
Duality on Convex Sets in Generalized Regions

Alexander Segal and Boaz A. Slomka

Abstract Recently, the duality relation on several families of convex sets was
shown to be completely characterized by the simple property of reversing order.
The families discussed in aforementioned results were convex sets in R

n. Our goal
in this note is to generalize this type of results to regions in R

n bounded between
two convex sets.
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1 Introduction

Let A and B be two convex sets in R
n such that A � B . Denote by Kn.A; B/ the

class of all closed convex sets containing A and contained in B:

Kn.A; B/ D fK 2 Kn W A � K � Bg:
Note that we may consider simply all sets contained in a given set B , or alternatively
all sets containing A, if we allow for A D � and B D R

n, so that for example
Kn D Kn.;;Rn/. Our goal is to determine all order-preserving isomorphisms and
as a result order-reversing isomorphisms on this class. Note that characterizations
for the special cases Kn.0;Rn/ and Kn.;;Rn/ were done by Artstein–Milman
in [1, 2]. In addition, the family of convex bodies with zero in the interior was
considered by Böröczky and Schneider in [4]. A special case of the aforementioned
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family where the bodies are origin symmetric was considered by Gruber in [5].
A somewhat different family of closed convex cones was also treated by Schneider
in [9]. We remark that in the aforementioned papers [4, 5, 9] the authors actually
consider a more general setting, namely the classification of the endomorphisms
of corresponding lattices. In this paper we generalize these theorems to the class
Kn.A; B/ for any convex A; B such that A is compact. To state our first result, we
introduce the class of n-dimensional fractional linear maps, which will play a central
role in this paper. In the sequel we assume we have some fixed Euclidean structure
.Rn; h�; �i/.
Definition 1. A map F W Rn ! R

n will be called fractional linear if

F.x/ D Ax C b

hc; xi C d
;

where A is a n � n matrix, b; c 2 R
n and d 2 R, such that the matrix

OA D
�

A b

c d

�

is invertible.

We denote the family of fractional linear maps by F:L.n/. Note that a fractional
linear map is actually the restriction of a projective map. For further information of
such maps, we refer the reader to [3, 10]. We will use a result by Shiffman, roughly
stating that any injective map, that preserves, in some sense, most of the intervals,
on some open set must be fractional linear. More precisely, given an open set U ,
denote by L.U / the set of lines in R

n intersecting U . Then:

Theorem 1 (Shiffman). Let n � 2. Let U � R
n be an open connected set and

let L0 be an open subset of L.U / that covers U . Assume that F W U ! R
n is an

injective continuous map and that F.l \ U / is contained in a line for every l 2 L0.
Then F is a fractional linear map.

Let us state our main result.

Theorem 2. Let n � 2 and A1; B1; A2; B2 2 Kn such that A1; A2 are compact and
Ai � Bi for i D 1; 2. Also, assume that int.B1/ ¤ ;. Let T W Kn.A1; B1/ !
Kn.A2; B2/ be a bijective mapping satisfying for all K; L 2 Kn.A1; B1/:

K � L , T .K/ � T .K/:

Then there exists F 2 F:L.n/ such that T .K/ D F.K/ for all K 2 K. Moreover,
A2 D F.A1/ and B2 D F.B1/.

As a corollary of Theorem 2 we get a characterization of duality on the class
Kn.A; B/ in case where 0 2 A. The result is presented in Sect. 3.6.
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Remark 1. A theorem in the spirit of Theorem 2 was proved for the case of convex
functions by Artstein–Florentin–Milman in [3]. For the sake of completeness, we
state the result here; given two compact sets K � T define the class

C vxT .K/ D ff W Rn ! R [ fC1g W f is convex ; 11
T � f � 11

K g;

where 11
K D � log 1K is the convex indicator function.

Theorem 3 (Artstein–Florentin–Milman). Let n � 2. Let A1 � B1 and A2 � B2

be compact convex sets. Let T W C vxA1.B1/ ! C vxA2.B2/ be an order-preserving
bijection. Then, there exists a fractional linear map F W B1 � R

C ! B2 � R
C such

that for every f 2 C vxA1.B1/ we have

epi.Tf / D F.epif /;

where epi.f / is the epigraph of f .

We remark that in the heart of all previous results (where B D R
n) lies the use of

extremal sets of the classes in hand that satisfy some useful properties. Using these
extremal sets leads to a construction of a point map, inducing the orderisomorphism.
Then the use of the fundamental theorem of affine geometry (see [8]) essentially
completes the proof. In our setting, the use of extremal families is also central
and, in fact, an extremal property which holds in general for all of our cases is
described and proved in Sect. 2. Using Theorem 1 that generalizes the classical
fundamental theorem of projective geometry, we will conclude that the inducing
map is a fractional linear map.

2 Extremal Families

We will denote by A _ B the closed convex hull of A and B , i.e. convfA; Bg.

Definition 2. Let K be a closed convex set. A closed convex subset L � K is said
to be extremal in K if for every x 2 L; a; b 2 K ,

x 2 .a; b/ H) Œa; b� � L:

Definition 3. Let F be a family of closed convex sets. A set K 2 F is said to be
extremal in F if for every A; B 2 F ,

K D A _ B H) A D K or B D K:

Characterization of extremal sets of Kn.A; B/ is given in Sect. 3.2.
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Recall Klee’s theorem [6, 7], which states that if a closed convex set in R
n does

not contain a full line, it is the convex hull of its extremal points and extremal rays
(extremal subsets, which are a point/ray respectively).

Definition 4. Consider the set Kn.A; B/. Given two points x; y 2 B n A, we will
say that they are comparable if x 2 A _ fyg or y 2 A _ fxg.

3 Proof of Theorem 2

The plan of the proof is as follows. First, we will describe all the possibilities for
extremal elements in Kn.A; B/. Then, we will show that they are preserved under
T . This will provide us with a point map F that induces the map T . After that, we
will show that the point map preserves, in some sense, most of the intervals and
apply a stronger version of the fundamental theorem of affine geometry to conclude
that F is a fractional linear map.

3.1 Largest and Smallest Elements

Since A1 � K for all K 2 Kn.A1; B1/ it must hold that T .A1/ � T .K/. Since
T is onto we get that T .A1/ is a subset of every element of Kn.A2; B2/ and thus
T .A1/ D A2. In the same way, T .B1/ D B2.

3.2 Extremal Elements

Remark 2. Several proofs in this section are based on separation of convex sets by
hyperplanes. Unless stated otherwise, separation is assumed to be strict, i.e. if a
hyperplane H separates sets X; Y then it is assumed that H , X and Y are disjoint.

Lemma 1. Let A 2 Kn be a compact convex set and B 2 Kn. Then, if K 2
Kn.A; B/ is extremal, then either K D A _ fxg for some point x or K D A _ R for
some ray R.

Proof. Case 1: Assume that K contains some ray R. If K ¤ A_R, then there exists
some point x 2 K n .A _ R/. Due to compactness of A there exists a hyperplane H

that separates x from A_R and contains no translate of R. Denote by H C the closed
half-space that contains x and by H � the half-space that contains A _ R. Denote
by KC D A _ .K \ H C/ and K� D A _ .K \ H �/. Then, by the choice of H

we know that KC does not contain R, K� does not contain x and K D KC _ K�,
which is a contradiction to extremality of K .
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Case 2: Assume that K contains no rays. In this case it is not hard to check that
K is a compact set (see e.g. [6]). Thus, K can be written as A _ E where E is
the set of extremal exposed points in K which are not in A. Take a point x1 2 E .
If E n fx1g is empty, we are done. Otherwise, there exists a point x2 2 E n fx1g.
Choose a hyperplane H that separates x2 from A_fx1g. Define H C the closed half-
space containing x2 and H � the closed half-space containing A _ fx1g. Consider
KC D A _ .K \ H C/ and K� D A _ .K \ H �/. Obviously, K D KC _ K�.
It is also clear that KC does not contain x1. Indeed, since A and K \ H C are both
compact, their convex hull is the union of all convex combinations of a 2 A and
k 2 K \ H C. Since x1 is an extremal point of K it cannot be written as convex
combination of points in K . Thus x1 62 KC. Obviously x2 62 K�; hence we get a
contradiction to extremality of K . ut

3.3 Segments Are Mapped to Segments

Let T W Kn.A1; B1/ ! Kn.A2; B2/ be an order-preserving isomorphism. As we
already noticed, T .A1/ D A2 and T .B1/ D B2. Since T is order isomorphism, it is
easy to see that the following holds:

1. T .K1 _ K2/ D T .K1/ _ T .K2/.
2. T .K1 \ K2/ D T .K1/ \ T .K2/.

Thus, we conclude that extremal elements of Kn.A1; B1/ are mapped to extremal
elements of Kn.A2; B2/.

Denote by Ei the set Bi n Ai , for i D 1; 2. Before we define our point map, let us
check that an extremal element of the form A1 _ fxg cannot be mapped to A2 _ R

for some ray:

Lemma 2. For every point x1 2 E1 there exists x2 2 E2 such that T .A1 _ fx1g/ D
A2 _ fx2g.

Proof. Assume the contrary: There exists a point x 2 E1 and a ray R such that
T .A1_fxg/ D A2 _fRg. Since E1 is open, there exists y 2 E1 such that A1 _fxg ¨
A1 _fyg. The image of A1 _fyg must be an extremal element that contains A2 _R,
but this is impossible, unless T .A1 _ fyg/ D A2 _ R and thus y D x, which is a
contradiction. ut
Now, since T is bijective, we get a well-defined point map F W B1 n A1 ! B2 n A2

as follows:

T .A1 _ fxg/ D A2 _ fF.x/g:
Clearly F is also bijective. Our main goal now is to show that F is a fractional linear
map.
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Lemma 3. Let a; b 2 E1 two points such that the line passing through them does
not intersect A1. Then, the line passing through F.a/; F.b/ does not intersect A2.

Proof. First notice that F.a/ and F.b/ are not comparable since T �1 preserves
order. Assume the claim does not hold. Then, there exist two points a; b 2 E1,
such that the line passing through a; b does not intersect A1, but the line through
F.a/; F.b/ does intersect A2. Since F.a/; F.b/ are not comparable it must hold
that the segment ŒF .a/; F.b/� intersects A2. Let us check that A2 _ F.a/ _ F.b/ D
.A2 _F.a//[ .A2 _F.b//. Obviously, ŒF .a/; F.b/� � .A2 _F.a//[ .A2 _F.b//.
Indeed, denote by z0 the point where ŒF .a/; F.b/� intersects the boundary of A2.
Then, ŒF .a/; z0� � A2 _F.a/ and Œz0; F .b/ � A2 _F.b/. Consider a point z1 on the
boundary of A2 _ F.b/ and denote by z2 the point where the line through F.b/ and
z1 intersects the boundary of A2. Clearly, ŒF .b/; z2� � A2 _ F.b/ and Œz2; F .a/� �
A2_F.a/. Thus, the triangle created by F.a/; F.b/; z2 is contained in .A2_F.a//[
.A2 _F.b//, which implies that ŒF .a/; z1� � .A2 _F.a//[.A2_F.b//. Since A2 is
compact we get that the convex hull A2_F.a/_F.b/ D .A2_F.a//[.A2 _F.b//,
which is a contradiction since A1 _ a _ b ¤ .A1 _ a/ [ .A1 _ b/. ut
Lemma 4. Let a; b 2 E1 be two incomparable points. Then F.Œa; b�/ D
ŒF .a/; F.b/�.

Proof. By the previous argument ŒF .a/; F.b/� does not intersect A2. Define the set
K D A1 _ fag _ fbg and consider some point z 2 .a; b/. Since T is an order
isomorphism, we have that T .K/ D T .A1 _ fag/ _ T .A1 _ fbg/ and since K D
K _ .A _ fzg/ we have that T .K/ D T .K/ _ .A2 _ F.z//. Thus F.z/ 2 T .K/.
If F.z/ 62 ŒF .a/; F.b/�, we could find some point z0 2 ŒF .a/; F.b/� such that
A2 _ F.z/ � A2 _ z0. Since T �1 preserves order, we know that the pre-image of
A2 _ z0 contains A1 _ z. On the other hand, A2 _ z0 � T .K/ and thus its pre-image
is contained in K . Since T �1.A2 _ z0/ is an extremal element, we conclude that
T �1.A2 _ z0/ D A1 _ z, which is a contradiction to injectivity. ut

At this stage we have a point map that induces T and sends, in some sense, a large
set of intervals to intervals. In order to show that F is a fractional linear map we must
show that it is continuous. Since F is defined on some subset of .Rn; h�; �i/ with the
standard Euclidean structure, we get a naturally induced metric. The continuity we
discuss is with respect to this metric.

3.4 Continuity of F

Lemma 5. Let Kn 2 Kn.A1; B1/ be a decreasing sequence such that Kn & K .
Then, T .Kn/ & T .K/.

Proof. Obviously, since T is order preserving it holds that T .Kn/ & M for some
M 2 Kn.A2; B2/. Since K � Kn we have that T .K/ � T .Kn/ which implies that
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T .K/ � M . On the other hand, since T .Kn/ 	 M and T �1 is order-preserving
isomorphism, we know that Kn 	 T �1.M /. Thus T �1.M / � \1

1 Kn and M �
T .\1

1 Kn/, which implies that M D T .\1
1 Kn/ D T .K/. ut

Lemma 6. Let fKng � Kn.A1; B1/ be an increasing sequence such that Kn % K .
Then, T .Kn/ % T .K/.

Proof. The proof is similar to the proof of Lemma 5. ut
Lemma 7. Let fxng � E1 be a sequence that converges to some point x. For a
given n, consider the set

Kn D A1 _ fxn; xnC1; : : :g:
Then,

A1 _ x D
1\

nD1

Kn:

Proof. Denote by Kn;m D A1 _ xn : : : _ xm. Then, Kn D S
m�nC1 Kn;m. Assume

we have a point z 62 A1 _ x and z 2 T1
nD1

S1
mDnC1 Kn;m. This implies that for each

n there exists p such that z 2 Kn;p . Since z 62 A1 _ x, there exists �0 > 0 such that
d.z; A1 _ x/ > �0. On the other hand, since fxng converges to x, there exists n0

such that for all n > n0 jx � xnj < � and thus dH.Kn;p; A1 _ x/ < �0 for all p > n

(where dH stands for the Hausdorff distance). Since z 2 Kn;p for some p, we get a
contradiction.

Now assume that x 62 T1
nD1

S1
mDnC1 Kn;m. Thus, there exists n0 such that x 62S1

mDn0C1 Kn0;m. This implies that d.x; Kn0;m/ > �0 for some �0 > 0 and for all
m > n0. In particular, for all m > n0 we have that d.x; xm/ > �0, but this cannot
hold since the sequence fxng converges to x. Thus, since A1 � T1

nD1

S1
mDnC1 Kn;m

and x 2 T1
nD1

S1
mDnC1 Kn;m we have that A1 _ x � T1

nD1

S1
mDnC1 Kn;m: This

completes the proof. ut
Lemma 8. The map F is continuous on E1.

Proof. We would like to show that for any sequence fxng � E1 such that xn ! x

we have that F.xn/ ! F.x/. For a given n, we may consider an increasing sequence
(with respect to m) of convex sets defined in Lemma 7:

Kn;m WD A1 _ xn _ xnC1 : : : _ xm

and a decreasing sequence
Kn D lim

m!1 Kn;m:

By Lemma 7 we have that Kn & K , where K D A1 _ x. By Lemma 5 T .Kn/ &
T .K/ D A2 _ F.x/. Assume that F.xn/ converges to some point y. Since T is an
order isomorphism we have that T .Kn;m/ D A2 _ F.xn/ : : : _ F.xm/, T .Kn;m/ is
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a sequence increasing to T .Kn/ while T .Kn/ is a sequence decreasing to T .K/ D
A2 _ F.x/. On the other hand, using Lemma 7 we get that T .Kn/ converges to
A2_y. This implies that A2_F.x/ D T .K/ D A2_y which means that y D F.x/.

ut

3.5 Completing the Proof

Now we know that the map F W E1 ! E2 is continuous and maps intervals
connecting non-comparable points to intervals. Since we do not know that any
interval is mapped to interval under F we cannot apply the classical fundamental
theorem of projective geometry. Thus, we would like to apply Theorem 1. Since we
are considering open sets in a family of lines in R

n, we must discuss the relevant
topology. A line l 2 L.Rn/ is defined uniquely by its direction (up to a sign) and
the distance from the origin. Hence a line l can be determined by a non-negative
number dl and a vector (ul) on the sphere Sn�1. The metric on L.Rd / is inherited
from the Grassmannian. A neighbourhood of the line defined by .d; u/ is given by
a small perturbation of both d and u.

Consider the set QE1 D int.E1/ and L1 WD L. QE1/ n L.A1/. Notice that L1 is the
set of lines that intersect the interior of E1 but do not intersect A1. Now, we will
show that the interior of L1 is an open set that covers the interior of E1.

Remark 3. The open set L0
1 D intL1 satisfies:

QE1 �
[

l02L0

1

l:

Indeed, take some point x 2 QE1. Since QE1 is open, there exists a point y such that
the line l0 passing through x and y does not intersect A1. Since both x; y 2 QE1 it is
clear that l0 2 L0

1.
Clearly, two points x; y 2 QE1 are comparable if and only if the line lx;y passing

through them is not in L0
1. Thus, applying Lemma 4 we get that for any l 2 L0

1,
F.l \ QE1/ is contained in a line. Therefore, we have shown that on the interior of
E1, all the conditions of Theorem 1 are satisfied. Hence, we conclude that F j QE1

is a
fractional linear map. If the defining hyperplane of F j QE1

has no common points with
E1, then it is obvious that F is fractional linear on E1 (two continuous functions that
coincide on a dense subset are equal). If the defining hyperplane of F j QE1

has some

common point x with E1, then for any sequence fxng � QE1 that converges to x it
must hold that F.xn/ converges to 1 which is a contradiction to continuity. To see
that T .K/ D F.K/ for K 2 Kn.A1; B1/ notice that every K 2 Kn.A1; B1/ can be
written as the convex hull of all the extremal elements contained in K .



Duality on Convex Sets in Generalized Regions 297

3.6 Duality

After we have a characterization of all known order-preserving isomorphism on the
classes mentioned above, we may easily write characterizations of duality on such
classes. Recall that given a convex set K in R

n, the polar set is defined as follows:

Kı D fx 2 R
n W hx; yi � 1; 8y 2 Kg:

Theorem 4. Let n � 2, A1; A2; B1; B2 convex sets in R
n such that 0 2 A1. Let

T W Kn.A1; B1/ ! Kn.A2; B2/ be a bijection satisfying for all K; L 2 Kn.A1; B1/

K � L , T .K/ 	 T .L/:

Then, there exists a fractional linear map F W Aı
1 n Bı

1 ! B2 n A2 such that for
every K 2 Kn.A1; B1/ we have T .K/ D F.Kı/.

Proof. Consider the map T1.K/ D T .Kı/. Obviously, the domain of T1 is
Kn.Bı

1 ; Aı
1/ and T is an order-preserving isomorphism. Thus, by Theorem 2, we

know that there exists a fractional linear map F W Aı
1 n Bı

1 ! B2 n A2 such that
T1.K/ D F.K/ for all K 2 Kn.Bı

1 ; Aı
1/. Hence T .K/ D F.Kı/. This means that

T .A1/ D B2 and T .B1/ D A2. ut
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