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Abstract This is a somewhat expanded form of a 4 h course given, with small
variations, first at the educational workshop Probabilistic methods in geometry,
Bedlewo, Poland, July 6–12, 2008 and a few weeks later at the Summer school
on Fourier analytic and probabilistic methods in geometric functional analysis and
convexity, Kent, Ohio, August 13–20, 2008.

The main part of these notes gives yet another exposition of Dvoretzky’s theorem on
Euclidean sections of convex bodies with a proof based on Milman’s. This material
is by now quite standard. Towards the end of these notes we discuss issues related to
fine estimates in Dvoretzky’s theorem and there are some results that didn’t appear
in print before. In particular there is an exposition of an unpublished result of Figiel
(Claim 1) which gives an upper bound on the possible dependence on � in Milman’s
theorem. We would like to thank Tadek Figiel for allowing us to include it here.
There is also a better version of the proof of one of the results from Schechtman
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Proposition 2 here which is a stronger version of the corresponding Corollary 1 in
Schechtman (Adv. Math. 200(1), 125–135, 2006).
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1 Lecture 1

By a convex, symmetric body K � R
n we shall refer to a compact set with non-

empty interior which is convex and symmetric about the origin (i.e., x 2 K implies
that �x 2 K).

This series of lectures will revolve around the following theorem of Dvoretzky.

Theorem 1 (A. Dvoretzky, 1960). There is a function k W .0; 1/ � N ! N

satisfying, for all 0 < " < 1, k."; n/ ! 1 as n ! 1, such that for every
0 < " < 1, every n 2 N and every convex symmetric body in K � R

n there
exists a subspace V � R

n satisfying:

1. dim V D k."; n/.
2. V \ K is “"-euclidean,” which means that there exists r > 0 such that:

r � V \ Bn
2 � V \ K � .1 C "/r � V \ Bn

2 :

The theorem was proved by Aryeh Dvoretzky [3], answering a question of
Grothendieck. The question of Grothendieck was asked in [8] in relation with a
paper of Dvoretzky and Rogers [4]. Grothendieck [8] gives another proof of the
main application (the existence, in any infinite-dimensional Banach space, of an
unconditionally convergent series which is not absolutely convergent) of the result
of Dvoretzky and Rogers [4] a version of which is used bellow (Lemma 2).

The original proof of Dvoretzky is very involved. Several simplified proofs were
given in the beginning of the 1970s, one by Figiel [5], one by Szankowski [17]
and the earliest one, a version of which we will present here, by Milman [10]. This
proof which turns out to be very influential is based on the notion of concentration of
measure. Milman was also the first to get the right estimate (log n) of the dimension
k D k."; n/ of the almost Euclidean section as the function of the dimension n. The
dependence of k on " is still wide open and we will discuss it in detail later in this
survey. Milman’s version of Dvoretzky’s theorem is the following.

Theorem 2. For every " > 0 there exists a constant c D c."/ > 0 such that for
every n 2 N and every convex symmetric body in K � R

n there exists a subspace
V � R

n satisfying:

1. dim V D k, where k � c � log n.
2. V \ K is "-euclidean:

r � V \ Bn
2 � V \ K � .1 C "/r � V \ Bn

2 :

For example, the unit ball of `n1—the n-dimensional cube—is far from the
Euclidean ball. It is easy to see that the ratio of radii of the bounding and the bounded
ball is

p
n:

Bn
2 � Bn1 � p

nBn
2
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and
p

n is the best constant. Yet, according to Theorem 2, we can find a subspace of
R

n of dimension proportional to log n in which the ratio of bounding and bounded
balls will be 1 C ".

There is a simple correspondence between symmetric convex sets in R
n and

norms on R
n given by kxkK D inff� > 0 W x

�
2 Kg. The following is an

equivalent formulation of Theorem 2 in terms of norms.

Theorem 3. For every " > 0 there exists a constant c D c."/ > 0 such that for
every n 2 N and every norm k�k in R

n `k
2 .1 C "/-embeds in .Rn; k�k/ for some

k � c � log n.

By “X C -embed in Y ” I mean that there exists a one-to-one bounded operator
T W X ! Y with kT kk.TjTX /�1k � C .

Clearly, Theorem 2 implies Theorem 3. Also, Theorem 3 clearly implies a weaker
version of Theorem 2, with Bn

2 replaced by some ellipsoid (which by definition is
an invertible linear image of Bn

2 ). But, since any k-dimensional ellipsoid easily seen
to have a k=2-dimensional section which is a multiple of the Euclidean ball, we
see that also Theorem 3 implies Theorem 2. This argument also shows that proving
Theorem 2 for K is equivalent to proving it for some invertible linear image of K .
Before starting the actual proof of Theorem 3 here is a very vague sketch of the
proof: Consider the unit sphere of `n

2 and the surface of Bn
2 , which we will denote

by Sn�1 D fx 2 R
n W kxk2 D 1g. Let kxk be some arbitrary norm in R

n. The
first task will be to show that there exists a “large” set Sgood � Sn�1 satisfying
8x 2 Sgood: jkxk � M j < "M where M is the average of kxk on Sn�1. Moreover,
we shall see that, depending on the Lipschitz constant of k�k, the set Sgood is “almost
all” the sphere in the measure sense. This phenomenon is called concentration of
measure.

The next stage will be to pass from the “large” set to a large dimensional subspace
of Rn contained in it. Denote O.n/—the group of orthogonal transformations from
R

n into itself. Choose some subspace V0 of appropriate dimension k and fix an "-net
N on V0\Sn�1. For some x0 2 N ,“almost all” transformations U 2 O.n/ will send
it into some point in Sgood. Moreover, if the “almost all” notion is good enough, we
will be able to find a transformation that sends all the points of the "-net into Sgood.
Now there is a standard approximation procedure that will let us pass from the "-net
to all points in the subspace.

In preparation for the actual proof denote by � the normalized Haar measure
on Sn�1—the unique, probability measure which is invariant under the group of
orthogonal transformations. The main tool will be the following concentration of
measure theorem of Paul Levy (for a proof see e.g. [14]).

Theorem 4 (P. Levy). Let f W Sn�1 �! R be a Lipschitz function with a constant
L; i.e.,

8x; y 2 Sn�1 jf .x/ � f .y/j � Lkx � yk2:

Then,

�fx 2 Sn�1 W jf .x/ � Ef j > "g � 2e� "2n

2L2 :
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Remark. The theorem also holds with the expectation of f replaced by its median.

Our next goal is to prove the following theorem of Milman which, gives some
lower bound on the dimension of almost Euclidean section in each convex body.
It will be the main tool in the proof of Theorem 3.

Theorem 5 (V. Milman). For every " > 0 there exists a constant c D c."/ > 0

such that for every n 2 N and every norm k�k in R
n there exists a subspace V � R

n

satisfying:

1. dim V D k, where k � c �
�

E
b

�2

n.

2. For every x 2 V

.1 � "/E � kxk2 � kxk � .1 C "/E � kxk2:

Here E D R
Sn�1kxkd� and b is the smallest constant satisfying kxk � bkxk2.

The definition of b implies that the function k � k is Lipschitz with constant b on
Sn�1. Applying Theorem 4 we get a subset of Sn�1 of probability very close to one
(� 1 � 2e�"2E2n=2), assuming E is not too small, on which

.1 � "/E � kxk � .1 C "/E: (1)

We need to replace this set of large measure with a set which is large in the algebraic
sense: a set of the form V \ Sn�1 for a subspace V of relatively high dimension.
The way to overcome this difficulty is to fix an "-net in V0 \ Sn�1 (i.e., a finite set
such that any other point in V0 \Sn�1 is of distance at most " from one of the points
in this set) for some fixed subspace V0 (of dimension k to be decided upon later)
and show that we can find an orthogonal transformation U such that kUxk satisfies
Eq. (1) for each x in the "-net. A successive approximation argument (the details of
which can be found, e.g., in [11], as all other details which are not explained here)
then gives a similar inequality (maybe with 2" replacing ") for all x 2 V0 \ Sn�1,
showing that V D U V0 can serve as the needed subspace.

To find the required U 2 O.n/ we need two simple facts. The first is to notice
that if we denote by � the normalized Haar measure on the orthogonal group O.n/,
then, using the uniqueness of the Haar measure on Sn�1, we get that, for each fixed
x 2 Sn�1, the distribution of Ux, where U is distributed according to �, is �. It
follows that, for each fixed x 2 Sn�1, with �-probability at least 1 � 2e�"2E2n=2,

.1 � "/E � kUxk � .1 C "/E:

Using a simple union bound we get that for any finite set N � Sn�1, with �-
probability � 1 � 2jN je�"2E2n=2, U satisfies

.1 � "/E � kUxk � .1 C "/E

for all x 2 N (jN j denotes the cardinality of N ).
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Lemma 1. For every 0 < " < 1 there exists an "-net N on Sk�1 of cardinality

�
�

3
"

�k

.

So as long as 2

�
3
"

�k

e�"2E2n=2 < 1 we can find the required U . This translates

into k � c "2

log 3
"

E2n for some absolute c > 0 as is needed in the conclusion of

Theorem 5.

Remark. This proof gives that the c."/ in Theorem 5 can be taken to be c "2

log 3
"

for

some absolute c > 0. This can be improved to c."/ � c"2 as was done first by
Gordon in [7]. (See also [13] for a proof that is more along the lines here.) This later
estimate can’t be improved as we shall see below in Claim 1.

To prove the lemma, let N D fxi gm
iD1 be a maximal set in Sk�1 such that for all

x; y 2 N kx � yk2 � ". The maximality of N implies that it is an "-net for Sk�1.
Consider fB.xi ;

"
2
/gm

iD1—the collection of balls of radius "
2

around the xi -s. They
are mutually disjoint and completely contained in B.0; 1 C "

2
/. Hence:

mVol

�
B
�
x1;

"

2

��
D
X

Vol

�
B
�
xi ;

"

2

��
D Vol

�[
B
�
xi ;

"

2

��

� Vol

�
B
�
0; 1 C "

2

��
:

The k homogeneity of the Lebesgue measure in R
k implies now that m ��

1C"=2

"=2

�k

D
�

1 C 2
"

�k

.

This completes the sketch of the proof of Theorem 5.

2 Lecture 2

In order to prove Theorem 3 we need to estimate E and b for a general symmetric
convex body. Since the problem is invariant under invertible linear transformation
we may assume that Sn�1 is included in K , i.e., b D 1. It remains to estimate E

from below. As we will see this can be done quite effectively for many interesting
examples (we will show the computation for the `n

p balls). However in general it
may happen that E is very small even if we assume as we may that Sn�1 touches
the boundary of K . This is easy to see.

The way to overcome this difficulty is to assume in addition that Sn�1 is the
ellipsoid of maximal volume inscribed in K . An ellipsoid is just an invertible
linear image of the canonical Euclidean ball. Given a convex body one can find
by compactness an ellipsoid of maximal volume inscribed in it. It is known that
this maximum is attained for a unique inscribed ellipsoid but this fact will not be
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used in the reasoning below. The invariance of the problem lets us assume that the
canonical Euclidean ball is such an ellipsoid. The advantage of this special situation
comes from the following lemma.

Lemma 2 (Dvoretzky–Rogers). Let k�k be some norm on R
n and denote its unit

ball by K D Bk�k . Assume the Euclidean ball Bn
2 D Bk�k2

is (the) ellipsoid of
maximal volume inscribed in K . Then there exists an orthonormal basis x1; : : : ; xn

such that

e�1

�
1 � i � 1

n

�
� kxi k � 1; for all 1 � i � n:

Remark 1. This is a weaker version of the original Dvoretzky–Rogers lemma. It
shows in particular that half of the xi -s have norm bounded from below: for all
1 � i � b n

2
c kxi k � .2e/�1. This is what will be used in the proof of the main

theorem.

Proof. First of all choose an arbitrary x1 2 Sn�1 of maximal norm. Of course,
kx1k D 1. Suppose we have chosen fx1; : : : ; xi�1g that are orthonormal. Choose
xi as the one having the maximal norm among all x 2 Sn�1 that are orthogonal
to fx1; : : : ; xi�1g. Define a new ellipsoid which is smaller in some directions and
bigger in others:

E D
8<
:

nX
iD1

ai xi W
j �1X
iD1

a2
i

a2
C

nX
iDj

a2
i

b2
� 1

9=
; :

Suppose
Pn

iD1 bixi 2 E . Then
Pj �1

iD1 bixi 2 aBn
2 ; hence kPj �1

iD1 bixi k � a.
Moreover, for each x 2 spanfxj ; : : : ; xngTBn

2 we have kxk � kxj k and sincePn
iDj bi xi 2 bBn

2 , kPn
iDj bi xi k � kxj kb. Thus,

�����
nX

iD1

bi xi

����� �
�����

j �1X
iD1

bixi

�����C
������

nX
iDj

bi xi

������ � a C kxj k � b:

The relation between the volumes of E and Bn
2 is Vol.E/ D aj �1bn�j C1Vol.Bn

2 /.
If aCkxj k�b � 1, then E � K . Using the fact that Bn

2 is the ellipsoid of the maximal
volume inscribed in K we conclude that

8a; b; j s.t. a C kxj k � b D 1; aj �1bn�j C1 � 1:

Substituting b D 1�a
kxj k and a D j �1

n
it follows that for every j � 2

kxj k � a
j �1

n�j C1 .1 � a/ D
�

j � 1

n

� j �1
n�j C1

�
1 � j � 1

n

�
� e�1

�
1 � j � 1

n

�
:

ut



Euclidean Sections of Convex Bodies 277

We are now ready to prove Theorem 3 and consequently also Theorem 2.
As we have indicated, using Theorem 5, and assuming as we may that Bn

2 is the
ellipsoid of maximal volume inscribed in K D Bk�k, it is enough to prove that

E D
Z

Sn�1

kxkd x � c

r
log n

n
; (2)

for some absolute constant c > 0.
This will prove Theorems 2 and 3 with the bound k � c "2

log 1
"

log n.

We now turn to prove Inequality (2). According to Dvoretzky–Rogers Lemma 2
there are orthonormal vectors x1; : : : ; xn such that for all 1 � i � b n

2
c kxi k � 1=2e

Z
Sn�1

kxkd�.x/ D
Z

Sn�1

�����
nX

iD1

ai xi

����� d�.a/

D
Z

Sn�1

1

2

 �����
n�1X
iD1

ai xi C anxn

����� C
�����

n�1X
iD1

ai xi � anxn

�����
!

d�.a/

�
Z

Sn�1

max

(�����
n�1X
iD1

ai xi

����� ; kanxnk
)

d�.a/

�
Z

Sn�1

max

(�����
n�2X
iD1

ai xi

����� ; kan�1xn�1k; kanxnk
)

d�.a/ � : : :

�
Z

Sn�1

max
1�i�n

kai xi kd�.a/ � 1

2e

Z
Sn�1

max
1�i�b n

2 c
jai jd�.a/:

To evaluate the last integral we notice that because of the invariance of the
canonical Gaussian distribution in R

n under orthogonal transformation and (again!)
the uniqueness of the Haar measure on Sn�1, the vector .

P
g2

i /�1=2.g1; g2; : : : ; gn/

is distributed �. Here g1; g2; : : : ; gn are i.i.d. N.0; 1/ variables. Thus

Z
Sn�1

max
1�i�b n

2 c
jai jd�.a/ D E

max1�i�b n
2 cjgi j

.
Pn

iD1 g2
i /1=2

D Emax1�i�b n
2 cjgi j

E.
Pn

iD1 g2
i /1=2

: (3)

(The last equation follows from the fact that the random vector .
P

g2
i /�1=2

.g1; g2; : : : ; gn/ and the random variable .
P

g2
i /1=2 are independent.)

To evaluate the denominator from above note that by Jensen’s inequality:

E

 
nX

iD1

g2
i

!1=2

�
 
E

nX
iD1

g2
i

!1=2

D p
n:
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The numerator is known to be of order
p

log n (estimate the tail behaviour of
max1�i�b n

2 cjgi j).
This gives the required estimate and concludes the proof of Theorems 2 and 3.
As another application of Theorem 5 we will estimate the almost Euclidean

sections of the `n
p balls Bn

p D fx 2 R
nI kxkp D .

Pn
iD1 jxi jp/1=p � 1g.

Using the connection between the Gaussian distribution and � we can write

Ep D
Z

Sn�1

kxkpd� D E
.
P jgi jp/1=p

.
P

g2
i /1=2

D E.
P jgi jp/1=p

E.
P

g2
i /1=2

:

To bound the last quantity from below we will use the following inequality:

p
2=� � n1=r D

�X
.Ejgi j/r

�1=r � E

�X
jgi jr

�1=r �
�
E

X
jgi jr

�1=r D cr � n1=r

Hence:
Ep � cp � n

1
p � 1

2 :

For p > 2 we have kxkp � kxk2. For 1 � p < 2 we have kxkp � n
1
p � 1

2 � kxk2.
It now follows from Theorem 5 that the dimension of the largest " Euclidean section
of the `n

p ball is

k �
(

cp."/n
2
p ; 2 < p < 1

c."/n; 1 � p < 2:

3 Lecture 3

In this section we will mostly be concerned with the question of how good the
estimates we got are. We begin with the last result of the last section concerning the
dimension of almost Euclidean sections of the `n

p balls.
Clearly, for 1 � p < 2 the dependence of k on n is best possible. The following

proposition of Bennett, Dor, Goodman, Johnson and Newman [2] shows that this is
the case also for 2 < p < 1.

Proposition 1. Let 2 < p < 1 and suppose that `k
2 C -embeds into `n

p , meaning

that there exists a linear operator T W Rk ! R
n such that

kxk2 � kT xkp � C kxk2;

then k � c.p; C /n2=p .
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Proof. Let T W R
k ! R

n, T D .aij /n
iD1

k
j D1 be the linear operator from the

statement of the claim. Then for every x 2 R
k

0
@ kX

j D1

x2
j

1
A

1=2

�
0
@ nX

iD1

ˇ̌
ˇ̌
ˇ̌

kX
j D1

aij xj

ˇ̌
ˇ̌
ˇ̌
p1
A

1=p

� C

0
@ kX

j D1

x2
j

1
A

1=2

: (4)

In particular, for every 1 � l � n, substituting instead of x the l th row of T we get

0
@ kX

j D1

a2
lj

1
A

p

�
nX

iD1

ˇ̌̌
ˇ̌
ˇ

kX
j D1

aij alj

ˇ̌̌
ˇ̌
ˇ
p

� C p

0
@ kX

j D1

a2
lj

1
A

p=2

:

Hence, for every 1 � l � n

0
@ kX

j D1

a2
lj

1
A

p=2

� C p:

Let g1; : : : ; gk be independent standard normal random variables. Then using the
fact that

Pk
j D1gi aj has the same distribution as .

Pk
j D1a

2
j /1=2g1 and the left-hand

side of the Inequality (4) we have

E

0
@ kX

j D1

g2
j

1
A

p=2

� E

0
@ nX

iD1

ˇ̌
ˇ̌̌
ˇ

kX
j D1

gj aij

ˇ̌
ˇ̌̌
ˇ
p1
A

D
nX

iD1

E

0
B@jg1jp

0
@ kX

j D1

a2
ij

1
A

p=2
1
CA � C p

Ejg1jpn:

On the other hand we can evaluate E.
Pk

j D1g
2
j /p=2 from below using the

convexity of the exponent function for p=2 > 1:

E

0
@ kX

j D1

g2
j

1
A

p=2

�
0
@E

kX
j D1

g2
j

1
A

p=2

D kp=2:

Combining the last two inequalities we get an upper bound for k:

k � C 2.Ejg1jp/2=pn2=p: ut
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Remarks.

1. There exist absolute constants 0 < ˛ � A < 1 such that ˛
p

p � .Ejg1jp/1=p �
A

p
p. Hence the estimate we get for c.p; C / is c.p; C / � ApC 2. In particular,

for p D log n, we have

k � AC 2 log n

for an absolute A. `n
log n is e-isomorphic to `n1. Hence, if we C -embed `k

2 into
`n1, then k � Ac2 log n, which means that the log n bound in Theorem 2 is sharp.

2. The exact dependence on " in Theorem 2 is an open question. From the proof we
got an estimation k � c"2

log.1="/
log n. We will deal more with this issue below.

Although the last result doesn’t directly give good results concerning the
dependence on " in Dvoretzky’s theorem it can be used to show that one can’t expect
any better behaviour on " than "2 in Milman’s Theorem 5. This was observed by
Tadek Figiel and didn’t appear in print before. We thank Figiel for permitting us to
include it here.

Claim 1 (Figiel). For any 0 < � < 1 and n large enough (n > ��4 will do), there
is a 1-symmetric norm, k � k, on R

n which is 2-equivalent to the `2 norm and such
that if V is a subspace of Rn on which the k � k and k � k2 are .1 C �/-equivalent then
dimV � C�2n (C is an absolute constant).

Proof. Given � and n > ��4 (say) let 2 < p < 4 be such that n
1
p � 1

2 D 2�. Put

kxk D kxk2 C kxkp

on R
n. Assume that for some A and all x 2 V ,

Akxk2 � kxk � .1 C �/Akxk2:

Clearly, 1 C �
2

� 1Cn
1
p �

1
2

1C�
� A � 2 and be get that for all x 2 V ,

.A � 1/kxk2 � kxkp � ..1 C �/A � 1/kxk2 D .A � 1 C �A/kxk2:

Since �A � n
1
p � 1

2 � 4.A � 1/, we get that, for B D A � 1,

Bkxk2 � kxkp � 5Bkxk2:

It follows from [BDGJN] that for some absolute C ,

dimV � C n2=p D C.n
1
p � 1

2 /2n D 4C�2n: ut
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Next we will see another relatively simple way of obtaining an upper bound on
k in Dvoretzky’s theorem, which, unlike the estimate in Remark 1, tends to 0 as
" ! 0. It still leaves a big gap with the lower bound above.

Claim 2. If `k
2 .1 C "/-embeds into `n1, then

k � C log n

log.1=c"/
;

for some absolute constants 0 < c; C < 1.

Proof. Assume we have .1�"/�1-embedding of `k
2 into `n1, i.e., we have an operator

T D .aij /n
iD1

k
j D1

satisfying, for every x 2 R
k ,

.1 � "/

0
@ kX

j D1

x2
j

1
A

1=2

� max
1�i�n

ˇ̌̌
ˇ̌
ˇ

kX
j D1

aij xj

ˇ̌̌
ˇ̌
ˇ �

0
@ kX

j D1

x2
j

1
A

1=2

: (5)

This means that there exist vectors v1; : : : ; vn 2 R
k such that for every x 2 R

k :

.1 � "/kxk2 � max
1�i�n

< vi ; x >� kxk2: (6)

In particular, kvi k2 � 1 for every 1 � i � n.

Suppose x 2 Sk�1, then the left-hand side of Eq. (6) states that there exists an
1 � i � n such that < vi ; x >� .1 � "/; hence

kx � vik2
2 D kxk2

2 C kvi k2
2 � 2 < vi ; x >� 2 � 2.1 � "/ D 2":

Thus, the vectors v1; : : : ; vn form a
p

2"-net on the Sk�1, which means that n is
much larger (exponentially) than k.
Indeed, we have

n[
iD1

B.vi ; 2
p

2"/ 	 Bk
2 n .1 � p

2"/Bk
2

) nVolB.0; 2
p

2"/ � VolB.0; 1/ � VolB.0; 1 � p
2"/

) n.2
p

2"/k � 1 � .1 � p
2"/k � p

2"k.1 � p
2"/k�1:

This gives for " < 1
32

and k � 12

n � k

2

�
1

4
p

2"

�k�1

�
�

1

4
p

2"

�k=2
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or

k � 4 log n

log 1
32"

: ut

This shows that the c.�/ in the statement of Theorem 2 can’t be larger than
C

log.1=c"/
.

Our last objective in this survey is to improve somewhat the lower estimate on
c.�/ in the version of Dvoretzky’s theorem we proved. For that we will need the
inverse to Claim 2.

Claim 3. `k
2 .1 C "/-embeds into `n1 for

k D c log n

log.1=c"/

for some absolute constants 0 < c; C < 1.

The proof is very simple and we only state the embedding. Use Lemma 1 to find
an �-net fxi gn

iD1 on sk�1 where k and n are related as in the statement of the claim.
The embedding of `k

2 into `n1 is given by x ! fhx; xi ign
iD1.

4 Lecture 4

In this last section we will prove a somewhat improved version of Dvoretzky’s
theorem, replacing the �2 dependence by � (except for a log factor).

Theorem 6. There is a constant c > 0 such that for all n 2 N and all � > 0,
every n-dimensional normed space `k

2 .1 C "/-embeds in .Rn; k�k/ for some k �
c�

.log 1
� /2

log n.

The idea of the proof is the following: We start as in the proof of Milman’s
Theorem 5, assuming Sn�1 is the ellipsoid of maximal volume inscribed in the
unit ball of Bk�k . If E is large enough (so that �2E2n � �

.log 1
� /2

log n) we get the

result from Milman’s theorem. If not, we will show that the space actually contains
a relatively high dimensional `m1 and then use Claim 1 to get an estimate on the
dimension of the embedded `k

2 .
The main proposition is the following one which improves the main proposition

of [15]:

Proposition 2. Let .X; k � k/ be a normed space and let x1; : : : ; xn be a sequence
in X satisfying kxi k � 1=10 for all i and

E

�
k

nX
iD1

gi xi k
�

� L
p

log n: (7)



Euclidean Sections of Convex Bodies 283

Then, there is a subspace of X of dimension k � n1=4

CL
which is CL-isomorphic to

`k1. C is a universal constant.

Let us assume the proposition and continue with the

Proof (Proof of Theorem 6). We start as in the proof of Theorem 2, assuming Bn
2

is the ellipsoid of maximal volume inscribed in the unit ball of .Rn; k � k/. As

we already said we may assume �2E2n � �

.log 1
� /2

log n or E
p

n �
p

log np
� log 1

�

. Let

x1; : : : ; xn be the orthonormal basis given by the Dvoretzky–Rogers lemma, so that
in particular kxi k � 1=10 for i D 1; : : : ; n=2. It follows from the triangle inequality
for the first inequality and from the relation between the distribution of a canonical
Gaussian vector and the Haar measure on the sphere that

E

0
@k

n=2X
iD1

gi xi k
1
A � E

 
k

nX
iD1

gi xi k
!

� CE
p

n

So

E

0
@k

n=2X
iD1

gi xi k
1
A �

p
log np

� log 1
�

and by Proposition 2 there is a subspace of .Rn; k � k/ of dimension k � n1=4

CL
which

is CL-isomorphic to `k1 where L D 1p
� log 1

�

. It now follows from an iteration result

of James (see Lemma 3 below and Corollary 1 following it) that for any 0 < � < 1

there is a subspace of .Rn; k�k/ of dimension k � cn
c�

log L which is 1C� - isomorphic
to `k1. c > 0 is a universal constant. We now use Claim 1 to conclude that `k

2 embeds

in our space for some k � c log.cn
c�

log L /

log.1=c"/
D c0� log n

.log.1=c"//2 . ut
The following simple lemma is due to R.C. James:

Lemma 3. Let x1; : : : ; xm be vectors in some normed space X such that kxi k � 1

for all i and �����
mX

iD1

ai xi

����� � L max
1�i�m

jai j

for all sequences of coefficients a1; : : : ; am 2 R. Then X contains a sequence
y1; : : : ; ybp

mc satisfying kyi k � 1 for all i and

������
bp

mcX
iD1

ai yi

������ � p
L max

1�i�bp
mc

jai j

for all sequences of coefficients a1; : : : ; abp
mc 2 R.
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Proof. Let �j , j D 1; : : : ; bp
mc be disjoint subsets of f1; : : : ; mg each of

cardinality bp
mc. If for some j

������
X
i2�j

ai xi

������ � p
L max

i2�j

jai j

for all sequences of coefficients, we are done. Otherwise, for each j we can find a
vector yj D P

i2�j
ai xi such that kyj k D 1 and

p
L maxi2�j jai j < 1. But then,

������
bp

mcX
j D1

bj yj

������ � L max
j; i2�j

jbj ai j � L max
j

jbj j
p

L�1 D p
L max

j
jbj j: ut

Corollary 1. If `m1 L-embeds into a normed space X , then for all 0 < � < 1, `k1
1C�
1��

-embeds into X for k 
 m�= log L.

Proof. By iterating the lemma (pretending for the sake of simplicity of notation
that m2�s

is an integer for all the relevant s-s), for all positive integer t there is a
sequence of length k D m2�t

of norm one vectors x1; : : : ; xk in X satisfying

�����
kX

iD1

ai xi

����� � L2�t

max jai j

for all coefficients. Pick a t such that L2�t D 1 C � (approximately); i.e., 2�t D
log 1C�

log L

 �

log L
. Thus k 
 m�= log L and

�����
kX

iD1

ai xi

����� � .1 C "/ max jai j:

To get a similar lower bound on kPk
iD1 ai xi k, assume without loss of generality

that max jai j D a1. Then

kPk
iD1 ai xi k D k2a1x1 � .a1x1 �Pk

iD2 ai xi /k
� 2a1 � ka1x1 �Pk

iD2 ai xi k
� 2a1 � .1 C �/a1 D .1 � �/ max jai j: ut

We are left with the task of proving Proposition 2. We begin with
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Claim 4. Let x1; : : : ; xn be normalized vectors in a normed space. Then for all real
a1; : : : ; an,

Prob�i D˙1

 �����
nX

iD1

�i ai xi

����� < max
1�i�n

jai j
!

� 1=2:

Proof. Assume as we may a1 D max1�i�n jai j. If ka1x1 CPn
iD2 �i ai xi k < a1 then

�����a1x1 �
nX

iD2

�i ai xi

����� � 2a1 �
�����a1x1 C

nX
iD2

�i ai xi

����� > a1

and thus

P

 �����
nX

iD1

�i ai xi

����� > a1

!
� P

 �����
nX

iD1

�i ai xi

����� < a1

!
:

So
1 � P.kPn

iD1 �i ai xi k 6D max jai j/
D P.kPn

iD1 �i ai xi k < a1/ C P.kPn
iD1 �i ai xi k > a1/

� 2P.kPn
iD1 �i ai xi k < a1/: ut

Remark 2. If x1 D x2, a1 D a2 D 1 and a3 D � � � D an D 0 then the 1=2 in the
statement of Claim 4 cannot be replaced by any smaller constant.

Proposition 3. Let x1; : : : ; xn be vectors in a normed space with kxi k � 1=10 for
all i and let g1; : : : ; gn be a sequence of independent standard Gaussian variables.
Then, for n large enough,

P

 �����
nX

iD1

gi xi

����� <

p
log n

100

!
� 2=3:

Proof. Note first that it follows from Claim 4 that

P

 �����
nX

iD1

gi xi

����� < max
1�i�n

jgi jkxi k
!

� 1

2
: (8)

This is easily seen by noticing that .g1 : : : ; gn/ is distributed identically to
."1jg1j : : : ; "njgnj/ where "1 : : : ; "n are independent random signs independent
of the gi -s. Now compute

P

 �����
nX

iD1

"i jgi jxi

����� < max
1�i�n

jgi jkxi k
!
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by first conditioning on the gi -s. We use (8) in the following sequence of
inequalities:

P

 �����
nX

iD1

gi xi

����� <

p
log n

100

!

� P

 �����
nX

iD1

gi xi

����� <

p
log n

100
&

p
log n

100
< max

1�i�n
jgi jkxi k

!

CP

 
max

1�i�n
jgi jkxi k �

p
log n

100

!

� P

 �����
nX

iD1

gi xi

����� < max
1�i�n

jgi jkxi k
!

CP

 
max

1�i�n
jgi j �

p
log n

10

!

� 1

2
C .1 � e�c log n/n for n large enough

� 1

2
C e�n1�c � 2

3
: ut

In the proof of Proposition 2 we shall use a theorem of Alon and Milman [1]
(see [18] for a simpler proof) which has a very similar statement: Gaussians are
replaced by random signs and

p
log n by a constant.

Theorem 7 (Alon and Milman). Let .X; k�k/ be a normed space and let x1; : : : ; xn

be a sequence in X satisfying kxi k � 1 for all i and

E�i D˙1

 �����
nX

iD1

�i xi

�����
!

� L: (9)

Then, there is a subspace of X of dimension k � n1=2

CL
which is CL-isomorphic to

`k1. C is a universal constant.

Proof of Proposition 2. Let �1; : : : ; �bp
nc � f1; : : : ; ng be disjoint with j�j j D

bp
nc for all j . We will show that there is a subset J � f1; : : : ; bp

ncg of cardinality

at least
p

n

4
and there are fyj gj 2J with yj supported on �j such that kyj k D 1 for

all j 2 J and

E�i D˙1

0
@
������
X
j 2J

�j yj

������
1
A � 80L:

We then apply the theorem above.
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To show this notice that the events kPi2�j
gi xi k <

p
log n

200
, j D 1; : : : ; bp

nc,
are independent and by Proposition 3 have probability at most 2=3 each. So with

probability at least 1=2 there is a subset J � f1; : : : ; bp
ncg with jJ j � bp

nc
4

such
that kPi2�j

gi xi k > 1
200

p
log n for all j 2 J . Denote the event that such a J exists

by A. Let frj gbp
nc

j D1 be a sequence of independent signs independent of the original
Gaussian sequence. We get that

L
p

log n � Eg

�
kPbp

nc
j D1

P
i2�j

gi xi k
�

D ErEg

�
kPbp

nc
j D1 rj

P
i2�j

gi xi k
�

� ErEg

�
kPbp

nc
j D1 rj

P
i2�j

gi xi k1A

�
� 1

2
Eg

��
ErkPbp

nc
j D1 rj

P
i2�j

gi eik
�.

A
�
:

It follows that for some ! 2 A, there exists a J � f1; : : : ; bp
ncg with jJ j � bp

nc
4

such that putting Nyj D P
i2�j

gi .!/xi , one has k Nyj k > 1
200

p
log n for all j 2 J

and

Er

0
@
������
X
j 2J

rj Nyj

������
1
A � 2L

p
log n:

Take yj D Nyj =k Nyj k.
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