definition
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ht.w/ depends only on ht.v/, then the induced embedding is strong and again we call
f strong. A sequence f1; : : : ; fr W leaves.S/ ! leaves.T / of strong embeddings is
called a strong sequence if for x; y 2 leaves.S/ and 1 � i; j � r

ht.fi .x/ ^ fi .y// D ht.fj .x/ ^ fj .y//:

Fix a linearly ordered finite set A that is disjoint from N. For n 2 N, we consider
ordered trees

A�n D fvW Œl � ! AW l � ng;
where the tree relation is equal to the extension relation and the order relation is the
one coming from the linear order on A. So A�n is a version of the trees T k;n defined
in Sect. 3, where k D jAj. Note that the set of leaves of this tree is equal to the set
An of all functions from Œn� to A.

For any function vW Œl � ! A, let v0W A [ Œl � ! A be equal to the identity function
on A and to v on Œl �. Assume we have a function wW Œn� ! A [ Œm� such that

(i) Œm� is included in the image of w;
(ii) w.Œl�/ \ Œm� is an initial segment of Œm�, for each l � n.

Such w gives rise to a strong embedding gwW Am ! An (recall that Am and An are
the sets of leaves of A�m and A�n, respectively) defined by

gw.x/ D x0 ı w;

for x 2 Am. It is easy to check, using property (ii) of w, that gw preserves the
lexicographic order. Property (i) ensures that gw is injective. Further note that for
x; y 2 Am, if x ^ y D v0 with ht.v0/ D i0, then gw.x/ ^ gw.y/ D v1 with
ht.v1/ D i1, where

i1 D maxfi W w.Œi �/ \ Œm� � Œi0�g and v1.i/ D v0
0.w.i//; for i 2 Œi1�: (17)

Note that i1 depends only on i0. Thus, gw is indeed a strong embedding.
Now assume that for r 2 N, we have wW Œn� ! Ar [Œm� with properties (i) and (ii)

above. Such a w gives rise to r functions wi D �i ıw, where �i W Ar [Œm� ! A[Œm�

is the i -th projection on Ar and the identity on Œm�, also fulfilling conditions (i)
and (ii). We therefore get a sequence of strong embeddings g1

w; : : : ; gr
wW Am ! An

defined by
gi

w.x/ D x0 ı wi ;

where x 2 Am. Formulas (17) imply that this is a strong sequence.
The following result is a version of the Halpern–Läuchli theorem (for strong

subtrees). Recall the definition of the trees T k;n from Sect. 3. Fix k and let
T n D T k;n. Note that we can take T n D A�n for A with jAj D k.

(HL1) Given d > 0, t and m there exists n such that for each d -coloring of
leaves.T n/ � 	 	 	 � leaves.T n/ (t factors) there exists a strong sequence of leaf
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preserving embeddings gi W T m ! T n, for i D 1; : : : ; t , such that the set

g1.leaves.T m// � 	 	 	 � gt .leaves.T m//

is monochromatic.

(HL2) Given d > 0, t and m there exists n such that for each d -coloring of

f.w1; : : : ; wt /W w1; : : : ; wr 2 T n; ht.wi / D ht.wj /; for 1 � i; j � tg

there exists a strong sequence of embeddings gi W T m ! T n for i D 1; : : : ; t such
that the set

f.g1.v1/; : : : gt .vt //W v1; : : : ; vt 2 T m; ht.vi / D ht.vj /; for 1 � i; j � tg

is monochromatic.
We show that the above statements are re-phrasings of the Hales–Jewett theorem.

The Hales–Jewett theorem can be stated as below in points (a) and (b). (It is stated
this way in [7, Sect. 7], and it is proved there using the abstract approach to Ramsey
theory.)

(a) Let B be a finite set not including any natural numbers. Given d > 0 and m

there is n such that for each d -coloring of functions from Œn� to B there is a
function w0W Œn� ! B [ Œm� with properties (i) and (ii) such that the set

fv ı w0W vW B [ Œm� ! B; v � B D idBg

is monochromatic.
(b) Let B be a finite set not including any natural numbers. Given d > 0 and m

there is n such that for each d -coloring of functions from Œq� to B for all q � n

there is n0 � n and a function w0W Œn0� ! B [ Œm� with properties (i) and (ii)
such that the set

fv ı w0W vW B [ Œp� ! B; p � m; v � B D idBg

is monochromatic.

By the discussion at the beginning of this appendix, it is clear that (HL1) and
(HL2) follow from (a) and (b), respectively, by taking B D At .
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