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Preface

The workshop on Arithmetic and geometry of K3 surfaces and Calabi–Yau
threefolds was held at the Fields Institute and University of Toronto from August 16
to 25, 2011. The workshop was organized by Charles F. Doran (Alberta), Shigeyuki
Kondō (Nagoya), Radu Laza (Stony Brook), James D. Lewis (Alberta), Matthias
Schütt (Hannover), and Noriko Yui (Kingston/Fields).

This proceedings volume for the 2011 Calabi–Yau workshop is edited by Radu
Laza, Matthias Schütt, and Noriko Yui. The editors wish to express their appreci-
ation to all the contributors for preparing their manuscripts for the Fields Commu-
nications Series, which required extra effort in presenting not only current devel-
opments but also some background material on the discussed topics. All papers in
this volume were peer-reviewed. We are deeply grateful to all the referees for their
efforts in evaluating the articles, in particular, in the limited time frame.

The workshop was financially supported by various organizations. In addition
to the Fields Institute, the workshop was supported by NSF (grant no. 1100007),
JSPS (Grant-in-Aid (S), No. 22224001), and DFG (GRK 1463 “Analysis, Geometry
and String Theory”). Additionally, several participants have used their individual
grants (e.g., NSF or NSERC) to cover their travel expenses. We are thankful to
all these sponsor organizations: their support made possible the participation of a
large number of junior participants and of a significant number of researchers from
outside North America. This in turn led to a very dynamic and active workshop.

Some of the articles were copy-edited by Arthur Greenspoon of Mathematical
Reviews. The editors are grateful for his help towards improving both the stylistic
and mathematical presentations.

Last but not least, we thank Debbie Iscoe of the Fields Institute for her help in re-
formatting articles in the Springer style and assembling this volume for publication.

Stony Brook, NY Radu Laza
Hannover, Germany Matthias Schütt
Kingston, ON Noriko Yui
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Introduction

In recent years, research in K3 surfaces and Calabi–Yau varieties has seen
spectacular progress from both arithmetic and geometric points of view, which in
turn continues to have a huge influence and impact on theoretical physics, in par-
ticular, on string theory. The workshop was designed to bring together experts and
junior researchers who are aspiring to become experts for 10 days at the Fields
Institute in August 2011 to review recent developments, inspire graduate and post-
doctoral fellows and young researchers, and also explore future directions of the
subjects. With 114 (officially registered) participants, there was a wide geographical
representation, with a very significant presence of European and Japanese partici-
pants (in addition to US and Canadian participants).

The workshop started with a 3-day introductory session aimed at graduate stu-
dents and postdoctoral fellows, followed by a 1 week research conference with Sun-
day off. The introductory lectures were intended to give some background and a
brief overview of the vast topic of Calabi–Yau varieties and K3 surfaces. At the sub-
sequent research conference, there were in total 35 research talks presented on wide
ranges of topics around K3, Enriques and other surfaces, and Calabi–Yau threefolds
and higher-dimensional varieties and manifolds, some of which can be found in this
volume.

As a consequence of the significant interest in the subject, we are organizing a
follow-up extended concentration period on Calabi–Yau varieties, in the form of
a semester long thematic program Calabi–Yau varieties: arithmetic, geometry and
physics at the Fields Institute (July to December 2013). This thematic program is
devoted to the arithmetic and geometry of Calabi–Yau varieties and the connections
to physics, especially string theory.
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viii Introduction

Scientific Focus of the Workshop

The workshop concentrated on topics (on the geometry and arithmetic of Calabi–
Yau varieties) that have either seen great progress recently or shown a high potential
for future inventions. Specifically, the major topics covered included:

1. Families and degenerations of Calabi–Yau varieties—moduli theoretic and
arithmetic viewpoints.

2. Modularity: Galois representations of Calabi–Yau varieties and their connec-
tions to automorphic forms, in particular to classical, Hilbert, and Siegel
modular forms.

3. Calabi–Yau varieties of CM type and with special automorphisms, especially
K3 surfaces with symplectic and non-symplectic automorphisms.

4. Algebraic cycles and motives: divisors, CM cycles, and motives arising from
K3 surfaces and Calabi–Yau threefolds.

5. Variations of mixed Hodge structures, periods, and Picard–Fuchs differential
equations.

Overview of This Volume

In the following paragraphs we give a brief overview of the volume. There are in
total 24 articles. Some of the articles are written-up versions of the talks presented at
the workshop, while others report on subsequent developments on the subject matter
of the workshop. Roughly the articles are divided into three categories, namely:

• Introductory lectures
• Arithmetic and geometry of K3, Enriques and other surfaces
• Arithmetic and geometry of Calabi–Yau threefolds and higher dimensional

varieties

The workshop’s program contained several other talks on related topics. Addi-
tional documentation from the workshop is available on the homepage maintained
by the Fields Institute.1

Introductory Lectures

There are four survey papers by Kondō, Lewis, Schütt, and Yui which comprise
a selection of the lectures given by the organizers during the 3-day introductory
period of the workshop. These lectures were mostly aimed at junior participants of
the workshop and often geared specifically towards some of the talks to be given

1 http://www.fields.utoronto.ca/programs/scientific/11-12/CalabiYau/index.html.

http://www.fields.utoronto.ca/programs/scientific/11-12/CalabiYau/index.html
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during the research conference. Similarly for this volume, the survey papers can be
used as a starting point or as a guide to the subject.

The surveys by Kondō and Schütt review the geometry and arithmetic of K3 sur-
faces, including basics such as lattice theory. Yui’s paper presents the current status
on modularity of Calabi–Yau varieties in its different incarnations. The focus lies
on Calabi–Yau varieties of dimension at most three. Lewis reviews transcendental
aspects of algebraic cycles and, specializing to the Calabi–Yau situation, explains
some recent developments in the field.

Arithmetic and Geometry of K3, Enriques, and Other Surfaces

A common theme of many papers in this section are elliptic fibrations. Most notably,
Bertin and Lecacheux classify all elliptic fibrations on a specific K3 surface. From a
similar elliptic modular surface, Anema and Top derive explicit algebraic coverings
of a pointed torus. On the moduli side, Besser and Livné relate specific elliptic K3
surfaces to abelian surfaces with quaternionic multiplication; this produces explicit
Shimura curves. Special cycles in moduli spaces of lattice polarized K3 surfaces
are treated by Kudla. These higher Noether–Lefschetz loci are the input of certain
generating series whose modularity is known.

Elliptic fibrations form also the key ingredient for Kerr’s approaches to the com-
putation of transcendental invariants of indecomposable algebraic K1 classes. More-
over Kerr’s work builds on toric geometry which features prominently in the paper
of Whitcher et al. as well. Here three-dimensional reflexive polytopes with S 4 sym-
metry are related to natural one-parameter family of K3 surfaces with symplectic S 4

action. Picard–Fuchs equations are studied not only in this paper but also by Gährs
for certain one-parameter families associated with invertible polynomials, using the
GKZ system.

Oguiso’s paper is concerned with a classical problem: it proves that there is a
smooth quartic K3 surface automorphism that is not derived from a Cremona trans-
formation. Almost as classical a problem for Enriques surfaces, Dolgachev extends
results for cohomologically or numerically trivial automorphisms to arbitrary char-
acteristics. Contrary to previous approaches, the key tool is Lefschetz’ fixed point
formula. Enriques surfaces of Hutchinson–Göpel type are investigated by Mukai
and Ohashi. Starting from the projective geometry of Jacobian Kummer surfaces,
they give a sextic presentation for these Enriques surfaces and then describe their
intrinsic symmetries.

On the less classical side, Hulek and Ploog extend the theory of Fourier–Mukai
partners to include the presence of polarizations, producing a counting formula for
the number of partners. In a different direction, Schoen’s paper computes invariants
of the degeneration of a product of elliptic curves upon split-muliplicative reduction.
He expatiates on divisor class group, (co)homology, and Picard group of the closed
fibers. To close the circle on fibrations, Heijne and Kloosterman study a special
class of surfaces, the so-called Delsarte surfaces. Singled out by their accessibility
to explicit computations, a classification of some specific fibrations on these surfaces
is given.
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Arithmetic and Geometry of Calabi–Yau Threefolds and Higher Dimensional
Varieties

For one-dimensional families of Calabi–Yau manifolds, Cynk and van Straten
compute Picard–Fuchs operators based on the expansion of a period near a conifold
point. The algorithm is explained in detail and illustrated by some concrete examples
consisting in double octics. In contrast, the paper by Gouvêa, Kiming, and Yui con-
siders rigid Calabi–Yau threefolds defined over Q. Motivated by the geometric real-
ization problem they pose the question of whether the Calabi–Yau threefolds admit
quadratic twists, giving answers for a number of examples. Automorphic forms are
also the main players in the papers by Kondō and Movasati. Kondō uses Borcherds
theory of automorphic forms on orthogonal groups to construct a rational map from
the Segre cubic threefold to its dual, the Igusa quartic threefold. The major nov-
elty of Movasati’s paper consists in a modification of the interplay between moduli
of polarized Hodge structures of a fixed type and Griffiths period domains. While
in the classical case (for Hermitian symmetric domains) one obtains automorphic
forms and algebraic structures on the mentioned moduli spaces, Movasati’s formu-
lation leads to a notion of quasi-automorphic forms.

The foundations for Donaldson–Thomas invariants for stable sheaves on alge-
braic threefolds with trivial canonical bundle are reviewed in Gulbrandsen’s contri-
bution. Special emphasis lies on abelian threefolds. Chen and Lewis prove density
statements about the subgroup of invertible points on intermediate Jacobians. They
focus on the points in the Abel–Jacobi image of nullhomologous algebraic cycles
on projective algebraic manifolds. Last but not least, the paper by Pearlstein and
Schnell concerns the infinitesimal invariant of a normal function on a complex man-
ifold. When the manifold is quasi-projective and the function is admissible, they
show that this zero locus is constructible in the Zariski topology.

Acknowledgment

Let us conclude by expressing our sincere thanks to all the contributors to this vol-
ume, the referees, the sponsoring institutions, and, most of all, all participants of the
workshop for creating the stimulating atmosphere from which this volume arose.
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1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
2 K3 Surfaces with Picard Number 19 and Twists of Elliptic

Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
2.2 Elliptic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.3 Quadratic Twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
2.4 The Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
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K3 and Enriques Surfaces

Shigeyuki Kondō

Abstract This is a note on my introductory lectures on K3 and Enriques surfaces in
the workshop “Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds”
held at the Fields Institute. No new results are included.

Key words: K3 surfaces, Enriques surfaces, Torelli type theorem, Automorphisms,
Automorphic forms

Mathematics Subject Classifications (2010): Primary 14J28; Secondary 14C34,
14J50, 11F55, 32N10

1 Introduction

In this note we give a brief survey on the theory of K3 and Enriques surfaces.
We consider only complex K3 and Enriques surfaces. The main topics in this
note are moduli and automorphisms. For K3 and Enriques surfaces, an analogue
of the Torelli theorem for compact Riemann surfaces holds. Let C be a compact
Riemann surface of genus g ≥ 1. Let ω1, . . . , ωg be a basis of H0(C, Ω1

C) and let
α1, . . . , αg, β1, . . . , βg be a symplectic basis of H1(C, Z). Then the g× 2g matrix

⎛
⎜⎜⎜⎜⎝

∫

α j

ωi,

∫

β j

ωi

⎞
⎟⎟⎟⎟⎠

1≤i, j≤g

is called the period matrix of C. Roughly speaking, the Torelli theorem for compact
Riemann surfaces states that the isomorphism class of C is determined by the period
matrix.
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Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
e-mail: kondo@math.nagoya-u.ac.jp

R. Laza et al. (eds.), Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds,
Fields Institute Communications 67, DOI 10.1007/978-1-4614-6403-7 1,
© Springer Science+Business Media New York 2013

3

mailto:kondo@math.nagoya-u.ac.jp


4 S. Kondō

For K3 surfaces, their periods are defined by the integrals of a holomorphic
2-form over the second homology classes. Thanks to the Torelli type theorem for
K3 surfaces, due to Piatetskii-Shapiro and Shafarevich [35] for the algebraic case
and Burns and Rapoport [9] for the general case, we can reduce many geometric
problems to those of lattices. We shall explain how to use the lattice theory. Recall
that for a K3 surface X, H2(X, Z) together with the cup product is an even unimod-
ular lattice of signature (3, 19). Moreover, for an algebraic K3 surface, the Picard
lattice S X and its orthogonal complement TX , called the transcendental lattice, are
important primitive sublattices in H2(X, Z). The Picard lattice S X determines the
distribution of curves on X and the group Aut(X) of automorphisms of X is isomor-
phic, up to finite groups, to the group O(S X)/W(X) where O(S X) is the orthogonal
group of S X and W(X) is the subgroup generated by reflections associated to (−2)-
vectors in S X . On the other hand, the transcendental lattice TX describes the moduli.
The associated period domain is a bounded symmetric domain of type IV. It would
be interesting to study the moduli by using automorphic forms.

In Sect. 2 we recall the basic theory of lattices. We discuss classification of even
unimodular lattices. Since the Euler number of a K3 surface is 24, even definite
unimodular lattices of rank 24, called Niemeier lattices, will be important. We also
introduce an important invariant, called the discriminant quadratic form, of even lat-
tices. We explain the notion of overlattices making a new lattice from a given lattice
and primitive embeddings of even lattices into even unimodular lattices in terms of
the discriminant quadratic forms. In Sect. 3 we recall periods and period domains
for K3 and Enriques surfaces. In Sect. 4 we state the Torelli type theorem for alge-
braic K3 surfaces (Theorem 4.2), and then we discuss the group of automorphisms
of K3 and Enriques surfaces. Also, we mention what kind of finite groups can act on
K3 surfaces as automorphisms. Here a sporadic finite simple group called the Math-
ieu group appears. Finally, in Sect. 5, we recall Borcherds’ theory on automorphic
forms on bounded symmetric domains of type IV associated to lattices of signature
(2, n). We mention some applications of Borcherds’ theory to the moduli of K3 and
Enriques surfaces.

The author thanks the referee for his careful reading of the manuscript and many
suggestions.

2 Lattices

Main reference of this section is Nikulin [30].

2.1 Definition

A lattice (L, 〈, 〉) is a pair of a free Z-module L of rank r and a non-degenerate
symmetric integral bilinear form 〈, 〉 : L × L → Z. For simplicity we omit 〈, 〉 if
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there is no confusion. For a lattice L, we denote by L∗ the dual Hom(L, Z) of L, and
by AL the quotient group L∗/L which is a finite abelian group. Denote by d(L) the
order of AL. A lattice L is called unimodular if d(L) = 1, and even if 〈x, x〉 ≡ 0
mod 2 for any x ∈ L. The signature of a lattice L is that of the quadratic form L⊗R.
Also, we call L negative definite, positive definite or indefinite if L ⊗ R is so. We
denote by L⊕M the orthogonal direct sum of lattices L and M. Also, we denote by
L⊕m the orthogonal direct sum of m copies of L. For simplicity and applications to
algebraic geometry we focus on the case of even lattices.

2.2 Examples

We denote by U the hyperbolic plane, that is, an even unimodular lattice of signature
(1, 1). For a lattice (L, 〈, 〉) and an integer m, we denote by L(m) the lattice (L, m〈, 〉).
For example, U(m) is defined by the matrix

(
0 m
m 0

)

. A root lattice is a negative defi-

nite lattice generated by (−2)-vectors. We denote by Am, Dn or Ek the even negative
definite lattice defined by the Cartan matrix of type Am, Dn or Ek, respectively. Any
root lattice is isomorphic to the orthogonal direct sum of Am, Dn, Ek. Usually root
lattices are assumed to be positive definite. Here we use the opposite sign because
it is more relevant in algebraic geometry.

2.3 Unimodular Lattices

Among lattices, unimodular lattices are fundamental. In the following we introduce
the classification problem of unimodular lattices.

2.4 Proposition

Let L be an even unimodular lattice of signature (p, q). Then p− q ≡ 0 mod 8.

In the case of indefinite unimodular lattices, its isomorphism class is determined by
its signature.

2.5 Proposition

Let L be an even unimodular indefinite lattice. Then L is uniquely determined by
its signature (p, q). If p ≥ q, then L � U⊕q ⊕ E8(−1)⊕(p−q)/8. If q ≥ p, then
L � U⊕p ⊕ E⊕(q−p)/8

8 .
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For the proofs of these propositions, we refer the reader to Serre [37]. On the other
hand, it is a difficult problem to determine isomorphism classes of definite unimod-
ular lattices. Up to rank 24, the classification is known. See the following Table 1.

Table 1: Classification of even definite unimodular lattices

r 8 16 24 32
n(r) 1 2 24 ≥ 8 · 108

L E8 E⊕2
8 , Γ16 Niemeier lattices ?

Here r is the rank of L and n(r) is the number of isomorphism classes of even nega-
tive definite unimodular lattices of rank r. Γ16 is an even negative definite unimodu-
lar lattice of rank 16 whose root sublattice is D16. Later we will give a construction
of Γ16 (see Example 2.9, (1)). We call an even negative definite unimodular lattice
of rank 24 a Niemeier lattice. The isomorphism class of any Niemeier lattice N
is determined by its root sublattice R(N). The root sublattice R(N) has remarkable
properties, for example, if R(N) � ∅, then rank(R(N)) = 24. A Niemeier lattice
without (−2)-vectors is called a Leech lattice. Later we will give an example of a
Niemeier lattice with R(N) = A⊕24

1 (see Example 2.9, (2)). For more details, we
refer the reader to Conway and Sloane [10].

2.6 Discriminant Quadratic Form

Next we introduce the most important invariant for even lattices. Let L be an even
lattice. Define the maps

qL : AL → Q/2Z, bL : AL × AL → Q/Z

by qL(x + L) = 〈x, x〉 mod 2Z and bL(x + L, y + L) = 〈x, y〉 mod Z. We call qL

the discriminant quadratic form and bL the discriminant bilinear form. Let O(L) be
the orthogonal group of L, that is, the group of isomorphisms of L preserving the
bilinear form. Similarly O(qL) denotes the group of isomorphisms of AL preserving
qL. Let g ∈ O(L). Then g acts on L∗ canonically and hence acts on AL = L∗/L. Thus
there is a natural map from O(L) to O(qL).

2.7 Overlattices

Let L be an even lattice. For a given L, we introduce a simple method to get a new
even lattice L′. An even lattice L′ is called an overlattice of L if L is a sublattice of
L′ of finite index. Let H ⊂ AL be an isotropic subgroup with respect to qL, that is,
qL|H ≡ 0. Then we can define a subgroup LH of L∗ by
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LH = {x ∈ L∗ : x mod L ∈ H}.
The condition qL|H ≡ 0 implies that LH is an even lattice. Thus we have an over-
lattice LH of L. Note that d(LH) = d(L)/[LH : L]2. Conversely, if L′ is an overlattice
of L, then we have an isotropic subspace L′/L of AL. Thus we have the following
proposition.

2.8 Proposition

The set of overlattices of L bijectively corresponds to the set of isotropic subgroups
of AL.

2.9 Examples

We give two examples of even unimodular lattices by using Proposition 2.8.

(1) Let L = D16. Then we can easily see that AL � (Z/2Z)2 and AL consists of
three isotropic vectors and one non-isotropic vector. Let α ∈ AL be a non-zero
isotropic vector and let H � Z/2Z be the isotropic subgroup of AL generated by
α. Then we have an overlattice Γ16 which is an even unimodular lattice because

d(Γ16) =
d(L)

[Γ16 : L]2
=

4

22
= 1.

Since D16 is not contained in E⊕2
8 , Γ16 is not isomorphic to E⊕2

8 .
(2) Let L = A⊕24

1 . Then AL � F24
2 . Let x = (x1, . . . , x24) ∈ F24

2 be the standard
coordinate. Then

qL(x) = −1

2

24∑

i=1

xi.

There exists a subspace G of dimension 12 in AL, called a binary Golay code,
satisfying the conditions

(i) (1, . . . , 1) ∈ G,
(ii) For x ∈ G, the number of non-zero entries of x is divisible by 4,

(iii) For x � 0 ∈ G, the number of non-zero entries of x ≥ 8.

The condition (ii) means that G is isotropic, and hence there exists an overlattice
N of L with [N : L] = 212. Hence N is an even unimodular lattice. The third
condition implies that the root sublattice R(N) of N coincides with L. Thus we
have a Niemeier lattice N with R(N) = A24

1 . Since any isometry of N preserves
R(N), O(N) is a subgroup of O(R(N)). Obviously

O(R(N)) � (Z/2Z)24 ·S24
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where S24 is the symmetric group of degree 24 acting on the coordinates as
permutations and (Z/2Z)24 is the Weyl group W(R(N)) of R(N). Define

M24 = {σ ∈ S24 : σ(G) = G}.
Since W(R(N)) acts trivially on AL, W(R(N)) is a normal subgroup of O(N).
The quotient O(N)/W(R(N)) is isomorphic to M24. The group M24 is called the
Mathieu group of degree 24, and is a finite sporadic simple group. For Mathieu
groups, we refer the reader to Conway and Sloane [10].

2.10 Primitive Embeddings

In the following we discuss embeddings of an even lattice into an even unimodular
lattice. Let L be an even unimodular lattice and let S be a sublattice of L. Here we
assume that S is primitive, that is, L/S is torsion-free. Denote by T the orthogonal
complement of S in L. Then T is a primitive sublattice of L. Obviously L is an
overlattice of S ⊕T , and hence H = L/(S ⊕T ) is an isotropic subgroup of AS ⊕AT

with respect to qS ⊕ qT . Let

pS : AS ⊕ AT → AS , pT : AS ⊕ AT → AT

be the projections. Then we have the following proposition.

2.11 Proposition

The restrictions pS |H : H → AS and pT |H : H → AT are isomorphic and H is the
graph of γ = pT ◦ p−1

S : AS → AT . Moreover qS (x) + qT (γ(x)) ≡ 0 mod 2.

Proof. First we show the injectivity of pS |H. Let x ∈ L. Write x = xS + xT where
xS ∈ S ∗ and xT ∈ T ∗. Assume that xS = 0 in AS . Then xS ∈ S and hence xT =

x − xS ∈ L. Since T is primitive in L, xT ∈ T . Hence x ∈ S ⊕ T . This implies the
injectivity of pS |H. Similarly pT |H is injective. Since |H|2 = |AS | · |AT |, pS |H and
pT |H are isomorphic. The remaining assertions are obvious.

Conversely we have the following corollary.

2.12 Corollary

Let S , T be even lattices. Let γ : AS → AT be an isomorphism satisfying qT (γ(x)) ≡
−qS (x) mod 2 for any x ∈ AS . Then there exist an even unimodular lattice L and
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a primitive embedding of S into L such that T is isomorphic to the orthogonal
complement of S in L.

Proof. Consider the subgroup

H = {(x, γ(x)) : x ∈ AS }
of AS ⊕ AT . Then, by the assumption, H is isotropic with respect to qS ⊕ qT , and
hence, by Proposition 2.8, there exists an even unimodular lattice L. Since γ is iso-
morphic, S is primitive in L.

2.13 Example

We take E8 to be an even unimodular lattice L. Let S be a root lattice primitively
embedded in E8 and let T = S⊥ in L. Then T is given as in the following Table 2.

Table 2: Examples of primitive sublattices in E8

S A1 A2 A3 A4 D4

T E7 E6 D5 A4 D4

The following corollaries will be used later.

2.14 Corollary

Let L be an even unimodular lattice and let S be a primitive sublattice of L. Let
T = S⊥ in L. Let g ∈ O(S ). Assume that g acts on AS trivially. Then there exists an
isometry g̃ ∈ O(L) of L such that g̃|S = g and g̃|T = 1T .

Proof. Put g̃ = (g, 1T ) ∈ O(S ⊕T ). Then g̃ is an isometry of the dual S ∗⊕T ∗. Since
g̃ acts trivially on AS ⊕ AT , it acts trivially on L/(S ⊕ T ); that is, g̃(L) = L.

Similarly we can see the following.

2.15 Corollary

Let L be an even unimodular lattice and let S be a primitive sublattice of L. Let
T = S⊥ in L. Assume that the natural map

O(T ) → O(qT )

is surjective. Then any g ∈ O(S ) can be extended to an isometry of L.
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Finally let us consider the uniqueness of primitive embeddings of an even lattice
S into an even unimodular lattice L. We need the uniqueness of isomorphism classes
of its orthogonal complement T = S⊥. Also, for the extension problem of isometries
of S to those of L, we need the condition of T mentioned in Corollary 2.14. The
following theorem gives a sufficient condition for these problems.

2.16 Theorem ([30])

Let T be an even indefinite lattice. Assume that

rank(T ) ≥ l(T ) + 2

where l(T ) is the number of minimal generators of the finite abelian group AT . Then
the isomorphism class of T is uniquely determined by its signature and qT . More-
over, the natural map O(T ) → O(qT ) is surjective.

The above theorem is due to Nikulin [30]. Nikulin proved a more general result. See
[30], Theorem 1.14.2.

3 Periods of K3 and Enriques Surfaces

3.1 Periods of K3 Surfaces

A K3 surface is a compact complex surface with H1(X,OX) = 0 and KX = 0, where
KX is the canonical line bundle of X. The important fact is that H2(X, Z) together
with the cup product is an even unimodular lattice of signature (3, 19). This follows
from Wu’s formula, Poincaré duality, and Hirzebruch’s index theorem. For more
details, we refer the reader to Barth et al. [3].

Let L be an (abstract) even unimodular lattice of signature (3, 19). By Proposi-
tion 2.5, there is an isomorphism

αX : H2(X, Z) → L.

The pair (X, αX) is called a marked K3 surface. By definition of a K3 surface, there
exists a nowhere vanishing holomorphic 2-form ωX on X which is unique up to
constants. Recall that ωX satisfies the Riemann condition

〈ωX , ωX〉 = 0, 〈ωX , ω̄X〉 > 0.

Define
Ω = {[ω] ∈ P(L⊗ C) : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}.
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Then Ω is a 20-dimensional complex manifold, which is called the period domain
of marked K3 surfaces. For a marked K3 surface (X, αX), we associate the point
αX(ωX) in Ω. The Torelli type theorem for K3 surfaces and the surjectivity of the
period map imply that Ω is the set of isomorphism classes of marked K3 surfaces.

Next consider the case of polarized K3 surfaces. Let X be an algebraic K3 sur-
face. A polarization of degree 2d on X is a primitive nef and big divisor H with
H2 = 2d > 0 (here a divisor D is called primitive if D = mD′ for some integer
m and a divisor D′ then m = ±1). We call the pair (X, H) a polarized K3 surface
of degree 2d. Let h be a primitive vector in L with h2 = 〈h, h〉 = 2d. Let L2d be
the orthogonal complement of h in L. Note that L2d does not depend on the choice
of h by Theorem 2.16. Moreover, for a polarized K3 surface (X, H), there exists an
isomorphism

αX : H2(X, Z) → L

which sends H to h. Define

D2d = {[ω] ∈ P(L2d ⊗C) : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}.
Then D2d is a disjoint union of two copies of a bounded symmetric domain of type
IV and of dimension 19. Let Γ2d be the kernel of the natural map O(L2d) → O(qL2d )
which acts on D2d properly discontinuously. To a triple (X, H, αX) we associate the
point αX(ωX) in D2d because ωX is perpendicular to algebraic classes. For a polar-
ized K3 surface (X, H) we associate the point αX(ωX) mod Γ2d in D2d/Γ2d forgetting
the marking αX . The Torelli type theorem (see Theorem 4.2) tells us that D2d/Γ2d

is the coarse moduli space of polarized K3 surfaces of degree 2d. The Torelli type
theorem for algebraic K3 surfaces was first given by Piatetskii-Shapiro and Shafare-
vich [35]. Later Burns and Rapoport [9] gave a Torelli type theorem for Kähler K3
surfaces.

3.2 Periods of Enriques Surfaces

An algebraic surface Y is called an Enriques surface if its geometric genus pg and
the irregularity q vanish, and K⊗2

Y is trivial. The 2-torsion KY defines an unramified
double cover

π : X → Y.

One can easily see that X is a K3 surface. Since K3 surfaces are simply connected, π
is the universal cover of Y. Let σ be the covering transformation of π. The Enriques
surface Y is completely determined by the pair of the K3 surface X and a fixed-point
free involution σ of X.

Define
L±X = {x ∈ H2(X, Z) : σ∗(x) = ±x}.
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Obviously L±X are primitive sublattices of H2(X, Z). Moreover L+X � π∗H2(Y, Z).
By the definition of Enriques surfaces we can see that the second Betti number
of Enriques surfaces is 10. The genus formula, Poincaré duality and the Hodge
index theorem imply that the free part of H2(Y, Z) is an even unimodular lattice
of signature (1, 9) which is isomorphic to U ⊕ E8 by Proposition 2.5. Since π is an
unramified double covering, LX � U(2)⊕ E8(2). By Proposition 2.11, qL+X = −qL−X .
In particular the isomorphism class of L−X is uniquely determined by its signature
(2, 10) and qL−X (Theorem 2.16). It is known that

L−X � U ⊕ U(2)⊕ E8(2).

We fix abstract lattices L+ = U(2)⊕ E8(2) and L− = U ⊕ U(2)⊕ E8(2). It follows
from Proposition 2.8 that there exists an even unimodular lattice L of signature
(3, 19) which is an overlattice of L+ ⊕ L−. Let ι be an isometry (1L+ ,−1L− ) of L+ ⊕
L−. By Corollary 2.14, ι can be extended to an isometry of L, which is denoted by the
same symbol ι. By using Theorem 2.16, we can see that for each Enriques surface
Y or equivalently for each pair of a K3 surface and a fixed-point-free involution σ,
there exists an isomorphism

αX : H2(X, Z) → L

which sends L+X to L+. Now we define

D(L−) = {[ω] ∈ P(L− ⊗ C) : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}.
Then D(L−) is a disjoint union of two copies of a bounded symmetric domain of
type IV and of dimension 10. Let Γ be the orthogonal group O(L−), which acts on
D(L−) properly discontinuously. For (X, σ, αX) we associate the point αX(ωX) in D.
Forgetting the marking αX , we associate the point αX(ωX) mod Γ in D(L−)/Γ.

3.3 Remark

Let ω ∈ D(L−). Then it follows from the surjectivity of the period map for K3 sur-
faces that there exists a marked K3 surface (X, αX) satisfying α(ωX) = ω. However
it may happen that X is not a covering of an Enriques surface, i.e., the isometry ι
is not represented by an automorphism. The reason is as follows: assume that there
is a (−2)-vector r in L− with 〈r, ω〉 = 0. Then there exists a class δ ∈ L−X with
δ2 = −2 and 〈δ, ωX〉 = 0. Then δ is algebraic and by the Riemann–Roch theorem
we may assume that δ is effective. If ι is represented by an automorphism of X, then
it preserves effective classes. This is impossible because δ ∈ L−X .

For r ∈ L− with r2 = −2, we define

r⊥ = {[ω] ∈ D(L−) : 〈ω, r〉 = 0}, H =
⋃

r

r⊥
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where r belongs to the set of vectors in L− with r2 = −2. The above Remark 3.3
implies that the periods of Enriques surfaces lie in D(L−)\H, and in fact, the moduli
space of Enriques surfaces is given by

(D(L−) \H)/Γ.

It is known that H/Γ is irreducible. H is called the discriminant locus of En-
riques surfaces. The Torelli type theorem for Enriques surfaces was first given by
Horikawa [18].

3.4 Remark

A generic Enriques surface does not contain a smooth rational curve. For example,
assume that the Picard number of X is 10, that is, the Picard lattice S X of X coincides
with L+X . Then there are no smooth rational curves on Y. In fact, if C is a smooth
rational curve on Y, then π∗(C) is the disjoint union of two smooth rational curves
C±: π∗(C) = C+ +C−. The difference C+−C− is contained in L−X which contradicts
the assumption S X = L+X .

The above remark suggests to us the following important invariant for Enriques
surfaces. Let Y be an Enriques surface and X the covering K3 surface. Let C be a
smooth rational curve on Y. Then we have two disjoint smooth rational curves C±
on X satisfying

C+ +C− ∈ L+X , (C+ +C−)2 = −4, C+ −C− ∈ L−X ,

(C+ −C−)2 = −4, C± = ((C+ +C−)± (C+ −C−))/2.

Let S X be the Picard lattice of X and let S±X be S X ∩ L±X . Now consider a vector
δ− ∈ S−X with δ2− = −4 such that there exists a vector δ+ ∈ S +X with δ2

+ = −4 and
(δ+ + δ−)/2 ∈ S X . Denote by Δ− be the set of all such vectors δ− and by [Δ−] the
lattice generated by Δ−. Let K = [Δ−](1/2). Then K is an even negative definite
lattice generated by (−2)-vectors, and hence is isomorphic to a root lattice. Finally
define a homomorphism

ξ : K/2K → S +X(1/2)

by sending δ− to δ+. Then the pair (K, Ker(ξ)) of a root lattice and a finite abelian
group is called the root invariant of the Enriques surface Y. It is important to study
the distribution of smooth rational curves on Y and the automorphism group of Y.
The root invariant was introduced by Nikulin [32].
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3.5 Example

We give an example of Enriques surfaces which has a root invariant (E6, {0}). Let S
be a smooth cubic surface defined by a homogeneous polynomial F(z0, z1, z2, z3) of
degree 3. Then the Hessian polynomial of F, if it is not identically zero, defines a
quartic surface H called the Hessian quartic surface of S . To study Hessian quartic
surfaces, it is convenient to use the Sylvester form of S . It is classically known that
a general cubic surfaces S can be written in the Sylvester form

λ1x3
1 + · · · + λ5x3

5 = 0, x1 + · · · + x5 = 0

where x1, . . . , x5 are linear forms in z0, z1, z2, z3 each four of which are linearly in-
dependent, and λi ∈ C∗. The forms x1, . . . , x5 are uniquely determined by F up
to permutation and multiplication by a common non-zero scalar, and λ1, . . . , λ5 are
uniquely determine by F and xi (Segre [36], Chap. IV). For a cubic surface defined
by the Sylvester form, the corresponding Hessian quartic surface H is given by

1

λ1x1
+ · · · + 1

λ5x5
= 0, x1 + · · · + x5 = 0.

The Hessian H has ten nodes pi jk defined by xi = x j = xk = 0, and contains ten
lines lmn defined by xm = xn = 0. For general F, H does not contain any other
singular points. Let X be the minimal resolution of H. Then X is a K3 surface with
20 smooth rational curves, that is, exceptional curves Ei jk over 10 nodes pi jk and
strict transforms Lmn of 10 lines lmn. The curve Ei jk meets exactly three curves Li j,
Lik and L jk, and conversely Li j meets exactly three curves Ei jk (k � i, j). Thus we
have two sets {Ei jk}, {Lmn} of smooth rational curves on X each of which consists
of 10 disjoint curves, and each curve in one set meets exactly three curves in the
other set.

The birational involution defined by

(x1 : · · · : x5) → (
1

λ1x1
: · · · :

1

λ5x5
)

induces a fixed-point free involution σ of X, and hence the quotient Y = X/〈σ〉
is an Enriques surface. The involution σ switches two curves Ei jk and Lmn where
{i, j, k, m, n} = {1, 2, 3, 4, 5}. We denote by L̄i j the image of Li j or Ekmn in Y. The
curve L̄i j meets exactly three curves L̄km, L̄kn and L̄mn. We can easily see that the
dual graph of ten smooth rational curves {L̄i j} is isomorphic to the Petersen graph.

The 20 curves {Ei jk, Lmn} generate a sublattice N of signature (1, 15) in the Picard
lattice S X of X. Let M be the orthogonal complement of N in L = H2(X, Z). It is
known that M is isomorphic to U ⊕ U(2) ⊕ A2(2) [14]. Let R be the orthogonal
complement of M in L−. Obviously R is a negative definite lattice of rank 6. We
will show that R is isomorphic to E6(2). Consider the following classes,

E123 − L45, E145 − L23, E235 − L14, E345 − L12, E125 − L34, E245 − L13,



K3 and Enriques Surfaces 15

which generate a lattice isomorphic to E6(2) in R. By comparing

AL− � (Z/2Z)10 and AE6(2)⊕M � (Z/2Z)10 ⊕ (Z/3Z)2,

we can conclude that E6(2) � R. For the geometry of Hessian quartic surfaces we
refer the reader to Dolgachev and Keum [14], Dardanelli and van Geemen [12].

4 Automorphisms

In this section, we first mention the Torelli type theorem for algebraic K3 surfaces.
Next we give its applications to a description of the group of automorphisms of an
algebraic K3 surface, a relation between finite groups of symplectic automorphisms
of K3 surfaces and the Mathieu group, and a description of the group of automor-
phisms of a generic Enriques surface.

4.1 Torelli Type Theorem and the Group of Automorphisms
for an Algebraic K3 Surface

Let X be an algebraic K3 surface and let S X be the Picard lattice. By the Hodge
index theorem, S X has signature (1, ρ − 1). Let TX be the orthogonal comple-
ment of S X which is called the transcendental lattice of X. The signature of TX is
(2, 20− ρ). Put

Δ(X) = {δ ∈ S X : δ2 = −2}.
For each δ ∈ Δ(X), we can define an isometry sδ of S X by

sδ(x) = x + 〈δ, x〉δ.
Then sδ is a reflection with respect to the hyperplane δ⊥. We denote by W(X) the
group generated by reflections sδ, δ ∈ Δ(X). Let

P(X) = {x ∈ S X ⊗ R : x2 > 0}.
We denote by P(X)+ the connected component of P(X) containing an ample class.
Since the hyperplane r⊥ has signature (1, ρ− 2), r⊥ ∩ P(X)+ is non-empty. Hence
sδ preserves P(X)+. Let C(X) be the connected component of

P(X)+ \
⋃

r∈Δ(X)

r⊥

containing an ample class. It is known that any vector in C(X)∩S X is represented by
an ample divisor. Thus C(X) is called the ample cone. The following is the Torelli
type theorem for algebraic K3 surfaces due to Piatetskii-Shapiro and Shafarevich.
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4.2 Theorem ([35])

Let X, X′ be algebraic K3 surfaces. Let ϕ : H2(X, Z) → H2(X′, Z) be an isometry
satisfying

(1) ϕ(ωX) ∈ C · ωX ′ ,
(2) ϕ(C(X)) ⊂ C(X′).

Then there exists an isomorphism g : X′ → X with g∗ = ϕ.

Since any automorphism preserves ample classes, we have a natural map

ψ : Aut(X)→ Aut(C(X)) = {ϕ ∈ O(S X) : g(C(X)) = C(X)}
where Aut(X) is the group of automorphisms of X. Also, the general theory of re-
flection groups implies that C(X) is a fundamental domain of W(X) with respect to
the action on P(X)+. Therefore we have an isomorphism

Aut(C(X)) � O(S X)/{±1} ·W(X).

4.3 Theorem ([35])

The homomorphism ψ has finite kernel and finite cokernel.

Proof. We show that ψ has finite cokernel as an application of lattice theory. Con-
sider the subgroupG of Aut(C(X)) given by

G = Ker(Aut(C(X))→ O(qS X )).

Since O(qS X ) is a finite group,G is of finite index in Aut(C(X)). Let ϕ ∈ G. Then it
follows from Corollary 2.14 that there exists an isometry ϕ̃ of H2(X, Z) with ϕ̃|S X =

ϕ and ϕ̃|TX = 1. Since ωX ∈ TX ⊗ C, ϕ̃ preserves the period of X and, by definition
of G, preserves the ample cone. It now follows from Theorem 4.2 that there exists
an automorphism g of X with g∗ = ϕ̃. Thus G can be realized as automorphisms
of X.

On the other hand, we show that the restriction of Aut(X) to TX is a finite group.
Consider the subspace W of TX⊗R generated by Re(ωX) and Im(ωX). The Riemann
condition implies that W is positive definite. Since the signature of TX is (2, 20−ρ),
the orthogonal complement W⊥ in TX ⊗R is negative definite. Thus Aut(X)|TX is a
discrete subset of the compact set O(W)×O(W⊥), and hence is finite. Hence ψ has
finite kernel.
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4.4 Corollary

The group Aut(X) of automorphisms of a K3 surface is finite if and only if [O(S X) :
W(X)] < ∞.

The Picard lattices S X with [O(S X) : W(X)] < ∞were classified by Nikulin [31, 33]
and Vinberg [39]. In general, it is difficult to calculate a fundamental domain of
W(X). However, for example, Vinberg [38] calculated Aut(X) for two algebraic K3
surfaces X with Picard number 20, and Kondō [23] gave generators of Aut(X) for a
generic Jacobian Kummer surface X associated to a smooth curve of genus 2. In the
following, we present an idea used in [23].

4.5 The Leech Lattice and the Group of Automorphisms
of a Generic Jacobian Kummer Surface

Let L be an even unimodular lattice of signature (1, 25) and let W(L) be the group
generated by all reflections sδ associated to (−2)-vectors δ in L. Consider the action
of W(L) on a connected component, denoted by P(L)+, of the set

P(L) = {x ∈ L⊗ R : x2 > 0}.
In this case, [O(L) : W(L)] =∞; however, Conway [10], Chap. 27, gave a concrete
description of a fundamental domain of W(L) as follows. Let Λ be the Leech lattice,
that is, the even unimodular negative definite lattice of rank 24 without (−2)-vectors
(see Sect. 2). It follows from Theorem 2.5 that L is isomorphic to U ⊕ Λ. We fix an
orthogonal decomposition

L = U ⊕ Λ.

We write (m, n, λ) for a vector in L where m, n are integers, λ ∈ Λ and the norm is
given by 2mn + λ2. Let

ρ = (1, 0, 0) ∈ L.

Note that 〈ρ, δ〉 � 0 for any (−2)-vector δ ∈ L because Λ does not contain (−2)-
vectors. A (−2)-vector δ ∈ L is called a Leech root if 〈δ, ρ〉 = 1. Denote by Δ the set
of all Leech roots. Note that Λ bijectively corresponds to Δ by

Λ � λ→ (−1− λ2/2, 1, λ) ∈ Δ.

Put

C = {x ∈ P+(L) : 〈x, δ〉 > 0, δ ∈ Δ}.
Then
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4.6 Theorem ([10], Chap. 27)

C is a fundamental domain of W(L).

Consider a root sublattice R of L generated by some Leech roots. Denote by S the
orthogonal complement of R in L. Then S is an even lattice of signature (1, 24 −
rank(R)). Define

D(S ) = C ∩ P(S )+,

where P(S )+ = P(L)+ ∩ S ⊗ R. Let w be the projection of ρ into S ∗. Then

4.7 Proposition ([4])

(1) w is contained in D(S ). In particular D(S ) is non-empty.
(2) D(S ) is a finite polyhedron.

Now assume that S is isomorphic to the Picard lattice S X of a K3 surface X.
Since any (−2)-vector in S X is a (−2)-vector in L, we may assume that the ample
cone C(X) of X contains D(S X). Then w is the class of an ample divisor on X. Thus
we have a finite polyhedron D(S X) in C(X) and an ample class w which may help us
to study the geometry of X. In the following we apply this to the case of a generic
Jacobian Kummer surface.

Consider the root lattice R = A3 ⊕ A6
1. We can embed R into L such that R

is generated by Leech roots and S = R⊥ is isomorphic to the Picard lattice S X

of the Kummer surface X associated to a generic smooth curve of genus 2. The
faces of the finite polyhedron D(S X) consist of 316 (= 32 + 32 + 60 + 192) hy-
perplanes perpendicular to (−2)-, (−4)-, (−4)- or (−12)-vectors in S X respectively.
These 32 (−2)-vectors correspond to 32 smooth rational curves on X forming the
Kummer (16)6-configuration. The ample class w defines an embedding of X into P5

whose image is the intersection of three quadrics. The group of symmetries of the
finite polyhedron D(S X) is isomorphic to (Z/2Z)5 · S6 where (Z/2Z)5 acts on X
as automorphisms (16 translations and 16 switches) and S6 is the symmetry of the
Weierstrass points on the curve of genus 2. Finally the remaining 32, 60, 192 hyper-
planes of D(S X) correspond to classical automorphisms of X, that is, 16 projections
and 16 correlations, 60 Cremona transformations and 192 Cremona transformations
respectively. We can conclude that Aut(X) is generated by (Z/2Z)5 and these clas-
sical automorphisms. We should remark that Keum [19] found 192 automorphisms
corresponding to 192 hyperplanes by the Torelli type theorem for K3 surfaces (The-
orem 4.2). For more details, we refer the reader to Keum [19], Kondō [23], and
Ohashi [34].

This method can be applicable to some other cases. For example, if we take the
root lattice E6 or D6 as R, then we can obtain a fundamental domain of the full
reflection group of the Picard lattice of the two most algebraic K3 surfaces given in
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Vinberg [38]. Also Dolgachev and Keum [14] applied this method to calculate the
group of automorphisms of a generic Hessian quartic surface.

4.8 Finite Groups of Automorphisms of K3 Surfaces

Let G be a finite group of automorphisms of a K3 surface X. Fix a nowhere van-
ishing holomorphic 2-form ωX on X which is unique up to constants. For g ∈ G,
one can define a non-zero constant α(g) by g∗(ωX) = α(g) · ωX . Thus we have a
homomorphism α : G → C∗. Since the image of α is a finite subgroup of the
multiplicative group, it is cyclic. Hence we have an exact sequence

1 → Ker(α) → G → Z/mZ → 1.

An automorphism g is called symplectic if α(g) = 1. Any finite group of automor-
phisms is an extension of a finite group of symplectic automorphisms by a cyclic
group.

If X is algebraic, then any automorphism g of X acts on the transcendental lattice
TX as a finite cyclic group. More precisely, the following holds.

4.9 Proposition ([29])

Let X be an algebraic K3 surface and g ∈ Aut(X).

(1) The restriction g∗|TX has finite order m.
(2) α(g) = 1 if and only if g∗|TX = 1.
(3) Assume |g∗|TX| = m > 1. Then rank(TX) is divisible by ϕ(m), where ϕ is the

Euler function.

Proof. (1) The proof of the finiteness of 〈g∗|TX〉 has been given in the proof of
Theorem 4.3.

(2) Since ωX ∈ TX ⊗ C, it suffices to show that if α(g) = 1, then g∗|TX = 1. Let
x ∈ TX . Then

〈ωX , x〉 = 〈g∗(ωX), g∗(x)〉 = 〈ωX , g∗(x)〉
which implies that 〈x− g∗(x), ωX〉 = 0. Hence x− g∗(x) ∈ S X ∩ TX = {0}.

(3) By the assertion (2), α(g) = ζm � 1 is a primitive m-th root of unity. We show
that g∗ has no non-zero fixed vectors in TX⊗Q. Let x ∈ TX⊗Q with g∗(x) = x.
Then

〈ωX , x〉 = 〈g∗(ωX), g∗(x)〉 = 〈ζmωX , x〉.
This implies that 〈ωX , x〉 = 0 and hence x ∈ (S X ∩ TX) ⊗ Q = {0}. The above
argument shows that if (g∗)n � 1, then (g∗)n has no non-zero fixed vectors. This
implies that g∗|TX ⊗Q is an irreducible representation of a cyclic group Z/mZ
of degree ϕ(m) defined over Q. Hence we have the last assertion.
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Next we consider finite groups of symplectic automorphisms. We start with the
following proposition.

4.10 Proposition ([29])

(1) Let g be a finite symplectic automorphism of a K3 surface. Then |g| ≤ 8.
(2) g has only isolated fixed points and the number of fixed points depends only on

the order of g.
(3) Let g be of order m and let fm be the number of fixed points of g. Then fm is

given in the following Table 3.

Table 3: The number of fixed points of finite symplectic automorphisms of K3
surfaces

m 2 3 4 5 6 7 8
fm 8 6 4 4 2 3 2

Recall that the Mathieu group M24 acts on the set Ω = {1, . . . , 24} of 24 letters.
Let M23 be the stabilizer subgroup of the letter 1. Then M23 is also a finite sporadic
simple group, called the Mathieu group of degree 23. The conjugacy classes of M23

are determined by their orders and are given in the following Table 4.

Table 4: Conjugacy classes of M23

|σ| 2 3 4 5 6 7 8
σ (2)8 (3)6 (4)4(2)2 (5)4 (6)2(3)2(2)2 (7)3 (8)2(4)(2)

|σ| 11 14 15 23
σ (11)2 (14)(7)(2) (15)(5)(3) (23)

Denote by ε(|σ|) the number of fixed points of σ ∈ M23 on Ω. Mukai [28] observed
that ε(m) = fm for m ≤ 8. We have two representations of degree 24 defined over Q:
G acts on H∗(X, Q) � Q24 and M23 acts on QΩ � Q24. Both actions have the same
character for m ≤ 8. In fact, Mukai proved a stronger assertion.

4.11 Theorem ([28])

Let G be a finite group. Then the followings are equivalent.

(1) G acts on a K3 surface as symplectic automorphisms.

(2) G is a subgroup of M23 which has at least five orbits on Ω.
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The condition that G has at least five orbits is necessary because G fixes H0(X, Q),
H4(X, Q), Re(ωX), Im(ωX) and a Kähler class. Mukai [28] determined maximal
groups of symplectic automorphisms (11 types) and gave their explicit examples
by equations. Later Kondō [22] and Mukai [22], Appendix gave a lattice theoretic
proof of the above theorem by using the classification of Niemeier lattices.

4.12 Automorphisms of Enriques Surfaces

Let Y be an Enriques surface, X the covering K3 surface and σ the fixed-point free
involution. We denote by S X the Picard lattice of X and by ωX a nowhere vanishing
holomorphic 2-form on X. Let

Aut(X, σ) = {g ∈ Aut(X) : g ◦ σ = σ ◦ g}.
Since X is the universal cover of Y, we have

Aut(Y) � Aut(X, σ)/〈σ〉.
An Enriques surface Y is called generic if X satisfies the following two condi-

tions:

(1) S X = L+X ,
(2) ωX does not lie in a proper subspace of L− ⊗ C defined over Q(ζm), where ζm

is a primitive m-th root of unity and ϕ(m) ≤ 12 (see Proposition 4.9).

Now we can state the description for the group of automorphisms of a generic En-
riques surface by Barth and Peters [2] and independently by Nikulin [31]. It follows
from Theorem 4.3 that the group of automorphisms of an algebraic K3 surface with
Picard number 1 is finite. Contrary to the case of K3 surfaces, a generic Enriques
surface has an infinite group of automorphisms.

4.13 Theorem ([2, 31], Theorem 10.1.2)

Let Y be a generic Enriques surface. Then Aut(Y) is isomorphic to

Ker(O(L+) → O(qL+ ))/{±1}.
Proof. Note that the condition S X = L+X is equivalent to the condition TX = L−X .
Let g be an automorphism with g ◦ σ = σ ◦ g. Then g∗|L−X has finite order and the
second condition of the genericity implies that g∗|L−X = 1 (Proposition 4.9). Hence
by Proposition 2.11 we see that g∗ is contained in Ker(O(L+) → O(qL+ )). Obviously
−1L+ is not represented by any automorphism. Hence Aut(Y) is isomorphic to a
subgroup of Ker(O(L+) → O(qL+))/{±1}. On the other hand, let ϕ ∈ Ker(O(L+) →
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O(qL+ )). We may assume that ϕ preserves P(S X)+. Then there are no (−2)-vectors
in L+X � U(2) ⊕ E8(2) and hence C(X) = P(S +X) where C(X) is the ample cone of
X. By Corollary 2.14, there exists an isometry ϕ̃ of H2(X, Z) such that ϕ̃|L+X = ϕ
and ϕ̃|L−X = 1. The isometry ϕ̃ preserves the period of X and the ample cone. It
now follows from Theorem 4.2 that ϕ̃ is represented by an automorphism g of X.
Obviously g commutes with σ and hence it induces an automorphism of Y.

Enriques surfaces with a finite group of automorphisms are very rare. Such Enriques
surfaces were classified by Nikulin [32] and Kondō [20]. There are seven classes of
such Enriques surfaces. Two of them consist of one-dimensional irreducible families
and the others are unique. Moreover Nikulin [32] introduced the notion of the root
invariant of an Enriques surface, which describes the group of automorphisms of
the Enriques surface up to finite groups. For the root invariant, see Sect. 3.

We refer the reader to Dolgachev [13] for more examples of reflections and au-
tomorphisms.

5 Borcherds Products

Borcherds [7] gave a systematic method to construct an automorphic form on a
bounded domain of type IV with known zeros and poles, called the Borcherds prod-
uct. We give three examples of Borcherds products related to K3 and Enriques sur-
faces.

Let T =

(
1 1
0 1

)

, S =

(
0 −1
1 0

)

which are generators of SL(2, Z). Let L be an even

lattice of signature (2, n). For simplicity we assume that n = 2b is even. Consider
the group ring C[AL] of AL = L∗/L. Let eα, α ∈ AL be the standard generators. Let
ρL be the Weil representation of SL(2, Z) on C[AL] defined by:

ρL(T )(eα) = eπ
√−1qL(α)eα, ρL(S )(eα) =

√−1b−1

√| AL |
∑

δ∈AL

e−2π
√−1bL(δ,α)eδ.

Let H+ be the upper half-plane. A holomorphic map

f : H+→ C[AL]

is called a vector-valued modular form of weight k and type ρL if f satisfies the
conditions (1) and (2):

(1) For any

(
a b
c d

)

∈ SL(2, Z) and τ ∈ H+,

f (
aτ + b

cτ + d
) = (cτ + d)kρL

(
a b
c d

)

· f (τ),

(2) f is meromorphic at cusps.
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If f is holomorphic at cusps, then f is called a holomorphic vector-valued modular
form.

Recall that

D(L) = {[ω] ∈ P(L⊗ C) : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}
is a disjoint union of two copies of a bounded symmetric domain of type IV and
dimension 2b. Define

D̃(L) = {ω ∈ L⊗ C : 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}.
Then the canonical map D̃(L) → D(L) is a C∗-bundle. A meromorphic (holomor-
phic) function

Φ : D̃(L) → C

is called a meromorphic (holomorphic) automorphic form of weight k with respect
to Γ on D(L) if Φ is homogeneous of degree −k, that is, Φ(c · ω) = c−kΦ(ω) for
c ∈ C∗, and is invariant under a subgroup Γ of O(L) of finite index.

5.1 Theorem ([7])

Let f be a vector-valued modular form of weight 1− b and type ρL. Let

f =
∑

α∈AL

fα(τ) · eα =
∑

α∈AL

∑

n∈Q

cα(n)e2π
√−1nτ · eα

be the Fourier expansion. Assume that cα(n) ∈ Z for any n ≤ 0. Then there exists
a meromorphic automorphic form Ψ on D(L) of weight c0(0)/2. The only zeros or
poles of Ψ lie on rational quadratic divisors λ⊥ where λ ∈ L with λ2 < 0. The order
of zeros is given by

∑

0<x∈R,xλ∈L∗

cxλ(x2λ2/2)

(or poles if this number is negative).

5.2 Example ([5])

Let L be an even unimodular lattice of signature (2, 26). Then AL = {0}. We take a
modular form

f = 1/Δ(τ) = q−1 + 24 + · · ·
of weight−12, where
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Δ(τ) = q
∏

n>0

(1− qn)24, q = e2π
√−1τ.

Then we have a holomorphic automorphic form Ψ12 on D(L) of weight 12 = 24/2
with zeros along ⋃

λ∈L, λ
2
=−2

λ⊥.

In the following we discuss some applications of Ψ12 to the moduli spaces of
polarized K3 surfaces. Recall that

L � U ⊕ U ⊕ E8 ⊕ E8 ⊕ E8

(see Proposition 2.5). Consider the last component E8 in the above decomposition
of L, and let x ∈ E8 be a primitive vector with x2 = −2d. Let R be the orthogonal
complement of x in E8. Then

R⊥ = U ⊕ U ⊕ E8 ⊕ E8 ⊕ (−2d) � L2d

where (−2d) is the lattice generated by x. Thus we have a primitive embedding of
L2d into L which induces an embedding of the period domain D2d of polarized K3
surfaces of degree 2d into D(L). Note that Ψ12 vanishes identically on D2d because
R contains (−2)-vectors. However Borcherds et al. [8] constructed an automorphic
form on D2d by using Ψ12 as follows: first divide Ψ12 by a product of linear forms
each of which vanishes on the hyperplane perpendicular to a (−2)-vector in R, and
then restrict it to D2d. In particular they showed that the moduli space of polar-
ized K3 surfaces of degree 2 is isotrivial. By a similar method, Kondō [24] showed
the existence of a cusp form of weight 19 for some d and proved that the Kodaira
dimensions of the moduli spaces of polarized K3 surfaces of some degrees are non-
negative. Recently Gritsenko et al. [17] have determined the Kodaira dimensions of
the moduli spaces of polarized K3 surfaces except for a finite number of d.

5.3 Example ([6, 7])

Let L be an even lattice U⊕U(2)⊕E8 of signature (2, 10). Then AL = (Z/2Z)2. We
denote the elements of AL = Z/2Z × Z/2Z by {00, 01, 10, 11} such that 00, 01, 10
are isotropic with respect to qL and 11 is not. Take a vector-valued modular form
f = { fα(τ)} of weight −4 given by

f00(τ) =
8η(2τ)8

η(τ)16
= 8 + 128q + · · · ,

f01(τ) = f10(τ) = −8η(2τ)8

η(τ)16
= −8− 128q− · · · ,

f11(τ) =
8η(2τ)8

η(τ)16
+

η(τ/2)8

η(τ)16
= q−1/2 + 36q1/2 + · · · ,
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where η(τ) is the Dedekind eta function. Then we have a holomorphic automorphic
form Ψ4 on D(L) of weight 4 = 8/2 with zero along

⋃

λ∈L, λ/2∈L∗ , λ
2
=−4

λ⊥.

This automorphic form Ψ4 can be considered as an automorphic form on the
period domain of Enriques surfaces as follows. Recall that the period domain is
associated to the lattice L− = U(2) ⊕ U ⊕ E8(2). Note that L∗(2) is isomorphic
to L−. Thus we have a natural isomorphism between D(L) and D(L−). Moreover
O(L) � O(L−) (see [21]). If we consider Ψ4 as an automorphic form on D(L−),
its zero divisor is nothing but the discriminant locus H because λ ∈ L, λ/2 ∈ L∗
with r2 = −4 correspond to s ∈ L− with s2 = −2. Recall that the moduli space
of Enriques surfaces is (D(L−) \H)/Γ. Therefore the existence of an automorphic
form vanishing exactly on the discriminant locus H implies that the moduli space
of Enriques surfaces is quasi-affine [6].

We remark that the isomorphism O(L) � O(L−) induces an isomorphism between
D(L−)/O(L−) and D(L)/O(L). The quotient D(L)/O(L) is birational to the moduli
space of K3 surfaces X with a non-symplectic automorphism σ of order 2. It follows
from Nikulin [31] that the fixed point set of σ is the disjoint union of a smooth
curve of genus 5 and four smooth rational curves. Taking the quotient of X by σ and
contracting exceptional curves, we get a plane quintic curve with a cusp. Therefore
we have a birational map between the moduli space of Enriques surfaces and that of
plane quintic curves with a cusp. It is known that the moduli space of plane quintic
curves with a cusp is rational. Thus the moduli space of Enriques surfaces is rational,
too. For more details, see [21].

5.4 Example ([15, 25])

Borcherds [7] gave another method, called additive lifting, to construct automorphic
forms on a bounded symmetric domain of type IV. In the following we consider the
case of Enriques surfaces. Let

Γ(2) = Ker(O(L−) → O(qL− )).

Then
O(L−)/Γ(2) � O(qL− ) � O+(10, F2)

where O+(10, F2) is the group of isometries of the ten-dimensional quadratic form
over F2 of even type (see [11], p. 146). The quotient (D(L−)\H)/Γ(2) is the moduli
space of marked Enriques surfaces. For each holomorphic vector-valued modular
form f of weight k and type ρL− , there exists a holomorphic automorphic form F
on D(L−) of weight k + 10−2

2 = k + 4 with respect to Γ(2) ([7], Theorem 14.3). This
correspondence is called the additive lifting. We consider the simplest case, that
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is, holomorphic vector-valued modular forms of weight 0 and type ρL− , which are
nothing but elements in C[L−]SL(2,Z). One can easily see that C[L−]SL(2,Z) � C187.
By using the additive lifting, we can construct a 187-dimensional linear system of
automorphic forms with respect to Γ(2) on D(L−) on which the finite group O(qL− )
acts.

On the other hand, there are three types of vectors in AL− � (Z/2Z)10 denoted
by type 00, 0, 1 according to zero, non-zero isotropic, non-isotropic vectors. We
consider a vector-valued modular form h = {hα(τ)} whose components hα are given
by functions h00, h0, h1 depending only on the type α. Now we take a vector-valued
modular form {hα(τ)} of weight −4 given by

h00(τ) =
248η(2τ)8

η(τ)16
= 248 + 3968q + · · · ,

h0(τ) = h10(τ) = −8η(2τ)8

η(τ)16
= −8− 128q− · · · ,

h1(τ) =
8η(2τ)8

η(τ)16
+

η(τ/2)8

η(τ)16
= q−1/2 + 36q1/2 + · · · .

Then it follows from Theorem 5.1 that there exists a holomorphic automorphic form
Φ on D(L−) of weight 124 whose zero divisor is given by

⋃

λ∈L− , λ/2∈(L−)∗ , λ
2
=−4

λ⊥.

By comparing automorphic forms obtained by the additive lifting with Φ, we can
see that the above 187-dimensional linear system is base-point free. This allows
us to get an O(qL−)-equivariant birational map from the moduli space of marked
Enriques surfaces into P186. For more details, we refer the reader to Kondō [25] (the
paper [25] contains a mistake which was pointed out and corrected by Freitag and
Salvati-Manni [15]).

We remark that Allcock and Freitag [1] used the additive lifting first to get an
W(E6)-equivariant embedding of the moduli space of marked cubic surfaces into
P9, where W(E6) is the Weyl group of type E6. This embedding coincides with the
one given by the Cayley’s cross ratios of cubic surfaces. It would be interesting to
study the geometric meaning of the linear system of automorphic forms in the case
of Enriques surfaces. For more examples, see [16, 26, 27].
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Transcendental Methods in the Study
of Algebraic Cycles with a Special Emphasis
on Calabi–Yau Varieties

James D. Lewis

Abstract We review the transcendental aspects of algebraic cycles, and explain
how this relates to Calabi–Yau varieties. More precisely, after presenting a general
overview, we begin with some rudimentary aspects of Hodge theory and algebraic
cycles. We then introduce Deligne cohomology, as well as the generalized higher
cycles due to Bloch that are connected to higher K-theory, and associated regula-
tors. Finally, we specialize to the Calabi–Yau situation, and explain some recent
developments in the field.

Key words: Calabi–Yau variety, Algebraic cycle, Abel–Jacobi map, Regulator,
Deligne cohomology, Chow group

Mathematics Subject Classifications (2010): Primary 14C25; Secondary 14C30,
14C35

1 Introduction

These notes concern that part of Calabi–Yau geometry that involves algebraic
cycles—typically built up from special subvarieties, such as rational points and
rational curves. From these algebraic cycles, one forms various doubly indexed
groups, called higher Chow groups, that mimic simplicial homology theory in alge-
braic topology. These Chow groups come equipped with various maps whose target
space is a certain transcendental cohomology theory called Deligne cohomology.

More precisely these maps are called regulators, from the higher cycle groups
of S. Bloch, denoted by CHk(X, m), of a projective algebraic manifold X, to Deligne
cohomology, viz.:
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clr,m : CHr(X, m) → H2r−m
D

(
X, A(r)

)
, (1)

where A ⊆ R is a subring, A(r) := A(2πi)r is called the “Tate twist”, and as we will
indicate below, some striking evidence that these regulator maps become highly
interesting in the case where X is Calabi–Yau. As originally discussed in [39], we
are interested in the following case scenarios, with the intention of also providing
an update on new developments. For the moment we will consider A = Z; however
we will also consider A = Q, R later on.

When m = 0, the objects of interest are the null homologous codimension
2 (= dimension 1) cycles CH2

hom(X) = CH1,hom(X) on a projective threefold X, and
where in this case, (1) becomes the Abel–Jacobi map:

Φ2 : CH2
hom(X) → J2(X) =

H3(X, C)

F2H3(X, C) + H3(X, Z(2))
� {H3,0(X)⊕ H2,1(X)}∨

H3(X, Z(1))
,

(2)

defined by a process of integration, J2(X) being the Griffiths jacobian of X. One
of the reasons for introducing the Abel–Jacobi map is to study the Griffiths group
Griff2(X)⊗Q. If we put CHr

alg(X) to be codimension r cycles algebraically equiva-
lent to zero, then the Griffiths group is given by Griffr(X) := CHr

hom(X)/CHr
alg(X).

When m = 1, the object of interest is the group

CH2(X, 1) =

{
∑

j,cdXZj=1
(
f j, Z j

)
∣
∣
∣
∣∣

f j ∈ C(Z j)×∑
j div( f j) = 0

}

Image
(
Tame symbol

) ,

on a projective algebraic surface X. If we mod out by the subgroup of CH2(X, 1)
where the f j’s ∈ C×, then we arrive at the quotient group of indecomposables
CH2

ind(X, 1) which plays an analogous role to the Griffiths group above. Moreover
if we assume that the torsion part of H3(X, Z) is zero, then in this case (1) becomes
a map:

cl2,1 : CH2
ind(X, 1)→

[
H2,0(X)⊕ H1,1

tr (X)
]∨

H2(X, Z)
, (3)

where H1,1
tr (X) is the transcendental part of H1,1(X), being the orthogonal comple-

ment to the subgroup of algebraic cocycles.
In the case m = 2, the objects of interest are the group of symbols:

CH2(X, 2) =
{

ξ :=
∏

j

{ f j, g j}
∣
∣∣
∣
∣

f j, g j ∈ C(X)×
∑

j,p∈X

(

(−1)νp( f j)νp(gj)
(

f
νp (g j)

j

g
νp( f j )

j

)

(p), p
)

= 0

}

,

(νp = order of vanishing at p), on a smooth projective curve X. In this case (1)
becomes the regulator:

cl2,2 : CH2(X, 2)→ H1(X, C/Z(2)). (4)
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As first pointed out in [39], if X is a smooth projective variety of dimension d,
where 1 ≤ d ≤ 3, then the maps and objects

• cl2,2 in (4) and CH2(X, 2)⊗Q for d = 1
• cl2,1 in (3) and CH2

ind(X, 1)⊗Q for d = 2
• Φ2 in (2) and Griff2(X)⊗Q for d = 3

become especially interesting and generally nontrivial in the case where X is a
Calabi–Yau variety; moreover, in a sense that will be specified later, these maps
are essentially “trivial” when restricted to indecomposables, for X either of “lower
or higher order” to its Calabi–Yau counterpart. Cycle constructions involving nodal
rational curves and torsion points, play a prominent role here.

Several recent developments in the context of algebraic cycles are included in
these notes since the appearance of [39], which should be of interest to specialists.
Having said this, these notes are prepared with the expressed interest in enticing a
wider group of researchers into the subject.

We have benefited from conversations with Matt Kerr, Bruno Kahn and Xi Chen.
We are also grateful to Bruno for sharing with us his preprint [29]. We owe the
referee a debt of gratitude for doing a splendid job in recommending improvements
and catching errors in an earlier version of this paper. We are also pleased that
the referee made us aware of the interesting work of Friedman–Laza [20], and for
raising the very interesting question of how to construct normal functions over the
Calabi–Yau variations of Hodge structure that they construct.

2 Notation

Throughout these notes, and unless otherwise specified, X = X/C is a projective
algebraic manifold, of dimension d. A projective algebraic manifold is the same
thing as a smooth complex projective variety. If V ⊆ X is an irreducible subvariety
of X, then C(V) is the rational function field of V , with multiplicative group C(V)×.
Depending on the context (which will be made abundantly clear in the text), OX will
either be the sheaf of germs of holomorphic functions on X in the analytic topology,
or the sheaf of germs of regular functions in the Zariski topology.

3 Some Hodge Theory

Some useful reference material for this section is [25, 36].

Let Ek
X = C-valued C∞ k-forms on X. (One could also use the common notation

of Ak(X) for C∞ forms, but let’s not.) We have the decomposition:

Ek
X =

⊕

p+q=k

Ep,q
X , Ep,q

X = Eq,p
X ,
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where Ep,q
X are the C∞ (p, q)-forms which in local holomorphic coordinates z =

(z1, . . . , zn) ∈ X, are of the form:
∑

|I|=p,|J|=q

fIJdzI ∧ dzJ, fIJ are C− valued C∞ f unctions,

I = 1 ≤ i1 < · · · < ip ≤ d, J = 1 ≤ j1 < · · · < jq ≤ d,

dzI = dzi1 ∧ · · · ∧ dzip , dzJ = dz j1 ∧ · · · ∧ dz jq .

One has the differential d : Ek
X → Ek+1

X , and we define

Hk
DR(X, C) =

ker d : Ek
X → Ek+1

X

dEk−1
X

.

The operator d decomposes into d = ∂+ ∂, where ∂ : Ep,q
X → Ep+1,q

X and ∂ : Ep,q
X →

Ep,q+1
X . Further d2 = 0 ⇒ ∂2 = ∂

2
= 0 = ∂∂ + ∂∂, by (p, q) type.

The above decomposition descends to the cohomological level, viz.,

Theorem 3.1 (Hodge decomposition).

Hk
sing(X, Z)⊗Z C � Hk

DR(X, C) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) = d-closed (p, q)-forms (modulo coboundaries), and

Hp,q(X) = Hq,p(X).

Furthermore:

Hp,q(X) � Ep,q
X,d−closed

∂∂Ep−1,q−1
X

.

Some more terminology: Hodge filtration. Put

FkHi(X, C) =
⊕

p≥k

Hp,i−p(X).

Now recall dim X = d.

Theorem 3.2 (Poincaré and Serre duality). The following pairings induced by

(w1, w2) �→
∫

X
w1 ∧ w2,

are non-degenerate:

Hk
DR(X, C)× H2d−k

DR (X, C) → C,

Hp,q(X)× Hd−p,d−q(X)→ C.

Therefore Hk(X) � H2d−k(X)∨, Hp,q(X) � Hd−p,d−q(X)∨
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Corollary 3.3.
Hi(X, C)

FrHi(X, C)
� Fd−r+1H2d−i(X, C)∨.

3.4 Formalism of Mixed Hodge Structures

Definition 3.5. Let A ⊂ R be a subring. An A-Hodge structure (HS) of weight
N ∈ Z is given by the following datum:

• A finitely generated A-module V , and either of the two equivalent statements
below:

•1 A decomposition

VC =
⊕

p+q=N

V p,q, V p,q = Vq,p,

where − is complex conjugation induced from conjugation on the second factor C
of VC := V ⊗ C.

•2 A finite descending filtration

VC ⊃ · · · ⊃ Fr ⊃ Fr−1 ⊃ · · · ⊃ {0},
satisfying

VC = Fr
⊕

FN−r+1, ∀ r ∈ Z.

Remark 3.6. The equivalence of •1 and •2 can be seen as follows. Given the
decomposition in •1, put

FrVC =
⊕

p+q=N,p≥r

V p,q.

Conversely, given {Fr} in •2, put V p,q = F p ⋂ Fq.

Example 3.7. X/C smooth projective. Then Hi(X, Z) is a Z-Hodge structure of
weight i.

Example 3.8. A(k) := (2πi)kA is an A-Hodge structure of weight −2k and of pure
Hodge type (−k,−k), called the Tate twist.

Example 3.9. X/C smooth projective. Then Hi(X, Q(k)) := Hi(X, Q) ⊗ Q(k) is a
Q-Hodge structure of weight i− 2k.

To extend these ideas to singular varieties, one requires the following
terminology.
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Definition 3.10. An A-mixed Hodge structure (A-MHS) is given by the following
datum:

• A finitely generated A-module VA,
• A finite descending “Hodge” filtration on VC := VA ⊗ C,

VC ⊃ · · · ⊃ Fr ⊃ Fr−1 ⊃ · · · ⊃ {0},
• An increasing “weight” filtration on VA ⊗Q := VA ⊗Z Q,

{0} ⊂ · · · ⊂ W�−1 ⊂ W� ⊂ · · · ⊂ VA ⊗Q,

such that {Fr} induces a (pure) HS of weight � on GrW
� := W�/W�−1.

Theorem 3.11 (Deligne [16]). Let Y be a complex variety. Then Hi(Y, Z) has a
canonical and functorial Z-MHS.

Remark 3.12. (i) A morphism h : V1,A → V2,A of A-MHS is an A-linear map
satisfying:

• h
(
W�V1,A⊗Q

) ⊆ W�V2,A⊗Q, ∀ �,
• h

(
FrV1,C

) ⊆ FrV2,C, ∀ r.

Deligne ([16] (Theorem 2.3.5)) shows that the category of A-MHS is abelian; in
particular if h : V1,A → V2,A is a morphism of A-MHS, then ker(h), coker(h) are
endowed with the induced filtrations. Let us further assume that A⊗Q is a field.
Then Deligne (op. cit.) shows that h is strictly compatible1 with the filtrations
W• and F•, and that the functors V �→ GrW

� V , V �→ Grr
FV are exact.

(ii) Roughly speaking, the functoriality of the MHS in Deligne’s theorem trans-
lates to the following yoga: the “standard” exact sequences in singular
(co)homology, together with push-forwards and pullbacks by morphisms (wher-
ever permissible) respect MHS. In particular for a subvariety Y ⊂ X, the
localization cohomology sequence associated to the pair (X, Y) is a long exact
sequence of MHS. Here is where the Tate twist comes into play: Suppose that
Y ⊂ X is an inclusion of projective algebraic manifolds with codimXY = r ≥ 1.
One has a Gysin map Hi−2r(Y, Q) → Hi(X, Q) which involves Hodge struc-
tures of different weights. To remedy this, one considers the induced map
Hi−2r(Y, Q(−r)) → Hi(X, Q(0)) = Hi(X, Q) via (twisted) Poincaré duality (see
(5) below), which is a morphism of pure Hodge structures (hence of MHS).
A simple proof of this fact can be found in Sect. 7 of [36]. Note that the mor-
phism Hi

Y (X, Q) → Hi(X, Q) is a morphism of MHS, and that accordingly
Hi

Y (X, Q) � Hi−2r(Y, Q(−r)) is an isomorphism of MHS (with Y still smooth).

1 Strict compatibility means that h(FrV1,C) = h(V1,C) ∩ FrV2,C and h(W�V1,A⊗Q) = h(V1,A⊗Q) ∩
W�V2,A⊗Q for all r and �. A nice explanation of Deligne’s proof of this fact can be found in [44],
where a quick summary goes as follows: For any A-MHS V, VC has a C-splitting into a bigraded
direct sum of complex vector spaces I p,q := F p∩Wp+q∩[Fq∩Wp+q+

∑
i≥2 Fq−i+1∩Wp+q−i

]
, where

one shows that FrVC = ⊕p≥r⊕q I p,q and W�VC = ⊕p+q≤�I p,q. Then by construction of I p,q, one has
h(I p,q(V1,C) ⊆ I p,q(V2,C). Hence h preserves both the Hodge and complexified weight filtrations.
Now use the fact that A⊗Q is a field to deduce that h preserves the weight filtration over A⊗Q.
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Example 3.13. Let U be a compact Riemann surface, Σ ⊂ U a finite set of points,
and put U := U\Σ. According to Deligne, H1(U, Z(1)) carries a Z-MHS. The Hodge
filtration on H1(U, C) is defined in terms of a filtered complex of holomorphic differ-
entials on U with logarithmic poles along Σ ([16], but also see (10) below). One can
“observe” the MHS as follows. Poincaré duality gives us H1

Σ(U, Z) � H1(Σ, Z) = 0,
and the localization sequence in cohomology below is a sequence of MHS:

0 → H1(U, Z(1))→ H1(U, Z(1))→ H0(Σ, Z(0))◦ → 0,

where

H0(Σ, Z(0))◦ := ker
(
H2

Σ(U, Z(1)) → H2(U, Z(1))
) � Z(0)|Σ|−1.

Put W0 = H1(U, Z(1)), W−1 = Im
(
H1(U, Z(1)) → H1(U, Z(1))

)
, W−2 = 0.

Then GrW
−1H1(U, Z(1)) � H1(U, Z(1)) has pure weight −1 and GrW

0 H1(U, Z(1)) �
Z(0)|Σ|−1 has pure weight 0.

The following notation will be introduced:

Definition 3.14. Let V be an A-MHS. We put

ΓAV := homA−MHS(A(0), V),

and
JA(V) = Ext1A−MHS(A(0), V).

In the case where A = Z or A = Q, we simply put Γ = ΓA and J = JA.

Example 3.15. Suppose that V = VZ is a Z (pure) HS of weight 2r. Then V(r) :=
V⊗Z(r) is of weight 0, and (up to the twist) one can identify ΓV with VZ∩FrVC =

VZ ∩ Vr,r := ε−1(Vr,r), where ε : V → VC.

Example 3.16. Let V be a Z-MHS. There is the identification due to J. Carlson (see
[8, 28]),

J(V) � W0VC

F0W0VC +W0V
,

where in the denominator term, V := VZ is identified with its image VZ → VC (viz.,
quotienting out torsion). For example, if {E} ∈ Ext1MHS(Z(0), V) corresponds to the
short exact sequence of MHS:

0 → V → E
α−→ Z(0) → 0,

then one can find x ∈ W0E and y ∈ F0W0EC such that α(x) = α(y) = 1. Then
x − y ∈ VC descends to a class in W0VC

/{F0W0VC +W0V}, which defines the map
from Ext1MHS(Z(0), V) to W0VC

/{F0W0VC +W0V}.
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4 Algebraic Cycles

For the next two sections, the reader may find it helpful to consult [37]. Recall X/C
smooth projective, dim X = d. For 0 ≤ r ≤ d, put zr(X) (= zd−r(X)) = free abelian
group generated by subvarieties of codim r (= dim d − r) in X.

Example 4.1. (i) zd(X) = z0(X) = {∑M
j=1 n j p j | n j ∈ Z, p j ∈ X}.

(ii) z0(X) = zd(X) = Z{X} � Z.
(iii) Let X1 := V(z2

2z0 − z3
1 − z0z2

1) ⊂ P2, and X2 := V(z2
2z0 − z3

1 − z1z2
0) ⊂ P2. Then

3X1 − 5X2 ∈ z1(P2) = z1(P2).
(iv) codimXV = r − 1, f ∈ C(V)×. div( f ) := ( f ) := ( f )0 − ( f )∞ ∈ zr(X) (principal

divisor). (Note: div( f ) is easy to define, by first passing to a normalization Ṽ
of V , then using the fact that the local ring OṼ ,℘ of regular functions at ℘ is a
discrete valuation ring for a codimension one “point” ℘ on Ṽ , together with the
proper push-forward associated to Ṽ → V .)

Divisors in (iv) generate a subgroup,

zr
rat(X) ⊂ zr(X),

which defines the rational equivalence relation on zr(X).

Definition 4.2.
CHr(X) := zr(X)/zr

rat(X),

is called the r-th Chow group of X.

Remark 4.3. On can show that ξ ∈ zr
rat(X) ⇔ ∃ w ∈ zr(P1×X), each component of

the support |w| flat over P1, such that ξ = w[0]−w[∞]. (Here w[t] := pr2,∗
(〈pr∗1(t) •

w〉P1×X
)
.) If one replaces P1 by any choice of smooth connected curve Γ (not fixed!)

and 0, ∞ by any 2 points P, Q ∈ Γ, then one obtains the subgroup zr
alg(X) ⊂ zr(X)

of cycles that are algebraically equivalent to zero.2 There is the fundamental class
map (described later) zr(X)→ H2r(X, Z) whose kernel is denoted by zr

hom(X). More
precisely, the target space and map requires some twisting, viz.,

zr(X) → H2r(X, Z(r)).

To explain the role of twisting here, we illustrate this with three case scenarios.

• Let f : Y → X be a morphism of smooth projective varieties, where dim Y =
dim X − 1. One has a commutative diagram of cycle class maps:

zr−1(Y) → H2(r−1)(Y, Z(r− 1))

f∗
⏐⏐⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐⏐⏐� f∗

zr(X) → H2r(X, Z(r))

2 The fact that a smooth connected Γ will suffice (as opposed to a [connected] chain of curves) in
the definition of algebraic equivalence follows from the transitive property of algebraic equivalence
(see [36] (p. 180)).
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Thus from the perspective of (mixed) Hodge theory, this diagram is “natural”,
as the right hand vertical arrow is a morphism of (M)HS.
• Let U/C be a smooth quasi-projective variety of dimension d, and Y ⊂ U a

closed algebraic subset. Using the twisted Poincaré duality theory formalism in
this situation (see [28] (p. 82, p. 92)), Poincaré duality gives us an isomorphism
of MHS:

Hi
Y (U, Z( j)) � H2d−i(Y, Z(d − j)) := H2d−i(Y, Z)( j− d),

where Hi(Y, Z) := HBM
i (Y, Z) is Borel–Moore homology.3 For example if U =

Y = X is smooth projective, then Hi(X, Z( j)) is a pure HS of weight i− 2 j, and
Ha(X, Z(b)) := Ha(X, Z)(−b) is known to be a pure HS of weight 2b− a, hence
H2d−i(Y, Z(d − j)) has weight 2(d − j)− (2d − i) = i− 2 j. Thus

Hi(X, Z( j)) � H2d−i(X, Z(d − j)), (5)

is an isomorphism of HS.

Remark 4.4. Although tempting, from a “purist” point of view, it would be a mis-
take to interpret Ha(X, Z(b)) = Ha(X, Z)(b). This would imply that the Poincaré
duality isomorphism in (5) would not preserve weights, and hence not an isomor-
phism of (M)HS in the sense given in Remark 3.12.

• Let OX be the sheaf of analytic functions on X. Recall the exponential short
exact sequence of sheaves

0 → Z → OX
exp(2πi·(−))−−−−−−→ O×

X → 0,

where O×
X ⊂ OX is the sheaf of units. It is well-known that H1(X, O×

X ) � CH1(X),
and hence there is an induced Chern class map CH1(X) → H2(X, Z). But this is not
so natural as there is no canonical choice of i. Instead, one considers

0 → Z(1) → OX
exp−→ O×

X → 0,

and accordingly the induced cycle class map CH1(X) → H2(X, Z(1)).
One has inclusions:

zr
rat(X) ⊆ zr

alg(X) ⊆ zr
hom(X) ⊂ zr(X).

Definition 4.5. Put

(i) CHr
alg(X) := zr

alg(X)/zr
rat(X),

(ii) CHr
hom(X) := zr

hom(X)/zr
rat(X),

(iii) Griffr(X) := zr
hom(X)/zr

alg(X) = CHr
hom(X)/CHr

alg(X), called the Griffiths group.

The Griffiths group is known to be trivial in the cases r = 0, 1, d.

3 We remind the reader that for singular homology Hsing
∗ (U, Z) and ignoring twists, Poincaré duality

gives the isomorphism Hi
c(U, Z) � Hsing

2d−i(U, Z), where Hi
c(U, Z) is cohomology with compact

support; whereas Hi(U, Z) � HBM
2d−i(U, Z).
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4.6 Generalized Cycles

The basic idea is this:

CHr(X) = Coker
( ⊕

cdXV=r−1

C(V)× div−→ zr(X)
)

.

In the context of Milnor K-theory, this is just

(

→ · · ·
⊕

cdX V=r−2

KM
2 (C(V))

)
Tame−−→

︸��������������������������������������︷︷��������������������������������������︸
building a complex on the left

⊕

cdX V=r−1

KM
1 (C(V))

div−→
⊕

cdX V=r

KM
0 (C(V)).

For a field F, one has the Milnor K-groups KM• (F), where KM
0 (F) = Z, KM

1 (F) =
F× and

KM
2 (F) =

{

Symbols {a, b}
∣
∣∣
∣
∣ a, b ∈ F×

}/

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Steinberg relations
{a1a2, b} = {a1, b}{a2, b}

{a, b} = {b, a}−1

{a, 1− a} = 1, a � 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

One has a Gersten–Milnor resolution of a sheaf of Milnor K-groups on X, which
leads to a complex whose last three terms and corresponding homologies (indicated
at �) for 0 ≤ m ≤ 2 are:

⊕

cdX Z=r−2 KM
2 (C(Z))

T→⊕

cdXZ=r−1 C(Z)× div→⊕

cdX Z=r Z

� � �

CHr(X, 2) CHr(X, 1) CHr(X, 0)

(6)

where div is the divisor map of zeros minus poles of a rational function, and T is the
Tame symbol map. The Tame symbol map

T :
⊕

cdXZ=r−2

KM
2 (C(Z)) →

⊕

cdX D=r−1

KM
1 (C(D)),

is defined as follows. First KM
2 (C(Z)) is generated by symbols { f , g}, f , g ∈ C(Z)×.

For f , g ∈ C(Z)×,

T
({ f , g}) =

∑

D

(−1)νD( f )νD(g)
( f νD(g)

gνD( f )

)

D
,

where
( · · · )D means restriction to the generic point of D, and νD represents order of

a zero or pole along an irreducible divisor D ⊂ Z.
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Example 4.7. Taking cohomology of the complex in (6), we have:

(i) CHr(X, 0) = zr(X)/zr
rat(X) =: CHr(X).

(ii) CHr(X, 1) is represented by classes of the form ξ =
∑

j( f j, D j), where codimX

D j = r − 1, f j ∈ C(D j)×, and
∑

div( f j) = 0; modulo the image of the Tame
symbol.

(iii) CHr(X, 2) is represented by classes in the kernel of the Tame symbol; modulo
the image of a higher Tame symbol.

Example 4.8. (i) X = P2, with homogeneous coordinates [z0, z1, z2]. P1 = � j :=
V(z j), j = 0, 1, 2. Let P = [0, 0, 1] = �0 ∩ �1, Q = [1, 0, 0] = �1 ∩ �2, R = [0, 1, 0] =
�0 ∩ �2. Introduce f j ∈ C(� j)×, where ( f0) = P − R, ( f1) = Q − P, ( f2) = R −
Q. Explicitly, f0 = z1/z2, f1 = z2/z0 and f2 = z0/z1. Then ξ :=

∑2
j=0( f j, � j) ∈

CH2(P2, 1) represents a higher Chow cycle.
∖/

•P
�1

/∖

�0

−− • −− • −−
Q
/

�2
∖
R

This cycle turns out to be nonzero.4 Consider the line P1
0 := V(z0 + z1 + z2) ⊂ P2,

and set q j = P1
0 ∩ � j, j = 0, 1, 2. Then q0 = [0, 1,−1], q1 = [1, 0,−1], q2 =

[1,−1, 0], and accordingly f j(q j) = −1. These Chow groups are known to satisfy a
projective bundle formula (see [6], p. 269) which implies that

CH2(P2, 1) � {P1} ⊗ CH1(Spec(C), 1),

CH2(P1
0, 1) � {P1 ∩ P1

0}P2 ⊗ CH1(Spec(C), 1),

where P2 → Spec(C), and P1
0 → Spec(C) are the structure maps, and P1 ⊂ P2 is

a choice of line. It is well-known that CH1(Spec(C), 1) = C× ([6], see Example 5.3
below), and thus via restriction we have the isomorphisms:

CH2(P2, 1) � CH2(P1
0, 1) � C×;

moreover under this isomorphism,

ξ �→
2∏

j=0

f j(q j) = −1 ∈ C×.

Hence ξ ∈ CH2(P2, 1) is a nonzero 2-torsion class.5

4 A special thanks to Rob de Jeu for supplying us this idea.
5 Matt Kerr informed us of an alternate and slick approach to this example via the definition given in
Example 4.7(ii). Namely one need only add Tame{z1/z0 , z2/z0} = (− f−1

0 , �0)+ ( f−1
1 , �1)+ ( f−1

2 , �2)
to ξ to get the 2-torsion class (−1, �0), which is the same as ξ in CH2(P2, 1).
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(ii) Again X = P2. Let C ⊂ X be the nodal rational curve given by z2
2z0 = z3

1+z0z2
1

(in affine coordinates (x, y) = (z1/z0, z2/z0) ∈ C2, C is given by y2 = x3 + x2). Let
C̃ � P1 be the normalization of C, with morphism π : C̃ → C. Put P = (0, 0) ∈ C
(node) and let {R, Q} = π−1(P). Choose f ∈ C(C̃)× = C(C)×, such that ( f )C̃ =

R− Q. Then ( f )C = 0 and hence ( f , C) ∈ CH2(P2, 1) defines a higher Chow cycle.
∖

•R
∖

/

Q•
/

⏐⏐⏐⏐⏐⏐⏐�

∖/

•P/∖

Exercise 4.9. Show that ( f , C) = 0 ∈ CH2(P2, 1).

5 A Short Detour via Milnor K-Theory

This section provides some of the foundations for the previous section. In the first
part of this section, we follow closely the treatment of Milnor K-theory provided in
[2], which allows us to provide an abridged definition of the higher Chow groups
CHr(X, m), for 0 ≤ m ≤ 2. The reader with pressing obligations who prefers to
work with concrete examples may skip this section, without losing sight of the main
ideas presented in this paper.

Let F be a field, with multiplicative group F×, and put T (F×) =
⊕

n≥0 T n(F×),
the tensor product of the Z-module F×. Here T 0(F×) := Z, F× = T 1(F×), a �→ [a].
If a � 0, 1, set ra = [a]⊗ [1− a] ∈ T 2(F×). The two-sided ideal R generated by the
{ra}’s is graded, and we put:

KM
• F =

T (F×)

R
=
⊕

n≥0

KM
n F, (Milnor K-theory).

For example, K0(F) = Z, K1(F) = F×, and KM
2 (F) is the abelian group generated

by symbols {a, b}, subject to the Steinberg relations:

{a1a2, b} = {a1, b}{a2, b}
{a, 1− a} = 1, for a � 0, 1

{a, b} = {b, a}−1
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Furthermore, one can also show that:

{a, a} = {−1, a} = {a, a−1} = {a−1, a}, and {a,−a} = 1. (7)

Quite generally, one can argue that KM
n (F) is generated {a1, . . . , an},

a1, . . . , an ∈ F×, subject to:

(i) (a1, . . . , an) �→ {a1, . . . , an},
is a multilinear function from F× × · · · × F× → KM

n (F),

(ii) {a1, . . . , an} = 0,

if ai + ai+1 = 1 for some i < n.
Next, let us assume given a field F with discrete valuation ν : F× → Z, with

corresponding discrete valuation ring OF := {a ∈ F | ν(a) ≥ 0}, and residue field
k(ν). One has maps T : KM• (F) → KM

•−1(k(ν)). Choose π ∈ F× such that ν(π) = 1,
and note that F× = O×F · πZ. For example, if we write a = a0π

i, b = b0π
j ∈ KM

1 (F),
then T (a) = i ∈ Z = KM

0 (k(ν)) and

T {a, b} = (−1)i j a j

bi
∈ k(ν)× = KM

1 (k(ν)) (Tame symbol).

5.1 The Gersten–Milnor Complex

The reader may find [41] particularly useful regarding the discussion in this sub-
section. Let OX be the sheaf of regular functions on X, with sheaf of units O×

X . As
in [30], we put

K M
r,X :=

(
O×

X ⊗ · · · ⊗ O×
X︸��������������︷︷��������������︸

r times

)/
J , (Milnor sheaf),

where J is the subsheaf of the tensor product generated by sections of the form:

{
τ1 ⊗ · · · ⊗ τr

∣
∣∣ τi + τ j = 1, for some i and j, i � j

}
.

For example, K M
1,X = O×

X . Introduce the Gersten–Milnor complex (a flasque resolu-
tion of K M

r,X , see [17, 33]):

K M
r,X → KM

r (C(X))→
⊕

cdXZ=1

KM
k−1(C(Z)) → · · ·

→
⊕

cdX Z=r−2

KM
2 (C(Z)) →

⊕

cdXZ=r−1

KM
1 (C(Z))→

⊕

cdXZ=r

KM
0 (C(Z)) → 0.
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We have
KM

0 (C(Z)) = Z, KM
1 (C(Z)) = C(Z)×,

KM
2 (C(Z)) =

{
symbols { f , g}/Steinberg relations

}
.

The last three terms of this complex then are:

⊕

cdXZ=r−2

KM
2 (C(Z))

T→
⊕

cdXZ=r−1

C(Z)× div→
⊕

cdXZ=r

Z → 0

where div is the divisor map of zeros minus poles of a rational function, and T is the
Tame symbol map

T :
⊕

codimXZ=r−2

KM
2 (C(Z)) →

⊕

codimX D=r−1

KM
1 (C(D)),

defined earlier.

Definition 5.2. For 0 ≤ m ≤ 2,

CHr(X, m) = Hr−m
Zar (X, K M

r,X ).

Example 5.3.

CH1(X, 1) � H0
Zar(X, K M

1,X) � H0
Zar(X, O×

X ) � C×.

Remark 5.4. The higher Chow groups CHr(W, m) were introduced in [6], and are
defined for any non-negative integers r and m, and quasi-projective variety W over
a field k. The formula in Definition 5.2 is only for smooth varieties X.

6 Hypercohomology

An excellent reference for this is the chapter on spectral sequences in [25].
The reader familiar with hypercohomology can obviously skip this section. Let

(S •≥0, d) be a (bounded) complex of sheaves on X. One has a Cech double complex

(
C•(U , S •), d, δ

)
,

where U is an open cover of X. The k-th hypercohomology is given by the k-th total
cohomology of the associated single complex

(
M• := ⊕i+ j=•Ci(U , S j), D = d ± δ

)
,

viz.,
Hk(S •) := lim→

U

Hk(M•).
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Associated to the double complex are two filtered subcomplexes of the associated
single complex, with two associated Grothendieck spectral sequences abutting to
Hk(S •) (where p + q = k):

′Ep,q
2 := Hp

δ (X, H q
d (S •))

′′Ep,q
2 := Hp

d (Hq
δ (X, S •))

The first spectral sequence shows that quasi-isomorphic complexes yield the same
hypercohomology:

Alternate take. Two complexes of sheaves K •
1 , K •

2 are said to be quasi-isomorphic
if there is a morphism h : K •

1 → K •
2 inducing an isomorphism on cohomology

h∗ : H •(K •
1 )

∼−→ H •(K •
2 ). Take a complex of acyclic sheaves (K •, d) (viz.,

Hi>0(X, K j) = 0 for all j) quasi-isomorphic to S •. Then by the second spectral
sequence:

Hk(S •) := Hi(H0(X, K •)
)
.

For example if L•,• is an acyclic resolution of S •, then the associated single com-
plex K • = ⊕i+ j=•Li, j is acyclic and quasi-isomorphic to S •.

Example 6.1. Let (Ω•X , d), (E •X , d) be the complexes of sheaves of holomorphic and
C-valued C∞ forms respectively. By the holomorphic and C∞ Poincaré lemmas,
one has quasi-isomorphisms:

(C → 0 → · · · ) ≈−→ (Ω•X , d)
≈−→ (E •X , d),

where the latter two are Hodge filtered, using an argument similar to that in (12)
below. The first spectral sequence of hypercohomology shows that

Hk(X, C) � Hk(C → 0 → · · · ) � Hk((F p)Ω•X) � Hk((F p)E •X ).

The second spectral sequence of hypercohomology applied to the latter term, using
the known acyclicity of E •X , yields

Hk(F pE •X ) � ker d : F pEk
X → F pEk

X

dF pEk−1
X

� F pHk
DR(X),

where the latter isomorphism is due to the Hodge to de Rham spectral sequence.

7 Deligne Cohomology

A standard reference for this section is [19] (also see [27]). For a subring A ⊆ R,
we introduce the Deligne complex

AD (r) : A(r) → OX → Ω1
X → · · · → Ωr−1

X︸����������������������������︷︷����������������������������︸
call this Ω•<r

X

.
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Definition 7.1. Deligne cohomology is given by the hypercohomology:

Hi
D (X, A(r)) = Hi(AD (r)).

Example 7.2. When A = Z, we have a quasi-isomorphism

ZD (1) ≈ O×
X [−1],

hence

H2
D (X, Z(1)) � H1(X, O×

X ) =: Pic(X) � CH1(X).

H1
D (X, Z(1)) � H0(X, O×

X ) � C× � CH1(X, 1).

Example 7.3. Alternate take on H1
D (X, Z(1)). Look at the Cech double complex:

C 0(U , Z(1)) → C 0(U , OX)

δ

⏐⏐⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐⏐⏐�δ

C 1(U , Z(1)) → C 1(U , OX)

So a class in H1
D (X, Z(1)) is represented (after a suitable refinement) by (λ :=

{λαβ}, f := { fγ}) ∈ (Γ(Uα∩Uβ, Z(1)), Γ(Uγ, OX)
)
, with fβ− fα =: δ( f )αβ=λαβ. Note

that exp( f ) ∈ H0(X, O×
X ) determines the isomorphism H1

D (X, Z(1))�H0(X,O×
X )�C×.

Definition 7.4. The product structure on Deligne cohomology

Hk
D (X, Z(i))⊗ Hl

D (X, Z( j)) → Hk+l
D (X, Z(i + j)),

is induced by the multiplication of complexes μ : ZD (i) ⊗ ZD ( j) → ZD (i + j)
defined by

μ(x, y) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x · y, if deg x = 0,

x ∧ dy, if deg x > 0 and deg y = j > 0,

0, otherwise.

Example 7.5. For example, this product structure implies that

H1
D (X, Z(1))∪ H1

D (X, Z(1)) = {0} ⊂ H2
D (X, Z(2)).

Recall from Hodge theory, one has the isomorphism:

Hi(Ω•≥r
X ) � FrHi(X, C).

This together with the short exact sequence of complexes:

0 → Ω•≥r
X → Ω•X → Ω•<r

X → 0,

implies that

Hi(Ω•<r
X ) � Hi(X, C)

FrHi(X, C)
.
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Thus applying H•(−) to the short exact sequence:

0 → Ω•<r
X [−1]→ AD (r) → A(r) → 0,

yields the short exact sequence:

0 → Hi−1(X, C)

Hi−1(X, A(r)) + FrHi−1(X, C)
︸����������������������������������︷︷����������������������������������︸

=JA

(
Hi−1(X,A(r))

)

→ Hi
D (X, A(r))→ ΓA

(
Hi(X, A(r))

)→ 0. (8)

If we consider A = Z, and i = 2r, then (8) becomes:

0 → Jr(X) → H2r
D (X, Z(r)) → Hgr(X) → 0,

where Jr(X) = J
(
H2r−1(X, Z(r))

)
is the Griffiths jacobian, and where the Hodge

group Hgr(X) in untwisted form can be identified with:

{w ∈ H2r(X, Z) | w ∈ Hr,r(X, C)},
via ker

(
H2r(X, Z) → H2r(Ω•<r

X )
)
). In particular, Hgr(X) includes the torsion classes

in H2r(X, Z(r)).
Next, if A = Z and i ≤ 2r−1, then from Hodge theory, Hi(X, Z(r))∩FrHi(X, C)

is torsion. In particular, there is a short exact sequence:

0 → Hi−1(X, C)

FrHi−1(X, C) + Hi−1(X, Z(r))
→ Hi

D (X, Z(r)) → Hi
tor(X, Z(r))→ 0,

where Hi
tor(X, Z(r)) is the torsion subgroup of Hi(X, Z(r)). The compatibility of

Poincaré and Serre duality yields the isomorphism:

Hi−1(X, C)

FrHi−1(X, C) + Hi−1(X, Z(r))
� Fd−r+1H2d−i+1(X, C)∨

H2d−i+1(X, Z(d − r))
.

Next, if A = R and i = 2r − 1, then Hi
tor(X, R(r)) = 0; moreover if we set

πr−1 : C = R(r)⊕ R(r − 1) → R(r − 1)

to be the projection, then we have the isomorphisms:

H2r−1
D (X, R(r)) � H2r−2(X, C)

FrH2r−2(X, C) + H2r−2(X, R(r))

πr−1

−→
�

H2r−2(X, R(r− 1))

πr−1
(
FrH2r−2(X, C)

)

=: Hr−1,r−1(X, R(r − 1))

� {
Hd−r+1,d−r+1(X, R(d − r + 1))

}∨
.
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7.6 Alternate Take on Deligne Cohomology

Let h : (A•, d) → (B•, d) be a morphism of complexes. We define

Cone
(
A• h−→ B•

)

by the formula

[
Cone

(
A• h−→ B•

)]q := Aq+1 ⊕ Bq, δ(a, b) = (−da, h(a)+ db).

Example 7.7. Cone
(
A(r)⊕ FrΩ•X

ε−l−→ Ω•X
)
[−1] is given by:

A(r) → OX
d−→ ΩX

d−→ · · · d−→ Ωr−2
X

(0,d)−−→ (
Ωr

X ⊕ Ωr−1
X

)

δ−→ (Ωr+1
X ⊕ Ωr

X
) δ−→ · · · δ−→ (Ωd

X ⊕ Ωd−1
X

)→ Ωd
X

Using the holomorphic Poincaré lemma, one can show that the natural map

AD (r) → Cone
(
A(r)⊕ FrΩ•X

ε−l−→ Ω•X
)
[−1],

is a quasi-isomorphism.6 Thus

Hk
D (X, A(r)) � Hr(Cone

(
A(r)⊕ FrΩ•X

ε−l−→ Ω•X
)
[−1]

)
.

Let D•
X be the sheaf of currents acting on C∞ compactly supported (2d − •)-

forms. Further, let D p,q
X be the sheaf of currents acting on C∞ compactly supported(d−

p, d − q)-forms. One has a decomposition

D•
X =

⊕

p+q=•
D

p,q
X ,

with a morphism of complexes E •X ↪→ D•
X

(
induced by ω �→ (2πi)−d

∫

X
ω∧(−)

)
, and

with E
p,q

X ↪→ D
p,q
X , compatible with both ∂ and ∂̄. Likewise, let C •

X = C2d−•,X(A(r))
be the sheaf of (Borel–Moore) chains of real codimension •. Identifying the constant
sheaf A(r) with the complex A(r) → 0 → · · · → 0, we have quasi-isomorphisms

A(r)
≈−→ C •

X (A(r)), E •X
≈−→ D•

X

where the latter is (Hodge) filtered.

6 Indeed first consider (a, b) ∈ Ωr
X ⊕Ωr−1

X
δ�→ (−da, db− a) ∈ Ωr+1

X ⊕Ωr
X . Then δ(a, b) = (0, 0) ⇔

da = 0 & a = db ⇔ a = db. Therefore ker δ/Im(0, d) � Ωr−1
X /dΩr−2

X = H r−1(AD (r)). Next, for

j ≥ 1, (a, b) ∈ Ω
r+ j
X ⊕ Ω

r+ j−1
X , δ(a, b) = 0 ⇔ (a, b) = δ(−b, 0).
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Observe that D•
X(X)

)
[−1] is a subcomplex of Cone

(
C •

X (X, A(r))⊕ FrD•
X(X)

ε−l−→
D•

X(X)
)
[−1]. Hence the cone complex description of:

Hi
D (X, A(r)) � Hi(Cone

(
C •

X (X, A(r))⊕ FrD•
X(X)

ε−l−→ D•
X(X)

)
[−1]

)
,

yields the exact sequence7:

· · · → Hi−1(X, A(r))⊕ FrHi−1(X, C) → Hi−1(X, C) (9)

→ Hi
D (X, A(r))→ Hi(X, A(r))⊕ FrHi(X, C)→ · · ·

7.8 Deligne–Beilinson Cohomology

The formulation of Deligne cohomology in Definition 7.1 above, which incidentally
can be defined in the same way for any complex manifold (and is also called analytic
Deligne cohomology), works well for projective algebraic manifolds X, but not so
well for smooth open U ⊂ X. First of all, the naive Hodge filtration on U, viz., Ω•≥r

U
is the wrong choice. For example, if W is a Stein manifold, then Hq(W, Ωi

W ) = 0
for all i and where q ≥ 1. This tells us, via the Grothendieck spectral sequences
associated to hypercohomology, that

H j(W, C) � H0(W, Ω
j
W )d−closed

dH0(W, Ω
j−1
W )

.

(Note: If W is a smooth affine variety, then by Grothendieck, one can use alge-
braic differential forms.) We hardly expect H j(W, C) = F jH j(W, C) to be the case in
general. Secondly, analytic Deligne cohomology fails to take into consideration the
underlying algebraic structure of U. For instance H1

D (U, Z(1)) = H0(U, O×
U,an), i.e.

the non-zero analytic functions on U. It would be preferable to recover the non-zero
algebraic functions on U instead. Beilinson’s remedy is to incorporate Deligne’s
logarithmic complex into the picture. By a standard reduction, we may assume that
j : U = X\Y ↪→ X, where Y is a normal crossing divisor8 with smooth components.
We define Ω•X〈Y〉 to be the de Rham complex of meromorphic forms on X, holomor-
phic on U, with at most logarithmic poles along Y. One has a filtered complex

FrΩ•X〈Y〉 = Ω•≥r
X 〈Y〉,

with Hodge to de Rham spectral sequence degenerating at E1. This gives

FrHi(U, C) = Hi(FrΩ•X〈Y〉) ⊂ Hi(Ω•X〈Y〉) = Hi(U, C), (10)

7 The reader familiar with Deligne homology will see this definition as the same thing up to twist.
Indeed this definition already incorporates Poincaré duality.
8 Y is a normal crossing divisor, which in local analytic coordinates (z1 , . . . , zd) on X, Y is given by
z1 · · · z� = 0, and so Ω1

X〈Y〉 has local frame
{
dz1/z1, . . . , dz�/z�, dz�+1, . . . , dzd

}
.
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and defines the correct Hodge filtration. The weight filtration is characterized in
terms of differentials with residues along Y [•], where Y [•] is the simplicial complex
made up of the intersections of the irreducible components of Y.

Definition 7.9. Deligne–Beilinson cohomology is given by

Hi
D (U, A(r)) := Hi(AD (r)),

where
AD (r) := Cone

(
R j∗A(r)

⊕
FrΩ•X〈Y〉 ε−l−→ R j∗Ω•U

)
[−1].

Here ε and l are the natural maps obtained after a choice of (the direct image of)
injective resolutions of A(r) and Ω•U . One shows that this is independent of the good
compactifications of U. One has a short exact sequence:

0 → Hi−1(U, C)

FrHi−1(U, C) + Hi−1(U, A(r))
→ Hi

D (U, A(r)) → Fr
⋂

Hi(U, A(r)) → 0,

(11)
where

Fr
⋂

Hi(U, A(r)) := ker
(
FrHi(U, C)⊕ Hi(U, A(r))

ε−l−→ Hi(U, C)
)
.

We would like a more earthly description of Hi
D (U, A(r)). First observe that there

are filtered quasi-isomorphisms

(Fr, Ω•X〈Y〉) ↪→ (Fr, E •X 〈Y〉) ↪→ (Fr, D•
X〈Y〉), (12)

where
FrD•

X〈Y〉 = {FrΩ•X〈Y〉} ⊗Ω•X D•
X .

To see this, one uses the argument in [27]. By a spectral sequence argument, it is
enough to show that the associated graded pieces in (12) are quasi-isomorphic, viz.,

Ωr
X〈Y〉 ≈ Ωr

X〈Y〉 ⊗OX E 0,•
X ≈ Ωr

X〈Y〉 ⊗OX D0,•
X ,

where the differential is now 1 ⊗ ∂. One now applies the ∂ lemma together with
the flatness of Ωr

X〈Y〉 over OX , and using OX as ∂-linear. According to [34], D•
X〈Y〉

admits the interpretation of the space of currents acting on those (compactly sup-
ported) forms on X which “vanish holomorphically” on Y. Let C i(X, A(r)) be the
chains of real codimension i in X, and C i

Y (X, A(r)) the subspace of chains supported
on Y. Put

C i(X, Y, A(r)) :=
C i(X, A(r))

C i
Y (X, A(r))

.

One has a map of complexes:

(
C •(X, Y, A(r)), d

)→ (
D•

X〈Y〉(X), d
)
,
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which induces a quasi-isomorphism

C •(X, Y, A(r))⊗ C → D•
X〈Y〉(X).

Definition 7.10. Deligne–Beilinson cohomology is given by

Hi
D (U, A(r)) := Hi(Cone

(
C •(X, Y, A(r))

⊕
FrD•

X〈Y〉(X)
ε−l−→ (D•

X〈Y〉(X)
)
[−1]

)
.

Example 7.11. Let us compute H1
D (U, Z(1)). First of all {ξ} ∈ H1

D (U, Z(1)) is rep-
resented by a D-closed triple:

ξ = (a, b, c) ∈ (C 1(X, Y, Z(1))
⊕

F1D1
X〈Y〉(X)

⊕
D0

X〈Y〉(X)
)
,

where da = 0, db = 0 and a − b = dc. Note that ∂-regularity implies that b ∈
Ω1

X〈Y〉(X)d−closed. Let Ω̂1
U be the sheaf of d-closed holomorphic 1-forms on U, and

let’s make the identification C× = C/Z(1). From the short exact sequence:

0 → C× → O×
U

d log−−→ Ω̂1
U → 0,

and the relation a− b = dc, it follows that

b ∈ ker
(
H0(U, Ω̂1

U) → H1(U, C×)
)
,

and hence b = d log f for some f ∈ O×
U (U). Since b ∈ Ω1

X〈Y〉(X), it follows that
f ∈ O×

U,alg(U). Thus in Deligne cohomology9

{ξ} = (2πiTξ, Ωξ, Rξ
)
,

where Tξ := δ f−1(R−) is given by integration along f−1[−∞, 0], and Ωξ = [d log f ],
Rξ = [log f ] are the obvious defined currents.

Corollary 7.12.

cl1,1 : CH1(U, 1) := O×
U,alg(U)

∼−→ H1
D (U, Z(1)),

is an isomorphism.

Remark 7.13. We observe in passing the following. We deduce from (11) the short
exact sequence:

0 → H0(U, C)

F1H0(U, C) + H0(U, Z(1))
→ H1

D (U, Z(1)) → Γ
(
H1(U, Z(1))

)→ 0,

9 For compactly supported ω ∈ E2d−1
U,c , and f ∈ O×

U (U),
∫

U

d f

f
∧ ω =

∫

U
d
(

log f ∧ ω
)−

∫

U\ f−1 [−∞,0]
log f ∧ dω = 2πi

∫

f−1[−∞,0]
ω + d[log f ](ω),

where we use the principal branch of log.
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which in turn from Corollary 7.12 yields the short exact sequence:

0 → C× → CH1(U, 1)
d log−−→ Γ

(
H1(U, Z(1))

)→ 0.

Remark 7.14. Let U/C be a smooth quasi-projective variety. If H•
D ,an(U, Z(•)) de-

notes that analytic Deligne cohomology, then we know that H2
D ,an(U, Z(1)) �

H1(U, O×
U,an), the holomorphic isomorphism classes of holomorphic line bundles

over U. For Deligne–Beilinson cohomology, and using the fact that H1(U, Z(1)) =
W0H1(U, Z(1)), it follows that there is a short exact sequence:

0 → J
(
H1(U, Z(1))

)→ H2
D (U, Z(1))

α−→ F1 ∩ H2(U, Z(1))→ 0,

but in general

Γ
(
H2(U, Z(1))

)
= F0 ∩W0H2(U, Z(1)) � F1 ∩ H2(U, Z(1)),

where the shift F0 �→ F1 is really the same filtration, but the latter is in “untwisted”
terminology. To remedy this, let us put H2

H (U, Z(1)) = α−1(Γ
(
H2(U, Z(1))

))
. This

turns out to be the same thing as the image H2
D (U, Z(1)) → H2

D (U, Z(1)), where
U is any smooth projective compactification of U. Then H2

H (U, Z(1)) amounts to a
special instance of Beilinson’s absolute Hodge cohomology (see [3]). We then have
the following:

Proposition 7.15. Let U/C be a smooth quasi-projective variety. Then:

H2
H (U, Z(1)) � H1

Zar(U, O×
U,alg)

Proof. First recall that

H1
Zar(U, O×

U,alg) = H1
Zar(U, K M

1,U) = CH1(U).

There is a commutative diagram:

0 → CH1
hom(U) → CH1(U) → CH1(U)

CH1
hom(U)

→ 0

Φ1

⏐⏐⏐⏐⏐⏐⏐� cl1

⏐⏐⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐⏐⏐�#

0 → J
(
H1(U, Z(1))

)→ H2
H (U, Z(1)) → Γ

(
H2(U, Z(1))

)→ 0

It suffices to show that Φ1 is an isomorphism. Let U be a smooth projective com-
pactification of U. We may assume that Y := U\U is a divisor. With regard to the
short exact sequence:

0 → H1(U, Z(1)) → H1(U, Z(1))→ H2
Y (U, Z(1))◦ → 0,
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it is clear that J
(
H2

Y (U, Z(1))◦
)
= 0, and hence the following diagram finishes the

proof:

CH1
Y (U)◦ → CH1

hom(U) → CH1
hom(U) → 0

⏐⏐⏐⏐⏐⏐⏐�#
⏐⏐⏐⏐⏐⏐⏐�#

⏐⏐⏐⏐⏐⏐⏐�Φ1

ΓH2
Y(U, Z(1))◦ → J

(
H1(U, Z(1))

)→ J
(
H1(U, Z(1))

)→ 0

$%

8 Examples of Hr−m
Zar

(X,KM
r,X

) and Corresponding Regulators

The reader is encouraged to consult for example [35, 43] (as well as works due to
Bloch, Beilinson, Esnault and Goncharov), for various earlier incarnations of reg-
ulator type currents for higher Chow cycles. A complete description of the Beilin-
son/Bloch regulator in terms of polylogarithmic type currents for complex varieties
can be found in [31, 32].

8.1 Case m = 0 and CY Threefolds

In this case we recall that

Hr
Zar(X, K M

r,X ) = CHr(X).

The fundamental class map:

clr : CHr(X) → H2r
DR(X, C) � H2d−2r

DR (X, C)∨,

can be defined in a number of equivalent ways:

(i) (See [18].) The d log map K M
r,X → Ωr

X , { f1, . . . , fr} �→ ∧
j d log f j, induces a

morphism of complexes in the Zariski topology {K M
r,X → 0} → Ω•≥r

X [r], and
thus using GAGA,

CHr(X) = Hr
Zar(X, K M

r,X ) = Hr({K M
r,X → 0})→ Hr(Ω•≥r

X [r]
)

= H2r(Ω•≥r
X ) = FrH2r

DR(X, C).

(ii) Let V ⊂ X be a subvariety of codimension r in X, and {w} ∈ H2d−2r
DR (X, C), (de

Rham cohomology). Define

clr(V)(w) =
1

(2πi)d−r
δV :=

1

(2πi)d−r

∫

V∗
w,
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and extend to CHr(X) by linearity, where V∗ = V\Vsing. Note that dimR V =
2d−2r. The easiest way to show that clr is well-defined (finite volume, closed
current) is to first pass to a desingularization of V above, and apply a Stokes’
theorem argument. The proof of a more direct approach can be found, for
example, in [25].
(One way to connected (i) and (ii) is as follows. If we write Γ for H0(X,−),
then there is a diagram that commutes up to sign:

ΓKM
r (C(X)) → Γ

⊕

cdXY=1 KM
r−1(C(Y)) → · · · → Γ

⊕

cdX V=r KM
0 (C(X))

∫

X
d logr

(2πi)d

⏐⏐⏐⏐⏐⏐⏐�

∫

Y

d logr−1

(2πi)d−1

⏐⏐⏐⏐⏐⏐⏐� · · · ∫

V
d log0

(2πi)d−r

⏐⏐⏐⏐⏐⏐⏐�

ΓFrD r
X

d−→ ΓFrD r+1
X

d−→ · · · d−→ ΓFrD2r
X

where

d logr
({ f1, . . . , fr}) =

r∧

j=1

d log f j,

∫

V

d log0

(2πi)d−r
=

1

(2πi)d−r
δV .

From the aforementioned filtered quasi-isomorphism Ω•X ↪→ D•
X , the prescrip-

tions in (i) and (ii) can be seen as almost tautologies.)
(iii) Thirdly one has a fundamental class generator {V} ∈ H2d−2r(V, Z(d − r)) �

H2r
V (X, Z(r)) → H2d−2r(X, Z((d − r)) � H2r(X, Z(r)). In summary we have

clr : CHr(X) → Hgr(X). This map fails to be surjective in general for r > 1
(see [36]).

Conjecture 8.2 (HodgeQ).

clr : CHr(X)⊗Q → Hgr(X)⊗Q, is sur jective.

Next, the Abel–Jacobi map:

Φr : CHr
hom(X) → Jr(X),

is defined as follows. Recall that

Jr(X) =
H2r−1(X, C)

FrH2r−1(X, C) + H2r−1(X, Z(r))
� Fd−r+1H2d−2r+1(X, C)∨

H2d−2r+1(X, Z(d − r))
,

is a compact complex torus, called the Griffiths jacobian.

Prescription for Φr: Let ξ ∈ CHr
hom(X). Then ξ = ∂ζ bounds a 2d − 2r + 1 real

dimensional chain ζ in X. Let {w} ∈ Fd−r+1H2d−2r+1(X, C). Define:

Φr(ξ)({w}) = 1

(2πi)d−r

∫

ζ

w (modulo periods).
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That Φr is well-defined follows from the fact that F�Hi(X, C) depends only on the
complex structure of X, namely

F�Hi(X, C) � F�Ei
X,d−closed

d
(
F�Ei−1

X

) ,

where we recall that Ei
X are the C∞ complex-valued i-forms on X.

Alternate take for Φr: Let ξ ∈ CHr
hom(X). First observe that

H2r−1
|ξ| (X, Z) � H2d−2r+1(|ξ|, Z) = 0,

as dimR |ξ| = 2d − 2r. Secondly there is a fundamental class map ξ �→ {ξ} ∈
H2d−2r(|ξ|, Z(d − r)) � H2r

|ξ|(X, Z(r)) (Poincaré duality). Further, since ξ is nulho-
mologous, we have by duality

[ξ] ∈ H2r
|ξ|(X, Z(r))◦ := ker

(
H2r
|ξ|(X, Z(r))→ H2r(X, Z(r))

)
.

Hence ξ determines a morphism of MHS, Z(0) → H2r
|ξ|(X, Z(r))◦. From the short

exact sequence of MHS,

0 → H2r−1(X, Z(r))→ H2r−1(X\|ξ|, Z(r)) → H2r
|ξ|(X, Z(r))◦ → 0,

we can pullback via this morphism to obtain another short exact sequence of MHS,

0 → H2r−1(X, Z(r)) → E → Z(0) → 0.

Then Φr(ξ) := {E} ∈ Ext1MHS
(
Z(0), H2r−1(X, Z(r))

)
. This class {E} is easy to calcu-

late in Jr(X), in terms of a membrane integral. Note that via duality,

E ⊂ H2r−1(X\|ξ|, Z(r)) � H2d−2r+1(X, |ξ|, Z(d − r)),

and that if ζ is a real 2d − 2r + 1 chain such that ∂ζ = ξ on X, then {ζ} ∈
H2d−2r+1(X, |ξ|, Z). One can show that the class x ∈ W0E corresponding to the
current

1

(2πi)d−r

∫

ζ

,

maps to 1 ∈ Z(0). Now choose y ∈ F0W0EC also mapping to 1 ∈ Z(0). By Hodge
type alone, the current corresponding to x − y in the Poincaré dual description of
Jr(X) is the same as for x = 1

(2πi)d−r

∫

ζ
, which is precisely the classical description

of the Griffiths Abel–Jacobi map. This next result is a consequence of the work of
Griffiths (see [26], as well as Sect. 14 of [36]).

Theorem 8.3. If Fr−1H2r−1(X, C) ∩ H2r−1(X, Q(r)) = 0, then there is an induced
map

Φr : Griffr(X) → Jr(X).
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In particular Φr
(
CHr

alg(X)
)
= 0 ∈ Jr(X). This is the case for a general CY threefold

with r = 2.

Example 8.4. We define the cycle class map clr : CHr(X) → H2r
D (X, Z(r)). Recall

the short exact sequence:

0 → Jr(X) → H2r
D (X, Z(r)) → Hgr(X)→ 0.

Let ξ ∈ CHr(X) with support |ξ|. One has a similar LES as in (9):

· · · → H2r−1
|ξ| (X, Z(r))⊕ FrH2r−1

|ξ| (X, C) → H2r−1
|ξ| (X, C)

→ H2r
D ,|ξ|(X, Z(r)) → H2r

|ξ|(X, Z(r))⊕ FrH2r
|ξ|(X, C)

x−y−−→ H2r
|ξ|(X, C)→ · · ·

Via Poincaré duality, one has cycle class maps

ξ �→ [
(2πi)r−d({ξ}, δξ

)] ∈ ker
(
H2r
|ξ|(X, Z(r))⊕ FrH2r

|ξ|(X, C) → H2r
|ξ|(X, C)

)
;

moreover recall that H2r−1
|ξ| (X, C) = 0 (weak purity). Thus we have a class [ξ] ∈

H2r
D ,|ξ|(X, Z(r)). Now use the forgetful map

H2r
D ,|ξ|(X, Z(r)) → H2r

D (X, Z(r)),

to define clr(ξ) ∈ H2r
D (X, Z(r)). From the injection

H2r
D ,|ξ|(X, Z(r)) ↪→ H2r

|ξ|(X, Z(r))⊕ FrH2r
|ξ|(X, C),

and the aforementioned forgetful map, in terms of the cone complex, clr(ξ) is repre-
sented by

(
(2πi)r−d{ξ}, (2πi)r−dδξ, 0

)
. If ξ ∼hom 0, then ξ = ∂ζ, (2πi)r−dδξ = dS for

some S ∈ FrD2r−1
X (X). So

D((2πi)r−dζ, S , 0) +
(
(2πi)r−d{ξ}, (2πi)r−dδξ, 0

)
=

(

(0, 0, (2πi)r−d
∫

ζ

− S
)

.

For ω ∈ Fd−r+1H2d−2r+1(X, C),

(2πi)r−d
∫

ζ

ω − S (ω) =
1

(2πi)d−r

∫

ζ

ω,

by Hodge type. This is the Griffiths Abel–Jacobi map.

Both maps (clr, Φr) can be combined to give

clr,0 : CHr(X) = CHr(X, 0)→ H2r
D (X, Z(r)),

with commutative diagram:
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0 → CHr
hom(X) → CHr(X) → CHr(X)

CHr
hom(X) → 0

Φr ↓ clr,0 ↓ clr ↓

0 → Jr(X) → H2r
D (X, Z(r)) → Hgr(X) → 0.

8.5 Deligne Cohomology and Normal Functions

Suppose that ξ ∈ CHr(X) is given and that Y ⊂ X is a smooth hypersurface. Then
there is a commutative diagram

CHr(X) → CHr(Y)⏐⏐⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐⏐⏐�

H2r
D (X, Z(r)) → H2r

D (Y, Z(r));

Further, if we assume that the restriction ξY ∈ CHhom(Y) is null-homologous, then
clr,0(ξ) ∈ H2r

D (X, Z(r)) �→ Jr(Y) ⊂ H2r
D (Y, Z(r)). Next, if Y = X0 ∈ {Xt}t∈S is a

family of smooth hypersurfaces of X, then such a ξ determines a holomorphically
varying map νξ(t) ∈ Jr(Xt), called a normal function. The class clr(ξ) = δ(νξ) ∈
Hgr(X) is called the topological invariant of νξ, i.e. νξ determines clr(ξ). In [31],
these ideas are extended in complete generality to the situation of the higher Chow
groups, where the notion of “arithmetic normal functions” are introduced.

Example 8.6 (Griffiths’ famous example ([26])). Let:

X = V(z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + z5

5) ⊂ P5

be the Fermat quintic fourfold. Consider these three copies of P2 ⊂ X:

L1 := V(z0 + z1, z2 + z3, z4 + z5),

L2 := V(z0 + ξz2, z2 + ξz3, z4 + z5),

L3 := V(z0 + ξz1, z2 + ξz3, z4 + ξz5).

where ξ is a primitive 5-th root of unity. Then L1 • (L2 − L3) = 1 � 0, hence
ξ := [L2− L3] is a non-zero class in H2,2(X, Z(2)). Further, if {Xt}t∈U⊂P1 is a general
pencil of smooth hyperplane sections of X, and if t ∈ U, then it is well known
that ξt ∈ CH2

hom(Xt) by a theorem of Lefschetz. Since δ(νξ) = [L2 − L3] � 0, it
follows that νξ(t) is non-zero for most t ∈ U. Therefore for general t ∈ U, Griff2(Xt)
contains an infinite cyclic group by Theorem 8.3. The upshot is that if:

Y = V
(

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 +

(
4∑

j=0

a jz j
)5
)

⊂ P4,
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for general a0, . . . , a4 ∈ C, then Griff2(Y) � 0 contains an infinite cyclic sub-
group. H. Clemens was the first to show that the Griffiths group of a general quintic
threefold in P4 is (countably) infinite dimensional, when tensored over Q. Later it
was shown by C. Voisin that the same holds for general CY threefolds. The idea is
to make use of the rational curves on such threefolds.

Theorem 8.7 (See [7, 13, 22, 24, 26, 45]). Let X ⊂ P4 be a (smooth) threefold of
degree d. If d ≤ 4, then Φ2 : CH2

hom(X)
∼−→ J2(X) is an isomorphism. Now assume

that X is general. If d ≥ 6 then Im
(
Φ2
)

is torsion. If d = 5, then Im
(
Φ2
) ⊗ Q is

countably infinite dimensional.

Theorem 8.8 ([45]). If X is a general Calabi–Yau threefold, then Im
(
Φ2
)

is count-
ably infinite dimensional, when tensored over Q. In particular, since Φ2(CH2

alg(X)) =
0, it follows that Griff2(X; Q) is (countably) infinite dimensional over Q.

8.9 Case m = 1 and K3 Surfaces

Recall the Tame symbol map

T :
⊕

codimXZ=r−2

KM
2 (C(Z)) →

⊕

codimX D=r−1

KM
1 (C(D)).

Then:

CHr(X, 1) = Hr−1
Zar (X, K M

r,X ) �
{ ∑

j( f j, D j)
∣∣
∣
∑

j div( f j) = 0

T
(
Γ(
⊕

codimXZ=r−2 KM
2 (C(Z)))

)

}

.

We recall:

Definition 8.10. The subgroup of CHr(X, 1) represented by C×⊗CHr−1(X) is called
the subgroup of decomposables CHr

dec(X, 1) ⊂ CHr(X, 1). The space of indecom-
posables is given by

CHr
ind(X, 1) :=

CHr(X, 1)

CHr
dec(X, 1)

.

The map
clr,1 : CHr

hom(X, 1) → H2r−1
D (X, Z(r)),

is given by a map

clr,1 : CHr
hom(X, 1)→ Fd−r+1H2d−2r+2(X, C)∨

H2d−2r+2(X, Z(d − r))
,

defined as follows. Assume given a higher Chow cycle ξ =
∑N

i=1( fi, Zi) representing
a class in CHr

hom(X, 1). Then via a proper modification, we can view fi : Zi →
P1 as a morphism, and consider the 2d − 2r + 1-chain γi = f−1

i ([−∞, 0]). Then
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∑N
i=1 div( fi) = 0 implies that γ :=

∑N
i=1 γi defines a 2d−2r+1-cycle. Since ξ is null-

homologous, it is easy to show that γ bounds some real dimensional 2d−2r+2-chain
ζ in X, viz., ∂ζ = γ. For ω ∈ Fd−r+1H2d−2r+2(X, C), the current defining clr,1(ξ) is
given by:

clr,1(ξ)(ω) =
1

(2πi)d−r+1

[ N∑

i=1

∫

Zi\γi

ω log fi − 2πi
∫

ζ

ω
]

,

where we choose the principal branch of the log function. (This is different branch
from the one chosen in [35], for this regulator.) One can easily check that the current
defined above is d-closed. Namely, if we write ω = dη for some η ∈ Fd−r+1E2d−2r

X ,
then by a Stokes’ theorem argument, both integrals above contribute to “periods”
which cancel. The details of this argument can be found in [21], but quite generally
can be found in [32].

Using the description of real Deligne cohomology given above, and the regu-
lator formula, we arrive at the formula for the real regulator rr,1 : CHr(X, 1) →
H2r−1

D (X, R(r)) = Hr−1,r−1(X, R((r− 1)) � Hd−r+1,d−r+1(X, R(d− r+ 1))∨. Namely:

rr,1(ξ)(ω) =
1

(2πi)d−r+1

∑

j

∫

Zj

ω log | f j|.

Example 8.11. Suppose that X is a surface. Then we have

cl2,1 : CH2
hom(X, 1) → {H2,0(X)⊕ H1,1(X)}∨

H2(X, Z)
.

The corresponding transcendental regulator is defined to be

Φ2,1 : CH2
hom(X, 1) → H2,0(X)∨

H2(X, Z)
,

Φ2,1(ξ)(ω) =
∫

ζ

ω.

and real regulator

r2,1 : CH2(X, 1) → H1,1(X, R(1))∨ � H1,1(X, R(1)),

r2,1(ξ)(ω) =
1

2πi

∑

j

∫

Zj

log | f j|ω.

There is an induced map

r2,1 : CH2
ind(X, 1) → H1,1

tr (X, R(1)).

If X is a K3 surface, then CH2
hom(X, 1) = CH2(X, 1), hence there is an induced map

Φ2,1 : CH2
ind(X, 1)→ H2,0(X)∨

H2(X, Z)
.
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Theorem 8.12. (i) ([40]) Let X ⊂ P3 be a smooth surface of degree d. If d ≤ 3,
then r2,1 : CH2(X, 1) → H1,1(X, R(1)) is surjective; moreover CH2

ind(X, 1; Q) =
0. Now assume that X is general. If d ≥ 5, then Im(r2,1) is “trivial”, i.e. its
image in the transcendental part of H1,1(X, R(1)) is zero.

(ii) [Hodge-D-conjecture for K3 surfaces ([10])] Let X be a general member of
a universal family of projective K3 surfaces, in the sense of the real analytic
topology. Then

r2,1 : CH2(X, 1)⊗R → H1,1(X, R(1)),

is surjective.
(iii) ([12]) Let X/C be a general algebraic K3 surface. Then the transcendental

regulator Φ2,1 is non-trivial. Quite generally, if X is a general member of a
general subvariety of dimension 20− �, describing a family of K3 surfaces with
general member of Picard rank �, with � < 20, then Φ2,1 is non-trivial.

Remark 8.13. (i) Regarding part (iii) of Theorem 8.12, one can ask whether Φ2,1

can be non-trivial for those K3 surfaces X with Picard rank 20, (which are rigid
and therefore defined over Q)? In [12], some evidence is provided in support of
this.

(ii) One of the key ingredients in the proof of the above theorem is the existence
of plenty of nodal rational curves on a general K3 surface. Indeed, there is the
following result:

Theorem 8.14 ([11]). For a general K3 surface, the union of rational curves on X
is a dense subset in the analytic topology.

Remark 8.15. It is well known that for an elliptic curve E defined over an alge-
braically closed subfield k ⊂ C, the torsion subgroup Etor(C) ⊂ E(k). An analogous
result holds for rational curves on a K3 surface. Quite generally, the following result
which may be common knowledge among experts, seems worthwhile mentioning:

Proposition 8.16. Assume given X/C a smooth projective surface with Pg(X) :=
dimH2,0(X) > 0. If we write X/C = Xk ×k C, viz., X/C obtained by base change
from a smooth projective surface Xk defined over an algebraically closed subfield
k ⊂ C, and if C ⊂ X/C is a rational curve, then C is likewise defined over k.

Proof. By a standard spread argument, there is a smooth projective variety S/k of
dimension ≥ 0, and a k-family C � S of rational curves containing C as a general
member, with embedding h:

C
h−→ S ×k X

PrX−→ X
PrS ↘ ↙

S

Since Pg(X) > 0, there are only at most a countable number of rational curves on
X/C, and hence PrX(h(C )) = PrX(h(Pr−1

S (t))) for any t ∈ S (C). Now use the fact
that S (k) � ∅. $%
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Now suppose that X is a K3 surface defined over Q. Let Σ ⊂ X be the union of
all rational curves on X. Then Σ is defined over Q. In discussions with Matt Kerr
(personal communication), we naively raise the following:

Question 8.17. Is X(Q) ⊂ Σ(Q)?

An affirmative answer to this question would not only imply that Σ is dense in
X(C) in the usual topology, but this would also provide a nontrivial instance of
the Bloch–Beilinson conjecture on the injectivity of Abel–Jacobi maps for smooth
projective varieties defined over Q. More specifically, by an application of the con-
nectedness part of Bertini’s theorem, Σ is connected, hence CH2

hom(X/Q) = 0.

8.18 Torsion Indecomposables

The story about torsion indecomposable classes takes an interesting turn from the
geometric story presented in Theorem 8.12(i). The situation is this, and for the mo-
ment let X be any projective algebraic manifold. An elementary consequence of the
Merkurjev–Suslin theorem implies the following:

Theorem 8.19 (See [15]). The kernel of the Abel–Jacobi map

AJX :
CH2

hom(X, 1)

CH2
dec(X, 1)

→ J
( H2(X, Z(2))

H2
alg(X, Z(2))

)

,

is uniquely divisible. This implies that AJX is injective on torsion indecomposables
{

CH2
hom(X,1)

CH2
dec(X,1)

}

tor
.

(Here we remind the reader that since we are working integrally, we have an inclu-
sion that for torsion reasons, need not be an equality:

CH2
hom(X, 1)

CH2
dec(X, 1)

⊆ CH2(X, 1)

CH2
dec(X, 1)

=: CH2
ind(X, 1).)

On the other hand, one has the torsion subgroup
{
CH2

ind(X, 1)
}
tor. Put

H2
tr(X, Q(2)/Z(2)) = Cokernel

(
H2

alg(X, Q(2)/Z(2))→ H2(X, Q(2)/Z(2))
)
.

Theorem 8.20 ([29]). There is an identification

{
CH2

ind(X, 1)
}
tor

∼−→ H2
tr(X, Q(2)/Z(2)).
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In light of these two theorems, one expects that

AJX :
{CH2

hom(X, 1)

CH2
dec(X, 1)

}

tor

∼−→
{

J
( H2(X, Z(2))

H2
alg(X, Z(2))

)}

tor
.

For example, suppose that X is a K3 surface of Picard rank 20. Then E :=

J
(

H2(X,Z(2))
H2

alg(X,Z(2))

)

is an elliptic curve defined over a number field. In this case one ex-

pects the identification

{
CH2

ind(X, 1)
}
tor

∼−→ {
E(Q)

}
tor.

8.21 Case m = 2 and Elliptic Curves

Regulator examples on CH2(X, 2). Let X be a compact Riemann surface. In [38]
there is constructed a real regulator

r : CH2(X, 2) → H1(X, R(1)), (13)

given by

ω ∈ H1(X, R) � H1(X, R(1))∨ �→
∫

X

[

log | f |d log |g| − log |g|d log | f |
]

∧ ω

= 2
∫

X
log | f |d log |g| ∧ ω, (by a Stokes′ theorem argument).

(14)

Alternatively, up to a twist, and real isomorphism, this is the same as the real part of
the regulator cl2,2 in (4), viz.,

r2,2(ω) =
1

2π

∫

X

[
log | f |d arg g− log |g|d arg f

)] ∧ ω, (15)

where the formula for:

cl2,2 : CH2(X, 2) → H2
D (X, Z(2)) � H1(X, C/Z(2))� H1(X, C)

H1(X, Z(−1))
=

H1(X, C)

H1(X, Z)(1)
,

(16)

(for ω ∈ H1(X, C)), which can be found for example in [32], is induced, up to a
factor10 of (2πi)−1, by:

{ f , g} �→ (17)

10 The decision to consider the factor (2πi)−1 is somewhat “political”, as reflected in the remark
on page 2 of [32]. From a cohomological point of view, one works with Z(2) coefficient periods,
whereas homologically, is it with Z(1) coefficients. This is neatly illustrated via the Poincaré duality
isomorphism in (16).
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∫

X\ f−1[−∞,0]
log f d log g∧ω −2πi

∫

f−1[−∞,0]\( f×g)−1 [−∞,0]2
log g∧ω + (2πi)2

∫

ζ

ω,

where if we assume for the moment that T { f , g}) = 0, then ζ is a real membrane
with ∂ζ = ( f × g)−1[−∞, 0]2. Otherwise if T { f , g} � 0, we are then dealing with a
situation where { f , g} is replaced by a given

∏
α{ fα, gα}, where

T
(∏

α

{ fα, gα}
)

=
∑

α

T { fα, gα} = 0,

and accordingly arrive at a corresponding ζ. Note that (17) is really the current
written in the slang form:

[
log f d log g− 2πi log gδ f−1(R−) + (2πi)2δζ

]
=: R̃.

To connect formulas (15) and (17), one takes the imaginary part of R̃ (consistent
with C/Z(2)� C/R(2) � R(1)). This gives us

Im(R̃) =
[
log | f |d arg g + arg f d log |g| − 2π log |g|δ f−1(R−)

]
.

Now add the coboundary current d
[
log |g| arg f

]
and apply a Stokes’ theorem argu-

ment.11

8.22 Constructing K2(X) Classes on Elliptic Curves X

We consider the following trick due to Bloch [5]. Let X be an elliptic curve and
assume given f , g ∈ C(X)× such that Σ := |div( f )| ∪ |div(g)| are points of order N
in Pic(X). Then

T
({ f , g}N) ∈

⊕
C× and �→ 0 ∈ Pic(X)⊗ C×.

A clarification. This uses the Weil reciprocity theorem. Let X be a compact Riemann
surface, f , g ∈ C(X)×, and for p ∈ X, write

Tp{ f , g} = (−1)νp(g)νp( f )
( f νp(g)

gνp( f )

)∣∣
∣
∣∣
p
∈ C×.

Note that for p � |div( f )|⋃ |div(g)|, we have Tp{ f , g} = 1. Thus we can write
T { f , g} = ∑

p∈X Tp{ f , g}. Weil reciprocity says that
∏

p∈X Tp{ f , g} = 1. Let us
rewrite this as follows. If we write T { f , g} = ∑M

j=1(c j, p j), where p j ∈ X and

c j ∈ C×, then
∏M

j=1 c j = 1. Now fix p ∈ X and let us suppose that N p j ∼rat N p
for all j. Thus there exists h j ∈ C(X)× such that (h j) = N p j − N p. Then
T {h j, c j} = (cN

j , p) + (c−N
j , p j). The result is that

11 Alternatively, taking Re
(
(2πi)−1R̃

)
gives the formula in (15), viz., with the factor (2π)−1, right

on the nose.
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T
({ f , g}N{h1, c1} · · · {hM, cM}) =

M∏

j=1

(cN
j , p) = (1, p) = 0.

Thus there exists {hi} ∈ C(X)× and {ci} ∈ C× such that { f , g}N ∏{hi, ci} ∈
CH2(X, 2). Note that the terms {hi, ci} do not contribute to the regulator value by
the formula in (14) above. Clearly this construction takes advantage of the existence
of a dense subset of torsion points on X. Bloch (op. cit.) shows that the real regulator
is nontrivial for general elliptic curves, and indeed A. Collino [14] shows that the
regulator image of CH2(X, 2) for a general elliptic curve X is infinite dimensional
(over Q). Actually it is pretty easy to see why r2,2 is non-trivial for a general elliptic
curve:

Theorem 8.23 (Hodge-D-conjecture for elliptic curves). If X is a general elliptic
curve in the real analytic Zariski topology, then r2,2 is surjective.

Proof. Let X be an elliptic curve given in affine coordinates by the equation y2 =

h(x), where h(x) is a cubic polynomial with distinct roots. A basis for H1(X, R) is
given by

ω1 :=
dx

y
+

dx

y
; ω2 := i

(dx

y
− dx

y

)

.

Next, we consider

f1 := y + ix ; f2 = y + x ; g1 = g2 = x.

We claim that for general X,

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫

X
log | f1|d log |g1| ∧ ω1

∫

X
log | f1|d log |g1| ∧ ω2

∫

X
log | f2|d log |g2| ∧ ω1

∫

X
log | f2|d log |g2| ∧ ω2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0. (18)

Now let us first assume that X is given for which (18) holds, and note that the
rational functions f1, f2, g1, g2 can each be expressed in the form L1/L2, where L j

are homogeneous linear polynomials in the homogeneous coordinates of P2 (and
where X ⊂ P2). Since X has a dense subset of torsion points Xtor, and by Abel’s
theorem, one can find L̃ j “close” to L j, j = 1, 2, such that L̃ j ∩ X ⊂ Xtor. Thus up to
C× multiple, L̃1/L̃2 is “close” to L1/L2. Hence one can find f̃1, f̃2, g̃1, g̃2 for which

{∣
∣∣div( f̃1)

∣
∣∣
⋃ ∣

∣∣div( f̃2)
∣
∣∣
⋃ ∣

∣∣div(g̃1)
∣
∣∣
⋃ ∣

∣∣div(g̃2)
∣
∣∣

}

⊂ Xtor, (19)

and that by continuity considerations,

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫

X
log | f̃1|d log |g̃1| ∧ ω1

∫

X
log | f̃1|d log |g̃1| ∧ ω2

∫

X
log | f̃2|d log |g̃2| ∧ ω1

∫

X
log | f̃2|d log |g̃2| ∧ ω2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0. (20)
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Thus one can complete { f̃1, g̃1}, { f̃2, g̃2} to classes ξ1, ξ2 ∈ CH2(X, 2), for which

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r2,2(ξ1)(ω1) r2,2(ξ1)(ω2)

r2,2(ξ2)(ω1) r2,2(ξ2)(ω2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0, (21)

and so modulo the claim in (18), we are done. We sketch a proof of the claim. With
regard to dV = dRe(x) ∧ dIm(x):

d log |x| ∧ ω1

2
=

1

4

( 1

xy
− 1

xy

)

dx ∧ dx =
Im(xy)

|x|2|y|2 dV (22)

d log |x| ∧ ω2

2
= − i

4

( 1

xy
+

1

xy

)

dx ∧ dx = − Re(xy)

|x|2|y|2 dV (23)

Now let us degenerate X to the rational elliptic curve X0 given by y2 = x3. Note that
X0 is given parametrically by (x, y) = (z2, z3), z ∈ C. Thus xy = |z|4z, and up to a
real positive multiplicative constant times the standard volume element on C, which
we will denote by dV0, (22) and (23) become:

d log |x| ∧ ω1 =
Im(z)

|z|4 dV0 ; d log |x| ∧ ω2 = −Re(z)

|z|4 dV0. (24)

Let H = {z ∈ C
∣
∣∣ Im(z) ≥ 0} be the upper half plane. Now one has the following

formal calculations after degenerating to X0, and using symmetry arguments:
∫

X0

log | f1|d log |g1| ∧ ω1 =

∫

C
log |z3 + iz2| Im(z)

|z|4 dV0 (25)

=

∫

C
log |z + i| Im(z)

|z|4 dV0 =

∫

H
log

∣
∣
∣∣
∣

z + i

z + i

∣
∣
∣∣
∣

Im(z)

|z|4 dV0 �→ +∞,

using the fact ∣
∣
∣∣
∣

z + i

z + i

∣
∣
∣∣
∣ > 1 ⇔ Im(z) > 0.

∫

X0

log | f2|d log |g2| ∧ ω1 =

∫

C
log |z + 1| Im(z)

|z|4 dV0 = 0. (26)

For the remaining two formal calculations, put w = iz, and note that Re(z) = Im(w),
and that |z + 1| = |w + i|. Then

∫

X0

log | f2|d log |g2| ∧ ω2 = −
∫

C
log |z + 1|Re(z)

|z|4 dV0 (27)

= −
∫

C
log |w + i| Im(w)

|w|4 dV0 = −
∫

H
log

∣
∣
∣
∣∣

z + i

z + i

∣
∣
∣
∣∣

Im(z)

|z|4 dV0 �→ −∞.

∫

X0

log | f1|d log |g1| ∧ ω2 = −
∫

C
log |z + i|Re(z)

|z|4 dV0 = 0. (28)
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Note that two of these integrals blow up over the singular point z = 0 of the singular
curve X0, as expected. By using the Lebesgue theory of integration, we can make
the calculations in (25)–(28) more precise. First, by using the projection (x, y) �→
x, we have a double covering X → P1. Thus for f , g ∈ C(X), and ω = ω1 or
ω = ω2, we can express

∫

X
log | f |d log |g| ∧ ω as the integral of some Lebesgue

integrable function H(x) over P1. Next, by converting to polar coordinates, viz. x =
eit, we can Fubini integrate in t ∈ [0, 2π] and r ∈ [0,∞]. Let h(r) be the result
of integrating H(x) with respect to t over [0, 2π]. As X degenerates to X0, we can
construct a sequence {hn(r)} which limits to h∞(r) over X0. In the cases of (25)–
(28), we have that h∞(r) is either zero, nonnegative, or nonpositive. By using the
standard Lebesgue integral limit theorems, we arrive at the claim in (18), and hence
the theorem. $%

For curves X of genus g > 1, the problem of constructing classes in CH2(X, 2)
seems to be related to the fact that under the Abel–Jacobi mapping Φ : X →
J1(X), p �→ {p− p0}, the inverse image of the torsion subgroup, Φ−1(J1(X)tor), is
finite, this being the import of the Mumford–Manin theorem (see [43] for a proof).
Indeed as explained in [38] (as well as in [39]), one can prove a weak version of
the Mumford–Manin theorem based on the fact that for a general curve X of genus
g > 1, the image of the regulator map cl2,2 : CH2(X, 2)→ H2

D (X, Z(2)) is torsion (A.
Collino [14]). Collino’s approach (op. cit.) uses infinitesimal methods. The reader
should also consult [23] for similar refined results in this direction. For the benefit
of the reader, we will provide an ad hoc explanation as to why this is the case (in
“Observation 1” below). In order to do so, we must first digress and consider the
following setting.

Assume given a dominant morphism ρ : X → C of smooth complex projective
varieties, where X is a surface and C is a curve. Let C ⊂ C be an affine open subset
over which ρ is smooth, and Σ := C\C, X = ρ−1(C) and ρ = ρ

∣
∣
∣
X

: X → C. For
t ∈ Σ, we will assume that the singular set of Xt is a single node. Next, we will
assume given a class {ξ} ∈ CH2(X, 2). In particular ∂ξ = 0 on X (here ∂ is the same
thing as the Tame symbol). Note that ξ is given by a product of symbols of the form
{ f , g}, where f , g ∈ C(X)×. However, since C(X) = C(X), one can also think of ξ
as defined on X (call it ξ) with ∂ξ supported on XΣ := ρ−1(Σ). Now for t ∈ Σ, the
contribution (“residue”) of ∂ξ gives rise to a class in CH1(Xt, 1). If Xt were smooth,
then CH1(Xt, 1) = C×; but here we are assuming that Xt has a single node P ∈ Xt

as singularity. Under the desingularization σ : X̃t → Xt, let {Q, R} = σ−1(P). Next
if Q − R ∈ CH1

tor(X̃t), then for some integer N, N · (Q − R) = div( f ) for some
f ∈ C(X̃t)×. But on Xt, div( f ) = 0, and hence C× � CH1(Xt, 1). The upshot is
that if ∂ξ contributes to a nonzero element of CH1(Xt, 1)/C× for some t ∈ Σ, then
via a residue calculation and a calculation of the MHS H2(X, Q(2)), the current
d log ξ (induced by { f , g} �→ d log f ∧ d log g) will contribute to a nonzero class in
[d log ξ] ∈ ΓH2(X, Q(2)). The converse statement also holds: if Q− R � CH1

tor(X̃t),
for all such t ∈ Σ, then [d log ξ] = 0 ∈ ΓH2(X, Q(2)). Next, the Leray spectral
sequence associated to ρ (which by Deligne, degenerates at E2, see [25] (p. 466)),
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together with the fact that since C is an affine curve (hence H2(C, R0ρ∗Q(2)) = 0),
yields the short exact sequence of MHS:

0 → H1(C, R1ρ∗Q(2))→ H2(X, Q(2))→ H0(C, R2ρ∗Q(2))→ 0.

Note that ΓH0(C, R2ρ∗Q(2)) = 0 as H0(C, R2ρ∗Q(2)) is of pure weight −2. Hence
ΓH2(X, Q(2)) = ΓH1(C, R1ρ∗Q(2)). On the other hand, for t ∈ C, ξ restricts to a
class ξt ∈ CH2(Xt, 2), and hence we have a normal function

νξ : C →
⋃

t∈C

J
(
H1(Xt, Z(2))

)
,

whose topological invariant is the aforementioned class [d log ξ] ∈ ΓH1(C, R1ρ∗
Q(2)), and which we will now denote it by δ(νξ) := [d log ξ]. It is a general fact that
there is a short exact sequence:

0 → J
(
H0(C, R1ρ∗Q(2))

)→
{

Normal
functions

}

Q

δ−→ ΓH1(C, R1ρ∗Q(2))→ 0, (29)

where {· · · }Q means with respect to Q-periods. We will explain this in more de-
tail below, but comment in passing that the technical details can be found in [31].
If δ(νξ) = 0, then νξ ∈ J

(
H0(C, R1ρ∗Q(2))

)
, i.e. belongs to the fixed part of

a corresponding variation of Hodge structure. The situation is not unlike what
occurs in the short exact sequence involving Deligne cohomology in (8) above,
and the nature of this argument is completely analogous to that in Example 8.6.
We can frame this discussion in more precise terms. One has a cycle class map
cl2,2 : CH2(X, 2) → H2

D (X, Z(2)), (Deligne–Beilinson cohomology); moreover by a
weight argument, there is a short exact sequence:

0 → J
(
H1(X, Z(2))

)→ H2
D (X, Z(2))→ ΓH2(X, Z(2))→ 0. (30)

For t ∈ C, Xt is a smooth curve. Then for such t, H2
D (Xt, Z(2)) = J

(
H1(Xt, Z(2))

)
,

and accordingly the map

t ∈ C �→ cl2,2(ξt) ∈ J
(
H1(Xt, Z(2))

)
,

is our normal function νξ; moreover the image of ξ via the composite

CH2(X, 2)→ H2
D (X, Q(2))→ ΓH2(X, Q(2)) = ΓH1(C, R1ρ∗Q(2)),

is precisely δ(νξ). Finally to explain (29) more precisely, we observe that there is a
short exact sequence:

0 → H1(C, R0ρ∗Q(2)))→ H1(X, Q(2))→ H0(C, R1ρ∗Q(2))→ 0.

But ΓH0(C, R1ρ∗Q(2)) = 0, hence we arrive at the short exact sequence:

0 → J
(
H1(C, R0ρ∗Q(2)))

)→ J
(
H1(X, Q(2))

)→ J
(
H0(C, R1ρ∗Q(2))

)→ 0.
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This together with (29) and (30)Q leads to the identification:

{
Normal

functions

}

Q
� H2

D (X, Q(2))

J
(
H1(C, R0ρ∗Q(2)))

) .

Now having discussed the relationship between a cycle class ξ ∈ CH2(X, 2), the
associated normal function νξ, and the topological invariant δ(νξ) ∈ ΓH2(X, Q(2))
and how it is related to the “torsion” nature of the nodal singularities of the singular
fibers {Xt}t∈Σ , we are led to consider two divergent observations:

Observation 1. Suppose that X0 is a general curve of genus g > 1. By general, we
can assume that X0 is a very general member of a pencil of curves {Xt}t∈P1 , defining
a smooth surface XP1 :=

⋃
t∈P1 Xt → P1, whose singular fibers are Lefschetz, i.e.

admit a single ordinary node. Let ξ0 ∈ CH2(X0, 2). After a suitable base extension
C → P1, for some smooth projective curve C, and corresponding X := C ×P1

XP1 , with setting as in the above discussion, ξ0 will then spread to a class ξ ∈
CH2(X, 2), in a general family ρ : X → C, where ρ is smooth and proper over an
affine curve C. Granted that the singular fibers over Σ ⊂ C are not necessarily nodes
(as C → P1 may ramify over the singular points), a similar line of reasoning as the
nodal situation will occur, based on a parallel situation encountered in [9]. So for
simplicity, let us assume that for each t ∈ Σ, that Xt is Lefschetz. Since g(Xt) ≥ 2
for t ∈ C, it follows that for t ∈ Σ, g(Xt) ≥ 1.

Proposition 8.24. If X0 is sufficiently general, then one can arrange for the follow-
ing to hold:

(i) H0(C, R1ρ∗Q(2)) = 0.
(ii) For every t ∈ Σ, the corresponding Q− R is nontorsion in CH1(X̃t).

Proof. Although we won’t prove this, it goes without mentioning that (i) is a stan-
dard result in the deformation theory of curves and corresponding VHS. For (ii),
one considers via deformation, a family of nodal curves of genus at least 1, together
with an argument of Baire type using the fact that the torsion points on a curve of
genus g ≥ 1 is at most countable. $%

It follows that such a ξ would define a normal function for which δ(νξ) = 0 ∈
ΓH1(C, R1ρ∗Q(2)), and so νξ ∈ J

(
H0(C, R1ρ∗Q(2))

)
= 0. This leads to cl2,2(ξt) =

0 ∈ H2
D (Xt, Q(2)) for very general t ∈ C, and hence cl2,2(ξ0) is torsion as a class in

H2
D (X0, Z(2)).

Observation 2. Consider an elliptic surface ρ : X → C. The singular fibers XΣ are
unions of rational curves. If for some t ∈ Σ, Xt is nodal with node P ∈ Xt, then on X̃t,
Q−R ∼rat 0, hence CH1(Xt, 1)/C× � 0, and the possibility of a class ξ ∈ CH2(X, 2),
with nontrivial value [d log ξ] ∈ ΓH2(X, Q(2)) arises. Assuming this is the case,
then νξ is nontrivial, and hence for general Xt, cl2,2(ξt) is a nontorsion class (using
a Baire category argument). This will be illustrated in Theorem 8.26 below, but as
a preliminary warm-up, consider the nodal curve D = V(y2 − x3 − x2) ⊂ P2, with
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singular point P = (0, 0). By making the substitution (x, y) = (x, ux), we end up
with the desingularization σ : D̃ := V(u2 = x + 1) → D, and where σ−1(P) = {Q =
(0, 1), R = (0,−1)} in (x, u)-coordinates. Let

f =
u + 1

u− 1
=

y + x

y− x
.

Then viewing f ∈ C(D̃), divD̃( f ) = R − Q, and viewing f ∈ C(D) = C(D̃),
divD( f ) = 0. We apply this to the following.

Example 8.25. Let π : X → P1 be the elliptic surface defined by

y2 = x3 + x2 + t =: h(x),

and let Σ ⊂ P1 be the singular set of π. One shows that

Σ =
{

0,∞,
−4

27

}

,

furthermore X0, X −4
27

are nodal curves, and X∞ is a simply-connected tree of P1’s.
We then have:

Theorem 8.26. Let U = X\{X0, X −4
27

, X∞
}
. Then

Γ
(
H2(U, Q(2))

) � Q2;

moreover it is generated by [d log(ξ1)], [d log(ξ2)], where

ξ1 =

{ (y− x)3

8
,

(y + x)3

8

}{ y + x

y− x
, t
}3

,

ξ2 =

{ (iy + x + 2/3)3

8
,

(iy− x− 2/3)3

8

}{ iy + x + 2/3

iy− x− 2/3
,−t− 4/27

}3

,

are classes in CH2(U, 2; Q).12

Now choose a class ξ ∈ CH2(U, 2) such that [d log ξ] � 0 ∈ Γ
(
H2(U, Q(2))

)
.

Thus for general t ∈ P1, cl2,2(ξt) is nontorsion.

Remark 8.27. As pointed out by the referee, another class of examples pertaining
to Observation 2 are the modular families of elliptic curves studied in [4], where
every node P does give rise to such a class ξ, by Beilinson’s Eisenstein symbol
construction.

Acknowledgements Partially supported by a grant from the Natural Sciences and Engineering
Research Council of Canada.

12 M. Asakura informed me of his work in [1], which includes this theorem as a special case.
Further he provides an upper bound for the rank of the d log image for variants of the family in
Example 8.25.
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Two Lectures on the Arithmetic of K3 Surfaces

Matthias Schütt

Abstract In these lecture notes we review different aspects of the arithmetic of K3
surfaces. Topics include rational points, Picard number and Tate conjecture, zeta
functions and modularity.

Key words: K3 surface, Rational points, Elliptic fibration, Picard number, Singular
K3 surface, Modular form, Class group

Mathematics Subject Classifications (2010): 14J28, 11F03, 11G05, 11G15, 11G25,
11G35, 14G05, 14G15, 14G25, 14J10, 14J27

1 Introduction

K3 surfaces are central objects of study in various areas of mathematics and physics
such as algebraic, complex, and differential geometry, number theory and string
theory. Naturally they featured prominently in the Fields workshop. These notes
record two introductory lectures on the arithmetic of K3 surfaces with some bits of
additional or supplementary material. Limitations of space and time do not possibly
allow me to do justice to all important aspects of this area; I apologise for everything
that may have been left out or not attributed correctly.

In brief these lecture notes aim to shed some light on the following three topics:

1. Rational points on K3 surfaces.
2. Picard numbers and the Tate conjecture for K3 surfaces.
3. Zeta functions and modularity for K3 surfaces.
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Our survey is initiated by a brief motivation coming from algebraic curves which
illustrates the thematic interplay between arithmetic and geometry.

2 Motivation: Rational Points on Algebraic Curves

Throughout this paper we are mostly concerned with varieties which are complex,
smooth, and projective although many techniques that we discuss actually involve
positive characteristic. On the level of curves, we can equivalently consider compact
Riemann surfaces. Then there is a discrete invariant: the genus g of the compact
Riemann surface, i.e. the number of holes or handles. It is a non-trivial fact that this
purely topological invariant has an algebro-geometric counterpart: the geometric
genus measuring the dimension of the space of regular 1-forms on the projective
curve. It should come even more surprising how the genus governs the arithmetic of
algebraic curves.

To see this, we assume that the algebraic curve C is defined over some number
field K (which the reader may just as well assume to beQ). Then it is a natural prob-
lem to investigate the set of K-rational points on C. It turns out that the cardinality
of C(K) falls into three cases according to the genus of C:

g(C) #C(K) Comment
0 0,∞ Rational if C(K) � ∅
1 ≤ ∞ Elliptic if C(K) � ∅
≥ 2 < ∞ Faltings’ Theorem [16]

The genus 1 case is particularly rich since the K-rational points form an abelian
group (best visible on the model as a cubic in P2 with the group law that any three
collinear points on the curve add up to zero). It goes back to Mordell and Weil that
this group is finitely generated. Thanks to the group structure on elliptic curves,
we deduce the following remarkable property of genus 1 curves C over a number
field K: there exists some finite extension K′/K such that the K′-rational points are
Zariski dense on C. To see this one first extends K to reach a rational point on C
(such that C becomes elliptic) and then ensures, possibly by a further extension,
that there is a rational point of infinite order. This concept is usually called potential
density:

Definition 1. Let X denote a variety defined over some number field K. We say that
X has or satisfies potential density (of rational points) if there exists some finite
extension K′/K such that the K′-rational points lie dense on X.

Note that potential density unifies algebraic curves of genus 0 and 1. By Falt-
ings’ Theorem [16], however, curves of genus greater than 1 never satisfy poten-
tial density. It is a common belief that similar structures should hold in higher di-
mension, with the genus replaced by the Kodaira dimension κ. For instance, the
Bombieri–Lang conjecture formulates that on varieties of maximal Kodaira dimen-
sion (so called general type: κ(X) = dim(X)) the Zariski closure of the rational points
over any number field forms a proper subvariety. It seems worthwhile noticing that
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potential density makes the arithmetic problem of rational points into a geometric
notion which only depends on the Q̄-isomorphism class of the variety, but not on
the precise model chosen.

In the next section, we discuss the problem of rational points on K3 surfaces
which can be considered as a two-dimensional analogue of elliptic curves. Later we
will see that also other concepts such as modularity carry over from elliptic curves
to certain K3 surfaces in a decisive way.

3 K3 Surfaces and Rational Points

In essence there are two ways to extend the definition of elliptic curves to dimension
2. Requiring a group structure leads to abelian varieties which are fairly well under-
stood in arithmetic and geometry. Almost automatically they come with potential
density. On the other hand, we can impose the Calabi–Yau condition (in the strict
sense); this leads to the notion of K3 surfaces:

Definition 2. A smooth projective surface X is called K3 if

ωX � OX and h1(X,OX) = 0.

In fact, all K3 surfaces can be seen to be (algebraically) simply connected, and over
C, deformation equivalent (although the original argument for this went through
non-algebraic K3 surfaces). For complex K3 surfaces we record the Hodge diamond
which can be computed easily with Noether’s formula:

1
0 0

1 20 1
0 0

1

The resulting Betti numbers also hold in positive characteristic (for �-adic étale
cohomology, say).

We give three examples. The first two mimic the definition of elliptic curves in
two essentially different ways (which will surface again in Sect. 5) while the third re-
lates to abelian surfaces. To ease the exposition, we limit ourselves to constructions
outside characteristic 2.

Example 1. 1. Smooth quartics in P3.
2. Double sextics, i.e. double coverings X → P2 branched along a smooth sextic

curve.
3. Kummer surfaces Km(A) where A is an abelian surface and Km(A) is the mini-

mal resolution of the quotient A/〈−1〉 with 16 rational double points.

In view of the deformation equivalence, we can also allow the quartic or
sextic above to have isolated rational double points as singularities (ADE-type) and
consider a minimal resolution which will then be K3.
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In the following we will repeatedly consider Kummer surfaces of product type
where the abelian surface is isomorphic to a product of elliptic curves E × E′. Such
Kummer surfaces come naturally with models as quartics or double sextics. To see
this in an elementary way, write the elliptic curves in extended Weierstrass form

E : y2 = f (x), E′ : y′2 = f ′(x′) (1)

with cubic polynomials f , f ′ without multiple roots. Then a birational model of the
Kummer surface Km(E × E′) is given by the double sextic

Km(E × E′) : w2 = f (x) f ′(x′). (2)

Similarly quartic models are derived by bringing two linear factors from the RHS
(over K̄) to the LHS (multiply w by these factors). The fact that all these construc-
tions produce indeed isomorphic K3 surfaces relies on general surface theory (bira-
tional maps between K3 surfaces are isomorphisms). There is one more incarnation
of K3 surfaces that comes up handily on Kummer surfaces of product type: elliptic
fibrations. Before sketching their theory in the next section, we indicate the rele-
vance to the question of rational points:

Theorem 1 (Bogomolov, Tschinkel [5]). Let X be a K3 surface over a number
field. If X has an elliptic fibration or infinite automorphism group, then X satisfies
potential density.

The case of infinite automorphism group naturally implies potential density; in-
deed it suffices to exhibit a rational curve on X whose orbit under Aut(X) is infinite.
Note that automorphisms of K3 surfaces are defined over number fields since the
automorphism group is discrete and finitely generated (see [40, Sect. 7, Theorem
1], [57] and also [20, Proposition 2.1]). We will briefly explain the idea behind the
elliptic fibrations after introducing the necessary background in the next section.

Apropos automorphisms, we mention as a sample of another yet completely dif-
ferent set of problems the question of the distribution of rational points, and in par-
ticular their periodicity under automorphisms. These issues lend K3 surfaces to the
subject of dynamics. For instance, in [55] it is proved for certain K3 surfaces with
infinite automorphism group (intersections of hypersurfaces of bidegree (1, 1) and
(2, 2) in P2 × P2) that the orbit of a rational point under the automorphism group is
either finite or Zariski dense. The key ingredient here is a new notion of canonical
height.

4 Elliptic K3 Surfaces

An elliptic surface is a smooth projective surface X together with a surjective mor-
phism to a projective curve C,

X → C,
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such that almost all fibers are smooth curves of genus 1. Often one assumes the
existence of a section (so that all fibers are in fact elliptic curves over the base
field), but we will not restrict to these so-called jacobian fibrations here. In order to
rule out products, for instance, one usually assumes that the fibration has a singular
fiber. The possible singular fibers have been classified by Kodaira over C [24]; later
Tate exhibited an algorithm for any perfect base field [60]. The reducible singular
fibers consist solely of (−2)-curves (smooth rational curves) whose configuration
corresponds to an extended Dynkin diagram (types Ãn, D̃k, Ẽl). The only irreducible
singular fibers are the nodal and the cuspidal cubic.

Example 2 (Kummer surface of product type). The projections from E×E′ to either
factor induce elliptic fibrations on Km(E× E′). In the notation of (1), they could be
given by twisted Weierstrass forms

f (x)y2 = f ′(x′) (3)

where x represents an affine parameter of the base curve P1. Visibly the fibration is
isotrivial, with all smooth fibers quadratic twists of E′ (in particular K̄-isomorphic).
The singular fibers (all of them reducible) are located at ∞ and the roots of f (x),
i.e. they correspond to the 2-torsion points of E. Each singular fiber has Kodaira
type I∗0 (corresponding to D̃4), a double P1 blown up in 4 A1 singularities.

One advantage of elliptic surfaces is that they allow us to control the Néron–
Severi group NS to some extent. Notably any two fibers are algebraically equiv-
alent, but components of reducible fibers contribute non-trivially to NS. We call
these curves vertical—as opposed to the multisections which are imagined in the
horizontal direction. Clearly NS of an elliptic surface is generated by horizontal and
vertical divisors; it is a non-trivial fact, however, that once there is a section, one can
generate NS exclusively by fiber components and sections (see [50]). In particular,
there is a closed expression (often referred to as the Shioda–Tate formula, cf. [50,
Corollary 5.3]) for the Picard number

ρ(X) = rank NS(X),

involving only the reducible fibers (more precisely the number mv of components of
the fiber Fv) and the Mordell–Weil rank r:

ρ(X) = 2 + r +
∑

v∈C

(mv − 1). (4)

Since the Picard number of an elliptic surface and its jacobian are the same, this
formula indirectly also applies to any elliptic surface without section. Throughout
the paper the Picard number should always be understood geometrically, i.e. over the
algebraic closure of the base field (although we consider varieties over non-closed
fields).

As an illustration, potential density holds for any jacobian elliptic (K3) surface
with positive Mordell–Weil rank. To prove Theorem 1, one is thus led to consider
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elliptic K3 surface with MW-rank zero or no sections at all. In brief Bogomolov
and Tschinkel show that any elliptic K3 surface with Picard number ρ ≤ 19 ad-
mits infinitely many suitable multisections which are rational. Then they continue
to prove that enough of these multisections are not related to torsion points. To finish
the proof, they refer to a result by Shioda and Inose [53] that any K3 surface with
ρ = 20 has infinite automorphism group (derived in the framework of Shioda–Inose
structures, see Sect. 12).

We now turn to the problem how restrictive the assumptions in Theorem 1 are.
There are at least two answers:

fairly restrictive or not terribly restrictive.

To justify the second answer, we mention a special feature of K3 surfaces: elliptic
fibrations are completely governed by lattice theory. Namely, any divisor of self-
intersection zero induces an elliptic fibration after [40, Sect. 3, Theorem 1]. Here one
first applies reflections and inversions to D until it becomes effective by Riemann–
Roch. Upon subtracting the base locus, the resulting linear system induces the ellip-
tic fibration. One easily deduces:

Lemma 1. Any K3 surface with Picard number ρ ≥ 5 admits an elliptic fibration.

Proof. The intersection pairing between curves equips NS with a non-degenerate
quadratic form of signature (1, ρ − 1) (compatible with cup-product on H2(X,Z)).
Since any such quadratic form of rank at least 5 represents zero, the claim follows
from the discussion preceding the lemma. $%

Thus we find that the assumptions of Theorem 1 are not terribly restrictive in the
following sense:

Corollary 1. Any K3 surface of Picard number ρ ≥ 5 over a number field satisfies
potential density.

In the opposite direction, it has to be noted that either assumption of Theorem 1
implies ρ > 1. A generic K3 surface, however, has ρ = 1. To argue that the as-
sumptions are fairly restrictive, it therefore suffices to rule out that K3 surfaces over
number fields somehow happen to lie on the countably many hypersurfaces in the
moduli spaces comprising K3 surfaces with ρ > 1. This question will be discussed
both from the theoretical and explicit view point in the next section.

5 Picard Number One

An elliptic curve always possesses a model as a plane cubic thanks to Riemann–
Roch. Quite opposite to this, K3 surfaces have many different incarnations. We have
seen two of them in Example 1: double sextics on the one hand and quartics in
P3 on the other. While these cases certainly overlap, for instance on the Kummer
surfaces (not only of product type), they differ in an essential way. This can be seen
as follows.
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By general moduli theory, both generic double sextic and generic quartic have
Picard number ρ = 1 (for quartics, this result originally goes back to a conjecture of
Noether, as proved by Tjurina). But then the hyperplane section H gives an ample
divisor of self-intersection

H2 = 2 resp. H2 = 4.

In other words, NS as a lattice equals Z〈2〉 reps. Z〈4〉. As these two lattices are not
isometric, generic double sextics and quartics cannot be isomorphic. In fact for any
integer d > 0, there are K3 surfaces with a so-called polarization of degree 2d form-
ing a 19-dimensional moduli space. The uniform approach would be to consider
these as hypersurfaces in the 20-dimensional moduli space of all K3 surfaces (in-
cluding non-algebraic ones). Similarly, K3 surfaces of Picard number ρ ≥ 2 (such as
in Theorem 1) lie on hypersurfaces in the moduli spaces of polarized K3 surfaces,
described by lattice polarisations (cf. [33]). The solution whether all K3 surfaces
over number fields might somehow happen to lie on these hypersurfaces was given
by Terasoma and Ellenberg:

Theorem 2 (Terasoma [61], Ellenberg [14]). For any integer d > 0, there exist
2d-polarised K3 surfaces over Q̄ with ρ = 1.

In this sense, the assumptions of Theorem 1 have to be considered as fairly re-
strictive. In particular, there was no K3 surface of ρ = 1 known to satisfy potential
density until very recently Kharzemanov announced in [22] the existence of such
K3 surfaces. In the sequel we shall discuss the first big obstacle to producing such
examples: it is very hard to exhibit explicit K3 surfaces with ρ = 1!

6 Computation of Picard Numbers

The crux with the Picard number of an algebraic surface X is that it is in general
very hard to compute. That is, unless the geometric genus of X vanishes—over C
or if the surface lifts to such a surface in characteristic zero. In that case, we have
H1,1(X) = H2(X,C) so that Lefschetz’ theorem returns

NS(X) = H1,1(X) ∩ H2(X,Z) = H2(X,Z). (5)

Here we trivially deduce ρ(X) = b2(X). In case of non-zero geometric genus (or
non-liftability), we would only be aware of the following procedure to compute the
Picard number:

1. In the daytime, search systematically for (independent) curves on X giving
lower bounds for ρ(X).

2. In the nighttime, develop upper bounds for ρ(X) until upper and lower bounds
match.
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We have to remark that it is unclear as of today whether either step can be
implemented in an effective way. For instance, the daytime step requires to check
on X for curves of increasing degrees which soon becomes computationally fairly
expensive. There are, however, situations where we can do better. Notably the day-
time step becomes vacuous if we aim to prove ρ(X) = 1. Also if X admits a jacobian
elliptic fibration, then the shape of the curves to consider is very clear, as they can
all be taken as sections where one raises the height successively (see the discussion
at the end of Sect. 15 where this plays a crucial role).

The nighttime step concerning upper bounds for ρ is yet more delicate. A priori,
one has only the following estimates

ρ(X) ≤
⎧
⎪⎪⎨
⎪⎪⎩

h1,1(X) (over C by Lefschetz)

b2(X) (in any characteristic due to Igusa).

Currently there are two approaches that have been worked out and tested in detail.
The first requires the special situation where X admits non-trivial automorphisms.
These give extra information about algebraic and non-algebraic classes in H2(X).
The extreme situation consists of Fermat varieties where the big automorphism
group gives complete control over all cohomology groups (see Example 4). More
generally, as soon as an automorphism acts non-trivially on the regular 2-forms on
the surface X, this can give upper bounds for ρ(X). In his pioneering work [49] Sh-
ioda used this technique to exhibit an explicit quintic surface over Q with ρ = 1
(quite surprisingly one might want to add).

The second approach towards upper bounds for ρ consists in smooth specializa-
tion, mostly to characteristic p > 0. Here we consider a complex surface X with a
model over some number field K (or its p-adic completion) with good reduction Xp
at some prime p. Since intersection numbers are preserved under specialization, we
obtain an embedding of lattices

NS(X) ↪→ NS(Xp). (6)

Directly this gives the upper bound

ρ(X) ≤ ρ(Xp).

Here the big advantage is that this upper bound is (theoretically) explicitly com-
putable assuming the Tate conjecture (see Conjecture 1). Concretely Xp is equipped
with the Frobenius automorphism Frobp raising coordinates to their q-th powers
where q = #Fp = pr is the norm of p. Then one is led to consider the induced action
of Frob∗p on H2

ét(Xp,Q�). A crucial property of NS in this context is that it can always
be generated by divisors defined over some finite extension of the base field. This
implies that the absolute Galois group acts on NS through a finite group. Embedding

NS(Xp) ↪→ H2
ét(Xp,Q�) (7)

via the cycle class map, we find that all eigenvalues of Frob∗p on the image of NS(Xp)
take the shape ζq where ζ runs through roots of unity.
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Conjecture 1 (Tate [58]). All eigenspaces of Frob∗p in H2
ét(Xp,Q�) with eigenvalues

as above are algebraic.

The Tate conjecture is known, for instance, for Fermat varieties and several kinds
of K3 surfaces including elliptic ones [3] and those of finite height [38]. Recently,
intriguing finiteness statements have been discovered to be equivalent to the Tate
conjecture in [27].1 At any rate, the above discussion gives an upper bound for
ρ(Xp) in terms of the eigenvalues of Frob∗p on H2

ét(Xp,Q�). We shall now indicate
how to compute these eigenvalues.

The reciprocal characteristic polynomial P2(T ) of Frob∗p on H2
ét(Xp,Q�) appears

as a factor of the zeta function of Xp over Fp. By the Weil conjecture, the zeta
function can be computed by point counting over sufficiently many finite fields Fqr

through Lefschetz’ fixed point formula. For instance, if Xp is a regular surface
over Fq (in the sense that b1(Xp) = 0), then its zeta function takes the shape

ζ(X, T ) =
1

(1− T ) P2(T ) (1− q2T )
(8)

Hence point counting up to r = )(b2(Xp) − 1)/2* will be sufficient to compute the
zeta function thanks to the functional equation. Note that this will in practice still be
fairly expensive, but there are improvements using p-adic cohomology [1].

With all these techniques at hand, here comes the major drawback of the special-
ization method: assuming the Tate conjecture, non-algebraic eigenclasses of Frob∗p
in H2

ét(Xp,Q�) come in pairs, corresponding to pairs of complex-conjugate eigenval-
ues which are not multiples of roots of unity by q (but algebraic integers of absolute
value q by the Weil conjectures). In particular this would imply

ρ(Xp) ≡ b2(Xp) mod 2.

Thus, if we want to prove that some surface X has Picard number ρ(X) of parity
other than that of b2(X), one has to be more inventive. In the next section we sketch
what has been done (and what might be done) for the prototype case of K3 surfaces
with ρ = 1.

7 K3 Surfaces of Picard Number One

This section describes how to attack the computation of the Picard number of a K3
surface over some number field. We explain in some detail the prototype case of
ρ = 1. The first one to exhibit an explicit K3 surface X with ρ(X) = 1 was van Luijk.

1 Charles (to appear in Invent. Math.) and Madapusi Pera (arXiv: 1301.6326) have announced in-
dependent proofs of the Tate Conjecture for K3 surfaces outside characteristic 2 (and 3 in Charles’
case).
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7.1 van Luijk’s Approach

In [29] van Luijk exhibited a K3 surface as quartic X over Q with two different
primes p, p′(= 2, 3) of good reduction where the point counting method from the
previous section gave the upper bound

ρ(X) ≤ ρ(Xp), ρ(Xp′) ≤ 2. (9)

Assuming that ρ(X) = 2, the embeddings of lattices

NS(Xp′ ) ←↩ NS(X) ↪→ NS(Xp) (10)

would be of finite index. In particular, this would imply that the discriminants of
all three lattices (i.e. the determinants of the Gram matrices for a basis) would be
the same up to some square factors. This property, however, can lead to a contradic-
tion by working out explicit basis for both NS(Xp), NS(Xp′) and verifying that the
intersection forms are not compatible.

7.2 Kloosterman’s Improvement

Subsequently Kloosterman noticed that it is possible to circumvent the determina-
tion of generators of NS(Xp) and NS(Xp′). In a similar situation in [23] he instead
appealed to the Artin–Tate conjecture [59] which while equivalent to the Tate con-
jecture by [31], additionally predicts the square class of the discriminant of NS:

disc NS(Xp)
?
= q

P2(T )

(1− qT )ρ(Xp)

∣
∣
∣∣
T=1/q

∈ Q∗/(Q∗)2. (11)

Note that this procedure does not actually require the validity of the Tate conjecture.
For if the Tate conjecture were to be wrong for Xp in the above setting, that is
ρ(Xp) < 2, then automatically ρ(X) = ρ(Xp) = 1 by (9) which is exactly the original
claim. On the other hand, if the Tate conjecture is valid for Xp and Xp′ , then we read
off the square classes of NS(Xp) and NS(Xp′) from (11). If they do not agree, then
we derive the desired contradiction to the assumption ρ(X) = 2.

7.3 Elsenhans–Jahnel’s Work

The method pioneered by van Luijk takes a substantial amount of computation time
and memory since point counting over fairly large finite fields is required for two
suitable primes of good reduction (with no guarantee that 2 and 3 would work).
With a view towards double sextics (which often have bad reduction at 2), Elsenhans
and Jahnel modified van Luijk’s method in such a way that point counting is only
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required at one suitable prime. Based on work by Raynaud [41] they show in [15]
that the embedding (7) is primitive (i.e. the cokernel is torsion-free) in a wide range
of cases including smooth surfaces over Q with good reduction at p � 2Z. (In con-
sequence the conjectural finite index embeddings in (10) would in fact be isometries
of lattices.) In practice, this means the following:

Proposition 1 (Elsenhans–Jahnel). In the above setup, assume p � 2Z. If some
divisor class does not lift from Xp to X, then ρ(X) < ρ(Xp).

In order to exhibit a K3 surface over some number field with ρ = 1, it thus
suffices to find a single prime p of good reduction such that

1. ρ(Xp) ≤ 2 by inspection of the characteristic polynomial of Frob∗p on H2
ét(Xp,Q�)

and
2. Some divisor class on Xp does not lift to X.

7.4 Outlook

Currently van Luijk and the author are working on an arithmetic deformation tech-
nique that would allow to construct explicit K3 surfaces with ρ = 1 (and other
prescribed Picard numbers) without any point counting at all. The overall idea is to
combine the above techniques with extra information which can be extracted from
automorphisms (see Sect. 6). While we will actually mainly aim at Picard numbers
of quintics and beyond, this method can be used, for instance, to prove that the
following double sextic has ρ(X) = 1 over C:

X : w2 = x5 + xy5 + 101y4 + 1.

7.5 Feasibility

Having exhibited explicit K3 surfaces with ρ = 1, we shall now come to the problem
whether the above techniques may be applied to all K3 surfaces over number fields.
That is, we ask for an algorithm to compute the Picard number of a K3 surface
which always terminates theoretically. This issue was taken up in a recent preprint
by Charles [8].

In detail, it is shown using the endomorphism algebra E of the Hodge structure
underlying the transcendental lattice (cf. (13)) that one cannot in general expect that
there are primes p such that ρ(Xp) ≤ ρ(X) + 1. However, Charles proves that there
are always infinitely many primes p such that

ρ(Xp) = ρ(X) or ρ(Xp) = ρ(X) + dimQ E.
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Additionally, in the latter case, there are different discriminants turning up on the
reductions. Once one knows E, these facts facilitate an algorithm which theoreti-
cally returns the Picard number of X. However, the determination of E (by similar
methods) seems to require the validity of the Hodge conjecture for the self-product
X × X.

8 Hasse Principle for K3 Surfaces

Coming back to rational points on K3 surfaces, there are many more subtle prob-
lems to investigate. Here we comment on recent developments concerning the Hasse
principle which in fact relate to the Picard number one problem as well.

Given a variety X over a number field K, one may wonder whether for the exis-
tence of a global point on X it suffices to have local points over Kv for every place v
of K. This is called the Hasse principle, phrased in terms of the adèles AK :

X(AK) � ∅ ?
=⇒ X(K) � ∅. (12)

The classical case for the Hasse principle to hold consists in conics in P2, but already
for cubics in P2 it may fail by an example due to Selmer [48]. Often this failure can
be explained by the Brauer group

Br(X) = H2
ét(X,Gm).

In fact, via local invariants any subset S ⊆ Br(X) gives rise to an intermediate set

X(K) ⊆ X(AK)S ⊆ X(AK)

which may be empty even if X(AK) is not (see [56, Sect. 5.2]). This is exactly the
situation of a Brauer–Manin obstruction to the Hasse principle for X as pioneered
by Manin in [30]. In practice one specifies two subgroups

Br0(X) ⊆ Br1(X) ⊆ Br(X)

as follows:

constant Br0(X) = im(Br(k) → Br(X))

algebraic Br1(X) = ker(Br(X) → Br(X ⊗ K̄)

Class field theory shows for any S ⊆ Br0(X) that X(AK)S = X(AK). Algebraic
Brauer–Manin obstructions to the Hasse principle (and to the related concept of
weak approximation, i.e. density of X(K) in the product of all X(Kv)) have been
studied extensively in the last 40 years (see the references in [18]). Meanwhile it
is the transcendental elements in Br(X) \ Br1(X) that have resisted concrete re-
alizations; in fact, most constructions in the last decade have only impacted weak
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approximation while relying in an essential way on elliptic fibrations (so that ρ ≥ 2).
This was rectified recently by a remarkable construction due to Hassett and Vàrilly-
Alvarado [18]: they exhibit K3 surfaces with Picard number one (as double sextics
over number fields) with explicit quaternion algebras in Br(K(X)) giving rise to a
transcendental Brauer–Manin obstruction to the Hasse principle. Their work builds
on results of van Geemen on Brauer groups of K3 surfaces [17] and extends previous
results which only applied to weak approximation [19].

9 Rational Curves on K3 Surfaces

To close our considerations about rational points of K3 surfaces, we briefly comment
on the related topic of rational curves. The fundamental problem is:

Question 1. Does any K3 surface contain infinitely many rational curves?

We have already touched upon an answer for K3 surfaces with ρ ≥ 5: these admit
an elliptic fibration (Corollary 1) with infinitely many rational multisections (see
the discussion in Sect. 4). The problem has seen amazing progress recently, starting
from [6] and greatly extended in [26]. The main idea is to first reduce to K3 surfaces
X over Q̄ and then use reduction mod p. Then the odd parity of ρ(X) (and the Tate
conjecture) implies the existence of additional curves on Xp—including infinitely
many rational ones as one can show. Then one lifts back based on arguments going
back to Bogomolov and Mumford.

Theorem 3 (Bogomolov–Hassett–Tschinkel [6], Li-Liedtke [26]). Any K3
surface over Q̄ with odd ρ or ρ≥5 contains infinitely many rational curves (over Q̄).

We remark that the theorem as it stands does not imply potential density because
there is no control over the fields of definition of the rational curves.

10 Isogeny Notion for K3 Surfaces

Having said that Picard numbers are hard to compute, there is a big advantage when
working with complex K3 surfaces. This files under a notion of isogeny introduced
by Inose:

Proposition 2. Let X, X′ be complex K3 surfaces admitting a dominant rational map
X � X′. Then ρ(X) = ρ(X′).

The proof is an easy exercise using Hodge structures. Essentially one only has to
consider the blow-up X̃ of X along the locus of indeterminacy of the rational map:

X̃
↓ ↘
X � X′



84 M. Schütt

Then we can pull-back the transcendental Hodge structures from X and X′ to X̃.
Since the geometric genus is always 1, all these Hodge structures are determined as
the smallest Q-sub-Hodge structure of H2(X̃,Q) whose complexification contains
H2,0(X̃). In particular, they are isomorphic as Q-Hodge structures. In consequence
the Picard numbers of X and X′ coincide. $%
Remark 1. It was pointed out by Shioda that the analogue of Proposition 2 in posi-
tive characteristic fails in general, as there are unirational supersingular K3 surfaces
(e.g. Kummer surfaces). There seems to be a proof, though, for K3 surfaces of finite
height (such that the Tate conjecture holds true by [38]).

As an application, we can consider symplectic automorphisms of K3 surfaces,
i.e. those leaving the regular 2-form invariant. Over C, Nikulin proved in [35] that
the fixed locus always consists of a certain finite number of isolated fixed points
which only depends on the order of the automorphism (at most 8). On the quotient
surface, the fixed points yield rational double point singularities whose resolution
thus is again a K3 surface. By Proposition 2 the Picard numbers are the same.

Example 3. Let X be a K3 surface admitting a jacobian elliptic fibration with a tor-
sion section. Then translation by the section defines an automorphism of the under-
lying surface. The quotient surface X′ is naturally endowed with an elliptic fibration
such that the quotient map of the K3 surfaces corresponds to an isogeny of the
generic fibers as elliptic curves over the function field of P1. Here, of course, there
is a dual isogeny X′ � X. (This does not hold in general for symplectic involutions
of K3 surfaces.)

11 Singular K3 Surfaces

The arithmetic of K3 surfaces is conceivably best understood for big Picard num-
ber. In the workshop this could be witnessed in several talk, for instance by Bertin,
Clingher, Elkies, Kumar and Whitcher. To begin with, we shall concentrate on the
case of maximal Picard number over C in view of Lefschetz’ bound in (5):

Definition 3. A complex K3 surface X is called singular if ρ(X) = 20.

Note that singular K3 surfaces are smooth by definition; the phrase “singular” is
used in the sense of “exceptional”. In fact, there is an analogy with elliptic curves
with complex multiplication (CM) which will become clear in Sect. 12 (see also
Remark 2). In the sequel, the Fermat quartic will serve as our guiding example:

Example 4 (Fermat quartic). The Fermat quartic surface

S = {x4
0 + x4

1 + x4
2 + x4

3 = 0} ⊂ P3

has ρ(S ) = 20; thus it defines a singular K3 surface. There are several ways to
see this. Intrinsically one could appeal to the general theory of Fermat varieties.
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These come with a big automorphism group whose eigenspaces in cohomology can
be described in combinatorial terms in such a way that one can read off which are
algebraic [2]. Alternatively one could hand-pick the 48 lines on S , such as

x0 +
4√−1x1 = x2 +

4√−1x3 = 0,

and verify that their Gram matrix attains the maximum rank of 20.

We can construct a number of further singular K3 surfaces by applying sym-
plectic automorphisms to S and quotienting as in Sect. 10. Presently, the alternating
group A4 acts symplectically by coordinate permutations, and we can also combine
scalings by fourth roots of unity for symplectic automorphisms.

11.1 Torelli Theorem for Singular K3 Surfaces

The Torelli theorem states that K3 surfaces are essentially determined by the Hodge
structure underlying the transcendental lattice

T (X) = NS(X)⊥ ⊂ H2(X,Z). (13)

More precisely, given two K3 surfaces X, X′, any effective Hodge isometry of

H2(X,Z) � H2(X′,Z)

is induced from a unique isomorphism X � X′ (cf. [4, VIII.11]). For singular K3
surfaces this can be made very explicit as follows. In this situation T (X) is a positive
definite even lattice of rank 2 which comes with an orientation induced from the
regular 2-form. We can thus identify T (X) with a quadratic form

Q(X) =

(
2a b
b 2c

)

(14)

with integer entries a, c > 0 and discriminant d = b2−4ac > 0. The Torelli theorem
can now be formulated as follows:

Theorem 4. Two singular K3 surfaces X, X′ are isomorphic if and only if there is an
isometry T (X) � T (X′). Equivalently the quadratic forms Q(X), Q(X′) are conjugate
under SL(2,Z).

Example 5 (Fermat quartic cont’d). The Fermat quartic S has transcendental lattice
represented by the quadratic form

Q(S ) =

(
8 0
0 8

)

.

Proving this is a non-trivial task, and the first proper proof seems to go back to
Mizukami [32]. (The proof in [40] relied on a claim by Demjanenko which was
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only later justified by Cassels in [7].) Generally this question can be reduced to the
problem whether the lines generate NS(S ) fully or only up to finite index (which
can be solved using specialisation again, cf. [47]).

11.2 Surjectivity of the Period Map

In the moduli context it remains to discuss the surjectivity of the period map. With
the formulation of the Torelli theorem at hand, this amounts to the question whether
all positive definite quadratic forms as in (14) are attained by singular K3 surfaces.
Here it is crucial to note that Kummer surfaces will not be sufficient since the quo-
tient has the quadratic forms of the abelian surface multiplied by 2:

T (Km(A)) = T (A)[2], i.e. Q(Km(A)) = 2Q(A). (15)

Here transcendental lattice and quadratic form of the abelian surface A are defined in
complete analogy with (13), (14), and the above relation is valid for complex abelian
surfaces of any Picard number. In essence, we find that Kummer surfaces have 2-
divisible transcendental lattices; this prevents most quadratic forms as in (14) to be
associated to singular K3 surfaces which are Kummer.

Despite this failure of Kummer surfaces to lead directly to the surjectivity of
the period map for singular K3 surfaces, they still prove extremely useful. The first
complete argument goes back to Shioda and Inose [53] who proceed in the following
two steps:

1. Refer to work of Shioda and Mitani [54] where the corresponding Torelli theo-
rem including the surjectivity of the period map is proven for singular abelian
surfaces.

2. Prove that any singular K3 surface admits a rational map of degree 2 to a Kummer
surface such that the transcendental lattices differ by the same factor of 2 as in
(15).

Following Morrison [33], the construction forming the second step is nowadays
often called a Shioda–Inose structure. We will review it in detail in the next section.
Meanwhile we conclude this section with a brief discussion of the first step.

11.3 Singular Abelian Surfaces

In analogy with singular K3 surfaces, a complex abelian surface A is called singular
if its Picard number attains the maximum ρ(A) = 4. In [54] Shioda and Mitani
worked out the Torelli theorem including the surjectivity of the period map. We
summarize their result in the following theorem:
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Theorem 5 (Shioda–Mitani). Isomorphism classes of singular abelian surfaces
are in bijective correspondence with conjugacy classes of binary even positive defi-
nite quadratic forms.

The heart of the proof is an explicit construction of singular abelian surfaces with
given transcendental lattice. In terms of the quadratic form Q as in (14), one exhibits
two elliptic curves as complex tori

E = C/(Z + τZ), τ =
−b +

√
d

2a
, E′ = C/(Z + τ′Z), τ′ =

b +
√

d

2
. (16)

Then Shioda and Mitani compute that the product E × E′ has transcendental lattice
exactly represented by Q.

Remark 2. The terminology “singular abelian/K3 surface” is indeed appropriate in
the following sense: the elliptic curves E, E′ in (16) have complex multiplication
(CM) (in fact, they are isogenous); classically their j-invariants are called “singular”.

12 Shioda–Inose Structures

Given a quadratic form Q as in (14), 11.3 exhibits elliptic curves E, E′ such that
T (Km(E×E′)) is represented by 2Q. In order to recover the original quadratic form
on a singular K3 surface, Shioda and Inose developed a geometric construction that
applies generally to Kummer surfaces of product type. An instrumental ingredient
consists in the so-called double Kummer pencil formed by 24 rational curves on
Km(E×E′). In terms of the elliptic fibrations over P1 induced by the projections onto
either factor, the curves constitute the four singular fibers (type I∗0 , 5 components
each) and the four 2-torsion sections. We sketch the curves in the following figure
where the fibrations could be thought of both in the horizontal or vertical direction
(Fig. 1).

The key property for the considerations of [53] is that Kummer surfaces of prod-
uct type admit several distinct elliptic fibrations. In the generic situation these were
later classified by Oguiso [39]; Shioda and Inose exploit this feature by exhibiting a
specific fibration on Km(E × E′) by singling out a divisor D of Kodaira type II∗ in
the double Kummer pencil. Recall from Sect. 4 that the divisor D (printed in blue in
Fig. 2) induces indeed an elliptic fibration

Km(E × E′) → P1.

Moreover the rational curve C in green meets D transversally at exactly one point,
so C will serve as a section of the new fibration.

There are six rational curves in the double Kummer pencil (printed in red in
Fig. 2) which do not meet the divisor D of Kodaira type II∗. Hence they are compo-
nents of other fibers. In fact, since both perpendicular 3-chains meet the section C,
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Fig. 1: Double Kummer pencil

Fig. 2: Divisor of Kodaira type II∗ in the double Kummer pencil

they are located in different fibers. A detailed analysis shows that the fiber types can
only be I∗0 , I∗1 or IV∗. In fact, unless E � E′, both singular fibers have type I∗0 .

Shioda and Inose proceed by a quadratic base change that ramifies exactly at the
above two singular fibers. Pull-back from Km(E×E′) gives another jacobian elliptic
surface X with the II∗ fiber duplicated while the two fibers in the branch locus are
generically replaced by smooth fibers. The Euler number e(X) = 24 reveals that
X is again K3; in fact, since X dominates Km(E × E′) by construction, we have
ρ(X) = ρ(Km(E × E′)) by Proposition 2. One concludes by verifying by an explicit
calculation that

T (X) � T (Km(E × E′))[1/2].
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Together with (15), this gives

T (X) � T (A),

and the surjectivity of the period map for singular K3 surfaces follows from
Theorem 5. �

To conclude this section, let us summarize the above construction: a K3 surface
X with a rational map of degree 2 to a Kummer surface which induces multiplication
by 2 on the transcendental lattices:

A

���
�

�
�

� X

���
�
�
�
�

Km(A) T (A) � T (X)

In generality, Morrison coined the terminology Shioda–Inose structure for such
a diagram. In [33] he proved that any K3 surface with ρ ≥ 19 admits a Shioda–
Inose structure, and he worked out explicit criteria for K3 surfaces with ρ = 17, 18.
Shioda–Inose structures are a versatile tool for the study of K3 surfaces; they turned
up during the workshop especially in the context of classification and moduli prob-
lems (see also [46] and the references therein).

Before continuing our investigation of singular K3 surfaces, eventually aiming
for zeta functions and modularity, we take a little detour towards Mordell–Weil
ranks of elliptic K3 surfaces.

13 Mordell–Weil Ranks of Elliptic K3 Surfaces

By the Shioda–Tate formula (4), a jacobian elliptic K3 surface can have Mordell–
Weil rank at most 18 over C. Recall from Sect. 4 how elliptic fibrations on K3 sur-
faces are governed by lattice theory. In order to see which MW-ranks are attained,
one can therefore appeal to the moduli theory of lattice polarised K3 surfaces, com-
bined with the theory of Mordell–Weil lattices [50]. The solution was first given by
Cox [9]:

Theorem 6 (Cox). Any integer between 0 and 18 occurs as Mordell–Weil rank of a
complex elliptic K3 surface.

In the spirit of Sect. 5, it is still a delicate problem to exhibit an elliptic K3 sur-
face with given MW-rank. Kuwata gave an almost complete answer in [25] based
on the Shioda–Inose structure related to E × E′. Here we will briefly review his
construction.

Recall from the previous section that the Kummer surface Km(E×E′) is covered
by another K3 surface X which is equipped with an induced jacobian elliptic
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fibration with two fibers of Kodaira type II∗. Much like what we did to the original
elliptic fibration on Km(E×E′) one can try to apply base changes to X which remain
K3. Here’s the first example:

Example 6. A quadratic base change ramified at the two special fibers gives another
K3 surface X(2) (by Euler number considerations). The induced elliptic fibration
has two fibers of type IV∗ instead of II∗ (see the small table below). It is a non-
trivial fact that X(2) indeed returns the Kummer surface Km(E × E′) (which thus
sandwiches X, see [51]). The elliptic fibration can be understood in terms of (3) as
projection onto P1

y (i.e. a quadratic base change of a cubic pencil—the pencil is the
corresponding quadratic twist of X).

In general, a fiber of type II∗ (outside characteristics 2, 3) pulls back as follows
under a cyclic base change of degree n:

n mod 6 0 1 2 3 4 5
Fiber type I0 II∗ IV∗ I∗0 IV II

Hence a simple Euler number computation allows us to determine all base changes
of X which remain K3. This requires that the base change is cyclic of degree n ≤ 6
and exactly ramifies at the two special fibers of type II∗ (as in Example 6). By
construction, the resulting K3 surface X(n) automatically comes with a rational map
of degree n to X; hence by Proposition 2

ρ(X(n)) = ρ(X) = ρ(Km(E × E′)). (17)

In consequence, the MW-rank of X(n) can be computed depending only on E and E′.
Essentially this relies on E and E′ being isogenous or not:

ρ(Km(E × E′)) = 18 + rank(Hom(E, E′)) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

18, if E � E′;
19, if E ∼ E′ without CM;

20, if E ∼ E′ with CM.

In order to apply the Shioda–Tate formula (4), one further needs that the fibrations
have additional reducible fibers if and only if E and E′ are isomorphic. With the
exception of the cases j(E), j(E′) ∈ {0, 1728}, the results are summarised in Table 1.

The only MW-rank missing from Table 1 is 15. This gap was subsequently
filled by Kloosterman. In [23], he exhibited an explicit elliptic K3 surface with
MW-rank 15 much along the lines of Sect. 7. In brief he worked out a three-
dimensional family of elliptic K3 surfaces with generic MW-rank 15 (again using
base change from an appropriate elliptic K3 surface). Then the specialisation tech-
nique from Sects. 7.1, 7.2 enabled him to single out a general member of the family.

Remark 3. Extending (17), Shioda proved in [52] that T (X(n)) = T (X)[n].

One can enrich the arithmetic flavour of the MW-rank problem by specifying
the ground field in consideration. Naturally one might wonder which MW-ranks are
attained by elliptic K3 surfaces overQ (i.e. as elliptic curves overQ(t)). The answer
is due to Elkies (see [10]):
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Table 1: Fiber configuration and Mordell–Weil rank of X(n)

E � E′ E � E′ E ∼ E′ E � E′
n Config MW-rank Config MW-rank MW-rank

1 2 II∗, I2, 2 I1

⎧
⎪⎪⎨
⎪⎪⎩

1

0
2 II∗, 4 I1

⎧
⎪⎪⎨
⎪⎪⎩

2

1
0

2 2 IV∗, 2 I2, 4 I1

⎧
⎪⎪⎨
⎪⎪⎩

4

3
2 IV∗, 8 I1

⎧
⎪⎪⎨
⎪⎪⎩

6

5
4

3 2 I∗0 , 3 I2, 6 I1

⎧
⎪⎪⎨
⎪⎪⎩

7

6
2 I∗0 , 12 I1

⎧
⎪⎪⎨
⎪⎪⎩

10

9
8

4 2 IV, 4 I2, 8 I1

⎧
⎪⎪⎨
⎪⎪⎩

10

9
2 IV, 16 I1

⎧
⎪⎪⎨
⎪⎪⎩

14

13
12

5 2 II, 5 I2, 10 I1

⎧
⎪⎪⎨
⎪⎪⎩

13

12
2 II, 20 I1

⎧
⎪⎪⎨
⎪⎪⎩

18

17
16

6 6 I2 , 12 I1

⎧
⎪⎪⎨
⎪⎪⎩

12

11
24 I1

⎧
⎪⎪⎨
⎪⎪⎩

18

17
16

Theorem 7 (Elkies). The maximal MW-rank of an elliptic K3 surface over Q is 17.

On the existence side of Theorem 7, Elkies exhibits an explicit K3 surface of
MW-rank 17 over Q. The construction uses families of K3 surfaces and inge-
nious specialisation and lifting arguments (somewhat comparable to the concepts
in Sect. 15). As an application, Elkies is able to specialise to elliptic curves over Q
of even higher rank, pushing the previous record ranks as far as 28.

In order to explain the non-constructive part of Elkies’ proof, we have to discuss
fields of definition of singular K3 surfaces first.

14 Fields of Definition of Singular K3 Surfaces

Since singular K3 surfaces lie isolated in the moduli space, they are always defined
over some number field. In this section, we will be more specific about the number
field and also comment on known obstructions.

So far, we have not given explicit equations for singular K3 surfaces except for
the Fermat quartic (Example 4). To remedy this, consider a singular K3 surface
X with elliptic fibration coming from the Shioda–Inose structure. By Tate’s algo-
rithm [60], the two fibers of type II∗ determine the Weierstrass equation of X almost
completely. The remaining coefficients depend on Weber functions in terms of the
j-invariants of the elliptic curves, as determined by Inose [21]:

X : y2 = x3 − 3At4x + t5(t2 − 2Bt + 1) (18)

where A3 = j(E) j(E′)/126, B2 = (1 − j(E)/123) (1 − j(E′)/123). An easy twist
reveals that the above fibration in fact admits a model over Q( j(E), j(E′)) (see [43,
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Proposition 4.1]). This field is related to class field theory as follows. Let d denote
the discriminant of X, i.e. d = − det Q(X) where Q(X) is the quadratic form repre-
senting T (X). If K = Q(

√
d), then class group theory attaches to d a ring class field

H(d) as maximal abelian extension of K with prescribed ramification. The Galois
group of the extension H(d)/K is canonically isomorphic to the class group Cl(d),
consisting of primitive quadratic forms of discriminant d as in (14) with Gauss com-
position. CM theory of elliptic curves states that

H(d) = K( j(E′)) = K( j(E), j(E′)).

In summary we find

Proposition 3. Any singular K3 surface of discriminant d admits a model over the
ring class field H(d).

As satisfying as the above canonical field of definition may be, in practice it is often
far from optimal. As an illustration we return to the Fermat quartic once again.

Example 7. In Example 5 we have given the transcendental lattice of the Fermat
quartic S . In the realm of Shioda–Inose structures, S thus arises from the elliptic
curves with periods τ =

√−1, τ′ = 4
√−1. Note the discrepancy that the latter

CM curve is only defined over Q(
√

2) (and so is Inose’s model (18)) while the
Fermat quartic has the obvious model overQ. In fact, considering the Fermat quartic
as a Kummer surface instead, it is associated to the elliptic curves with periods
τ =

√−1, τ′ = 2
√−1 which are indeed both defined over Q.

Example 7 leads to the problem of working out obstructions for singular K3
surfaces to descend from the ring class field H(d) to smaller fields, in particular toQ.
Essentially there are two obstructions known, one coming from the transcendental
lattice (see [43]), the other imposed by the Néron–Severi lattice. Here we shall only
consider the latter obstruction which was discovered independently by Elkies and
the author (cf. [45]). In short, it states that the ring class field H(d) is essentially
preserved through the Galois action on the Néron–Severi lattice:

Theorem 8 (Elkies, Schütt). Let X be a singular K3 surface of discriminant d. If
NS(X) has generators defined over some number field L, then

L(
√

d) ⊃ H(d).

The theorem paves the way towards finiteness classifications. For instance, one read-
ily deduces that there are only finitely many singular K3 surfaces over Q (up to
Q̄-isomorphism) since the Néron–Severi lattice cannot admit Galois actions by ar-
bitrarily large groups. To see this, note that the rank of the lattice is trivially constant
and the hyperplane class is always preserved by Galois; this leaves a faithful Galois
action on the negative-definite complement.
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14.1 Mordell–Weil Ranks Over Q

Returning to the problem of Mordell–Weil ranks overQ, we note that rank 18 would
imply that all of NS would be defined over Q. By Theorem 8, the discriminant d
could only have class number one, i.e.

d = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163.

Elkies continues to argue with the Mordell–Weil lattice M of the given elliptic fi-
bration. By [50], this is an even positive-definite lattice of rank 18 and discriminant
d without roots (i.e. x2 > 2 for all x ∈ M). Note that with discriminant |d| ≤ 163
such a lattice would break the known density records for sphere packings, but this
can only be regarded as evidence against Mordell–Weil rank 18 overQ.

In order to rule out the existence of such a M, one appeals to general results of
lattice theory developed by Nikulin [36]. Geared towards elliptic K3 surfaces, they
imply that M admits a primitive embedding into some Niemeier lattice (i.e. one of
the 24 unimodular positive-definite even lattices of rank 24, cf. [34]). Its orthogonal
complement L (positive-definite of rank 6) is called the partner lattice of M. Often
the partner lattice L can be determined a priori from NS or from the transcendental
lattice T (X). In fact, all jacobian elliptic fibrations on a given complex K3 surface
X can be classified in terms of the primitive embeddings of L into Niemeier lat-
tices. Full classifications have been established, for instance, by Nishiyama [37] for
the singular K3 surfaces with discriminant −3 and −4. Here there are 6 resp. 13
jacobian fibrations, but the Mordell–Weil rank does never exceed 1.

Returning to the problem of Mordell–Weil rank 18, ruling this out for a single
K3 surface amounts to proving that the partner lattice L does not admit a primitive
embedding into any Niemeier lattice without any perpendicular roots. For the 13
discriminants of class number one, this is exactly what Elkies succeeds in doing,
thus ruling out Mordell–Weil rank 18 over Q. In fact, even Mordell–Weil rank 17
is only barely attained over Q by an elliptic K3 surface of discriminant 12 · 79
(see [10]).

15 Modularity of Singular K3 Surfaces

The modularity of elliptic curves over Q has been one of the biggest achievements
in mathematics in the last 20 years (implying in particular Fermat’s Last Theorem).
Starting from an elliptic curve E over Q, one considers the reductions Ep for all
good primes. Counting points on Ep over Fp, one defines the quantity

ap = 1 + p− #Ep(Fp). (19)

The Taniyama–Shimura–Weil conjecture states that the collection of integers {ap}
comprise the Fourier coefficients of a single modular form (the eigenvalues of a
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Hecke eigenform of weight 2). This is now a theorem, thanks to the work of
Wiles [63] and others. Historically the first case to be settled comprised elliptic
curves with CM. Generally over any number field, their zeta function was shown by
Deuring to depend on certain Hecke characters ψ. For elliptic curves over Q with
CM, this has an incarnation in terms of modular forms with CM.

For singular K3 surfaces, the Shioda–Inose structure allows one to express the
zeta function in terms of the Hecke character ψ2, but a priori only over some exten-
sion of H(d) required for exhibiting the construction [53, Theorem 6]. Especially
in view of the possible descent from H(d) to some smaller fields as explored in
Sect. 14, it is thus an independent task to prove modularity for singular K3 surfaces
over Q (long predicted by standard conjectures for two-dimensional Galois repre-
sentations). Here (19) is rephrased by virtue of Lefschetz’ fixed point formula. For
a singular K3 surface X over Q and its good reductions Xp, we define

#Xp(Fp) = 1 + bp + hp + p2 (20)

where the integer h encodes the action of Frob∗p on NS(Xp⊗ F̄p). In this context, the
integers bp ought to belong to a Hecke eigenform of weight 3. This was solved by
Livné in a more general framework of orthogonal Galois representations [28]:

Theorem 9 (Livné). Every singular K3 surface over Q is modular. Its zeta function
is expressed in terms of a Hecke eigenform of weight 3 with CM by Q(d) where d
denotes the discriminant of the K3 surface.

Example 8. The zeta function of the Fermat quartic (the model S over Q from Ex-
ample 4) can be expressed in terms of the eta product η(4τ)6 (the weight 3 eigenform
of level 16 from [44, Table 1]). With Legendre symbols χ• accounting for the Galois
action on the lines defined over Q(

√−1,
√

2), one finds

ζ(S , s) = ζ(s)ζ(s− 1)5ζ(χ−1, s− 1)3ζ(χ2, s− 1)6ζ(χ−2, s− 1)6L(η(4τ)6, s)ζ(s− 2).

Spelling this out for #S p(Fp) as in (20), we find h = 5+3χ−1(p)+6(χ2(p)+χ−2(p))
and Fourier coefficients bp determined by the infinite product

η(4τ)6 = q
∏

n≥1

(1− q4n)6 =
∑

n≥1

bnqn.

We emphasize how the overall picture differs from the case of elliptic curves over
Q. There Shimura had shown in the 1950s how to associate an elliptic curve over
Q as a factor of the Jacobian J0(N) to a Hecke eigenform of weight 2 and level N
with eigenvalues in Z, but the modularity remained open for more than 30 years. For
singular K3 surfaces, quite on the contrary, modularity was proved first, but only a
few years ago it became clear that they also sufficed in the opposite direction:

Theorem 10 (Elkies-Schütt [12]). Every known Hecke eigenform of weight 3 with
eigenvalues in Z is associated to a singular K3 surface over Q.
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In view of Theorem 9 it is crucial to note that the CM property is by no means
special, but rather forced in odd weight by real Hecke eigenvalues due to a result of
Ribet [42]. Then the key step towards Theorem 10 consists in a classification of CM
form with eigenvalues in Z which narrows the problem down to an essentially finite
problem [44]. In practice it therefore suffices to exhibit a singular K3 surface over
Q for any imaginary quadratic field whose class group has exponent 1 or 2. There
are 65 such fields known, with at most one further field possible by [62]. Thus the
restriction of Theorem 10 which, for instance, becomes vacuous if one is willing to
assume the extended Riemann hypothesis for odd real Dirichlet characters.

We conclude this paper with a few words towards to construction of these singu-
lar K3 surfaces over Q in [12]. After exhausting the examples occurring in the liter-
ature, we started considering one-dimensional families of K3 surfaces with ρ ≥ 19.
These have dense specialisations with ρ = 20 over Q̄, parametrised by some mod-
ular or Shimura curve, but the determination of the CM points is a non-trivial task.
For instance, one can deform the Fermat quartic to the so-called Dwork pencil

Sλ = {x4
0 + x4

1 + x4
2 + x4

3 = λx0 x1x2x3} ⊂ P3. (21)

This retains a big part of the automorphism group which partly explains why
ρ(Sλ) ≥ 19. We will briefly come back to this family below; for a detailed account,
the reader is referred to the upcoming paper [13].

A common theme among the constructions is the use of jacobian elliptic fibra-
tion (again!), preferably with large contribution from the singular fibers (such that
ideally the MW-rank would be zero generically). This has both advantages on the
constructive side of exhibiting the families and for the decisive step of provably de-
termining CM points (see below). Note that by Theorem 8, a singular K3 surface
of big class number over Q has to admit a fairly big Galois action on NS, so the
families necessarily become pretty complicated (despite the low MW-rank).

Finally we comment on the possible approaches to determine the CM points of
a given family such as the Dwork pencil (21). One possibility to proceed would be
to determine the moduli structure of the parametrising curve and compute the CM
points explicitly. For instance, the parameter of the Dwork pencil can be interpreted
as fourfold cover of the modular curve X∗(2) parametrising pairs of 2-isogenous
elliptic curves (where the CM-points can be calculated easily). Geometrically this
can be achieved through a Shioda–Inose structure over Q. However, with the fami-
lies getting more and more complicated, the determination of the moduli curve soon
becomes infeasible (let alone the calculation of CM points), and in fact these one-
dimensional families of K3 surfaces have proved a versatile tool to work out explicit
models of Shimura curves (see [11]). Here is how we proceeded instead in [12].

Experimentally one can count points over finite fields throughout the family and
apply Lefschetz’ fixed point formula (20). Fixing a target modular form, one can
sieve those parameters modulo several primes p which would fit the Fourier coeffi-
cients bp of the modular form. Once a collection of residue parameters is computed,
one can try to lift them to a single parameter of small height in Q. This procedure is
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surprisingly effective (though not for the Dwork pencil in the above form, because it
admits an order 4 symmetry in the parameter λ). It remains to prove the CM points
that one might have computed experimentally.

Proving the CM points amounts to exhibiting an extra divisor on the special
member of the family. Here one takes advantage of the structure as jacobian el-
liptic surface, together with an extra bit of information extracted from Theorem 9.
Namely the precise modular form that we are aiming at predicts the square class
of the discriminant of the K3 surface X that we want to prove to have ρ = 20.
Presently this usually requires the presence of an additional section. Thanks to the
height pairing from the theory of Mordell–Weil lattices [50], information about the
conjectural discriminant can be translated into details which fiber components have
to be met by the section. If the height of the section is small enough, this gives
enough information about the shape of the section to solve for it either directly or
with p-adic methods (further simplified by the fact that we have already a candidate
for the parameter of the family).

In the end, it turns out that the two obstructions—the families being rich enough
and the height of the section being small enough to allow for explicit calculations—
balance out just right to compute singular K3 surfaces for all but a handful of the
known Hecke eigenforms (which require special treatment).

We end the paper by remarking that the analogous problem in higher dimension,
realising all Hecke eigenforms of fixed weight with eigenvalues in Z by a single class
of varieties such as Calabi–Yau manifolds, seems wide open even in dimension 3
where some modularity results are available (see Yui’s introductory lectures).
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19. B. Hassett, A. Vàrilly-Alvarado, P. Varilly, Transcendental obstructions to weak approxima-
tion on general K3 surfaces. Adv. Math. 228, 1377–1404 (2011)
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1 Introduction

These are notes of my introductory lectures at the Fields workshop on “Arithmetic
and Geometry of K3 surfaces and Calabi–Yau threefolds”, at the Fields Institute
from August 16–25, 2011. My goal is twofold:

• Present an update on the recent developments on the various kinds of modularity
associated to Calabi–Yau varieties. Here “recent” developments means various
developments since my article [65] published in 2003.
• Formulate conjectures and identify future problems on modularity and related

topics.

My hope is to motivate young (as well as mature) researchers to work in this
fascinating area at the interface of arithmetic, geometry and physics around Calabi–
Yau varieties.

1.1 Brief History Since 2003

The results and discoveries in the last 10 years on Calabi–Yau varieties, which will
be touched upon in my lectures, are listed below.

• The modularity of the two-dimensional Galois representations associated to
Calabi–Yau varieties defined over Q.
• The modularity of highly reducible Galois representations associated to Calabi–

Yau threefolds over Q.
• The automorphy of higher dimensional Galois representations arising from CM

type Calabi–Yau varieties (automorphic induction).
• Appearance of various types of modular forms in Mirror Symmetry as generat-

ing functions counting some mathematical/physical quantities.
• Modularity of families of Calabi–Yau varieties (solutions of Picard–Fuchs dif-

ferential equations, monodromy groups, mirror maps).
• Moduli spaces of Calabi–Yau families, and higher dimensional modular forms

(e.g., Siegel modular forms).

1.2 Plan of Lectures

Obviously, due to time constraints, I will not be able to cover all these topics in my
two introductory lectures. Thus, for my lectures, I plan to focus on recent results
on the first three (somewhat intertwined) items listed above, and with possibly very
brief interludes to the rest if time permits.
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This article includes my two lectures delivered at the workshop, as well as some
subjects/topics which I was not able to cover in my lectures. However, I must em-
phasize that this note will not touch upon geometric modularity.

1.3 Disclaimer

Here I will make the disclaimer that the topics listed above are by no means ex-
haustive; it may be the case that I forget to mention some results, or not give proper
attributions. I apologize for these oversights.

1.4 Calabi–Yau Varieties: Definition

Definition 1. Let X be a smooth projective variety of dimension d defined over C.
We say that X is a Calabi–Yau variety if

• Hi(X,OX) = 0 for every i, 0 < i < d.
• The canonical bundle KX is trivial.

We introduce the Hodge numbers of X:

hi, j(X) := dimCH j(X, Ωi
X), 0 ≤ i, j ≤ d.

Then we may characterize a Calabi–Yau variety of dimension d in terms of its
Hodge numbers.

A smooth projective variety X of dimension d over C is called a Calabi–Yau
variety if

• hi,0(X) = 0 for every i, 0 < i < d.
• KX � OX , so that the geometric genus of X,

pg(X) := h0,d(X) = dimCH0(X, KX) = dimCH0(X,OX) = 1.

Numerical characters of Calabi–Yau varieties of dimension d

• Betti numbers: For i, 0 ≤ i ≤ 2d, the i-th Betti number of X is defined by

Bi(X) := dimCHi(X,C).

There is Poincaré duality for Hi(X,C); that is,

Hi(X,C)× H2d−i(X,C) → C for every i, 0 ≤ i ≤ d

is a perfect pairing. This implies that

Bi(X) = B2d−i(X), for i, 0 ≤ i ≤ d.
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• Hodge numbers: They are defined in Definition 1 above. There is the symmetry
of Hodge numbers: For 0 ≤ i, j ≤ d,

hi, j(X) = h j,i(X) by complex conjugation,

and

hi, j(X) = hd−i,d− j(X) by Serre duality.

• There is a relation among Betti numbers and Hodge numbers, as a consequence
of the Hodge decomposition:

Bk(X) =
∑

i+ j=k

hi, j(X).

• The Euler characteristic of X is defined by

E(X) :=
2d∑

k=0

(−1)kBk(X).

Example 1. (a) Let d = 1. The first condition is vacuous. The second condition
says that pg(X) = 1. So dimension 1 Calabi–Yau varieties are elliptic curves.
The Hodge diamond of elliptic curves is rather simple.

1 B0(X) = 1
1 1 B1(X) = 2

1 B2(X) = 1

The Euler characteristic of X is given by

E(X) = B0(X)− B1(X) + B2(X) = 0.

(b) Let d = 2. The first condition is h1,0(X) = 0 and the second condition says that
h0,2(X) = pg(X) = 1. So dimension 2 Calabi–Yau varieties are K3 surfaces. The
Hodge diamond of K3 surfaces is of the form:

1 B0(X) = 1
0 0 B1(X) = 0

1 20 1 B2(X) = 20
0 0 B3(X) = 0

1 B4(X) = 1

The Euler characteristic of X is given by

E(X) =
4∑

k=0

(−1)kBk(X) = 1 + 22 + 1 = 24.

(c) Let d = 3. The first condition says that h1,0(X) = h2,0(X) = 0 and the second
condition implies that h0,3(X) = pg(X) = 1. The Hodge diamond of X is given
as follows:
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1 B0(X) = 1
0 0 B1(X) = 0

0 h1,1(X) 0 B2(X) = h1,1(X)
1 h2,1(X) h1,2(X) 1 B3(X) = 2(1 + h2,1(X))

0 h2,2(X) 0 B4(X) = h2,2(X) = h1,1(X)
0 0 B5(X) = 0

1 B6(X) = 1

The Euler characteristic is given by

E(X) =
6∑

k=0

(−1)kBk(X) = 2(h1,1(X)− h2,1(X)).

It is not known if there exist absolute constants that bound h1,1(X), h2,1(X), and
hence |E(X)|. The currently known bound for |E(X)| is 960.

(d) Here are some typical examples of families of Calabi–Yau varieties defined by
hypersurfaces.

d CY variety of dim d CY varieties of dim d
1 X3

0 + X3
1 + X3

2 + 3λX0X1X2 y2 = f3(x)
2 X4

0 + X4
1 + X4

2 + X4
3 + 4λX0X1X2X3 z2 = f6(x, y)

3 X5
0 + X5

1 + X5
2 + X5

3 + X5
4 + 5λX0X1X2X3X4 w2 = f8(x, y, z)

The equations in the second column are generic polynomials in projective coor-
dinates; while those in the third column are in affine coordinates and the fi are
smooth polynomials of degree i in affine coordinates.

We have a vast source of examples of Calabi–Yau threefolds via toric con-
struction and other methods. The upper record for the absolute value of the
Euler characteristic of all these Calabi–Yau threefolds is 960, though there is
neither reason nor explanation for this phenomenon.

2 The Modularity of Galois Representations of Calabi–Yau
Varieties (or Motives) Over Q

We now consider smooth projective varieties defined overQ (say, by hypersurfaces,
or complete intersections). We say that X/Q is a Calabi–Yau variety of dimension
d over Q, if X ⊗Q C is a Calabi–Yau variety of dimension d. A Calabi–Yau variety
X over Q has a model defined over Z[ 1

m ] (with some m ∈ N), and this allows us
to consider its reduction modulo primes. Pick a prime p such that (p, m) = 1, and
define the reduction of X modulo p, denoted by X mod p. We say that p is a good
prime if X mod p is smooth over F̄p, otherwise p is bad. For a good prime p, let Frp

denote the Frobenius morphism on X induced from the p-th power map x �→ xp.
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Let � be a prime different from p. Then, for each i, 0 ≤ i ≤ 2d, Frp induces an
endomorphism Fr∗p on the i-th �-adic étale cohomology group Hi

et(X̄p,Q�), where
X̄p := X ⊗Fp F̄p. Grothendieck’s specialization theorem gives an isomorphism
Hi

et(X̄p,Q�) � Hi
et(X̄,Q�), where X̄ := X ⊗Q Q̄. Then the comparison theorem gives

Hi
et(X̄,Q�) ⊗Q�

C � Hi(X ⊗Q C,C) so that dimQ�
Hi

et(X̄,Q�) = Bi(X). There is
Poincaré duality for Hi

et(X̄,Q�), that is,

Hi
et(X̄,Q�)× H2d−i

et (X̄,Q�) → Q� for every i, 0 ≤ i ≤ 2d

is a perfect pairing. Let

Pi
p(T ) := det(1− Fr∗p T |Hi

et(X̄,Q�))

be the reciprocal characteristic polynomial of Fr∗p. (Here T is an indeterminate.)
Then the Weil Conjecture (Theorem) asserts that

• Pi
p(T ) ∈ 1 + TZ[T ]. Moreover, Pi

p(T ) does not depend on the choice of �.
• Pi

p(T ) has degree Bi(X).

• P2d−i
p (T ) = ±Pi

p(pd− i
2 T ) for every i, 0 ≤ i ≤ d.

• If we write

Pi
p(T ) =

Bi∏

j=1

(1− αi j T ) ∈ Q̄[T ]

then αi j are algebraic integers with |αi j| = pi/2 for every i, 0 ≤ i ≤ 2d.

Now we will bring in the absolute Galois group GQ := Gal(Q̄/Q). There is a
continuous system of �-adic Galois representations

ρi
X,� : GQ→ GL(Hi

et(X̄,Q�))

sending the (geometric) Frobenius Fr−1
p to ρi(Fr−1

p ). The (geometric) Frobenius
ρi(Fr−1

p ) has the same action as the Frobenius morphism Fr∗p on the étale coho-
mology Hi

et(X̄,Q�). We define its L-series L(ρi
X,�, s) := L(Hi

et(X̄,Q�), s) for each
i, 0 ≤ i ≤ 2d, where s is a complex variable.

We will now define the L-series of X.

Definition 2. The i-th (cohomological) L-series of X is defined by the Euler product

Li(X, s) := L(Hi
et(X̄,Q�), s)

:= (∗)
∏

p:p��

Pi
p(p−s)−1 × (factor corresponding to � = p)

where the product is taken over all good primes different from � and (∗) corresponds
to factors of bad primes. For � = p, we may choose another good prime � � p, or
we can use some p-adic cohomology (e.g., crystalline cohomology) to define the
factor.
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For i = d, we write simply L(X, s) for Ld(X, s) if there is no danger of ambiguity.

Remark 1. We may define (for a good prime p) the zeta-function ζ(Xp, T ), of a
Calabi–Yau variety Xp defined over Fp by counting the number of rational points
on all extensions of Fp:

ζ(Xp, T ) := exp

⎛
⎜⎜⎜⎜⎜⎝

∞∑

n=1

#Xp(Fpn )

n
T n

⎞
⎟⎟⎟⎟⎟⎠ ∈ Q(T ).

Then by Weil’s conjecture, it has the form:

ζ(Xp, T ) =
P1(T )P3(T ) · · ·P2d−1(T )

P0(T )P2(T ) · · ·P2d(T )
,

where we put (to ease the notation) Pi(T ) = Pi
p(T ) for i = 1, . . . , 2d.

Let X be a Calabi–Yau variety of dimension d defined over Q. For a good prime
p, Frp acts on X mod p, and it will induce a morphism Fr∗p on Hi

et(X̄p,Q�) �
Hi

et(X̄,Q�). Define the trace ti(p) by

ti(p) := Trace(Fr∗p |Hi
et(X̄,Q�)), for i, 0 ≤ i ≤ 2d.

Then ti(p) ∈ Z for every i, 0 ≤ i ≤ 2d. The Lefschetz fixed point formula gives a
relation between the number of Fp-rational points on X and traces:

#X(Fp) =
2d∑

i=0

(−1)iti(p).

Example 2. (a) Let d = 1 and let E be an elliptic curve defined over Q. For a good
prime p,

#E(Fp) =
2∑

i=0

(−1)iti(p) = t0(p)− t1(p) + t2(p) = 1 + p− t1(p),

where
|t1(p)| ≤ 2p1/2.

Then we have

P0
p(T ) = 1− T, P2

p(T ) = 1− pT, P1
p(T ) = 1− t1(p)T + pT 2.

The L-series of E is then given by

L(E, s) = (∗)
∏

p:good

P1
p(p−s)−1

= (∗)
∏

p:good

1

1− t1(p)p−s + p1−2s
.
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Expanding out, we may write

L(E, s) =
∞∑

n=1

a(n)

ns
with a1 = 1 and a(n) ∈ Z.

So
a(p) = t1(p) for every good prime p.

(b) Let d = 2, and let X be a K3 surface defined over Q. Let NS (X) denote the
Néron–Severi group of X generated by algebraic cycles. It is a free finitely gen-
erated abelian group, and

NS (X) = H2(X,Z) ∩ H1,1(X)

so that the rank of NS (X) (called the Picard number of X), denoted by ρ(X),
is bounded above by 20. Let T (X) be the orthogonal complement of NS (X)
in H2(X,Z) with respect to the intersection pairing. We call T (X) the group of
transcendental cycles of X. We have the decomposition

H2(X,Z)⊗ Q� = (NS (X)⊗Q�)⊕ (T (X)⊗ Q�).

and this will enable us decompose the L-series of X as follows:

L(X, s) = L(H2
et(X̄,Q�), s) = L(NS (X)⊗ Q�, s)× L(T (X)⊗ Q�, s).

We know that for a good prime p,

P0
p(T ) = 1− T, P4

p(T ) = 1− p2T, P1
p(T ) = P3

p(T ) = 1

and if

P2
p(T ) =

22∏

j=1

(1− α j T ) ∈ Q̄[T ]

then
|α j| = p.

The L-series of NS (X) is more or less understood by Tate’s conjecture. The
validity of the Tate conjecture for K3 surfaces in characteristic zero has been
established (see Tate [57]). In fact, if we know that all the algebraic cycles
generating NS (X) are defined over some finite extension K of Q of degree r,
then ρ2(Frpr ) acts on NS (X) ⊗ Q� by multiplication by pr so that the L-series
may be expressed as

L(NS (XK)⊗ Q�, s) = ζK(s− 1)ρ(X)

where ζK(s) denotes the Dedekind zeta-function of K.
Therefore, the remaining task is to determine the L-series L(T (X)⊗Q�, s) arising
from the transcendental cycles T (X), and we call this the motivic L-series of X.
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(c) Let d = 3, and let X be a Calabi–Yau threefold defined over Q. For a good
prime p,

#X(Fp) =
6∑

i=0

(−1)iti(p) = t0(p)− t1(p) + t2(p)− t3(p) + t4(p)− t5(p) + t6(p)

= 1 + p3 + (1 + p)t2(p)− t3(p).

Therefore,
t3(p) = 1 + p3 + (1 + p)t2(p)− #X(Fp).

We have
t0(p) = 1, t6(p) = p3, t1(p) = t5(p) = 0,

|t2(p)| ≤ ph1,1(X), t4(p) = pt2(p),

and
|t3(p)| ≤ B3 p3/2.

Hence
P0

p(T ) = 1− T, P6
p(T ) = 1− p3T, P1

p(T ) = P5
p(T ) = 1,

P4
p(T ) = P2

2(pT ) and P3
p(T ) ∈ Z[T ] with degree B3(X).

Then the L-series of X is given by

L(X, s) = L(H3
et(X̄,Q�), s) = (∗)

∏

p good

P3
p(p−s)−1

where (∗) is the factor corresponding to bad primes.

We will now make a definition of what it means for a Calabi–Yau variety X
defined over Q to be modular (or automorphic). This is a concrete realization of the
conjectures known as the Langlands Philosophy.

In the appendix, we will briefly recall the definitions of various types of modular
forms.

Now we will recall the Fontaine–Mazur conjectures, or rather some variant con-
centrated on Calabi–Yau varieties overQ.

Definition 3. Let X be a Calabi–Yau variety of dimension d ≤ 3 defined overQ. Let
L(X, s) be its L-series. We say that X is modular if there is a set of modular forms
(or automorphic forms) such that L(X, s) coincides with the L-series associated to
modular forms (automorphic forms), up to a finite number of Euler factors.

Remark 2. In fact, when the Galois representation arising from X is reducible, then
we will consider its irreducible factors and match their L-series with the L-series of
modular forms. This is the so-called motivic modularity.
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Now we define Calabi–Yau varieties X of CM-type. This involves a polarized
rational Hodge structure h on the primitive cohomology Hd

prim(X,Q), where d =
dim(X).

Let S := RC/RGm be the real algebraic group obtained from Gm by restriction
of scalars from C to R. For d = 1, H1

prim(X,Q) = H1(X,Q), and polarized rational
Hodge structures on X are simple. For d = 2, The Hodge group of a polarized ratio-
nal Hodge structure h : S → GL(Hd

prim(X,Q) ⊗ R) is the smallest algebraic group

of GL(H2
prim(X,Q) ⊗ R) defined over Q such that the real points Hdg(R) contain

h(U1) where U1 := { z ∈ C∗ | zz = 1}. For details about Hodge groups, see Deligne
[10], and Zarhin [66]. For d = 3, the Hodge structure on H3

prim(X,Q) = H3(X,Q) is
not simple for all Calabi–Yau threefolds X. (For instance, for the quintic threefold
in the Dwork pencil, the Hodge structure would split into four-dimensional Hodge
substructures, using the action of the (Z/5Z)3.)

Definition 4. A Calabi–Yau variety X of dimension d ≤ 3 is said to be of CM type
if the Hodge group Hdg(X) associated to a rational Hodge structure of weight k of
Hd

prim(X,Q) is commutative. That is, the Hodge group Hdg(X)C is isomorphic to a
copy of Gm � C∗.

Hodge groups are very hard to compute in practice. Here are algebraic character-
izations of CM type Calabi–Yau varieties of dimension d.

Proposition 1. • d = 1. An elliptic curve E over Q is of CM type if and only if
End(E)⊗ Q is an imaginary quadratic field over Q.
• d = 2. A K3 surface X over Q is of CM type if EndHdg(T (X))⊗Q is a CM field

over Q of degree equal to rank T (X).
• d = 3. Let X be a Calabi–Yau threefold over Q. A Calabi–Yau threefold X

over Q is of CM type if and only if EndHdg(X) ⊗ Q is a CM field over Q of degree
2(1 + h2,1(X)), if and only if the Weil and Griffiths intermediate Jacobians of X are
of CM type.

For d = 1, this is a classical result. For d = 2, a best reference might be Zarhin
[66], and for d = 3, see Borcea [3].

Later we will construct Calabi–Yau varieties of dimension 2 and 3 which are of
CM type.

3 Results on Modularity of Galois Representations

3.1 Two-Dimensional Galois Representations Arising
from Calabi–Yau Varieties Over Q

We will focus on two-dimensional Galois representations arising from Calabi–Yau
varieties over Q.

First, for dimension 1 Calabi–Yau varieties over Q, we have the celebrated theo-
rem of Wiles et al.
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Theorem 1. (d = 1) Every elliptic curve E defined over Q is modular. More con-
cretely, let E be an elliptic curve overQ with conductor N. Then there exists a Hecke
eigen newform f of weight 2 = 1 + d on the congruence subgroup Γ0(N) such that

L(E, s) = L( f , s).

That is, if we write f (q) =
∑∞

m=1 a f (m)qm with q = e2πiz and normalized by a f (1) =
1, then a(n) = a f (n) for every n.

For dimension 2 Calabi–Yau varieties, namely, K3 surfaces, over Q, there are
naturally associated Galois representations. In particular, for a special class of K3
surfaces, the associated Galois representations are two-dimensional. Let X be a K3
surface defined overQ with Picard number ρ(XQ̄) = 20. Such K3 surfaces are called
singular K3 surfaces. Then the group (or lattice) T (X) of transcendental cycles on
X is of rank 2, and it gives rise to a two-dimensional Galois representations. Livné
[40] has established the motivic modularity of X, that is, the modularity of T (X).

Theorem 2. (d = 2) Let X be a singular K3 surface defined over Q. Then T (X) is
modular, that is, there is a modular form f of weight 3 = 1 + d on some Γ1(N) or
Γ0(N) with a character ε such that

L(T (X)⊗ Q�, s) = L( f , s).

Remark 3. A representation theoretic formulation of the above theorem is given as
follows. Let π be the compatible family of two-dimensional �-adic Galois represen-
tations associated to T (X) and let L(π, s) be its L-series. Then there exists a unique,
up to isomorphism, modular form of weight 3, level=conductor of π, and Dirichlet
character ε(p) =

(−d
p

)
such that

L(π, s) = L( f , s).

Here d = |disc NS (X)|.
For dimension 3 Calabi–Yau varieties over Q, we will focus on rigid Calabi–

Yau threefolds. A Calabi–Yau threefold X is said to be rigid if h2,1(X) = 0 so that
B3(X) = 2. This gives rise to a two-dimensional Galois representation.

Theorem 3. (d = 3) Every rigid Calabi–Yau threefold X over Q is modular. That is,
there exists a cusp form f of weight 4 = 1 + d on some Γ0(N) such that

L(X, s) = L( f , s).

This theorem has been established by Gouvêa and Yui [23], and independently
by Dieulefait [11]. Their proof relies heavily on the recent results on the modular-
ity of Serre’s conjectures about two-dimensional residual Galois representations by
Khare–Wintenberger [29] and Kisin [30].

A list of rigid Calabi–Yau threefolds over Q can be found in the monograph of
Meyer [44].
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3.2 Modularity of Higher Dimensional Galois Representations
Arising from K3 Surfaces Over Q

We will first consider K3 surfaces X with T (X) of rank ≥ 3.
The first result is for K3 surfaces with transcendental rank 3.

Theorem 4. Let X be a K3 surface over Q with Picard number 19. Then X has a
Shioda–Inose structure, that is, X has an involution ι such that X/ι is birational to
a Kummer surface Y over C.

Suppose that the Kummer surface is given by the product E × E of a non-CM
elliptic curve E over Q. Then the Shioda–Inose structure induces an isomorphism
of integral Hodge structures on the transcendental lattices, so, X and Km(E × E)
have the same Q-Hodge structure. In this case, the two-dimensional Galois repre-
sentation ρE associated to E induces the three-dimensional Galois representation
Sym2ρE on T (X) over some number field. Consequently, T (X) is potentially modu-
lar in the sense that the L-series of T (X) is determined over some number field K by
the symmetric square of a modular form g of weight 2 associated to E, and over K,

L(T (X)⊗ Q�, s) = L(Sym2(g), s).

Remark 4. In the above theorem, we are not able to obtain the modularity results
over Q. Since the K3 surface S is defined over Q, the representation on T (X) is also
defined overQ, but the isomorphism to Sym2ρE may not be. Thus, we only have the
potential modularity of X.

Can we say anything about the modularity of K3 surfaces with arbitrary large
transcendental rank? The Galois representations associated to these K3 surfaces
have large dimensions. The only result along this line is due to Livné–Schütt–Yui
[41].

Consider a K3 surface X with non-symplectic automorphism. Let ωX denote a
holomorphic 2-form on X, fixed once and for all. Then H2,0(X) � CωX . Let σ ∈
Aut(X). Then σ induces a map

σ∗ : H2,0(X) → H2,0(X) ωX → αωX , α ∈ C∗.
We say that σ∗ is non-symplectic if α � 1. Let

HX := Ker(Aut(X) → O(NS (X)).

Then HX is a finite cyclic group, and in fact, can be identified with the group of roots
of unity μk for some k ∈ N. Assume that det(T (X)) = ±1 (that is, assume that T (X)
is unimodular.) Then we have the following possibilities for the values of k.

• k ≤ 66 (Nikulin [47]).
• k is a divisor of 66, 44, 42, 36, 28, 12 (Kondo [31]).
• If rank(T (X)) = φ(k) (where φ is the Euler function), then k = 66, 44, 42, 36, 28,

12. Furthermore, there is a unique K3 surface X with given k (Kondo [31]).
These results were first announced by Vorontsov [62], and proofs were given
later by Nikulin [47] and Kondo [31].
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We tabulate these six K3 surfaces.

k NS (X) T (X) rank(T (X)
12 U ⊕ (−E8)2 U2 4
28 U ⊕ (−E8) U2 ⊕ (−E8) 12
36 U ⊕ (−E8) U2 ⊕ (−E8) 12
42 U ⊕ (−E8) U2 ⊕ (−E8) 12
44 U U2 ⊕ (−E8)2 20
66 U U2 ⊕ (−E8)2 20

Here (−E8) denotes the negative definite even unimodular lattice of rank 8.
Now we ought to realize these K3 surfaces over Q. Here are explicit equations

thanks to Kondo [31].

k X σ

12 y2 = x3 + t5(t2 + 1) (x, y, t) �→ (ζ2
12x, ζ3

12y,−t)
28 y2 = x3 + x + t7 (x, y, t) �→ (−x, ζ7

28y, ζ2
28t)

36 y2 = x3 − t5(t6 − 1) (x, y, t) �→ (ζ2
36x, ζ363y, ζ30

36 t)
42 y2 = x3 + t5(t7 − 1) (x, y, t) �→ (ζ2

42x, ζ3
42y, ζ18

42 t)
44 y2 = x3 + x + t11 (x, y, t) �→ (−x, ζ11

44 y, ζ2
44t)

66 y2 = x3 + t(t11 − 1) (x, y, t) �→ (ζ2
66x, ζ3

66y, ζ6
66t)

Here ζk denotes a primitive k-th root of unity.

Now the main result of Livné–Schütt–Yui [41] is to establish the modularity of
these K3 surfaces.

Theorem 5. Let X be a K3 surface in the above table. Then for each k, the �-adic
Galois representation associated to T (X) is irreducible over Q of dimension φ(k).
Furthermore, this GQ-Galois representation is induced from a one-dimensional Ga-
lois representation of Q(ζk).

All these K3 surfaces are of CM type, and are modular (automorphic).

Proof. • CM type is established by realizing them as Fermat quotients. Since
Fermat surfaces are known to be of CM type, the result follows.

• Modularity (or automorphy) of the Galois representation is established by using
automorphic induction. The restriction of the Galois representation to the cyclo-
tomic field Q(μk) is given by a one-dimensional Jacobi sum Grössencharakter.
To get down to Q, we take the Gal(Q(ζk)/Q)-orbit of the one-dimensional rep-
resentation. This Galois group has order φ(k), and we obtain the irreducible
Galois representation over Q of dimension φ(k).

• Those K3 surfaces corresponding to k = 44 and 66 are singular, so their modu-
larity has already been established by Theorem 2.
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Remark 5. When T (X) is not unimodular, there are ten values of k such that
rank T (X) = φ(k):

19, 17, 13, 11, 7, 25, 5, 27, 9, 3.

All these K3 surfaces are again dominated by Fermat surfaces, and hence they are
all of CM type. We have also established their modularity (automorphy).

In the article of Goto–Livné–Yui [22], more examples of K3 surfaces of CM type
are constructed. First we recall a classification result of Nikulin [48].

Let X be a K3 surface over Q. Let H2,0(X) = CωX where we fix a nowhere
vanishing holomorphic 2-form ωX . Let σ be an involution on X such that σ(ωX) =
−ωX . Let = Pic(X)σ be the fixed part of Pic(X) by σ. Put r = rank Pic(X)σ. Let
T (X)0 be the orthogonal complement of Pic(X)σ in H2(X,Z). Then σ acts by −1
on T (X)0. Consider the quotient groups (Pic(X)σ)∗/ Pic(X)σ) and (T (X)∗0/T (X)0),
where L∗ denotes the dual lattice of a lattice L. Since H2(X,Z) is unimodular, the
quotient abelian groups are canonically isomorphic

(Pic(X)σ)∗/ Pic(X)σ � (T (X)∗0/T (X)0.

Since σ acts as 1 on the first quotient; and as −1 on the second quotient, this forces
these quotient groups to be isomorphic to (Z/2Z)a for some positive integer a ∈ Z.

The intersection pairing on Pic(X) induces a quadratic form q on the discriminant
group with values in Qmodulo 2Z; we put δ = 0 if q has values only in Z, and δ = 1
otherwise.

Thus, we have a triplet of integers (r, a, δ) associated to a K3 surface X with the
involution σ. A theorem of Nikulin [48] asserts that a pair (X, σ) is classified, up to
deformation, by a triplet (r, a, δ).

Theorem 6. There are 75 possible triplets (r, a, δ) that classify pairs (X, σ) of K3
surfaces X with involution σ, up to deformation.

Now we will realize some of these 75 families of K3 surfaces with involution.
We look for K3 surfaces defined by hypersurfaces. For this we use the famous 95
families of hypersurfaces in weighted projective 3-spaces determined by M. Reid
[50] or Yonemura [64]. Let [x0 : x1 : x2 : x3] denote weighted projective coordinates
in a weighted projective 3-space with weight (w0, w1, w2, w3).

Theorem 7 (Goto–Livné–Yui [22]). Among the 95 families of K3 surfaces, all but
9 families of K3 surfaces have an involution σ, satisfying the following conditions:

(1) removing several monomials (if necessary) from Yonemura’s hypersurface, a
new defining hypersurface consists of exactly four monomials, i.e., it is of Del-
sarte type,

(2) the new defining hypersurface is quasi-smooth, and the singularity configura-
tion should remain the same as the original defining equation of Yonemura,

(3) the new defining hypersurface contains only one monomial in x0 of the form xn
0,

xn
0x j, xn

i + xixm
j or xn

i xk + xi xm
j for some j and k (k � j) distinct from i.
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Fig. 1: Nikulin’s pyramid

For 45 (resp. 41) K3 surfaces, a defining equation of four monomials is of the
form

x2
0 = f (x1, x2, x3) ⊂ P3(w0, w1, w2, w3)

(resp.

F(x0, x1, x2, x3) = 0 ⊂ P3(w0, w1, w2, w3))

where f (resp. F) is a homogeneous polynomial in x1, x2, x3 (resp. x0, x1, x2, x3)
over Q of degree

∑3
i=0 wi.

(4) For all 86 = 45 + 41 K3 surfaces, there is an algorithm to compute the
invariants r and a.

Remark 6. There are nine families for which the Theorem is not valid. The three
families (#15, #53 and #54) do not have the required involution. Another different
six families (#85, #94, #95) and (#90, #93, #91) cannot be realized as quasi-smooth
hypersurfaces in four monomials. (We employ the numbering from Yonemura [64].)

Proposition 2 (Nikulin [48] and Voisin [61]). Let (S , σ) be a K3 surface with in-
volution σ. Let S σ be the fixed part of S . Then for (r, a, δ) � (10, 10, 0), (10, 8, 0),
let S σ = Cg ∪ L1 ∪ · · · ∪ Lk where Cg is a smooth genus g curve and L1, . . . , Lk are
rational curves. Then

r = 11 + k − g, a = 11− g− k.

If (r, a, δ) = (10, 10, 0), then S σ = C1 ∪C2 where Ci (i = 1, 2) are elliptic curves,
and if (r, a, δ) = (10, 8, 0), then S σ = ∅.
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Proposition 3 (Goto–Livné–Yui [22]). Let (S , σ) be one of the 45 pairs in
Theorem 7, which is given as the minimal resolution of a hypersurface S 0 : x2

0 =

f (x1, x2, x3) ⊂ P3(Q) where Q = (w0, w1, w2, w3) and f is a homogeneous polyno-
mial of degree

∑3
i=0 wi. Let r(Q) denote the number of exceptional divisors in the

resolution S → S 0. Then r can be computed as follows:

(i) Suppose w0 is odd. Then r = r(Q) − wi + 2 if there is an odd weight wi � w0

such that gcd(w0, wi) = wi ≥ 2, and r = r(Q) + 1 otherwise.
(ii) Suppose w0 is even. Then r = r(Q) + 1 − ∑3

i=1(di − 1)( 2di
wi
− 1) where di =

gcd(w0, wi).

Remark 7. For non-Borcea type K3 surfaces defined by equations of the form x2
0xi =

f (x1, x2, x3) for some i ∈ {1, 2, 3}, the invariants r and a (or equivalently, g and k)
are also computed.

Proposition 4 (Goto–Livné–Yui [22]). At least the 39 triplets (r, a, δ) of integers
are realized by the 86 families of K3 surfaces.

Theorem 8 (Goto–Livné–Yui [22]). For the 86 families of K3 surfaces, there are
subfamilies of K3 surfaces which are of CM type, that is, there is a CM point in
the moduli space of K3 surfaces. Indeed, at each CM point, the K3 surface is re-
alized as a quotient of a Fermat (or Delsarte) surface. Consequently, it is modular
(automorphic) by automorphic induction.

Remark 8. Nikulin’s Theorem 6 gives in total 75 triplets of integers (r, a, δ) that clas-
sify the isomorphism classes of pairs (S , σ) of K3 surfaces S with non-symplectic
involution σ. With our choice of K3 surfaces of CM type, we can realize at least 39
triplets. This is based on our calculations of the invariants r and a. Since we have not
yet computed the invariant δ for the 39 cases, this number may increase somewhat.

Remark 9. It is known (Borcea [4]) that over C the moduli spaces of Nikulin’s K3
surfaces are arithmetic quotients of type IV (Shimura varieties). Recently, Ma [43]
has shown the rationality of the moduli spaces for the 67 triplets. Our result above
gives one explicit CM point in these moduli spaces. CM type implies that these
families must be isolated points in the moduli space. We are not able to show the
denseness of CM points, however.

It is notoriously difficult to compute Hodge groups, and the above theorem im-
plies the commutativity of the Hodge group.

Corollary 1. The Hodge groups of these 86 K3 surfaces are all commutative, i.e.,
copies of Gm’s over C.

Proposition 5 (Goto–Livné–Yui [22]). We classify the 86 hypersurfaces into four
types:

• Forty-five families have the form: x2
0 = f (x1, x2, x3) and σ(x0) = −x0.
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• Thirty-three families cannot be put in the form (1) but defined by a hypersurface
of the form F(x0, x1, x2, x3) = 0 with 4 monomials, and σ can be described
explicitly.
• Four families, after changing term the x3

0 to x2
0 x1 and then removing several

terms, can be put into the form F(x0, x1, x2, x3) = 0 of four monimials equipped
with an explicit involution σ.
• The remaining 4 families can be put in the form F(x0, x1, x2, x3) = 0 of four

monomials equipped with a different kind of involution.

Example 3. (1) Here is one of the 45 cases, #78 in Yonemura’s list. The weight is
(11, 6, 4, 1), and Yonemura’s hypersurface is

x2
0 = x2

1x2 + x3
1 x4

3 + x1x4
2 + x5

2 x2
3 + x22

3 .

We can remove x3
1 x4

2 and x5
2x2

3 so the new hypersurface is x2
0 = x2

1 x2+ x1x4
2+ x22

3 .
The singularity is of type A1 + A3 + A5.

(2) Here is one of the second cases, #19 in Yonemura’s list. The weight is (3, 2, 2, 1)
and Yonemura’s hypersurface is

F(x0, x1, x2, x3) = x2
0 x1 + x2

0 x2 + x2
0x2

3 + x4
1 + x4

2 + x4
3.

We can remove x2
0x1 or x2

0x2, x2
0x2

3, so the new hypersurface is x2
0 x1+ x4

1+ x4
2+ x4

3.
The singularity is of type 4A1 + A2.

(3) Here is one of the third cases, #18 in Yonemura’s list. This hypersurface x3
0 +

x3
1 + x0x3

2 + x1 x3
2 + x4

2x3 + x9
3 acquires an involution if we replace x3

0 by x2
0 x1 and

remove the terms x0x3
2 and x1x3

2.
(4) The last case is #52 in Yonemura’s list.
(5) #95 in Yonemura’s list. This hypersurface has an involution, but cannot be real-

ized by a quasi-smooth hypersurface with four monomials.

3.3 The Modularity of Higher Dimensional Galois Representations
Arising from Calabi–Yau Threefolds Over Q

There are several new examples of modular non-rigid Calabi–Yau threefolds X over
Q with B3 ≥ 4. These examples were constructed after the article Yui [65], some of
which have already been discussed in the article of E. Lee [36].

There are several approaches (with non-empty intersection) to produce these new
modular examples:

1. Those non-rigid Calabi–Yau threefolds X overQ such that the semi-simplification
of H3

et(X̄,Q�) is highly reducible and splits into smaller dimensional irreducible
Galois representations. For instance, most known cases are when the third co-
homology group splits into two-dimensional or four-dimensional pieces. (Ex-
amples of E. Lee, Hulek and Verrill, Schütt, Cynk and Meyer, and a recent
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example of Bini and van Geemen, and Schütt, and more.) The article of E. Lee
[36] gives reviews on the modularity of non-rigid Calabi–Yau threefolds over
Q, up to 2008.

2. Those Calabi–Yau threefolds X over Q such that the �-adic Galois representa-
tions arising from H3(X̄,Q�) are irreducible and have small dimensions (e.g.,
4, 6, or 8.) (Examples of Livné–Yui, Dieulefeit–Pacetti–Schütt, and more.)

3. Those Calabi–Yau threefolds over Q which are of CM type, thus the Galois
representations are induced by one-dimensional representations. (Examples of
Rohde, Garbagnati–van Geemen, Goto–Livné–Yui, and more.)

4. Given a Calabi–Yau threefold Y over Q, if we can construct an algebraic corre-
spondence defined overQ to some modular Calabi–Yau threefold X over Q, the
Tate conjecture asserts that their L-series should coincide. This will establish
the modularity of Y.

(1) Calabi–Yau threefolds in the category (1), i.e, with highly reducible Galois
representations

The general strategy is to consider Calabi–Yau threefolds which contain elliptic
ruled surfaces. This is formulated by Hulek and Verrill [28].

Proposition 6 (Hulek and Verrill [28]). Let X be a Calabi–Yau threefold over Q.
Suppose that X contains birational ruled elliptic surfaces S j, j = 1, . . . , b over Q
and whose cohomology classes span H2,1(X) ⊕ H1,2(X) (so b = h2,1(X).) Let ρ be
the two-dimensional Galois representation given by the kernel U from the exact
sequence

0 → U → H3
et(X̄,Q�) →⊕H3

et(S̄ j,Q�) → 0.

Then X is modular, that is,

L(X, s) = L( f4, s)
b∏

j=1

L(g j
2, s− 1)

where f4 is a weight 4 modular form associated to ρ and g j
2 are the weight 2 modular

forms associated to the base elliptic curves E j of the birational ruled surfaces S j.

The requirement that the third cohomology group splits as in the proposition is
rather restrictive. Several examples of Calabi–Yau threefolds satisfying this condi-
tion are given by Hulek and Verrill [28], E. Lee [34], and Schütt [54]. They are
constructed as resolutions of fiber products of semi-stable rational elliptic surfaces
with section. Another series of examples along this line due to Hulek and Verrill
[27] are toric Calabi–Yau threefolds associated to the root lattice A4.

Cynk and Meyer [9] have established the modularity of 17 nonrigid double octic
Calabi–Yau threefolds over Q with B3 = 6. The Galois representations decompose
into two- and four-dimensional sub-representations such that the L-series of each
such sub-representation is of the form L(g4, s), L(g2, s − 1) or L(g2 × g3, s), where
gk is a weight k cusp form.
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Now we will consider another construction due to E. Lee [34, 35] of Calabi–Yau
threefolds associated to the Horrocks–Mumford vector bundle of rank 2. It is well
known that Horrocks–Mumford quintics are determinantal quintics. The Schoen
quintic Q :

∑4
i=0 x5

i − 5
∏4

i=0 xi = 0 is the early example of this type.
Lee has constructed more Calabi–Yau threefolds. Let y ∈ P4 be a generic point,

and define the matrices

My(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0y0 x3y2 x1y4 x4y1 x2y3

x3y3 x1y0 x4y2 x2y4 x0y1

x1y1 x4y3 x2y0 x0y2 x3y4

x4y4 x2y1 x0y3 x3y0 x1y2

x2y2 x0y4 x3y1 x1y3 x4y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Ly(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0y0 z2y4 z4y3 z1y2 z3y1

z4y1 z1y0 z3y4 z0y3 z2y2

z3y2 z0y1 z2y0 z4y4 z1y3

z2y3 z4y2 z1y1 z3y0 z0y4

z1y4 z3y3 z0y2 z2y1 z4y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that My(x)z = Ly(z)x. Then

Xy := { det My(x) = 0} ⊂ P4(x)

and
X′y := { det Ly(z) = 0} ⊂ P4(z)

are Horrocks–Mumford quintics. Define a threefold X̃y in P4(x)×P4(z) as a common
partial resolution of My(x)z = 0. We ought to know the singularities of X̃y. Let
P2
+ := { y : y1 − y4 = y2 − y3 = 0 }. Given y ∈ P2

+, the point (1 : 0 : 0 : 0 : 0) is
a singular point over C of Xy if and only if one of the coordinates of y is zero. For
y = (0 : 1 : −1 : −1 : 1 : 1), (0 : 2 : 3 ± √

5 : 3 ± √
5 : 2), (2 : −1 : 0 : 0 :

−1), (2 : ±√5 − 1 : 0 : 0 : ±√5 − 1) ∈ P2
+, Xy contains the Heisenberg orbits of

(1 : 0 : 0 : 0 : 0) and (1 : 1 : 1 : 1 : 1) as nodes over C.

Proposition 7 (Lee [34–36]).

(a) Let y = (0 : 1 : −1 : −1 : 1), and write X(0:1:−1:−1:1) = X for short. Then
the Calabi–Yau threefold X̂ obtained by crepant resolution of singularities has
B3 = 6. Furthermore,

H3
et(

¯̂X,Q�) = V ⊕ H2(S̄ ,Q�)(−1)

where V is two-dimensional and associated to the modular form of weight 4
and level 55, and H2(S̄ ,Q�) is four-dimensional and is isomorphic to

Ind
GQ
GQ(i)

H1(Ē,Q�)(−1)

where E is an elliptic curve over Q(i) coming from E over Q.
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(b) Let y = (2 : −1 : 0 : 0 : −1), and let X(−2:−1:0:0:−1) = X′ for short. Then
the Calabi–Yau threefold X̂′ obtained by crepant resolution of singularities has
B3 = 4. Furthermore

H3
et(

¯̂X′,Q�) = V ⊕ H1(Ē2,Q�)(−1)

where V is the two-dimensional Galois representation associated to the modular
form of weight 4 of level 55, and H1(Ē2,Q�) is associated with the modular form
of weight 2 and level 550. Furthermore, the L-series of X̂′ is given, up to Euler
factors at the primes of bad reduction, by

L(X̂′, s) = L( f , s)L(g, s− 1)

where f is the unique normalized cusp form of weight 4 and level 55 and g is
the normalized cusp form of weight 2 and level 550.

(c) Now consider a smooth (big) resolution Z of the (Z/2Z)-quotient of the Schoen
quintic Q : x5

0+ x5
1+ x5

2+ x5
3+ x5

4−5x0x1 x2x3x4 = 0. (There is the (Z/2Z)-action
on Q induced by the involution on P4 defined by ι[x0 : x1 : x2 : x3 : x4] = [x0 :
x4 : x3 : x2 : x1].) Then Z is a Calabi–Yau threefold defined over Q with B3 = 4.
The Calabi–Yau threefold Z is modular, and up to Euler factors at primes of bad
reduction at p = 2 and 5, L(Z, s) is given by

L(Z, s) = L( f , s)L(g, s− 1)

where f is the unique normalized cusp form of weight 4 and level 25, and g is a
weight 2 cusp form of level 50.

A recent example due to Bini and van Geemen [2], and Schütt [55] is the Calabi–
Yau threefold called Maschke’s double octic, which arises as the double covering
of P3 branched along Maschke’s surface S . The Maschke octic surface S is defined
by the homogeneous equation

S =
3∑

i=0

x8
i + 14

∑

i< j

x4
i x4

j + 168x2
0x2

1 x2
2x2

3 = 0 ⊂ P3.

Now let X be the double cover of P3 along S . This is a smooth Calabi–Yau
threefold defined over Q. Let Y be the desingularization of the quotient of X by a
suitable Hisenberg group. Then Y is also a smooth Calabi–Yau threefold defined
over Q. The results of Bini and van Geemen, and Schütt, are summarized in the
following

Proposition 8. (a) The Maschke double octic Calabi–Yau threefolds X is modular
over Q. The third cohomology group H3

et(X̄,Q�) has B3(X) = 300. The Ga-
lois representation of H3

et(X̄,Q�) decomposes completely over Q(i) into two-
dimensional Galois representations which descend to Q, and the latter corre-
spond to modular forms of weight 4, or modular forms of weight 2.
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(b) Let Y be the desingularization of the quotient of X by a suitable Heisenberg
group. Then Y is modular over Q. The third cohomology group H3

et(Ȳ,Q�) has
B3(Y) = 30. The Galois representation of H3

et(Ȳ,Q�) decomposes completely
over Q into two-dimensional Galois representations, and the latter correspond
to modular forms of weight 4 and modular forms of weight 2.

(c) The Maschke surface S has Picard number ρ(S ) = 202. The second cohomol-
ogy group H2(S̄ ,Q�) has B2(S ) = 302. The Galois representation of the tran-
scendental part has dimension 100, which splits into 2 or three-dimensional
Galois sub-representations over Q, and the latter correspond to modular forms
of weight 3, or modular forms of weight 2.

(2) Calabi–Yau threefolds in the category (2), i.e, with irreducible Galois rep-
resentations

Consani–Scholten [8] constructed a Calabi–Yau threefold over Q as follows.
Consider the Chebyshev polynomial

P(y, z) = (y5 + z5)− 5yz(y2 + z2) + 5yz(y + z) + 5(y2 + z2)− 5(y + z)

and define an affine variety X in A4 by

X : P(x1, x2) = P(x3, x4)

and let X̄ ⊂ P4 be its projective closure. Then X̄ has 120 ordinary double points.
Let X̃ be its small resolution. Then X̃ is a Calabi–Yau threefold with h1,1(X̃) =
141 and h2,1(X̃) = 1. X̃ is defined over Q and the primes 2, 3, 5 are bad primes.
H3( ¯̃X,Q�) gives rise to a four-dimensional �-adic Galois representation, ρ, which is
irreducible over Q. Let F = Q(

√
5), and let λ ∈ F be a prime above �. Then the

restriction ρ|Gal(Q̄/F) is reducible as a representation to GL(4, Fλ): There is a Galois

representation σ : Gal(Q̄/F) → GL(2, Fλ) such that ρ = IndQFσ. Consani–Scholten
conjectured the modularity of X̃.

Theorem 9 (Dieulefait–Pacetti–Schütt [12]). The Consani–Scholten Calabi–Yau
threefold X̃ overQ is Hilbert modular. That is, the L-series associated to σ coincides
with the L-series of a Hilbert modular newform f on F of weight (2, 4) and conductor
cf = (30).

The first example of Siegel modular varieties, as moduli spaces, of Calabi–Yau
threefolds was given by van Geemen and Nygaard [60]. Recently, a series of articles
by Freitag and Salvati Manni [19] on Siegel modular threefolds which admit Calabi–
Yau models have appeared. The starting point is the van Geemen–Nygaard rigid
Calabi–Yau threefold defined by a complete intersection Y of degree (2, 2, 2, 2) in
P7 by the equations:

Y2
0 = X2

0 + X2
1 + X2

2 + X2
3

Y2
1 = X2

0 − X2
1 + X2

2 − X2
3

Y2
2 = X2

0 + X2
1 − X2

2 − X2
3

Y2
3 = X2

0 − X2
1 − X2

2 + X2
3
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A smooth small resolution of Y, denoted by X, is a Calabi–Yau threefold with
h1,1(X) = 32 and h2,1(X) = 0, so X is rigid and hence is modular, indeed, the
L-series of the Galois representation associated to H3(X,Q�) is determined by the
unique weight 4 modular form on Γ0(8).

Several examples of non-rigid Calabi–Yau threefolds Z are obtained by quoti-
enting X by finite group actions. Many of the resulting varieties Z are Calabi–Yau
threefolds with small third Betti number.

Remark 10. For instance, Freitag–Salvati Manni has constructed such Calabi–Yau
threefolds Z. The Galois representations associated to H3(Z,Q�) of their Calabi–
Yau threefolds Z should be studied in detail. They should decompose into direct
sum of those coming from the rigid Calabi–Yau threefold X, and those coming from
elliptic surfaces or surfaces of higher genus arising from fixed points of finite groups
in question.

In particular, this would imply that proper Siegel modular forms will not arise
from these examples. So far as I know, we do not have examples of Calabi–Yau
threefolds over Q with B3(X) = 4 whose L(X, s) comes from a Siegel modular form
on Sp(4,Z) or its subgroups of finite index.

(3) Calabi–Yau threefolds of CM type

We next consider Calabi–Yau threefolds which we will show to be of CM type.
Then the Galois sub-representations associated to the third cohomology groups are
induced by one-dimensional ones. Then, by applying the automorphic induction
process, we will establish the automorphy of Calabi–Yau threefolds. These Calabi–
Yau threefolds are realized as quotients of products of K3 surfaces and elliptic
curves by some automorphisms. Rohde [51], Garbagnati–van Geemen [21], and
Goto–Livné–Yui [22] produce examples of CM type Calabi–Yau threefolds with
this approach.

Let S be a K3 surface with an involution σ acting on H0,2(S ) by −1 discussed
in Sect. 3.2. Let E be an elliptic curve with the standard involution ι. Consider the
quotient of the product E × S/ι × σ. This is a singular Calabi–Yau threefold hav-
ing only cyclic quotient singularities. Resolving singularities we obtain a smooth
crepant resolution X. Since the invariants of X are determined by a triplet of inte-
gers (r, a, δ) associated to S , we will write X as X(r, a, δ). The Hodge numbers and
the Euler characteristic of X depend only on r and a:

h1,1(X) = 5 + 3r − 2a, h2,1(X) = 65− 3r − 2a

and
e(X) = 2(h1,1(X)− h2,1(X)) = 6(r − 10).

Theorem 10 (Goto–Livné–Yui [22]). Let (S , σ) be one of the K3 surfaces defined
over Q in Theorem 7. Let E be an elliptic curve over Q with the standard invo-
lution ι. Let X = X(r, a, δ) be a smooth Calabi–Yau threefold. Then the following
assertions hold:
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(1) X is of CM type if and only if E is of CM type.
(2) If X is of CM type, then the Jacobian variety J(Cg) of Cg in S σ is also of CM

type, provided that the K3 surface component is of the form x2
0 = f (x1, x2, x3)

with involution σ(x0) = −x0.
(3) X is modular (automorphic).

Sketch of Proof:

1. The Hodge structure hX of type (3, 0) of X is given by the tensor product hS⊗hE

of the Hodge structures hS of type (2, 0) and hE of type (1, 0). Then hX is of CM
type if and only if both hS and hE are of CM type. Since S is already of CM
type, we only need to require that E is of CM type.

2. When the K3 surface is defined by a hypersurface of the form x2
0 = f (x1, x2, x3)

and the involution σ takes x0 to −x0, then the curve Cg in the fixed locus S σ

is obtained by putting x0 = 0, and hence it is also of Delsarte type. Hence the
Jacobian variety J(Cg) of Cg is also of CM type.
When the hypersurface defining the K3 surface is not of the above form and the
involution is more complicated, we ought to check each case whether Cg is of
Delsarte type or not.

3. S is modular by Theorem 8, and E is modular by Wiles et al. Hence X is mod-
ular (automorphic).

Now we will discuss mirror Calabi–Yau threefolds of X = X(r, a, δ).

Proposition 9 (Borcea [4] and Voisin [61]). Given a Calabi–Yau threefold X =
X(r, a, δ), there is a mirror Calabi–Yau threefold X∨ such that X∨ is realized as a
crepant resolution of a quotient of E × S/ι × σ and X∨ is characterized by the
invariants (20− r, a, δ). The Hodge numbers of X∨ are

h1,1(X∨) = 5 + 3(20− r)− 2a = 65− 3r − 2a = h2,1(X),

h2,1(X∨) = 65− 3(20− r)− 2a = 5 + 3r − 2a = h1,1(X)

and the Euler characteristic is

e(X∨) = −12(r− 10) = −e(X).

In terms of g and k, r = 11− g + k, a = 11− g− k, and

h1,1(X) = 1 + r + 4(k + 1), h2,1(X) = 1 + (20− r) + 4g

and the Euler characteristic is e(X) = 12(1 + k− g).

Remark 11. Mirror symmetry of Calabi–Yau threefolds of K3 × E do come from
mirror symmetry of K3 surfaces. Mirror symmetry for K3 surfaces is the correspon-
dence r ↔ (20−r). In fact, one can see this in Fig. 1: Nikulin’s pyramid. Given a K3
surface S , we try to look for a mirror K3 surface S ∨ satisfying this correspondence.
This correspondence is established at a special CM point in the moduli space.
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We know that the 95 families of K3 surfaces of Reid and Yonemura are not closed
under mirror symmetry. Only 54 families of K3 surfaces with involution have mirror
partners within the 95 families.

A recent article of Artebani–Boissière–Sarti [1] also considers this type of mirror
symmetry for K3 surfaces.

Proposition 10. For a mirror X∨, the assertion in Theorem 10 is true if the mirror
K3 surface is also of Delsarte type.

Proposition 11. Let (S , σ) be one of the 86 families of K3 surfaces with involution
σ. Let X = X(r, a, δ) and X∨ = X(20− r, a, δ) be mirror pairs of Calabi–Yau three-
folds defined overQ, where we suppose that the K3 surface component is of Delsarte
type. Then X and X∨ have the same properties:

• X is of CM type if and only if X∨ is of CM type, and
• X is modular if and only if X∨ is modular.

Rohde [51], Garbagnati and van Geemen [21] and Garbagnati [20] constructed
Calabi–Yau threefolds which are quotients of the products of K3 surfaces and ellip-
tic curves by non-symplectic automorphisms of higher order (than 2), that is, order
3, or order 4. These Calabi–Yau threefolds are parametrized by Shimura varieties.

Rohde [51] constructed families of Calabi–Yau threefolds as the desingulariza-
tion of the quotient S × E by an automorphism of order 3 where E is the unique
elliptic curve with an automorphism αE of order 3, and S is a K3 surface with an
automorphism αS of order 3 which fixes k rational curves and k + 3 isolated points
for some integer k, 0 ≤ k ≤ 6.

Let ξ be a primitive cube root of unity. Choose the specific elliptic curve: E =
C/Z + ξZ, which has a Weierstrass model y2 = x3 − 1 and αE : (x, y) �→ (ξx, y).
Also choose some specific K3 surface S . Let

S = S f : Y2 = X3 + f (t)2, f = gh2, deg( f ) = 6

where t is the coordinate on P1, and f has four distinct zeros. S f has an automor-
phism of order 3: α f : (X, Y, t) �→ (ξX, Y, t). Now define a Calabi–Yau threefold
X f as the desingularization of S f × E by the automorphism α := α f × αE . Note
that S f is birationally isomorphic to (C f × E)/(β f × αE) where C f : v3 = f (t) and
β f : C f → C f , (t, v) �→ (t, ξv). Then X f is birationally isomorphic to

(C f × E × E)/H where H =< β f × αE × 1E , 1C f × αE × α−1
E > .

Rohde [51] worked out the case deg(g) = deg(h) = 2. Garbagnati–van Geemen
[21] considered the other cases, i.e., deg(g) = 4, deg(h) = 1 and deg(g) = 6, deg(h) =
0. The Hodge numbers of the Calabi–Yau threefold X f are computed and the results
are tabulated as follows:
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deg(g) deg(h) g(C f ) h2,1(X f ) h1,1(X f ) k
6 0 4 3 51 3
4 1 3 2 62 4
2 2 2 1 73 5
0 3 1 0 84 6

For k > 2, the Calabi–Yau threefold is constructed by considering the curve
C� : v6 = �(t), deg(�) = 12 such that �(t) has five double zeros. It has the order
3 automorphism β� : (t, v) �→ (t, ξv). The quotient (C� × E)/(β� × αE) is a K3
surface S � which has the elliptic fibration with Weierstrass equation Y2 = X3 + �(t).
Then the desingularization of (S �× E)/(α�× αE) is a Calabi–Yau threefold X� with
h2,1(X�) = 4 and h1,1(X�) = 40.

Similarly, for k = 1, one can find a Calabi–Yau threefold X with h2,1(X) = 5 and
h1,1(X) = 29.

For details of these two cases, see Garbagnati–van Geemen [21] or Rohde [51].

We summarize the above discussion in the following form.

Proposition 12. The Calabi–Yau threefold X f (resp. X�) constructed above is of CM
type if and only if the Jacobian variety J(C f ) (resp. J(C�)) is of CM type. In this case,
X f (resp. X�) is modular (automorphic).

We will also mention results of Garbagnati [20], which generalize the method
of Garbagnati–van Geemen [21] to automorphisms of order 4. In order to construct
Calabi–Yau threefolds with a non-symplectic automorphism of order 4, start with
the hyperelliptic curves

C fg : z2 = t fg(t2), deg( fg) = g, fg without multiple roots.

C fg has the automorphism αC : (t, z) �→ (−r, iz). We consider the cases g = 2 or
3. Let Ei : v2 = u(u2 + 1) be the elliptic curve and let αE : (u, v) �→ (−u, iv) be
the automorphism of Ei. Now take the quotient of the product Ei × C fg/αE × αC .
Then the singularities are of A-D-E type, and the desingularization defines a K3
surface, Sfg , with the automorphism αS : (x, y, s) �→ (−x, iy, s). In fact, there is the
elliptic fibration E : y2 = x3 + xs fg(s)2 and the map π : Ei × C fg → E defined
by ((u, v); (z, t)) �→ (x := uz2, y := vz3, s := t2) is the quotient map Ei × C fg →
(Ei × C fg )/αE × αC . The K3 surface Sfg thus obtained has large Picard number.
Indeed, rank(TSfg

) ≤ 4 if g = 2 and ≤ 6 if g = 3. Also, S fg admits the order 4 non-
symplectic automorphism αS , and the fixed loci of αS and of α2

S contain no curves
of genus > 0. The K3 surface (Sfg , α

2
S ) with involution α2

S indeed corresponds to the
triplet (18, 4, 1) for g = 2 and (16, 6, 1) for g = 3.

Once we have a family of K3 surfaces with non-symplectic automorphism αS of
order 4, we can construct a family of Calabi–Yau threefolds as the quotient of the
product of S fg with the elliptic curve Ei.



126 N. Yui

Proposition 13 (Garbagnati [20]). There is a desingularization Y fg of
(Ei × Sfg)/(α3

E × αS ) which is a smooth Calabi–Yau threefold with

h1,1(Y fg ) =

⎧
⎪⎪⎨
⎪⎪⎩

73 if g = 2

56 if g = 3
and h2,1(Y fg) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if g = 2

2 if g = 3
.

Proposition 14. The Calabi–Yau threefold Y fg is of CM type if and only if the Jaco-
bian variety J(C fg ) is of CM type. When it is of CM type, Y fg is automorphic.

4 The Modularity of Mirror Maps of Calabi–Yau Varieties,
and Mirror Moonshine

• Modularity of solutions of Picard–Fuchs differential equations

Let n ∈ N and let Mn := U2 ⊕ (−E8)2⊕ < −2n > be a lattice of rank 19. Here
U2 is the usual hyperbolic lattice of rank 2 and −E8 is the unique negative-
definite unimodular lattice of rank 8, and < −2n > denotes the rank 1 lattice
Zv with its bilinear form determined by < v, v >= −2n. We consider a one-
parameter family of Mn polarized K3 surfaces Xt over Q with generic Picard
number ρ(Xt) = 19. Here by a Mn-polarized K3 surfaces, we mean K3 surfaces
Xt such that T (Xt) is primitively embedded into U2 ⊕ Zu where u is a vector of
height 2n, n ∈ N. The Picard–Fuchs differential equation of Xt is of order 3. It is
shown by Doran [15] that for such a family of K3 surfaces Xt, there is a family
of elliptic curves Et such that the order 3 Picard–Fuchs differential equation of
Xt is the symmetric square of the order 2 differential equation associated to the
family of elliptic curves Et. The existence of such a relation stems from the
so-called Shioda–Inose structures of Xt (or by Dolgachev’s result [14] which
asserts that the coarse moduli space of Mn-polarized K3 surfaces is isomorphic
to the moduli space of elliptic curves with level n structure). Long [42] gave
an algorithm how to determine a family of elliptic curves Et, up to projective
equivalence.

Yang and Yui [63] studied differential equations satisfied by modular forms of
two variables associated to Γ1×Γ2 where Γi (i = 1, 2) are genus zero subgroups
of SL(2,R) commensurable with SL(2,Z). A motivation is to realize these dif-
ferential equations satisfied by modular forms of two variables as Picard–Fuchs
differential equations of K3 families with large Picard numbers, e.g., 19, 18, 17
or 16, thereby establishing the modularity of solutions of Picard–Fuchs differ-
ential equations. This goal was achieved for some of the families of K3 surfaces
studied by Lian and Yau in [37, 39].

• Monodromy of Picard–Fuchs differential equations of certain families of
Calabi–Yau threefolds

Classically, it is known that the monodromy groups of Picard–Fuchs differen-
tial equations for families of elliptic curves and K3 surfaces are congruence
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subgroups of SL(2,R). This modularity property of the monodromy groups
ought to be extended to families of Calabi–Yau threefolds. For this, we will
study the monodromy groups of Picard–Fuchs differential equations associated
with one-parameter families of Calabi–Yau threefolds. In Chen–Yang–Yui [7]
they considered 14 Picard–Fuchs differential equations of order 4 of hypergeo-
metric type. They are of the form

θ4 −Cz(θ + A)(θ + 1− A)(θ + B)(θ + 10B)

where A, B, C ∈ Q.

Theorem 11. In these 14 hypergeometric cases, the matrix representations of the
monodromy groups relative to the Frobenius basis can be expressed in terms of
the geometric invariants of the underlying Calabi–Yau threefolds. Here the geomet-
ric invariants are the degree d, the second Chern numbers, c2 · H and the Euler
number, c3.

Furthermore, under suitable change of basis, the monodromy groups are con-
tained in certain congruence subgroups of Sp(4,Z) of finite index (in Sp(4,Z)) and
whose levels are related only to the geometric invariants.

However, finiteness of the index of the monodromy groups themselves in Sp(4,Z)
is not established.

Using the same idea for the hypergeometric cases, the monodromy groups of the
differential equations of Calabi–Yau type that have at least one conifold singularity
(not of the hypergeometric type) are computed. Our calculations verify numerically
that if the differential equations come from geometry, then the monodromy groups
are also contained in some congruence subgroups of Sp(4,Z).

We should mention that van Enckevort and van Straten [59] numerically deter-
mined the monodromy for 178 Calabi–Yau equations of order 4 with a different
method from ours, and speculated that these equations do come from geometry.

• Modularity of mirror maps and mirror moonshine

For a family of elliptic curves y2 = x(x − 1)(x − λ), the periods∫ ∞
1

dx√
x(x−1)(x−λ)

satisfy the Picard–Fuchs differential equation

(1− λ)θ2 f − λθ f − λ

4
f = 0

(

θ = λ
d

dλ

)

.

The monodromy group for this Picard–Fuchs differential equation is Γ(2)⊂S L(2,R)
of finite index. The periods can be expressed in terms of the hypergeometric function

2F1(
1

2
,

1

2
; 1; λ).

Now suppose that y0(λ) = 1 +
∑

n≥1 anλ
n is the unique holomorphic solution at

λ = 0 and y1(λ) = λy0(λ) + g(λ) be the solution with logarithmic singularity. Set
z = y1(λ)/y0(λ). Then λ, as a function of z, becomes a modular function for the
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modular group Γ(2). This is called a mirror map of the elliptic curve family. That a
mirror map is a Hauptmodul for a genus zero subgroup Γ(2) ⊂ SL(2,R) is referred
to as mirror moonshine.

For one-parameter families of K3 surfaces of generic Picard number 19, the
Picard–Fuchs differential equations are of order 3. Since such families of K3 sur-
faces are equipped with Shioda–Inose structure (cf. Morrison [46]), the Picard–
Fuchs differential equations are symmetric squares of differential equations of order
2. Hence the monodromy groups are realized as subgroups of SL(2,R).

Classically, explicit period and mirror maps for the quartic K3 surface have
been described by several articles, e.g., Hartmann [25] (and also see Lian and Yau
[38]. Consider the deformation of the Fermat quartic: Ft := {x4

0 + x4
1 + x4

2 + x4
3 −

4tx0x1x2 x3 = 0} ⊂ P3. Taking the quotient of Ft by some finite group and then
resolving singularities, we obtain the Dwork pencil of K3 surfaces, denoted by
Xt. Then Xt is a K3 surface with generic Picard number 19. The Picard–Fuchs
differential equation is of order 3 and there is a unique holomorphic solution (at
t = 0) of the form w0(t) = 1 +

∑
n≥1 cntn, and another solution of logarithmic type:

w1(z) = log(t)w0(t) +
∑

n≥1 dntn. Now introduce the new variable z by z := 1
2πi

w1(t)
w0(t) ,

and put q = e2πiz. The inverse t = t(q) is the mirror map and is given by

t(q) = q− 104q2 + 6444q3 − 311744q4 + 13018830q5 + · · ·
This is the reciprocal of the Hauptmodul for Γ0(2)+ ⊂ SL(2,R).

There are several more examples of one-parameter families of K3 surfaces with
generic Picard number 19. Doran [15] has established the modularity of the mirror
map for Mn-polarized K3 surfaces. However, for each n, the explicit description of
mirror maps as modular functions are still to be worked out.

The situation will get more much complicated when we consider two-parameter
families of K3 surfaces. Hashimoto and Terasoma [26] have studied the period and
mirror maps of the two-parameter (in fact, projective one-parameter) family {Xt}
t = (t0, t1) ∈ P1 of quartic family of K3 surfaces defined by

Xt : x1 + · · · + x5 = t0(x4
1 + · · · + x4

5) + t1(x2
1 + · · · + x2

5)2 = 0

in P4 with homogeneous coordinates (x1 : · · · : x5). This family admits a sym-
plectic group action by the symmetric group S 5. The Picard number of a generic
fiber is equal to 19, and the Gram matrix of the transcendental lattice T is given by
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1 0
1 4 0
0 0 −20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. The image of the period map of this family is a 1-dimensional subdo-

main ΩT of the 19-dimensional period domain (the bounded symmetric domain of
type IV). Let Ω◦T be a connected component of ΩT . Since O(T ) has no cusp, there is a
modular embedding i : Ω◦T → H2 to the Siegel upper half-plane H2 of genus 2. This
modular embedding is constructed using the Kuga–Satake construction. The inverse
of the period map, that is, a mirror map, is constructed using automorphic forms of
one variable on Ω◦T . In fact, automorphic forms are constructed as the pull-backs of
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the fourth power of theta constants of genus 2. This gives yet another example of a
generalized mirror moonshine.

For a one-parameter family of Calabi–Yau threefolds, the mirror map is defined
using specific solutions of the Picard–Fuchs differential equation of the family. At a
point of maximal unipotent monodromy (e.g., z = 0), there is a unique holomorphic
power series solution ω0(z) with ω0(0) = 1, and a logarithmic power series solution
ω1(z) = log(z)ω0(z)+ g(z) where g(z) is holomorphic near z = 0 with g(0) = 0. Now
put t := ω1(z)

ω0(z) . We call the map defined by q := e2πit = zeg(z)/ω0(z) the mirror map of
the Calabi–Yau family. (See, for instance, Lian and Yau [38]).

For some one-parameter families of Calabi–Yau threefolds, e.g., of hypergeo-
metric type, the integrality of the mirror maps has been established by Krattenthaler
and Rivoal [32, 33].

The modularity of mirror maps of Calabi–Yau families is getting harder to
deal with in general. Doran [15] has considered certain one-parameter families of
Calabi–Yau threefolds with h2,1 = 1. The Picard–Fuchs differential equations of
these Calabi–Yau threefolds are of order 4. Under some some special constraints
imposed by special geometry, and some conditions about a point z = 0 of maximal
unipotent monodromy, there is a set of fundamental solutions (to the Picard–Fuchs
differential equation) of the form {u, u · t, u · F ′, (tF ′ − 2F)} where u = u(z) is the
fundamental solution locally holomorphic at z = 0, t = t(z) is the mirror map, F(z)
is the prepotential and F ′ is the derivative of F with respect to z. When there are no
instanton corrections, the Picard–Fuchs differential equation becomes the symmet-
ric cube of some second-order differential equation. In this case, Doran has shown
that the mirror map becomes automorphic. However, exhibiting automorphic forms
explicitly remains an open problem. On the other hand, if there are instanton cor-
rections, a necessary and sufficient condition is presented for a mirror map to be
automorphic.

We should mention here a converse approach to the modularity question of so-
lutions of Picard–Fuchs differential equations, along the line of investigation by
Yang and Yui [63]. The starting point is modular forms and the differential equa-
tions satisfied by them. It may happen that these differential equations coincide with
Picard–Fuchs differential equations of some families of Calabi–Yau varieties. Con-
sequently, the modularity of solutions of Picard–Fuchs differential equations and
mirror maps can be established.

5 The Modularity of Generating Functions of Counting
Some Quantities on Calabi–Yau Varieties

Under this subtitle, topics included are enumerative geometry, Gromov–Witten
invariants, and various invariants counting some mathematical/physical quanti-
ties, etc.

• Mirror symmetry for elliptic curves and quasimodular forms.
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We consider the generating function, Fg(q), counting simply ramified covers of
genus g ≥ 1 over a fixed elliptic curve with 2g− 2 marked points.

Theorem 12. For each g ≥ 2, Fg(q) (with q = e2πiτ, τ ∈ H), is a quasimodular
form of weight 6g − 6 on Γ = SL(2,Z). Consequently, Fg(q) is a polynomial in
Q[E2, E4, E6] of weight 6g− 6.

This result is stated as the Fermion Theorem in Dijkgraaf [13], which is con-
cerned with the A-model side of mirror symmetry for elliptic curves. A mathe-
matically rigorous proof was given in the article of Roth–Yui [53]. The B-model
(bosonic) counting constitutes the mirror side of the calculation. The bosonic count-
ing will involve calculation with Feynman integrals of trivalent graphs. A mathe-
matical rigorous treatment of the B-model counting is currently under way.

Further generalizations:

(a) The generating function of m-simple covers for any integer m ≥ 2 of genus
g ≥ 1 over a fixed elliptic curve with 2g − 2 marked points has been shown
again to be quasimodular forms by Ochiai [49].

(b) The quasimodularity of the Gromov–Witten invariants for the three elliptic orb-
ifolds with simple elliptic singularities ẼN (N = 6, 7, 8) has been established
by Milanov and Ruan [45]. These elliptic orbifolds are realized as quotients of
hypersurfaces of degree 3, 4 and 6 in weighted projective 2-spaces with weights
(1, 1, 1), (1, 2, 2) and (1, 2, 3), respectively.

(c) The recent article of Rose [52] has proved the quasimodularity of the generating
function for the number of hyperelliptic curves (up to translation) on a polarized
abelian surface.

6 Future Prospects

Here we collect some topics which we are not able to cover in this paper as well
some problems for further investigation.

6.1 The Potential Modularity

The potential modularity of families of hypersurfaces. For the Dwork families
of one-parameter hypersurfaces, the potential modularity has been established by
R. Taylor and his collaborators. Extend the potential modularity to more general
Calabi–Yau hypersurfaces, Calabi–Yau complete intersections, etc.
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6.2 The Modularity of Moduli of Families
of Calabi–Yau Varieties

Moduli spaces of lattice polarized K3 surfaces with large Picard number.

6.3 Congruences, Formal Groups

Congruences for Calabi–Yau families, formal groups.

6.4 The Griffiths Intermediate Jacobians
of Calabi–Yau Threefolds

• Explicit description of the Griffiths intermediate Jacobians and their modularity.
Let X be a Calabi–Yau threefold defined over Q. Let

J2(X) � H3(X,C)/F2H3(X,C) + H3(X,Z) � H3(X,C)∗/H3(X,Z)

be the Griffiths intermediate Jacobian of X. There is the Abel–Jacobi map

CH2(X)hom,Q→ J2(X)Q.

A part of the Beilinson–Bloch conjecture asserts that this map is injective mod-
ulo torsion.

Now suppose that X is rigid. Then J2(X) is a complex torus of dimension 1
so that there is an elliptic curve E such that J2(X) � E(C). We know that X is
modular by [23].

Question: Is it true that the Griffiths intermediate Jacobian J2(X) of a rigid
Calabi–Yau threefold X over Q is defined over Q and hence modular?

• Special values of L-series of Calabi–Yau threefolds over Q.
Assuming a positive answer to the above question, we can consider a possible
relation between the Birch and Swinnerton–Dyer conjecture for rational points
on J2(X)Q:

rank ZJ2(X)Q(Q) = ords=1L(J2(X)Q, s)

and the Beilinson–Bloch conjecture on the Chow group CH2(X)Q of X:

rank ZCH2(X)hom,Q = ords=2L(XQ, s).

If the Abel–Jacobi map CH2(X)hom,Q → H2(X)Q is injective modulo torsion,
then

ords=2L(XQ, s) ≤ ords=1L(J2(X)Q, s).
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6.5 Geometric Realization Problem (the Converse Problem)

We know that every singular K3 surface X over Q is motivically modular in the
sense that the transcendental cycles T (X) corresponds to a newform of weight 3.
For singular K3 surfaces over Q, the converse problem asks:

Which newform of weight 3 with integral Fourier coefficients would correspond
to a singular K3 surface defined over Q?

This has been answered by Elkies and Schütt [18] (see also the article by Schütt
[56] in this volume). Their result is the following theorem.

Theorem 13. Every Hecke eigenform of weight 3 with eigenvalues in Z is associated
to a singular K3 surface defined over Q.

Now we know that every rigid Calabi–Yau threefold over Q is modular (see
Gouvêa–Yui [23]). The converse problem that has been raised, independently, by
Mazur and van Straten is the so-called geometric realization problem, and is stated
as follows:

Which newforms of weight 4 on some Γ0(N) with integral Fourier coefficients
would arise from rigid Calabi–Yau threefolds over Q? Do all such forms arise from
rigid Calabi–Yau threefolds over Q?

For Calabi–Yau threefolds, a very weak version of the above problem has been
addressed in Gouvêa–Kiming–Yui [24].

Question: Given a rigid Calabi–Yau threefold X over Q and a newform f of
weight 4, for any non-square rational number d, there is a twist fd by the quadratic
character corresponding to the quadratic extension Q(

√
d)/Q. Does fd arise from a

rigid Calabi–Yau threefold Xd over Q?

A result of Gouvêa–Kiming–Yui [24] in this volume is that the answer is positive
if a Calabi–Yau threefold has an anti-symplectic involution. Let X be a rigid Calabi–
Yau threefold over Q. For a square-free d ∈ Q×, let K := Q(

√
d) and let σ be

the non-trivial automorphism of K. We say that a rigid Calabi–Yau threefold Xd

defined over Q is a twist of X by d if there is an involution ι of X which acts by
−1 on H3

et(X̄,Q�), and an isomorphism θ : (Xd)K � XK defined over K such that
θσ ◦ θ−1 = ι.

Proposition 15. Let X be a rigid Calabi–Yau threefold over Q and let f be the new-
form of weight 4 attached to X. Then, if Xd is twist by d of X, the newform attached
to Xd is fd, the twist of d by the Dirichlet character χ corresponding to K.

Various types of modular forms have appeared in the physics literature. We wish
to understand “conceptually” why modular forms play such pivotal roles in physics.
Here we list some of the modular appearances in the physics literature.
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6.6 Modular Forms and Gromov–Witten Invariants

Modular (automorphic) forms, quasi-modular forms, and Gromov–Witten invariants
and generalized invariants.

6.7 Automorphic Black Hole Entropy

This has something to do with Conformal Field Theory. Mathematically, mock mod-
ular forms, Jacobi forms etc. will come into the picture. This is beyond the scope of
this article.

6.8 M24-Moonshine

Recently, some close relations between the elliptic genus of K3 surfaces and the
Mathieu group M24 along the line of moonshine have been observed in the physics
literature, e.g., [16, 17]. It has been observed that multiplicities of the non-BPS
representations are given by the sum of dimensions of irreducible representations of
M24 and furthermore, they coincide with Fourier coefficients of a certain mock theta
function.

Appendix

In this appendix, we will recall modular forms of various kinds, e.g., classical mod-
ular forms, quasimodular forms, Hilbert modular forms, Siegel modular forms, and
most generally, automorphic forms, which are relevant to our discussions. For de-
tails, the reader is referred to [6].

Definition 5. Dimension 1: Let H := {z ∈ C | Im(z) > 0 } be the complex upper-half
plane. For a given integer N > 0, let

Γ0(N) =:

{(
a b
c d

)

∈ SL(2,Z) | c ≡ 0 mod N

}

be a congruence subgroup of SL(2,Z) (of finite index). A modular form of weight k
and level N is a holomorphic function f : H→ C with the following properties:

(M1) For

(
a b
c d

)

∈ Γ0(N), f
(

az+b
cz+d

)
= (cz + d)k f (z);

(M2) f is holomorphic at the cusps.
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Since

(
1 1
0 1

)

∈ Γ0(N), (a1) implies that f (z + 1) = f (z), so f has the Fourier

expansion f (z) = f (q) =
∑

n≥0 c(n)qn with q = e2πiz. f is a cusp form if it vanishes
at all cusps.

If χ is a mod N Dirichlet character, we can define a modular form with character
χ by replacing (a1) by f

(
az+b
cz+d

)
= χ(d)(cz + d)k f (z).

The space S k(Γ0(N)) of all cusp forms of weight k and level N is a finite dimen-
sional vector space, and similarly, so also is the space Mk(Γ0(N), χ) of all modular
forms of weight k and level N.

On S k(Γ0(N), χ) there are Hecke operators Tp for every prime p not dividing
N. A cusp form f is a (normalized) Hecke eigenform if it is an eigenvector for all
Tp, that is, Tp( f ) = c(p) f . For such a normalized eigenform f , define the L-series
L( f , s) by

L( f , s) =
∑

n≥1

c(n)n−s =
∏

p

1

1− c(p)p−s + χ(p)pk−1−2s

where χ(p) = 0 if p|N.

Dimension 2: Let F = Q(
√

d) be a totally quadratic field over Q where d > 0 and
square-free, and let OF be its ring of integers. The SL(2,OF) can be embedded into
SL(2,R)× SL(2,R) via the two real embeddings of F to R, and it acts on H× H via
fractional linear transformations:

(
a b
c d

)

z =

(
az1 + b

cz1 + d
,

az2 + b

cz2 + d

)

for z = (z1, z2) ∈ H× H. The group

Γ(OF ⊕ a) =
{(

a b
c d

)

∈ SL(2, F), a, d ∈ OF , ba−1, c ∈ a
}

is called the Hilbert modular group corresponding to a fractional ideal a of F. If
a = OF , put ΓF = Γ(OF ⊕ OF ) = SL(2,OF). Let Γ ⊂ S L2(F) be a subgroup
commensurable with ΓF , and let (k1, k2) ∈ Z× Z.

A meromorphic function f : H × H→ C is called a meromorphic Hilbert mod-
ular form of weight (k1, k2) for Γ if

f (γ z) = (cz1 + d)k1(cz2 + d)k2 f (z)

for all γ =

(
a b
c d

)

∈ Γ and z = (z1, z2) ∈ H2. If f is holomorphic, then f is a holomor-

phic Hilbert modular form, and a holomorphic Hilbert modular form is symmetric
if f (z1, z2) = f (z2, z1). Further, f is a cusp form if it vanishes at cusps of Γ. A
cusp form of weight (2, 2) is identified with a holomorphic 2-form on the Hilbert
modular surface H2/Γ. The space of holomorphic Hilbert modular forms of weight
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(k1, k2) for Γ is denoted by Mk(Γ) and the cusp forms by S k(Γ). Mk(Γ) is a finite
dimensional vector space over C.

A holomorphic Hilbert modular form has a Fourier expansion at ∞ of the fol-
lowing form. Let M ⊂ F be a rank 2 lattice and V ⊂ O∗

F be a finite index subgroup
acting on M in a suitable way. Then

f (z) = a0 +
∑

ν∈M∨, ν≥0

aνe
2πitr(νz)

where ν runs over the dual lattice M∨, and tr(ν z) := vz1 + v′z2.
The L-series of a Hilbert modular cusp form is defined by

L( f , s) =
∑

a⊂OF

a(a)N(a)−s

where a runs over principal ideals. For details, the reader should consult Bruinier [5].

Dimension 3: Let g, N ∈ N. Define the Siegel upper-half plane by

Hg :=
{

z ∈ Mg×g(C) | zt = z, Im(z > 0
}
,

and the symplectic group Sp(2g,Z) as the automorphism group of the symplectic
lattice Z2g. That is,

Sp(2g,Z) = { γ ∈ GL(2g,Z) | γtJγ = J}

where Jg :=

(
0 Ig

−Ig 0

)

. The group Sp(2g,Z) acts on Hg by

z �→ γ(z) = (Az + B)(Cz + D)−1 for γ =

(
A B
C D

)

∈ Sp(2g,Z).

Let Γg(N) :=
{
γ ∈ Sp(2g,Z) | γ ≡ I2g (mod N)

}
be a subgroup of Sp(2g,Z). Then

Γg(N) acts freely when N ≥ 3. Here I2g is the identity matrix of order 2g. If N = 1,
Γg(1) = Sp(2g,Z). The quotient spaceHg/Γg(N) (with N ≥ 3) is a complex manifold
of dimension g(g + 1)/2 (associated to a graded algebra of modular forms).

A holomorphic function f : Hg → C is a Siegel modular form of genus g, weight
k ∈ N if

f (γ(z)) = det(Cz + D)k f (z)

for all γ =

(
A B
C D

)

∈ Sp(2g,Z) an d all z ∈ Hg. The space of all holomorphic

Siegel modular forms is a finitely generated graded algebra. The simplest examples
of Siegel modular forms are given by theta constants.

A holomorphic Siegel modular form f has a Fourier expansion of the form

f (z) =
∑

A(n)e2πtr(nz)
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where the sum runs over all positive semi-definite integral matrices n ∈ GL(g,Q). If
the Fourier expansion is supported only on positive definite integral g× g matrices
n, then f is called a cusp form.

There are at least two different L-series of a holomorphic Siegel modular form f :
one is the spinor L-series, and the other is the standard L-series.

However, it is not clear how to associate these L-series to the Fourier expansion.
For details, the reader should consult van der Geer [58].

Example 4. (a) For N = 1, the total space M := ⊕k Mk(SL(2,Z)), of all modular
forms is generated by the Eisenstein series E4 and E6. The Eisenstein series E2

is not modular but it may be called quasimodular. The space M̃ of all quasi-
modular forms for SL(2,Z) is generated by the Eisenstein series E2, E4 and E6,
that is, M̃ = C[E2, E4, E6].

For N > 1, the space of modular forms of weight k for any congruence
subgroup of level N is finite dimensional, and its basis can be determined.

Some properties of quasimodular forms for finite index subgroups of SL(2,Z),
dimension, basis, etc.

(b) There are Eisenstein series for ΓF = SL(2,OF) and k even given by

Gk,B = N(b)k
∑

(c,d)∈O∗
F\b2

N(cz + d)−k

for B an ideal class of F.
If we put gk := 1

ζF (k)Gk,OF , then g2, g6 and g10 generate the graded algebra

Msymm
2∗ (ΓF) over C, that is,

Msymm
2∗ (ΓF) � C[g2, g6, g10].

(c) (Igusa) For g = 2, the graded algebra M of classical Siegel modular forms of
genus 2 is generated by the Eisenstein series E4 and E6, the Igusa cusp forms
C10, C12, and C35 (where the subindex denote weights), and

M � C[E4, E6, C10, C12, C35]/(C2
35 = P(E4, E6, C10, C12))

where P is an explicit polynomial.
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24. F. Gouvêa, I. Kiming, N. Yui, Quadratic twists of rigid Calabi–Yau threefolds over Q. In this
volume [arXiv: 1111.5275]

25. H. Hartmann, Period-and mirror maps for the quartic K3 (2011) [arXiv:1101.4601]
26. K. Hashimoto, T. Terasoma, Period maps of a certain K3 family with an S 5-action. J. Reine

Angew Math. 652, 1–65 (2011)
27. K. Hulek, H. Verrill, On modularity of rigid and non-rigid Calabi–Yau varieties associated to

the root lattice A4. Nagoya J. Math. 179, 103–146 (2005)
28. K. Hulek, H. Verrill, On the modularity of Calabi–Yau threefolds containing elliptic ruled sur-

faces, in Mirror Symmetry V. AMS/IP Studies in Advanced Mathematics, vol. 38 (American
Mathematical Society, Providence, 2006), pp. 19–34

29. C. Khare, J.-P. Wintenberger, Serre’s modularity conjecture, I and II. Invent. Math. 178, 485–
504, 505–586 (2009)

30. M. Kisin, Modularity of 2-adic Barsotti–Tate representations. Invent. Math. 178, 587–634
(2009)

31. S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups. J.
Math. Soc. Jpn. 44, 75–98 (1992)

32. C. Krattenthaler, T. Rivoal, On the integrality of the Taylor coefficients of mirror maps, II.
Comm. Number Theor. Phys. 3(3), 555–591 (2009)

33. C. Krattenthaler, T. Rivoal, On the integrality of the Taylor coefficients of mirror maps, I. Duke
J. Math. 151(2), 175–218 (2010)

34. E. Lee, A modular non-rigid Calabi–Yau threefold, in Mirror Symmetry V. AMS/IP Stud-
ies in Advanced Mathematics, vol. 38 (American Mathematical Society, Providence, 2006),
pp. 89–122

35. E. Lee, A modular quintic Calabi–Yau threefold of level 55. Can. J. Math. 63, 616–633 (2011)
36. E. Lee, Update on modular non-rigid Calabi–Yau threefolds, in Modular Forms and String Du-

ality. Fields Institute Communications, vol. 54, (American Mathematical Society, Providence,
2008), pp. 65–81

37. B.-H. Lian, S.-T. Yau, Mirror maps, modular relations and hypergeometric series, I, in XIth In-
ternational Congress of Mathematical Physics, Paris 1994 (International Press, Boston, 1995),
pp. 163–184

38. B.-H. Lian, S-T. Yau, Arithmetic properties of mirror maps and quantum coupling. Comm.
Math. Phys. 176(1), 163–191 (1996)

39. B.-H. Lian, S.-T. Yau, Mirror maps, modular relations and hypergeometric series, II. Nucl.
Phys. B Proc. Suppl. 46, 248–262 (1996)
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Ane S.I. Anema and Jaap Top

Abstract This note contains an application of the algebraic study by Schütt and
Shioda of the elliptic modular surface attached to the commutator subgroup of the
modular group. This is used here to provide algebraic descriptions of certain cover-
ings of a j-invariant 0 elliptic curve, unramified except over precisely one point.

Key words: Covering, Elliptic surface, Torsion section, Potential stable reduction

Mathematics Subject Classifications (2010): Primary 14H30; Secondary 11G05,
14J27, 57M12

1 Introduction

This note was inspired by two recent papers of Jeroen Sijsling [8, 9]. Sijsling finds
explicit equations for certain Shimura curves with the special property that they
admit a morphism to a curve of genus one; moreover, this morphism is unramified
except over precisely one point.

From a topological point of view, the description of such coverings is relatively
simple (compare the Introduction of [3]): the fundamental group of a genus one
curve minus a point is the free group F2 on two generators. So finite coverings
correspond to finite index subgroups H of F2 and such a covering ramifies over
the distinguished point, precisely when the intersection N = ∩g∈F2 gHg−1 of all
conjugates of H in F2 satisfies that F2/N is nonabelian.

However, it is far from trivial to find algebraic equations for such a topological
covering. In this note we use a particular elliptic surface described by Schütt and
Shioda [6] in order to obtain some examples. Namely, they take the elliptic curve
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B/C with j-invariant 0 and an elliptic surface E → B which has precisely one
singular fibre. Observing that for any integer n � 0 the n-torsion subscheme E[n] →
B of E → B is étale except possibly over the point corresponding to the singular
fibre, we find coverings of B which are unramified away from this point. In what
follows we calculate the ramification indices of such coverings, the degree and hence
the genus, and we briefly describe some subcovers.

Most of the results described here were obtained as part of the master’s thesis
project [1] of the first author in 2011, supervised by the second author. We thank
Jeroen Sijsling and Lenny Taelman for their interest in this project.

2 The Coverings

Throughout this note we denote by B/C the elliptic curve corresponding to the affine
equation

B/C : 4a3 + 27b2 = 1.

The function field C(B) of B/C is the quadratic extension C(a, b) of the rational
function field C(a) given by 4a3 + 27b2 = 1. The unique point of B where the
functions a, b have a pole is denoted by O. As is well known, a has a pole of order
2 and b has a pole of order 3 at O.

The elliptic curve E/C(B) is defined by the equation

E/C(B) : y2 = x3 + ax + b.

Then E/C(B) is the generic fibre of a unique elliptic surface

E −→ B

defined over B. Up to some scaling factors, this is the elliptic surface studied in [6].
By construction the discriminant of the polynomial x3+ax+b ∈ C(B)[x] is a nonzero
constant. Hence E → B has smooth fibers over all points in B(C) except the point
O. It is easy to check that the fiber over O is of type I∗6 in Kodaira’s terminology.

Let � be a prime number and denote by C(B)(E[�]) the finite extension of C(B)
obtained by adjoining all coordinates of all points on E of order �. Then C(B)(E[�])
is the function field of a unique smooth projective curve C�/C. Moreover, the inclu-
sion C(B) ⊂ C(B)(E[�]) corresponds to a morphism

π� : C� −→ B.

Some properties of these coverings are described in the following result.

Theorem 1. 1. The morphism π� : C� → B is Galois and it is unramified away
from O.

2. The morphism π2 is unramified of degree 3.
3. The morphism π3 has degree 8 with Galois group the quaternion group {±1,±i,
± j,±k}, and its ramification index at every point over O equals 2.
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4. For � > 3, the Galois group of π� equals SL2(F�) and the ramification index at
every point over O equals 2�.

The first claim here is part of the standard results on elliptic curves, see, e.g.
[10, VII Proposition 4.1] and [7]. The other assertions will be proven in the next
section. Note that the Galois group of π� is determined by its action on the points of
order � on the elliptic curve E, hence this Galois group is a subgroup of GL2(Z/�Z).
Moreover, since C(B) contains the �-th roots of unity, the Galois invariance of the
Weil e�-pairing implies that this Galois group is in fact a subgroup of SL2(Z/�Z).
Theorem 1 above implies in particular which subgroup we have depending on the
prime �: for � = 2 it is the 3-Sylow subgroup of SL2(Z/2Z); for �= 3 it is the 2-Sylow
subgroup of SL2(Z/3Z), and for all primes � > 3 it is the full group SL2(Z/�Z).

In the last section we briefly discuss some intermediate coverings of the ones de-
scribed above. These correspond to the intersection of our Galois group with certain
subgroups of SL2(Z/�Z).

3 The Proofs

This section contains proofs of the assertions (2), (3) and (4) of Theorem 1.

3.1 2-Torsion

See also [7, Sect. 5.3a]. The discriminant of the polynomial x3 + ax+ b ∈ C(B)[x] is
a square. Moreover, this cubic polynomial is irreducible: indeed, if f ∈ C(B) were
a zero, then f would be regular at all points � O of B and f would have a pole of
order 1 at O. Since B has positive genus, such an f does not exist.

It follows that the splitting field over C(B) of the polynomial x3 + ax + b has
degree 3. In particular, the Galois group of this splitting field over C(B) is cyclic of
order 3.

This proves our claims concerning the curves C2 → B: this map is unramified
since it is abelian. An affine curve birational over C to C2 is the curve with coordi-
nate ring

C[a, b, x]/(4a3 + 27b2 − 1, x3 + ax + b)
�

C[a, x]/(4a3 + 27x6 + 54ax4 + 27a2x2 − 1).

The map (a, x) �→ (a,−x3− ax) from the curve with equation 4a3 + 27x6 + 54ax4 +

27a2x2 − 1 = 0 to B corresponds to the covering C2 → B.
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3.2 3-Torsion

See also [7, 5.3b] for a discussion of point of order 3. In particular, since the dis-
criminant of the elliptic curve E is a cube in C(B), the Galois group of π3 : C3 → B
is contained in the (unique) 2-Sylow subgroup of SL2(Z/3Z), which is isomorphic
to the quaternion group of order 8.

Moreover, we claim that C3 → B is ramified: indeed, recall that the elliptic curve
E has additive reduction at the valuation corresponding to O ∈ B. Over C(C3), the
curve E cannot have additive reduction at any valuation. This is well-known; the
argument runs as follows. Suppose K is the completion at a place v where E has
additive reduction, and E(K) contains all points of order n ≥ 3. Since reduction
modulo v:

E0(K)[n] −→ Ens(C) � (C,+)

is injective on torsion points, additive reduction implies that E0(K) has trivial
n-torsion. Hence E(K)/E0(K) contains a subgroup Z/nZ× Z/nZ, contradicting the
possible structures of this component group.

Since in the extension C(C3) ⊃ C(B) the reduction of E at (points over) O
changes from additive to semi-stable, C3 → B is ramified over O. It is unrami-
fied over all other points of B, hence we conclude that the Galois group of C3 → B
is not abelian.

Observing that all proper subgroups of the 2-Sylow subgroup of SL2(Z/3Z) are
abelian it follows that the Galois group of C3 → B equals this 2-Sylow subgroup.

The x-coordinates of all points of order 3 on E generate the splitting field of

3x4 + 6ax2 + 12bx− a2

over C(B). This splitting field is, by construction, unramified over all points � O of
B. It is unramified over O as well: indeed, by its construction, the splitting field has
as Galois group over C(B) the image of Gal(C(B)(E[3])/C(B)) under the canonical
map

SL2(Z/3Z) −→ PSL2(Z/3Z).

Under this map, the image of the 2-Sylow subgroup of SL2(Z/3Z) is � Z/2Z×Z/2Z.
This implies that the corresponding extension is unramified. Using

C3 −→ C3/(±1) −→ B

in which the first map is cyclic of degree 2 and the second map is Galois and un-
ramified, with Galois group Z/2Z×Z/2Z, it follows that every ramified point of π3

has ramification index 2.
This proves the assertions concerning π3. An alternative, more computational

proof of the assertion concerning the ramification index is presented in
[1, Proposition 4.4].
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3.3 �-Torsion with � ≥ 5

Now fix a prime � ≥ 5 and consider the extension C(C�) = C(B)(E[�]) ⊃ C(B). To
prove the claims presented in Theorem 1 for this case, we recall a result of Igusa
[2]; see also [5, Theorem 1].

Define

E′ : y2 = x3 − 27t

t − 1728
x− 54t

t − 1728
.

This is an elliptic curve over C(t) with j(E′) = t. The result of Igusa referred to
above is

Proposition 1. (Igusa) The extension C(t)(E′[�])/C(t) is Galois with group
SL2(Z/�Z).

To relate the curve E′/C(t) to the curve E/C(a, b), note that j(E) = 6912a3.
Hence identifying t with j(E), which corresponds to the map B → P1 given by
(a, b) �→ 6912a3, the curves E and E′ are both defined overC(B) and moreover they
have the same j-invariant. In fact,

− 27 · 6912a3

6912a3 − 1728
= −27 · 4a3

4a3 − 1
=

(
2a

b

)2

a

and

− 54 · 6912a3

6912a3 − 1728
= −54 · 4a3

4a3 − 1
=

(
2a

b

)3

b

This implies that over the quadratic extensionC(a, b, c) ofC(B) defined by c2 = 2a/b,
the curves E and E′ are isomorphic. Therefore

C(a, b, c, E[�]) = C(a, b, c, E′[�]).

Consider the following diagram of field extensions:

C
(
t, E′ [�]

)

�������

C
(
a, E′ [�]

)

�������

C
(
a, b, E′ [�]

)

�������

C (a, b, c, E [�])

C (t)
G1

������� Z/3Z

��������

C (a)
G2

������� Z/2Z

��������

C (a, b)
G3

������� G4

��������

C (a, b, E [�])

�������
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Here the arrows denote Galois extensions, and the corresponding Galois group
is written below most of them. The groups Gi may be regarded as subgroups of
SL2(Z/�Z). We will study these groups.

By Proposition 1 we have G1 = SL2(Z/�Z). The extension C(a, E′[�]) of
C(t, E′[�]) cannot have degree one, since this would imply that G1 = SL2(Z/�Z)
would have a normal subgroup G2 of index 3. This is not the case when � > 3 is
prime, as is a well-known and classical fact; a recently published (standard) proof
can be obtained from [4]. Hence the given extension has degree 3, implying that
G2 = SL2(Z/�Z). A similar reasoning (G2 does not have a subgroup of index 2 for
� � 2) shows that G3 = SL2(Z/�Z).

Now if G4 would not be the full group SL2(Z/�Z), then

[C(a, b, c, E[�]) : C(a, b, E′[�])] < [C(a, b, c, E[�]) : C(a, b, E[�])] ≤ 2,

implying that C(a, b, c, E[�]) = C(a, b, E′[�]). The conclusion is that G4 would be a
subgroup of SL2(Z/�Z) of index 2, which is not true since � ≥ 5. This shows that
indeed C(a, b, E[�])/C(a, b) has Galois group G4 = SL2(Z/�Z), which is one of the
assertions in Theorem 1.

It remains to prove that for � ≥ 5 the map π� : C� → B is ramified at every point
over O ∈ B with ramification index 2�.

A uniformizer at O is π := 2a/b ∈ C(B). We consider the curve E over the
completion C((π)). Note that

aπ2 = −27 + b−2 ∈ −27 + π6C[[π]]

and
bπ3 = −54 + 2b−2 ∈ −54 + π6C[[π]].

Hence using c2 = π = 2a/b (which defines the quadratic covering of B used above,
which ramifies over O since c is a uniformizer at the point over O), one finds that
over C((c)) the curve E is given as

y2 = x3 + c−4(−27 + b−2)x + c−6(−54 + 2b−2).

This is equivalent to

y2 = x3 + (−27 + b−2)x− 54 + 2b−2.

Modulo (c) the reduction of the above model is

y2 = x3 − 27x− 54 = (x + 3)2(x− 6).

So we have an elliptic curve with multiplicative reduction over a local field with an
algebraically closed residue field. By the theory of the Tate curve as, e.g., explained
in [11, Chap. V Theorems 3.1 and 5.3], q ∈ C((c)) exists such that for every finite
extension L of C((c)) we have a Gal(L/C((c)))-equivariant isomorphism
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L∗/qZ
�−→ E(L).

Moreover, the valuation of q equals the valuation of the discriminant of a minimal
model of E. Such a model is given above, and the valuation of the discriminant is 12.

Since C((c))(E[�]) = C((c))( �
√

q) and q ∈ c12C[[c]]∗ and � ≥ 5, one concludes
thatC((c))(E[�]) = C(( �

√
c)) ⊃ C((c)) which is a totally ramified extension of degree

�. This yields the extensions

C((π))(E[�])

�������

C((c))(E[�])

C((π))

�������

�������

C((c))

�������

Now observe that any finite extension of C((π)) over which the curve E has mul-
tiplicative reduction, must contain the element c. In particular, the fact that E has
all its points of order � rational over C((π))(E[�]) implies that E has multiplicative
reduction over this field, hence

c ∈ C((π))(E[�]).

So this shows that

C((π)) ⊂ C((c)) ⊂ C((c))(E[�]) = C((π))(E[�]),

in which the first extension is ramified of degree 2 and the second one is ramified
of degree �. As a consequence, the extension C((π))(E[�])/C((π)) is ramified of
degree 2�.

This finishes the proof of Theorem 1. As a remark, one may prove part of the
above result by combining a topological and a group theoretic argument. Namely,
the topology of the torus implies that the inertia group at any ramified point over
O is generated by a commutator ABA−1B−1 with A, B ∈ SL2(Z/�Z). Using some
group theory one shows that such a commutator cannot have order �, hence since its
order is divisible by �, it necessarily equals 2�.

Using that #SL2(Z/�Z) = �3 − � it is now straightforward to compute the genus
of the curves C�. One finds

g(C2) = 1,

g(C3) = 3,

and
g(C�) = 1 + (�2 − 1)(2�− 1)/4

for any prime number � ≥ 5.
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4 Intermediate Coverings

Rather than adjoining the coordinates of all points of order � on E to the field C(B),
one can adjoin only the x-coordinates of these points, or only the coordinates of one
point, or only the x-coordinate of one point. This results in an intermediate field
between C(B) and C(C�), hence with a subgroup of the corresponding Galois group.
We briefly discuss this here.

4.1 All x-Coordinates

Let C(D�) be the subfield of C(C�) obtained by adjoining all x-coordinates of the
points of order � on E, to the field C(B). This extension corresponds to coverings of
curves

C� −→ D� −→ B

and to the (normal) subgroup

{±1} ∩ Gal(C(C�)/C(B)),

Hence it is Galois over C(B), with Galois group equal to the image of Gal(C(C�)/
C(B)) under the canonical map

SL2(Z/�Z) −→ PSL2(Z/�Z).

For � = 2 this canonical map is a bijection and C(D�) = C(C�) (as is obvious
since the y-coordinates of points of order 2 on E are zero).

For � = 3 the image is, as was already discussed earlier, the group Z/2Z×Z/2Z.
A consequence of this is that the polynomial

3x4 + 6ax2 + 12bx− a2

is irreducible over C(B): indeed, this polynomial does not have a zero in C(B), since
a root would be a function with a pole of order one at O and no other poles; such a
function does not exist.

If the bi-quadratic polynomial would factor as a product of two quadratics f1 and
f2, then in particular its discriminant (which is a nonzero constant) would equal the
product of the discriminants of f1 and f2 times the square of the resultant of f1 and
f2. Hence f1 and f2 would have the same splitting field, contradicting the fact that
the bi-quadratic polynomial has a Galois group of order 4.

Finally, for � ≥ 5 one has that D� → B is Galois with group PSL2(Z/�Z). The
image in this group of a cyclic subgroup in SL2(Z/�Z) of order 2�, has order �. As a
result, D� → B ramifies over O ∈ B with ramification index �.

For the genera of the curves D�, these observations imply
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g(D2) = 1 = g(D3)

and
g(D�) = 1 + (�2 − 1)(�− 1)/4

for all primes � ≥ 5.

4.2 One Point

Fix a point P ∈ E of exact order �. This yields a tower of extensions

C(B) ⊂ C(B)(P) ⊂ C(C�)

in which the last extension is Galois with group
(
1 ∗
0 1

)
of order � (provided �≥ 5,

otherwise one has C(B)(P) = C(C�).) In particular, for � ≥ 5 it follows that the ram-
ification index over O in any point of the first extension is one of 2 or 2�. Moreover,
in this case the inertia group at a point of C� over O ∈ B is a cyclic subgroup of
order 2� in SL2(Z/�Z). The group SL2 permutes these ramified points in C�, and
this yields the conjugation action of SL2 on the set of cyclic subgroups of order 2�.
There are precisely �+1 such subgroups (corresponding to the one-dimensional sub-
spaces of F2

� ). The number of ramified points in C� → B over O equals (�3−�)/(2�).
Hence each of the subgroups of order 2� appears (�− 1)/2 times as inertia group of
a point in C� → B.

It follows that in C(B) ⊂ C(B)(P) we have (� − 1)/2 points with ramification
degree 2 (corresponding to the points in C� which have ±(1 ∗

0 1

)
as inertia group),

and (� − 1)/2 points with ramification index 2� (corresponding to the remaining
ramification points in C� → B).

As a consequence, the genus of the corresponding covering of B equals 1 + �
(�−1)/2. Note that for � = 2 and for � = 3 this genus is respectively 1 and 3, as was
shown earlier.

4.3 One x-Coordinate

In a similar manner one may treat the extension

C(B) ⊂ C(B)(x(P))

obtained by adjoining the x-coordinate of one point of exact order �.
For � ≤ 3 this yields an unramified extension, hence a curve of genus one (these

curves were already described above).
For � ≥ 5 a prime number, the extension degree equals (�2 − 1)/2 and over O

one finds (� − 1)/2 unramified points and (� − 1)/2 points with ramification index
�. Consequently, the corresponding genus equals 1 + (�− 1)2/4.
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Elliptic Fibrations on the Modular Surface
Associated to Γ1(8)

M.J. Bertin and O. Lecacheux

Abstract We give all the elliptic fibrations of the K3 surface associated to the
modular group Γ1(8).

Key words: Modular Surfaces, Niemeier lattices, Elliptic fibrations of K3 surfaces

Mathematics Subject Classifications (2010): Primary 11F23, 11G05, 14J28;
Secondary 14J27

1 Introduction

Stienstra and Beukers [27] considered the elliptic pencil

xyz + τ(x + y)(x + z)(y + z) = 0

and the associated K3 surface B for τ = t2, double cover of the modular surface
for the modular group Γ0(6). With the help of its L-series, they remarked that this
surface should carry an elliptic pencil exhibiting it as the elliptic modular surface
for Γ1(8) and deplored it was not visible in the previous model of B.

Later on, studying the link between the logarithmic Mahler measure of some
K3 surfaces and their L-series, Bertin considered in [3] K3 surfaces of the family
previously studied by Peters and Stienstra [19]

X +
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X
+ Y +

1

Y
+ Z +

1

Z
= k. (Yk)
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4 Place Jussieu, 75005 Paris, France
e-mail: bertin@math.jussieu.fr; lecacheu@math.jussieu.fr

R. Laza et al. (eds.), Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds,
Fields Institute Communications 67, DOI 10.1007/978-1-4614-6403-7 6,
© Springer Science+Business Media New York 2013

153

mailto:bertin@math.jussieu.fr
mailto:lecacheu@math.jussieu.fr


154 M.J. Bertin and O. Lecacheux

For k = 2, Bertin proved that the corresponding K3 surface Y2 is singular (i.e. its
Picard rank is 20) with transcendental lattice

( 2
0

0
4

)
.

Bertin noticed that Y2 was nothing else than B, corresponding to the elliptic
fibration X + Y + Z = s and 1/τ = (s − 1)2. Its singular fibers are of Dynkin
type A11, A5, 2A1 and Kodaira type I12, I6, 2I2, 2I1. Its Mordell–Weil group is the
torsion group Z/6Z.

Using an unpublished result of Lecacheux (see also Sect. 7 of this paper), Bertin
showed also that Y2 carries the structure of the modular elliptic surface for Γ1(8).
In that case, it corresponds to the elliptic fibration of Y2 with parameter Z = s. Its
singular fibers are of Dynkin type 2A7, A3, A1 and Kodaira type 2I8, I4, I2, 2I1. Its
Mordell–Weil group is the torsion group Z/8Z.

Interested in K3 surfaces with Picard rank 20 over Q, Elkies proved in [8] that
their transcendental lattices are primitive of class number one. In particular, he gave
in [9] a list of 11 negative integers D for which there is a unique K3 surface X over
Q with Néron–Severi group of rank 20 and discriminant −D consisting entirely of
classes of divisors defined over Q. For D = −8, he gave an explicit model of an
elliptic fibration with E8 (= II∗) fibers at t = 0 and t = ∞ and an A1 (= I2) fiber at
t = −1

y2 = x3 − 675x + 27(27t− 196 +
27

t
).

For this fibration, the Mordell–Weil group has rank 1 and no torsion.
Independently, Schütt proved in [22] the existence of K3 surfaces of Picard rank

20 over Q and gave for the discriminant D = −8 an elliptic fibration with singular
fibers A3, E7, E8 (I4, III∗, II∗) and Mordell–Weil group equal to (0). For such a
model, you can refer to [21].

Recall also that Shimada and Zhang gave in [24] a list, without equations but
with their Mordell–Weil group, of extremal elliptic K3 surfaces. In particular, there
are 14 extremal elliptic K3 surfaces with transcendental lattice

( 2
0

0
4

)
.

We mention Beukers and Montanus who worked out the semi-stable, extremal,
elliptic fibrations of K3 surfaces [4].

As announced in the abstract, the aim of the paper is to determine all the elliptic
fibrations with section on the modular surface associated to Γ1(8) and give for each
fibration a Weierstrass model. Thus we recover all the extremal fibrations given
by Shimada and Zhang and also fibrations of Bertin, Elkies, Schütt and Stienstra–
Beukers mentioned above.

The paper is divided in two parts. In the first sections we use Nishiyama’s
method, as explained in [18, 23], to determine all the elliptic fibrations of K3 sur-
faces with a given transcendental lattice. The method is based on lattice theoretical
ideas. We prove the following theorem

Theorem. There are 30 elliptic fibrations with section, all distinct up to isomor-
phism, on the elliptic surface

X +
1

X
+ Y +

1

Y
+ Z +

1

Z
= 2.
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They are listed in Table 3 with the rank and torsion of their Mordell–Weil group.
The list consists of 14 fibrations of rank 0, 13 fibrations of rank 1 and 3 fibrations of
rank 2.

In the second part, i.e. Sects. 7–10, we first explain that Y2 is the modular sur-
face associated to the modular group Γ1(8). From one of its fibrations we deduce
that it is the unique K3 surface X over Q with Néron–Severi group of rank 20 and
discriminant−8, all of its classes of divisors being defined over Q.

Then, for each fibration, we determine explicitly a Weierstrass model, with gen-
erators of the Mordell–Weil group.

We first use the 8-torsion sections of the modular fibration to construct the 16 first
fibrations. Their parameters belong to a special group generated by 10 functions on
the surface. This construction is similar to the one developed for Γ1(7) by Harrache
and Lecacheux in [11]. The next fibrations are obtained by classical methods of
gluing and breaking singular fibers. The last ones are constructed by adding a vertex
to the graph of the modular fibration.

The construction of some of the fibrations can be done also for the other K3
surfaces Yk of the family. Thus we hope to find for them fibrations of rank 0 and
perhaps obtain more easily the discriminant of the transcendental lattice for singular
K3 members.

2 Definitions

An integral symmetric bilinear form or a lattice of rank r is a free Z-module S of
rank r together with a symmetric bilinear form b. If S is a non-degenerate lattice, we
write the signature of S , sign(S ) = (t+, t−). An indefinite lattice of signature (1, t−)
or (t+, 1) is called an hyperbolic lattice. A lattice S is called even if x2 := b(x, x)
is even for all x from S . For any integer n we denote by 〈n〉 the lattice Ze where
e2 = n. For every integer m we denote by S[m] the lattice obtained from a lattice S
by multiplying the values of its bilinear form by m. If e = (e1, . . . , er) is a Z-basis of
a lattice S , then the matrix G(e) = (b(ei, e j)) is called the Gram matrix of S with
respect to e.

A homomorphism of lattices f : S → S ′ is a homomorphism of the abelian
groups such that b′( f (x), f (y)) = b(x, y) for all x, y ∈ S . An injective (resp. bijective)
homomorphism of lattices is called an embedding (resp. an isometry). The group
of isometries of a lattice S into itself is denoted by O(S ) and called the orthogonal
group of S . Two embeddings i : S → S ′ and i′ : S → S ′ are called isomorphic if
there exists an isometry σ ∈ O(S ′) such that i′ = σ ◦ i. An embedding i : S → S ′
is called primitive if S ′/i(S ) is a free group. A sublattice is a subgroup equipped
with the induced bilinear form. A sublattice S ′ of a lattice S is called primitive if the
identity map S ′ → S is a primitive embedding. The primitive closure of S inside
S ′ is defined by S = {x ∈ S ′/mx ∈ S for some positive integer m}. A lattice M is
an overlattice of S if S is a sublattice of M such that the index [M : S ] is finite.
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By S 1 ⊕ S 2 we denote the orthogonal sum of two lattices defined in the standard
way. We write S n for the orthogonal sum of n copies of a lattice S . The orthogonal
complement of a sublattice S of a lattice S ′ is denoted (S )⊥S ′ and defined by (S )⊥S ′ ={x ∈ S ′/b(x, y) = 0 for all y ∈ S }.

3 Discriminant Forms

Let L be a non-degenerate lattice. The dual lattice L∗ of L is defined by

L∗ := Hom(L,Z) = {x ∈ L⊗ Q/ b(x, y) ∈ Z for all y ∈ L}.
and the discriminant group GL by

GL := L∗/L.

This group is finite if and only if L is non-degenerate. In the latter case, its order is
equal to the absolute value of the lattice determinant | det(G(e)) | for any basis e of
L. A lattice L is unimodular if GL is trivial.

Let GL be the discriminant group of a non-degenerate lattice L. The bilinear form
on L extends naturally to a Q-valued symmetric bilinear form on L∗ and induces a
symmetric bilinear form

bL : GL ×GL → Q/Z.

If L is even, then bL is the symmetric bilinear form associated to the quadratic form
defined by

qL : GL → Q/2Z
qL(x + L) �→ x2 + 2Z.

The latter means that qL(na) = n2qL(a) for all n ∈ Z, a ∈ GL and bL(a, a′) =
1
2 (qL(a + a′) − qL(a) − qL(a′)), for all a, a′ ∈ GL, where 1

2 : Q/2Z → Q/Z is the
natural isomorphism. The pair (GL, bL) (resp. (GL, qL)) is called the discriminant
bilinear (resp. quadratic) form of L.

4 Root Lattices

In this section we recall only what is needed for the understanding of the paper. For
proofs and details one can refer to Bourbaki [5] or Martinet [14].

Let L be a negative-definite even lattice. We call e ∈ L a root if qL(e) = −2. Put
Δ(L) := {e ∈ L/qL(e) = −2}. Then the sublattice of L spanned by Δ(L) is called the
root type of L and is denoted by Lroot. If e ∈ Δ(L), we call reflection associated
with e the following isometry

Re(x) = x + b(x, e)e.
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The subgroup of O(L) generated by Re (e ∈ Δ(L)) is called the Weyl group of L and
is denoted by W(L).

The lattices An = 〈a1, a2, . . . , an〉 (n ≥ 1), Dl = 〈d1, d2, . . . , dl〉 (l ≥ 4), Ep =

〈e1, e2, . . . , ep〉 (p = 6, 7, 8) defined by the following Dynkin diagrams are called
the root lattices. All the vertices a j, dk, el are roots and two vertices a j and a′j
are joined by a line if and only if b(a j, a′j) = 1. We use Bourbaki’s definitions [5]
(Fig. 1).

Fig. 1: Dynkin diagrams

Denote εi the vectors of the canonical basis of Rn with the negative usual scalar
product.

4.1 A∗n/An

We can represent An by the set of points in Rn+1 with integer coordinates whose sum
is zero. Set ai = εi − εi+1 and define

αn = ε1 − 1

n + 1

n+1∑

j=1

ε j =
1

n + 1

n∑

j=1

(n− j + 1)a j.

One can show that

A∗n = 〈An, αn〉, A∗n/An � Z/(n + 1)Z and qAn(αn) =
(

− n

n + 1

)

.

4.2 D∗
l
/Dl

We can represent Dl as the set of points of Rl with integer coordinates of even sum
and define
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δl =
1
2 (
∑l

i=1 εi) = 1
2

(∑l−2
i=1 idi +

1
2 (l− 2)dl−1 +

1
2 ldl

)

δl = ε1 =
∑l−2

i=1 di +
1
2 (dl−1 + dl)

δ̃l = δl − εl =
1
2

(∑l−2
i=1 idi +

1
2 ldl−1 +

1
2 (l− 2)dl

)
.

One can show that
D∗l = 〈ε1, . . . , εl, δl〉.

Then, for l odd

D∗l /Dl � Z/4Z = 〈δl〉, δl ≡ 2δl and δ̃l ≡ 3δl mod. Dl

and for l even
D∗l /Dl � Z/2Z× Z/2Z,

the three elements of order 2 being the images of δl, δ̃l and δl. Moreover,

qDl (δl) =

(

− l

4

)

, qDl (δl) = (−1), bDl(δl, δl) = −1

2
.

4.3 E∗
6
/E6

We can represent E6 as a lattice in R8 generated by the six vectors
e1 =

1
2 (ε1 + ε8)− 1

2 (
∑7

i=2 εi), e2 = ε1 + ε2, ei = εi−1 − εi−2, 3 ≤ i ≤ 6.
If η6 = − 1

3 (2e1 + 3e2 + 4e3 + 6e4 + 5e5 + 4e6), then

E∗6 = 〈E6, η6〉, E∗6/E6 � Z/3Z, qE6 (η6) =

(

−4

3

)

.

4.4 E∗
7
/E7

We can represent E7 as a lattice in R8 generated by the six previous vectors ei and
e7 = ε6 − ε5. If η7 = − 1

2 (2e1 + 3e2 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7), then

E∗7 = 〈E7, η7〉, E∗7/E7 � Z/2Z, qE7 (η7) =

(

−3

2

)

.

4.5 E∗
8
/E8

We can represent E8 as the subset of points with coordinates ξi satisfying

2ξi ∈ Z, ξi − ξ j ∈ Z,
∞∑

i=1

ξi ∈ 2Z.

Then E∗8/E8 = (0).
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5 Elliptic Fibrations

Before giving a complete classification of the elliptic fibrations on the K3 surface
Y2, we recall briefly some useful facts concerning K3 surfaces. For more details
see [1, 29].

5.1 K3 Surfaces and Elliptic Fibrations

A K3 surface X is a smooth projective complex surface with

KX = OX and H1(X,OX) = 0.

If X is a K3 surface, then H2(X,Z) is torsion free. With the cup product, H2(X,Z)
has the structure of an even lattice. By the Hodge index theorem it has signature
(3, 19) and by Poincaré duality it is unimodular. Moreover, as a lattice, H2(X,Z) =
U3 ⊕ E8(−1)2.

The Néron–Severi group NS (X) (i.e. the group of line bundles modulo alge-
braic equivalence), with the intersection pairing, if ρ(X) is the Picard number of X,
is a lattice of signature (1, ρ(X)− 1). The natural embedding NS (X) ↪→ H2(X,Z)
is a primitive embedding of lattices. If C is a smooth projective curve over an al-
gebraically closed field K, an elliptic surface Σ over C is a smooth surface with a
surjective morphism

f : Σ → C

such that almost all fibers are smooth curves of genus 1 and no fiber contains ex-
ceptional curves of the first kind. The morphism f defines an elliptic fibration on Σ.
We suppose also that every elliptic fibration has a section and so a Weierstrass form.
Thus we can consider the generic fiber as an elliptic curve E on K(C) choosing a
section as the zero section Ō. In the case of K3 surfaces, C = P1.

The singular fibers were classified by Néron [15, Chap. 3] and Kodaira [11].
They are union of irreductible components with multiplicities; each component is a
smooth rational curve with self-intersection−2. The singular fibers are classified in
the following Kodaira types:

• Two infinite series In(n > 1) and I∗n (n ≥ 0).
• Five types III, IV, II∗, III∗, IV∗.

The dual graph of these components (a vertex for each component, an edge for
each intersection point of two components) is an extended Dynkin diagram of type
Ãn, D̃l, Ẽp. Deleting the zero component (i.e. the component meeting the zero sec-
tion) gives the Dynkin diagram graph An, Dl, Ep. We draw the most useful diagrams,
with the multiplicity of the components, the zero component being represented by a
circle (Fig. 2).
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Fig. 2: Extended Dynkin diagrams

The trivial lattice T (X) is the subgroup of the Néron–Severi group generated by
the zero section and the fibers components. More precisely, the trivial lattice is the
orthogonal sum

T (X) =< Ō, F > ⊕v∈S Tv

where Ō denotes the zero section, F the general fiber, S the points of C corre-
sponding to the reducible singular fibers and Tv the lattice generated by the fiber
components except the zero component. From this formula we can compute the
determinant of T (X). From Shioda’s results on height pairing [25] we can de-
fine a positive-definite lattice structure on the Mordell–Weil lattice MWL(X) :=
E(K(C))/E(K(C))tor and get the following proposition.

Proposition 1. Let X be a K3 surface or more generally any elliptic surface with
section. We have the relation

|disc(NS (X))| = disc(T (X))disc(MWL(X))/|E(K)tor|2.
Moreover since X is a K3 surface, the zero section has self-intersection Ō2 =

−χ(X) = −2. Hence the zero section Ō and the general fiber F generate an even
unimodular lattice, called the hyperbolic plane U. The trivial lattice T (X) of an el-
liptic surface is not always primitive in NS (X). Its primitive closure T (X) is obtained
by adding the torsion sections. The Néron–Severi lattice NS (X) always contains an
even sublattice of corank two, the frame W(X)

W(X) = 〈Ō, F〉⊥ ⊂ NS (X).

Lemma 1. For any elliptic surface X with section, the frame W(X) is a negative-
definite even lattice of rank ρ(X)− 2.
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Remark 1. In this paper X is really considered as a K3 surface with section, that is
we look at its various elliptic fibrations f , f : X → P1 with section σ. So T (X) and
W(X) are in fact T ( f , σ) and W( f , σ) defined for each ( f , σ).

The Néron–Severi lattice of a K3 surface is an even lattice and one can read off
the Mordell–Weil lattice, the torsion in the Mordell–Weil group MW and the type
of singular fibers from W(X) by

MWL(X) = W(X)/W(X)root (MW)tors = W(X)root/W(X)root

T (X) = U ⊕W(X)root.

We can also calculate the heights of points from the Weierstrass equation [10] and
test if points generate the Mordell–Weil group, since disc(NS (X)) is independent of
the fibration.

5.2 Nikulin and Niemeier’s Results

Lemma 2. [17, Proposition 1.4.1] Let L be an even lattice. Then, for an even over-
lattice M of L, we have a subgroup M/L of GL = L∗/L such that qL is trivial on
M/L. This determines a bijective correspondence between even overlattices of L
and subgroups G of GL such that qL |G= 0.

Lemma 3. [17, Proposition 1.6.1] Let L be an even unimodular lattice and T a
primitive sublattice. Then we have

GT � GT⊥ � L/(T ⊕ T⊥), qT⊥ = −qT .

In particular, det T = det T⊥ = [L : T ⊕ T⊥].

Theorem 1. [17, Corollary 1.6.2] Let L and M be non-degenerate even integral
lattices such that

GL � GM , qL = −qM.

Then there exists an unimodular overlattice N of L⊕ M such that

1. the embeddings of L and M in N are primitive
2. L⊥N = M and M⊥

N = L.

Theorem 2. [17, Theorem 1.12.4] Let there be given two pairs of nonnegative in-
tegers, (t(+), t(−)) and (l(+), l(−)). The following properties are equivalent:

a) every even lattice of signature (t(+), t(−)) admits a primitive embedding into some
even unimodular lattice of signature (l(+), l(−));

b) l(+) − l(−) ≡ 0 (mod 8), t(+) ≤ l(+), t(−) ≤ l(−) and t(+) + t(−) ≤ 1
2 (l(+) + l(−)).
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Theorem 3. [16] A negative-definite even unimodular lattice L of rank 24 is deter-
mined by its root lattice Lroot up to isometries. There are 24 possibilities for L and
L/Lroot listed in Table 1.

Table 1: Niemeier lattices

Lroot L/Lroot Lroot L/Lroot
E3

8 (0) D⊕2
5 ⊕ A⊕2

7 Z/4Z⊕ Z/8Z
E8 ⊕ D16 Z/2Z A⊕3

8 Z/3Z⊕ Z/9Z
E⊕2

7 ⊕ D10 (Z/2Z)2 A24 Z/5Z
E7 ⊕ A17 Z/6Z A⊕2

12 Z/13Z
D24 Z/2Z D⊕6

4 (Z/2Z)6

D⊕2
12 (Z/2Z)2 D4 ⊕ A⊕4

5 Z/2Z⊕ (Z/6Z)2

D⊕3
8 (Z/2Z)3 A⊕4

6 (Z/7Z)2

D9 ⊕ A15 Z/8Z A⊕6
4 (Z/5Z)3

E⊕4
6 (Z/3Z)2 A⊕8

3 (Z/4Z)4

E6 ⊕ D7 ⊕ A11 Z/12Z A⊕12
2 (Z/3Z)6

D⊕4
6 (Z/2Z)4 A⊕24

1 (Z/2Z)12

D6 ⊕ A⊕2
9 Z/2Z⊕ Z/10Z 0 Λ24

The lattices L defined in Table 1 are called Niemeier lattices.

5.3 Nishiyama’s Method

Recall that a K3 surface may admit more than one elliptic fibration, but up to isomor-
phism, there is only a finite number of elliptic fibrations [26]. To establish a com-
plete classification of the elliptic fibrations on the K3 surface Y2, we use Nishiyama’s
method based on lattice theoretic ideas [18]. The technique builds on a converse of
Nikulin’s results.

Given an elliptic K3 surface X, Nishiyama aims at embedding the frames of
all elliptic fibrations into a negative-definite lattice, more precisely into a Niemeier
lattice of rank 24. For this purpose, he first determines an even negative-definite
lattice M such that

qM = −qNS (X), rank(M) + ρ(X) = 26.

By Theorem 1, M ⊕ W(X) has a Niemeier lattice as an overlattice for each frame
W(X) of an elliptic fibration on X. Thus one is bound to determine the (inequivalent)
primitive embeddings of M into Niemeier lattices L. To achieve this, it is essential
to consider the root lattices involved. In each case, the orthogonal complement of
M into L gives the corresponding frame W(X).
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5.3.1 The Transcendental Lattice and Argument from Nishiyama Paper

Denote by T(X) the transcendental lattice of X, i.e. the orthogonal complement of
NS (X) in H2(X,Z) with respect to the cup-product,

T(X) = NS (X)⊥ ⊂ H2(X,Z).

In general, T(X) is an even lattice of rank t = 22−ρ(X) and signature (2, 20−ρ(X)).
Let t′ = t − 2. By Nikulin’s Theorem 2, T(X)[−1] admits a primitive embedding
into the following indefinite unimodular lattice:

T(X)[−1] ↪→ Ut′ ⊕ E8.

Then define M as the orthogonal complement of T(X)[−1] in Ut′ ⊕E8. By construc-
tion, M is a negative-definite lattice of rank 2t′ + 8− t = t + 4 = 26− ρ(X).

By Lemma 3 the discriminant form satisfies

qM = −qT(X)[−1] = qT(X) = −qNS (X).

Hence M takes exactly the shape required for Nishiyama’s technique.

5.3.2 Torsion Group

First we classify all the primitive embeddings of M into Lroot. Let N be the orthog-
onal complement of M into Lroot and W the orthogonal complement of M into L.
If M satisfies Mroot = M, we can apply Nishiyama’s results [18]. In particular,

• M primitively embedded in Lroot ⇐⇒ M primitively embedded in L,
• N/Nroot is torsion-free.

Remark 2. Notice that the rank r of the Mordell–Weil group is equal to rk(W) −
rk(Wroot) and its torsion part is Wroot/Wroot.

We need also the following lemma.

Lemma 4. [18, Lemma 6.6] We have the following facts:

1. If det N = det M, then the Mordell–Weil group is torsion-free.
2. If r = 0, then the Mordell–Weil group is isomorphic to W/N.
3. In general, there are the following inclusions of groups:

Wroot/Wroot ⊂ W/N ⊂ L/Lroot.
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6 Elliptic Fibrations of Y2

We follow Nishiyama’s method. Since

T(Y2) =

(
2 0
0 4

)

,

we get, by Nishiyama’s computation [18], M = D5 ⊕ A1. Thus we have to deter-
mine all the primitive embeddings of M into the root lattices and their orthogonal
complements.

6.1 The Primitive Embeddings of D5 ⊕ A1 into Root Lattices

Proposition 2. There are primitive embeddings of D5 ⊕ A1 only into the following
Lroot:

E⊕3
8 , E8 ⊕ D16, E⊕2

7 ⊕ D10, E7 ⊕ A17, D⊕3
8 , D9 ⊕ A15,

E⊕4
6 , A11 ⊕ E6 ⊕ D7, D⊕4

6 , D6 ⊕ A⊕2
9 , D⊕2

5 ⊕ A⊕2
7 .

Proof. The assertion comes from Nishiyama’s results [18]. The lattice A1 can be
primitively embedded in all An, Dl and Ep, n ≥ 1, l ≥ 2, p = 6, 7, 8. The lattice
D5 can be primitively embedded only in Dl, l ≥ 5 and Ep, p = 6, 7, 8. The lattice
D5⊕ A1 can be primitively embedded only in Dl, l ≥ 7, E7 and E8. The proposition
follows from Theorem 3 and the previous facts. $%
Proposition 3. Up to the action of the Weyl group, the unique primitive embeddings
are given in the following list

• A1 = 〈an〉 ⊂ An

• A1 = 〈dl〉 ⊂ Dl, l ≥ 4
• A1 = 〈e1〉 ⊂ Ep, p = 6, 7, 8
• D5 = 〈dl−1, dl, dl−2, dl−3, dl−4〉 ⊂ Dl, l ≥ 6
• D5 = 〈e2, e5, e4, e3, e1〉 ⊂ En, n ≥ 6
• D5 ⊕ A1 = 〈dl−1, dl, dl−2, dl−3, dl−4〉 ⊕ 〈dl−6〉 ⊂ Dl, l ≥ 7
• D5 ⊕ A1 = 〈e2, e5, e4, e3, e1〉 ⊕ 〈e7〉 ⊂ En, n ≥ 7.

Proof. The first five assertions follow from Nishiyama’s computations [18]. Just
be careful of the difference of notations between Nishiyama and us. The two last
assertions follow from the lemmas below.

Lemma 5. Up to isomorphism by an element of the Weyl group, there is a unique
primitive embedding of D5 ⊕ A1 into E8 given by

〈e2, e5, e4, e3, e1〉 ⊕ 〈e7〉.
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Proof. Up to isomorphism in E8 there is a unique primitive embedding of D5 into
E8 given by 〈e2, e5, e4, e3, e1〉 [18]. Moreover

(D5)⊥E8
= 〈e7, e8, 3e2 + 2e1 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + 2e8〉 = A3

Thus we get three primitive embeddings of D5 ⊕ A1 into E8

(1) 〈e2, e5, e4, e3, e1〉 ⊕ 〈e7〉
(2) 〈e2, e5, e4, e3, e1〉 ⊕ 〈e8〉
(3) 〈e2, e5, e4, e3, e1〉 ⊕ 〈x = 3e2 + 2e1 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + 2e8〉.

The primitive embedding (2) is isomorphic to the primitive embedding (3) by the
reflection R = R3e2+2e1+4e3+6e4+5e5+4e6+3e7+e8 , since R(x) = e8, R(ei) = ei, 1 ≤ i ≤ 6.

The primitive embedding (1) is isomorphic to the primitive embedding (2) by the
isomorphism R = Re7 ◦ Re7+e8 , since R(e8) = e7 and R(ei) = ei, 1≤i≤5. $%
Lemma 6. Up to isomorphism by an element of the Weyl group, there is a unique
primitive embedding of D5 ⊕ A1 into E7 given by

〈e2, e5, e4, e3, e1〉 ⊕ 〈e7〉.
Proof. By Nishiyama [18], up to isomorphism, the unique primitive embedding of
D5 into E7 is given by 〈e2, e5, e4, e3, e1〉. And its orthogonal into E7 is 〈e7〉 ⊕ 〈−4〉.

$%
Lemma 7. Up to isomorphism by an element of the Weyl group, there is a unique
primitive embedding of D5 ⊕ A1 into Dl, l ≥ 7, given by

〈dl−1, dl, dl−2, dl−3, dl−4〉 ⊕ 〈dl−6〉.
Proof. The unique primitive embedding, up to isomorphism, of D5 into Dl, l ≥ 7 is
〈dl−1, dl, dl−2, dl−3, dl−4〉, its orthogonal in Dl being 〈x, dl−6, dl−5, . . . , d1〉 with x =
dl−1 + dl + 2(dl−2 + dl−3 + dl−4 + dl−5) + dl−6.

It is sufficient to prove that the primitive embeddings

• 〈dl−1, dl, dl−2, dl−3, dl−4〉 ⊕ 〈x〉
• 〈dl−1, dl, dl−2, dl−3, dl−4〉 ⊕ 〈dl−6〉
are isomorphic.

Let

R = Rx ◦ Rdl+dl−2+dl−3+dl−4+dl−5+dl−6 ◦ Rdl−1+dl−2+dl−3+dl−4+dl−5+dl−6 .

Now R(x) = dl−6, R(dl−1) = dl, R(dl) = dl−1, R(dl−i) = dl−i, 2 ≤ i ≤ 5. So R
gives the isomorphism. $%

$%
Proposition 4. We get the following results about the orthogonal complements of
the previous embeddings. For notations we refer to Sect. 4.



166 M.J. Bertin and O. Lecacheux

1. (A1)⊥An
= L2

n−2=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2× 3 2 0 . . . 0

2
0
... An−2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with det L2
n−2 = 2(n + 1)

2. (A1)⊥D4
= A⊕3

1 and (A1)⊥Dn
= A1 ⊕ Dn−2, n ≥ 5

3. (A1)⊥A7
= (〈a7〉)⊥A7

= 〈a7 + 2a6, a5, a4, a3, a2, a1〉
α7 ∈ (A1)⊥A∗7 but kα7 � ((A1)⊥A7

)root = A5 for all k

4. (A1)⊥A9
= (〈a9〉)⊥A9

= 〈a9 + 2a8, a7, a6, a5, a4, a3, a2, a1〉
α9 ∈ (A1)⊥A∗9 but kα9 � ((A1)⊥A9

)root = A7 for all k

5. (A1)⊥A11
= 〈a11 + 2a10, a9, a8, a7, a6, a5, a4, a3, a2, a1〉

α11 ∈ (A1)⊥A∗11
but kα11 � ((A1)⊥A11

)root = A9 for all k

6. (A1)⊥D6
= 〈d5〉 ⊕ 〈d5 + d6 + 2d4 + d3, d3, d2, d1〉 = A1 ⊕ D4

δ6 and δ̃6 ∈ (A1)⊥D∗6 , δ6 � (A1)⊥D∗6

7. (A1)⊥D7
= 〈d7〉⊥D7

= 〈d6〉 ⊕ 〈d6 + d7 + 2d5 + d4, d4, d3, d2, d1〉 = A1 ⊕ D5

3δ7 ∈ (A1)⊥D∗7

8. (A1)⊥D10
= 〈d10〉⊥D10

= 〈d9〉 ⊕ 〈d9 + d10 + 2d8 + d7, d7, d6, d5, d4, d3, d2, d1〉
= A1 ⊕ D8

2δ10 ∈ A1 ⊕ D8

9. (A1)⊥E6
= 〈e1 + e2 + 2e3 + 2e4 + e5, e6, e5, e4, e2〉 = A5

3η6 ∈ A5

10. (A1)⊥E7
= 〈e1 + e2 + 2e3 + 2e4 + e5, e7, e6, e5, e4, e2〉 = D6

2η7 ∈ (A1)⊥E7

11. (A1)⊥E8
= E7

12. (D5)⊥Dl
= Dl−5

D1 = (−4) D2 = A⊕2
1 D3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1
0 −2 1
1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
� A3
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13. (D5)⊥D6
= 〈d5 + d6 + 2d4 + 2d3 + 2d2 + 2d1〉 = 〈(−4)〉

δ6 and δ̃6 � (D5)⊥D∗6 , δ6 ∈ (D5)⊥D∗6

14. (D5)⊥E6
= 〈e2, e5, e4, e3, e1〉⊥E6

= 〈3e2 + 2e1 + 4e3 + 6e4 + 5e5 + 4e6〉 = 〈(−12)〉
3η6 = (−12)

15.
(D5)⊥E7

= 〈2e1 + 2e2 + 3e3 + 4e4 + 3e5 + 2e6 + e7〉
⊕〈e2 + e3 + 2e4 + 2e5 + 2e6 + 2e7〉
= A1 ⊕ (−4)

η7 ∈ (D5)⊥E∗7 , 2η7 � A1

16. (D5)⊥E8
= A3

17. (D5 ⊕ A1)⊥D7
= A1 = (d6 + d7 + 2d5 + 2d4 + 2d3 + 2d2 + d1)

18.
(D5 ⊕ A1)⊥D8

= 〈d7 + d8 + 2d6 + 2d5 + 2d4 + 2d3 + d2〉⊕
〈d7 + d8 + 2d6 + 2d5 + 2d4 + 2d3 + 2d2 + 2d1〉
= A1 ⊕ (−4)

4δ8 � (D5 ⊕ A1)⊥D8
, δ8 � A1

19.
(D5 ⊕ A1)⊥D9

= A1 ⊕ A1 ⊕ A1

= (d1)⊕ (d8 + d9 + 2d7 + 2d6 + 2d5 + 2d4 + d3)⊕
(d8 + d9 + 2d7 + 2d6 + 2d5 + 2d4 + 2d3 + 2d2 + d1)

(D5 ⊕ A1)⊥D10
= A1 ⊕ A3 (D5 ⊕ A1)⊥D12

= A1 ⊕ D5

(D5 ⊕ A1)⊥D16
= A1 ⊕ D9 (D5 ⊕ A1)⊥D24

= A1 ⊕ D17

20. (D5 ⊕ A1)⊥E7
= 〈3e2 + 2e1 + 4e3 + 6e4 + 5e5 + 4e6 + 2e7〉 = 〈(−4)〉

2η7 � (D5 ⊕ A1)⊥E7

21.
(D5 ⊕ A1)⊥E8

= A1 ⊕ (−4)
= (3e2 + 2e1 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + 2e8)
⊕(3e2 + 2e1 + 4e3 + 6e4 + 5e5 + 4e6 + 2e7)

Proof. The orthogonal complements are given in Nishiyama [18] and the rest of the
proof follows immediately from the various expressions of η7, η6, δl, δl, δ̃ and αm

given in Sect. 4. $%
Once the different types of fibrations are known, we get the rank of the Mordell–

Weil group by 2.
To determine the torsion part we need to know appropriate generators of L/Lroot.
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6.2 Generators of L/Lroot

By Lemma 2, a set of generators can be described in terms of elements of L∗root/
Lroot. We list in the Table 2 the generators fitting to the corresponding W. We re-
strict to relevant Lroot according to Proposition 2.

For convenience, the generators are given modulo Lroot.

Table 2: A set of generators of L/Lroot

Lroot L/Lroot

E3
8 〈(0)〉

E8D16 〈δ16〉 � Z/2Z

E2
7D10 〈η(1)

7 + δ10, η
(2)
7 +

¯δ10〉 � (Z/2Z)2

E7A17 〈η7 + 3α17〉 � Z/6Z

D3
8 〈δ(1)

8 + δ
(2)
8 + δ

(3)
8 , δ

(1)
8 + δ

(2)
8 + δ

(3)
8 , δ

(1)
8 + δ

(2)
8 + δ

(3)
8 〉 � (Z/2Z)3

D9A15 〈δ9 + 2α15〉 � Z/8Z

E4
6 〈η(1)

6 + η
(2)
6 + η

(3)
6 , 2η

(1)
6 + η

(3)
6 + η

(4)
6 〉 � (Z/3Z)2

A11E6D7 〈α11 + η6 + δ7〉 � Z/12Z

D4
6 〈δ(1)

6 + δ
(4)
6 , δ

(2)
6 + δ

(3)
6 , δ

(1)
6 + δ

(3)
6 + δ

(4)
6 , δ

(1)
6 + δ

(2)
6 〉 � (Z/2Z)4

D6A2
9 〈δ6 + 5α

(2)
9 , δ6 + α

(1)
9 + 2α

(2)
9 〉 � Z/2Z× Z/10Z

D2
5A2

7 〈δ(1)
5 + δ

(2)
5 + 2α

(1)
7 , δ

(1)
5 + 2δ

(2)
5 + α

(1)
7 + α

(2)
7 〉 � Z/4Z× Z/8Z

Theorem 4. There are 30 elliptic fibrations with section, unique up to isomorphism,
on the elliptic surface Y2. They are listed with the rank and torsion of their Mordell–
Weil groups on Table 3.

Proof. If the rank is 0, we apply Lemma 4(1) and (2) to determine the torsion part
of the Mordell–Weil group. Thus we recover the 14 fibrations of rank 0 exhibited
by Shimada and Zhang [24].

For the other 16 fibrations we apply Proposition 4 and Lemma 4(3). Recall that
det W = 8 and the torsion group is Wroot/Wroot.

6.3 Lroot = E8 D16

L/Lroot = 〈δ16 + Lroot〉 � Z/2Z
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Table 3: The elliptic fibrations of Y2

Lroot L/Lroot Fibers R Tor.
E3

8 (0)
A1 ⊂ E8 D5 ⊂ E8 E7A3E8 0 (0)
A1 ⊕ D5 ⊂ E8 A1E8E8 1 (0)

E8D16 Z/2Z
A1 ⊂ E8 D5 ⊂ D16 E7D11 0 (0)
A1 ⊕ D5 ⊂ E8 A1D16 1 Z/2Z
D5 ⊂ E8 A1 ⊂ D16 A3A1D14 0 Z/2Z
A1 ⊕ D5 ⊂ D16 E8A1D9 0 (0)

E2
7D10 (Z/2Z)2

A1 ⊂ E7 D5 ⊂ D10 E7D6D5 0 Z/2Z
A1 ⊂ E7 D5 ⊂ E7 D6A1D10 1 (0)
A1 ⊕ D5 ⊂ E7 E7D10 1 Z/2Z
A1 ⊕ D5 ⊂ D10 E7E7A1A3 0 Z/2Z
D5 ⊂ E7 A1 ⊂ D10 A1A1D8E7 1 Z/2Z

E7A17 Z/6Z
A1 ⊕ D5 ⊂ E7 A17 1 Z/3Z
D5 ⊂ E7 A1 ⊂ A17 A1A15 2 (0)

D24 Z/2Z
A1 ⊕ D5 ⊂ D24 A1D17 0 (0)

D2
12 (Z/2Z)2

A1 ⊂ D12 D5 ⊂ D12 A1D10D7 0 Z/2Z
A1 ⊕ D5 ⊂ D12 A1D5D12 0 Z/2Z

D3
8 (Z/2Z)3

A1 ⊂ D8 D5 ⊂ D8 A1D6A3D8 0 (Z/2)2

A1 ⊕ D5 ⊂ D8 A1D8D8 1 Z/2Z
D9A15 Z/8Z

A1 ⊕ D5 ⊂ D9 A1A1A1A15 0 Z/4Z
D5 ⊂ D9 A1 ⊂ A15 D4A13 1 (0)

E4
6 (Z/3Z)2

A1 ⊂ E6 D5 ⊂ E6 A5E6E6 1 Z/3Z
A11E6D7 Z/12Z

A1 ⊂ E6 D5 ⊂ D7 A5A1A1A11 0 Z/6Z
A1 ⊂ A11 D5 ⊂ D7 A9A1A1E6 1 (0)
A1 ⊕ D5 ⊂ D7 A11E6A1 0 Z/3Z
A1 ⊂ A11 D5 ⊂ E6 A9D7 2 (0)
D5 ⊂ E6 A1 ⊂ D7 A11A1D5 1 Z/4Z

D4
6 (Z/2Z)4

A1 ⊂ D6 D5 ⊂ D6 A1D4D6D6 1 (Z/2)2

D6A2
9 Z/2 × Z/10

D5 ⊂ D6 A1 ⊂ A9 A7A9 2 (0)
D2

5A2
7 Z/4 × Z/8

D5 ⊂ D5 A1 ⊂ D5 A1A3A7A7 0 Z/8Z
D5 ⊂ D5 A1 ⊂ A7 D5A5A7 1 (0)
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Fibration A1D16 is obtained from the primitive embedding D5 ⊕ A1 ⊂ E8. Since
by Proposition 4(21) (D5 ⊕ A1)⊥E8

= A1 ⊕ (−4), det N = 8× 4, so W/N � Z/2Z �
L/Lroot = 〈δ16 + Lroot〉. Since 2δ16 ∈ D16 = Wroot, thus δ16 ∈ Wroot and
Wroot/Wroot = Z/2Z.

6.4 Lroot = E2
7
D10

L/Lroot = 〈η(1)
7 + δ10, η

(2)
7 + δ̄10 mod. Lroot〉 � (Z/2Z)2

Fibration A1D6D10 is obtained from the primitive embeddings A1 ⊂ E(1)
7 and D5 ⊂

E(2)
7 . Since by Proposition 4(10) and (15) (A1)⊥

E(1)
7

= D6 and (D5)⊥
E(2)

7

= A1⊕(−4), we

get det N = 8× 42 and W/N � (Z/2Z)2 � L/Lroot. By Proposition 4(15), η7(1) ∈
(D5)⊥

E(1)∗
7

= A1 ⊕ (−4), but 2η7 � A1 and by Proposition 4(10) 2η
(1)
7 ∈ (A1)⊥

E(1)
7

= D6.

So Wroot/Wroot = 〈η(1)
7 + δ10 +Wroot〉 � Z/2Z.

Fibration E7D10 is obtained from D5 ⊕ A1 ⊂ E(1)
7 . Since by Proposition 4(20)

(D5 ⊕ A1)⊥E7
= (−4), det N = 8 × 4 so W/N � Z/2Z. Again by Proposition 4(20),

2η(1)
7 � (D5 ⊕ A1)⊥

E(1)
7

and we get W/N = 〈η(2)
7 + δ̄10 + N〉. Since 2η(2)

7 ∈ E7 and

2δ̄10 ∈ D10, it follows Wroot/Wroot � Z/2Z.

Fibration 2A1D8E7 is obtained from the primitive embeddings A1 ⊂ D10 and D5 ⊂
E(1)

7 . By Proposition 4(8) and (15), we get (A1)⊥D10
= A1 ⊕ D8 and (D5)⊥

E(1)
7

= A1 ⊕
(−4), so det N = 8 × 42 and W/N � (Z/2Z)2 � L/Lroot. By Proposition 4(15),
2η

(1)
7 � A1 and by Proposition 4(8) 2δ̄10 ∈ A1 ⊕ D8 so Wroot/Wroot � Z/2Z.

6.5 Lroot = E7 A17

L/Lroot = 〈η7 + 3α17 + Lroot〉 � Z/6Z

Fibration A17 is obtained from the primitive embedding D5 ⊕ A1 ⊂ E7. By Propo-
sition 4 20., (D5 ⊕ A1)⊥E7

= (−4), so det N = 8× 9 and W/N � Z/3Z = 〈6α17 + N〉.
Moreover, since 18α17 ∈ A17, 6α17 ∈ Wroot so Wroot/Wroot � Z/3Z.

Fibration A1A15 is obtained from the primitive embeddings D5 ⊂ E7 and A1 ⊂
A17. By Proposition 4(15) and (1), (D5)⊥E7

= A1 ⊕ (−4) and (A1)⊥A17
= L2

15 with
det L2

15 = 2×18, so det N = 8×62 and W/N � Z/6Z � L/Lroot. But, by Lemma 2,
Wroot = A1A15 has no overlattice. Hence Wroot/Wroot � (0).
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6.6 Lroot = D3
8

L/Lroot = 〈δ(1)
8 + δ

(2)
8 + δ

(3)
8 , δ

(1)
8 + δ

(2)
8 + δ

(3)
8 , δ

(1)
8 + δ

(2)
8 + δ

(3)
8 〉mod. Lroot

� (Z/2Z)3

Fibration A1D8D8 comes from the primitive embedding D5⊕A1 ⊂ D(1)
8 . By Propo-

sition 4(18), (D5 ⊕ A1)⊥D8
= A1 ⊕ (−4) so det N = 8× 42 and W/N � (Z/2Z)2. By

Proposition 4(18), 4δ8 � (D5 ⊕ A1)⊥D8
so W/N = 〈δ(1)

8 + δ
(2)
8 + δ

(3)
8 , δ

(1)
8 + δ

(2)
8 + δ

(3)
8 〉.

Again by Proposition 4(18) δ8 � A1, so only 2(δ(2)
8 + δ

(2)
8 + δ

(3)
8 + δ

(3)
8 ) ∈ Wroot and

Wroot/Wroot � Z/2Z.

6.7 Lroot = D9 A15

L/Lroot = 〈δ9 + 2α15 + Lroot〉 � Z/8Z

Fibration D4A13 comes from the primitive embeddings D5 ⊂ D9 and A1 ⊂ A15.
By Proposition 4(12) and (1), (D5)⊥D9

= D4, (A1)⊥A15
= L2

13 with det L2
13 = 2 × 16

so det N = 8 × 16 and W/N � Z/4Z. But by Lemma 2, Wroot = D4A13 has no
overlattice since qA13(α13) =

(− 1
14

)
and qD4 (δ4) ∈ Z. Hence Wroot/Wroot � (0).

6.8 Lroot = E4
6

L/Lroot = 〈η(1)
6 + η(2)

6 + η(3)
6 , 2η(1)

6 + η(3)
6 + η(4)

6 〉 mod.Lroot � (Z/3Z)2

Fibration A5E6E6 comes from the primitive embeddings A1 ⊂ E(1)
6 and D5 ⊂ E(2)

6 .
By Proposition 4(9) and (14), (A1)⊥E6

= A5 and (D5)⊥E6
= (−12) so det N = 8 × 92

and W/N = (Z/3Z)2. By Proposition 4(9), 3η
(1)
6 ∈ A5 so 2η

(1)
6 + η

(3)
6 + η

(4)
6 ∈ Wroot

but η
(1)
6 + η

(2)
6 + η

(3)
6 � Wroot by Proposition 4(14). Hence Wroot/Wroot � Z/3Z.

6.9 Lroot = A11E6 D7

L/Lroot = 〈α11 + η6 + δ7 + Lroot〉 � Z/12Z

Fibration A9A1A1E6 follows from the primitive embeddings A1 ⊂ A11 and D5 ⊂
D7. By Proposition 4(5) and (12), (A1)⊥A11

= L2
9, det L2

9 = 2×12, (D5)⊥D7
= D2 � A⊕2

1

so det N = 8× 62 and W/N � Z/6Z = 〈2α11 + 2η6 + 2δ7 + N〉. Since k(2α11) � A9

by Proposition 4(5), we get Wroot/Wroot = (0).
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Fibration A9D7. By Lemma 2, it follows that Wroot = A9D7 has no overlattice
since qA9 (α9) =

(− 1
10

)
and qD7 =

(− 7
4

)
. Hence Wroot/Wroot = (0).

Fibration A11A1D5 comes from the primitive embeddings D5 ⊂ E6 and A1 ⊂ D7.
By Proposition 4(14) and (7), (D5)⊥E6

= (−12) and (A1)⊥D7
= A1 ⊕ D5, so det N =

8× 122 and W/N � Z/12Z � L/Lroot. Since Wroot ∩ E6 = ∅, we get also Wroot ∩
E6 = ∅. Now 3α11 +3δ7 ∈ Wroot since 3δ7 ≡ δ̃7 and 4(3α11+3δ7) ∈ Wroot. Hence
Wroot/Wroot � Z/4Z.

6.10 Lroot = D4
6

L/Lroot = 〈δ(1)
6 + δ

(4)
6 , δ

(2)
6 + δ

(3)
6 , δ

(1)
6 + δ

(3)
6 + δ

(4)
6 , δ

(1)
6 + δ

(2)
6 〉 mod. Lroot

� (Z/2Z)4

Fibration A1D4D6D6 comes from the primitive embeddings A1 ⊂ D(1)
6 and D5 ⊂

D(2)
6 . By Proposition 4(13) and 6, (A1)⊥D6

= A1⊕D4, (D5)⊥D6
= (−4), so det N = 8×82

and W/N � (Z/2Z)3. After enumeration of all the elements of L/Lroot, since by

Proposition 4(13) and 6. δ
(2)
6 ∈ (D5)⊥D∗6 and only δ

(1)
6 or δ̃

(1)
6 ∈ (A1)⊥D∗6 , we get

W/N =

{δ(1)
6 + δ

(4)
6 , δ

(2)
6 + δ

(3)
6 , δ

(1)
6 + δ

(2)
6 , δ

(2)
6

+δ
(4)
6 , δ

(1)
6 + δ

(3)
6 , δ

(3)
6 + δ

(4)
6 , δ

(1)
6 + δ

(2)
6 + δ

(3)
6 + δ

(4)
6 }

� (Z/2Z)3

As 2δ
(2)
6 � Wroot and 2δ

(1)
6 ∈ A1 ⊕ D4, it follows

Wroot/Wroot = {δ(1)
6 + δ

(4)
6 , δ

(1)
6 + δ

(3)
6 , δ

(3)
6 + δ

(4)
6 , 0} � Z/2Z× Z/2Z.

6.11 Lroot = D6 A2
9

L/Lroot = 〈δ6 + 5α
(2)
9 , δ6 + α

(1)
9 + 2α

(2)
9 〉 mod.Lroot � Z/2Z⊕ Z/10Z

Fibration A7A9 follows from the following primitive embeddings D5 ⊂ D6 and
A1 ⊂ A(1)

9 . By Proposition 4(13) and (4), (D5)⊥D6
= (−4), (A1)⊥A9

= L2
7, det L2

7 =

2× 10 so det N = 8× 102 and [W : N] = 10. Enumerating the elements of L/Lroot
and since δ6 � (D5)⊥D∗6 by Proposition 4(13), we get

W/N = {α(1)
9 + 7α(2)

9 , 2α(1)
9 + 4α(2)

9 , 3α(1)
9 + α(2)

9 , 4α(1)
9 + 8α(2)

9 , 5α(1)
9 + 5α(2)

9 ,

6α
(1)
9 + 2α

(2)
9 , 7α

(1)
9 + 9α

(2)
9 , 8α

(1)
9 + 6α

(2)
9 , 9α

(1)
9 + 3α

(2)
9 , 0}

� Z/10Z

Since kα(1)
9 � A7 by Proposition 4(4), it follows Wroot/Wroot = (0).
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6.12 Lroot = D2
5
A2

7

L/Lroot = 〈2α
(1)
7 + δ

(1)
5 + δ

(2)
5 , α

(1)
7 + α

(2)
7 + δ

(1)
5 + 2δ

(2)
5 〉mod. Lroot

� Z/4Z× Z/8Z

Fibration D5A5A7 follows from the primitive embeddings D5 ⊂ D(2)
5 and A1 ⊂

A(1)
7 . By Proposition 4(3), (A1)⊥A7

= L2
5, det L2

5 = 2 × 8 so det N = 8 × 82 and [W :

N] = 8. Now enumerating the elements of L/Lroot and since δ
(2)
5 does not occur in

W, we get W/N = 〈5α(1)
7 + α(2)

7 + 3δ(1)
5 + N〉. Since by Proposition 4(3) kα(1)

7 � A5, it
follows Wroot/Wroot = (0). $%

7 Equations of the Fibrations

In the next sections we give Weierstrass equations of all the elliptic fibrations. We
use the following proposition

Proposition 5. [20, (pp. 559–560)] [23, Proposition 12.10] Let X be a K3 surface
and D an effective divisor on X that has the same type as a singular fiber of an
elliptic fibration. Then X admits a unique elliptic fibration with D as a singular
fiber. Moreover, any irreducible curve C on X with D.C = 1 induces a section of the
elliptic fibration.

First we show that one of the fibrations is the modular elliptic surface with base
curve the modular curve X1(8) corresponding to modular group Γ1(8). As we see in
the Table 3, it corresponds to the fibration A1, A3, 2A7. The Mordell–Weil group is a
torsion group of order 8. We draw a graph with the singular fibers I2, I4, 2I8 and the
8-torsion sections. Most divisors used in the previous proposition can be drawn on
the graph.

From this modular fibration we can easily write a Weierstrass equation of two
other fibrations. From the singular fibers of these two fibrations we obtain the divi-
sors of a set of functions on Y2. These functions generate a group whose horizontal
divisors correspond to the 8-torsion sections. These divisors lead to more fibrations.

If X is a K3 surface and
π : X → C

an elliptic fibration, then the curve C is of genus 0 and we define an elliptic pa-
rameter as a generator of the function field of C. The parameter is not unique but
defined up to linear fractional transformations.

From the previous proposition we can obtain equations from the linear system of
D. Moreover if we have two effective divisors D1 and D2 for the same fibration we
can choose an elliptic parameter with divisor D1 − D2. We give all the details for
the fibrations of respective parameter t and ψ.

For each elliptic fibration we will give a Weierstrass model numbered from 1
to 30, generally in the two variables y and x. Parameters are denoted with small



174 M.J. Bertin and O. Lecacheux

latin or greek letters. In most cases we give the change of variables that converts the
defining equation into a Weierstrass form. Otherwise we use standard algorithms
to obtain a Weierstrass form (see for example [6]). From a Weierstrass equation
we get the singular fibers, using [28] for example, thus the corresponding fibra-
tion in Table 3; so we know the rank and the torsion of the Mordell–Weil group. If
the rank is > 0 we give points and heights of points, which, using the formula of
Proposition 1, generate the Mordell–Weil lattice. Heights are computed with Weier-
strass equations as explained in [10]. Alternatively we can compute heights as
in [11, 22].

7.1 Equation of the Modular Surface Associated
to the Modular Group Γ1(8)

We start with the elliptic surface

X +
1

X
+ Y +

1

Y
= k.

From Beauville’s classification [2], we know that it is the modular elliptic surface
corresponding to the modular group Γ1(4)∩Γ0(8). Using the birational transforma-
tion

X = −U(U−1)
V , Y = V

U−1 with inverse
U = −XY V = −Y (XY + 1)

we obtain the Weierstrass equation

V2 − kUV = U(U − 1)2.

The point Q = (U = 1, V = 0) is a 4−torsion point. If we want A with 2A = Q to be
a rational point, then k must have the form−s− 1/s + 2. It follows

V2 + (s +
1

s
− 2)UV = U(U − 1)2. (1)

and

X +
1

X
+ Y +

1

Y
+ s +

1

s
= 2.

The point A = (U = s, V = −1 + s) is of order 8. We obtain easily its multiples

A 2A 3A 4A 5A 6A 7A
(X, Y) (−s, 1) (∞, 0)

(
1, −1

s

)
(0, 0)

(−1
s , 1

)
(0,∞) (1,−s)

Thus we get an equation for the modular surface Y2 associated to the modular group
Γ1(8)
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Y2 : X +
1

X
+ Y +

1

Y
+ Z +

1

Z
− 2 = 0

and the elliptic fibration
(X, Y, Z) �→ Z = s.

Its singular fibers are

I8 (s = 0), I8 (s =∞), I4 (s = 1), I2 (s = −1), I1 (s = 3± 2
√

2).

From now on, an expression such as In (s = s0) means a singular fiber of type In at
s = s0.

7.2 Construction of the Graph from the Modular Fibration

At s = s0, we have a singular fiber of type In0 . We denote Θs0, j with s0 ∈
{0,∞, 1,−1}, j ∈ {0, . . . , n0 − 1} the components of a singular fiber In0 such that
Θi, j. Θk, j = 0 if i � k and

Θi, j.Θi,k =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |k− j| = 1 or |k − j| = n0 − 1
−2 if k = j
0 otherwise

the dot meaning the intersection product. By definition, the component Θk,0 inter-
sects the zero section (0). The n0-gon obtained can be oriented in two ways for
n0 > 2. For each s0 we want to know which component is cut off by the section
(A), i.e. the index j(A, s0) such that A.Θs0, j(A,s0) = 1. For this, we compute the local
height for the prime s − s0 with a Weierstrass equation [10]. Since this height is

also equal to
j(A,s0)(ns0− j(A,s0))

ns0
we can give an orientation to the n0-gon by choosing

0 ≤ j(A, s0) ≤ ns0

2 . Hence we get the following results: j(A, 0) = 3, j(A, s0) = 1 for
s0 � 0.

For the other torsion-sections (iA) we use the algebraic structure of the Néron
model and get (iA) .Θ0, j = 1 if j = 3i mod 8, (iA) .Θ0, j = 0 if j � 3i. For
s0 ∈ {∞, 1,−1} we have (iA) .Θs0, j = 1 if i = j mod n0.

Remark 3. We can also compute j(A, s0) explicitly from the Néron model ([15] The-
orem 1 and Proposition 5, p. 96).

Now we can draw the following graph. The vertices are the sections (iA) and the
components Θs0, j with s0 ∈ {0,∞, 1,−1}, j ∈ {0, 1.., n0}. Two vertices B and C
are linked by an edge if B.C = 1. For simplicity the two vertices Θ−1,0, Θ−1,1 and
the edge between them are not represented. The edges joining Θ−1,0 and ( jA), j
even are suggested by a small segment from ( jA), and also edges from Θ−1,1 to (iA),
i odd.
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Fig. 3: Graph of singular fibers at s = 0,∞, 1,−1 and torsion-sections

7.3 Two Fibrations

For the two fibrations to be considered we use the following factorizations of the
equation of the surface:

(X + Y)(XY + 1)Z + XY(Z − 1)2 = 0

(X + ZY)(XZ + Y) + (X + Y)(Y − 1)(X − 1)Z = 0.

7.3.1 Fibration of Parameter k

The parameter of the first one is k = X + Y. Eliminating for example X, we obtain
an equation of bidegree 2 in Y and Z; easily we have the equation

y2 − x
(
k2 − 2 k + 2

)
y = x (x− 1)

(
x− k2

)
(2)

with the birational transformation



Elliptic Fibrations on the Modular Surface Associated to Γ1(8) 177

Z =
y

k (x− 1)
, Y = − yk

−y + x2 − x
.

The singular fibers of this fibration are

I∗1 (k = 0), I12 (k =∞), I2 (k = 2), I1 (k = 4), I1 (k = ±2i).

The rank of the Mordell–Weil group is one. The point (x = 1, y = 0) is a non-torsion
point of height 4

3 ; the point (k, k) is of order 4, and its double is (0, 0).

7.3.2 Fibration of Parameter v

This fibration is obtained from the parameter v = X+ZY
Y−1 . Eliminating Y and using the

birational transformation

Z = −v(x− v2(v + 1))

y
, X + v =

Zx

v(Z − (v + 1))

we get the equation

y2 + (v + 1)2yx− v2(1 + 2v)y = (x− v)(x− v2)(x− v2 − v3). (3)

The singular fibers of this fibration are

I8 (v = 0), I10 (v =∞), I1 (v = v0).

where v0 ranges over roots of the polynomial t6 − 5t4 + 39t2 + 2. The Mordell–
Weil group is of rank two; the two points (0, v3), (v, 0) are generators of the
Mordell–Weil group (the determinant of the heights matrix is 1

10 ). The Mordell–Weil
torsion-group is 0.

7.4 Divisors

In this section we study the divisors of some functions. Using the elliptic fibration
(X, Y, Z) �→ Z = s we can compute the horizontal divisor of the following functions.
We denote ( f )h the horizontal divisor of f ; then we have

(X)h = −(0)− (2A) + (4A) + (6A) (X + s)h = −(0)− (2A) + 2(A)
(Y)h = −(0)− (6A) + (4A) + (2A) (Y + s)h = −(0)− (6A) + 2(7A)
(X − 1)h = −(0)− (2A) + (3A) + (7A) (X + 1

s )h = −(0)− (2A) + 2(5A)
(Y − 1)h = −(0)− (6A) + (A) + (5A) (Y + 1

s )h = −(0)− (6A) + 2(3A)
(X + Y)h = −(2A)− (6A) + 2(4A)
(X + sY)h = −(0)− (2A)− (6A) + (A) + (3A) + (4A).
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Proposition 6. The horizontal divisors of the 7 functions X, Y, X − 1, Y − 1, Y + s,
X + Y, X + sY generate the group of principal divisors with support in the 8-torsion
sections.

Proof. Let Λ the group of divisors of degree 0 with support in {(iA) , 1 ≤ i ≤ 8}.
If we write f1, f2, .. for the seven functions of the proposition, then the determinant
of the matrix mi, j with mi, j = ord(iA) f j with 1 ≤ j ≤ 7, 2 ≤ i ≤ 8 is equal to 8.
This shows the subgroup of Λ generated by divisors of functions fi is of index 8 in
Λ. Moreover the divisor

∑
i ki (iA) is principal iff

∑
i iki ≡ 0 mod 8. So, the subgroup

of principal divisors of Λ is generated by {i (A)− (iA)− (i− 1) (0) with 2 ≤ i ≤ 7}
and 8((A)− (0)). This last subgroup is also of index 8 in Λ and the two subgroup are
equal. $%

From this proposition we deduce the corollary used in [3].

Corollary 1. The 8-order automorphism σ8, of the surface Y2, leaving invariant the
fibration of parameter Z and defined by M �→ M−A on the generic fiber, is given by

σ8 : (X, Y, Z) �→
(

−Y + XZ

X + YZ
,

(Y + XZ) (1 + YZ)

(X + YZ) (Y + Z)
, Z

)

.

Proof. The image of X by σ8 is the unique function of horizontal divisor (7A) +
(5A) − (A) − (3A) and equal to 1 at (4A). Using the Proposition 6 we have
Xσ8 =

Z(Y−1)(X−1)(X+Y)
(X+YZ)2 = − Y+XZ

X+YZ . A similar argument gives the result for Y. We
can notice that

σ2
8 : (X, Y, Z) �→ (

1

Y
, X, Z).

Of course we can also compute the translation directly from a Weierstrass equation.
$%

We use the following notations: Div( f ) for the divisor of the function f on the
surface, ( f )0 for the divisor of the zeros of f and ( f )∞ for the divisor of the poles.

We get

Div(Z) =
∑7

i=0 Θ0,i −∑7
i=0 Θ∞,i

(Z − 1)0 =
∑3

i=0 Θ1,i (Z + 1)0 =
∑1

i=0 Θ−1,i.

Since X, Y, Z play the same role, the elliptic fibrations (X, Y, Z) �→ X and also
(X, Y, Z) �→ Y have the same property for the singular fibers: two singular fibers
of type I8 for X = 0,∞ and Y = 0,∞, one singular fiber of type I4 for X = 1, Y = 1.
Then we can represent on the graph the divisor of X, drawing two disjoint 8−gons
going throught (0), (2A) and (4A), (6A) and a disjoint 4−gon throught (3A), (7A).
We have

Div(X) = −(0)− Θ∞,0 − Θ∞,1 − Θ∞,2 − (2A)− Θ0,6 − Θ0,7 − Θ0,0

+(4A) + Θ∞,4 + Θ∞,5 + Θ∞,6 + (6A) + Θ0,2 + Θ0,3 + Θ0,4.

(X − 1)0 = (3A) + Θ1,3 + (7A) + Θ−1,1.
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A similar calculation for Y gives

Div(Y) = −(0)− Θ∞,0 − Θ∞,7 − Θ∞,6 − (6A)− Θ0,2 − Θ0,1 − Θ0,0

+(4A) + Θ∞,4 + Θ∞,3 + Θ∞,2 + (2A) + Θ0,6 + Θ0,5 + Θ0,4.

(Y − 1)0 = (A) + Θ1,1 + (5A) + Θ−1,1.

The fibration (X, Y, Z) �→ k = X + Y has singular fibers of type I∗1 , I12 at k = 0
and k = ∞, so we can write the divisor of X + Y. By permutation we have also the
divisors of Y + Z and X + Z

Div(X + Y) = −(2A)− Θ∞,2 − Θ∞,1 − Θ∞,0 − Θ∞,7 − Θ∞,6 − (6A)

−Θ0,6 − Θ0,7 − Θ0,0 − Θ0,1 − Θ0,2 + Θ∞,4 + Θ0,4 + 2(4A)

+2Θ1,0 + Θ1,1 + Θ1,2.

Div(X + Z) = −(0)− Θ∞,0 − Θ∞,7 − Θ∞,6 − Θ∞,5 − Θ∞,4 − Θ∞,3 − Θ∞,2

−(2A)− Θ0,6 − Θ0,7 − Θ0,0 + Θ1,1 + Θ−1,1 + 2(A)

+2Θ0,3 + Θ0,2 + Θ0,4.

Div(Y + Z) = −(0)− Θ∞,0 − Θ∞,1 − Θ∞,2 − Θ∞,3 − Θ∞,4 − Θ∞,5 − Θ∞,6

−(6A)− Θ0,0 − Θ0,1 − Θ0,2 + Θ1,3 + Θ−1,1 + 2(7A)

+2Θ0,5 + Θ0,4 + Θ0,6.

At last the fibration (X, Y, Z) �→ v = (X+ZY)
(Y−1) has two singular fibers of type I8, I12 at

v = 0 and v =∞; thus it follows

Div(
X + ZY

Y − 1
) = (3A) + Θ1,0 + Θ1,3 + 4A + Θ0,4 + Θ0,3 + Θ0,2 + Θ0,1

−(2A)− Θ∞,2 − Θ∞,1 − Θ∞,0 − Θ∞,7 − Θ∞,6 − Θ∞,5

−(5A)− Θ0,7 − Θ0,6.

Remark 4. We can show that the following twenty elements form a basis of the
Néron–Severi group: the eight torsion sections (nA) 0 ≤ n ≤ 7, Θ∞,i, 1 ≤ i ≤ 7,
Θ1, j 1 ≤ j ≤ 3, Θ−1,1, and the fibre. Just compute the Gram matrix using the graph
(Fig. 3). Its determinant is equal to 8. So, we can recover the divisors of the previous
functions by decomposition of others Θi, j in this basis.

8 Fibrations from the Modular Fibration

We give a first set of elliptic fibrations with elliptic parameters belonging to the
multiplicative group of functions coming from Proposition 6 plus Z and Z ± 1. The
first ones come from some easy linear combination of divisors of functions. The
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others, like t, come from the following remark. We can draw, on Fig. 3, two disjoint
subgraphs corresponding to singular fibers of the same fibration. We give all the
details only in the case of parameter t.

8.0.1 Fibration of Parameter a

This fibration is obtained with the parameter a = Z−1
X+Y . Using the factorisation

(Z + X) (X + Y) (X − 1) = X (YZ + X) (X + Y + Z − 1)

it is easier, to have a Weierstrass equation, to use a′ = (a + 1)−1 = X+Y
X+Y+Z−1 and to

eliminate Z. We do the birational transformation

X =
x(x−a′)

y Y = − y
x−a′ with inverse

x = −XY y = Y(XY + a′)

Returning to parameter a we get

y2 − (x− 1) y

(1 + a) a
= x(x− 1

1 + a
)2. (4)

The singular fibers of this fibration are

I8 (a = 0), I∗1 (a =∞), I6 (a = −1), I1 (a = a0),

where a0 ranges over roots of the polynomial 16X3 + 11X2 − 2X + 1.
The point (x = 1

1+a , y = 0) is of height 1
24 . The torsion-group of the Mordell–Weil

group is 0.

8.0.2 Fibration of Parameter d

This fibration is obtained with parameter d = XY which also is equal to −x
in the previous Weierstrass equation. Eliminating X and making the birational
transformation

y = − (d + 1) Y
(
d2 − x

)
, x = −ZYd (d + 1)

we get

y2 − 2d y x = x(x− d2)(x− d(d + 1)2). (5)

The singular fibers are

I∗2 (d = 0), I∗2 (d =∞), I2 (d = 1), I∗0 (d = −1).

The three points of abscisses 0, d + d2, d3 + d2 are two-torsion points. The point
(d2, 0) is of height 1.
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8.0.3 Fibration of Parameter p

This fibration is obtained with p = (XY+1)Z
X = V s

U which is also equal to x/d2 with
notation of the previous fibration. We start from the equation in U, V and eliminating
V and making the birational transformation

s =
xp(p + 1)

y + xp
, U =

x

p(p + 1)

we obtain
y2 = x(x− p)(x− p(p + 1)2). (6)

The singular fibers are

I∗2 (p = 0), I∗4 (p =∞), I2 (p = −2), I4 (p = −1).

The Mordell–Weil group is isomorphic to (Z/2Z)2.

8.0.4 Fibration of Parameter w

Using the factorisation of the equation of Y2

(Z + X) (X + Y) (X − 1) = X (YZ + X) (X + Y + Z − 1)

we put w = X + Y + Z− 1 = (X+Y)(X+Z)(X−1)
X(YZ+X) . Eliminating Z in the equation of Y2 and

doing the birational transformation

x = − (1− Y + wY) (1− X + wX) , y = − (w− 1) Xx

we obtain the equation

y2 + w2(x + 1)y = x(x + 1)(x + w2). (7)

The singular fibers are

I6 (w = 0), I12 (w =∞), I2 (w = 1), I2 (w = −1), I1 (w = ±2i
√

2).

The Mordell–Weil group is isomorphic to Z/6Z, generated by (−w2, 0).

8.0.5 Fibration of Parameter b

We put b = XY
Z . Eliminating Z in the equation of Y2 and using the birational

transformation

x = −b(Y + b)(X + b)

X
, y = −Yb(x− (b + 1)2)

X
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we obtain the equation

y2 + 2b(b + 1)xy + b2(b + 1)2y = x(x + b2)(x− (b + 1)2) (8)

or with z = y + b2x
z2 + 2bzx + b2(b + 1)2z = x3.

The singular fibers are

IV∗ (b = 0), IV∗ (b =∞), I6 (b = −1), I1 (b = b0),

with b0 ranges over the roots of the polynomial 27b2 + 46b+ 27. The Mordell–Weil
group is of rank 1, the point (x = −b2, y = 0) is of height 4

3 and the torsion-group is
of order 3.

8.0.6 Fibration of Parameter r

Let r = (X+Z)(Y+Z)
ZX , r is also equal to −x

b2 with x from (8). Eliminating Y in the equation
of Y2 and doing the birational transformation.

x = − (X(r − 1)− Z) r

Z
, y = −X

(
x− r3

)
x (r − 1)

−r2 + x

we obtain the equation

y2 + 2(r − 1)xy = x(x− 1)(x− r3). (9)

The singular fibers are

I∗2 (r = 0), I∗6 (r =∞), I2 (r = 1), I1 (r = ±2i).

The Mordell–Weil group is of rank 1, the point (1, 0) is of height 1. The torsion
group is of order 2, generated by (0, 0).

8.0.7 Fibration of Parameter e

Let e = YX
(Y+Z)Z , e is also equal to − x

r2 , where x is from (9). Eliminating Y from the
equation of Y2 and doing the birational transformation

y =
− (2 e2 + e + x

)
(e (x− 2 e− 1) X − x (e + 1))

(2 e + 1) (e + 1)
, x =

−e (2 e + 1) (−Ze + X)

X + Z

we obtain the equation

y2 = x(x2 − e2(e− 1)x + e3(2e + 1)). (10)
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The singular fibers are

III∗ (e = 0), I∗4 (e =∞), I2 (e = −1), I2 (e = − 1
2 ), I1 (e = 4).

The Mordell–Weil group is of rank 1, the point (e3, e3+e4) is of height 1. The torsion
group is of order 2, generated by (0, 0).

8.0.8 Fibration of Parameter f

Let f = − Y(X+Z)2(Z+Y)
Z3X , f is also equal to x where x is from (9). We start from (9)

and use the transformation

y =
V ′

x(x− 1)
, r = − U ′

x(x− 1)

we obtain the equation

V ′2 − 2 f V ′U ′ − 2 f 2( f − 1)V ′ = U ′3 + f 4( f − 1)3. (11)

The singular fibers are

III∗ ( f = 0), II∗ ( f =∞), I4 ( f = 1), I1 ( f = 32
27 ).

The Mordell–Weil group is (0).

8.0.9 Fibration of Parameter g

Let g = XY
Z2 . Eliminating Y in the equation of Y2 and using the birational transfor-

mation

y = −
(
g2 − 1

) (−gXZ − gZ2 − X2 + gXZ2
)

g

Z (X + Z)2
, x = −g (g + 1) (Zg + X)

X + Z

we obtain the equation

y2 = x3 + 4g2x2 + g3(g + 1)2x. (12)

The singular fibers are

III∗ (g = 0), III∗ (g =∞), I4 (g = −1), I2 (g = 1).

The Mordell–Weil group is of order 2.
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8.0.10 Fibration of Parameter h

Let h = (Y+Z)YX2

Z3(X+Z) , we can see that h = x
(g+1) , with x from (12). We start from (12)

and if y = (g + 1)z we obtain a quartic equation in z and g with rational points
g = −1, z = ±2h. Using standard transformation we obtain

y′2 + (h− 1

h
− 8)x′y′ − 96

h
y′ =

(

x′ − 1

4
(h2 +

1

h2
) + 4h +

8

h
+

1

2

) (

x′2 − 256

h

)

or also

y2 = x3 − 25

3
x + h +

1

h
− 196

27
. (13)

The singular fibers are

II∗ (h = 0), II∗ (h =∞), I2 (h = −1), I1 (h = h0),

where h0 ranges over the roots of the polynomial 27h2 − 446h + 27. The Mordell–
Weil group is of rank 1 without torsion.

The point ( 1
16 (h2 + 1

h2 ) + h + 1
h +

29
24 , 1

64
(h−1)(h+1)(h4+24 h3+126 h2+24 h+1)

h3 ) is of height
4. We recover Elkies’ result [9] cited in the introduction.

8.0.11 Fibration of Parameter t

On the graph (Fig. 3), we can see two singular fibers of type I∗4 of a new fibration
(Fig. 4). They correspond to two divisors D1 and D2 with

D1 = Θ∞,4 + (3A) + 2Θ∞,3 + 2Θ∞,2 + 2Θ∞,1 + 2Θ∞,0 + 2(0) + Θ0,0 + Θ1,0

D2 = (7A) + Θ0,6 + 2Θ0,5 + 2Θ0,4 + 2Θ0,3 + 2Θ0,2 + 2(6A) + Θ∞,6 + Θ1,2.

We look for a parameter of the new fibration as a function t with divisor D1 − D2.
Let Es and Ts be the generic fiber and the trivial lattice of the fibration of param-

eter s. For this fibration we write Di = δi + Δi with i = 1, 2 and δi an horizontal
divisor and Δi a vertical divisor. More precisely we have δ1 = (3A) + 2(0) and
δ2 = (7A) + 2(6A), and the classes of δi and Di are equal mod Ts. If K = C(s) recall
the isomorphism: Es(K) ∼ NS (Y2)/Ts. So the class of δ1 − δ2 is 0 in NS (Y2)/Ts;
thus there is a function t0 =

X2(Y+Z)
(X−1)(X+Y) with divisor δ1−δ2 mod Ts. We can choose

for t = t0Za(Z − 1)b where a and b are integer calculated using divisors of previous
section. We find a = 0, b = 1 and we can take t = X2(Y+Z)(Z−1)

(X−1)(X+Y) . We have also

t = −X
Y
(
Z2 − Z + YZ + 1

)
Z

(Z − 1) (YZ + 1)
− Z2 (Y + 1)

(Z − 1) (YZ + 1)
.
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Fig. 4: Two singular fiber I∗4

Eliminating X in the equation of Y2 and then doing the birational transformation

Z =
W

WT + 1
, Y =

−(WT 2 + T + 1)

WT + 1

of inverse

T =
Y + 1

Z − 1
, W =

−Z(Z − 1)

YZ + 1

we obtain an equation of degree 2 in T . After some classical transformation we get
a quartic with a rational point corresponding to (T = −1 + t, W = 0) and then using
a standard transformation we obtain

y2 = x3 + t(t2 + 1 + 4t)x2 + t4 x. (14)

The singular fibers are

I∗4 (t = 0), I∗4 (t =∞), I2 (t = −1), I1 (t = t0),

where t0 ranges over roots of the polynomial Z2 + 6Z + 1. The Mordell–Weil group
is of rank one and the point (−t3, 2t4) is of height 1. The torsion group is of order 2.
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8.0.12 Fibration of Parameter l

Let l = Z(YZ+X)
X(1+YZ) . Eliminating Y in the equation of Y2 and using the variable W = Z+X

X−1 ,
we have an equation of bidegree 2 in W and Z; easily we obtain

y2 − yx− 2l3y = (x + l3)(x + l2)(x− l + l3). (15)

The singular fibers are

I10 (l = 0), I∗3 (l =∞), I1 (l = l0),

where l0 ranges over roots of the polynomial 16 x5−32 x4−24 x3−23 x2+12 x−2.
The Mordell–Weil group is of rank 2, without torsion; the two points (−l3, 0) and
(−l2, 0) are independent and the determinant of the matrix of heights is equal to 1

5 .

9 A Second Set of Fibrations: Gluing and Breaking

9.1 Classical Examples

In the following we give fibrations obtained using Elkies’ 2-neighbor method, given
in [7] page 11 and explained in [13] Appendix A. If we have two fibrations with
fiber F and F ′ satisfying F · F ′ = 2 the authors explain how can be obtained a pa-
rameter from a Weierstrass equation of one fibration. Decomposing F ′ into vertical
and horizontal component, F ′ = F ′h + F ′v they use F ′h to construct a function on the
generic fiber.

9.1.1 Fibration of Parameter o

Starting with a fibration with two singular fibers of type II∗ and the (0) section we
obtain a fibration with a singular fiber of type I∗12. Starting from (13) we take x as
new parameter. For simplicity, let o = x + 5

3 , we get

ỹ2 = x̃3 + (o3 − 5o2 + 2)x̃2 + x̃. (16)

The singular fibers are

I2 (o = 0), I∗12 (o =∞), I1 (o = 1), I1 (o = 5), I1 (o = o0),

where o0 range overs roots of x2−4x−4. The Mordell–Weil group is of rank 1, the
torsion group is of order 2.
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The point

(
1

16
(o− 4)2 (o− 2)2 ,

1

64
(o− 4) (o− 2)

(
o4 − 4 o3 − 20 o2 + 96 o− 80

)
)

is of height 4.

9.1.2 Fibration of Parameter q

We start with a fibration with singular fibers of type II∗ and III∗, join them with the
zero-section and obtain a singular fiber of type I∗10 of a new fibration. We transform
(11) to obtain

y′2 = x′3 + (
5

3
− 2

f
)x′ + f +

5

3 f
− 70

27
.

We take x′ as the parameter of the new fibration; more precisely, for simplicity, let
q = x′ − 1

3 . We obtain

y2 = x3 + (q3 + q2 + 2q− 2)x2 + (1− 2q)x. (17)

The singular fibers are

I4 (q = 0), I∗10 (q =∞), I2 (q = 1
2 ), I1 (q = q0),

where q0 ranges over roots of X2 + 2X + 5. The Mordell–Weil group is of order 2.

9.2 Fibration with a Singular Fiber of Type In, n Large

We start with a fibration with two fibers I∗n and I∗m and a two-torsion section. Gluing
them, we can construct a fibration with a singular fiber of type In+m+8. The parameter
will be y

x in a good model of the first fibration. We can also start from a fibration
with two singular fibers of type I∗n and I2 and a two-torsion section, join them with
the zero-section and obtain a new fibration with a singular fiber of type In+6.

9.2.1 Fibration of Parameter m

We start from the fibration with parameter t. With the two-torsion section and the
two singular fibers of type I∗4 , we can form a singular fiber of type I16 of a new
fibration (Fig. 5).

From (14) we get

y′2 = x′3 + (t +
1

t
+ 4)x′2 + x′.
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Fig. 5: I∗4 , I∗4 → I16

Let m = y′
x′ , we obtain

y2 + (m− 2)(m + 2)yx = x(x− 1)2. (18)

The singular fibers are

I2 (m = 0), I16 (m =∞), I2 (m = ±2), I1 (m = ±2
√

2).

The Mordell–Weil group is cyclic of order 4 generated by (x = 1, y = 0).

9.2.2 Fibration of Parameter n

With a similar method, we can start from a fibration with two singular fibers of type
I∗2 and I∗6 , a two-torsion section and join them to have a fiber of type I16 (Fig. 6).

Fig. 6: I∗6 , I∗2 → I16

From (9) we obtain

y′2 = x′3 − (r − 1 +
2

r
)x′2 +

x′

r
.

Let n = y′
x′ . The Weierstrass equation is

y2 + (n2 − 1)yx− y = x3 − 2x2. (19)

The singular fibers are

I2 (n = 0), I16 (n =∞), I1 (n = n0),
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where n0 ranges over roots of the polynomial 2x6−9x4−17x2+125. The Mordell–
Weil group is of rank 2. The determinant of the matrix of heights of the two points
(1± n, 1) is 1

4 .

9.2.3 Fibration of Parameter j

Instead of the two-torsion section we can use the section of infinite order (−t,−2t)
in the fibration of parameter t (Fig. 7).

Fig. 7: 2I∗4 → I12

In (14), let U ′ = x + t, V ′ = y + 2t and take the parameter V ′
U′ . For simplification

let j = V ′
U′ − 2 = y−2x

x+t ; the new fibration obtained has a 3-torsion point which can be
put in (0, 0). So it follows

y2 − ( j2 + 4 j)x y + j2y = x3. (20)

The singular fibers are

IV∗ ( j = 0), I12 ( j =∞), I2 ( j = −1), I1 ( j = j0),

where j0 ranges over roots of the polynomial (x2 + 10x + 27). The Mordell–Weil
group is isomorphic to Z/3Z.

9.2.4 Fibration of Parameter c

We start from the fibration of parameter o with (16). For o = 0 we have a singular
fiber of type I2, the singular point of the bad reduction is (x = 1, y = 0) so we put
x = 1 + u and obtain the equation
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Fig. 8: I∗12, I2 → I18

y2 = u3 + (−1− 5o2 + o3)u2 + 2o2(o− 5)u− o2(o− 5).

The two-torsion section cut the singular fiber I2 on the zero component, as shown
on Fig. 8.

Let c = y
ox with y, x from (16), we have easily the Weierstrass equation of the

fibration. There is a 3-torsion point and after some translation we can suppose the
three-torsion point is (0, 0); we get

y2 + (c2 + 5)yx + y = x3. (21)

The singular fibers are

I18 (c =∞) I1 (c = c0),

where c0 ranges over roots of the polynomial (x2 + 2)(x2 + x + 7)(x2 − x + 7). The
rank of the Mordell–Weil group is one. The height of (−1

4 (c4+c2+1), 1
8 (c2−c+1)3)

is equal to 4.

9.3 Fibrations with Singular Fibers of Type I∗n

In this paragraph we obtain new fibrations by gluing two fibers of type I∗p and I∗q to
obtain, with the zero section, a singular fiber of type I∗p+q+4 or I∗p+4.

9.3.1 Fibration of Parameter u

We start from the fibration with parameter t. With the two singular fibers of type I∗4 ,
and the 0-section, we can form a singular fiber of type I∗8 of a new fibration (Fig. 9).

From (14), it follows

y2

x2t2
=

x

t2
+ t +

t2

x
+

1

t
+ 4.



Elliptic Fibrations on the Modular Surface Associated to Γ1(8) 191

Fig. 9: 2I∗4 → I∗8

Taking u = x
t2 + t as the new parameter, we obtain

y′2 = x′3 + u(u2 + 4u + 2)x′2 + u2x′. (22)

The singular fibers are

I∗1 (u = 0), I∗8 (u =∞), I2 (u = −2), I1 (u = −4).

The Mordell–Weil group is of order 2.

9.3.2 Fibration of Parameter i

We start from the fibration of parameter u and from (22). With the two singular
fibers of type I∗8 and I∗1 , and the 0 section, we can form a singular fiber of type I∗13
of a new fibration.We seek for a parameter of the form x

u2 + ku, with k chosen to
have a quartic equation. We see that k = 1 is a good choice so the new parameter is
i = x

u2 + u and a Weierstrass equation is

y2 = x3 +
(
i3 + 4 i2 + 2 i

)
x2 +

(−2 i2 − 8 i− 2
)

x + i + 4. (23)

The singular fibers are

I∗13 (i =∞), I2 (i = − 5
2 ), I1 (i = i0),

where i0 ranges over roots of the polynomial 4x3+11x2−8x+16. The Mordell–Weil
group is 0.
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9.4 Breaking

In this paragraph we give a fibration obtained by breaking a singular fiber I18 and
using the three-torsion points as for the fibration of parameter t.

9.4.1 Fibration of Parameter ψ

We start with the fibration (21) of parameter c and 3-torsion sections. We repre-
sent the graph of the singular fiber I18, the zero section and two 3-torsion sections
(Fig. 10). On this graph we can draw two singular fibers III∗ and I∗6 . The function x
of (21) has the horizontal divisor −2(0)+ P + (−P) if P denotes the 3-torsion point
and we can take it as the parameter ψ of the new fibration. We get the equation

y2 = x3 − 5 x2ψ2 − ψ x2 − ψ5x. (24)

Fig. 10: A singular fiber I18 → III∗, I∗6

The singular fibers are

III∗ (ψ = 0), I∗6 (ψ =∞), I1 (ψ = − 1
4 ), I1 (ψ = ψ0),

with ψ0 range overs roots of the polynomial x2 + 6x + 1. The Mordell–Weil group
is of rank 1. The height of the point

(1/4
(
ψ2 + 3 ψ + 1

)2
,−1/8

(
ψ2 + 3 ψ + 1

) (
ψ4 + 6 ψ3 + ψ2 − 4 ψ− 1

)
)

is 4. The torsion-group is of order 2.

10 Last Set

From the first set of fibrations we see that not all the components of singular fibers
defined on Q appear on the graph of the Fig. 3. We have to introduce some of them
to construct easily the last fibrations. For example, we start with the fibration of
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Fig. 11: Fibration of parameter p: three singular fibers

parameter p (6). Using the Fig. 3 we see only three components of the singular fiber
I4 for p = −1 i.e. Θ0,1, Θ0,2, Θ0,3. The fourth is the rational curve named Θp,−1,3

parametrized by

X = 4
(w + 1) w

1 + 3 w2
, Y = 1/4

1 + 3 w2

(−1 + w) w
, Z = −2

(−1 + w) (w + 1)

1 + 3 w2
.

The four (rational) curves Θ0,0, Θ0,4, (A), (3A) are sections of the fibration of param-
eter p which cut the singular fibers following the previous figure.

10.1 From Fibration of Parameter p

10.1.1 Fibration of Parameter δ

On the Fig. 11 we can see the divisor Δ,

Δ = 6Θ∞,0 + 5Θ∞,7 + 4Θ∞,6 + 3Θ∞,5 + 2Θ∞,4 + Θ∞,3 + 3Θ∞,1 + 4(0) + 2Θ0,0.
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The divisor Δ corresponds to a fiber of type II∗. Using (6) and the previous
remark, we can calculate the divisors of p, p + 1 and U p(p + 1). The poles of
δ := U p(p + 1) give the divisor Δ. Note δ is equal to the x of (6). From the ze-
ros of δ we get a fiber of type I∗5

2A + 2Θ1,2 + Θ1,3 + Θ1,1 + 2
6∑

3

Θ0,i + Θ0,2 + Θp,−1,3.

After an easy calculation we get a Weierstrass equation of the fibration

y2 = x3 + δ (1 + 4 δ) x2 + 2 δ4x + δ7. (25)

The singular fibers are

I∗5 (δ = 0), II∗ (δ =∞), I2 (δ = −2), I1 (δ = − 4
27 ).

The Mordell–Weil group is equal to 0.

10.1.2 Fibration of Parameter π

On the previous figure (Fig. 11) we can see the singular fiber

Θ∞,1 + Θ∞,7 + 2Θ∞,0 + 2(0) + 2Θ0,0 + 2Θ0,7 + 2Θ0,6 + (2A) + 2Θ1,2 + Θ1,1 + Θ1,3.

Using the previous calculation for δ we see that it corresponds to a fibration of
parameter π = U(p+1)

p . The zeros of π correspond to a fiber of type I∗3 . After an easy
calculation we have a Weierstrass equation of the fibration

y2 = x3 + π(π2 − 2π− 2)x2 + π2(2π + 1)x. (26)

The singular fibers are

I∗3 (π = 0), I∗6 (π =∞), I2 (π = − 1
2 ), I1 (π = 4).

The Mordell–Weil group is isomorphic to Z/2Z.

10.1.3 Fibration of Parameter μ

From the fibration of parameter p we can also join the I∗4 and I∗2 fibers. Let μ =
y

p(x−p(p+1)2 ) , with y, x from (6). After an easy calculation we obtain a Weierstrass
equation of the fibration of parameter μ

y2 + μ2(x− 1)y = x(x− μ2)2. (27)
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The singular fibers are

IV∗ (μ = 0), I10 (μ =∞), I2 (μ = ±1), I1 (μ = μ0),

where μ0 range overs roots of the polynomial 2x2 − 27.
The rank of the Mordell–Weil group is 1, the torsion group is 0. The height of point
(μ2, 0) is equal to 1

15 .

Remark 5. This fibration can also be obtained with the method of the first set and
the parameter X2(Y−1)(Z−1)(YZ+X)

(X−1)(X+Z)(X+Y) or with parameter (Us−1)s
s−1 .

10.1.4 Fibration of Parameter α

Let α = y
p(x−p) . After an easy calculation we have a Weierstrass equation of the

fibration of parameter α

y2 + (α2 + 2)yx− α2y = x2(x− 1). (28)

The singular fibers are

I∗0 (α = 0), I14 (α =∞), I1 (α = α0),

where α0 range overs roots of the polynomial 2x4 + 13x2 + 64.
The Mordell–Weil group is of rank one, the torsion group is 0. The height of (0, 0)
is 1

7 .

10.2 From Fibration of Parameter δ

We redraw the graph of the components of the singular fibers and sections of the
fibration of parameter δ, and look for subgraphs.
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10.2.1 Fibration of Parameter β

We can see the subgraph corresponding to a singular fiber of type I∗2 .

To get a parameter β corresponding to this fibration we do the transformation
x = u + δ3 in (25) and obtain a new equation

y2 = u3 + δ (δ + 1) (3 δ + 1) u2 + δ4 (δ + 2) (3 δ + 2) u + δ7 (δ + 2)2 .

The point (0, 0) is singular mod δ and mod δ + 2. By calculation we see that
β = u

δ2(δ+2) fits. We have a Weierstrass equation

y2 = x3 + 2β2(β− 1)x2 + β3(β− 1)2x. (29)

The Mordell–Weil group is of order 2. The singular fibers are

III∗ (β = 0), I∗2 (β =∞), I∗1 (β = 1).

10.2.2 Fibration of Parameter φ

We can see the subgraph corresponding to a singular fiber of type I∗7 .

As previously, we start with the equation in y, u and seek for a parameter of the form
φ′ = u

δ2(δ+2) +
a′
δ

. We choose a′ to get an equation y2 = P(u) with P of degree ≤ 4;

we find a = 1
2 . Let φ = φ′ + 1, a Weierstrass equation is then

y2 = x3 + 2 φ2 (4 φ− 7) x2 − 4 φ3
(−3 φ + 8 φ2 − 4

)
x + 8 (3 + 4 φ) φ6. (30)
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The singular fibers are

III∗ (φ = 0), I∗7 (φ =∞), I1 (φ = φ0),

where φ0 range overs roots of the polynomial 8x2 − 13x + 16. The Mordell–Weil
group is 0.

The next table gives the correspondence between parameters and elliptic
fibrations.

Parameter Singular fibers Type of reductible fibers Rank Torsion

1− s 2I8, I4, I2, 2I1 A1, A3, A7, A7 0 8
2− k I∗1 , I12, I2, 3I1 A11, A1, D5 1 4
3− v I8, I10, 6I1 A7, A9 2 0
4− a I8, I∗1 , I6, 3I1 D5, A5, A7 1 0
5− d 2I∗2 , I2, I∗0 A1, D4, 2D6 1 2× 2
6− p I∗2 , I∗4 , I2, I4 A1, D6, A3, D8 0 2× 2
7− w I6, I12, 2I2, 2I1 A5, A1, A1A11 0 6
8− b 2IV∗, I6, 2I1 A5, E6, E6 1 3
9− r I∗6 , I∗2 , I2, 2I1 D6, A1, D10 1 0

10− e III∗, I∗4 , 2I2, I1 A1, A1, D8, E7 1 2
11− f III∗, II∗, I4, I1 E7, A3, E8 0 0
12− g 2III∗, I4, I2 E7, E7, A1, A3 0 2
13− h 2II∗, I2, 2I1 A1, E8, E8 1 0
14− t 2I∗4 , I2, 2I1 A1, D8, D8 1 2
15− l I10, I∗3 , 5I1 A9, D7 2 0
16− o I∗12, I2, 4I1 A1, D16 1 2
17− q I∗10, I4, I2, 2I1 A3, A1, D14 0 2
18− m I16, 3I2, 2I1 A1, A1, A1, A15 0 4
19− n I16, I2, 6I1 A1, A15 2 0
20− j IV∗, I12, I2, 2I1 A11, E6, A1 0 3
21− c I18, 6I1 A17 1 3
22− u I∗8 , I∗1 , I2, I1 A1, D5, D12 0 2
23− i I∗13, I2, 3I1 A1D17 0 0
24− ψ III∗, I∗6 , 3I1 E7D10 1 2
25− δ I∗5 , II∗, I2, I1 E8, A1D9 0 0
26− π I∗3 , I∗6 , I2, I1 A1, D10, D7 0 2
27− μ IV∗, I10, 2I2, 2I1 A9, A1, A1, E6 1 0
28− α I∗0 , I14, 4I1 D4, A13 1 0
29− β III∗, I∗2 , I∗1 E7, D6, D5 0 2
30− φ III∗, I∗7 , 2I1 E7, D11 0 0
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15. A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst.

Hautes Études Sci. Publ. Math. 21, 5–128 (1964)
16. H.-V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1. J.

Number Theor. 5, 142–178 (1973)
17. V. Nikulin, Integral symmetric bilinear forms and some of their applications. Math. USSR Izv.

Math. 14, 103–167 (1980)
18. K.-I. Nishiyama, The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups.

Jpn. J. Math. 22, 293–347 (1996)
19. C. Peters, J. Stienstra, A pencil of K3-surfaces related to Apéry’s recurrence for ζ(3) and
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Abstract We give a number of examples of an isomorphism between two types of
moduli problems. The first classifies elliptic surfaces over the projective line with
five specified singular fibers, of which four are fixed and one gives the parameter;
the second classifies K3 surfaces with a specified isogeny to an abelian surface with
quaternionic multiplication.
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1 Introduction

In this article we will write down explicit families of complex K3 surfaces associ-
ated with universal families of abelian varieties of quaternionic multiplication (QM)
type. One can view our results as a two-dimensional analog of the identifications
of various families of elliptic curves as universal families over modular curves. For
example the Legendre family
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can be identified as a universal family of elliptic curves with certain level structure,
intermediate between level 2 and level 4, over a modular curve isomorphic to Y(2) =
P1 \ {0, 1,∞} with coordinate λ.

The interest in such families, both in the 1- and the higher-dimensional cases
comes from several sources. One is counting points modulo primes: such exam-
ples are QM-modular families, and thus the number of rational points of the total
space modulo primes can be expressed in terms of Fourier coefficients of modular
forms [12]. In addition, if we fix a prime p, the number of points modulo p on each
fiber can be explicitly described as well: see [19, Chap. IV.4], [11] for the Legendre
family, where the results are of interest in cryptography. These results were vastly
generalized by Dwork: see e.g. [22]. A completely different place where such fam-
ilies occur is in irrationality proofs of numbers such as ζ(2) and ζ(3) (see [6, 7]).
Physicists have also studied such families of Calabi–Yau manifolds in connection
with mirror symmetry and related phenomena [16].

As is well known, the moduli space of abelian varieties with given polarization,
level, and endomorphism structure is a quasi-projective varieties, and if the level
structure is fine enough there is a universal family over it. Over C such families can
be described via transcendental means (for all this see e.g. [35] or [13]). However,
a projective construction is hard, partly because the theta functions give an embed-
ding into a projective space of a very high-dimension [26–28]. In this respect the
1-dimensional case is misleading: for example, an algorithm of Tate constructs the
universal family over Y1(N) (see [23]) in Weierstrass form, but in the higher dimen-
sional cases no examples seem to be known.

The situation improves if we restrict to the (principally polarized) two-
dimensional case and content ourselves with the universal family of Kummer
surfaces A/ 〈±1〉 of the relevant abelian varieties. For one thing, a universal fam-
ily exists as soon as full 2-level structure is added. In addition, the theta functions
embed the Kummer surfaces as quartics in P3. This poses a problem for Shimura
curves associated to non-split rational quaternion algebras, since they are compact
and hence there is no easy way to construct their associated theta functions. One
approach to the problem is through a nice form of the equation for the universal
family over the resulting Siegel modular threefold S (2) ([39], see also [4]). If endo-
morphisms are added to the moduli problem one gets Hilbert modular surfaces or
Shimura curves mapping into S (2) and the universal Kummer family can be pulled
back to them. In addition, a variant of this method (using a construction of Humbert)
was used in [20] to construct genus 2 curves whose jacobians have for endomor-
phisms a maximal order in the rational quaternion algebras of (reduced) discrimi-
nants 6 and 10. However even the Kummer surfaces get more and more complicated
to write down, rendering the equations less useful.

Our approach here extends another approach found in [4], where it was proved
that the Kummer variety of a QM abelian surface (with multiplication by a maximal
order in a rational quaternion algebra) admits a special elliptic fibration when the
quaternion algebra has discriminant 6 or 15. More precisely, Besser takes specific
elliptic surfaces over P1 with four singular fibers, and makes a quadratic twist of
them at one of the singular fibers and a moving non-singular fiber. Such a description
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appears particularly useful in connection with certain “modular” threefolds: com-
pare e.g. [15, 16] where examples related to the split quaternion algebra Mat2×2(Q)
are discussed. See also the recent [38].

In this work we give results of three related kinds. Firstly, we extend Besser’s
result by showing that in eleven cases (given below in Table 1), each Kummer sur-
face of a specific QM type is isogenous to a K3 surface with an explicit elliptic
fibration. Of these eleven cases, two are already in [4], and the isogeny is in fact
an isomorphism. In the other nine cases the isogeny is not an isomorphism, but in
eight of them (all except case 4 in Table 1) we determine the isogeny up to an iso-
morphism. Secondly, our elliptically fibered K3 surfaces arise, as in Besser’s case,
by making a quadratic twist of a fixed elliptic fibration over P1 with four singular
fibers (and a section). In [21] Herfurtner classified all such elliptic families. The
twist corresponds to a double cover which is ramified at two points: one point above
which there is a singular fiber and another point above which the fiber is regular.
This identifies the base space of the resulting K3 families with the base space of
the fixed elliptic fibration, or sometimes with a simple quotient of it. The moduli
interpretation of Shimura curves implies that this last base space (always a projec-
tive line) is therefore related via some correspondence to a Shimura curve. An issue
left open in [4], was to determine this correspondence explicitly. In fact we prove in
all 11 cases that the P1 base of our family is canonically an explicit Shimura curve.
Thirdly, in all but case 4 in Table 1 we actually prove an isomorphism of families
even with some additional level structure.

Our method consists of three steps: we first rigidify the moduli problems by
adding level structure on the universal QM side, and going to a certain monodromy
cover in the elliptic fibration side. Next we use Morisson’s results on Nikulin
involutions and Shioda–Inose structures [25] and Nikulin’s techniques on discrimi-
nant forms to show that the resulting rigidifications are isomorphic. Lastly, we take
appropriate quotients to prove that the original parameter spaces are isomorphic.
Ultimately our results are based on the Piatečki–Shapiro–Shafarevich Torelli the-
orem for K3 surfaces (see e.g. [1]), and on Nikulin’s detailed study (see [30]) of
discriminant forms.

The merit of our approach is twofold. Firstly, the equations we give are ex-
tremely simple. This renders the geometry transparent and helps keep calcula-
tions easy. Even more interestingly, our method establishes the isomorphism of
two moduli problems which a-priori are unrelated: abelian surfaces with a specific
QM type, and specific elliptic fibrations. This isomorphism comes with an explicit
functorial correspondence between the universal families, even with some auxiliary
level structure. Such examples are rare. For instance, there exists a unique genus 3
curve with 168 automorphism. This curve classifies generalized elliptic curves with
7-level structure, but it also classifies certain higher dimensional abelian varieties
by virtue of its also being a compact Shimura curve (see [35, 3.18–19]). But in this
case a relationship between the corresponding classified objects, elliptic curves with
a level 7 structure and these higher dimensional abelian varieties is not even known
to exist.

In future work we will discuss the Picard–Fuchs equations associated with our
families. These are prominent in the applications to Number Theory, cryptography,
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and Physics. In particular, we will compute the Picard–Fuchs equations both for
the family of K3 surfaces and for the family of Kummer surfaces over the relevant
Shimura curve. These computations are particularly easy and transparent for our
families because of the simple form in which they are given. They show that the
parameter spaces are isomorphic not merely as genus 0 Riemann surfaces with four
marked points, but also as parameter spaces for appropriate variations of Hodge
structures. This provides independent verification for the computations in this work.

All in all, our work highlights the power of the Torelli theorem for K3 surfaces
combined with Nikulin’s technique of discriminant forms, but it also shows its lim-
itations. It enables us to prove the existence of isomorphisms of moduli spaces and
universal families without actually exhibiting them. In fact, our moderate efforts
to exhibit the isomorphisms of corresponding classified surfaces explicitly were
unsuccessful. (In contrast, there are a few cases in Herfurtner’s list which give rise,
by the same quadratic twist construction, to the split quaternion algebra, and here
matters can be made explicit.) Also, we only prove that our models are isomorphic
over C and not over Q as one would have preferred. Here one could hope to pass to
an isomorphism overQ, for example by studying the reduction modulo a few primes
(for a computation of this type see eg [37, Sect. 5]), but we have not done this. For
a different approach see [18].

We thank Ron Donagi for a helpful suggestion concerning isogenies of K3 sur-
faces and to the referee for a careful reading of the manuscript and for making many
valuable corrections and suggestions. In particular, the references to [32] are due
to the referee. This research was supported by a joint grant from the Israel Science
Foundation.

2 K3 Surfaces with Picard Number 19 and Twists
of Elliptic Surfaces

In this section we explain the method for obtaining our examples: families of twists
of elliptic surfaces. Relevant facts about rational quaternion algebras used in this
section and in the rest of this work can be found in.

2.1 Lattices

We recall a few basic notions on lattices. A lattice is a finite rank Z-module with an
integral valued non-degenerate symmetric bilinear form. An isomorphism of lattices
is just a bijective isometry. The discriminant disc(L) of a lattice L is the absolute
value of the determinant of a representing matrix for the form with respect to any Z
basis. A lattice is even if the associated quadratic form takes only even value. If L
is a lattice and 0 � n ∈ Z, we denote by L[n] the lattice with the same underlying
module and with form multiplied by n. For a positive n we also write Ln for the
orthogonal direct sum of L with itself n times.
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The lattices L and T are isogenous if there exists a linear isomorphism of L⊗ Q
with T ⊗Q which is compatible with the respective bilinear forms up to a scalar.

Certain special lattices will occur. The lattice Ei for i = 6, 7, 8 are the even pos-
itive definite lattices associated with Dynkin diagrams Ẽi (see [1, Sect. I.2]). The
hyperbolic plane U has generators e, f with e2 = f 2 = 0 and e × f = 1. Letting
s = f − e we see that U is also generated by e and s with e× s = 1 and s2 = −2.

Finally, we recall that if X is a compact complex surface, then the second coho-
mology group H2(X) := H2(X,Z) modulo torsion, together with the bilinear form
furnished by the cup product, is a lattice. If X is algebraic, the Néron–Severi lattice
of H2(X) is a sublattice denoted NS(X). Its orthogonal complement is the transcen-
dental lattice T (X).

2.2 Elliptic Surfaces

An elliptic surface, always considered over P1, is a smooth and connected compact
complex algebraic surface E, together with a surjective morphism π : E → P1, such
that the generic fiber is a curve of genus 1. We will always assume that the fibration
is relatively minimal and has a given section, denoted 0.

For all but a finite number of points s ∈ P1, the fiber Es = π−1(s) is an elliptic
curve. The singular locus Σ = Σ(E) of the fibration is the (finite) subset of P1 over
which the fibers are singular (namely π is not everywhere smooth). Kodaira [24]
classified all possible types of singular fibers (see also [1, Chap. V.7]). All but Ko-
daira’s types I1 and II consist of a configuration of smooth rational curves, each one
with self intersection −2. For such a type t we denote by Lt the lattice spanned by
all such projective lines which do not intersect the 0-section with the intersection
pairing. Types which do not consist of smooth rational curves are irreducible and
their associated lattices are trivial by definition.

Following [4, p. 284] we will make the following

Definition 1. The type of an elliptic fibration is the collection of Kodaira types of
singular fibers, counted with multiplicity, except that we do not distinguish between
the following pairs of Kodaira types: I1 and II, I2 and III, I3 and IV .

The reason for this definition will be seen in Remark 4 below. We note that unlike
loc. cit. we do not neglect I1 fibers for clarity. Since we will need sometimes to refer
to the type as a collection of Kodaira types we will call this collection the strong
type of the fibration.

Definition 2. We denote by HT the moduli space of elliptic fibrations of type T
(taken up to isomorphism as fibrations over P1).

We will see later how to construct this moduli space in the cases we consider.
Elliptic surfaces are completely determined by two invariants. The functional

invariant is the meromorphic function J(s) giving the J-invariant of each fiber Es.
The homological invariant is the local system of the first homology groups on
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P1 − Σ(E). It can be interpreted as an SL2(Z)-valued representation of the funda-
mental group π1(P1 − Σ). It is well known, and immediate from the list of local
monodromies (ibid), that the associated projective representation is already deter-
mined by the functional invariant.

A theorem of Shioda [36, Theorem 1.1] describes the Néron–Severi lattice of an
elliptic surface. We will use the following version of Shioda’s result.

Proposition 1. For an elliptic fibration π : E → C over a curve C (as always, with
a section) the natural map LT ⊕U → NS(E) is an injective isometry with cokernel
canonically isomorphic to the Mordell–Weil group of E over the function field of C.

Remark 1. We only consider cases where the Néron–Severi lattice has rank 19. Then
the lattices (LT ⊕ H) and NS(E) become isomorphic over Q, a result we exploit in
this section. In most of our cases these lattices are actually isomorphic, see Propo-
sition 36, and see Sect. 8.4 for the other cases.

2.3 Quadratic Twists

Given two distinct points a and b in P1, the quadratic twist Ea,b at these points can
be described in two ways. Algebraically, write E in Weierstrass equation y2 = f (x).
If a and b are finite points, then Ea,b has the equation

t − a

t − b
y2 = f (x)(= 4x3 − g2(t)x− g3(t)) . (1)

Analytically, Ea,b can be described as follows. Take the double cover S → P1 ram-
ified at a and b and let E′ be the pullback surface. Now quotient E′ by the transfor-
mation which identifies the two fibers above each fiber of E with sign−1. It follows
that (Ea,b)a,b = E.

Remark 2. For any 0 � α ∈ C the quadratic twist Ea,b is also given by the equation
α t−a

t−b y2 = f (x). The resulting surfaces is isomorphic to Ea,b of course, but the iso-
morphism is only canonical up to ±1 because it involves a choice of a square root
of α.

A quadratic twist has no effect on the functional invariant. On the homological
invariant it reverses the sign of the local monodromy around the two points a and b
where the twist is done. If the fiber above one of these points is of type In, the fiber
of the twisted surface is therefore of type I∗n . In particular, twisting at a non-singular
fiber gives a fiber of type I∗0 .

Definition 3. Let E → P1 be an elliptic surface with a singular locus Σ = Σ(E). Fix
s ∈ Σ. For λ ∈ P1 − Σ let Es,λ be the twisted family at s and at λ. These surfaces
vary in a family T W s(E) over the λ-line P1(λ)− Σ.

Remark 3. The twisted surfaces also make sense for λ ∈ Σ, but over our chosen base
the variation of the part of the second cohomology coming from the singular fibers
is nice.
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Lemma 1. In the notation of definition 3 suppose that Es,λ is a K3 surface with at
least 4 singular fibers. Then the rank rT of the abelian group LT is ≤ 17. If equality
holds, then the Mordell–Weil rank rλ of Es,λ is 0 for general λ.

Proof. Observe first that LT is independent of λ � Σ, since the fiber types are con-
stant outside of Σ. Let ρλ be the rank of NS(Es,λ). By Shioda’s formula 1.2.1,
rλ + rT + 2 = ρλ, which is at most 20 for a K3 surface. Hence, if the assertion
of the Lemma is false we must have, in either case, that ρλ is 20 for a general λ. In
this case the isomorphism type of the K3 surface is in a countable set, hence Es,λ
is constant as λ varies. Localizing in λ we can trivialize the local system NS (Es,λ),
and in particular assume that the fiber divisor of elliptic pencil is constant. Then the
subset of t ∈ P1 above which the fibers of Es,λ are singular is constant in moduli.
However this set consists of one free-moving point and at least three fixed ones.
Such a set cannot be constant in moduli (it has moving cross ratios). This contradic-
tion proves the Lemma.

2.4 The Basic Construction

In [21] Herfurtner classified rational elliptic fibrations with four singular fibers, giv-
ing explicit equations for each fibration. Applying the construction T W described
above to any fibration on his list yields an explicit one-parameter family of sur-
faces. The cases when the general member of this family is a K3 surface with Picard
number 19 can be singled out by the following

Proposition 2. Let E be an rational elliptic surface with four singular fibers, one
of which is at s ∈ P1. Then, for a generic λ ∈ P1, the surface Es,λ is a K3 surface
whose lattice LT has rank ≥ 17 if and only if E has an unstarred singular fiber at s
(namely of type In, n ≥ 1, II, III, or IV) and the other singular fibers are semistable
(namely each is of type In for some n).

Proof. A quadratic twist exchanges starred and unstarred fibers, adding 6 to the
Euler number of an unstarred fiber and subtracting 6 from the Euler number of a
starred one. Hence the twists of the rational fibration E (which has Euler number
12) are K3 fibrations (which have Euler number 24), if and only if the fiber of E at
s is starless.

For 1 ≤ i ≤ 4 let us denote by ei (respectively ni) the Euler number (respectively
the number of components not meeting the 0 section) of the ith singular fiber of E,
where i = 4 corresponds to the fiber at s. Let m denote the number of fibers of type
In (any n) among the first three singular fibers. It remains to show that m = 3 if and
only if rankLT ≥ 17. By Lemma 1 this is equivalent to the assertion that m = 3 if
and only if rankLT = 17.

Notice now that the Euler number of a singular fiber is 2 more than the number
of components of the fiber not meeting the 0-section, unless the fiber is of type
In, in which case it is only 1 more. Since the fiber of Es,λ at s is starred, it has
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(e4 + 6) − 2 components not meeting the 0-section. It follows that rankLT = n1 +

n2+n3+ (e4+4)+4, where the I∗0 fiber at λ contributes the last term 4. Equivalently,
rankLT = [(e1 − 2) + (e2 − 2) + (e3 − 2) +m] + e4 + 8 = 14 + m, which implies the
assertion and concludes the proof of the Proposition. $%

2.5 The Néron–Severi and the Transcendental Lattices

A K3 surface X with Picard number 19 is isogenous to the Kummer surface associ-
ated with an abelian surface A (see [25]). The transcendental lattices of X and A are
then isogenous. The Néron–Severi lattice NS(A) is then isogenous to both (in fact
NS(A) � T (A)[−1]). In particular NS(A) has rank 3. By [29, Chap. 4], the rational
endomorphism algebra of A is an indefinite rational quaternion algebra BA = BX

which we wish to determine (our considerations in this subsection are a precursor
to much more precise considerations in the remainder of this work).

Let X be a K3 surface with an elliptic fibration whose Mordell–Weil rank is 0.
Our methods apply to this case in general, but we will restrict attention to the cases
which interest us here, where the elliptic fibration has five singular fibers of types
Ia, Ib, Ic, I∗0 , and J, where J is one of I∗d , II∗, III∗, or IV∗. The ranks of the forms
Lti ’s are then a − 1, b − 1, c − 1, 4, and r(J) = d + 4, 8, 7, or 6 respectively. Set
ρ = ρ(J) = 4, 1, 2, or 3 respectively (ρ is discLJ). We will prove the following

Lemma 2. In the situation above let BX be the quaternion algebra associated to X.
Then a prime p divides the discriminant of BX if and only if

(−ρ, abc)p(a, b)p(a, c)p(b, c)p = −1,

where (x, y)p is the Hilbert symbol at p.

Proof. Since we are assuming that the Mordell–Weil rank of the fibration is 0, we
have by Proposition 1 a rational isometry

NS(X)⊗ Q �
⎛
⎜⎜⎜⎜⎜⎝

⊕

i

Lti ⊕ U

⎞
⎟⎟⎟⎟⎟⎠⊗ Q,

with U the hyperbolic plane, and we further have a rational isometry H2(X,Z)⊗Q �
(NS(X) ⊕ T ) ⊗ Q, with T = T (X). Since H2(X,Z) � E8[−1]2 ⊕ U3 (see e.g.
[1, Proposition VIII.3.3.ii], with L as defined in Chap. VIII.1 there), we have an
isomorphism of rational quadratic forms:

(T ⊕
⊕

i

Lti ⊕ U)⊗ Q � (E8[−1]2 ⊕U3)⊗ Q.

We may add T [−1] on both sides and, recalling that T has rank 3 and using
Lemma 24, we find by Witt’s cancellation Proposition 37, multiplying the entire
expression by −1,
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(
⊕

i

Lti [−1]⊕ U)⊗ Q � (T ⊕ E2
8)⊗Q.

By the Theorem 8 the lattice LII∗ [−1] = E8 has discriminant 1 and local ε invariants
(see Definition 35 for the definition of these) εp(E8) = 1 for any (finite) prime p.
It follows from Lemma 23 that the discriminant and epsilon invariants of the right
hand side are the same as those for T . By Theorem 8 and Lemma 23 we compute
disc(T ) = −abcρ and

εp(T ) = (−1, ρabc)p(ρ, abc)p(a, b)p(a, c)p(b, c)p(−1, a)p(−1, b)p(−1, c)p

= (−1, ρabc)p(−ρ, abc)p(a, b)p(a, c)p(b, c)p.

The lattice T is isometric to NS(A)[−2], and the assumptions imply by [3] (see
Lemma 4) that NS(A), hence T , are multiples of the quadratic form Nm described
in Sect. A.1.3 associated with a rational quaternion algebra B(α, β). According to
Proposition 38, the multiplying factor for T should be disc(T ) and so the same
Proposition implies the formula

(α, β)p = εp(T )(−disc(T ),−1)p

= (−1, ρabc)p(−ρ, abc)p(a, b)p(a, c)p(b, c)p(−1, abc)p

= (−ρ, abc)p(a, b)p(a, c)p(b, c)p,

proving the lemma. $%
We can now go through all cases in the list of elliptic fibrations E found by Her-

furtner [21]. We first restrict attention to those fibrations satisfying the conditions of
Proposition 2, so that the twists Es,λ generically have Picard number ≥ 19. We use
Lemma 2 to determine the associated quaternion algebra. The cases that yield the
split quaternions are (3∗I1, I9), (2∗I1, I2, I8), (I1, I2, I3, I6), (2∗I1, 2∗I5), (2∗I2, 2∗I4),
and (4∗ I3). In fact, for all these examples ρ = 1, and Lemma 2 shows that no primes
are ramified (We do not know why these cases are characterized by the fact that all
the singular fibers, before the twist, are of type In.) The remaining cases are listed
in Table 1.

Let us consider for example the first entry in Table 1, the bad fibers (after the
twist) are (2 ∗ I1, I8, IV∗, I∗0 ). Here Lemma 2 gives ramification at p = 2 or 3, so BX

has discriminant 6. The other cases in Table 1 are done similarly.
The analysis of the families of fibrations arising from the fibrations listed in this

table are the main focus of our work. We have listed some further information in
this table. For each of our examples we give

• A reference number; [4] we do not know the exact isogeny between the abelian
surface and the elliptic fibration because the techniques developed in Sect. 7
do not apply (we can however determine with reasonable certainty the relation
between the moduli spaces using Picard–Fuchs equations techniques [5]).
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Table 1: The examples

1
I1 I1 I8 II
γ γ̄ ∞ 0
2 2 2 6

V6(2)/S 3 × 〈w3〉

2
I1 I2 I7 II
−9/4 −8/9 ∞ 0

2 2 2 6
V6,7/ 〈w2, w3, w7〉

3
I1 I4 I5 II
−10 0 ∞ 1/8

2 2 2 6
V15/ 〈w3, w5〉

4
I2 I3 I5 II
−5/9 0 ∞ 3

2 2 2 6
V10,3/ 〈w2, w3, w5〉

5
I1 I1 I7 III
δ δ̄ ∞ 0
2 2 2 4

V14/ 〈w2, w7〉

6
I1 I2 I6 III
4 1 ∞ 0
2 2 2 4

V6(π2)/ 〈w2, w3〉

7
I1 I3 I5 III

−25/3 0 ∞ 1/5
2 2 2 4

V6,5/ 〈w2, w3, w5〉

8
I2 I3 I4 III
−1/3 0 ∞ 1

2 2 2 4
V6(π2)/ 〈w2, w3〉

9
I1 I1 I6 IV
1 −1 ∞ 0
2 2 2 3

V6/ 〈w2, w3〉
P1
λ
� V6/ 〈w6〉

10
I1 I2 I5 IV

−27/4 −1/2 ∞ 0
2 2 2 3

V10/ 〈w2, w5〉

11
I3 I3 I2 IV
∞ 0 −1 1
2 2 2 3

V6/ 〈w2, w3〉
P1
λ
� V6/ 〈w6〉

• The (strong) types of the four singular fibers, their locations, and their ramifica-
tion indices (see [1, V.7] for types of singular fibers and just after Definition 1
for the terminology of strong type).
• HT (see Definition 2) as a Shimura curve. When P1

λ
� HT both are given as

Shimura curves.

In the table γ =
−(1+

√−2)4

3 and δ =
(1+

√−7)7

512 . Conjugates for such elements are
over Q. In what follows we will refer to the nth item in Table 1 as Table 1(n).

Our notation for Shimura curves is as follows:

Definition 4. Let M = MD,N be an Eichler order of conductor N in an indefi-
nite rational quaternion algebra B of discriminant D. Both B and M are unique up
to inner automorphisms, so their choice does not matter; moreover N is necessar-
ily prime to D. For n prime to N we will denote the moduli space parameterizing
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abelian surfaces with MD,N-action, full level-n structure, and a certain compatible
polarization (of type (1, N)) by VD,N(n). When N or n are 1 they will be omitted
from the notation, so that for example VD = VD,1 = VD,1(1). Analytically we have

VD,N(n) = B×\(H± × (B×f /K(n))).

Here K(n) = KD,N (n) denotes the principal congruence subgroup of level n in M⊗
Ẑ, and B f = (B ⊗ A f ) is the finite adèles of B. For a prime p dividing D there is
a unique two-sided ideal πpM ⊂ M of norm p. It is principal, so that the level n

has the form n′
∏

p|D π
kp
p M, where each kp is 0 or 1. For every d|DN there exists a

modular involution wd acting on VD,N . Lastly, H± = P1(C) \ P1(R) is the union of
the upper half plane H and the lower half plane.

3 The Moduli Map for Discriminants 6 and 15

As was explained, a general elliptic surface appearing in one of the families in
Table 1, is isogenous to an abelian variety whose rational endomorphism algebra
is a rational quaternion algebra of known discriminant. This gives rise to a corre-
spondence between the base space of the family of elliptic surfaces and the Shimura
curve classifying such abelian surfaces. In [4] the first named author proved that for
the families of Table 1(1) and (3) the general elliptic surface is in fact isomorphic
to the Kummer surface of an abelian surface whose endomorphism ring is a maxi-
mal order in the corresponding quaternion algebra. In this section we will describe
the resulting correspondence completely for these cases. In fact we will show that a
specific covering H̃0

T of the moduli space HT of elliptic fibrations of a certain type is
isomorphic to the corresponding Shimura curve with full 2-level structure. We will
also identify the forgetful map H̃0

T → HT in terms of Shimura curves. This is partly
a warm-up for a the more complicated analysis required for some of the other cases.

For D = 6 or D = 15 let A be an abelian surface together with a ring isomorphism
MD

∼−→ End(A). By [3, Theorem 3.10], the rational Néron–Severi lattice, NS(A)⊗Q,
of A is identified with the traceless elements of B. Moreover, NS(A) is constant as
A varies over the Shimura curve parameterizing this data by loc. cit. Now let φ be a
full level-two structure on A. This data then determines an isometry f : N

∼−→ NS(X)
between a certain lattice N, determined by the discriminant, and the Néron–Severi
lattice NS(X) of the Kummer surface X = Km(A). There furthermore exists a fixed
class d ∈ N such that f (d) is an ample class on X. It is shown in loc. cit., relying
of ideas of [33], that d determines in N a class e such that f (e) is the class of the
fiber of an elliptic fibration on X, with prescribed singular fibers as in Table 1(1)
and (3). Since these fibrations turn out to be twists of a fixed fibration we obtain a
well defined value corresponding to the place of the twist. The correspondence can
be described graphically as follows:
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(A + level φ)

��

�� �� (X + f : N → NS(X))

��
(A) (X + fibration) �� �� λ ∈ HT

(2)

where HT is usually the λ-line but could also be a quotient of it (see Proposition 3
for the precise relation). In fact the horizontal maps turn out to be bijective, while
the vertical maps are not. The data (A + level φ) is classified by the Shimura curve
VD[2]. It follows (but not stated explicitly in loc. cit.) that there exists a rational map
VD[2] → HT . To do this we need the notion of markings.

3.1 Marked Elliptic Fibrations and Moduli Spaces

Definition 5. Let t be a type of a singular fiber. The associated Dynkin graph Gt has
a vertex for each component which does not meet the zero section and two vertices
are connected if and only if the corresponding components intersect. If T is a type
of singular fibers the associated graph GT is the disjoint union of the graphs for all
t ∈ T . If E is an elliptic fibration the graph GE of E is defined in the same way.

Remark 4. An isomorphism of elliptic fibrations clearly induces an isomorphism of
the associated graphs. Notice that the graph depends only on the type and not on the
strong type (this is in fact the reason for the definition of type).

Definition 6. A marking of type T for an elliptic fibration E → P1 is an isomor-
phism α : GT → GE .

Let us now discuss the types of moduli spaces that we will consider in this work
more carefully. We assume we are given an elliptic fibration with four singular fibers
that appears in Table 1. Thus, it has three singular fibers of type In, and one fiber,
at s0 ∈ P1, which is of type II, III or IV . Let Σ be the singular locus. There is a
corresponding type T where there is an additional I∗0 fiber and the non In fiber is
starred.

The first moduli space is the λ-line P1(λ) − Σ which carries the family of twists
Es0,λ.

Lemma 3. The λ-line is the coarse moduli space of elliptic fibrations of type T up
to isomorphisms of fibrations which on the base fix the location of the I0 fiber.

Proof. The maps between the set of isomorphism classes of elliptic fibrations as
above and the λ-line and back are obvious, sending an elliptic fibration to λ = the
location of the I0-fiber and λ to the elliptic fibration Es0,λ. That these maps are
inverse to each other is obvious in one direction. In the opposite direction, let E′
be an elliptic fibration of type T . Then the quadratic twist at the two starred fibers
gives an elliptic fibration with four singular fibers of the types we started from. The
tables in [21] shows that this fibration is moreover unique in each of our cases, and
hence must be isomorphic to E. Twisting back shows that E′ is isomorphic to the
appropriate Es0,λ. $%
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The second moduli space is the moduli space HT of elliptic fibrations of type T
up to isomorphisms. Having the λ-line it is trivial to construct it.

Proposition 3. For a type T arising from Table 1 let DT be the group of all the
automorphisms of the λ-line preserving the singular locus S which send each s ∈ S
to a point with the same (strong) type of fiber. Then P1

λ
/DT � HT .

Proof. The natural map from the λ line to HT , which sends λ to the isomorphism
type of Es,λ, clearly factors through the action of DT , and induces a morphism
φ : P1

λ
/DT → HT . It is injective, since we have accounted precisely for the isomor-

phisms between the fibrations. $%
Note that in most of the cases in Table 1 the above group DT is trivial.
The next moduli space is the space ΛT of pairs (λ, α) where λ belongs to the λ-

line and α is a marking for the elliptic fibration Es0,λ. Here it is important, because
of Remark 2, that Es0,λ means the twist given by (1), rather than any quadratic twist
of E ramified at s0 and λ. Obviously, ΛT is an unramified covering of the λ-line
which is Galois with group AutGT , and may well fail to be connected.

The next moduli space is H̃T . It is the coarse moduli space of marked elliptic
fibrations of type T . Note that an elliptic fibration always has the action of −1,
which changes the marking. It gives a well define automorphism of GT . The moduli
space H̃T is easily seen to be the quotient of ΛT by the action of DT and by the
action of −1. It is thus sometimes useful to also consider the space Λ′T obtained by
dividing out ΛT only by the action of −1, which is still an unramified covering of
the λ-line. The following obvious consequence is sometimes useful.

Proposition 4. The covering H̃T /HT can only be ramified over fixed points of DT

Finally, as the moduli spaces above may well fail to be connected, we consider
connected components of them. A connected component H̃0

T of H̃T corresponds to
the subgroup MT of AutGT generated by the local monodromies around the singular
fibers. The forgetful map from H̃0

T to HT is a Galois covering, whose Galois group
is the monodromy group MonT , equal to the quotient of MT by the action of ±1.
Indeed, on the level of the corresponding stacks we clearly have a Galois covering
with Galois group MT . However when considering the coarse moduli spaces, we
must take into account the fact that the action of d ∈ MT on the marking arises from
an isomorphic fibration if and only if d acts as ±1.

We will also denote by the same notation the natural compactifications of all of
the moduli spaces considered above, coming from the obvious compactifications
of the λ-line. All results about ramification need to be modified then to mean that
ramification can further occur over points corresponding to singular fibers.

3.2 Types of Marked K3 Surfaces

We now identify a marked elliptic fibration of type T with another type of object.
We begin by recalling some facts about K3 surfaces and the Torelli theorem.
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Definition 7. We follow [1, VIII.1]. Let X be a K3 surface. The set {x ∈ H1,1(X,R)|
(x, x) > 0} consists of two convex cones (H1,1(X,R) is H1,1(X) ∩ H2(X,R)). One of
these cones contains the Kähler classes on X. We call this cone the positive cone
and denote it by CX . The Kähler classes form a convex sub-cone of CX , called the
Kähler cone. The classes in H2(X,Z)∩H1,1(X,R) of the effective divisors also span
a convex sub-cone of CX . An isometry H2(X,Z) → H2(X′,Z) is called an effective
Hodge isometry if

1. It preserves the cup product;
2. Its C-linear extension preserves the Hodge decomposition; and
3. It preserves the positive cone and the classes of effective divisors.

The following is the global Torelli Theorem for Kähler K3 surfaces

Theorem 1 ([1, VIII, Theorem 11.1, Proposition 11.3]). An effective Hodge isom-
etry between K3 surfaces X and X′ is induced by a unique isomorphism.

Let S be an even lattice. The positive cone of S is decomposed into chambers by
the planes orthogonal to the −2-classes in S . Let d be one fixed chamber.

Definition 8. An (S , d) marked K3 surface consists of a K3 surface X together with
an isometric embedding α̃ : S → NS(X) (called marking) with finite cokernel
which is good in the sense that α̃(d) is the ample cone of X. An isomorphism of
(S , d) marked K3 surfaces is an isomorphism commuting with the marking. The
marking is called strong if its cokernel is 0.

We will show that marked elliptic surfaces of a certain type T are the same as K3
surfaces marked by a certain pair (S , d) which we now define.

Definition 9. For a graph G let S G be the lattice with one generator for each vertex
of G with square −2 and with intersections according to the edges. For a type T let
S T = S GT ⊕ U. Recall that U is the hyperbolic plane, generated by classes f with
square 0 and s with square −2, with f × s = 1, to be thought of respectively as the
fiber and the zero section of an elliptic fibration.

In particular, for every t ∈ T the lattice S T contains the elements Ft = f−∑g∈Gt
ngg,

where ng is the multiplicity of g in the singular fiber as determined by Kodaira
(see [1, Sect. V.7, Table 3]). We now describe a certain chamber in S T .

Definition 10. Let dT be any chamber in S T containing the element w constructed
as follows: For every t ∈ T let xt be a linear combination with positive integer
coefficients of g ∈ Gt which has a positive intersection with every g ∈ Gt. Let
x =

∑
t∈T xt. Let y = x + n× s with n sufficiently large so that y× Ft > 0 for every

t ∈ T . Let z = y + m f with m sufficiently large so that z × s > 0. Finally, let w be
the sum of all conjugates of z over all automorphisms of GT .

Proposition 5. Let (E, α) be a marked elliptic fibration of type T with Mordell–Weil
rank 0. Let α̃ : S T → NS(E) be the map sending f to the class of a fiber of E, s
to the class of the zero section, and for every g ∈ GT the class of the component of
singular fiber α(g). Then (E, α̃) is a marked (S T , dT ) surface.
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Proof. By Shioda’s work (Proposition 1) it suffices to prove that α̃(z), where z is
the element constructed as part of Definition 10, is ample. By the Nakai–Moishezon
criterion one has to show that it has positive intersection with every effective divisor.
By construction, α̃(z) has a positive intersection with the fiber, zero section and all
the irreducible components of the singular fibers of E (for each singular fiber there
is one component which does not appear in the graph, which is the one intersecting
the zero section, but the intersection with it is also positive because the intersection
with the fiber is positive). Any other effective divisor is a multi-section, and since
we have taken the fiber with a positive multiplicity the intersection here is positive
as well. $%
The converse theorem is also true, essentially part of [4].

Proposition 6. Let T be a type of elliptic fibrations. Let S be a finite over-lattice of
S T occurring as a sublattice of the Néron–Severi lattice of an elliptic fibration of
type T with Mordell–Weil rank 0 on a K3 surface. Let dT be the chamber described
above. Let (X, α̃) be a strongly marked (S , dT ) surface. Then α̃( f ) is the fiber of an
elliptic fibration on X, with Mordell–Weil rank 0. Furthermore, for any g ∈ GT ,
α̃(g) is the class of a unique component of a singular fiber and sending g to this
component gives a marking of type T on the elliptic fibration. This construction is
reverse to the previous construction.

Proof. This is a refinement of [4, Theorem 1]. The lattice S , class f and the chamber
dT have the following basic property: If x ∈ S satisfies x2 = −2 and x × dT >
0 then x × f ≥ 0. Indeed, since S is contained in the Néron–Severi lattice of a
K3 surface, it follows from [33] (see also [1, Proposition VIII.3.7.2]) that either
x or −x is effective. But the assumption x × dT > 0 implies that it is x which is
effective and it is then clear it has a non-negative intersection with the class f of
an elliptic curve. We now consider Proposition 2.4 in [4]. The proposition gives
conditions on e = α̃( f ) to be the class of a fiber of an elliptic fibration on X. All
conditions are easily satisfied except for condition 4. However, that condition only
enters in the proof there of Lemma 2.5 that e has non-negative intersection with any
effective divisor, and one sees that one ends up using only that e has non-negative
intersection with any effective divisor of square−2, but that is exactly the condition
we established. Thus, α̃( f ) is indeed the class of the fiber of an elliptic fibration.
Finally, from the data of the class f and the class z the classes of the irreducible
components of the singular fibers can also be constructed. Namely, the orthogonal
complement to the hyperbolic plane consisting of the fiber and the section splits
into the direct sum of negative definite lattices which are related to root systems
and the irreducible classes are simply the elements of the root system determined
by the functional defined by intersection with z. It follows that the xi are mapped
to the irreducible components of the singular fibers. Note that there can be no other
components of singular fibers, coming from the over-lattice S , because that would
increase the Picard number. Thus, when we perform the construction of z as above
we indeed recover z. $%
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3.3 Abelian Surfaces with Quaternionic Multiplication

Let M be an order in a quaternion algebra B over Q.

Definition 11. An abelian surface with multiplication by M is an abelian surface A
together with an injection j : M ↪→ End(A)

We will essentially only be considering the “general” case, where j is an isomor-
phism.

In this work, we will prefer to study such abelian surfaces, not by their endo-
morphism algebra but rather by their Néron–Severi lattices. These two can, in some
cases, be determined one from the other, as we recall now.

Definition 12. Given the order M , a lattice NM is defined as follows:

NM := {b ∈ B, tr(b) = 0, tr(bx) ∈ Z for all x ∈M }
The form is obtained by making the following embedding of NM into ∧2M ∗ into
an isometry: x ∈ NM maps to the symplectic form given by x(l1, l2) = tr(xl1l′2),
where ′ is the canonical involution of B.

We note that the embedding is clearly primitive.

Lemma 4. The form on NM is a constant multiple of the form a × b = tr(ab′).
If M is an Eichler order in a rational quaternion algebra B of discriminant D and
level N, then this constant is DN.

Proof. The first statement is [3, Theorem 3.10]. That the constant for an Eichler
order is DN is [3, Proposition 2.18]. $%
Proposition 7. Suppose that every left ideal of M whose left order is M is princi-
pal. Then, a multiplication j : M

∼−→ End(A) on an abelian surface A determines in
a unique way an isometry of lattices NM

∼−→ NS(A).

Proof. This is an easy extension of the proof of Proposition 3.2 in [4]. We just
sketch the main points: By our assumptions on M , the group H1(A,Z) is isomor-
phic to M as an M -module. Thus, we have an isometry ∧2M ∗ ∼−→ H2(A,Z) and as
a consequence a primitive embedding NM ↪→ H2(A,Z). One shows that the image
of this embedding is of type (1, 1) hence contained in the Néron–Severi lattice. One
also knows that the rank of the Néron–Severi lattice is 3 in this case, and since the
embedding is primitive we obtain an equality. Finally, one shows easily that the em-
bedding of NM (thought not of the entire∧2M ∗) is independent of the identification
of M with H1(A,Z). $%
Definition 13. Let N be a lattice of rank 3 and let n0 be an element of N with n0 ×
n0 > 0. An N-marked (or more precisely an (N, n0)-marked) abelian surface is an
abelian surface A together with an embedding N ↪→ NS(A) such that every divisor
of A representing the image of n0 is very ample.
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Thus, by fixing n0 ∈ NM , a multiplication on an abelian surface A determines in
a unique way, under our condition on M from Proposition 7, an (N, n0) marking
on A.

What about the reverse determination? Rationally, the Néron–Severi lattice al-
ways determines the endomorphism algebra. More precisely, if (N, n0) is as above,
and B is the Clifford algebra of the orthogonal complement to n0 in N ⊗Q, then the
marking induces a canonical isomorphism B → End(A)⊗Q on any marked (N, n0)
abelian surface. This makes the following definition very natural.

Definition 14. The pair (N, n0) is said to determine the endomorphism ring if for
some subring MN ⊂ B we have that for any (N, n0)-marked abelian surface A the
isomorphism B

∼−→ End(A)⊗ Q induces an isomorphism MN
∼−→ End(A).

We have the following basic result.

Proposition 8. If the rank of the lattice N is ≤ 3 and n2
0 = 2, then the pair (N, n0)

determines the endomorphism ring. In other words, if A is a principally polarized
abelian surface with Picard number ≤ 3, then End(A) is determined by NS(A).

Proof. This is essentially contained in [4, Proposition 4.3]. We recall the proof since
we will need the details later. Let A be an abelian surface, marked by α : N →
NS(A). Let L := H1(A,Z). We may interpret α(n0) as a symplectic form on L and the
assumption on n0 implies that this form is perfect. Let x ∈ NS(A). We may similarly
interpret α(x) as a symplectic form. There is then an endomorphism Tx : L → L
with the property that α(x)(l1, l2) = α(n0)(Txl1, l2). The content of loc. cit. is that
the Tx are endomorphisms of A and that they generate End(A). Furthermore, the
inclusion of the subring generated by the Tx with x in the orthogonal complement
to n0 factor via the Clifford algebra of this complement. Since Tn0 is clearly the
identity, it is easy to obtain the ring MN in such a way that sending x to Tx extends
to the required isomorphism. $%
Let M be a maximal order. By a theorem of Drinfel’d (see e.g. [10, III Proposition
1.5]) and Lemma 4, NM contains an element n0 with square 2, which we fix once
and for all.

Corollary 1. The pair (NM , n0) determines the endomorphism ring, and MN =M .

Remark 5. We will later (Proposition 20) show that the same is true if M is an
Eichler order of prime level.

We now want to introduce a level 2 structure. This is defined as follows:

Definition 15. Let A be an abelian surface with multiplication by M . A level 2
structure on A is a map φ : M /2 → A which is a map of M -modules.

Our main object of investigation is a certain moduli space associated with these
objects.

Definition 16. The moduli curve VM [2] parameterizes abelian surfaces with multi-
plication by M and a level 2 structure.
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Remark 6. Suppose that M is maximal. In this case we let the group ΓM [2] be the
group of units of norm 1 in M which are also congruent to 1 modulo 2. The quotient
H/Γ is an algebraic curve which has a model VM [2] over Q.

For completeness we give the analogous definition if we are using the Néron–Severi
lattice.

Definition 17. If (N, n0) determines the endomorphism ring, a level 2 structure on a
marked (N, n0) abelian surface A is a map of MN modules MN/2 → A. Suppressing
n0 from the notation, the moduli space of all of these will be denoted VN[2].

3.4 The Associated Kummer Surface

Suppose that (N, n0) determines the endomorphism ring MN and that MN has a
unique ideal whose order is M as in Proposition 7. Let W := MN/2. As we have
seen in Definition 12, there is a canonical embedding of N into the space of inte-
gral quadratic symplectic forms on MN . By reduction each x ∈ N gives rise to a
symplectic form on W (i.e., a bilinear form with (w, w) = 0). According to [1, VIII,
Lemma 4.3], this is the same thing as a polynomial function gx of degree 2 on W de-
fined up to a polynomial function of degree ≤ 1. Let (A, α, φ) be an (N, n0)-marked
abelian surface with a level two structure φ : W =MN/2 → A. Let X = Km(A) be
the corresponding Kummer surface. We now show how the additional data allows
us to mark NS(X).

Definition 18. The Kummer lattice K associated to W is generated by orthogonal
vectors ev with square −2, for v ∈ W, together with (

∑
f (v)=0 ev)/2 for every affine

linear functional f : W → Z/2.

Definition 19. We construct an over-lattice S N of N[2]⊕K by adding all the vectors
of the form

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

gx(w)=0

ew

⎞
⎟⎟⎟⎟⎟⎟⎠⊕ x

⎞
⎟⎟⎟⎟⎟⎟⎠ (3)

for all x, where gx is the polynomial function defined before.

Note that each such vector is well defined modulo N[2]⊕ K. We distinguish in S N

the class e0 and the class corresponding to n0.

Definition 20. Let dN be the chamber in S N containing the element m×n0−∑w∈W ew

where m ≥ 20.

Proposition 9. The marking and level structure on A induce in a canonical way an
(S N , dN) marking on X, sending x ∈ N to the image of α(x) in NS(X) and sending a
class ew to the blowup of the singular point at φ(w).
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Proof. The fact that the map above K ⊕ N[2] → NS (X) extends to S N is a conse-
quence of [1, Proposition VIII.5.8]. It remains to check that it sends dN to the ample
cone in NS(X). This is a general instance of the following more general fact. $%
Lemma 5. Let X be a surface, and let ι : X → X be an involution with m fixed
points. Let q : X → X/ι be the quotient map, and let π : Y → X/ι be the resolution
of the m double points, with E1, . . . , Em the corresponding exceptional curves. If D
is very ample on X, then D′′n = nπ∗ι∗ −∑

i Ei is very ample on Y for n ≥ m + 3.

Proof. The divisor D′ = ι∗D is very ample on X/ι. Let f : X/ι → Pr be the
immersion to Pr it defines. Then the linear system of hypersurfaces on Pr of degree
n ≥ m + 3 through the m ordinary double points of f (X) defines the blowup of Pr at
these points, because the hypersurfaces separate points and tangent vectors as well
as 2-jets at the singular points of f (X). This linear system restricts to D′′n on Y, hence
D′′n is very ample on Y. $%
Proposition 10. Suppose, in addition to the assumptions of this subsection, that n0×
n0 = 2. Then, the construction of Proposition 9 is a bijection between isomorphism
classes of marked (N, n0) abelian surface with a 2 level structure and S N-marked
K3 surfaces.

We first prove the following lemma, which shows that the effectivity of a class and
the irreducibility of a −2-class are lattice theoretic.

Lemma 6. Let (S , d) be a pair consisting of a lattice with a chamber d, as in Defi-
nition 8. Consider all (S , d)-marked K3 surfaces (X, ν). Then

1. For a −2-class z, ν(z) is effective for all (resp. one) (X, ν) if and only if its
product with one (equivalently all) the elements of (the interior of) d is > 0.
Call these classes effective −2-classes.

2. For any class z, ν(z) is effective for all (resp. one) (X, ν) if and only if z is in
the cone spanned by the effective−2-classes and the classes in the closure of d.
Call these classes effective classes.

3. For a −2-class z, ν(z) is represented by an irreducible curve for all (resp. one)
(X, ν), if and only if it is effective and cannot be decomposed into the sum of
effective classes.

Proof. The first claim is immediate. The second is in [1, VIII Proposition 3.7]. The
third is immediate from the previous two. $%
Proof of Proposition 10. The construction above shows that there exists a K3 sur-
face marked by (S N , dN) such that the marking sends the classes ev ∈ K ⊂ S N , for
v ∈ W, to the classes of irreducible −2-curves. By Lemma 6 it now follows that
for any (S N , dN)-marked K3 surface X the images of the classes ev, for v ∈ W, in
NS(X) are represented by irreducible −2-curves. Let X be such a surface. Let Ã be
the double cover of ramified along these −2-curves. It exists since

∑
w∈W w is di-

visible by 2 in K; it is unambiguously defined since X is simply connected. Let A
be the blow down of the resulting −1-curves on Ã to points φ(v). This construction
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is the reverse to the Kummer one, and choosing 0 = φ(0), the surface A becomes
an abelian surface [1, Proposition VIII.6.1] with 0 being the neutral element for the
group law; X is the Kummer surface of A. In particular, A[2] is a vector space over
Z/2. By construction, the map φ sends 0 to 0 and sends three-dimensional affine
subspaces of W to those of A[2]. This implies that φ is linear. The Néron–Severi
lattice of A is isomorphic to the orthogonal complement of the lattice generated
by the 16 exceptional divisors on X, with the form divided by 2. Since our marking
gives an isomorphism of N[2] with this complement it induces the required marking
N → NS(A). It remains to show that the map φ is a map of MN-modules. For this
we return to the proof of Proposition 8. Let x ∈ N. Define an operator tx : W → W
as follows: The condition that the vector (3) belongs to S N determines gx on W as a
polynomial function of degree 2 modulo those of degree 1, hence determines a sym-
plectic form Qx on W. The form Qn0 is perfect. Thus, there is a unique tx : W → W
such that Qx(w1, w2) = Qn0 (txw1, w2). By the definition of the endomorphism Tx in
the proof of Proposition 8 it is clear that φ interwinds tx with Tx modulo 2, and the
result is now clear. $%

For future use we will need a slight strengthening of this Proposition, showing
that the conclusion sometimes holds even if we have no principal polarization.

Proposition 11. The conclusion of Proposition 10 continues to hold if the assump-
tion n2

0 = 2 is replaced by the weaker assumption that n0 induces a bilinear form on
Mn which is perfect modulo 2.

Proof. The argument is almost entirely the same. The only problem is that with n0

which is not principal, not every x ∈ N gives an endomorphism Tx. However, the
proof that the Tx generate the entire endomorphism ring is completely local. Thus,
those x’s for which Tx is defined generate a subring of the Endomorphism ring of
index prime to 2. As before, the action of these Tx on the order 2 points is completely
determined, hence so is the action of the entire endomorphism ring. $%

3.5 The Basic Isomorphism

As a corollary, we get the following

Theorem 2. Let M be a maximal order in a quaternion algebra. Suppose that the
lattice S NM , where NM is defined in Definition 12, is isometric to the lattice S T

associated with a type T of an elliptic fibration as in Definition 9. Then, the covering
H̃T is isomorphic to the Shimura curve VM [2].

Proof. We have essentially constructed the isomorphism between the moduli prob-
lems. The only difficulty is that we assumed throughout that we are in the generic
case. Thus we must work generically. Above a generic point of a component of
H̃T lies a K3 surface X marked by (S T , dT ). By assumption we have an isometry
S T � S N . A-priori, this may not map dT to dN . However, as every two chambers
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can be moved one to the other by an element of the Weyl group, it follows that we
may find an isometry which does map dT to dN . It follows that X is also marked
by (S N , dN). By Proposition 10 X is the Kummer surface associated with an abelian
surface A marked by the lattice N together with a level 2 structure. By Proposition 1
A has multiplication by M and thus corresponds to a point on some component of
ṼM [2]. Since X is determined by A this point must be generic and we therefore ob-
tain a birational map between these two components, hence between a component
of H̃T and VM [2]. Since both are non-singular curves, this is an isomorphism. Since
X is determined by A it also follows that H̃T has only one component, hence the
theorem. $%
In this connection we have the following evident

Remark 7. The connected components of H̃T are in an bijection with the set
(AutGT /± 1)/MonT .

For the two examples we consider in this section we will show that MonT =

AutGT /± 1, hence that H̃T = H̃0
T is connected.

3.6 Local Monodromies

To determine a connected component we now consider the monodromy representa-
tion associated with the covering. It is easiest to consider the monodromies for the
covering ΛT of the λ-line P1(λ)−Σ, whose fundamental group is generated by loops
γs for each s ∈ Σ. To determine the monodromy group we would like to know the
conjugacy class of the action of γs on the marking α|Gt for each t ∈ T . It will act by
composition with an automorphism of the graph Gt. In the following table we list
the graphs with non-trivial automorphism groups and the group itself. We also list
the action of the automorphism−1 of the fibration on this graph.

t In, n ≥ 3 I∗0 I∗n , n > 0 IV∗
Aut(Gt) ±1 S 3 ±1 ±1
−1 acts as −1 1 (−1)n −1

The fibers on which the monodromy acts are the fiber of type I∗0 arising from the
twisting of a non-singular fiber, and the fibers at u ∈ Σ.

Proposition 12. The local monodromy of the loop γs around s ∈ Σ on the singular
fibers is given as follows: On the I∗0 fiber, the image of γs in GI∗0 = S 3 is the action
of γs on the non-zero two-torsion points of the original fibration E. On the fiber at
u ∈ Σ, if u � ∞ then γs acts as −1 if s = u or if s = ∞ and as the identity in all
other cases. If u =∞ then all monodromies act as the identity.

Proof. The vertices of GI∗0 correspond to the non-zero two-torsion points of Es as
follows: The I∗0 fiber is obtained by first taking the quotient of Es by ±1 and then
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blowing up the four singular points at the fixed points. The component correspond-
ing to 0 intersects the section and the 3 others give 3 vertices of Gs (there is an
additional vertex, corresponding to the quotient itself, which is fixed by all auto-
morphisms). This proves the first statement.

For the other statements, we first consider the fiber of type t at a point u ∈ Σ
different from s0. Suppose the Weierstrass equation of this fiber is y2 = f (x, u). The
quadratic twist (1) at s0 and λ changes the equation of the fiber at u to

y2(u− λ)(u− s0).

This equation is of course isomorphic to the original equation, upon choosing a
square root of (u − λ)/(u − s0). Since this choice forces a choice of square roots
for neighboring u’s, we obtain an isomorphism of π−1(D) and π−1

λ
(D), where D is

an open disc around u and π : E → P1 and πλ : Es0,λ → P1 are the respective
projections. To be precise, E and Es0,λ are obtained from the Weierstrass equations
by blowing up the singular points (of the surface) on the singular fibers, but the
blowup depends only on a neighborhood of the fiber, so this isomorphism carries
over. In particular, we have a canonical isomorphism of the singular fibers at u. As
λ moves in the loop γs (which, we recall, does not intersect the singular locus) and
we make a continuous choice of this root we end up with either the same root or its
negative, and correspondingly the monodromy is therefore either the identity or the
action of −1. It remains to check when we get the identity and when −1, that is to
say, when the loop (u− λ)/(u− s0) goes an even or odd number or times around 0.
But when λ moves in a small loop around s � ∞ we find (u − λ)/(u− s0) moving
in a small loop around (u − s)/(u − s0), so this goes once around 0 if and only if
u = s. When s = ∞ the loop can be taken to be a circle of sufficiently large radius
and (u−λ)/(u− s0) does go around 0 and the monodromy is the action of−1 again.

We next notice that the restriction u � s0 is not really required. Indeed, fix a
general b ∈ P1. The twist at s0 and λ is isomorphic, upon choosing a square root to
(u− λ)/(u− b) to the twist at s0 and b. Thus, the same analysis applies.

There remains the case u =∞. But the previous analysis shows that the only loop
which may have a non-trivial monodromy on the fiber there is the one around ∞.
But since the product of the monodromies has to be 1 we see that this monodromy
is trivial as well. $%
We now consider the monodromies for Λ′T . The local monodromies are the same as
for ΛT , except that they should be taken modulo the action of −1. This allows for
the following more symmetric description.

Corollary 2. The local monodromies for the loop γs is given as follows (modulo the
action of −1). On the fiber of type I∗0 it is the same as in Proposition 12. Otherwise,
on the fiber at u the action is that of −1 if s = u and is the identity otherwise.

Proof. We only need to observe that the action of γ∞ is the identity on the fiber at
∞ and is −1 on all other fibers, so composing with the action of −1 it is −1 on the
fiber at ∞ and the identity on the other fibers, i.e., the same behavior as the other
loops. $%
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The monodromy on the two torsion points is precisely the reduction modulo 2 of
the homological invariant. There are known tables for the local monodromy of the
homological invariant [1, V.10, Table 6]. From this we obtain the following table of
monodromy. The unique conjugacy invariant for a permutation on three elements
is the order of the permutation, which is either 1 (identity), 2 (transposition) or 3
(a cycle of length 3). So it is sufficient to indicate this number.

In, I∗n In, I∗n II III IV
2|n 2 . |n IV∗ III∗ II∗
1 2 3 2 3

For the computations to follow we will also need to observe the following.

Remark 8. The order of the local monodromy at a point of HT is the ramification
index of the covering H̃0

T /HT above it.

3.7 Case Number 1 on the List

To handle Table 1(1) we will need the following

Proposition 13. 1. The curve V6(2) is hyperelliptic of genus 3, with w3 the hyper-
elliptic involution. In the quotient P = V6(2)/w3 � P1 the 8 Weierstrass points
can be viewed as the vertices of a cube.

2. The automorphisms of V6(2) are all “modular”, coming from the modular in-
volutions w2, w3 and from changing the level 2 structure. We have AutV6(2) �
S 2 × S 4 with the S 2 factor generated by w3.

Proof. (sketch) The genus is 3 by the standard genus formula for Shimura curves
(with level structure). One can alternatively use the Riemann-Hurwitz formula for
the covering V6(2) → V6.

Next observe that AutV6(2) contains the modular automorphisms. To see they
give S 2 × S 4 as the factor at 3 times the factor at 2, let B2 be “the” division quater-
nion algebra over the field Q2 of 2-adic numbers (see eg [Chap. 2] for the following
facts). Let Q4 denote the quadratic unramified extension of Q2 and let Z4 be its ring
of integers. Then B2 = Q4⊕π2Q4, where π2

2 = −2, and moreover π2 normalizesQ4

and induces on it the nontrivial automorphism via conjugation. The unique maximal
order M2 of B2 (its order of integers) is Z4 ⊕ π2Z4. admits a filtration by the two-
sided ideals ℘i, where ℘ = π2M2, with M2 = MD ⊗ Z2). We have ℘i/℘i+1 � F4,
the field with four elements, and one also routinely checks that

(MD/2MD)× � (M2/2M2)× � M×
2 /(1 + ℘2) � A4,

the alternating group on 4 letters. The filtration induced on A4 from ℘ ⊂ M2 is
V4 ⊂ A4, with V4 � (Z/2Z)2 the Klein four-group. Together with w2 one gets an
action of B×/((Q×2 )(1 + 2M2)) � S 4, the symmetric group of 4 letters, on VD(2).
The modular automorphisms at 3 are clearly 〈w3〉.
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An easy analysis shows that the quotient P by w3 is a P1 (equivalently, has eight
fixed points). It is well-known that the resulting S 4 action on P is the symmetries of
a cube for the standard metric on P1.

To see V6(2) has no other automorphisms observe that the arithmetic congru-
ence subgroup Γ6(2) uniformizing V6(2), taken modulo ±1, is torsion-free. Let
N(Γ6(2)) denote the normalizer of Γ6(2) in the automorphism group AutH of
the upper half plane H . It then follows that AutV6(2) � N(Γ6(2))/Γ6(2) is as as-
serted. Alternatively one can apply the Riemann–Hurwitz formula to the covering
V6(2) → AutV6(2)\V6(2) to deduce that a curve of genus 3 cannot have an auto-
morphism group which strictly contains S 2 × S 4. $%

Returning to the twists of the fibration of type T = (I1, I1, I8, II), the algebra has
discriminant 6, and the local monodromies are given in the following table, which
we justify in the comments that follow.

I8 IV∗ I∗0
γI1 1 1 (12)
γI′1 1 1 (23)
γI8 −1 1 1
γII 1 −1 (123)
−1 −1 −1 1

Everything affirmed in the table is clear except for the precise types of the permuta-
tions in the last column. The cycle length of the permutations are as indicated and
their product is 1 so we may assume the situation is as described.

From the table we see that MT is AutGT � S 2×S 2×S 3, and hence that MonT �
S 2 × S 3. Then H̃0

T � V6(2) by Theorem 2 and the discussion thereafter. We have
the following

Lemma 7. 1. All subgroups H of AutV6(2) isomorphic to S 2 × S 3 are conjugate.
In particular the S 2 factor of H is 〈w3〉.

2. HT � V6(2)/S 2 × S 3.

Proof. The first part is an easy exercise, and the second part follows from it. $%
By Elkies [17, Sect. 3.1] we know that the Shimura curve V6/〈w2, w3〉 has genus 0
and three elliptic points of ramification indices 2, 4, and 6 respectively relative to the
Fuchsian uniformization by the upper-half plane. We let t be the coordinate on this
curve sending these points respectively to 1,∞ and 0. We will prove the following

Lemma 8. The natural map HT = P
1
λ
→ V6/ 〈w2, w3〉 is given (in the coordinates

above) by t = −256
27 λ/(λ− 1)4.

Proof. Choose points P0, P1, and P∞ of Z = V6(2) above t = 0, t = 1, and t = ∞
respectively, where t is our standard coordinate for X = V6/ 〈w2, w3〉. Set Z = V6(2)
and Y = V6(2)/(〈w3〉 × S 3). We will determine the ramification indices of Z/Y over
the points of Y by computing the ramification pattern of Y/X. Of course this can be
done using the uniformization by arithmetic groups, but for variety we will choose
another method.
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Since the quotient map H → V6(2) is unramified, the ramification of Z → X
has orders 6, 2, and 4 respectively at these points. Let S P denote the stabilizer of P in
G = AutZ � S 2× S 4. Then the points of Y above P are in bijection with the double
classes H\G/S P, where H = 〈w3〉 × S 3. Let y ∈ Y, above P ∈ X, correspond to a
double class HgS P. The ramification of y above P is of order [CP : (CP ∩ g−1Hg)].
By Proposition 13 Z is a hyperelliptic curve of genus 3, with w3 the hyperelliptic
involution. Hence the fixed points of w3 are the Weierstrass points. These form one
orbit under S 4, so that they are above 0, and we may assume S P0 = S 2 × A3. (In
fact, since S 4 permutes the Weierstrass points their images in P1 = Z/w3 can be
viewed as the vertices of a cube.) The stabilizers S P1 and S P∞ do not contain w3,
and may be viewed, up to an (outer) automorphism, as cyclic subgroups of S 4. this
forces S∞ to be conjugate to 〈(1234)〉. For S P1 there are a-priori two possibilities
up to conjugacy—C′2 = 〈(12)〉 or C′′2 = 〈(12)(34)〉. Computing the double classes
shows that we get two points P′0, P′′0 of Y, of respective ramification indices 3 and 1
over t = 0. Likewise we get one point P′∞ of Y over t =∞ of ramification index 4.
If S P1 = C′2, we would have over t = 1 two points P′1 and P′1 of ramification indices
2. This would contradict the Riemann–Hurwitz formula

2 = 2− 2g(Y) � 4(2− 2g(X))− 2− 3− 2 = 1.

Hence S P1 = C′2, and there are in Y over t = 1 two points, P′′1 and P′′′1 , of ramification
index 1, and one point, P′1, of ramification index 2.

Now let η be the coordinate on Y such that η(P′0) = 0, η(P′′0) =∞, and η(P′∞) = 1.
(Notice that this coordinate is defined over Q, because it is defined in a Galois-
invariant way.) Set β = η(P′1), γ = η(P′′1), and γ = η(P′′′1 ). Then t = cη/(η − 1)4,
and the double root at β gives (β − 1)4 − cβ = 4(β − 1)3 − c = 0. Solving gives
β = −1/3 and c = −256/27, so γ and γ are the roots of (3η + 7)2 + 32 = 0, hence
agree with their namesakes in Table 1(1). Notice also that the covering Z/Y has
ramification indices 6, 2, 2, and 2 at η = ∞, 0, γ, and γ respectively. This proves
that the covering H̃0

T /HT is isomorphic to Z/Y as claimed. $%

3.8 Case Number 3 on the List

Here the bad fibers are I1, I4, I5, and II, so that after twisting we have I1, I4, I5, IV∗,
and I∗0 . The algebra has discriminant 15. The local monodromies are

I4 I5 IV∗ I∗0
γI1 1 1 1 (12)
γI4 −1 1 1 1
γI5 1 −1 1 (23)
γII 1 1 −1 (123)
−1 −1 −1 −1 1
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It follows that the monodromy group is the quotient of S 2 × S 2 × S 2 × S 3 by
±1, and it embeds into AutV15(2) by Theorem 2. As in Proposition 13, this curve is
uniformized as Γ15(2)\H , where Γ15(2) is torsion free except for±1. Here however
2 is prime to 15, hence AutV15(2) � 〈w3〉 × 〈w5〉 × GL2(F2). This means that the
monodromy is everything. Since the P1

λ
has no fiber-preserving automorphisms, we

get the following

Lemma 9. The curve H̃T = H̃0
T is connected and P1

λ
� HT � V15/ 〈w3, w5〉.

In [17, Sect. 5.2] Elkies gives X = V15/ 〈w3, w5〉 as P1 with 4 ramification points
(of the cover H → X) P2, P′2, P′′2, and P6 of ramification indices 2, 2, 2, and 6
respectively. He also gives a coordinate t on X for which t(P2) = 0, t(P′2) = 81,
t(P′′2) = 1, and t(P6) =∞. We now have the following simpler analog of Lemma 8,
whose proof is left to the reader.

Lemma 10. The natural isomorphism V15/〈w3, w5〉 → P1
λ

is given by λ = t−81
8t .

Remark 9. For both cases Table 1(1), (3) on the list we have checked that the Picard–
Fuchs equations of the family of Kummer surfaces over the Shimura curve, and of
the family of twists over HT , agree. This will appear elsewhere [5]

4 Isogenies Between Abelian Surfaces and Discriminant Forms

In what we have done so far we have seen how one can start from an elliptic surface
and identify that it is a Kummer surface associated with an abelian surface with
Quaternionic multiplication. In more general cases the abelian surface will only
be isogenous to one with QM by a maximal order in a certain rational quaternion
algebra. We would like to develop tools to allow us to recognize such a situation.
Note that in our case we know which quaternion algebra it should be because of the
computations in Sect. 2. We address more generally the question of determining an
isogeny between two abelian surfaces in terms of their Néron–Severi lattices and
even more precisely in terms of their discriminant forms.

4.1 The Theory of Discriminant Forms

Recall from [30] that a lattice is a free abelian group S together with a Z-valued
symmetric bilinear form. The lattice is called even if the associated quadratic form
takes only even values. For a lattice S the lattice S [n] will denote the lattice with the
same underlying group but with the form multiplied by n. For an even lattice S the
discriminant group AS is the (finite) quotient group S ∗/S , where S ∗ is the Z-dual of
S and S ↪→ S ∗ using the form. The quadratic form induces on AS a quadratic form
qS with values in Q/2Z called the discriminant form of S . We will often shorthand
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the pair (AS , qS ) to simply qS . We will always assume that the lattice is even, unless
it is explicitly stated otherwise.

Nikulin [30, Propositions 1.8.1 and 1.8.2] gives a complete classification of dis-
criminant forms. There is an obvious Zp version of a lattice and a notion of a dis-
criminant form associated with such a lattice. Nikulin’s classification goes hand in
hand with a classification of these Zp-lattices as well.

Theorem 3 (Nikulin). A Zp-lattice is a direct sum of lattices of the following form:

• K(p)
θ (pk) for any prime p and any k ≥ 0. This lattice is generated by a single

element with square θpk, where θ ∈ (Z×p )2/Z×p .
• U (2)(2k) and V (2)(2k) when p = 2 and k ≥ 0—these are two dimensional lattices

corresponding to the matrices
(

0 2k

2k 0

)
and

(
2k+1 2k

2k 2k+1

)
respectively.

Any finite discriminant form is a direct sum of forms of the following types:

• The discriminant form q(p)
θ (pk) of K(p)

θ (pk) for any prime p and k > 0.
• The discriminant forms u(2)

+ (2k) of U (2)(2k) and v(2)
+ (2k) of V (2)(2k) for p = 2 and

k > 0.

There is a rather long list of relations between these objects. We refer to [30, Propo-
sition 1.8.2]

Definition 21. The signature of a discriminant form q is the signature of a lattice M
with q = qM taken modulo 8.

Theorem 4 ([30, 1.11.2]). The signature of q is well defined. It can be computed as
follows:

1. sign(q(p)
θ (pk)) ≡ k2(1 − p) + 4kη (mod 8) if p � 2 where η is defined by ( θ

p ) =
(−1)η and ( ·· ) is the Legendre symbol.

2. For p = 2 we have

sign(q(2)
θ (2k)) ≡ θ + k

θ2 − 1

2
, sign(v(2)

+ (2k)) ≡ 4k,

sign(u(2)
+ (2k)) ≡ 0 (mod 8).

Under some fairly mild conditions, Nikulin shows that an even lattice is character-
ized by its signature and discriminant forms. For a discriminant form q, let l(q) be
the minimal number of generators for the underlying group.

Theorem 5 ([30, Theorems 1.13.2 and 1.14.2]). An even lattice T is uniquely de-
termined by its discriminant form q, rank r and signature if the following conditions
are satisfied:

1. It is indefinite and r ≥ 3.
2. For a prime p � 2 either (a) r ≥ 2 + l(qp) or (b) qp � q(p)

θ1
(pk)⊕ q(p)

θ2
(pk)⊕ q′p.

3. Either r ≥ 2 + l(q2) or q2 = q′2 ⊕ q′′2 with q′′2 isomorphic to (a) u(2)
+ (2k), v(2)

+ (2k),
or (b) q(2)

θ1
(2k)⊕ q(2)

θ2
(2k+1).
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If conditions (1) and (2a) are satisfied, and in addition either r ≥ 1 + l(q2) or (3a)
is satisfied, with k = 1, then the map Aut(T ) → Aut(qT ) is surjective.

For future reference we record here several results on discriminant forms associated
with singular fibers and with abelian surfaces.

Proposition 14 ([4, Lemma 2.8]). For each type t of a singular fiber, the discrimi-
nant forms qt of the associated lattice S Gt is given by Tables 2 and 3. For a singular
fiber of type Ib the discriminant group has one generator of order b whose square is
b−1 − 1.

Table 2: Discriminant forms of singular fibers

t II∗ III∗ IV∗

qt {0} q(2)
1 (2) q(3)

−1(3)

Table 3: Discriminant forms of I∗b fibers

b (mod 8) 2 � b ±2 4 0

qI∗b q(2)
4−b(4) q(2)

2−b/2(2)⊕ q(2)
2−b/2(2) u(2)

+ (2) v(2)
+ (2)

4.2 Rank 4 Lattices and Discriminant Forms

Let L and L1 be oriented rank 4 lattices. An orientation on L means that a choice
is given for a generator of ∧4L. Our goal is to analyze isogenies between these
lattices (i.e., orientation preserving embeddings with finite cokernels) using as much
as possible only the∧2 of the lattices, together with the intersection form. Moreover,
we are really interested in the case where L and L1 are the homology or cohomology
of abelian surfaces. In this case, we are supplied with primitive sublattices inside
these ∧2, corresponding to the Néron–Severi lattice, and we want to force a certain
behavior on these lattices. For simplicity we only treat the case of an isogeny of
prime degree. More complicated cases can then be deduced by composition.

We let H = ∧2L. The choice of orientation provides H with an even quadratic
form given by x ∧ x = x× x× orientation.

Let L∗ = Hom(L,Z). The choice of orientation on L determines a choice of
orientation on L∗, hence gives H∗ = ∧2L∗ an even quadratic form as well. Note that
H∗ is the Z-dual of H based on the pairing 〈x ∧ y, z ∧ w〉 = x(z) × y(w). Since H
together with its quadratic form is a unimodular lattice, we obtain an isomorphism
H → H∗, which is easily seen to be an isometry. We can write this explicitly as
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follows: Let {e1 . . . , e4} be a basis of L and assume that the orientation is given by
e1∧· · ·∧e4. Let {e∗1, . . . , e∗4} be the dual basis. Suppose that i, j, k and l are 4 distinct
indices and that they are oriented. Then the isometry H → H∗ takes ei∧e j to e∗k∧e∗l .

Let
f : L ↪→ L1 (4)

be an orientation preserving embedding of lattices such that L1/ f (L) � Z/p. Let
H1 = ∧2L1 and H∗

1 = ∧2L∗1. The isogeny f induces a map ∧2 f : H → H1. The
map ∧4 f takes the orientation on L to p-times the orientation on L1. This implies
that the map ∧2 f multiplies the quadratic form by p. It thus provides an isometric
embedding ∧2 f : H[p] ↪→ H1 with finite cokernel.

We now recall more of Nikulin’s theory. An over-lattice S ′ of a lattice S is an
isometric inclusion S ⊂ S ′ of finite index.

Proposition 15 (Nikulin [30, Proposition 1.4.1]). Such an over-lattice of S is de-
termined by an isotropic subgroup of qS , WS ′:S ⊂ qS , which is defined as

WS ′:S = S ′/S ⊂ S ∗/S = qS .

Further, WS ′:S determines qS ′ as

qS ′ = W⊥
S ′:S /WS ′:S (5)

where ⊥ denotes the orthogonal complement with respect to the bilinear form
induced by qS .

Several consequences of this observation will be needed later on. The first is an
easy extension of an argument of Nikulin.

Lemma 11. If S is a primitive sublattice inside a lattice H,with orthogonal comple-
ment S⊥, then the group WH:S⊕S⊥ is the graph of an isometry between a subgroup
A in qS⊥ and a subgroup B in qS [−1]. We have the equality

|A|2 = |B|2 = |AS | × |AS⊥ |
|AH| .

Proof. Except for the estimate on the size of A, this is simply Proposition 1.5.1 of
[30]. The size estimate follows since |A| = |WH:S⊕S⊥ |, while by the nondegeneracy
of the discriminant form we have |WH:S⊕S⊥ |× |W⊥

H:S⊕S⊥ | = |AS⊕S⊥ | = |AS |× |AS⊥|
and so (5) gives

|AH| =
|W⊥

H:S⊕S⊥ |
|WH:S⊕S⊥ | =

|AS | × |AS⊥ |/|A|
|A| ,

giving the result. $%
Corollary 3 ([30, Corollary 1.6.2]). If, in the notation of the above Lemma, the
lattice H is unimodular, then the group WH:S⊕S⊥ is the graph of an isometry

qS⊥
∼−→ qS [−1].
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Proof. As |AH| = 1, and as |A|, |B| ≤ |AS |, |AS⊥|, we easily obtain that all four
numbers are the same, and the required isometry. $%
Proposition 16. For the lattice S N of Definition 19 we have the equality of discrim-
inant forms qS N = qN[2].

Proof. This can be checked starting from the definition by a direct computation, but
there is an easier way. Let N be the Néron–Severi lattice of an abelian surface A
with an associated Kummer surface X with Néron–Severi lattice S N , and let T (A)
and T (X) be the transcendental lattices of A and X respectively. We will see later
in Corollary 9 that we have T (A) � N[−1] and by [1, Chap. VIII] one has that
T (X) � T (A)[2] � N[−2]. It now follows from Corollary 3 that

qS N � qT (X)[−1] � qN[2].

$%
We now return to applications to the situation at hand. The over-lattice H1 of

H[p] determines a lagrangian subgroup WH1:H[p] ⊂ qH[p] inside the discriminant
form of H[p], where, by definition, WH1:H[p] is the image of H1, acting as functionals
on H[p] inside H[p]∗/H[p]. Since H is unimodular, H[p]∗/H[p] may be identified
with H/pH, and thus also with H∗/pH∗, i.e., with ∧2(L/pL) or with ∧2(L∗/pL∗).

An alternative way of viewing the above identifications is the following: After
tensoring everything with Q we may think of L1 as sitting in the sequence 1

p L ⊃
L1 ⊃ L. Correspondingly, we have

∧2 1

p
L ⊃ 1

p
∧2 L ⊃ ∧2L1 ⊃ ∧2L

where the second from the right inclusion arises because L1/L is one dimensional.
The form identifies 1

p ∧2 L with H[p]∗, hence H[p]∗/H[p] with 1
p ∧2 L/ ∧2 L, and

finally this group with ∧2(L/pL) via the map

1

p
∧2 L/ ∧2 L

p−→ ∧2L/p ∧2 L → ∧2(L/pL).

The subgroup WH1:H[p] is just the image of ∧2L1 under this map.
One question we would like to address now is: Given a lagrangian subspace

W ⊂ qH[p], does it in fact come from an embedding of lattices f as in (4). We first
recall a general fact about lagrangian subspaces in this situation.

Proposition 17 ([14]). Let V be a four-dimensional space over a field F and let
Q = ∧2V be equipped with a quadratic form (defined up to a non-zero constant)
coming from the wedge product. Let W ⊂ Q be a totally isotropic subspace. Then

1. The subspace W is of one of two forms:

a. W = ∧2V ′ where V ′ is a three-dimensional subspace of V.
b. W = v ∧ V where v ∈ V is a non-zero vector.
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2. If W1 and W2 are two such subspaces then dim W1 ∩ W2 is odd if W1 and W2

are of the same type and even otherwise.
3. Let V∗ be the dual space to V and let Q∗ := ∧V∗, identified with the dual of Q

in the obvious way. Let W⊥ be the annihilator of W in Q∗. Let W∗ be the image
of W under the isometry Q → Q∗ described (in the integral case) before. Then
W⊥ and W∗ are of the complementary type to W.

Definition 22. We will call a subspace W ⊂ Q of type 1 (respectively type 2) if it is
of the form described in (1a) (respectively (1b)) of Proposition 17.

We can now fairly easily decide what the type of WH1:H[p] above is.

Proposition 18. The subspace WH1:H[p] ⊂ ∧2(L/pL) is of type 2 in the situation
described above. Conversely, if W is of type 2, then there exist a map f : L → L1

with W = WH1:H[p].

Proof. Suppose we have a basis {e1, . . . , e4} for L such that L1 is given by adding
e1/p. Then ∧2L1 is obtained from ∧2L by adding 1

p e1 ∧ ei for i > 1 and the image

in ∧2(L/pL) is e1 ∧ (L/pL), which is of type 2. Conversely, if W is of type 2 cor-
responding to a vector v ∈ L/pL, then clearly L1 generated over L by 1

p v gives the
correct W. $%

Note that to know the type of W it suffices to know the type of just one space
W0, for then the type of W is determined, via Proposition 17, from dim W ∩ W0.
Also, if we want to know the existence of a subspace of type 2 it suffices to find two
subspaces with even intersection.

A useful easy corollary of the preceding proposition is the following.

Corollary 4. Suppose that W ⊂ ∧2(L/pL) is of type 1. Then there exists a map
g : L1 → L such that the induced map

H
∼−→ H∗ ∧2g∗−−→ H∗

1
∼−→ H1 (6)

gives an isometric embedding H[p] ↪→ H1 corresponding to W.

Proof. We consider W∗ ⊂ ∧2(L∗/pL∗) which is of type 2 by Proposition 17. By
Proposition 18 W∗ corresponds to a map g∗ : L∗ → L∗1 and we recover g from
this. $%

Note that if we view in the proposition and the corollary the subspaces W as
contained in ∧2(L∗/pL∗) then the conditions about the type should be reversed.

4.3 Applications to Isogenies of Abelian Varieties

If L = H1(A), L1 = H1(A1), where A and A1 are abelian surface, then an isogeny f :
A → A1 determines an orientation preserving map f∗ : L → L1. Conversely, if A is
given, an orientation preserving L → L1 is obtained as f∗ for a uniquely determined
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abelian surface A1 and an isogeny f : A → A1. Note that if the orientation on L1 is
not specified, then we can always choose an orientation to make the map orientation
preserving. There is a dual picture where L = H1(A), L1 = H1(A1) and the map is
f ∗ for an isogeny f : A1 → A.

The following is an easy consequence of the discussion above and of Part 3 of
Proposition 17

Corollary 5. Let A be an abelian surface, let H = H2(A,Z) and let W ⊂ qH[p] be a
lagrangian subspace. Then the embedding H ⊂ H1 controlled by W is realized as
either f ∗ for an isogeny A1 → A or as f∗ for an isogeny f : A → A1, both isogenies
of degree p.

We now want to have an analysis of isogenies of abelian surfaces based on their
Néron–Severi lattices. Suppose A is an abelian surface with Néron–Severi lattice N.
We want to know if there is an isogeny of degree p connecting A with an abelian
surface with Néron–Severi lattice N′, given the relation between N and N′, or even
a relation between their discriminant forms.

Suppose that such an isogeny, say f : A → A′ exists. Then the map f∗ is an
isometry N[p] ↪→ N′ and the over-lattice N′ of N[p] is described in terms of W =
WN′:N[p] ⊂ qN[p] as before. Suppose conversely that W is given. We would like to
know if it indeed comes from an isogeny as above, and if possible say something
about this isogeny, or the number of possible isogenies.

Consider the following situation. Let i : S ↪→ R be a primitive sublattice. Let
S⊥ be the orthogonal complement of S in R. Then we have an over-lattice situation
S ⊕ S⊥ ⊂ R which is controlled by the subgroup WR:S⊕S⊥ ⊂ AS ⊕ AS⊥ .

Suppose now that R ⊂ R′ is an over-lattice, controlled by the subgroup WR′:R ⊂
AR. The lattice S ′ = QS ∩ R′ is an over-lattice of S . We would like to describe the
subgroup WS ′:S ⊂ AS determined by it.

There is no direct functoriality for discriminant forms. However, we can make
the following definition.

Definition 23. The image of AS in AR is the subgroup i∗AS of AR generated by all
functionals on R which vanish on S⊥.

The following lemma is easy.

Lemma 12. Under the isomorphism (5) the subgroup i∗AS is identified with

(AS ∩W⊥
R:S⊕S⊥ )/WR:S⊕S⊥ ,

where AS sits as the first summand in AS⊕S⊥ = AS ⊕ AS⊥ .

Lemma 13. We have WS ′:S ⊂ AS ∩W⊥
R:S⊕S⊥ and the identification of the last Lemma

induces an isomorphism WS ′:S � i∗(AS ) ∩WR′:R.

Proof. The intersection corresponds in the previous description of the image to
those functionals that actually come from an element of R′. The following two maps
are clearly inverse to each other and provide the required isomorphism: Start first
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with an element of S ′. Then, seen as an element of R′ it induces a functional on R
which vanishes on S⊥ hence gives an element of the image. Elements of S clearly
give 0 this way. The map on the other direction starts with an element of R′ that kills
S⊥. Then it is clearly in QS and therefore in S ′. $%

The considerations above lead to the following procedure for analyzing an
isogeny of abelian surfaces in terms of discriminant forms.

Proposition 19. Let A be an abelian surface and let H be its second cohomology
(respectively homology) N ⊂ H is the Néron–Severi lattice (if H is the homology,
then we identify H with the cohomology as above). Let T = N⊥ be the lattice of tran-
scendental cycles. Let N′ be an over-lattice of N[p] corresponding to an isotropic
subgroup W ⊂ qN[p]. Then, for the map N → N′ to be f ∗ (resp. f∗) for an isogeny
of degree p, f : A′ → A (resp. f : A → A′), the following conditions are sufficient
and necessary:

• W ⊂ W⊥
H[p]:N[p]⊕T [p] and W ∩ WH[p]:N[p]⊕T [p] = 0 (this implies that W can be

found inside i∗qN[p]).
• There exists a lagrangian subgroup WH′:H[p] such that W = i∗(qN[p]) ∩WH[p]:H.
• The subgroup WH′:H[p] is of type 2 (resp. 1).

Proof. Indeed, f ∗ is ∧2 of the map f ∗ on H1, so corresponds to a subgroup of type
2 by Proposition 18. An f∗ corresponds to a subgroup of type 1 by Corollary 4. $%
Corollary 6. Suppose that we have an isogeny of degree p, A → A′, or A′ → A, of
abelian surfaces. Suppose that A1 is an abelian surface and that there is an isometry
qNS(A1) � qNS(A). Then there exists an abelian surface A′1 with qNS(A′1) � qNS(A′) such
that there exists an isogeny of degree p either A1 → A′1 or A′1 → A1.

Proof. The first two conditions of Proposition 19 are immediately satisfied by the
conditions (using the proposition again). The third condition only determines the
direction of the isogeny. $%

4.4 Abelian Varieties with Multiplication by Eichler Orders

Our first application of the above considerations is as follows: Let MD,n be an Eich-
ler order of discriminant D and level n. In [4, Proposition 3.2] the Néron–Severi
lattice of a general abelian surface with multiplication by MD,n is determined. In
fact, there is a lattice ND,n (this lattice is described in loc. cit.) such that an injection
MD,n ↪→ End(A) determines an injection ND,n ↪→ NS(A). It was further proved
in [4, Corollary 4.4] that if n = 1, i.e., when the order is maximal, then conversely
an isometry ND,n � NS(A) determines an isomorphism MD,n ↪→ End(A). We now
show the same in the case that n is prime.
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Proposition 20. Let N = ND,p be the Néron–Severi lattice of an abelian surface
with multiplication by the Eichler order M = MD,p of discriminant D and prime
level p. Suppose that A is an abelian surface whose Néron–Severi lattice is isometric
to N. Then A has multiplication by M .

Proof. We know that there is an isogeny of degree p between abelian surfaces with
multiplication by M and those by MD,1. By Corollary 6 we see that there exist
an abelian surface A′ whose Néron–Severi lattice has the same discriminant form
as ND,1, and such that there is either an isogeny A → A′ or an isogeny A′ → A.
Nikulin’s theory implies that ND,1 is determined by its discriminant form and signa-
ture and therefore NS(A′) � ND,1, hence by what was said before A′ has multiplica-
tion by the maximal order M ′ =MD,1.

Suppose we have an isogeny A → A′. We find H1(A) ⊂ H1(A′) � M ′, with
a quotient of order p. The endomorphism ring of A, which we now denote by M
and must show is Eichler, is the subring of M ′ ⊗ Q stabilizing H1(A). This will
defer from M ′ at most at p, so we may now tensor everything with Zp, where
M ′ = M2(Zp). Since H1(A) will contain an invertible matrix we may assume (by
multiplying H1(A) from the left) that M ⊂ M ′. It remains to compute the reduction
of M inside M2(Fp). Using the form tr(C × B) on M2(Fp) we see that the reduction
of H1(A) modulo p will be the subspace annihilated by a single non-zero matrix C.
This matrix has either rank 1 or 2. If it has rank 1, then the reduction of M fixes a
single vector and M is an Eichler order as required. If C has rank 2 we may assume
that it is the identity matrix. In this case H1(A) consists of matrices whose trace is
divisible by p and the reduction of M consists of scalar matrices. To rule out this
option we compute the p-part of the discriminant form of the Néron–Severi lattice
in this case and we show that it not the same as for an Eichler order. In fact, we claim
that in this case we have NS(A) = NS(A′)[p] and the discriminant is divisible by p3,
while for an Eichler order it should only be divisible by p. Indeed, an element of
both NS(A) and NS(A′) is described by a matrix b ∈ B0 giving rise to a symplectic
form tr(bxy′) and it belongs to NS(A) (respectively NS(A′)) if and only if it takes
integral values on H1(A) (respectively H1(A′)) and we must show that these two
conditions are in fact equivalent. This is easily seen from the fact that products of
two traceless matrices in M2(Fp) span all of M2(Fp). $%

4.5 Further Analysis

To end this section we return to an arbitrary abelian surface and examine the situa-
tion a bit more closely.

Lemma 14. Let S be a lattice with a discriminant form qS having an underlying
group AS . Then AS = pAS [p], i.e., is embedded in AS [p] as the subgroup of elements
divisible by p. The relation between the quadratic forms is given by the formula
qS (px) = p× qS [p](x) for x ∈ AS [p] and px ∈ AS .
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Proof. The map i : AS → AS [p] is the right vertical map in the following commuta-
tive diagram with exact rows

0 −−−−→ S −−−−→ S ∗ −−−−→ AS −−−−→ 0

id

⏐⏐⏐⏐⏐� p
⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�

0 −−−−→ S [p] −−−−→ S [p]∗ −−−−→ AS [p] −−−−→ 0

An easy diagram chase shows that this map is injective and its image is pAS [p].
Finally, if x ∈ S [p]∗, then px (mod S [p]) = i(x (mod S )), hence we view p(x
(mod S [p])) ∈ AS as represented by x and qS (x (mod S [p])) = x×S ∗ x = px×S [p]∗

x. $%
Corollary 7. Let A be an abelian surface with cohomology or homology lattice H as
before and with Néron–Severi and transcendental lattices N and T respectively. The
inclusion N⊕T ⊂ H determines an isomorphism qT � qN[−1]. Suppose that this is
induced from an isometry T � N[−1]. In this case we also have qT [p] � qN[p][−1]
and identifying the underlying groups under this isometry we have

WH[p]:N[p]⊕T [p] = {(px, px) : x ∈ qN[p]}

and

W⊥
H[p]:N[p]⊕T [p] = {(x, y) : p(x− y) = 0}

hence

AH[p] =
{(x, y) : p(x− y) = 0}
{(px, px) : x ∈ qN[p]}

5 Isogenies Related to Abelian Surfaces with Quaternionic
Multiplication

In the previous section we have seen that isogenies between abelian surfaces can
be to a large extent determined solely from the discriminant form of the Néron–
Severi lattice. In fact, Proposition 19 shows that the only delicate part is to determine
the direction of the isogeny. This requires understanding of the relation between
the Néron–Severi lattice and the cohomology or homology. Such information is
available if the abelian surface in question has quaternionic multiplication. In this
section we will develop some tools for finding isogenies. In the following section
we will demonstrate these techniques by describing an isogeny or order 2 from an
abelian surface A with multiplication by an order in a quaternion algebra ramified
at 2 when the order is maximal at 2.
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5.1 A Special Subgroup

In the notation of the previous section the isogeny is determined by a lagrangian
subspace

W ⊂ qH[p] � W⊥
H[p]:N[p]⊕T [p]/WH[p]:N[p]⊕T [p] ,

where WH[p]:N[p]⊕T [p] and W⊥
H[p]:N[p]⊕T [p] are described in Corollary 7. Whether the

isogeny is to or from A depends on the type of W. To determine this type it suffices,
by Proposition 17, to know the type of a single lagrangian subspace W0. The type
of any other subspace W is determined based on the dimension of the intersection
W ∩W0. A natural W0 to consider is the space, again in the notation of the previous
section,

W0 :=
{(x, x) : x ∈ AN[p]}
{(px, px) : x ∈ AN[p]}

5.2 The Integral Cohomology of a QM Abelian Surface

We now determine the type of W0 in the following situation: A has multiplication
by an order M in a quaternion algebra B ramified at p and M is maximal at p. The
first homology of A is an ideal of M and we further assume that it is principal and
can therefore be identified with M . This assumption is true if M is either maximal
or Eichler.

We first recall the description of the Néron–Severi lattice and the second coho-
mology of A as found in [3]. The cohomology group H2(A,Q) can be identified with
the collection of rational valued antisymmetric quadratic forms on B � H1(A,Q) and
the integral homology with the lattice of forms taking integral values on M .

Let B0 := {b ∈ B : tr(b) = 0}. In [3, Theorem 3.10] it is shown that there
are two embeddings of B0 into H2(A,Q) with orthogonal images given by sending
v ∈ B0 to the forms on B defined via (x, y) �→ tr(bx′y) and (x, y) �→ tr(bxy′) respec-
tively. Moreover, the rational Néron–Severi lattice is simply the image of the second
embedding. Thus we can identify H2(A,Q) with B0 ⊕ B0. Let D−1 be the inverse
different of M , defined as the lattice of all x ∈ B such that tr(xM ) ⊂ Z. The in-
tegral Néron–Severi lattice is the image of D−1 under the second embedding and
the transcendental lattice is the image under the first embedding. The full integral
cohomology is determined as follows.

Proposition 21. Let M ′ be the lattice of all b ∈ B such that tr(b(xy− yx) ∈ Z for
all x, y ∈M . Then, under the identification above

H2(A,Z) = {(b, b + δ) : b ∈M ′, δ ∈ D−1} .

Proof. We have

H2(A,Z) = {(b1, b2) ∈ B0 ⊕ B0 : tr(b1x′y) + tr(b2xy′) ∈ Z, x, y ∈M } .
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We first test the condition with y = 1 and get for all x ∈M

tr(b1x′ + b2x) = tr(b′1x + b2x) = tr((b2 − b1)x) ∈ Z .

It follows that δ := b2 − b1 belongs to the inverse different D−1. We now substitute
b2 = b1 + δ into the original condition and get

tr(b1(x′y + xy′) + δxy′) ∈ Z .

Since the trace of the second summand is already in Z we see that the condition is
tr(b1(x′y+ xy′)) ∈ Z. This simplifies a bit since tr(b1xy′) = tr(−b1yx′) so we see that
the condition is equivalent to the one in the statement of the proposition. $%
Corollary 8. The Z-dual of NS(A) can be identified via the cup product with
{(0, x), x ∈M ′}.
Proof. If x ∈ D−1 and y ∈ M ′ then (x, 0) ∪ (y, 0) = (x, 0) ∪ (y, y) ∈ Z since
(y, y) ∈ H2(A,Z). Conversely, since D−1 ↪→ H2(A,Z) is primitive, any Z-valued
functional on D−1 can be extended to H2(A,Z), and this, being unimodular, is given
by cup product with another element. But (x, 0) ∪ (y, z) = (x, 0) ∪ (y, 0). $%

5.3 The Type of the Special Subgroup

It follows from the considerations above that AN ⊕ AT is identified with the space

{(x, y), x, y ∈M ′}
{(x, y), x, y ∈ D−1} .

Lemma 15. The space WH:N+T ⊂ AN ⊕ AT is the image of the diagonal {(x, x),
x ∈M ′}.
Proof. Indeed, elements of H are congruent modulo D−1 to diagonal elements. $%
Corollary 9. The identification qN � −qT is induced by the isometry N � T [−1]
induced by the identity map on M ′. In particular, the assumptions of Corollary 7
are satisfied.

Proposition 22. The subspace W0 is of type 1.

Proof. We need to describe an element in W0 as a quadratic form modulo p on M .
It is easy to see that this is the functional obtained from an appropriate diagonal
element (b, b), giving the quadratic form (x, y) �→ tr(b(xy′ + x′y)) which clearly
vanishes when x = 1 regardless of b. Thus W0 annihilates 1 ∧ M /p. The result
follows from Proposition 17. $%
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5.4 Discriminant Forms Associated with QM Abelian Surfaces

Here we record some results of [4] about the discriminant forms associated to the
Néron–Severi lattices of QM abelian surfaces

Proposition 23. Let A be an abelian surface whose endomorphism ring is isomor-
phic to the Eichler order MD,N. The Zp lattice NS(A)⊗ Zp is isomorphic to:

1. When 2 � p|D—K(p)
−2vDN/p(p)⊕ K(p)

−2DN/p(1)⊕ K(p)
2vDN/p(1);

2. When 2 � p � D—K(p)
−2DN/pn (pn)⊕ K(p)

1 (1)⊕ K(p)
−1(1);

3. When p = 2|D—K(2)
−5DN/2(4)⊕ V (2)(1);

4. When p = 2 � D—K(2)
−DN/2n (2n+1)⊕ U (2)(1),

where n = ordp(N).

Corollary 10. The discriminant form of the lattice NS(A)[2] is

⊕

2�p|D
q(p)
−vpDN/p(p)⊕

⊕

2�p|N
q(p)
−DN/pnp (np)⊕

⎧
⎪⎪⎨
⎪⎪⎩

q(2)
−5DN/2(8)⊕ v(2)

+ (2) if 2|D;

q(2)
−DN/2n2 (n2 + 2)⊕ u(2)

+ (2) if 2 � D.

6 A Special Isogeny

We now specialize the theory of the previous section even further, to analyze in
great detail a particular isogeny of degree 2. Throughout this section, B = BD is a
quaternion algebra of discriminant D, where we assume 2|D. We consider an Eichler
order M = MD,p in B of prime level p, where p = 1 means the order is maximal.
We will denote by π2 an element of M of norm 2 which normalizes M —such an
element exists by a theorem of Eichler (see e.g. [Example III.5.5]). In addition, by
Proposition 20 there is an associated lattice N = ND,p such that for an abelian surface

A an isomorphism M
∼−→ End(A) determines and is determined by an isometry

N
∼−→ NS(A).

6.1 The Isogeny

By Corollary 10 the 2-primary part of qN[2] is q(2)
θ (8) ⊕ v(2)

+ (2) for some θ. The
underlying group is Z/8Z⊕ (Z/2Z)2.

Definition 24. Let N′ ⊃ N[2] be the over-lattice determined by the lagrangian sub-
space Υ ⊂ qN[2] generated by 4⊕ (0⊕ 0).

We have W⊥
H[2]:N[2]⊕T [p] = {(x, y) : x, y ∈ AN[2], 2(x − y) = 0}. The intersection

with AN[2] ⊕ 0 consists exactly of (Υ⊕ v(2)
+ (2))⊕ 0 and Lemma 12 tells us that this

last group is i∗AN[2]. In particular, Υ is mapped isomorphically into this image.
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Let ε ∈ M /2M be the reduction modulo 2 of π. Then M/2M � F4[ε], and
we have ε2 = 0 and αε = εᾱ for α ∈ F4. The ideal F4ε is canonically the unique
two sided nilpotent ideal. The stabilizer in F4[ε] of any one-dimensional subspace
of F4ε is F2 + εF4 Let M ′ ⊂ M be the order which is the pre-image of F2 + εF4.

Let A be an abelian surface with M ↪→ End(A). The algebra M/2M = F4[ε]
acts on the two torsion subgroup A[2] and the kernel of ε there is well defined. We
consider an isogeny of degree 2, f : A → A′, whose kernel is contained in Kerε.

Lemma 16. We have M ′ ∼−→ End(A′).

Proof. The M′ action on A clearly preserves Kerε and acts trivially on it. Hence
M′ acts on A′. Since the only orders of B containing M′ are M′ and M, we must
show that M does not act on A′. This is clear, since any non-zero element of Kerε
generates Kerε as an M-module. $%
Proposition 24. Suppose A is an abelian surface with M

∼−→ End(A). Let f : A →
A′ be an isogeny of order 2. Then Ker( f ) ⊂ Ker(ε) if and only if we have an isometry
N′ ∼−→ NS(A′) and f∗ induces the isometry N[2] ↪→ N′.

Proof. By Proposition 19 and by Corollary 7, an isogeny f such that N′ ∼−→ NS(A′)
is determined by a lagrangian subspace

W ⊂ AH[2] =
{(x, y) : x, y ∈ AN[2], 2(x− y) = 0}

{(2x, 2x) : x ∈ AN[2]}
satisfying the following two properties:

1. Its intersection with i∗qN[2] should equal Υ.
2. It is of type 1.

In qH[2] we found the subspace

W0 :=
{(x, x) : x ∈ AN[2]}
{(2x, 2x) : x ∈ AN[2]} ,

which is of type 1 by Proposition 22. It follows from Proposition 17 that the sec-
ond condition can be replaced by the condition that W has an intersection of odd
dimension with W0.

We consider now in more detail the discriminant form on AH[2]. Clearly, it
depends only on the 2-primary part in AN[2]. Hence we may replace AN[2] by its
2-primary part and we have

AH[2] =
{(x1, x2), xi ∈ Z/8, 2(x1 − x2) = 0}

{(2x, 2x), x ∈ Z/8} ⊕ (Z/2)4

The last four factors give two copies of v(2)
+ (2). The quotient group is generated

by the element e1 = (1, 1) and e2 = (4, 0), both of order 2. The square of these
two elements is 0 and together they generate a copy of u(2)

+ (2) (indeed we have
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qH[2] � (u(2)
+ (2))3 � v(2)

+ (2)⊕ v(2)
+ (2)⊕ u(2)

+ (2)). The three-dimensional subspace W0

is generated by the graph of the identity morphism v(2)
+ (2) → v(2)

+ (2) together with
e1. By Lemma 12 the image i∗q[N[2] of qN[2] is generated by the first copy of v(2)

+ (2)
together with e2.

The lagrangian subspace W of v(2)
+ (2)

2 ⊕ u(2)
+ (2) should have intersection with

i∗q[N[2] equal to the subspace generated by e2, and an intersection of odd dimension
with the subspace W0. Since W0 does not contain e2, the intersection must be one-
dimensional. Since e1 × e2 = 1/2 we see that W is the direct sum of e2 with the
intersection of W with v(2)

+ (2)⊕ v(2)
+ (2), which is a lagrangian subspace with trivial

intersection with the first v(2)
+ (2) and with 1-dimensional intersection with the graph

of the identity. This is exactly the graph of an isometry from the second v(2)
+ (2)

to the first which has a 1-dimensional fixed space. The isometries of v(2)
+ (2) are

all permutations of the non-zero elements hence there are three isometries of the
required type. There is a non-canonical identification of A[2] with F4[ε] as F4[ε]-
modules. Under the action of F4[ε]× there are two orbits of non-zero elements, F4ε−
0 and the other elements F4[ε]− F4ε. Quotients by elements in the same orbit give
isomorphic abelian surfaces. Thus, the three possibilities for W must correspond to
the three non-zero elements in F4ε. $%

6.2 A Converse Theorem

We have the following converse to Proposition 24:

Proposition 25. Let A′ be an abelian surface. The following conditions on A′ are
equivalent:

1. There exists an abelian surface A, an isometry N
∼−→ NS(A) (and as a conse-

quence an isomorphism M
∼−→ End(A)) and an isogeny f : A → A′ of degree 2

whose kernel is contained in the kernel of ε.
2. There exists an isometry N′ ∼−→ NS(A′).

Proof. That (1) implies (2) follows from Proposition 24. It also follows from this
proposition, together with Corollary 5 the over-lattice N′ ⊃ N[2] is induced by
either an isogeny f : A → A′, which then must be of the appropriate type, or by
an isogeny A′ → A. We only need to consider this second case. In this case there
is an isogeny g : A → A′ with Ker(g) � (Z/2)3 such that g ◦ f is multiplication by
2. We will show that there are exactly 3 isogenies from A to an abelian variety with
Néron–Severi lattice isometric to N′. As in the proof of Proposition 13, the 2-adic
completion of B is “the” division quaternion algebra over Q2, and it contains an
element π2 of norm 2 which normalizes its unique maximal order (compare Sect. 6).
The compositions of π2 with the quotient by the three non-zero vectors in the kernel
of π2 are 3 such isogenies. Thus, g must be of this type and this will complete the
proof.
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Let L and L′ be the homology lattices of A and A′, we have L ⊂ L′ with
L′/L � (Z/2)3. This induces the isometric embedding ∧2L[8] ⊂ ∧2L′ where the
quotient group is isomorphic to (Z/4)3 ⊕ (Z/2)3. This shows that ∧2L can be di-
vided by 2 in ∧2L′. Thus we find instead an isometric embedding ∧2L[2] ⊂ ∧2L′
where the quotient is isomorphic to (Z/2)3 and is ∧2 of L′/L. This situation is com-
pletely analogous to the one in the proof of Proposition 24, except that now we are
looking for a subspace of type 2. Proceeding as in that proof we see that the pos-
sible isogenies g are determined by isometries of v(2)

+ (2) whose graph has an even
intersection with the graph of the identity, i.e., which are either the identity or have
no fixed points. There are exactly 3 such isometries corresponding to the possible
cyclic shifts on the three non-zero vectors. $%
Remark 10. Note that if either of the equivalent conditions of Proposition 25 is sat-
isfied, then there exists an isomorphism M ′ ∼−→ End(A′) by Lemma 16. We do not
know if this condition is also equivalent to the above two. This indicates that it is
in some sense better to work with the Néron–Severi lattice than with the endomor-
phism ring.

6.3 Level Structures

In applications, we will need to endow A with a level structure which corresponds
to a full level 2 structure on A′, i.e., an injection of M ′-modules M ′/2M ′ → A′.
We will see that a level 2π2-structure on A is such a level structure.

Definition 25. A level 2π2-structure on A is an injection of M -modules

φ : M /2π2M → A.

Suppose we have an abelian surface A with an isomorphism M
∼−→ End(A) and a

2π2-level structure φ. The kernel of π2 (or of its reduction ε) on the 2-torsion points
of A contains φ(2). Consider the abelian surface A′ = A/〈φ(2)〉. By Proposition 24
and Lemma 16, A′ has multiplication by M ′ and we have an isometry N′ ∼−→ NS(A′).
Restricting φ to Z2 + π2M /2π2M = M ′/2M and then passing to corresponding
quotients (by 2 and φ(2) respectively) gives the required level 2-structure on A′,
namely an injection of M ′-modules

φ′ : M ′/2Z2 + 2π2M =M ′/2M ′ → A/〈φ(2)〉 = A′

Proposition 26. The map (A, φ) → (A′, φ′) is a bijection on isomorphism classes
between abelian surfaces A together with an isomorphism M

∼−→ End(A) and a
2π2-level structure φ, and abelian surfaces A′ with NS(A′) ∼−→ N′ (see Remark 10
regarding the M ′-action) and a full 2-level structure.

Proof. Let (A′, φ′) be an abelian surface with N′ � NS(A′) and with a full level 2
structure. According to Proposition 25 there exists an abelian surface A with multi-
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plication by M and an isogeny f : A → A′ of degree 2, with Ker( f ) = 〈x〉 ⊂ Ker(ε).
We would like to reconstruct a 2π2-level structure φ : M /2π2M → A on A giving
rise to φ′. To do this it suffices to determine φ(1). Since f (φ(1)) = φ′(1) there are
only two options for φ(1), say y and ỹ = y − x. But since 2φ′(1) = 0 we see that
f (2y) = 0, and as 2y � 0, we must have 2y = x, so ỹ = −y. It follows that the two
options are φ and −φ and these two level structures are isomorphic. It now follows
immediately that A can be reconstructed as A′/φ′(2ρ), where ρ ∈ M /2π2M reduces
to an element of F4 − F2 and this completes the proof. $%

7 Isogenies and the Morrison Correspondence

Aside from the two examples we already dealt with in Sect. 3, in all other examples
in Table 1 it can be checked (as we will see) that the elliptic fibration we obtain is
not itself a Kummer surface. However, the computations in Sect. 2 and computations
in [5] showing that the Picard–Fuchs equation is a symmetric square suggests that
these elliptic fibrations will have an isogeny to a Kummer surface associated with
a QM abelian surface. In this section we first recall a construction, based on the
work of Nikulin and Morrison, that produces such an isogeny. In fact, Morrison’s
work [25] shows that for K3 surfaces with Picard number 19, such as the elliptic
fibrations we are considering, there is always an isogeny to a Kummer surface as-
sociated with some abelian surface. We can then use the methods developed in the
previous sections to show that this abelian surface is isogenous to a QM abelian
surface. Thus, we obtain the following diagram, a more complicated version of dia-
gram (2).

(A′ + level φ′)��

��

�� �� (X′ + f : S ′ → NS(X′)) �� �� (X′′ + f : S ′′ → NS(X′′))

��
(A + level φ)

��

(X′′ + fibration) �� λ ∈ HT

(A)

(7)

7.1 The Morrison Correspondence

Definition 26. Let X be a K3 surface. A Nikulin involution on X is an involution ι
on X with the property that ι∗ω = ω for every ω ∈ H2,0(X).

By [31, Sect. 5] every Nikulin involution on X has eight isolated fixed points.
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Theorem 6 ([25, Theorems 5.7 and 6.3]). Let X′′ be a K3 surface. Suppose there
exists an embedding E2

8[−1] ↪→ NS(X′′). Let g be the involution of NS(X′′) that
fixes the orthogonal complement of E2

8[−1] and switches the two copies of E8[−1].
Then there exists a Nikulin involution ι on X′′ such that ι∗ is conjugate to g by an
element of the Weyl group of NS(X′′). Let X′ be the quotient X′′/ι blown up once
at the 8 quotient singularities. Then X′ is a Kummer surface X′ = Km(A′) and the
quotient maps A′ → X′ ← X′′ induce an isomorphism TX ′′ � TA′ .

Definition 27. We call the association X′′ �→ A′ the Morrison construction applied
to X′′.

Corollary 11. If the Morrison construction on the surface X′′ yields Km(A′), then
qNS(A′) � qNS(X ′′).

Proof. Both are minus the discriminant form of the corresponding transcendental
lattices. $%

7.2 Nikulin Markings

We now begin to describe the correspondence (7). We consider a general situation
and make the necessary assumptions. We will later consider the examples we have
and see how they fit the general pattern.

In Sect. 3 we constructed a bijection between isomorphism classes of marked
elliptic fibrations and marked K3 surfaces. Suppose (E, α) is a marked elliptic sur-
face of type T and let (X′′, α̃′′) be the corresponding marked (S ′′, d′′) = (S T , dT )
surface.

We make the following assumptions:

Assumption 1. The 2-primary part of qS ′′ is q(2)
θ (2)⊕ v(2)

+ (2) with θ = ±1.

Assumption 2. We have a decomposition

S ′′ = E8[−1]2 ⊕ S 1 (8)

with S 1 of rank 3.

We fix θ as in Assumptions 1.

Lemma 17. The 2-primary part of qS 1[2] is q(2)
θ (4)⊕ v(2)

+ (4).

Proof. From the two assumptions it follows that the 2-primary part of qS 1 is
q(2)

θ (2) ⊕ v(2)
+ (2). Since S 1 has rank 3, it easily follows from Theorem 3 that

S 1 ⊗ Z2 is determined from its discriminant form to be K(2)
θ (2) ⊕ V (2)(2), hence

S 1[2]⊗ Z2 � K(2)
θ (4)⊕ V (2)(4) and the result follows immediately from Theorem 3

again. $%
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To a decomposition (8) there corresponds an involution which fixes the S 1 compo-
nent and switches the two E8[−1] components. We now reprove part of Morrison’s
Theorem 6 in a slightly more precise way, following the proof of [31, Theorem 4.3]

Lemma 18. There exists a decomposition (8) with the property that for any marked
(S ′′, d′′) K3 surface (X′′, α̃′′) the induced involution is the restriction of the involution
ι∗ for a unique Nikulin involution ι on X′′.

Proof. Start with any decomposition whose existence is guaranteed by Assump-
tion 2 and let ι′ be the associated involution. Since E8[−1] is negative definite the
lattice S 1 has signature (1,−2) so it has a positive vector, say x, which is fixed by ι′.
Let β be an element of the Weyl group sending the chamber of x to d′′. Then the con-
jugate involution ι′′ = βι′β−1 fixes d′′ and corresponds to a different decomposition.
Under the marking, this involution will be an effective Hodge isometry in the sense
of Definition 7. It follows from the global Torelli Theorem for Kähler K3 surfaces
(Theorem 1) that it is indeed induced by a unique Nikulin involution. $%
From now on we fix a decomposition as above. By the uniqueness of the induced
Nikulin involution it is clear that an isomorphism of marked K3 surfaces commutes
with the Nikulin involutions.

Definition 28. A Nikulin marked (S ′′, d′′) K3 surface is a marked (S ′′, d′′) K3 sur-
face (X′′, α̃′′) together with a numbering of the fixed points of the induced Nikulin
involution w, i.e., an injective map β from {1, 2, . . . , 8} to X′′ into the set of fixed
points of w. An isomorphism of Nikulin marked (S ′′, d′′) K3 surface is an isomor-
phism of marked K3 surfaces that commutes with the β’s.

7.3 The Néron–Severi Lattice of the Quotient Surface

Definition 29. The Nikulin lattice Nik is generated by orthogonal classes yi of
square−2 for i = 1, . . . , 8 together with 1

2

∑
yi.

The following Lemma is obvious and is given for notational purposes.

Lemma 19. The discriminant form qNik is given as follows: Consider a group gen-
erated by two torsion elements xi, for i = 1, . . . , 8. The underlying group ANik for
qNik is the subquotient

ANik �
{∑ aixi,

∑
ai = 0}

(
∑

xi)

The form is determined by the conditions x2
i = 1/2 and xi × x j = 0 for i � j.

Let (X′′, α̃′′, β) be a Nikulin marked K3 surface. Let X′ be the resolution of sin-
gularities of X′′/w, where w is the canonical involution resulting from Lemma 18.
The quotient map induces a map on Néron–Severi lattices, after the π∗NS(X′′) →
NS(X′). Let Nik′ be the primitive closure of the sublattice of NS(X′) generated by
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the exceptional curves. Then by [31, Theorem 4.15] (see [25, Sect. 5] for details) it
follows that the map (yi �→ resolution of singularities of the point β(i)) extends to
an isometry γ : Nik � Nik′.

Let R′ = E8[−1]⊕ S 1[2] and let π∗ : S ′′ → R′ be the map, corresponding to the
decomposition (8), sending the two copies of E8[−1] to the single copy of E8[−1]
and the S 1 on itself.

Lemma 20. Let (X′′, α̃′′) be a marked K3 surface. Then there is a commutative dia-
gram, defining the bottom map

S ′′ α̃′′ ��

π∗
��

NS(X′′)

π∗
��

R′ δ �� π∗(NS(X′′))

the horizontal maps are isometric isomorphisms and π∗(NS(X′′)) is primitive in
NS(X′).

Proof. See [25], Theorem 5.7 and its proof. $%
For a marked K3 surface (X′′, α̃′′) the over-lattice NS(X′) ⊃ Nik′ ⊕ π∗(NS(X′′))

determines a totally isotropic subgroup of qNik′⊕π∗(NS(X ′′)), by Proposition 15. For a
Nikulin marked K3 surface (X′′, α̃′′, β) there is also an isomorphism

Nik⊕ R′
γ⊕δ−−→ Nik′ ⊕ π∗(NS(X′′))

inducing an isomorphism on discriminant forms. Thus we obtain a totally isotropic
subgroup D′ ∈ qNik⊕R′ .

Definition 30. We call D′ the type of the Nikulin marked K3 surface (X′′, α̃′′, β).

Definition 31. For a type D′, let S ′ be the over-lattice of Nik⊕R′ determined by D′.

Let (X′′, α̃′′, β) be a Nikulin marked K3 surface of type D′. Then we obtain an isom-
etry η : S ′ � NS(X′).

Lemma 21. There exists a chamber d′ ⊂ S ′ such that for any Nikulin marked K3
surface of type D′ η(d′) is in the ample cone of NS(X′).

Proof. By Lemma 5 with m = 8 the number of fixed points of a Nikulin involution,
it suffices to take 11D′′ − ∑8

i=1 Ei, where D′′ is the pull back to the blowup X′ of
X′′/w of a class in d′′, and Ei are the exceptional curves. $%

7.4 The Precise Correspondence

Fix a chamber d′ as above. We obtain from the Nikulin marked K3 surface of type
D′, (X′′, α̃′′, β), an (S ′, d′)-marked K3 surface (X′, η).
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Proposition 27. The above construction establishes a bijection between isomor-
phism classes of Nikulin marked (S ′′, d′′) K3 surface of type D′ and (S ′, d′)-marked
K3 surface.

Proof. Start from the (S ′, d′)-marked K3 surface (X′, η). Consider the eight classes
yi ∈ Nik ⊂ S ′. It follows from Lemma 6 and the same argument that was used for
the proof of Proposition 10 that the marking sends them to the cohomology classes
of −2-curves. Let Y be the double cover of X′ ramified along these eight curves.
This exists because the sum of the curves is divisible by 2 since

∑
yi/2 ∈ Nik. The

−2-curve corresponding to yi becomes a−1 curve in Y and it can be blown down to
a point which we can denote by β(i). Doing this for i = 1, . . . , 8 we obtain a surface
X′′. We want to obtain a marking of NS(X′′). The part of NS(X′′) invariant under
the automorphism of the covering maps isomorphically on the S 1[2] part of NS(X′)
this isomorphism is in fact an isometry of this part onto S 1. Consider now the part
of NS(X′) isometric to E8[−1]. This is generated by −2-curves. In Y the pre-image
of each of these curves consists of two −2-curves. The resulting 16 curves do not
intersect because Nik is disjoint from E8[−1]. Since the graph of E8 is connected,
a choice of a pre-image for one of these −2-curves determines a unique choice for
the other curves in such a way that the resulting graph is connected again. Thus,
there are two choices for markings of X′′. But these two choices are interchanged
by the Nikulin involution. Thus, the inverse map on isomorphism classes is well
defined. $%

The following Proposition classifies the possible types

Proposition 28. A type D′ can occur if and only if it is the graph of an anti-
embedding of the two-torsion in qR′ into qNik. It is uniquely determined by an or-
dered triple of pairwise disjoint subsets of size 2 in {1, . . . , 8}. For any type that can
occur we have the equality

qS ′ = qS 1[2] (9)

Proof. If the type D′ occurs, then we have that NS(X′) � S ′. But in the Morrison
construction, we have the equality T (X′) = T (X′′)[2], and we always have

qT (X ′′) = qNS(X ′′)[−1] = qS ′′[−1] = qS 1[−1] .

This immediately implies that the prime to p parts of qT (X ′′)[2] and qS 1[−2] agree, and
the fact that the 2-primary parts agree as well follows easily from the same argument
used to prove Lemma 17, because both S 1 and T (X′′) have rank 3. This shows (9).
The 2-primary part of qS ′′ is q(2)

θ (2) ⊕ v(2)
+ (2) by Assumption 1. It follows from

Lemma 17 that the 2-primary part of the discriminant of R′ and of S ′ is q(2)
θ (4) ⊕

v(2)
+ (4), which is also equal to q(2)

3θ (4)
3
, by the relation [30, Proposition 1.8.2, d]. Now,

the type is to be an isotropic subgroup of qR′ ⊕qNik in such a way that the over-lattice
which it determines has discriminant form qS ′ . By Lemma 11 the subgroup is the
graph of an isometry between subgroups of qNik and qR′ , hence is two torsion since
ANik is, and the square of its order, equal to the square of the two-part of its order, is
given by the products of the size of the two parts of ANik and AR′ , both equal to 26,
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divided by the two part of |AS ′ |, again of order 26. The subgroup therefore has order
8. Since ANik is 2-torsion, the subgroup in AR′ is two-torsion as well, and since the
two-torsion in AR′ has order 8 it must be the entire two-torsion. The two torsion of

qR′ = q(2)
3θ (4)

3
is generated by three orthogonal elements of square 1 (mod 2) (this is

true for both possible values of θ). Thus, an isometry of this into qNik is equivalent
to finding 3 such elements in qNik. Elements with square 1 correspond to subsets
of {1, . . . , 8} of size 2 (or a subset of size 6, which is equivalent to the element
corresponding to its complement of size 2) and these elements are orthogonal if and
only if the subsets are disjoint. Finally, since 3 disjoint subsets are permuted by S 8

it is clear that all types occur. $%
We can finally realize the correspondence suggested by diagram (7). To state the

result we introduce one further notion.

Definition 32. A Nikulin marked elliptic fibration of type (T, D′) is an elliptic
fibration of type T which is a K3-surface together with a Nikulin marking on the
associated marked K3 surface which is of type D′. The notion of isomorphism is
obvious.

Theorem 7. Let T be a type of an elliptic fibration. Let S ′′ = S T be the associated
lattice. Let 2|D be a discriminant and p � D a prime number, or p = 1. Let M be
an Eichler order of discriminant D and level p, and let N = NM be the associated
lattice. Suppose that the rank of S ′′ is 19, that the prime to two parts of qN[2] and
qS ′′ are the same and that the two part of qS ′′ is q(2)

θ (2) ⊕ v(2)
+ (2) with θ ≡ −Dp/2

(mod 4). Then, the constructions above provide a bijection between isomorphism
classes of abelian surfaces A with M

∼−→ End(A) and a 2π2-level structure and
isomorphism classes of Nikulin marked elliptic fibrations of type (T, D′).

Proof. The assumptions imply that S ′′ satisfies Assumption 1. Let N′ be the over-
lattice of N[2] of Definition 24. From Corollary 10 It is easy to compute that the
2-primary part of qN′ and qS ′′ agree, and therefore that qN′ = qS ′′ . Since S ′′ is of rank
19 and is indefinite, it follows from Theorem 5 that S ′′ is determined by its signature
and discriminant form, hence we must have S ′′ � E8[−1]2 + N′ and assumption 2
also holds with S 1 = N′. Combine the bijection of Proposition 26 sending A to
A′ with NS(A′) ∼−→ N′ and a 2-level structure, with the bijection of Proposition 10
sending A′ to K3 surface X′ with a marking by the lattice S N′ of Definition 19. Now,
let S ′ be the lattice of Definition 31. We have

qS ′ � qS 1[2] by (9)

� qN′[2] since S 1 = N′

� qS N′ by Proposition 16

Since S ′ and S N′ have the same signature, it follows from Theorem 5 that they
are isometric. Thus, we may compose with the bijection of Proposition 27, sending
X′ to a Nikulin Marked (S”,d”) K3 surface X′′ of type D′. Finally, compose with the
bijection of Proposition 6, giving X′′ the structure of an elliptic fibration of type T
and remembering the Nikulin marking. $%
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As in Sect. 3.5, we can deduce from the theorem above an isomorphism of curves.

Definition 33. Fix a type D′. The curve ˜̃HT is the coarse moduli space of Nikulin
marked elliptic fibrations of type D′, where the fibration is of type T . We denote a
connected component of ˜̃HT by ˜̃H0

T .

Remark 11. Let us analyze more closely the structure of the moduli space ˜̃HT . We
have a Galois cover, with Galois group S 8, of the curve H̃T , of all Nikulin marked
elliptic fibrations. Each component has its own type and ˜̃HT consists of the union of
all components of the specified type D′. Thus, it is clearly a Galois cover of H̃T .

To compare these moduli spaces with Shimura curves, we analyze the structure
of these first. These results work in the following generality: we assume that we
have an Eichler order M =MD,N as in Definition 4 where 2|D.

Definition 34. The curve VM (2π2) is the moduli space of abelian surface with mul-
tiplication by M and a 2π2 level structure (see Definitions 4 and 25).

To express VM (2π2) in “classical” terms, let Γ(2) denote the principal congruence
subgroup of level 2 in the group M×

1 of norm 1 units in M . It acts as usual on the
upper half plane H , and we have the following:

Proposition 29. The curve VM (2π2) consists of two connected components, each
isomorphic analytically to Γ(2)\H .

Proof. the analytic space H ± = P1(C)− P1(R) consists of the upper and the lower
half planes. The standard adelic description of Shimura curves gives

VM (2π2)an = B×\(H ± × (Bf,×/K(2π2))),

where the level subgroup K(2π2) ⊂ Bf,× corresponds to our moduli problem,
namely it consists of the elements of M̂× =M ⊗ Ẑ congruent to the identity mod-
ulo 2π2. This level subgroup is a product K(2π2) =

∏
p Kp(2π2) over the primes,

where each Kp(2π2) is maximal except for K2(2π2). The surjectivity of the norm
for (indefinite rational) quaternion algebras and strong approximation give the set
of connected components of VM (2π2) as the adelic set

π0(VM (2π2)) = Q×\A×/Nm(K(2π2))R>0 � Z×2 /Nm(K2(2π2)).

Lemma 22. Nm(K2(2π2)) = 1 + 4Z2 and Nm(K2(2)) = Z×2 .

Proof. (of the lemma) The group Nm(K2(2π2)) is clearly open in Z×2 and is con-
tained in 1 + 4Z2. On the other hand, the 2-adic completion B2 = B ⊗ Q2 is iso-
morphic to the 2-adic completion of the standard (rational) Hamilton quaternions.
In particular, the standard quaternions 1, î, ĵ, and î ĵ, satisfying the standard relations
î2 = ĵ2 = 1 and î ĵ = − ĵî. The completion M2 = M ⊗ Z2 is the unique maximal
order of B2, and it contains the element û = (1 + î + ĵ + î ĵ)/2. Then 1 + 4û is in
K2 and Nmû = 21. Therefore NmK2 = 1 + 4Z2 as asserted. The second assertion



Universal Kummer Families Over Shimura Curves 249

of the lemma follows from the first. Alternatively, it also follows from the fact that
M×

2 contains the ring of integers of the quadratic unramified extension ofQ2, whose
norm surjects onto Z×2 . $%
We return to the proof of the Proposition. It follows from the Lemma that there are
two connected components. The description of these components shows that they
are represented by elements β± of B2, of norms±1 respectively. The corresponding
components of VM (2π2) are Γβ±\H , where Γβ± consists of the norm 1 elements in
B×∩β±K(2π2)β−1

± . However, B×2 and hence our β±’s normalizes K(2π2), so the two
components are isomorphic. We must prove that each is a copy of Γ(2)\H . Taking
β+ = 1 (as we may), it will suffice to prove that Γ(2) = (Γβ+ · 〈±1〉. Indeed, K(2π2)
has index 4 in K(2) (the quotient is isomorphic to the additive group of the field with
four elements); by the previous lemma, intersecting with the norm 1 elements gives
a subgroup K(2π2)1 of index 2 in the respective intersection K(2)1. Since K(2)1

contains−1, the images in PSL2(R) of Γ(2) and of Γβ± agree. $%
Corollary 12. Under the assumptions of Theorem 7 there is an isomorphism ˜̃H0

T �
VM (2π2).

Proof. This follows from Theorem 7 in exactly the same way that Theorem 2 is
deduced from Proposition 10. $%

In order to identify the quotient moduli space HT with a Shimura curve we will
need the following

Proposition 30. Let N(M) denote the normalizer of M in B×+ , the elements of B
with positive norm. Then the automorphism group AutVM (2) of VM (2) is identified
with the quotient N(M)/Q×Γ(2). This group is isomorphic to

S 4 ×
∏

2�p|DN

S 2,

where the S 2 factor at p is generated by the modular involution wp, A4 ⊂ S 4 which
is isomorphic to (M /2M )× is the automorphism of the level two structure and
S 4 = A4 ∪ w2A4. In particular, the order of AutVM (2) is 12 × 2r, where r is the
number of factors of DN.

Proof. The image of Γ(2) in PSL2(R) is torsion free and hence the automorphism
group of the hyperbolic surface VM (2) is finite. We get an extension Γ of Γ(2) by
this automorphism group in PSL2(R). The arithmetic group Γ certainly contains the
image of N(M) in PSL2(R). This shows that AutVM (2) is at least as big as claimed.
But in the other direction, a theorem of Borel [8] gives that this image of N(M) in
PSL2(R) is maximal discrete. The asserted equality follows. $%

The following easy consequence will be frequently used in the examples.

Corollary 13. Suppose that G is a subgroup of automorphisms of VM (2π2) satisfy-
ing the following conditions
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• It permutes the two components of VM (2π2).
• No element of G fixes a component of VM (2π2) pointwise.

Then the quotient VM (2π2)/G is isomorphic to the quotient of VM (2) by a subgroup
of automorphisms which is a subgroup of index 2 in G. In particular, if the order of
G is 24× 2r, where r is the number of factors of DN, this quotient is exactly V∗M .

To end this section we analyze the Galois cover structure resulting from the
Nikulin marking

Proposition 31. The covering ˜̃H0
T /H̃0

T is Galois with Galois group S 4
2.

Proof. It is easy to see that the covering is Galois and that the Galois group is
precisely the group of permutations of 1, . . . 8 which fixes pointwise the image of
the type D′ in qN . This image is generated by the 4 sums x2i−1 + x2i (with the
relation that their sum is 0). The Galois group is therefore generated by the four
transpositions (12), (34), (56) and (78). $%

7.5 A Transcendental Description

It is possible to give the Morrison correspondence above a purely transcendental
Hodge theoretic description. This is useful for proving several results which we
were not able to prove algebraically.

Proposition 32. Let S be a lattice with signature (1, 18), d a chamber in S , T a
lattice with signature (2, 1). Then there exists a bijection between the set of isomor-
phism classes of marked (S , d) K3 surfaces (X, α) such that the orthogonal comple-
ment of α(S ) in H2(X,Z) is isometric to T with the quotient HT × ISOT,S /Aut(T ),
where HT is the space of all pure Hodge structures of weight 2 on T , having the
property that T 1,1

C
∩T = {0}, while ISOT,S is the set of all isomorphisms qT � qS [−1].

Proof. Given a marked K3 surface (X, α), we choose an isometry β : T � α(S )⊥.
Since H2(X,Z) is unimodular, the embedding α induces an isometry qα(S )⊥ � qS [−1].
Pulling back via the isometry induced by β on discriminant forms we obtain the el-
ement of ISOT,S and pulling back the induced Hodge structure on α(S )⊥ we obtain
the required element of HT , as verifying the conditions on the pulled back Hodge
structure is easy. Modifying β by an isometry of T acts in the obvious way. Con-
versely, given a pair (h, i) ∈ HT × ISOT,S consider the over-lattice L of S ⊕ T
determined by the graph of i and put on it the Hodge structure which on T is h and
for each the entire S ⊗ C is of type (1, 1). L is unimodular of signature (19, 3) and
there is just one such lattice up to isomorphism. By the surjectivity of the period
mapping [1, Chap. VIII] the lattice L, together with its distinguished cone d and its
Hodge structure, correspond to a marked K3 surface, unique up to isomorphism. It
is finally clear that applying an element of Aut(T ) results in a surface connected by a
signed Hodge isometry with the original surface, hence with an isomorphic surface
by Torelli. $%
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Proposition 33. Suppose that G ⊂ Aut(S ) is a finite group of isometries fixing
d. There is a clear action of G on isomorphism classes of (S , d)-marked K3 sur-
faces. The identification of Proposition 32 translates this to the obvious action on
ISOT,S . The kernel of this action is the kernel of the map G → Aut(qS )/±1.

Proof. The first statement is clear. Consequently, the action factors via Aut(qS ).
Still, an isometry of S would act trivially on marked K3 surfaces if the action on
ISOT,S would correspond to the action of an isometry of T fixing all Hodge struc-
tures. The only possible isometry of this type is clearly−1. $%
Suppose now that S is the lattice S ′′ from Sect. 7.2. Let T be a lattice with signature
(2, 1) and discriminant form qS [−1]. By Assumption 1 and Theorem 5 the lattices T
and T [2] are determined by their signature and discriminant form. It follows that
for an (S ′′, d′′) marked K3 surface (X′′, α′′) we automatically have α′′(S ′′)⊥ � T .
Consequently, Proposition 32 gives a bijection between HT × ISOT,S ′′/Aut(T ) and
isomorphism classes of all (S ′′, d′′)-marked K3 surfaces. Similarly, replacing S by
the lattice S ′ of Definition 31 and T by T [2] we obtain a bijection between isomor-
phism classes of (S ′, d′)-marked K3 surfaces and HT × ISOT [2],S ′/Aut(T ).

Proposition 34. The map which associates, as in Proposition 27, to an (S ′, d′)-
marked K3 surface the associated Nikulin marked (S ′′, d′′) K3 surface of type D,
and then forgets the Nikulin marking, is given, in the description of Proposition 32,
as follows: The Hodge structure on T [2] is mapped to the same Hodge structure
on T . The isomorphism qT [2]

∼−→ qS ′
∼−→ qS 1[2] is sent to the restriction on the ele-

ments divisible by 2, qT � qS 1 , composed with the isomorphism qS 1 � qS ′′ . The map
is a Galois covering with Galois group

G′ = {g ∈ Aut(qT [2]) | g = 1 on qT }
Proof. Here, by a Galois covering, we mean that the fiber is a simple G′-space
for a sufficiently general point. The result is essentially obvious from the descrip-
tion, in Theorem 6, of the Morrison correspondence. The only non-trivial point is
that it is indeed a covering. This translates to the fact that the map Aut(qT [2]) →
Aut(qT ) is surjective. This in turn follows since Aut(T ) → Aut(qT ) is surjective by
Theorem 5. $%
By essentially the same argument we get the following result

Proposition 35. The map sending an isomorphism class of (S ′′, d′′)-marked K3 sur-
face to the corresponding isomorphism class of elliptic fibrations of a prescribed
type is Galois, with Galois group

G′′ = {g′′ ∈ Aut(qS [2]) | g′′|qS = ±g for some g ∈ G}/± 1 ,

where G is the automorphism group of the graph corresponding to the type of fibra-
tion.

Corollary 14. An element of G′′ cannot fix a component of ˜̃HT pointwise.
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Proof. Let (h, i) be an element of HT × ISOT [2],S ′ and suppose that g ∈ G′′ fixes the
image of (h, i) in ˜̃HT . This implies that there exists an isometry t of T which fixes h
and such that h ◦ i ◦ g = id. Since g is non-trivial, so must be t; but such t cannot fix
a sufficiently general Hodge structure on T , hence no sufficiently general point can
be fixed by g. $%
Corollary 15. The space ˜̃HT has two components which are permuted by the mon-
odromy group G′′. Thus, HT is isomorphic to the quotient of either component of ˜̃H0

T

by a group which is of index 2 in G′′, acting effectively on ˜̃H0
T .

Proof. The space HT is connected so G′′ must permute the components. The action
is effective by Corollary 14. $%

8 Explicit Computations

We now use the theory developed in the preceding sections to treat in detail several
examples from Table 1, namely, those corresponding to numbers 9, 5, 10, 6, 2, 7, 8
and 11 on this table. The result will give us the precise correspondence between the
base of the family of twists and the corresponding Shimura curve.

As a first step, we consider our list of examples and consider the possibility of a
torsion section.

Proposition 36. Consider an elliptic fibration, arising in one of the families
described in Table 1 and having Mordell–Weil rank 0. If the fibration comes from
either number 6 or number 8 on the list, then its Mordell–Weil group is torsion of
order 2. In all the other examples, the Mordell–Weil group has no torsion.

Proof. It is well known that the torsion subgroup of the Mordell–Weil injects into
the Kodaira–Néron model of each fiber. When a singular fiber has additive reduction
its torsion subgroup is just the group of reduced components. This is (Z/2)2 for the
I∗0 fiber which is always present. Hence we only need to check 2-torsion, which,
being invariant under quadratic twists is visible in Herfurtner’s model. Hence in (1)
we need to look for rational solutions x = x(t) for f (x, t) = 0. In fact one can cut
on the work as follows. When one has in addition a fiber of type II∗ (respectively
IV∗), arising by twisting from a fiber of type IV (respectively II), where the group
of components is 0 (respectively Z/3), there is no torsion. In the case where a fiber
of type III∗ is present, the group of components is Z/2 so a Z/2 torsion (at most)
is possible in the cases 5, 6, 7, 8 and in all the other cases there is no torsion.
In the cases 6 and 8 a torsion section will be directly exhibited (see the relevant
subsections). It suffices then to rule out a two torsion section in cases 5 and 7. Such
a torsion section cannot exist (in the untwisted family) by [32, Main Theorem], No.
47 for example 5, No. 56 for example 7. $%
It turns out that none of the elliptic surfaces we are considering is Kummer itself
(hence one must apply the Morrison construction to get a Kummer surface). We
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have the following easy method for testing this: Suppose that our elliptic surface X′′
is a Kummer, associated with an abelian surface A′′, and let T be the transcendental
lattice of A′′, The discriminant form of NS(X′′) is the same as of T (X′′) = T [−2].
We can compute the discriminant form of T by “multiplying that of NS(X′′) by
−1/2”. In fact, it is easy to see that the discriminant form of T [−2] determines that
of T . This is clear on the prime to 2 part and on the 2-torsion part follows from
Lemma 14. It is then obvious that the procedure for recovering qT from qT [−2] takes
q(p)

θ (pk) to q(p)
−θ/2(pk) for p � 2 and multiplying by −1 and removing a power of 2 on

the 2-torsion part. Once this is done we can check, using Theorem 4, if the resulting
discriminant form has signature as it should be, i.e., 1 modulo 8. If this is not the
case X′′ is not Kummer (in fact, as the referee pointed out, it suffices to note that an
even lattice of odd rank has even discriminant).

8.1 Number 5 on the List

Here the base elliptic surface has singular fibers (2I1, I7, III), so the twists have
singular fibers of type T = (2I1, I7, III∗, I∗0 ). This gives a discriminant form qS T =

q(7)
1 (7)⊕q(2)

1 (2)⊕v(2)
+ (2). We first check if X′′ is a Kummer. “Multiplying the discrim-

inant form of S T by −1/2” as above we find the discriminant form q(7)
−1(7) which

has signature−2. Thus X′′ is not a Kummer.
We therefore attempt to apply a Morrison transformation and to appeal to

Theorem 7 and Corollary 12
From Table 1 we learn that X′′ should be isogenous to an abelian surface with

multiplication by a maximal order of a quaternion algebra of discriminant 14, so
D = 14 while p = 1. By Corollary 10 the prime to 2 part of qN[2] is q(7)

1 (7) while
−Dp/2 = −7 ≡ 1 (mod 4).

From Corollary 12 it follows that there is an isomorphism between the Shimura
curve V14(2π2) and the moduli curve ˜̃H0

T .
We now describe this curve as a covering of HT . By Proposition 31 the inter-

mediate covering H̃0
T is such that the covering ˜̃H0

T /H̃0
T is Galois with group S 4

2. On
the other hand, the analysis of the covering H̃0

T /HT is done in the same way as in
Sect. 3. The corresponding table is

I7 I∗0
γI1 1 (12)
γI1 1 (12)
γI7 −1 (23)
γIII 1 (23)
−1 −1 1

To see this, notice that we know that on the last column the first four rows give
transpositions. The global monodromy is surjective since there is no section of order
2. It is a simple combinatorial exercise to see that we may assume that they are
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of the indicated types. But in fact for our present purpose we only need that the
monodromy on S 3 is surjective. Thus, the Galois group here is S 3×S 2/ 〈±1〉 � S 3.

To sum up, we see that ˜̃H0
T � V14(2π2) is a covering of HT with Galois group

which is an extension of S 3 by S 4
2, hence has order 24 × 22. By Corollaries 15

and 13 we immediately have HT � V∗14(1). Here this moduli space is the λ-line itself
since it has no automorphisms.

8.2 Case Number 9 on the List

This case starts out very much like the previous one. The type is (2I1, I6, IV) so each
fiber in our family of twists has type (2I1, I6, II∗, I∗0 ). Let X′′ be one such fiber. We

have qS T = q(3)
−1(3)⊕ q(2)

1 (2)⊕ v(2)
+ (2). Multiplying this discriminant form by −1/2

as before we find q(3)
2 (3) of signature 2 (mod 8) so again X′′ cannot be Kummer.

Table 1 encourages us to consider an abelian surface A with multiplication by the
maximal order in the quaternion algebra of discriminant 6. The prime to two part
on both qS T and qN[2] are q(3)

−1(3) and −Dp/2 = −3 ≡ 1 (mod 4). Thus, as before

we find an isomorphism V6(2π2) � ˜̃H0
T . To compute the covering ˜̃H0

T /HT we first
compute the covering H̃0

T /HT . The relevant table reads

I6 I∗0
γI1 1 (12)
γI1 1 (23)
γI6 −1 1
γIV 1 (123)
−1 −1 1

More precisely, we know that the first two rows on the last column are transposi-
tions, and the fourth row has order 3. Hence we may assume that they are of the
indicated types. Thus, the Galois group here is S 3. As in the previous example we
therefore get an isomorphism HT � V6/ 〈w2, w3〉. Note however that, unlike the pre-
vious case, HT is not the λ-line but is rather its quotient by the involution λ→ −λ.
In fact, the group DT , defined in Proposition 3 as the group of automorphisms of
the Λ-line which preserves the set of singular fibers and the types of fibers, consists
in our case of the identity and the involution above as it replaces the two points
±1 where the two I1 fibers are, and fixes the points 0 and ∞ where the two other
singular fibers are.

We would now like to discover the modular interpretation of the λ-line, and to
compare our results with those of Elkies [17].

For this, consider first the covering Λ′T � P
1
λ
×HT H̃0

T of the λ-line. The table
of local monodromies is exactly the table above. Thus, we see that the covering is
connected and is Galois of order 6 and that the ramifications are as follows: There
are three points, each ramified to order 2 above the I1 fibers at λ = ±1, two points
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of order 3 above the IV fiber at λ = 0 and 6 unramified points over the I6 fiber
at λ = ∞. An easy computation using the Hurwitz formula implies that Λ′T has
genus 0.

Now we consider the covering H̃0
T of HT , which is obtained from Λ′T by dividing

by an involution above the involution λ→−λ of the λ-line. Note that this involution
can only have two fixed points as the genus of Λ′T is 0. Since HT is obtained from
the λ-line by dividing out by ±1, it is natural to choose on it the coordinate z = λ2.
We now analyze the ramifications for the covering.

Above z = ∞ we see the quotient by the involution of the six points above
λ = ∞. None of these six points can be a fixed point by symmetry. Thus, there are
exactly three points above z =∞ and each is ramified to order 2. None of the points
above λ = ±1 can be fixed under the involution, as points above 1 are carried to
points above −1 and vice versa. It follows that there are exactly three points above
z = 1, each again ramified to order 2.

Above λ = 0 we have two points and the involution can either fix or can permute
them. If the second case holds the involution has no fixed points whatsoever, which
is impossible. Therefore, above z = 0 we have 2 points, each of order 3.

We know that HT is isomorphic to V6/(w2, w3). This has a coordinate t described
by Elkies in [17, 3.1] by the condition that the elliptic points are above t = 0, t = 1
and t =∞ with orders 2, 4, and 6 respectively. Now, H̃T is covered by the modular
curve V6(2), which is covered in turn in an unramified way by the upper half plane.
The map from V6(2) to H̃T is a (Z/2)3-covering. Thus, it is clear that the three points
z = 0, 1,∞ must correspond to the three points t = 0, 1,∞ and further that z = 0
must correspond to t =∞. This leaves the two options t = 1/z or t = 1−1/z, which
cannot be distinguished by these considerations.

To proceed, we now follow Elkies in describing the covering V6
π−→ V6/(w2, w3).

According to Elkies, the modular involutions w2, w3, w6 are represented by elements
s4, s6, s2 respectively, with si having order i. These fix the corresponding elliptic
points. Thus, it is easy to see (loc. cit.), that π−1(0) (respectively π−1(1), π−1(∞))
consists of two points which are fixed by w6 (respectively w2, w3). Thus, the cover-
ing V6/w2 (respectively V6/w3, V6/w6) is ramified at t = 0,∞ (respectively t = 0, 1,
t = 1,∞). In any case, it is clear that the λ-line is one of these quotients, as one of
them will be a ramified cover of P1 ramified at the same points.

To determine the precise nature of the λ-line, as well as the relation between t and
z, we are now forced to use our knowledge of the Picard–Fuchs equation (see [5]).
It follows from the above that the map from the upper half plane to HT factors via
the λ-line. Using the Picard–Fuchs equation we can determine the elliptic points for
the λ-line. It turns out that λ =∞, 1,−1 have above them elliptic points of order 2
while 0 has above it an elliptic point of order 3. Thus, z = 1 has above it an elliptic
point of order 2 while z = ∞ a point of order 4. This implies that t = 1 − 1/z. the
λ-line is ramified over t = 1,∞ and consequently is isomorphic with V6/w6.
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8.3 Number 10 on the List

In this example the base fibration has singular fibers (I1, I2, I5, IV), leading to X′′
of type T = (I1, I2, I5, II∗, I∗0 ) and to discriminant form qS T = q(5)

1 (5) ⊕ q(2)
−1(2) ⊕

v(2)
+ (2). Multiplying by −1/2 again we get q(5)

2 (5), which has signature 0, so X′′ is
not Kummer.

Table 1 predicts a quaternion algebra with discriminant 10 and an abelian surface
A with multiplication by its maximal order has qNS (A)[2] = q(5)

1 (5)⊕ q(2)
−1(8)⊕ v(2)

+ (2).
Thus, in exactly the same way as before we find again an isomorphism V10(2π2) �
˜̃H0

T .

By Proposition 31 the Galois group of ˜̃H0
T over H̃0

T is again S 4
2. We now compute

the Galois group of H̃0
T over HT . We have the following table

I5 I∗0
γI1 1 (12)
γI2 1 1
γI5 −1 (23)
γIV 1 (123)
−1 −1 1

Here we know that on the last column we get transpositions, and we may assume
that they are of the indicated types as in the first case. Thus, the Galois group here
is again S 3. This implies as before that V10/ 〈w2, w5〉 � HT .

8.4 Number 6 on the List

This example is slightly complicated by the presence of a 2-torsion section on
our elliptic fibration. The base fibration has type (I1, I2, I6, III) so X′′ has type
(I1, I2, I6, III∗, I∗0 ) and the corresponding discriminant form is q(2)

−1(2) ⊕ q(3)
2 (3) ⊕

q(2)
1 (2)⊕ q(2)

1 (2)⊕ v(2)
+ (2) (here it will be important to keep track of the relation with

the fibers, so we note that the first summand corresponds to I2, the second and third
to I6, the fourth to III∗ and the last to I∗0 ). However, this is not the discriminant form
of the fibration because this elliptic fibration has a torsion section. By the proof of
Proposition 36 the torsion subgroup is at most of order 2. On the other hand we do
find a torsion section of order 2: for this we solve the equation 4x3 − g2x− g3 = 0,
where

g2(s) = 12s(−3 + 9s− 6s2 + s3)

g3(s) = 4s2(27− 63s + 54s2 − 18s3 + 2s4)

[21, p. 337]. (Notice Herfurtner says he is giving the Gi when in fact he is giving
the gi). We find a section with x = 3s − s2 and y = 0. It is clear, as was already
said, that this 2-torsion section is inherited by all the twists. We compute where it
intersects the singular fibers as follows:
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• The I2 fiber is at 1. The equation there is y2 = 4(x− 2)(x + 1)2 and the section
has x = 2, so it intersects at the identity component.
• The I6 fiber is at ∞. To compute the equation there we write the equation as

(y/s3)2 = 4(x/s2)3 − (g2/s4)(x/s2) − (g3/s6). So the equation at ∞ is y2 =

4x3− 12x− 8 = 4(x− 2)(x+ 1)2 and the value of the section is −1 so this time
it intersects a non-identity component.
• The other intersections are forced by the additive reduction to be not at the

identity component.

Writing the three non-zero elements in v(2)
+ (2) as e1, e2, e3 (with e3 = e1 + e2),

we find that the torsion section gives an over-lattice corresponding to the isotropic
subspace generated by 0⊕ 0⊕ 1⊕ 1⊕ e1, summands in the respective components.
We want to compute the quotient of the orthogonal complement by this subspace.
We may concentrate on the last three components, and we may fix representatives by
insisting that the third component is 0. Thus, we get q(2)

−1(2)⊕ q(3)
2 (3)⊕ the subgroup

of q(2)
1 (2) ⊕ v(2)

+ (2) orthogonal to 1 ⊕ e1. Since 12 = 1/2 while e2
1 = 0 (modulo 1)

and e1 × ei = 1/2 for other i we see that this group contains 0, 0 ⊕ e1, 1 ⊕ e2 and
1 ⊕ e3. The last two are orthogonal and have square −1/2 each. Thus we find this

group isomorphic to q(2)
−1(2)

2
and overall we have that the discriminant form of the

Néron–Severi lattice of our elliptic fibration is qNS(X ′′) = q(3)
2 (3)⊕q(2)

−1(2)
3
= q(3)

−1(3)⊕
q(2)

1 (2)⊕ v(2)
+ (2), where in this last equality we have used the relation (d) from [30,

Proposition 1.8.2]. This is the same as in Sect. 8.2 so by the same considerations we
find an isomorphism V6(2π2) � ˜̃H0

T . Furthermore, the Galois group of ˜̃H0
T over H̃0

T
is again S 4

2.
For the computation of Gal(H̃0

T /HT ) we use the table

I6 I∗0
γI1 1 (12)
γI2 1 1
γI6 −1 1
γIII 1 (12)
−1 −1 1

by the same arguments as before, since here we know that the monodromy on the
last column is S 2 because of the 2-torsion section. Thus, the Galois group here is
S 2 × S 2/ 〈±1〉 � S 2. Therefore, HT is V6(2π2)/G, where G has order 32. Thus G
is the 2Sylow subgroup of the group Gal(V6(π3

2)/V∗6 (1)) of order 96, and we can
simplify this to V6(π2)/ 〈w2, w3〉.

8.5 Number 2 on the List

In this example the base fibration has singular fibers of type (I1, I2, I7, II), leading to
a family of twists with fiber X′′ of type (I1, I2, I7, IV∗, I∗0 ) and to discriminant form
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qNS(X ′′) = q(7)
1 (7) ⊕ q(2)

−1(2) ⊕ q(3)
−1(3) ⊕ v(2)

+ (2). Multiplying by −1/2 again we get

q(7)
−1(7)⊕ q(3)

−1(3), which has signature 0, so X′′ cannot be Kummer again.
Looking at Table 1 we expect a relation with a Shimura curve associated to a

quaternion algebra with discriminant 6. The presence of q(7)
−1(7) suggests some kind

of an isogeny of order 7 (at least). Instead of analyzing what happens when we apply
an isogeny of order 7 we can use the known information about the Néron–Severi
lattice of an abelian surface A with multiplication by an Eichler order M6,7 of level
7. By [4, Proposition 3.3] we have qNS(A)[2] = q(7)

1 (7)⊕q(2)
−1(8)⊕q(3)

−1(3)⊕v(2)
+ (2). Thus,

Corollary 12 (since this applies to Eichler orders as well) implies an isomorphism
V6(14π2) � ˜̃H0

T .
The computation of the Galois group Gal(H̃0

T /HT ) is done using the following
table.

I7 IV∗ I∗0
γI1 1 1 (12)
γI2 1 1 1
γI7 −1 1 (23)
γII 1 −1 (123)
−1 −1 −1 1

Since the square of γII is of order 3 on I∗0 and trivial on the other two fibers we
can produce S 3 on that fiber and it is easy to see that the monodromy group is
±1 × ±1 × S 3/ ± 1 � S 3 × S 2. This gives a total monodromy group of order
6 × 2 × 16. This is the full automorphism group: by Proposition 30 we obtain an
isomorphism HT � V6,7/ 〈w2, w3, w7〉.

8.6 Number 7 on the List

The base fibration has fibers (I1, I3, I5, III), leading to (I1, I3, I5, III∗, I∗0 ) and to dis-

criminant form qNS (X ′′) = q(3)
1 (3)⊕ q(5)

1 (5)⊕ q(2)
1 (2)⊕ v(2)

+ (2). Multiplying by −1/2

again we get q(3)
1 (3)⊕q(5)

2 (5), which has signature−6, so it cannot be Kummer again.
The corresponding quaternion algebra has discriminant 6. Because of the pres-

ence of 5 we try an abelian surface with multiplication by an Eichler order of level 5.
Such a surface A has, according to [4, Proposition 3.3] qNS (A)[2] = q(3)

1 (3)⊕q(5)
1 (5)⊕

q(2)
1 (8)⊕v(2)

+ (2). Thus, as in the previous case we find an isomorphism V6(10π2)� ˜̃H0
T

We next compute the Galois group Gal(H̃0
T /HT ). Recalling that there are no tor-

sion sections by Proposition 36 the monodromy table looks as follows:

I3 I5 I∗0
γI1 1 1 (12)
γI3 −1 1 (ab)
γI5 1 −1 (cd)
γIII 1 1 (e f )
−1 −1 −1 1
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Now, the fact that there is no torsion shows that the projection on the S 3 part is onto.
Since the cube of the product of two transpositions is always 1 we easily see that
the monodromy group contains 1 × −1 × 1 and −1 × 1 × 1. It follows that the
monodromy group is full, equal to (±1×±1× S 3)/± 1. The rest of the analysis is
the same as in the previous case, showing that HT � V6,5/ 〈w2, w3, w5〉

8.7 Number 8 on the List

For this case we show an isogeny with the elliptic fibration given at number 6 on the
list. In this example, as well as the next one, we need to take quotients with respect
to torsion sections, for which we have used the computer algebra system MAGMA
(although these are just standard formulas).

Consider the elliptic fibration which is no. 6 on the list. In Sect. 8.4 we showed it
has a rational two torsion section provided by x = 3s − s2. Taking the quotient by
this two torsion and base changing by s �→ 1 − 1/s we obtain exactly the fibration
which was no. 8 on the list. The dual isogeny is obtained as follows: The equation
for fibration no. 6 is y2 = 4x3 − g2x− g3, where

g2(s) = 3(s− 1)(16s3 − 3s− 1)

g3(s) = (s− 1)2(64s4 + 32s3 + 6s2 + 5s + 1)

[21, p. 338]. By setting y = 0 we find a 2-torsion section with x = 1 + s − 2s2.
Taking the quotient by this we get the dual isogeny.

This isogeny extends to an isogeny between the twisted surfaces and conse-
quently the two λ-lines have the same moduli interpretation.

8.8 Number 11 on the List

This case will turn out to be isogenous to the elliptic surface at no. 9 on the list. This
is given by the equation y2 = 4x3 − g2x− g3, where

g2(s) = 3s2(9s2 − 8)

g3(s) = s2(27s4 − 36s2 + 8)

[21, p. 338]. It has a rational subgroup of order 3 given by the equation−2x = 3s2.
Taking the quotient by this subgroup and base changing via s �→ (s − 1)/(s + 1)
we obtain exactly the fibration which is no. 11 on the list, given by the equation
y2 = 4x3 − g2x− g3, where

g2(s) = 3(s− 1)2(9s2 + 14s + 9)

g3(s) = (s− 1)2(27s4 + 36s3 + 2s2 + 36s + 27)

[21, p. 338]. Thus, the λ-lines are again the same.
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Appendix

A.1 Rational Invariants of Quadratic Forms Associated
with Singular Fibers

A.1.1 Quadratic Forms Over Qp

In this appendix p is a fixed finite prime and K is a completion of Q, either at p or
at∞. Let q be a non-degenerate quadratic form K.

Definition 35. The ε invariant of a diagonal form
∑

i aix2
i is

∏
i< j(ai, a j)p where

(x, y) = (x, y)p is the Hilbert symbol at p

(•, •) : (Q×p /(Q×p )2 × (Q×p /(Q×p )2 →±1.

The ε invariant of a the quadratic form q is the ε invariant of any diagonal form of q.

Proposition 37. 1. The quadratic form q is characterized by its discriminant,
disc(q), equal to the determinant of a representing matrix in K∗/(K∗)2, and
either its signature when K � R, or its ε = εp invariant when K � Qp.

2. q1 ⊕ q � q2 ⊕ q implies q1 � q2.

Proof. For the first part see [34, Chap. 1] or [9, Chap. 1]. The second is Witt’s Can-
cellation Theorem.

In what follows we will make repeated use of the standard properties of the symbol
(x, y): symmetry and bilinearity, (x,−x) = 1, and (x, 1− x) = 1.

Lemma 23. We have

1. disc(q1 ⊕ q2) = disc(q1)× disc(q2),
2. ε(q1 ⊕ q2) = ε(q1)× ε(q2)× (disc(q1), disc(q2)),
3. disc(λq) = λndisc(q) and
4. ε(λq) = ε(q)× (λ, disc(q))n−1 × (λ,−1)n(n−1)/2.

Proof. All assertions are immediate except perhaps for the last one, which one ob-
tains as follows: If q is diagonalized as

∑n
i=1 aixi, then we have

ε(λq) =
∏

i< j

(λai, λa j) = ε(q)×
∏

i< j

(λ, aia j)× (λ, λ)n(n−1)/2

= ε(q)× (λ,
∏

i< j

aia j)× (λ, λ)n(n−1)/2

= ε(q)× (λ, disc(q))n−1 × (λ, λ)n(n−1)/2

= ε(q)× (λ, disc(q))n−1 × (λ,−1)n(n−1)/2

$%
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The hyperbolic plane U is the binary quadratic form x2 − y2, or equivalently xy.
Clearly U is equivalent to −U. The following is well known.

Lemma 24. For a quadratic form q of rank r we have q⊕ (−q) � Ur.

A.1.2 Quadratic Forms of Singular Fibers

For a singular elliptic fiber of type t, we denote by qt the lattice freely spanned by
the components not meeting the 0-section with the intersection form. We will prove
the following

Theorem 8. The forms Lt[−1] are positive definite, and U is indefinite. Their rank,
discriminant, and p-adic ε-invariant are given in the following table:

t In I∗n II∗ III∗ IV∗ U
rankLt[−1] n− 1 n + 3 8 7 6 2
disc(Lt[−1]) n 1 1 2 3 −1
ε(Lt[−1]) (−1, n)p 1 1 1 1 1

Proof. Let DIn(α1, . . . , αn) denote the n× n matrix with diagonal entries α1 to αn,
with −1 on the diagonals just above and below the main diagonal, and with zeroes
elsewhere. We write (α) for DI1(α). Notice that adding the first row multiplied by
1/α1 to the second row and then doing the same on columns gives the following
relation:

DIn(α1, . . . , αn) ≡ (α1)⊕ DIn−1(α2 − 1/α1, α3, . . . , αn) (10)

For i ≥ 2 the form LIn [−1] = 2
∑n−1

i=1 x2
i − 2

∑
1≤i≤n−2 xixi+1 is associated with the

matrix DIn−1(2, 2, . . . , 2). Applying (10) successively, we see that it is equivalent
to (2/1)⊕ (3/2)⊕ · · · ⊕ (n/(n − 1)). By Lemma 23 this form has discriminant n.
We compute the ε invariant inductively: for n = 2 the formula holds since ε = 1
for a form of rank 1. Assuming the formula for n we get from Lemma 23 and the
induction assumption

εLIn+1 [−1] = ε−LIn
(n, (n + 1)/n) = (−1, n)(n,−n)(n,−n− 1) = (n, n + 1) =

= (−n, n + 1)(−1, n+ 1) = (−1, n + 1)

as asserted.
Next we consider

LI∗n [−1] = LIn+3 [−1] + 2x2
n+4 − 2xn+4xn+2.

Applying the same procedure as for LIn+3 to diagonalize the first n + 1 rows and
columns we find that this form is equivalent to the form associated with the matrix



262 A. Besser and R. Livné

(2/1)⊕ (3/2)⊕ · · · ⊕ ((n + 2)/(n + 1))⊕
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(n + 3)/(n + 2) −1 −1
−1 2 0
−1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Diagonalizing further, the last 3× 3 matrix is found to be equivalent to diag(1/(n +
2), 2, 2). Hence LI∗n [−1] is equivalent to LIn+2 [−1]⊕ diag(1/(n + 2), 2, 2). From this
it easily follows that the discriminant of LI∗n [−1] is 4 (hence 1). The ε invariant is
calculated as before, using Lemma 23:

εLI∗n [−1] = (−1, n + 2)× ε(diag(n + 2, 2, 2))× (n + 2, n + 2)

= ε(diag(n + 2, 2, 2)) = (2, 2) = (−1, 2) = 1 .

The forms Lt[−1] fibers of type t = II∗, t = III∗, and t = IV∗ correspond to the
forms Ln = LIn [−1] + 2x2

n − 2xnxn−3 for n = 8, 7, and 6 respectively. Similar to the
I∗n computation this is equivalent to the form associated with

(2/1)⊕ (3/2)⊕ · · · ⊕ ((n− 3)/(n− 4))⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−2
n−3 −1 0 −1
−1 2 −1 0
0 −1 2 0
−1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Killing the off diagonal terms in the last two rows and columns we find this last 4×4
matrix to be equivalent to

(2)⊕ (2)⊕
( n−2

n−3 − 1
2 −1

−1 3
2

)

.

Therefore

Ln � (2/1)⊕ · · · ⊕ ((n− 3)/(n− 4))⊕ (3/2)⊕ (2)⊕ (2)⊕
(
n− 2

n− 3
− 1

2
− 2

3

)

.

The first n− 1 terms have discriminant 6(n− 3) and ε invariant

ε(LIn−3 [−1])× ε(diag(3/2, 2, 2)× (n− 3, 6)

= (−1, n− 3)(2, 2)× (n− 3, 6) = (n− 3,−6).

The last entry is (9− n)/(6(n− 3)). Thus we find the total discriminant to be 9 − n
and the ε invariant to be

(n− 3,−6)× (6(n− 3), (9− n)× 6(n− 3))

= (n− 3,−6)× (−1, 6(n− 3))× (6(n− 3), 9− n)

= (n− 3,−6)× (6(n− 3), n− 9)

which we check separately for n = 6, 7, 8. For n = 6 we get

(3,−6)× (18,−3) = (3, 2)× (2,−3) = (2,−1) = 1
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For n = 7 we get

(4,−6)× (24,−2) = (6,−2) = (3,−2)× (2,−2) = 1

and finally for n = 8 we get

(5,−6)× (30,−1) = (5,−6)× (5,−1)× (6,−1) = (5, 6)× (6,−1) = (6,−5) = 1

$%

A.1.3 Ternary Forms of Quaternion Algebras

Let B be a quaternion algebra over Q of discriminant D, let B0 be the space of
traceless elements of B, and let Nm : B → Q denote the (reduced) norm. For d ∈ Q∗
we will compute the invariants of the ternary quadratic form q(x) = dNm(x), x ∈ B0.
Write B in standard form B(α, β), with î2 = α, ĵ2 = β, with α, β in Q∗ and î ĵ = − ĵî.
Recall that a prime p divides the discriminant of B(α, β) if and only if (α, β)p = −1.
Then in terms of the standard basis î, ĵ, and î ĵ of B0 the form q is

dNm(x1, x2, x3) = −αdx2
1 − βdx2

2 + αβdx2
3.

Hence disc(dNm) = d and

εp(dNm) = (−dα,−dβ)p × ((−dα)(−dβ), dαβ)p = (−d,−d)p(α, β)p

= (−d,−1)p(α, β)p.

We have proved the following.

Proposition 38. If Nm is the quadratic form associated with the quaternion algebra
B(α, β), then for any integer d we have

disc(dNm) = d, (α, β)p = εp(dNm)(−d,−1)p. (11)

Notice that the left hand side of this last equation is independent of the scaling
factor d. In fact it is not hard to see that the rank and the right hand side for all p
are complete invariants of rational ternary forms up to scaling. We will not need this
fact, but it underlies our application in the article of (38): by [2, Sect. 5.3, formula
(1)], we have d = DN for the Néron–Severi lattice NS(A) of a QM abelian surface
A whose ring of endomorphisms is an Eichler order of conductor N in a quaternion
algebra B = BA over Q of discriminant D. More generally, any isogenous abelian or
K3 surface X has a Néron–Severi lattice NS(X) isomorphic (rationally) to B0 up to
scaling (for example, NS(Km(A)) � 2NS(A)). Furthermore, T (X) � −NS(X). We
can therefore recover the isomorphism type of BX from any of these lattices. The
determination of the degrees of the isogenies is much more delicate and requires the
integral methods developed by Nikulin, as is done in several places in the article.
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Numerical Trivial Automorphisms of Enriques
Surfaces in Arbitrary Characteristic

Igor V. Dolgachev

To the memory of Torsten Ekedahl

Abstract We extend to arbitrary characteristic some known results on automor-
phisms of complex Enriques surfaces that act identically on the cohomology or the
cohomology modulo torsion.

Key words: Enriques surfaces, Automorphism groups, Positive characteristic

Mathematics Subject Classifications (2010): Primary 14J28; Secondary 14G17,
20F55

1 Introduction

Let S be algebraic surface over an algebraically closed field k of characteristic p≥ 0.
An automorphism σ of S is called numerically trivial (resp., cohomologically triv-
ial) if it acts trivially on H2

ét(S ,Q�) (resp. H2
ét(S ,Z�)). In the case when S is an

Enriques surface, the Chern class homomorphism c1 : Pic(S ) → H2
ét(S ,Z�) induces

an isomorphism NS(S )⊗ Z� � H2
ét(S ,Z�), where NS(S ) is the Néron–Severi group

of S isomorphic to the Picard group Pic(S ). Moreover, it is known that the torsion
subgroup of NS(S ) is generated by the canonical class KS . Thus, an automorphism
σ is cohomologically (resp. numerically) trivial if and only if it acts identically on
Pic(S ) (resp. Num(S ) = Pic(S )/(KS )). Over the field of complex numbers, the clas-
sification of numerically trivial automorphisms can be found in [12, 13]. We have

I.V. Dolgachev (�)
Department of Mathematics, University of Michigan, 525 E. University Avenue,
Ann Arbor, MI 49109, USA
e-mail: idolga@umich.edu

R. Laza et al. (eds.), Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds,
Fields Institute Communications 67, DOI 10.1007/978-1-4614-6403-7 8,
© Springer Science+Business Media New York 2013

267

mailto:idolga@umich.edu


268 I.V. Dolgachev

Theorem 1. Assume k = C. The group Aut(S )ct of cohomologically trivial
automorphisms is cyclic of order≤2. The group Aut(S )nt of numerically trivial auto-
morphisms is cyclic of order 2 or 4.

The tools in the loc.cit. are transcendental and use the periods of the K3-covers
of Enriques surfaces, so they do not extend to the case of positive characteristic.

Our main result is that Theorem 1 is true in any characteristic.
The author is grateful to S. Kondō, J. Keum and the referee for useful comments

to the paper.

2 Generalities

Recall that an Enriques surface S is called classical if KS � 0. The opposite may
happen only if char(k) = 2. Enriques surfaces with this property are divided into two
classes: μ2-surfaces or α2-surfaces. They are distinguished by the property of the
action of the Frobenius on H2(S ,OS ) � k. In the first case, the action is non-trivial,
and in the second case it is trivial. They also differ by the structure of their Picard
schemes. In the first case it is isomorphic to the group scheme μ2, in the second
case it is isomorphic to the group scheme α2. Obviously, if S is not classical, then
Aut(S )nt = Aut(S )ct.

It is known that the quadratic lattice Num(S ) of numerical equivalence divisor
classes on S is isomorphic to Pic(S )/(KS ). It is a unimodular even quadratic lattice
of rank 10 and signature (1, 9). As such it must be isomorphic to the orthogonal sum
E10 = E8 ⊕ U, where E8 is the unique negative definite even unimodular lattice
of rank 8 and U is a hyperbolic plane over Z. One can realize E10 as a primitive
sublattice of the standard unimodular odd hyperbolic lattice

Z1,10 = Ze0 + Ze1 + · · · + Ze10, (1)

where e2
0 = 1, e2

i = −1, i > 0, ei · e j = 0, i � j. The orthogonal complement of the
vector

k10 = −3e0 + e1 + · · · + e10

is isomorphic to the lattice E10.
Let

f j = −k10 + e j, j = 1, . . . , 10.

The 10 vectors f j satisfy

f2
j = 0, fi · f j = 1, i � j.

Under an isomorphism E10 → Num(S ), their images form an isotropic sequence
( f1, . . . , f10), a sequence of 10 isotropic vectors satisfying fi · f j = 1, i � j. An
isotropic sequence generates an index 3 sublattice of Num(S ).



Automorphisms of Enriques Surfaces 269

A smooth rational curve R on S (a (−2)-curve, for brevity) does not move in a
linear system and |R + KS | = ∅ if KS � 0. Thus we can and will identify R with its
class [R] in Num(S ). Any (−2)-curve defines a reflection isometry of Num(S )

sR : x �→ x + (x · R)R.

Any numerical divisor class in Num(S ) of non-negative norm represented by an
effective divisor can be transformed by a sequence of reflections sR into the nu-
merical divisor class of a nef divisor. Any isotropic sequence can be transformed
by a sequence of reflections into a canonical isotropic sequence, i.e. an isotropic
sequence ( f1, . . . , f10) satisfying the following properties

• fk1 , . . . , fkc are nef classes for some 1 = k1 < k2 < . . . < kc ≤ 10.
• f j = fki + R j, ki < j < ki+1, where R j = Ri,1 + · · · + Ri,s j is the sum of

s j = j− ki classes of (−2)-curves with intersection graph of type As j such that
fki ·R j = f j · Ri,1 = 1.

• • • • •. . .
Ri,1 Ri,2 Ri,s j−1 Ri,s jfki

Any primitive isotropic numerical nef divisor class f in Num(S ) is the class of
nef effective divisors F and F ′ ∼ F + KS . The linear system |2F| = |2F ′| is base-
point-free and defines a fibration φ : S → P1 whose generic fiber S η is a regular
curve of arithmetic genus one. If p � 2, S η is a smooth elliptic curve over the residue
field of the generic point η of the base. In this case, φ is called an elliptic fibration.
The divisors F and F ′ are half-fibers of φ, i.e. 2F and 2F ′ are fibers of φ.

The following result by J.-P. Serre [15] about lifting to characteristic 0 shows that
there is nothing new if p � 2.

Theorem 2. Let W(k) be the ring of Witt vectors with algebraically closed residue
field k, and let X be a smooth projective variety over k, and let G be a finite auto-
morphism group of X. Assume

• #G is prime to char(k);
• H2(X,OX) = 0;
• H2(X, ΘX) = 0, where ΘX is the tangent sheaf of X.

Then the pair (X, G) can be lifted to W(k), i.e. there exists a smooth projective
scheme X → Spec W(k) with special fiber isomorphic to X and an action of G
on X over W(k) such that the induced action of G in X coincides with the action of
G on X.

We apply this theorem to the case when G = Autnt(S ), where S is an Enriques
surface over a field k of characteristic p � 2. We will see later that the order
of G = Autnt(S ) is a power of 2, so it is prime to p. We have an isomorphism
H2(S , ΘS ) � H0(S , Ω1

S (KS )). Let π : X → S be the K3-cover. Since the map
π∗ : H0(S , Ω1

S (KS )) → H0(X, Ω1
X) � H0(X, ΘX) is injective and H0(X, ΘX) = 0, we

obtain that all conditions in Serre’s Theorem are satisfied. Thus, there is nothing new
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in this case. We can apply the results of [12, 13] to obtain the complete classification
of numerically trivial automorphisms. However, we will give here another, purely
geometric, proof of Theorem 1 that does not appeal to K3-covers nor does it uses
Serre’s lifting theorem.

3 Lefschetz Fixed-Point Formula

We will need a Lefschetz fixed-point formula comparing the trace of an automor-
phism σ of finite order acting on the l-adic cohomology H∗

ét(X,Ql) of a normal
projective algebraic surface X with the structure of the subscheme Xσ of fixed
points of σ.

The subscheme of fixed points Xσ is defined as the scheme-theoretical inter-
section of the diagonal with the graph of σ. Let J (σ) be the ideal sheaf of Xσ.
If x ∈ Xσ, then the stalk J (σ)x is the ideal in OX,x generated by elements
a − σ∗(a), a ∈ OX,x. Let Tri(σ) denote the trace of the linear action of σ on
Hi

ét(X,Ql). The following formula was proved in [9], Proposition 3.2:

∑
(−1)iTri(σ) = χ(X,OXσ) + χ(X,J (σ)/J (σ)2)− χ(X, Ω1

X ⊗OXσ). (2)

If σ is tame, i.e. its order is prime to p, then Xσ is reduced and smooth [8], and
the Riemann–Roch formula easily implies

Lef(σ) :=
∑

(−1)iTri(σ) = e(Xσ), (3)

where e(Xσ) is the Euler characteristic of Xσ in étale l-adic cohomology. This is the
familiar Lefschetz fixed-point formula from topology.

The interesting case is when σ is wild, i.e. its order is divisible by p. We will be
interested in application of this formula in the case when σ is of order 2 equal to the
characteristic and X is an Enriques surface S .

Let π : S → Y = S/(σ) be the quotient map. Consider an OY -linear map

T = 1 + σ : π∗OS → OY .

Its image is an ideal sheaf IZ of a closed subscheme Z of Y and the inverse image
of this ideal in OS is equal to J (σ).

Theorem 3. Let S be a classical Enriques surface and let σ be a wild automorphism
of S of order 2. Then S σ is non-empty and is connected.

As was first observed by J.-P. Serre, the first assertion follows from the Woods
Hole Lefschetz fixed-point formula for cohomology with coefficients in a coherent
sheaf [7] (we use that

∑
(−1)iTr(g|Hi(S ,OS )) = 1 and hence the right-hand side of

the formula is not zero).
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The proof of the second assertion is a modification of arguments from [5]. In the
case of classical Enriques surfaces, the proof can be found in [10].1

Proposition 1. Assume that S σ consists of one point s0. Then Lef(σ) = 4.

Proof. Let π : S → Y = S/(σ) be the quotient morphism and y = π(s0). It follows
from [2] that (10) implies that the formal completion of the local ring OY,y is a
rational double point of type D(1)

4 isomorphic to k[[x, y, z]]/(z2+ xyz+ x2y+ xy2) (see
[5], Remark 2.6). Moreover, identifying ÔY,y with the ring of invariants of ÔX,x0 =

k[[u, v]], we have

x = u(u + y), y = v(v + x), z = xu + yv.

This implies that the ideal J (σ)s0 generates the ideal (u2, v2) in k[[u, v]]. Apply-
ing (2), we easily obtain

Lef(σ) = dimk k[[u, v]]/(u2, v2) + dimk(u
2, v2)/(u4, v4, u2v2)

−2 dimk k[[u, v]]/(u2, v2) = 4 + 8− 8 = 4.

Since, for any σ ∈ Autct(S ), we have Lef(σ) = 12, we obtain the following.

Corollary 1. Let σ be a wild cohomologically trivial automorphism of order 2 of a
classical Enriques surface S . Then S σ is a connected curve.

Remark 1. After we resolve minimally the singular point of the quotient surface, we
obtain an Enriques surface Y ′ with a singular fiber of type D̃4. A possible scenario is
the following. The automorphism of the surface S is defined by a 2-torsion element
of the Mordell–Weil group of the jacobian elliptic fibration. The only fixed point is
a cusp of its unique singular fiber of additive type (see [10], Proposition 4.2).

Proposition 2. Assume that S σ is a connected curve with (S σ)red contained in a
fiber F of a genus one fibration on S . Then (S σ)red = Fred or (S σ)red = Fred − R,
where R is an irreducible component of F.

Proof. Since σ fixes each irreducible component of F, and has one fixed point on
each component which is not contained in S σ, the structure of fibers show that there
is only one such component.

4 Cohomologically Trivial Automorphisms

Let φ : S → P1 be a genus one fibration defined by a pencil |2F|. Let D be an
effective divisor on S . We denote by Dη its restriction to the generic fiber S η. If D
is of relative degree d over the base of the fibration, then Dη is an effective divisor

1 The assertion is not true for non-classical Enriques surfaces. The analysis of this case reveals a
missing case in [5]: X3σ may consist of an isolated fixed point and a connected curve.
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of degree d on S η. In particular, if D is irreducible, the divisor Dη is a point on S η

of degree d. Since φ has a double fiber, the minimal degree of a point on S η is equal
to 2.

Lemma 1. S admits a genus one fibration φ : S → P1 such that σ ∈ Autct(S )
leaves invariant all fibers of φ and at least 2 (3 if KS � 0) points of degree two on
S η.

Proof. By Theorem 3.4.1 from [3] (we will treat the exceptional case when S is
extra E8-special in characteristic 2 in the last section), one can find a canonical
isotropic sequence ( f1, . . . , f10) with nef classes f1, fk2 , . . . , fkc where c ≥ 2.

Assume c ≥ 3. Then we have three genus one fibrations |2F1|, |2Fk2 |, and |2Fk3 |
defined by f1, fk2 , fk3 . The restriction of Fk2 and Fk3 to the general fiber S η of the
genus one fibration defined by the pencil |2F1| are two degree 2 points. If KS � 0,
then the half-fibers F ′k2

∈ |Fk2 + KS | and F ′k3
∈ |Fk3 + KS | define two more degree

two points.
Assume c = 2. Let f1 = [F1], f2 = [Fk2]. By definition of a canonical isotropic

sequence, we have the following graph of irreducible curves

• • • •

• • • •

•· · ·

· · ·

F1

R1

F2

Rk−1 Rk

Rk+1 R7 R8

Assume k � 0. Let φ : S → P1 be a genus one fibration defined by the pencil
|2F1|. Then the curves F2 and R1 define two points of degree two on S η. If S is
classical, we have the third point defined by a curve F ′2 ∈ |F2 + KS |. Since σ is
cohomologically trivial, it leaves the half-fibers F1, F2, and F ′2 invariant. It also
leaves invariant the (−2)-curve R1. If k = 0, we take for φ the fibration defined by
the pencil |2Fk2 | and get the same result.

The next theorem extends the first assertion of Theorem 1 from the Introduction
to arbitrary characteristic.

Theorem 4. The order of Autct(S ) is equal to 1 or 2.

Proof. By the previous lemma, Autct(S ) leaves invariant a genus one fibration and 2
or 3 degree two points on its generic fiber. For any σ ∈ Autct(S ), the automorphism
σ2 acts identically on the residue fields of these points. If p � 2 (resp. p = 2), we
obtain that σ, acting on the geometric generic fiber S η̄, fixes 6 (resp. 4) points. The
known structure of the automorphism group of an elliptic curve over an algebraically
closed field of any characteristic (see [16], Appendix A) shows that this is possible
only if σ is the identity.

So far, we have shown only that each non-trivial element in Autct(S ) is of order
2. However, the previous argument also shows that any two elements in the group
share a common orbit in S η̄ of cardinality 2. Again, the known structure of the
automorphism group of an elliptic curve shows that this implies that the group is of
order 2.



Automorphisms of Enriques Surfaces 273

Lemma 2. Let F be a singular fiber of a genus one fibration on an elliptic surface.
Let σ be a non-trivial tame automorphism of order 2 that leaves invariant each
irreducible component of F. Then

e(Fσ) = e(F). (4)

Remark 2. Formula (4) agrees with the Lefschetz fixed-point formula whose proof
in the case of a reducible curve I could not find.

Proof. The following pictures exhibit possible sets of fixed points. Here the star
denotes an irreducible component in Fσ, the red line denotes the isolated fixed point
that equal to the intersection of two components, the red dot denotes an isolated fixed
point which is not the intersection point of two components.

• • • • • • • •
•

� � � �

•
• e(Fσ) = 10Ẽ8
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����� e(Fσ) = 5Ã4 • • • •�����������������
•��

���
��� ���������

• • •
��

��
��

� �������

�

�
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Also, if F is of type Ã∗2(IV) (resp. Ã∗2(III), resp. Ã∗1(II), resp. Ã0(I1), resp.
Ã∗∗(II)), we obtain that Fσ consists of four (resp. 3, resp. 2, resp. 1) isolated
fixed points. Observe that the case D̃5 is missing. It does not occur. The equality
e(Fσ) = e(F) is checked case by case.

Theorem 5. Assume that S is a classical Enriques surface. A cohomologically triv-
ial automorphism σ leaves invariant any genus one fibration and acts identically on
its base.

Proof. The first assertion is obvious. Suppose σ does not act identically on the base
of a genus one fibration φ : S → P1. By assumption KS � 0, hence a genus one
fibration has two half-fibers. Since σ is cohomologically trivial, it fixes the two half-
fibers F1 and F2 of φ. Assume p = 2. Since σ acts on the base with only one fixed
point, we get a contradiction. Assume p � 2. Then σ has exactly two fixed points on
the base. In particular, all non-multiple fibers must be irreducible, and the number
of singular non-multiple fibers is even. By Lefschetz fixed-point formula, we get

e(S σ) = e(Fσ
1 ) + e(Fσ

2 ) = 12.

Since p � 2, Fi is either smooth or of type Ãni , i = 1, 2. Suppose that F1 and F2 are
singular fibers. Since σ fixes any irreducible component of a fiber, Lemma 2 implies
that e(Fσ

i ) = e(Fi) = ni. So, we obtain that n1 +n2 = 12. However, F1, F2 contribute
n1 + n2 − 1 to the rank of the sublattice of Num(S ) generated by components of
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fibers. The rank of this sublattice is at most 9. This gives us a contradiction. Next
we assume that one of the half-fibers is smooth. Then a smooth fiber has four fixed
points, hence the other half-fiber must be of type Ã7. It is easy to see that a smooth
relatively minimal model of the quotient S/(σ) has singular fibers of type D̃4 and
Ã7. Since the Euler characteristics of singular fibers add up to 12, this is impossible.

Remark 3. The assertion is probably true in the case when S is not classical. How-
ever, I could prove only that S admits at most one genus one fibration on which
σ does not act identically on the base. In this case (S σ)red is equal to the reduced
half-fiber.

We also have the converse assertion.

Proposition 3. Any numerically trivial automorphism σ that acts identically on the
base of any genus one fibration is cohomologically trivial.

This follows from Enriques’s Reducibility Lemma [3], Corollary 3.2.2. It asserts
that any effective divisor on S is linearly equivalent to a sum of irreducible curves
of arithmetic genus one and smooth rational curves. Since each irreducible curve
of arithmetic genus one is realized as either a fiber or a half-fiber of a genus one
fibration, its class is fixed by σ. Since σ fixes also the class of a smooth rational
curve, we obtain that it acts identically on the Picard group.

5 Numerically Trivial Automorphisms

Here we will be interested in the group Autnt(S )/Autct(S ). Since Num(S ) coincides
with Pic(S ) for a non-classical Enriques surface S , we may assume that KS � 0.

Let O(NS(S )) be the group of automorphisms of the abelian group NS(S ) pre-
serving the intersection product. It follows from the elementary theory of abelian
groups that

O(NS(S )) � (Z/2Z)10 � O(Num(S )).

Thus
Autnt(S )/Autct(S ) � (Z/2Z)a. (5)

The following theorem extends the second assertion of Theorem 1 to arbitrary
characteristic.

Theorem 6.
Autnt(S )/Autct(S ) � (Z/2Z)a, a ≤ 1.

Proof. Assume first that p � 2. Let σ ∈ Autnt(S )\Autct(S ). By Proposition 3, there
exists a genus one fibration φ : S → P1 such that σ acts non-trivially on its base.
Since p � 2, σ has two fixed points on the base. Let F1 and F2 be the fibers over
these points. Obviously, σ must leave invariant any reducible fiber, hence all fibers
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F � F1, F2 are irreducible. On the other hand, the Lefschetz fixed-point formula
shows that one of the fixed fibers must be reducible. Let G be the cyclic group
generated by (σ). Assume there is σ′ ∈ Autnt(S ) \G. Since Autnt(S )/Autct(S ) is an
elementary 2-group, the actions of σ′ and σ on the base of the fibration commute.
Thus σ′ either switches F1, F2 or it leaves them invariant. Since one of the fibers is
reducible, σ′ must fix both fibers. We may assume that F1 is reducible. By looking
at all possible structure of the locus of fixed points containing in a fiber (see the
proof of Lemma 2), we find that σ and σ′ (or σ ◦ σ′) fixes pointwisely the same set
of irreducible components of F1. Thus σ ◦ σ′ (or σ′) acts identically on F1. Since
the set of fixed points is smooth, we get a contradiction with the assumption that
σ′ � σ.

Next we deal with the case p = 2. Suppose the assertion is not true. Let σ1, σ2

be two representatives of non-trivial cosets in Autnt(S )/Autct(S ). Let φi be a genus
fibration such that σi does not act identically on its base. Since, we are in character-
istic 2, σi has only one fixed point on the base. Let Fi be the unique fiber of φi fixed
by σi. Replacing σ2 with σ1 ◦ σ2, if needed, we may assume that σ2 does not act
identically on the base of φ1. It follows from Proposition 1 that S σi = (Fi)red − Ri

for some (−2)-curves Ri. Then σ3 = σ1 ◦ σ2 acts identically on the bases of φ1 and
φ2, and hence contains 2-sections of φ1 and φ2. It is easy to see that they coincide
with R1 and R2. Now S σ3 contains (F1)red + R2 = (F2)red + R1 and this cannot be
contained in F3. This contradiction proves the assertion.

6 Examples

In this section we assume that p � 2.

Example 1. Let us see that the case when Autnt(S ) � Autct(S ) is realized. Consider
X = P1×P1 with two projections p1, p2 onto P1. Choose two smooth rational curves
R and R′ of bidegree (1, 2) such that the restriction of p1 to each of these curves is
a finite map of degree two. Assume that R is tangent to R′ at two points x1 and
x2 with tangent directions corresponding to the fibers L1, L2 of p1 passing through
these points. Counting parameters, it is easy to see that this can be always achieved.
Let x′1, x′2 be the points infinitely near x1, x2 corresponding to the tangent directions.
Let L3, L4 be two fibers of p1 different from L1 and L2. Let

R ∩ L3 = {x3, x4}, R ∩ L4 = {x5, x6}, R′ ∩ L3 = {x′3, x′4}, R′ ∩ L4 = {x′5, x′6}.
We assume that all the points are distinct. Let b : X′ → X be the blow-up of
the points x1, . . . , x6, x′1, . . . , x′6. Let Ri, R′i be the corresponding exceptional curves,
L̄i, R̄, R̄′ be the proper transforms of Li, R, R′. We have



Automorphisms of Enriques Surfaces 277

D = R̄ + R̄′ +
4∑

i=1

L̄i + R1 + R2

∼ 2b∗(3 f1 + 2 f2)− 2
6∑

i=1

(Ri + R′i)− 4(R′1 + R′2),

where fi is the divisor class of a fiber of the projection pi : X → P1. Since the
divisor class of D is divisible by 2 in the Picard group, we can construct a double
cover π : S ′ → X′ branched over D. We have

KX ′ = b∗(−2 f1 − 2 f2) +
6∑

i=1

(Ri + R′i) + R′1 + R′2,

hence

KS ′ = π∗(KX ′ +
1

2
D) = (b ◦ π)∗( f1 − R′1 − R′2).

We have L̄2
1 = L̄2

2 = R2
1 = R2

2 = −2, hence π∗(L̄i) = 2Ai, i = 1, 2, and π∗(Ri) =

2Bi, i = 1, 2, where A1, A2, B1, B2 are (−1)-curves. Also R̄2 = R̄′2 = L̄2
3 = L̄2

4 = −4,
hence π∗(R̄) = 2R̃, π∗(R̄′) = 2R̃′, π∗(L̄3) = 2L̃3, π

∗(L̄4) = 2L̃4 where R̃, R̃′, L̃3, L̃4

are (−2)-curves. The curves R̄i = π∗(Ri), R̄′i = π∗(R′i), i = 3, 4, 5, 6, are (−2)-curves.
The preimages of the curves R′1 and R′2 are elliptic curves F ′1, F ′2. Let α : S ′ → S
be the blowing down of the curves A1, A2, B1, B2. Then the preimage of the fibration
p1 : X → P1 on S is an elliptic fibration with double fibers 2F1, 2F2, where Fi =

α(F ′i). We have KS = 2F1 − F1 − F2 = F1 − F2. So, S is an Enriques surface with
rational double cover S � P1 × P1. The elliptic fibration has two fibers of types D̃4

over L3, L4 and two double fibers over L1 and L2.
The following diagram pictures a configuration of curves on S .
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L̃3

R̄3 R̃ R̄′3

L̃′4

R̄4 R̄′4

R̄6

R̃′
R̄5 R̄′5

R̄′6

Let us see that the cover automorphism is numerically trivial but not cohomo-
logically trivial (see other treatment of this example in [12]). Consider the pencil
of curves of bidegree (4, 4) on X generated by the curve G = R + R′ + L3 + L4

and 2C, where C is a unique curve of bidegree (2, 2) passing through the points
x4, x′4, x6, x′6, x1, x′1, x2, x′2. These points are the double base points of the pencil. It



278 I.V. Dolgachev

is easy to see that this pencil defines an elliptic fibration on S with a double fiber
of type Ã7 formed by the curves R̄3, L̃3, R̄5, R̃′, R̄′5, L̃4, R̄′3, R̃ and the double fiber 2C̄,
where C̄ is the preimage of C on S . If g = 0, f = 0 are local equations of the curves
G and C, the local equation of a general member of the pencil is g + μ f 2 = 0, and
the local equation of the double cover S � X is g = z2. It clear that the pencil splits.
By Proposition 3 the automorphism is not cohomologically trivial.

Note that the K3-cover of S has four singular fibers of type D̃4. It is a Kummer
surface of the product of two elliptic curves. This is the first example of a numeri-
cally trivial automorphism due to David Lieberman (see [13], Example 1). Over C,
a special case of this surface belongs to Kondō’s list of complex Enriques surfaces
with finite automorphism group [11]. It is a surface of type III. It admits five elliptic
fibrations of types

D̃8, D̃4 + D̃4, D̃6 + Ã1 + Ã1, Ã7 + Ã1, Ã3 + Ã3 + Ã1 + Ã1.

Example 2. Let X = P1 × P1 be as in the previous example. Let R′ be a curve of
bidegree (3, 4) on X such that the degree of p1 restricted to R′ is equal to 4. It is a
curve of arithmetic genus 6. Choose three fibers of L1, L2, L3 of the first projection
and points xi ∈ Li on it no two of which lie on a fiber of the second projection. Let
x′i / xi be the point infinitely near xi in the tangent directions defined by the fiber
Li. We require that R′ has double points at x1, x2, x′2, x3, x′3 and a simple point at x′1
(in particular R′ has a cusp at x1 and has tacnodes at x2, x3). The dimension of the
linear system of curves of bidegree (3, 4) is equal to 19. We need five conditions to
have a cusp at x1 as above, and six conditions for each tacnode. So, we can always
find R′.

Consider the double cover π : Y → X branched over R′ + L1 + L2 + L3. It
has a double rational point of type E8 over x1 and simple elliptic singularities of
degree 2 over x2, x3. Let r : S ′ → Y be a minimal resolution of singularities. The
composition f ′ = p1◦r◦π : S ′ → P1 is a non-minimal elliptic fibration on S ′. It has
a fiber F ′1 of type Ẽ8 over L1. The preimage of L2 (resp. L2) is the union of an elliptic
curve F ′2 (resp. F ′3) and two disjoint (−1)-curves A2, A′2 (resp. A3, A′3), all taken with
multiplicity 2. Let S ′ → S be the blow-down of the curves A2, A′2, A3, A′3. It is easy
to check that S is an Enriques surface with a fiber F1 of type Ẽ8 and two half-fibers
F2, F3, the images of F ′2, F ′3.

The following picture describes the incidence graph of irreducible components
of F1.

• • • • • • • •
•R1

R2 R3 R4 R5 R6 R7 R8 R9

Under the composition of rational maps π : S � S ′ → Y → X, the image of the
component R8 is equal to L1, the image of the component R9 is the intersection point
x0 � x1 of the curves R′ and L1. Let σ be the deck transformation of the cover π
(it extends to a biregular automorphism because S is a minimal surface).

Consider a curve C on X of bidegree (1, 2) that passes through the points
x1, x2, x′2, x3, x′3. The dimension of the linear system of curves of bidegree (1, 2)
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is equal to 5. We have five condition for C that we can satisfy. The proper transform
of C on S is a (−2)-curve R0 which intersects the components R8 and R2. We have
the following graph which is contained in the incidence graph of (−2)-curves on S :
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R8

R9

R0

(6)

One computes the determinant of the intersection matrix (Ri · R j)) and obtains
that it is equal to −4. This shows that the curves R0, . . . , R9 generate a sublat-
tice of index 2 of the lattice Num(S ). The class of the half-fiber F2 does not be-
long to this sublattice, but 2F2 belongs to it. This shows that the numerical classes
[F2], [R0], . . . , [R9] generate Num(S ). We also have a section s : Num(S ) → Pic(S )
of the projection Pic(S ) → Num(S ) = Pic(S )/(KS ) defined by sending [Ri] to Ri

and [F2] to F2. Since the divisor classes Ri and F2 are σ-invariant, we obtain that
Pic(S ) = KS ⊕ s(Num(S )), where the both summands are σ-invariant. This shows
that σ acts identically on Pic(S ), and, by definition, belongs to Autct(S ).

Remark 4. In fact, we have proven the following fact. Let S be an Enriques surface
such that the incidence graph of (−2)-curves on it contains the subgraph (6). As-
sume that S admits an involution σ that acts identically on the subgraph and leaves
invariant the two half-fibers of the elliptic fibration defined by a subdiagram of type
Ẽ8. Then σ ∈ Autct(S ). The first example of such a pair (S , σ) was constructed in
[4]. The surface has additional (−2)-curves R′1 and R′9 forming the following graph.
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R1 R′1

R3

R2

R5
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R7

R8

R9R′9

R0

•• (7)
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All smooth rational curves are accounted in this diagram. The surface has a finite
automorphism group isomorphic to the dihedral group D4 of order 4. It is a surface
of type I in Kondō’s list. The existence of an Enriques surface containing the dia-
gram (7) was first shown by E. Horikawa [6]. Another construction of pairs (S , σ)
as above was given in [13] (the paper has no reference to the paper [4] that had
appeared in the previous issue of the same journal).

Observe now that in the diagram (6) the curves R0, . . . , R7 form a nef isotropic
effective divisor F0 of type Ẽ7. The curve R9 does not intersect it. This implies that
the genus one fibration defined by the pencil |F0| has a reducible fiber with one of
its irreducible components equal to R9. Since the sum of the Euler characteristics of
fibers add up to 12, we obtain that the fibration has a reducible fiber or a half-fiber
of type Ã1. Let R′9 be its another irreducible component. Similarly, we consider the
genus one fibration with fiber R0, R2, R3, R5, . . . , R9 of type Ẽ7. It has another fiber
(or a half-fiber) of type Ã1 formed by R1 and some other (−2)-curve R′1.

So any surface S containing the configuration of curves from (6) must contain a
configuration of curves described by the following diagram.

•

•

•

•

•

•
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• •
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R4

R1 R′1

R3

R2

R5

R6

R7

R8

R9R′9

R0

•• (8)

Note that our surfaces S depend on two parameters. A general surface from the
family is different from the Horikawa surface. For a general S , the curve R′9 orig-
inates from a rational curve Q of bidegree (1, 2) on X which passes through the
points x0 and x2, x′2, x3, x′3. It intersects R8 with multiplicity 1. The curve R′1 origi-
nates from a rational curve Q′ of bidegree (5, 6) of arithmetic genus 20 which has
a 4-tuple point at x1 and two double points infinitely near x1. It also has four triple
points at x2, x′2, x3, x′3. It intersects R4 with multiplicity 1. In the special case when
one of the points x2 or x3 is contained in a curve (0, 1) Q0 of bidegree (0, 1) contain-
ing x0, the curve Q becomes reducible, its component Q0 defines the curve R′9 which
does not intersect R8. Moreover, if there exists a curve Q′0 of bidegree (2, 3) which
has multiplicity 2 at x2, multiplicity 1 at x′2, x3, x4, and has a cusp at x1 intersecting
R′ at this point with multiplicity 7, then Q′0 will define a curve R′1 that does not in-
tersect R4. The two curves R′1 and R′9 will intersect at two points on the half-fibers
of the elliptic fibration |2F|. This gives us the Horikawa surface.
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Example 3. Let φ : X → P1 be a rational elliptic surface with reducible fiber F1

of type IV and F2 of type I∗0 = D̃4 and one double fiber 2F. The existence of such
surface follows from the existence of a rational elliptic surface with a section with
the same types of reducible fibers. Consider the double cover X′ → X branched over
F1 and the union of the components of F2 of multiplicity 1. It is easy to see that X′
is birationally equivalent to an Enriques surface with a fiber of type Ẽ6 over F1 and
a smooth elliptic curve over F2. The locus of fixed points of the deck transformation
σ consists of four components of the fiber of type Ẽ6 and four isolated points on the
smooth fiber. Thus the Lefschetz number is equal to 12 and σ is numerically trivial.
Over C, this is Example 1 from [12] which was overlooked in [13]. A special case
of this example can be found in [11]. It is realized on a surface of type V in Kondō’s
list of Enriques surfaces with finite automorphism group.

7 Extra Special Enriques Surfaces

In this section we will give examples of cohomologically trivial automorphisms
which appear only in characteristic 2.

An Enriques surface is called extra special if there exists a root basis B in Num(S )
of cardinality≤ 11 that consists of the classes of (−2)-curves such that the reflection
subgroup G generated by B is of finite index in the orthogonal group of Num(S ).
Such a root basis was called crystallographic in [3]. By a theorem of E. Vinberg
[17], this is possible if and only if the Coxeter diagram of the Coxeter group (G, B)
has the property that each affine subdiagram is contained in an affine diagram, not
necessary connected, of maximal possible rank (in our case equal to 8).

One can easily classify extra special Enriques surfaces. They are of the following
three kinds.

An extra Ẽ8-special surface with the crystallographic basis of (−2)-curves
described by the following diagram:

• • • • • • • • •
•R1

R2 R3 R4 R5 R6 R7 R8 R9 C

It has a genus one fibration with a half-fiber of type Ẽ8 with irreducible compo-
nents R1, . . . , R9 and a smooth rational 2-section C.

An extra D̃8-special surface with the crystallographic basis of (−2)-curves
described by the following diagrams:

• • • • • • •
• •

•
R1

R3 R4 R5 R6 R8 R9 CR7

R2
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It has a genus one fibration with a half-fiber of type D̃8 with irreducible compo-
nents R1, . . . , R9 and a smooth rational 2-section C.

An extra Ẽ7+Ã1-special Enriques surface with the crystallographic basis of (−2)-
curves described by the following diagram:

• • • • • • • • •
•• ��

��
��

�

R1

R2 R3 R4 R5 R6 R7 R8 C R9

R10

or

• • • • • • • • •
••R1

R2 R3 R4 R5 R6 R7 R8 C R9

R10

It has a genus one fibration with a half-fiber of type Ẽ7 with irreducible compo-
nents R1, . . . , R8 and a fiber or a half-fiber of type Ã1 with irreducible components
R9, R10. The curve C is a smooth rational 2-section.

It follows from the theory of reflection groups that the fundamental polyhedron
for the Coxeter group (G, B) in the nine-dimensional Lobachevsky space is of finite
volume. Its vertices at infinity correspond to maximal affine subdiagrams and also
to G-orbits of primitive isotropic vectors in Num(S ). The root basis B is a maximal
crystallographic basis, so the set of the curves Ri, C is equal to the set of all (−2)-
curves on the surface and the set of nef primitive isotropic vectors in Num(S ) is
equal to the set of affine subdiagrams of maximal rank. Thus the number of genus
one fibrations on S is finite and coincides with the set of affine subdiagrams of
rank 8.

It is not known whether an extra D̃8-special Enriques surface exists. However,
examples of extra-special surfaces of types Ẽ8, or Ẽ7 + Ã1 are given in [14]. They
are either classical Enriques surfaces or α2-surfaces. The surfaces are constructed as
separable double covers of a rational surface, so they always admit an automorphism
σ of order 2.

Suppose that S is an extra Ẽ8-special surface. Then we find that the surface has
only one genus one fibration. It is clear that σ acts identically on the diagram. This
allows one to define a σ-invariant splitting Pic(S ) � Num(S )⊕ KS . It implies that
σ is cohomologically trivial.

Assume that S is extra Ẽ7 ⊕ Ã1-special surface. The surface has a unique genus
one fibration with a half-fiber of type Ã7. It also has two fibrations in the first case
and one fibration in the second case with a fiber of type Ẽ8. It implies that the
curves R1, · · · , R8, C are fixed under σ. It follows from Salomonsson’s construction
that σ(R9) = R10 in the first case. In the second case, R9 and R10 are σ-invariant on
any extra special Ẽ7 ⊕ Ã1-surface.
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Boston, 1989)
4. I. Dolgachev, On automorphisms of Enriques surfaces. Invent. Math. 76, 163–177 (1984)
5. I. Dolgachev, J. Keum, Wild p-cyclic actions on K3-surfaces. J. Algebr. Geom. 10, 101–131

(2001)
6. E. Horikawa, On the periods of Enriques surfaces. II. Math. Ann. 235, 217–246 (1978)
7. L. Illusie, in Formule de Lefschetz, par A. Grothendieck. Cohomologie l-adique et fonctions
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Picard–Fuchs Equations of Special
One-Parameter Families of Invertible
Polynomials

Swantje Gährs

Abstract In this article we calculate the Picard–Fuchs equation of hypersurfaces
defined by certain one-parameter families associated to invertible polynomials. For
this we deduce the Picard–Fuchs equation from the GKZ system. As consequences
of our work and facts from the literature, we show a relation between the Picard–
Fuchs equation, the Poincaré series and the monodromy in the space of period
integrals.

Key words: Picard–Fuchs equation, Invertible polynomials, Griffiths–Dwork
method, GKZ systems, Poincaré series, Monodromy

Mathematics Subject Classifications (2010): Primary 14J33; Secondary 32G20,
32S40, 34M35, 14J32

1 Introduction

In this article we investigate the Picard–Fuchs equation of certain one-parameter
families of Calabi–Yau varieties. Calabi–Yau varieties have been studied in much
detail, especially in Mirror Symmetry. Much of the early interest in this field fo-
cused on Calabi–Yau varieties arising as hypersurfaces in toric varieties. This is
mostly due to Batyrev [3], who showed that for hypersurfaces in toric varieties
duality in the sense of Mirror Symmetry can be reduced to polar duality between
polytopes of toric varieties. This was the starting point for many achievements in
Mirror Symmetry of Calabi–Yau varieties. The work of Batyrev, however, does not
cover the families that we consider in this article. In particular, Batyrev requires that
the ambient space is Gorenstein. This implies that every weight divides the sum of
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all weights. The only overlap between Batyrev’s and our work are the polynomials
of Brieskorn–Pham type.

The hypersurfaces we investigate in this article are defined by invertible polyno-
mials. These are weighted homogeneous polynomials g(x1, . . . , xn) ∈ C[x1, . . . , xn],
which are a sum of exactly n monomials, such that the weights q1, . . . , qn of the
variables x1, . . . , xn are unique up to a constant and the affine hypersurface defined
by the polynomial has an isolated singularity at 0. The class of invertible polyno-
mials includes all polynomials of Brieskorn–Pham type, but is much bigger. These
polynomials were already studied by Berglund and Hübsch [5], who showed that
a mirror manifold is related to a dual polynomial. For an invertible polynomial
g(x1, . . . , xn) =

∑n
j=1
∏n

i=1 x
Ei j

i the transpose or dual polynomial gt(x1, . . . , xn) is
defined by transposing the exponent matrix E = (Ei j)i, j of the original polynomial,

so gt(x1, . . . , xn) =
∑n

j=1
∏n

i=1 x
E ji

i . If the polynomial is of Brieskorn–Pham type
then the polynomial is in the above sense self-dual. This work was made precise by
Krawitz et al. (cf. [24, 25]), where an isomorphism is given between the FJRW-ring
of the polynomial (cf. [17]) and a quotient of the Milnor ring of the dual polyno-
mial. In addition Chiodo and Ruan [8] have made progress by stating the so-called
Landau–Ginzburg/Calabi–Yau correspondence for invertible polynomials. Among
other things this includes the statement that the Chen–Ruan orbifold cohomology of
the mirror partners interchange. Recently, Borisov [6] developed a theory combin-
ing his work with Batyrev on toric varieties [4] in mirror symmetry and the work of
Krawitz on invertible polynomials in mirror symmetry [24].

In this article we analyse the Picard–Fuchs equations of a special one-parameter
family of hypersurfaces. The Picard–Fuchs equation is a differential equation that
is satisfied by the periods of the family, i.e. the integrals of a form over a basis of
cycles. These differential equations have been studied by many people and this led
to several aspects of mirror symmetry. For example, Morrison [27] used the Picard–
Fuchs equations of hypersurfaces to calculate the mirror map and Yukawa couplings
for mirror manifolds. In [7] Chen, Yang and Yui study the monodromy for Picard–
Fuchs equations of Calabi–Yau threefolds in terms of monodromy groups. These
give two potential applications of the results of this article to further research.

We consider a special one dimensional deformation of an invertible polynomial
and calculate the Picard–Fuchs equation for this family. More precisely we start
with an invertible polynomial g(x1, . . . , xn), such that the weights q1, . . . , qn of g
add up to the degree d of g. This is called the Calabi–Yau condition, because this
condition implies that the canonical bundle of the hypersurface {g(x1, . . . , xn) =
0} ⊂ P(q1, . . . , qn) is trivial (cf. [13]). The special one-parameter family we are
dealing with is given by

f (x1, . . . , xn) := g(x1, . . . , xn) + s
n∏

i=1

xi,

where s is a parameter. In her paper [30] Noriko Yui already investigated some of
these special one-parameter families, e.g. for the Fermat quintic, and mentioned the
general case as an interesting problem. It is possible to calculate the Picard–Fuchs
equation for this one-parameter family by using the Griffiths–Dwork method, which
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provides an algorithm to calculate the Picard–Fuchs equation (cf. [10]). Unfortu-
nately, this method of calculation can be quite computationally expensive. But it is
also possible to compute the GKZ system satisfied by the periods and in this way we
can prove a general formula for the Picard–Fuchs equation. For the one-parameter
family f defined above the Picard–Fuchs equation is given by

0 =
n∏

i=1

q̂q̂i

i sd̂
n∏

i=1

q̂i−1∏

j=0

(δ +
j · d̂
q̂i

)
∏

�∈I

(δ + �)−1 − (−d̂)d̂
d̂−1∏

j=0

(δ− j)
∏

�∈I

(δ− �)−1,

where δ = s ∂
∂s , q̂1, . . . , q̂n are the weights of the dual polynomial gt, d̂ is the degree

of gt, and I = {0, . . . , d̂ − 1} ∩⋃n
i=1

{

0, d̂
q̂i

, 2d̂
q̂i

, . . . , (̂qi−1)d̂
q̂i

}

.

One interesting observation is that the Picard–Fuchs equation is determined only
by the data given by the dual polynomial, namely the dual weights and the dual
degree. As pointed out to us by Stienstra, this Picard–Fuchs equation was already
obtained in a work by Corti and Golyshev [9] in the context of local systems and
Landau–Ginzburg pencils. We will show the relation to our work and in addition we
are able to show for certain values of the parameter a 1-1 correspondence between
the roots of the Picard–Fuchs equation of f , the Poincaré series of the dual polyno-
mial gt and the monodromy in the solution space of the Picard–Fuchs equation.

One important class that will be studied in detail in this article is the case of
the 14 exceptional unimodal hypersurface singularities that are part of Arnold’s
strange duality [1]. The duality between these singularities was known before mir-
ror symmetry, but was shown to fit into the language of mirror symmetry (cf. [14]).
We will not only calculate the Picard–Fuchs equation here, but also investigate the
structure of the cohomology which is used in the calculations for the Picard–Fuchs
equation.

2 Preliminaries on Invertible Polynomials

We start this section by defining invertible polynomials and proving some properties
we need later.

Definition 1. Let

g(x) =
m∑

j=1

c j

n∏

i=1

x
Ei j

i ∈ C[x]

be a quasihomogeneous polynomial with weights q1, . . . , qn ∈ Z, where Ei j ∈ N,
x = (x1, . . . , xn) and c j � 0 for all j. Then g(x) is an invertible polynomial if the
following conditions hold:

(i) n = m,
(ii) det(Ei j) � 0 and

(iii) V(g) ⊂ P(q1, . . . , qn) is quasi-smooth.
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From now on we assume that the coefficients c j are all equal to 1. This can always be
achieved by an easy coordinate transformation. Additionally we require the weights
to be reduced, i.e. gcd(q1, . . . , qn) = 1. In this way the weights are unique.

Remark 1. We want to make some remarks for the article:

• Some authors call the polynomial g(x) invertible if the first two conditions are
satisfied, and a non-degenerate invertible polynomial if g(x) satisfies all three
conditions.
• The weights are also defined by the smallest numbers q1, . . . , qn ∈ N and d ∈ N

satisfying the equation

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E11 · · · E1n
...

...
En1 · · · Enn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
...

qn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
...
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or concisely E · q = d. We call E the exponent matrix.

M. Kreuzer and H. Skarke showed that the polynomials which are invertible are
a composition of only two types.

Theorem 1. (Kreuzer and Skarke [26]) Every invertible polynomial is a sum of poly-
nomials with distinct variables of the following two types

loop: xk1
1 x2 + xk2

2 x3 + · · · + xkm−1

m−1xm + xkm
m x1 for m ≥ 2

chain: xk1
1 x2 + xk2

2 x3 + · · · + xkm−1

m−1xm + xkm
m for m ≥ 1

Example 1. We want to list two very famous classes of examples here:

(i) A polynomial is of Brieskorn–Pham type if it is of the form g(x) =
∑n

i=1 xki
i

with ki ∈ N. In this case the polynomial is always invertible and the exponent
matrix is a diagonal matrix with the exponents ki on the diagonal. It follows that
qi =

lcm(k1,...,kn)
ki

and d = lcm(k1, . . . , kn).
(ii) For the 14 exceptional unimodal singularities, invertible polynomials can be

chosen. Table 1 lists their names, invertible polynomials, reduced weights and
degrees in the first four columns. In the last column the dual singularity due to
Arnold [1] is listed. In the next definition we will see how this duality fits into
the context of invertible polynomials which also explains the rest of the table.
The example of Arnold’s strange duality will be studied in detail in Sect. 3.4.

In their paper [5] P. Berglund and T. Hübsch proposed a way to define dual pairs
of invertible polynomials by transposing the exponent matrix.

Definition 2. If g(x) =
∑n

j=1
∏n

i=1 x
Ei j

i is an invertible polynomial then the Berglund–
Hübsch transpose is given by

gt(x) =
n∑

j=1

n∏

i=1

x
E ji

i .
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Example 2. In their paper [16] Ebeling and Takahashi showed that one can choose
invertible polynomials defining the 14 exceptional unimodal hypersurface singulari-
ties in such a way that the dual singularities are defined by the transposed polynomi-
als. Here dual singularities are given if the Dolgachev number of the one singularity
is equal to the Gabrielov number of the other singularity and vice versa.

Table 1: Arnold’s strange duality

Name g(x, y, z) Weights Deg gt(x, y, z) Dual

E12 x7 + y3 + z2 (6,14,21) 42 x7 + y3 + z2 E12

E13 x5y + y3 + z2 (4,10,15) 30 x5 + xy3 + z2 Z11

Z11 x5 + xy3 + z2 (6,8,15) 30 x5y + y3 + z2 E13

E14 x4z + y3 + z2 (3,8,12) 24 x4 + y3 + xz2 Q10

Q10 x4 + y3 + xz2 (6,8,9) 24 x4z + y3 + z2 E14

Z12 x4y + xy3 + z2 (4,6,11) 22 x4y + xy3 + z2 Z12

W12 x5 + y2z + z2 (4,5,10) 20 x5 + y2 + yz2 W12

Z13 x3z + xy3 + z2 (3,5,9) 18 x3y + y3 + xz2 Q11

Q11 x3y + y3 + xz2 (4,6,7) 18 x3z + xy3 + z2 Z13

W13 x4y + y2z + z2 (3,4,8) 16 x4 + xy2 + yz2 S11

S11 x4 + y2z + xz2 (4,5,6) 16 x4z + y2 + yz2 W13

Q12 x3z + y3 + xz2 (3,5,6) 15 x3z + y3 + xz2 Q12

S12 x3y + y2z + xz2 (3,4,5) 13 x3z + xy2 + yz2 S12

U12 x4 + y2z + yz2 (3,4,4) 12 x4 + y2z + yz2 U12

Remark 2. Notice that taking the transpose does not change the type of the poly-
nomial. The exponent matrix is a direct sum of matrices, where every summand
belongs to a polynomial of chain or loop type. Therefore we can transpose every
chain and loop separately:

g(x) = xk1
1 x2 + · · · + xkm−1

m−1xm + xkm
m x1

⇒ gt(x) = xmxk1
1 + x1xk2

2 · · · + xm−1xkm
m

and

g(x) = xk1
1 x2 + · · · + xkm−1

m−1xm + xkm
m

⇒ gt(x) = xk1
1 + x1xk2

2 · · · + xm−1xkm
m .

Definition 3. Let g(x) be an invertible polynomial. We set f (x) to be the one-
parameter family associated to g(x) via
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f (x) = g(x) + s
n∏

i=1

xi,

where s denotes the parameter.

This one-parameter family f (x) will be one of the main objects of interest in this
article. Because we still want this family to be quasihomogeneous, we require that
the weights of g(x) add up to the degree of g(x). In [13] I. Dolgachev showed that
this is the condition for a quasihomogeneous polynomial to define a Calabi–Yau
hypersurface.

Proposition 1. ([13]) Let g(x) be a quasihomogeneous polynomial with weights
q1, . . . , qn. Then g(x) defines a hypersurface in the weighted projective space that
is Calabi–Yau if

n∑

i=1

qi = d = deg g(x).

Lemma 1. If the Calabi–Yau condition holds for the weights of an invertible poly-
nomial then it also holds for the weights of the transposed polynomial.

Notation 2. For an invertible polynomial g(x) we denote the reduced weights by
q1, . . . , qn and deg g = d. For the dual polynomial gt the weights are q̂1, . . . , q̂n and
deg gt = d̂. The diagonal entries of the exponent matrix E are k1, . . . , kn. Notice that
these are the same for g and gt.

Proof. The Calabi–Yau condition is equivalent to the condition

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...

E

1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

This is due to the fact that the weights are unique up to scaling and therefore the lin-
ear relations between the rows of the above matrix have to be given by multiplying
with the vector (−d, q1, . . . , qn)t. Now it is obvious that if the above condition holds
for E it also holds for Et.

3 The Picard–Fuchs Equation for Invertible
Polynomials and Consequences

In this section we focus on the Picard–Fuchs equation of the one-parameter fam-
ily f (x) and discuss some consequences. In the first subsection of this section we
calculate the GKZ system and in the second subsection we see how this proves
Theorem 6, which yields the Picard–Fuchs equation for the one-parameter family
f (x). In Sect. 3.2 we will also see how this relates to a paper by Corti and Goly-
shev [9], where the same differential equation appears. This is also the starting point
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for Sect. 3.3, where we concentrate on relations between the cohomology of the
hypersurface defined by the one-parameter family f (x) and the cohomology of the
solution space of the Picard–Fuchs equation. In Sect. 3.4 we will discuss the results
in an important class of examples given by Arnold’s strange duality. This was also
the starting point of the research done in this article. Finally, in the last section we
cover the relation between the zero sets of the Picard–Fuchs equation of f for spe-
cial choices of the parameter, the Poincaré series of the dual polynomial gt and the
monodromy in the solution space of the Picard–Fuchs equation. We will use the
same notation as before, but we want to recall it again here and use it throughout
this section without further notice.

Notation 3. Let g(x) = g(x1, x2, . . . , xn) :=
∑n

i=1
∏n

i=1 x
Ei j

i be an invertible poly-
nomial with reduced weights q1, q2, . . . , qn and deg g = d for which the Calabi–
Yau condition, d =

∑n
i=1 qi, holds. The diagonal entries of the exponent matrix

E = (Ei j)i, j are defined as k1, . . . , kn. We denote by gt(x) the transposed polyno-
mial of g, the dual reduced weights belonging to gt are denoted by q̂1, q̂2, . . . , q̂n and
the degree by deg gt = d̂.
The invertible polynomial consists of loops and chains of arbitrary length. For a
variable xi we always take xi−1 and xi+1 to be the neighbouring variables in the
loop or chain. The indices are without further notice taken modulo the length of the
loop or chain.
We always denote by f (x1, . . . , xn) the one-parameter family with parameter s de-
fined by f (x) = f (x1, . . . , xn) := g(x1, . . . , xn) + s

∏n
i=1 xi.

3.1 The GKZ System for Invertible Polynomials

This section is devoted to GKZ systems. We will give a short introduction to GKZ
systems and do the calculations for invertible polynomials afterwards.

3.1.1 Introduction to GKZ Systems

In this first part we want to give a short introduction to GKZ systems as far as we
need it. The theory on GKZ systems is much larger than the part we present here.
Good references for an introduction as well as an overview on several aspects of
GKZ systems are the article by Stienstra [29], which has a large part on solutions
of GKZ systems, the book by Cox and Katz [10], which among other things embeds
GKZ systems in a bigger context, and the article of Hosono [23], which focuses on
the case of toric varieties. The theory of GKZ systems was originally established by
a series of articles of Gelfand, Kapranov and Zelevinsky [19–22] as a generalisation
of hypergeometric differential equations.

Notation 4. Let A ⊂ Zn be a finite subset which generates Zn as an abelian group
and for which there exists a group homomorphism h : Zn → Z such that h(A) = 1,
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i.e. A lies in a hypersurface. Let γ ∈ Cn be an arbitrary vector.
Let |A| = N, then L := {(l1, . . . , lN) ∈ ZN : l1a1+· · ·+lNaN = 0, ai ∈ A} denotes the
lattice of linear relations among A. Because of A lying in a hypersurface,

∑
li = 0

holds for (l1, . . . , lN) ∈ L.

Remark 3. We will calculate the GKZ system for the one-parameter family f (x)
later. Keep in mind that for these calculations A will be the set of all exponent
vectors of our one-parameter family. The reasons for this will also become clear
later.

Definition 4. The GKZ system (sometimes also called A system) for A and γ is a
system of differential equations for functions Φ of N variables v1, . . . , vN given by

∏

li>0

( ∂

∂vi

)liΦ =
∏

li<0

( ∂

∂vi

)−liΦ for every l ∈ L and (1)

N∑

i=1

ai jvi
∂Φ

∂vi
= γ jΦ for all j = 1, . . . , k + 1 and (ai1, . . . , ai k+1) ∈ A. (2)

The above definition gives a system of partial differential equations.

3.1.2 Calculation of the GKZ System for Invertible Polynomials

We will now start calculating the GKZ system for the one-parameter family f (x) =
g(x) + s

∏
i xi, where g(x) is an invertible polynomial. The notation in this section

is the same as before and can be found in 3 and 4. In addition we will define some
extra notation:

Notation 5. We define ei = (ei 1, . . . , ei n) for i = 1, . . . , n to be the rows of the expo-
nent matrix E. Then we can write g(x) as g(x) =

∑n
i=1 xei , where xei =

∏n
j=1 x

ei j

j . Now

we define a general (n+1)-parameter family fv(x) = fv1,...,vn(x) =
∑n

i=1 vixei+sx(1,...,1)

with parameters v1, . . . , vn and s. So in the previously used notation we have
N = n + 1 and we set vn+1 := s. In this way the notation is consistent with the
previous sections, because we have that

f1,...,1(x) =
n∑

i=1

xei + sx(1,...,1) = g(x) + s
n∏

i=1

xi = f (x).

For the set A = {et
1, . . . , et

n, (1, . . . , 1)t} ⊂ Zn and γ = (−1, . . . ,−1)t we will now
start calculating the GKZ system. The reason for the choice of γ will become clear
when we look at the solutions of the GKZ system. For the first equation (1) we need
to calculate the lattice of linear relations L among the vectors in A. If we define A
to be the matrix with columns et

1, . . . , et
n, (1, . . . , 1)t, then A is an n× (n + 1)-matrix

and L is one-dimensional. We know that
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A ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̂1
...

q̂n

−d̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Et ·
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̂1
...

q̂n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̂
...

d̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and therefore L = 〈(̂q1, . . . , q̂n,−d̂)t〉. Now we are able to write down equation (1)
for this lattice L:

(
∂

∂s

)d̂

Φ =

(
∂

∂v1

)q̂1

· · ·
(

∂

∂vn

)q̂n

Φ. (3)

In the end we want to compare the GKZ system to the Picard–Fuchs equation from
Theorem 6. To do this we will write the GKZ system with the differential operators
δ = s ∂

∂s and δi = vi
∂

∂vi
for i = 1, . . . , n by inserting s−1δ = ∂

∂s and v−1
i δi =

∂
∂vi

.

(
s−1δ

)d̂
Φ =

(
v−1

1 δ1

)̂q1 · · · (v−1
n δn

)̂qn
Φ.

Now we move s−1 and v−1
i to the front and the product rule gives us an easy way to

interchange the differential operators δ, δi with the variables s, vi:

δsp = sp(δ + p) for p ∈ Z and

δiv
p
i = vp

i (δi + p) for i = 1, . . . , n and p ∈ Z. (4)

Using these equations we can move every s and every vi to the front of the equation:

(s−1δ)d̂ = s−1δs−1δ · · · s−1 δs−1

s−1(δ−1)

δ

= . . .

= s−d̂(δ− (d̂ − 1)) · · · (δ− 1)δ

and in the same way we get

(v−1
i δi)

q̂i = v−1
i δiv

−1
i δi · · · v−1

i δv−1
i

v−1
i (δi−1)

δi

= . . .

= v−q̂i

i (δi − (q̂i − 1)) · · · (δi − 1)δi.

Putting this together the first equation of the GKZ system is given by

s−d̂(δ− (d̂ − 1)) · · · (δ− 1)δΦ =
n∏

i=1

v−q̂i

i (δi − (̂qi − 1)) · · · (δi − 1)δiΦ. (5)
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We will work with this equation later on and calculate the second part (2) of the
GKZ system next. The second system of equations of the GKZ system is given by
putting γ = (−1, . . . ,−1)t in (2):

A ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
∂

∂v1

...

vn
∂

∂vn

s ∂
∂s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ = A ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1
...
δn

δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ = Et

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1
...
δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δΦ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
...
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ (6)

Before we do any further calculations, we focus on solutions of the GKZ system.
There is a whole theory on solutions of GKZ systems which, for example, is ex-
plained in [29]. We however, do not need the full strength of this, because to com-
pare the GKZ system to the Picard–Fuchs equation in Theorem 6, it is enough to
know that the form ω = sΩ0

f (x) , where Ω0 =
∑n

i=1(−1)iqix jdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,
is a solution of the GKZ system shown in (5) and (6). This is the goal, but we will
start with a slightly different solution in the next lemma.

Lemma 2. The form Φ = Ω0

fv(x) is a solution for the above GKZ system.

Proof. We will calculate the differentials for Φ = Ω0

fv(x) and see that (3) and (6) hold.

For (3) we need the partial derivatives with respect to s and vi for i = 1, . . . , n. They
are easy to calculate:

(
∂

∂s

)d̂

Φ = (−1)d̂d̂!
(∏

xi

)d̂ Ω0
(

fv(x)
)d̂+1

∂

∂vi
Φ = −xei

Ω0
(

fv(x)
)2

n∏

i=1

(
∂

∂vi

)q̂i

Φ = (−1)
∑

q̂i
(∑

q̂i

)
!x
∑

q̂iei
Ω0

(
fv(x)

)1+
∑

q̂i
.

Because of the Calabi–Yau condition we have
∑

q̂i = d̂ and from the definition of
the dual weights and degree we get

∑
q̂iei = Et ·(̂q1, . . . , q̂n)t = (d̂, . . . , d̂)t. Therefore

we have

(
∂

∂s

)d̂

Φ = (−1)d̂d̂!
(∏

xi

)d̂ Ω0
(

fv(x)
)1+d̂

= (−1)
∑

q̂i
(∑

q̂i

)
!x
∑

q̂iei
Ω0

(
fv(x)

)1+
∑

q̂i

=

n∏

i=1

(
∂

∂vi

)q̂i

Φ.
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This proves that Φ is a solution of (3). Now we check the second equation, where
we need δΦ and δiΦ for i = 1, . . . , n, because the system of equations is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δΦ + Et

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1
...
δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ.

So for every j = 1, . . . , n we have the following equation:

δΦ +
n∑

i=1

ei jδiΦ + Φ = −sx(1,...,1) Ω0
(
fv(x)

)2 +

n∑

i=1

ei j
(−vix

ei
) Ω0
(
fv(x)

)2 +
Ω0

fv(x)

= −
(
sx(1,...,1) +

∑n
i=1 ei jvixei

)
Ω0

(
fv
)2

(x)
+

Ω0

fv(x)

= −
x j

∂
∂x j

fv(x)Ω0

(
fv(x)

)2 +
Ω0

fv(x)

= 0,

where the last expression is an exact form due to the Griffiths formula and is there-
fore zero.

As mentioned before Φ is not the solution we want to have. A solution that would
fit our purposes would be ωv =

sΩ0
fv(x) , because ω1,...,1 =

sΩ0
f (x) = ω. So we insert

Φ = s−1ωv in (5) and (6). So (5) leads to

s−d̂(δ− (d̂ − 1)) · · · (δ− 1) δs−1ωv

=

n∏

i=1

v−q̂i

i (δi − (̂qi − 1)) · · · (δi − 1)δis
−1ωv.

We can use (4) as before to move the variable s to the front and get the following
equation.

s−d̂(δ− d̂) · · · (δ− 1)ωv =

n∏

i=1

v−q̂i

i (δi − (̂qi − 1)) · · · (δi − 1)δiωv. (7)

By putting Φ = s−1ωv in (6) and using (4) again we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δωv + Et

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1
...
δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ωv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ωv.

Solving this equation for (δ1, . . . , δn)t gives
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1
...
δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −(Et)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̂1

d̂
...

q̂n

d̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ.

In other words we can write each of the differential operators δ1, . . . , δn in terms of
δ. For all i = 1, . . . , n we have

δi = − q̂i

d̂
δ.

We can use this equation to write (7) as an ordinary differential equation with dif-
ferential operator δ:

s−d̂(δ− d̂) · · · (δ− 1)ωv

=

n∏

i=1

v−q̂i

i (δi − (̂qi − 1)) · · · (δi − 1)δiωv

=

n∏

i=1

(

− q̂i

d̂
v−1

i

)q̂i
⎛
⎜⎜⎜⎜⎜⎝δ +

(̂qi − 1)d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎜⎝δ +

d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ δωv.

Now we set vi = 1, which brings us back to our one-parameter family f (x). Because
the solutions of the differential equation before are given by ωv, we get a differential
equation for ω = sΩ0

f (x) . So our final expression is given by

s−d̂(δ− d̂) · · · (δ− 1)ω =
n∏

i=1

(

− q̂i

d̂

)q̂i
⎛
⎜⎜⎜⎜⎜⎝δ +

(̂qi − 1)d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎜⎝δ +

d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ δω.

or to have the same appearance as in Theorem 6:

0 = sd̂
n∏

i=1

(
q̂i
)̂qi δ

⎛
⎜⎜⎜⎜⎜⎝δ +

d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎜⎝δ +

(̂qi − 1)d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ω

− (−d̂)−d̂(δ− 1) · · · (δ− d̂)ω. (8)

3.2 The Picard–Fuchs Equation

Now we want to state the Picard–Fuchs equation of f (x), which should divide the
above GKZ system. If we look at examples such as those in Sect. 3.4, we can also
conjecture what the Picard–Fuchs equation looks like. We use the GKZ system that
we calculated in the last section to confirm that this is true.
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Theorem 6. Let g(x1, . . . , xn) be an invertible polynomial with weighted degree
deg g = d and reduced weights q1, . . . , qn for which the Calabi–Yau condition,
d =

∑
qi, holds. Let gt(x1, . . . , xn) be the transposed polynomial with reduced

weights q̂1, . . . , q̂n and degree deg gt = d̂. Then the Picard–Fuchs equation for the
one-parameter family f (x1, . . . , xn) = g(x1, . . . , xn) + s

∏
xi is given by

0 =
n∏

i=1

q̂q̂i

i sd̂
n∏

i=1

q̂i−1∏

j=0

(δ +
j · d̂
q̂i

)
∏

�∈I

(δ + �)−1 − (−d̂)d̂
d̂−1∏

j=0

(δ− j)
∏

�∈I

(δ− �)−1,

where I = {0, . . . , d̂ − 1} ∩⋃n
i=1

{

0, d̂
q̂i

, 2d̂
q̂i

, . . . , (̂qi−1)d̂
q̂i

}

.

Proof. From Lemma 2 we know that ω = sΩ
f (x) is a solution of (8). It follows that all

period integrals are solutions of (8) and therefore the Picard–Fuchs equation divides

0 = sd̂
n∏

i=1

(
q̂i
)̂qi δ

⎛
⎜⎜⎜⎜⎜⎝δ +

d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎜⎝δ +

(̂qi − 1)d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ω

− (−d̂)−d̂(δ− 1) · · · (δ− d̂)ω.

Now one can look for common factors in the summand until the equation is irre-
ducible. The other possibility is to show what the order of the Picard–Fuchs equa-
tion has to be. This was done in an extended version of this article [18]. There it is
shown that the order of the Picard–Fuchs equation of f (x) is given by

u = d̂ −
∣
∣
∣∣
∣
∣∣
{0, 1, . . . , d̂ − 1} ∩

n⋃

i=1

⎧
⎪⎪⎨
⎪⎪⎩

0,
d̂

q̂i
, . . . ,

(̂qi − 1)d̂

q̂i

⎫
⎪⎪⎬
⎪⎪⎭

∣
∣
∣∣
∣
∣∣
.

So now we know there are d̂ − u common factors in the summands of (8). If we
multiply (8) by s−d̂ and use the commutation relations (4) to pass it through the
differential operators we get

0 =
n∏

i=1

(
q̂i
)̂qi δ

⎛
⎜⎜⎜⎜⎜⎝δ +

d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎜⎝δ +

(̂qi − 1)d̂

q̂i

⎞
⎟⎟⎟⎟⎟⎠ω

− (−d̂)−d̂(δ + (d̂ − 1)) · · · (δ + 1)δs−d̂ω.

Now it is easy to see that every linear factor δ + j with j ∈ {0, 1, . . . , d̂ − 1} ∩
⋃n

i=1{0, d̂
q̂i

, . . . , (̂qi−1)d̂
q̂i
} is in both summands and can therefore be deleted. This leads

us to the equation

0 =
n∏

i=1

q̂q̂i

i sd̂
n∏

i=1

q̂i−1∏

j=0

(δ +
j · d̂
q̂i

)
∏

�∈I

(δ + �)−1 − (−d̂)d̂
d̂−1∏

j=0

(δ− j)
∏

�∈I

(δ− �)−1
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where I = {0, . . . , d̂ − 1} ∩⋃n
i=1

{

0, d̂
q̂i

, 2d̂
q̂i

, . . . , (̂qi−1)d̂
q̂i

}

.

Finally, this equation is divisible by the Picard–Fuchs equation, because ω is still
a solution of this differential equation, and it is irreducible, because there are no
common factors or equivalently, due to Theorem 2.8 in [18]. Therefore this is the
Picard–Fuchs equation of the family of hypersurfaces defined by f (x).

We give another class of examples here, which are the simple elliptic singulari-
ties. There are only three examples and their Picard–Fuchs equation is known.

Example 3. In the following table we can see three polynomials that define the sim-
ple elliptic singularities, their weights, the degree and the Picard–Fuchs equation,
which can easily be calculated with Theorem 6.

Table 2: Simple elliptic singularities and their Picard–Fuchs equations

Name g(x, y, z) Deg Weights Picard–Fuchs equation

Ẽ6 x3 + y3 + z3 3 (1, 1, 1) s3δ2 + 33(δ− 1)(δ− 2)
Ẽ7 x4 + y4 + z2 4 (1, 1, 2) s4δ2 − 43(δ− 1)(δ− 3)
Ẽ8 x6 + y3 + z2 6 (1, 2, 3) s6δ2 − 2 · 63(δ− 1)(δ − 5)

A similar result, but approached by different methods, can be found in a paper
by Corti and Golyshev [9]. In this paper the differential equation that they look at is
the same as our Picard–Fuchs equation, but they start with a local system, which is
given in the following way:

Y =

{∏n
i=1 ywi

i = λ
∑n

i=1 yi = 1
⊂ (C∗)n × C∗ (9)

If we insert yi = −s−1 xei−(1,...,1) and wi = q̂i, then we get that Y consists of the
following two equations:

λ =

n∏

i=1

ywi
i =

n∏

i=1

(
−s−1xei−(1,...,1)

)q̂i
=
(
(−s)−

∑
q̂i
)

x
∑

q̂iei−(
∑

q̂i ,...,
∑

q̂i)

= (−s)−d̂ x(d̂,...,d̂)−(d̂,...,d̂) = (−s)−d̂

1 =
n∑

i=1

yi =

n∑

i=1

(−s−1 xei−(1,...,1)
)
= −s−1 x−(1,...,1)

n∑

i=1

xei .

So, from the first equation we get (−s)−d̂ = λ and the second equation can easily be
rewritten as

0 =
n∑

i=1

xei + sx(1,...,1) = f (x).
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This shows the direct connection to our hypersurface V( f ). It is very easy to write
the Picard–Fuchs equation with differential operator D = λ ∂

∂λ
, because the relation

between D and δ is just given by

δ = s
∂

∂s
= −d̂(−s)−d̂ ∂

∂(−s)−d̂
= −d̂λ

∂

∂λ
= −d̂D.

So in terms of D the Picard–Fuchs equation is given by

0 =
n∏

i=1

q̂q̂i

i sd̂
n∏

i=1

q̂i−1∏

j=0

(δ +
j · d̂
q̂i

)
∏

�∈I

(δ + �)−1 − (−d̂)d̂
d̂−1∏

j=0

(δ− j)
∏

�∈I

(δ− �)−1

=

n∏

i=1

q̂q̂i

i

n∏

i=1

q̂i−1∏

j=0

(D − j

q̂i
)
∏

�∈I

(D − �

d̂
)−1 − d̂d̂λ

d̂−1∏

j=0

(D + j

d̂
)
∏

�∈I

(D + �

d̂
)−1 (10)

which agrees with formula (1) in [9].
In Theorem 1.1 of the article [9] it is stated that the solutions of the Picard–Fuchs

equation come from the local system (9) and in Conjecture 1.4 and Proposition 1.5
the Hodge numbers for the solution space are given. This brings us to the next
section where we will investigate this in detail.

3.3 Statements on the Cohomology of the Solution Space

We want to relate already known statements to the work we have done so far. First
we continue the last section. We will relate the results done in [18], which is an
extension of the article, to work of Corti and Golyshev [9]. In their paper there is a
result that calculates the Hodge numbers of the solution space of the Picard–Fuchs
equation. We will state their result in a form which is compatible with our setting.

Proposition 2. ([9] Conjecture 1.4 and Proposition 1.5) Consider the sets

A :=
n⊔

i=1

{0,
d̂

q̂i
, 2

d̂

q̂i
, . . . , (̂qi − 1)

d̂

q̂i
} and

D := {0, 1, 2, . . . , d̂ − 1}.
Set {α1, . . . , αu} := A \ (A ∩ D) with αi ≤ αi+1 for all i and {β1, . . . , βu} := D \
(A ∩ D) with βi < βi+1 for all i. Notice that {α1, . . . , αu} is not a set with distinct
elements, because entries will appear multiple times. Now consider the differential
equation (Sect. 3.2), which is with the above notation given by

sd̂
n∏

i=1

q̂q̂i

i

u∏

i=1

(δ + αi)− (−d̂)d̂
u∏

i=1

(δ− βi) = 0.
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Now define the following function:

p(k) := |{ j|α j < βk}| − (k − 1) for k = 1, . . . , u

and let p+ := max{p(k)} and p− := min{p(k)}.
Then the local system of solutions of the ordinary differential equation above sup-
ports a real polarised variation of Hodge structure of weight p+ − p− and Hodge
numbers

h j−p− ,p+− j = |p−1( j)|.
Remark 4. One can show with the calculations in [18] that the following numbers
coincide:

• p+ = p(1) = n− 1
• p− = p(u) = 1
• ∑n−1

j=1 h j−1,n−1− j =
∑n−1

j=1 |p−1( j)| = u

• p(k) + p(u− k + 1) = n for all 1 ≤ k ≤ u and therefore hi−1,n−i−1 = hn−i−1,i−1.

In [18] we are able to make the relation between u and the above Hodge numbers
even more precise. In order state the relation we define Hspecial ⊆ Hn−2(V( f )) to be
the part of the cohomology of V( f (x)) that is spanned by the forms ω, δω, δ2ω, . . . .
It is shown in [18] Theorem 2.8 that the dimension of Hspecial is u. If B is a basis
of Hspecial, denote by ui := |B ∩ Hn−i−2,i(V( f ))|. Then ui is the number of basis
elements where the monomial in the numerator has degree i · d. Now it is proven in
[18] that these numbers coincide with the Hodge numbers above.

Proposition 3. The Hodge numbers of the solution space of the Picard–Fuchs equa-
tion of f are in one-to-one correspondence with the basis elements of the part of the
cohomology spanned by the derivatives of ω:

ui−1 = hi−1,n−i−1 = hi−p− ,p+−i.

In [9] one can also find a more detailed description of the Hodge numbers that
appear here. This mainly relies on the work of Danilov [11] on Deligne–Hodge
numbers and Newton polyhedra.

Remark 5. The Hodge numbers hi−1,n−i−1 = ui that appear in [18] as well as in
[9] are the Deligne–Hodge numbers of the cohomology with compact support of a
hypersurface defined by a Laurent polynomial with Newton polyhedron Δ, where
Δ =

〈(
q̂1

d̂
, . . . , q̂n

d̂

)
, (1, 0 . . . , 0), . . . , (0, . . . , 0, 1)

〉
. In particular from this viewpoint

the ui are Deligne–Hodge numbers of a toric variety with polytope Δ in the lattice
Z
(

q̂1

d̂
, . . . , q̂n

d̂

)
+ Zn.
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3.4 The Case of Arnold’s Strange Duality

In this section we will show the results and some details for the 14 exceptional
unimodal hypersurfaces singularities.

Table 3: Compactifications of the 14 exceptional unimodal hypersurface singulari-
ties

Name g(w, x, y, z) Deg Weights Dual

E12 w42 + x7 + y3 + z2 42 (1,6,14,21) E12

E13 w30 + x5y + y3 + z2 30 (1,4,10,15) Z11

Z11 w30 + x5 + xy3 + z2 30 (1,6,8,15) E13

E14 w24 + x4z + y3 + z2 24 (1,3,8,12) Q10

Q10 w24 + x4 + y3 + xz2 24 (1,6,8,9) E14

Z12 w22 + x4y + xy3 + z2 22 (1,4,6,11) Z12

W12 w20 + x5 + y2z + z2 20 (1,4,5,10) W12

Z13 w18 + x3z + xy3 + z2 18 (1,3,5,9) Q11

Q11 w18 + x3y + y3 + xz2 18 (1,4,6,7) Z13

W13 w16 + x4y + y2z + z2 16 (1,3,4,8) S11

S11 w16 + x4 + y2z + xz2 16 (1,4,5,6) W13

Q12 w15 + x3z + y3 + xz2 15 (1,3,5,6) Q12

S12 w13 + x3y + y2z + xz2 13 (1,3,4,5) S12

U12 w12 + x4 + y2z + yz2 12 (1,3,4,4) U12

These 14 exceptional unimodal hypersurface singularities have been studied first
by Arnold in [1] where he, among other things, discovered that there is a dual-
ity among this 14 exceptional unimodal hypersurfaces singularities which is now
known as Arnold’s strange duality. One can define Gabrielov and Dolgachev num-
bers for every one of these hypersurface singularities and he showed that for every
one of the 14 exceptional unimodal hypersurface singularities there is another sin-
gularity in this list with interchanged Dolgachev and Gabrielov numbers. The con-
sequences of this duality have been studied by a number of people. An overview
on a lot of aspects of this duality can be found in a paper by Ebeling [15]. These
examples were also the starting point for the analysis of the Picard–Fuchs equations
in this article. We want to concentrate in this section on the duality between the
invertible polynomials that arise here. In Table 3 we listed some important data of
these singularities we need in this section. In particular we look at the compactifi-
cation that comes from compactifying the Milnor fibres in the weighted projective
space with one extra dimension which has weight one. The table consists of the
polynomial defining the compactification of the hypersurface singularity, the de-
gree, the weights and the dual singularity due to Arnold. As in Table 1 there is still
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the duality between the invertible polynomials. We will now list the sets {α1, . . . , αu}
and {β1, . . . , βu}, as defined in Proposition 2, and the resulting order of the Picard–
Fuchs equation u. Notice that the sets Qi and D are defined via the dual weights
and that δ + αi and δ− βi are the linear factors in the two summands of the Picard–
Fuchs equation. Together with the dual weights and the dual degree they completely
determine the Picard–Fuchs equation.

Table 4: The sets defining the linear factors of the Picard–Fuchs equation

Name u α1, . . . , αu β1, . . . , βu

E12 12
0, 0, 0, 6, 12, 14, 1, 5, 11, 13, 17, 19,

18, 21, 24, 28, 30, 36 23, 25, 29, 31, 37, 41

E13 12
0, 0, 0, 15

4 , 15
2 , 10, 1, 3, 7, 9, 11, 13,

45
4 , 15, 75

4 , 20, 45
2 , 105

4 17, 19, 21, 23, 27, 29
Z11 10 0, 0, 0, 6, 15

2 , 12, 15, 18, 45
2 , 24 1, 5, 7, 11, 13, 17, 19, 23, 25, 29

E14 12
0, 0, 0, 8

3 , 16
3 , 8, 1, 2, 5, 7, 10, 11,

32
3 , 12, 40

3 , 16, 56
3 , 64

3 13, 14, 17, 19, 22, 23
Q10 8 0, 0, 0, 6, 8, 12, 16, 18 1, 5, 7, 11, 13, 17, 19, 23

Z12 10 0, 0, 0, 11
3 , 11

2 , 22
3 , 11, 44

3 , 33
2 , 55

3 1, 3, 5, 7, 9, 13, 15, 17, 19, 21

W12 8 0, 0, 0, 4, 8, 10, 12, 16 1, 3, 7, 9, 11, 13, 17, 19

Z13 12
0, 0, 0, 18

7 , 9
2 , 36

7 , 1, 2, 4, 5, 7, 8,
54
7 , 9, 72

7 , 90
7 , 27

2 , 108
7 10, 11, 13, 14, 16, 17

Q11 9 0, 0, 0, 18
5 , 6, 36

5 , 54
5 , 12, 72

5 1, 3, 5, 7, 9, 11, 13, 15, 17

W13 12
0, 0, 0, 8

3 , 16
5 , 16

3 , 1, 2, 3, 5, 6, 7,
32
5 , 8, 48

5 , 32
3 , 64

5 , 40
3 9, 10, 11, 13, 14, 15

S11 8 0, 0, 0, 4, 16
3 , 8, 32

3 , 12 1, 3, 5, 7, 9, 11, 13, 15

Q12 8 0, 0, 0, 5
2 , 5, 15

2 , 10, 25
2 1, 2, 4, 7, 8, 11, 13, 14

S12 12
0, 0, 0, 13

5 , 13
4 , 13

3 , 1, 2, 3, 4, 5, 6,
26
5 , 13

2 , 39
5 , 26

3 , 39
4 , 52

5 7, 8, 9, 10, 11, 12

U12 6 0, 0, 0, 3, 6, 9 1, 2, 5, 7, 10, 11

We want to mention that {β1, . . . , βu} contains all numbers 1 ≤ b ≤ d̂ which are
coprime to d̂. The set {α1, . . . , αu} ∩ Z on the other hand contains only elements
which are not coprime to d̂. With Table 4 and Proposition 2 we are able to state how
many basis elements for the cohomology spanned by the derivatives of ω that appear
in the Picard–Fuchs equation we need in every degree. In [18] it is shown how this
basis can be computed directly by using a diagrammatic version of the Griffiths–
Dwork method. Here we will only state the result. In the examples we are looking
at, we have always exactly 1 basis element in degree 1 and 2d, so we only give the
u− 2 basis elements in degree d. With this construction we are able to calculate the
basis of the part of the middle cohomology that is used in the calculations for all
examples, and this is listed in the following table. So the table includes the name of
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the singularity, the number h1,1 = u − 2 from Proposition 2 and a basis for the part
of the Milnor ring in degree d, which gives also a basis of the part of the middle
cohomology we are using in our calculations. We want to mention again that we are
considering the Milnor ring of the one-parameter family.

Table 5: Basis elements for the middle cohomology

Name u− 2 Basis elements in the Milnor ring in degree d

E12 10
wxyz, w36 x, w30x2, w24x3, w18x4, w12x5, w6x6, w28y,
w14y2, w21z

E13 10
wxyz, w26 x, w22x2, w18x3, w20y, w10y2, w15z, w11 xz,
w7 x2z, w3 x3z

Z11 8 wxyz, w24 x, w18x2, w12x3, w6x4, w22y, w15z, w7yz

E14 10
wxyz, w21 x, w18x2, w16y, w8y2, w12z, w13xy, w10 x2y,
w5 xy2, w2x2y2

Q10 6 wxyz, w18 x, w12x2, w6z2 , w16y, w8y2

Z12 8 wxyz, w18 x, w14x2, w16y, w11z, w7 xz, w3 x2z, w5yz

W12 6 wxyz, w16 x, w12x2, w8x3, w4x4, w10y2

Z13 10
wxyz, w15 x, w12x2, w13y, w9z, w10xy, w7 x2y, w5xy2 ,
w2 x2y2, w4yz

Q11 7 wxyz, w14 x, w10x2, w12y, w6y2, w7xz, w4z2

W13 10
wxyz, w13 x, w10x2, w7x3, w12y, w9 xy, w6 x2y, w3 x3y,
w5 xz, w2 x2z

S11 6 wxyz, w12 x, w8x2, w4 x3, w10z, w5yz

Q12 6 wxyz, w12 x, w10y, w5y2, w7xy, w3 xy2

S12 10
wxyz, w10 x, w7x2, w9y, w8z, w6 xy, w3 x2y, w5xz,
w2 x2z, w4yz

U12 4 wxyz, w9 x, w6 x2, w3x3

Of course from the previous work we can immediately calculate the Picard–
Fuchs equation by inserting in the αi and β j as linear factors as in Theorem 6. The
output for all singularities we investigated in this section can therefore be calculated
with Table 4. As stated in Proposition 2 the Picard–Fuchs equation is given by

sd̂
n∏

i=1

q̂q̂i

i

u∏

i=1

(δ + αi)− (−d̂)d̂
u∏

i=1

(δ− βi) = 0.

This means for example that the Picard–Fuchs equation for the one-parameter fam-
ily associated to Q10 is given by

0 = s24δ3(δ + 6)(δ + 8)(δ + 12)(δ + 16)(δ + 18)

− 22439(δ− 1)(δ− 5)(δ− 7)(δ− 11)(δ− 13)(δ− 17)(δ− 19)(δ− 23)
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We give another viewpoint on the Picard–Fuchs equation. From Theorem 6 we
know that the Picard–Fuchs equation always consists of exactly two summands.
They can be separated by setting sd̂ = 0 or sd̂ = ∞. We already know that if we
view the Picard–Fuchs equation as a polynomial with variable δ then the zeroes of
these polynomials after setting sd̂ = 0 are given by β1, . . . , βu and the zeroes for
sd̂ =∞ are given by−α1, . . . ,−αu. Now we want to focus on a polynomial that has
related zeroes. Namely, we define χ0 to be the polynomial with zeroes exp

(
2πi βi

d̂

)

for i = 0, . . . , n and χ∞ the polynomial with roots exp
(
2πiαi

d̂

)
for i = 0, . . . , n and

notice that multiple roots in the Picard–Fuchs equation lead to multiple roots of χ∞
and χ0. Equivalently, we can first write the Picard–Fuchs equation for the variable
λ = (−s)−d̂ and then start with the zeroes of this equation for λ =∞ and λ = 0.

Table 6: The functions χ0 and χ∞ for the 14 exceptional unimodal hypersurface
singularities

Name Deg Weights χ0 χ∞
E12 42 (1,6,14,21) 2 · 3 · 7 · 42/1 · 6 · 14 · 21 2 · 3 · 7
E13 30 (1,4,10,15) 3 · 30/6 · 15 1 · 3 · 8
Z11 30 (1,6,8,15) 5 · 30/10 · 15 1 · 4 · 5
E14 24 (1,3,8,12) 2 · 24/6 · 8 1 · 2 · 9
Q10 24 (1,6,8,9) 4 · 24/8 · 12 1 · 3 · 4
Z12 22 (1,4,6,11) 1 · 22/2 · 11 1 · 1 · 4 · 6/2

W12 20 (1,4,5,10) 2 · 20/4 · 10 1 · 2 · 5
Z13 18 (1,3,5,9) 18/6 1 · 4 · 7
Q11 18 (1,4,6,7) 18/9 1 · 3 · 5
W13 16 (1,3,4,8) 16/4 1 · 5 · 6
S11 16 (1,4,5,6) 16/8 1 · 3 · 4
Q12 15 (1,3,5,6) 1 · 15/3 · 5 1 · 1 · 6
S12 13 (1,3,4,5) 13/1 3 · 4 · 5
U12 12 (1,3,4,4) 1 · 12/3 · 4 1 · 1 · 4

Notation 7. We will shorten the notation for a rational function with only roots of
unity as zeroes and poles. We will write ν1 · · · νm1 /η1 · · · ηm2 for the rational function

χ(t) =
(1− tν1 ) · · · (1− tνm1 )

(1− tη1 ) · · · (1− tηm2 )

With this notation we are able to write down the functions χ0 and χ∞ in the form
shown in Table 6. The functions χ0 and χ∞ are in all cases somewhat different, but
the interesting thing is that the quotient of the two functions is always the same.
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Remark 6. The rational functions χ0 and χ∞ described in Table 6 always have the
property that

χ0(t)

χ∞(t)
=

(1− td̂)

(1− tq̂1 )(1− tq̂2 )(1− tq̂3 )(1− tq̂4 )

In the next section we will look at this phenomenon in more generality and we
will also see that the roots of χ0 and χ∞ are the eigenvalues of the local monodromy
around (−1)d̂λ−1 = sd̂ = 0 and (−1)d̂λ−1 = sd̂ =∞ respectively.

3.5 Relations to the Poincaré Series and Monodromy

In this section we want to relate the numbers in the Picard–Fuchs equation of f (x)
to the Poincaré series of gt(x) and to the monodromy around 0 and∞ in the solution
space of the Picard–Fuchs equation. The last remark in the previous section already
showed us the direction.

3.5.1 Poincaré Series

First we want to investigate the relation to the Poincaré series. Therefore we consider
the Picard–Fuchs equation in the form of (10) which is a differential equation with
parameter λ = (−s)−d̂. If we view this differential equation as a polynomial with
variable D , then we can immediately read off the zeroes for λ = 0 and λ =∞:

λ = 0 :
α1

d̂
, . . . ,

αu

d̂

λ =∞ : −β1

d̂
, . . . ,−βu

d̂

Remark 7. Due to the symmetry of the α j and β j, the sets
{
exp

(
2πiα j

d̂

)}
and

{
exp

(
2πi β j

d̂

)}
are closed under complex conjugation.

We will now relate these numbers α j and β j or exp
(
2πiα j

d̂

)
and exp

(
2πi β j

d̂

)
, re-

spectively, to the Poincaré series of gt(x). Let us recall first how the Poincaré series
is defined.

Definition 5. Let A := C[x]/(g(x)) be the coordinate algebra of the hypersurface
{g(x) = 0}. Then A admits naturally a grading A =

⊕∞
m=0 Am, where Am is gen-

erated by the monomials in A of weighted degree m. The Poincaré series for this
hypersurface is given by
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pA(t) := pg(t) :=
∞∑

m=0

dimC Amtm

Remark 8. (cf. [2]) If g(x) is a quasihomogeneous polynomial with weights q1, . . . , qn

and weighted degree d, then the Poincaré series is given by

pg(t) =
(1− td)

(1− tq1 ) · · · (1− tqn )

A rational function of this form is of course uniquely determined by the set of
poles and zeroes. So we study these sets for the Poincaré series of gt(x), because as
mentioned before that will be related to the Picard–Fuchs equation of f (x). So we
study the zeroes and poles of the function

pgt (t) =
(1− td̂)

(1− tq̂1 ) · · · (1− tq̂n )
.

The zeroes of (1− td̂) are given by the set

Zd̂ :=

{

exp

(

2πi
j

d̂

)

| 0 ≤ j ≤ d̂ − 1

}

and the zeroes of (1− tq̂1 ) · · · (1− tq̂n ) are given by the set

n⋃

k=1

Zq̂k :=
n⋃

k=1

{

exp

(

2πi
j

q̂k

)

| 0 ≤ j ≤ q̂k − 1

}

.

So putting this together, the zeroes of the Poincaré series of gt(x) are given by

Zd̂ \
⎛
⎜⎜⎜⎜⎜⎝Zd̂ ∩

n⋃

k=1

Zq̂k

⎞
⎟⎟⎟⎟⎟⎠ =

{

exp

(

2πi
β j

d̂

)

| j = 0, . . . , u

}

and the poles are given by the set

n⊔

k=1

Zq̂k \
⎛
⎜⎜⎜⎜⎜⎝Zd̂ ∩

n⋃

k=1

Zq̂k

⎞
⎟⎟⎟⎟⎟⎠ =

{

exp

(

2πi
α j

d̂

)

| j = 0, . . . , u

}

,

where the disjoint union indicates that poles occur in this set counted with multi-
plicity.

In the above we can see clearly the relation between the zeroes of the Picard–
Fuchs equation of f (x) for λ = 0 and λ = ∞ and the Poincaré series of gt(x). We
summarize this in the following corollary.

Corollary 1. The zeroes of the Poincaré series of gt(x) are in 1-1 correspondence
with the zeroes of the Picard–Fuchs equation of f (x) for λ = ∞ or s = 0 and
the poles of the Poincaré series of gt(x) are in 1-1 correspondence with the zeroes
of the Picard–Fuchs equation of f (x) for λ = 0 or s =∞.



Picard–Fuchs Equations of Special One-Parameter Families of Invertible Polynomials 307

Equivalently the same holds for the Picard–Fuchs equation of f t(x) = gt(x)+ s
∏

xi

and the Poincaré series of g(x).

3.5.2 Monodromy

Now we want to explain why the roots of the Picard–Fuchs equation for λ =

(−s)−d̂ = 0 and λ = (−s)−d̂ = ∞ are in 1-1 correspondence with the eigenvalues
of the local monodromy around 0 and ∞ in the solution space of the Picard–Fuchs
equation, i.e. the space of the period integrals. More precisely, the eigenvalues of the
monodromy around 0 and∞ are equal to the poles and zeroes of the Poincaré series
respectively. First we recall monodromy in the context of Picard–Fuchs equations
in as much generality as we need. References for the relation between monodromy
and the Picard–Fuchs equation are [10, 27] and [12].

In this subsection we will always regard the Picard–Fuchs equation in D = λ ∂

∂λ
,

so we are working with the differential equation (10)

0 =
n∏

i=1

q̂q̂i

i

n∏

i=1

q̂i−1∏

j=0

(D − j

q̂i
)
∏

�∈I

(D − �

d̂
)−1Φ− d̂d̂λ

d̂−1∏

j=0

(D + j

d̂
)
∏

�∈I

(D + �

d̂
)−1Φ.

Due to [12] this Picard–Fuchs equation has only regular singular points. This can
for example be seen by the fact that in the Picard–Fuchs equation, written as

DuΦ +
u−1∑

i=0

hi(λ)DiΦ = 0, (11)

all coefficients hi(λ) are holomorphic functions of λ. Now we can define the residue
matrix for λ.

Definition 6. Let ω1, . . . , ωu be a basis of the solution space of the Picard–Fuchs
equation and define the connection matrix (Γ)i j via Dωi =

∑
j Γi jω j. Then the

residue matrix is given by Res = Resλ=0

(
(Γ)i j

)
.

Remark 9. In the cases we consider (Γ)i j has no poles at λ = 0, so the residue matrix
is just given by Res =

(
(Γ)i j

)

λ=0
.

Theorem 8. ([12]) The following relations between the residue matrix and the mon-
odromy around λ = 0 in the solution space of the Picard–Fuchs equation hold.

(i) η is an eigenvalue of Res ⇔ exp(2πiη) is an eigenvalue of the monodromy.
(ii) exp(−2πiRes) is conjugate to the monodromy.

(iii) The monodromy is unipotent⇔ Res is nilpotent.

We cannot be sure that ω,Dω, . . . ,Du−1ω, with ω a solution of the Picard–Fuchs
equation, is a basis for the solution space, but we can easily write down the connec-
tion matrix for this basis:
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Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 1 0
0 0 · · · 0 1

−h1(λ) −h2(λ) −h3(λ) · · · −hu−1(λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A theorem by Morrison gives a condition for the elements ω,Dω, . . . ,Du−1ω to
be a basis of the solution space. The condition depends on the eigenvalues of the
matrix Γ.

Theorem 9. ([27]) Let Dω(λ) = Γω(λ) be a system of ordinary differential equa-
tions with a regular singular point at λ = 0. If distinct eigenvalues of Γλ=0 do not
differ by integers, then ω1, . . . , ωu with ω = (ω1, . . . , ωu) is a basis for the solution
space of the system of ordinary differential equations.

So we calculate the eigenvalues of Γλ=0. For this purpose we only have to re-
member that (11) or equally (10) has the following solutions for λ = 0:

n⊔

i=1

{

0,
1

q̂i
, . . . ,

q̂i − 1

q̂i

}

\
⎛
⎜⎜⎜⎜⎜⎝

⎧
⎪⎪⎨
⎪⎪⎩

0,
1

d̂
, . . . ,

d̂ − 1

d̂

⎫
⎪⎪⎬
⎪⎪⎭
∩

n⋃

i=1

{

0,
1

q̂i
, . . . ,

q̂i − 1

q̂i

}⎞
⎟⎟⎟⎟⎟⎠ .

This means that no distinct eigenvalues differ by an integer and therefore Γλ=0 =

Res is a residue matrix by Theorem 9. In addition it follows from Theorem 8 that
for every eigenvalue η of Γ we get an eigenvalue exp(2πiη) of the monodromy. So,
together with Corollary 1, we get the following statement.

Corollary 2. The poles of the Poincaré series of gt(x) are the eigenvalues of the

monodromy around λ = (−s)−d̂ = 0 in the solution space of the Picard–Fuchs
equation of f (x) = g(x) + s

∏
i xi and the zeroes of the Poincaré series of gt(x) are

the eigenvalues of the monodromy around λ = (−s)−d̂ =∞.

The second part of this statement is proved analogously to the first part, with only
the substitution of λ by λ−1.

Remark 10. For the calculations in the last section this means that the eigenvalues
of the monodromy around λ = 0 are given by the roots of χ∞ and the eigenvalues
of the monodromy around λ =∞ are given by the roots of χ0.

Remark 11. Notice that the monodromy around 0 and ∞ is not unipotent, but it
is quasi-unipotent, i.e. a power of the monodromy is unipotent. This agrees with
Theorem 2.3 in [12].

We want to mention that the points 0 and ∞ are not the only points with mon-
odromy. At λ =

∏
q̂q̂i

i /d̂d̂ the Picard–Fuchs equation degenerates and therefore we
can consider monodromy around this point in the solution space as well. But the
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monodromy around this point is just a combination of the monodromy around the
other two points. This can be seen from the fact that the parameter space can be
regarded as a projective line (cf. [28]).

Also, we want to mention that the critical points of λ in the solution space of the
Picard–Fuchs equation apart from λ =∞ are in 1-1 correspondence with the critical

values of f (x) in s. Namely λ = (−s)−d̂ = 0 and λ = (−s)−d̂ =
∏

q̂
q̂i
i

d̂d̂
are the critical

values of f (x) in s.
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A Structure Theorem for Fibrations
on Delsarte Surfaces

Bas Heijne and Remke Kloosterman

Abstract In this paper we study a special class of fibrations on Delsarte surfaces.
We call these fibrations Delsarte fibrations. We show that after a specific cyclic
base change, the fibration is the pullback of a fibration with three singular fibers
and that this second-base change is completely ramified at two points where the
fiber is singular. As a corollary we show that every Delsarte fibration of genus 1
with nonconstant j-invariant occurs as the base change of an elliptic surface from
Fastenberg’s list of rational elliptic surfaces with γ < 1.

Key words: Delsarte surfaces, Elliptic surfaces

Mathematics Subject Classifications (2010): Primary 14J27; Secondary 14J25

1 Introduction

A Delsarte surface S is a surface in P3 defined by the vanishing of a polynomial F
consisting of four monomials. Let A be the exponent matrix of F; then a Delsarte
surface is the quotient of a Fermat surface if and only if det(A) � 0. Shioda used
this observation in [7] to present an algorithm to determine the Lefschetz number of
any smooth surface that is birationally equivalent with S .
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Fix now two disjoint lines �1, �2 in P3. The projection with center �1 onto �2

yields a rational map S � P1. Resolving the indeterminacies of this map yields a
fibration S̃ → P1. If the genus of the general fiber is one and this morphism has a
section, then Shioda’s algorithm together with the Shioda–Tate formula allows one
to determine the Mordell–Weil rank of the group of sections. Shioda applied this to
the surface

y2 + x3 + 1 + tn

and showed in [8] that the maximal Mordell–Weil rank (by varying n) is 68. In [1]
this result is reproven by completely different methods.

If both lines �i are intersections of two coordinate hyperplanes, then we call the
obtained fibration a Delsarte fibration. We will introduce the notion of a Delsarte
base change. Roughly said, this is a base change P1 → P1 completely ramified
over 0 and ∞. In particular, the pullback of a Delsarte fibration under a Delsarte
base change is again a Delsarte fibration. The first author determined in his Ph.D.
thesis [4] the maximal Mordell–Weil rank under Delsarte base changes of any Del-
sarte fibration such that the general fiber has genus one. In this way he showed that
Shioda’s example has the highest possible rank among Delsarte fibration of genus
one.

In [2, 3] Fastenberg calculated the maximal Mordell–Weil rank under base
changes t �→ tn for a special class of elliptic surfaces, i.e., elliptic curves over
C(t) with nonconstant j-invariant such that a certain invariant γ is smaller than 1.
It turned out that all the ranks that occur for Delsarte surfaces with nonconstant j-
invariant also occur in Fastenberg’s list. In [4, Chap. 6] it is shown that for every
Delsarte fibration of genus one, there exist integers m, n such that the Delsarte base
change of degree m of the Delsarte fibration is isomorphic to a base change of the
form t �→ tn of one of the surfaces in Fastenberg’s list.

In this paper we present a more conceptual proof for this phenomenon: first we
study the configuration of singular fibers of a Delsarte fibration. We show that for
any Delsarte fibration, each two singular fibers over points t � 0,∞ are isomorphic.
Then we show that after a base change of the form t �→ tn, the Delsarte fibration is
a base change of the form t �→ tm of a fibration with at most one singular fiber away
from 0,∞.

If there is no singular fiber away from 0,∞, then the fibration becomes split after
a base change of t �→ tm. If there is at least one singular fiber away from 0,∞,
then we show that there are three possibilities, namely, the function field extension
K(S )/K(P1) = K(x, y, t)/K(t) is given by m1 + m2 + (1 + t)m3, where the mi are
monomials in x and y, or this extension is given by ya = xb + xc + txd , where b, c, d
are mutually distinct, or the singular fiber away from 0 and ∞ has only nodes as
singularities and is therefore semistable. See Proposition 3.

In the case of a genus one fibration we can use this classification to check almost
immediately that any Delsarte fibration of genus one admits a base change of the
form t �→ tn such that the pulled back fibration is the pullback of a fibration with
γ < 1 or has a constant j-invariant. See Corollary 2. This procedure is carried out in
Sect. 2.



A Structure Theorem for Fibrations on Delsarte Surfaces 313

The techniques used in the papers by Fastenberg use the fact that the fibration
is not isotrivial and it seems very hard to extend these techniques to isotrivial fi-
brations. In Sect. 3 we consider an example of a class of isotrivial Delsarte fibra-
tions. Shioda’s algorithm yields the Lefschetz number of any Delsarte surface with
det(A) � 0. Hence it is interesting to see how it works in the case where Fastenberg’s
method breaks down. Let p be an odd prime number, and a a positive integer. We
consider the family of surfaces

S : y2 = xp + t2ap + s2ap

in P(2a, ap, 1, 1). Then S is birational to a Delsarte surface. After blowing up (1 : 1 :
0 : 0) we obtain a smooth surface S̃ together with a morphism S̃ → P1. The general
fiber of this morphism is a hyperelliptic curve of genus (p − 1)/2. We show that if
p > 7, then ρ(S̃ ) = 2 + 6(p − 1); in particular the Picard number is independent of
a. Two of the generators of the Néron–Severi group of S̃ can be easily explained:
the first one is the pullback of the hyperplane class on S and the second class is the
exceptional divisor of the morphism S̃ → S . In Example 3 we give also equations
for some further curves on S̃ which generate a subgroup of finite index of NS(S̃ ).

If we take p = 3, then we recover Shioda’s original example. However, in Sh-
ioda’s example it turns out that ρ(S̃ ) depends on gcd(a, 60). Similarly for p = 5 and
for p = 7, one observes that the Picard number of S̃ depends on a, in contrast with
the situation for p > 7.

2 Delsarte Surfaces

In this section we work over an algebraically closed field K of characteristic zero.

Definition 1. A surface S ⊂ P3 is called a Delsarte surface if S is the zero set of a
polynomial of the form

F :=
3∑

i=0

ci

3∏

j=0

X
ai, j

i ,

with ci ∈ K∗ and ai, j ∈ Z≥0. The 4 × 4 matrix A := (ai, j) is called the exponent
matrix of S .

A Delsarte fibration of genus g on a Delsarte surface S consists of the choice of
two disjoint lines �1, �2 such that both the �i are the intersection of two coordinate
hyperplanes and the generic fiber of the projection S � �2 with center �1 is an
irreducible curve of geometric genus g.

A Delsarte birational map is a birational map ϕ : P3 � P3 such that ϕ(X0 : · · · :
X3) = (

∏
X

b0 j

j : · · · :
∏

X
b3 j

j ), i.e., ϕ is a birational monomial map.

Remark 1. Since K is algebraically closed, we can multiply each of the four coor-
dinates Xi by a nonzero constant such that all four constants in F coincide; hence,
without loss of generality we may assume that ci = 1.
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After permuting the coordinates, if necessary, we may assume that �1 equals
V(X2, X3) and �2 equals V(X0, X1). Then the projection map S � �2 is just the map
[X0 : X1 : X2 : X3] → [X2 : X3]. Let f (x, y, t) := F(x, y, t, 1) ∈ K(t)[x, y]. Then the
function field extension K(S )/K(�2) is isomorphic to the function field extension
Quot(K[x, y, t]/ f ) over K(t).

We call a Delsarte fibration with �1 = V(X2, X3) and �2 = V(X0, X1) the standard
fibration on S .

Definition 2. Let n be a nonzero integer. A Delsarte base change of degree |n| of
a Delsarte fibration ϕ : S � P1 is a Delsarte surface S n, together with a Delsarte
fibration ϕn : S n � P1 and a Delsarte rational map S n � S of degree |n|, such that
there exists a commutative diagram

S n
�����

���
�
� S

���
�
�

P1 �� P1

and K(S n)/K(P1) is isomorphic to the field extension Quot(K[x, y, s]/( f (x, y, sn))
over K(s).

Remark 2. Note that n is allowed to be negative. If n is negative, then a base change
of degree−n is the composition of the automorphism t �→ 1/t of P1 with the usual
degree −n base change t �→ t−n. In many cases we compose a base change with a
Delsarte birational map which respects the standard fibration. In affine coordinates
such a map is given by (x, y, s) �→ (xsa, ysb, sn) for some integers a, b.

Lemma 1. Let S be a Delsarte surface with exponent matrix A. Suppose there is
a nonzero vector v = (a, b, 0, 0)T in Z4 such that Av ∈ span(1, 1, 1, 1)T. Then the
generic fiber of the standard fibration ϕ : S → P1 is a rational curve.

Proof. After interchanging x and y, if necessary, we may assume that a is nonzero.
Consider now f0 := f (xa, xby, t). The exponents of x in the four monomials of f0 are
precisely the entries of Av. Since Av = e(1, 1, 1, 1)T for some integer e, we have that
f0 = xeg(y, t). This implies that the generic fiber of ϕ is dominated by a finite union
of rational curves. Since the generic fiber is irreducible, it follows that the generic
fiber of ϕ is a rational curve.

Lemma 2. Let S be a Delsarte surface with exponent matrix A. Suppose there is a
nonzero vector v = (a, b, c, 0)T in Z4 such that c � 0 and Av ∈ span(1, 1, 1, 1)T.
Then there is a curve C and a Delsarte base change of degree |c| such that the
pullback of the standard fibration on S is birational to a product C × P1 → P1.

Proof. Consider now f0 := f (xta, ytb, tc). The exponents of t in the four monomials
of f0 are precisely the entries of Av. Since Av = e(1, 1, 1, 1)T for some integer e, we
have that f0 = teg(x, y). Let S ′ be the projective closure of g = 0 in P3. Then S ′ is
a cone over the plane curve g = 0, in particular S ′ is birational to C × P1 and the
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standard fibration on S ′ is birational to the projection C × P1 → P1. Here C is the
curve given by the equation g. Now S ′ is birational to the surface S c, the projective
closure of f (x, y, tc) = 0. Hence S c → P1 is birational to C × P1 → P1.

Lemma 3. Let A be the exponent matrix of a Delsarte surface S . There exists a
nonzero vector v = (a, b, c, 0)T in Z4 such that Av ∈ span(1, 1, 1, 1)T if and only if
det(A) = 0.

Proof. Since each row sum of A equals d, the degree of the i-th monomial in F,
it follows that A(1, 1, 1, 1)T = d(1, 1, 1, 1)T . Suppose first that det(A) � 0. Then
from A(1, 1, 1, 1)T = d(1, 1, 1, 1)T it follows that A−1(1, 1, 1, 1)T ∈ span(1, 1, 1, 1)T ,
which does not contain a nonzero vector with vanishing fourth coordinate.

Suppose now that det(A) = 0. Denote with Ai the i-th column of A. From the fact
that each row sum of A equals d, we get that A1+A2+A3+A4 = d(1, 1, 1, 1)T . Since
det(A) = 0, there exists a nonzero vector (a1, a2, a3, a4) such that

∑
aiAi = 0. From

this we obtain

(a4− a1)A1 + (a4− a2)A2 + (a4− a3)A3 = a4(A1 + A2 + A3 + A4) = a4d(1, 1, 1, 1)T .

That is, v = (a4−a1, a4−a2, a4−a3, 0)T is a vector such that Av ∈ span(1, 1, 1, 1)T .
We need to show that v is nonzero. Suppose the contrary, then also Av = a4d
(1, 1, 1, 1)T is zero and therefore a4 = 0. Substituting this in v yields that v =
(−a1,−a2,−a3, 0) = (0, 0, 0, 0) holds, which contradicts our assumption that (a1,
a2, a3, a4) is nonzero.

Remark 3. We want to continue to investigate the singular fibers of a Delsarte fibra-
tion, in particular the singular fibers over points t = t0 with t0 � 0,∞. If det(A) = 0,
then either the generic fiber has geometric genus 0 or after a Delsarte base change
the fibration is split, i.e., the fibration is birational to a product. In the latter case all
the fibers away from 0 and ∞ are smooth. Hence from now on we restrict to the
case where det(A) � 0.

Lemma 4. Let S be a Delsarte surface with det(A) � 0, such that the generic fiber
has positive geometric genus. Let ϕ : S → P1 be the standard Delsarte fibration.
Then there exists a Delsarte base change of ϕ that is birational to the standard
fibration on a Delsarte surface S ′ with affine equation of the form m1+m2+m3+tnm4,
where each mi is a monomial in x and y.

Proof. Let e0 = (1, 1, 1, 1)T and ei be the i-th standard basis vector of Q4. Let Vi be
the vector space spanned by e0 and ei. Since A−1e0 =

1
d e0, it follows that A−1Vi is

not contained in span{e1, e2, e3}. In particular, dim A−1Vi ∩ span{e1, e2, e3} = 1.
Let �i be the line A−1Vi ∩ span{e1, e2, e3} and let vi be a vector spanning �i. We

can scale vi such that Avi = ei + tie0 for some ti ∈ K. Since e0, e1, e2, e3 are lin-
early independent, it follows that {ei+ tie0}3i=1 are linearly independent and therefore
v1, v2, v3 are linearly independent. Hence span{v1, v2, v3} is three-dimensional and
there is at least one vi = (ai, bi, ci, 0) with ci � 0. Then the rational map defined by
(x, y, t) �→ (xtai , ytbt , tci) is a composition of a Delsarte base change and a Delsarte
rational map.
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Now three of the four entries of Avi coincide, say they equal e. The exponent of
t in the four monomials of f0 := f (xtai , ytbi , tci) are the entries of Avi. In particular,
in precisely three of the four monomials the exponents of t equal the same constant
e. Therefore g := f0/te consists of four monomials of which precisely one contains
a t. If the exponent of t in this monomial is negative, then we replace t by 1/t in g.
Then g = 0 is an affine polynomial equation for the surface S ′.

Recall that we investigate the singular fibers of a Delsarte fibration, in particular
the singular fibers over points t = t0 with t0 � 0,∞. If we have a Delsarte fibration
and take a Delsarte base change, then the type of singular fiber over t = 0,∞ may
change, since the base change map is ramified over these points. Over points with
t � 0,∞, the base change map is unramified, and therefore the type of singular
fibers remains the same. Hence to describe the possible types of singular fibers over
points with t � 0,∞, it suffices by Lemma 4 to study Delsarte surfaces such that
only one monomial contains a t, i.e., we may restrict ourselves to Delsarte surfaces
with affine equation m1 + m2 + m3 + tnm4. If n = 0, then the fibration is split and
there are no singular fibers. If n � 0, then the possible types of singular fibers are
already determined at n = 1, i.e., it suffices to consider Delsarte surfaces with affine
equation m1 + m2 + m3 + tm4.

Definition 3. We call the standard fibration on a Delsarte surface a minimal Delsarte
fibration if the following conditions hold:

1. The affine equation for the standard fibration is of the form m1 +m2 +m3 + tm4,
where the mi are monomials in x and y.

2. The exponent matrix A of the corresponding surface S ⊂ P3 satisfies det(A) � 0.

Remark 4. In the function field K(S ) = Quot(K[x, y, t]/ f ) we have the relation t =
(−m1 − m2 − m3)/m4. In particular K(S ) = K(x, y) and therefore S is a rational
surface.

Consider now the defining polynomial for S , i.e., M1 + M2 +M3 + X2M4, where
the Mi are monomials in X0, X1, X3, the degrees of M1, M2, and M3 are the same,
say d, and the degree of M4 equals d − 1.

The Delsarte fibration is induced by the map (X0 : X1 : X2 : X3) �→ (X2 : X3).
If S contains the line �1 : X2 = X3 = 0, then this rational map can be extended to
a morphism on all of S ; otherwise, we blow up the intersection of this line with S
and obtain a morphism S̃ → P1, such that each fiber is a plane curve of degree d.

There is a different way to obtain this family of plane curves. Define N′i as
follows:

N′i := Mi(X0, X1, X2, X2) for i = 1, 2, 3 and N′4 = X2M4(X0, X1, X2, X2)

Now the four N′i have a nontrivial greatest common divisor if and only if X3 | Mi

for i = 1, 2, 3. The later condition is equivalent to the condition that the line �1 is
contained in S . Moreover, if the greatest common divisor is nontrivial, then it equals
X2. Now set Ni = N′i if �1 � S and set Ni = N′i/X2 if �1 ⊂ S . Then λ(N1 + N2 +

N3) + μN4 is a pencil of plane curves of degree d or d − 1, and the generic member
of this pencil is precisely the generic fiber of the standard fibration on S .
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We can consider the generic member of this family as a projective curve C over
K(t) with defining polynomial G := N1 + N2 + N3 + tN4 ∈ K(t)[X0, X1, X2]. Let A′
be the exponent matrix of C (considered as a curve in P2

K(t)). Set

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if �1 � S and B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1
d

0 1 −1
d

0 0 d−1
d

0 0 d−1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

otherwise.

Then A′ = AB. Since A is invertible and B has rank 3, it follows that rank A′ = 3.
Moreover the first three rows of A′ are linearly independent, since the upper 3 × 3
minor of A′ equals the upper 3× 3 minor of A times the upper 3× 3 minor of B.

In particular, there is a vector k, unique up to scalar multiplication, such that
kA′ = 0. Since the upper three rows of A′ are linearly independent, it follows that the
fourth entry k4 of k is nonzero. We can make the vector k unique, by requiring that
k4 > 0, ki ∈ Z for i = 1, . . . , 4 and gcd(k1, k2, k3, k4) = 1. Moreover from rank A′ = 3
and the fact that (0, 0, 1,−1)B vanishes, it follows that k ∈ span{(0, 0, 1,−1)A−1}.

Since none of the rows of A′ is zero, there are at least two nonzero entries in
k. Suppose that there are precisely two nonzero entries, say ki and k4. Then −ki

times the i-th row of A′ equals k4 times the fourth row of A′. Each row sum of
A′ equals the degree of C, say d. From this it follows that kid = −k4d and hence
that ki = −1, k4 = 1. In particular, the i-th row and the fourth row coincide. After
permuting m1, m2, m3, if necessary, we may assume that the affine equation for the
standard fibration is of the form m1 + m2 + (1 + t)m3.

Hence if the four monomials m1, m2, m3, m4 (in x, y) are distinct, then at least
three of the four entries of k are nonzero.

Let A′i be the i-th row of A′. Recall that each row sum of A′i equals d. Since
∑

kiAi

equals zero, it follows that 0 =
∑

i ki
∑

j A′i, j =
∑

i kid and hence
∑

ki = 0. Let p be a
prime number dividing one of the ki. Since gcd(k1, . . . , k4) = 1, there is a j such that
p � k j. From

∑
ki = 0, it follows that there is a j′ � j such that p � k j′ . Hence, each

prime number p does not divide at least two of the entries of k.

Proposition 1. Let S → P1 be a minimal Delsarte fibration. Let A′, k, and Ni be as
above. Suppose that the fiber over t = t0 is singular and t0 � 0,∞, then

tk4
0 −

∏

i:ki�0

kki
i = 0

or two of the Ni coincide.

Proof. Let G ∈ K(t)[X0, X1, X2] be as above. Then G defines a pencil of plane
curves in P2

K . Assume that no two of the Ni coincide. We aim at determining the
singular members of the pencil defined by G. Let Bt be the matrix obtained from A′
by multiplying the fourth row by t. Let us consider the matrix Bt0 for some t0 ∈ K∗.
Since the upper 3×3 minor of Bt0 equals the upper 3×3 minor of A′, and this minor
is nonzero, it follows that rank Bt0 = 3. Hence the kernel of right multiplication by
Bt0 is one-dimensional and is generated by (k1, k2, k3,

k4
t0

).
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Consider now the closure of the image of the rational map M : K3 � K4 sending
(x, y, z) to (N1, N2, N3, N4). Let z1, z2, z3, z4 be the coordinates on K4. Then by the
definition of the vector (k1, k2, k3, k4), one has that

∏
Nki

i = 1 holds, i.e., on the
image of M, one has ∏

zki
i = 1

Since the greatest common divisor of the ki equals one, this defines an irreducible
hypersurface V in K4. Moreover, from the fact that rank A′ equals 3, it follows that
M has finite fibers; hence, the image of M is three-dimensional and the closure of
the image of M is precisely the closure of

∏
zki

i = 1.
We want now to determine the values t0 for which the corresponding member of

the pencil of plane curves is singular. Hence we want to find (x0 : y0 : z0) ∈ P2

and t0 ∈ K∗ such that for (t, X0, X1, X2) = (t0, x0, y0, z0), the vector (GX0 , GX1 , GX2 )
is zero. In particular, the vector (X0GX0 , X1GX1 , X2GX2 ) is zero. A direct calcula-
tion shows that the latter vector equals (N1, N2, N3, tN4)A′, which in turn equals
(N1, N2, N3, N4)Bt. Hence if (x0, y0, z0) is a singular point of a fiber over t = t0, then
M(x0, y0, z0) is contained in ker Bt0 ∩ V .

We consider first the case where M(x0, y0, z0) is nonzero and t0 � 0. Then
∏

i:ki�0 zki
i = 1 and (z1, z2, z3, z4) is a multiple of (k1, k2, k3, k4/t0). In particular,

∏
i:ki�0 kki

i

tk4
0

= 1

holds, which finishes the case where M(x0, y0, z0) is nonzero.
To finish we show that if t0 � 0 and ker Bt0 ∩ V consists only of (0, 0, 0, 0), then

the fiber over t0 is smooth. Since ker Bt0∩V consists only of (0, 0, 0, 0), each singular
point of the fiber satisfies N1 = N2 = N3 = N4 = 0. In particular at least two of the
Xi are zero. Without loss of generality we may assume that the point (0 : 0 : 1) is
singular. Consider now G(x, y, 1) and write this as m1 + m2 + m3 + tm4.

Since all the four Ni are distinct, we have that m1 + m2 + m3 + tm4 = 0 is an
equisingular deformation of m1 + m2 + m3 + t0m4 for t in a small neighborhood of
t0. Hence we can resolve this singularity simultaneously for all t in a neighborhood
of t0. Therefore all fibers in a neighborhood of t0 are smooth and, in particular, the
fiber over t0 is smooth.

Lemma 5. Let ϕ : S → P1 be a minimal Delsarte fibration. Then there is an auto-
morphism σ : S → S , mapping fibers of ϕ to fibers, such that its action on the base
curve is t �→ ζk4 t.

Proof. Let d be the smallest integer such that D := dA−1 has integral coefficients.
Let T = {∑Xd

i = 0} ⊂ P3 be the Fermat surface of degree d. Then there is a rational

map T � S given by (X0 : X1 : X2 : X3) �→ (
∏

X
d0 j

j : · · · :
∏

X
d3 j

j ). On T there

is a natural action of (Z/dZ)3, given by (X0 : X1 : X2 : X3) �→ (ζa1
d X0 : ζa2

d X1 :
ζa3

d X2 : X3). On the affine chart X3 � 0 with coordinates x, y, t, this action is given
by (x, y, t) �→ (ζa1

d x, ζa2
d y, ζa3

d t).
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The rational map T � S is given (in affine coordinates) by

(x, y, t) �→
(

xd00 yd01 td02

xd30 yd31 td32
,

xd10 yd11 td12

xd30 yd31 td32
,

xd20 yd21 td22

xd30 yd31 td32

)

.

The action of (Z/dZ)3 descents to S and respects the standard fibration. Let t =
X2/X3 be a coordinate on the base of the standard fibration. Then (a1, a2, a3) ∈
(Z/dZ)3 acts as t �→ ζe

dt with e ≡ (d20−d30)a1+(d21−d31)a2+(d22−d32)a3 mod d.
Since k as defined in Remark 4 is proportional to (0, 0, 1,−1)A−1, it follows that k
is proportional to (d20 − d30, d21 − d31, d22 − d32, d23 − d33), i.e., there is an m ∈ Z
such that mki = d2i − d3i. In particular, setting d′ = d/m it follows that (a0, a1, a2)
acts as t �→ ζe

d′ t with e ≡ k1a1 + k2a2 + k3a3 mod d′.
Let p be a prime number and suppose that pm divides k4. Since k4 is a divisor

of d and the greatest common divisor of the ki equals one, it follows that pm also
divides d′. Since the greatest common divisor of the ki equals one, it follows that at
least one of the ki is not divisible by p. Without loss of generality we may assume
that k1 is invertible modulo p. From this it follows that we can choose a1 in such a
way that a1k1 + a2k2 + a3k3 ≡ 1 mod pm.

The corresponding automorphism σ′pm of S maps t to ζt where ζ is a primitive
ptn-th root of unity. Take now σpm := (σ′pm )n. Then σpm multiplies t with a primitive
pt-root of unity. Write now k4 =

∏
pti

i . Then σ :=
∏

i σp
ti
i

multiplies t with a
primitive k4-th root of unity.

Proposition 2. Let S → P1 be a Delsarte fibration with det(A) � 0; then there
exists a Delsarte base change S n → P1 of S → P1 which is isomorphic to the base
change of a genus g fibration S 0 → P1 with at most one singular fiber outside 0,∞.

Proof. From Lemma 4 it follows that we may assume that the Delsarte fibration is
a minimal Delsarte fibration, i.e., we have an affine equation for the generic fiber of
the form m1 +m2 +m3 + tm4, where the mi are monomials in x and y. On a minimal
Delsarte fibration ϕ : S → P1, there is an automorphism of order k4 that acts on the
t-coordinate as t �→ ζk4 t. In particular, all the fixed points of this automorphism are
in the fibers over 0 and∞.

Consider next ψ : S/〈σ〉 → P1/〈σ〉 � P1. Now the singular fibers of ϕ are
possibly at t = 0,∞ and at tk4 =

∏
kki

i ; hence, the singular fibers of ψ are possibly
at t = 0,∞ and t =

∏
kki

i .

Proposition 3. Let ϕ : S → P1 be a minimal Delsarte fibration with affine equation
m1 + m2 + m3 + tm4 such that the general fiber has positive geometric genus. Then
one of the following happens:

• m4 equals one of m1, m2, m3. In this case the fibration is isotrivial.
• S is Delsarte birational to a Delsarte surface with equation of the form ya =

f (x, t).
• Every singular fiber over t = t0 with t0 � 0,∞ is semistable.
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Proof. Assume that all four mi are distinct. Let Ni be as in Remark 4. Let t0 ∈ K∗
be such that the fiber over t = t0 is singular. Let P = (X0 : X1 : X2) ∈ P2 be a
singular point of the fiber. From the proof of Proposition 1, it follows that at least
one of the Ni is nonzero and that (N1 : N2 : N3 : N4) = (k1 : k2 : k3 : k4

t0
) holds.

From Remark 4, it follows that at most one of the ki is zero.
Suppose first that one of the ki, say k1, is zero. This implies that N1 vanishes

and that the other Ni are nonzero. Therefore, one of the coordinate of P has to be
zero (in order to have N1 = 0). If two of the coordinates of P are zero, then from
det(A) � 0, it follows that there is some i � 1 such that Ni = 0, which contradicts the
fact that at most one Ni vanishes. Hence without loss of generality we may assume
P = (α : 0 : 1) with α � 0, X1 | N1 and X1 � Ni for i = 1, 2, 3. In particular, we have
an affine equation for the fibration of the form m1 + m2 +m3 + tm4, where y divides
m1 and m2, m3, m4 are of the form xai . Multiply the equation with a power of x such
that m1 is of the form xabyb and set y1 = y/xa. Then we obtain an equation of the
form yb

1 = f (x, t), where f (x, t) is of the form xa + xb + txc. This yields the second
case.

It remains to consider the case where all the Ni are nonzero. Let P ∈ S be a
point where the fiber over t = t0 singular. Let f be an affine equation for S . We
prove below that if we localize K[x, y, z, t]/( fx, fy, fz, t − t0) at P, then this ring is
isomorphic to k[x]. Hence the scheme defined by the Jacobian ideal of fiber at t = t0
has length one at the point P. Equivalently, the Milnor number of the singularity of
the fiber at t = t0 at the point P equals one. In particular, the singularity of the fiber
at P is an ordinary double point.

Consider now the rational map τ : P2 \ V(X0X1X2) → P3 given by (X0 : X1 :
X2) �→ (N1 : N2 : N3 : N4). The map τ is unramified at all points Q ∈ P2 such that
τ(Q) � V(X0X1X2X3).

Since we assumed that all the Ni are nonzero, it follows that also all the Xi

are nonzero. Hence the length of V( fX0 , fX1 , fX2 , t − t0) at P equals the length of
V(X0 fX0 , X1 fX1 , X2 fX2 , t − t0) at P. From the proof of Proposition 1, it follows
that V(X0 fX0 , X1 fX1 , X2 fX2 , t− t0) is the scheme-theoretic intersection of ker Bt0 and
V(
∏

zki
i − 1) and that this intersection is locally given by V(k4Z0 − t0k1Z3, k4Z1 −

t0k2Z3, k4Z2 − t0k3Z4, Z2 − t0Z4), whence the length of the scheme equals one, and
therefore the local Milnor number equals one, and the singularity is an ordinary
double point.

Theorem 1. Suppose S → P1 is a Delsarte fibration of genus 1 with nonconstant
j-invariant. Then every singular fiber at t � 0,∞ is of type Iν.

Proof. Without loss of generality we may assume that the fibration is a Delsarte
minimal fibration. In particular we have an affine equation for this fibration of the
form described in the previous proposition.

In the first case the fibration is isotrivial and therefore the j-invariant is constant;
hence, we may exclude this case. If we are in the third case, then each singular fiber
at t = t0 is semistable and, in particular, is of type Iν.

It remains to consider the second case. In this case we have an affine equation
of the form ya = f (x, t). Suppose first that a > 2 holds. Then the generic fiber has
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an automorphism of order a with fixed points. This implies that the j-invariant of
the generic fiber is either 0 or 1,728. In particular, the j-invariant is constant and
that the fibration is isotrivial. Hence we may assume a = 2. In this case we have an
affine equation y2 = f (x, t). Without loss of generality we may assume x2 � f . Since
the generic fiber has genus 1, it follows that degx( f ) ∈ {3, 4}. Since S is a Delsarte
surface, it follows that f contains three monomials.

Suppose first that degx( f ) = 3 and that at t = t0, there is a singular fiber of type
different from Iv. Then f (x, t0) has a triple root, i.e., f (x, t0) = (x− t0)3. This implies
that f (x, t0) consists of either one or four monomials in x. This contradicts the fact
that f (x, t) consists of three monomials and t0 � 0.

If degx( f ) = 4, then we may assume (after permuting coordinates, if necessary)
that f = x4 + xa + t or f = x4 + txa + 1. If the fiber type at t = t0 is different
from Iv, then f (x, t0) consists of three monomials and y2 = f (x, t0) has at singularity
different from a node. In particular, f (x, t0) has a zero or order at least 3 and therefore
f (x, t0) = (x − a)4 or f (x, t0) = (x − a)(x − b)3. In the first case f (x, t0) contains
five monomials, contradicting the fact that it has three monomials. In the second
case note that the constant coefficient of f (x, t0) is nonzero and hence ab � 0. Now
either the coefficient of x or of x3 is zero. From this it follows that either b = −3a
or a = −3b holds. Substituting this in f (x, t0) and the fact that f (x, t0) has at most
three monomials yields b = 0, contradicting ab � 0.

Corollary 1. Let ϕ : S → P1 be an elliptic Delsarte surface; then there exists a
cyclic base change of ϕ ramified only at 0 and∞ that is isomorphic to a cyclic base
change, ramified only at 0 and ∞, of an elliptic surface with at most one singular
fiber away from 0 and∞ and this fiber is of type Iv.

Let π : E → P1 be an elliptic surface (with section). Define γ(π) to be

γ(π) :=
∑

t�0,∞

(

ft − et

6

)

− n0

6
− n∞

6
,

where ft is the valuation at t of the conductor of the generic fiber of π, et the Euler
number of π−1(t) and np is zero unless the fiber at p is of type In or I∗n and in this
cases np = n.

In [2, 3] Fastenberg studies rational elliptic surfaces with γ < 1. She determines
the maximal Mordell–Weil rank of such elliptic surfaces under cyclic base changes
of the form t �→ tn.

We will now show that each Delsarte fibration of genus 1 with nonconstant j-
invariant becomes after a Delsarte base change the base change of a rational elliptic
surface with γ < 1. In particular, the maximal Mordell–Weil ranks for Delsarte
fibrations of genus 1 under cyclic base change (as presented in [4, Sect. 3.4] and
[5]) can also be obtained from [3].

Corollary 2. Let π : S → P1 be a minimal Delsarte fibration of genus 1 with
nonconstant j-invariant. Then S is the base change of a rational elliptic surface
with γ < 1.
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Proof. From Theorem 1 it follows that π is the base change of an elliptic fibration
π′ : S ′ → P1 with at most one singular fiber away from 0 and ∞ and this fiber is
of type Iv. Since the j-invariant is nonconstant, it follows that π′ has at least three
singular fibers; hence, there is precisely one singular fiber away from 0 and ∞.
Since this fiber is of type Iν, it follows that ft = 1 for this fiber. Hence

γ = 1− et + n0 + n∞
6

< 1.

Remark 5. The converse statement to this results is also true: let π : S → P1 be
a rational elliptic surface with γ < 1, only one singular fiber away from 0 and ∞
and this fiber is of type Iν. Then there exists a base change of the form t �→ tn

such that the pullback of π : S → P1 along this base change is birational to the
standard fibration on a Delsarte surface. One can obtain this result by comparing the
classification of elliptic Delsarte surfaces from [4, Chap. 3] with the tables in [2, 3].

Example 1. The second line of entry 14 of [3, Table 4] exhibits the existence of an
elliptic surface with a IV-fiber at t = 0, an I1-fiber at t =∞ and one further singular
fiber that is of type I∗1 . In [3] it is shown that the maximal rank under base changes
of the form t �→ tn is 9. Such a fibration has a nonconstant j-invariant and γ < 1.
Corollary 1 now implies that this fibration is not a Delsarte fibration.

If we twist the I∗1 fiber and one of the fibers at t = 0 or t = ∞, then we get
the following fiber configurations IV; I∗1 ; I1 or II∗; I1; I1. Both these configuration
occur also in [3, Table 4]. The maximal rank under base changes of the form t �→ tn

equals 9 in both cases. Now y2 = x3+ x2+ t has singular fibers of type I1 at t = 0 and
t = −4/27 and of type II∗ at t = ∞ and y2 = x3 + tx + t2 has a IV-fiber at t = 0, a
I1 fiber at t = −4/27 and a I∗1 fiber at t =∞. Hence both fibration occur as Delsarte
fibrations.

Example 2. Consider the elliptic Delsarte surface that corresponds to

Y2 = X3 + X2 + tX.

We can easily compute the discriminant and j-invariant of this fibration:

Δ = −64t3 − 16t2 and j = 256
(3t− 1)3

4t3 − t2
.

From this we can see that there are three singular fibers. Over t = 0 there is I2-fiber,
over t =∞ there is a III-fiber, and over t = −1/4 there is a I1-fiber. We then check
that this corresponds to the second entry in the list of [3].

Remark 6. The approaches to determine the maximal Mordell–Weil ranks under
cyclic base change in [3] and in [4] are quite different. The former relies on studying
the local system coming from the elliptic fibration, whereas the latter purely relies
on Shioda’s algorithm to determine Lefschetz numbers of Delsarte surfaces. This
explains why Fastenberg can deal with several base changes where the “minimal”
fibration has four singular fibers (which cannot be covered by Shioda’s algorithm
because of Proposition 2) but cannot deal with fibrations with constant j-invariant.
Instead Shioda’s algorithm can handle some of them.
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3 Isotrivial Fibrations

Using Proposition 3 one easily describes all possible isotrivial minimal Delsarte
fibrations.

Proposition 4. Suppose the standard fibration on S is isotrivial and that the genus
of the generic fiber is positive. Then there is a Delsarte base change and a Delsarte
birational map such that the pullback of the standard fibration is of the form m1 +

m2 + (1 + tn)m3, y3 + x3 + x2 + tn, or ya + x2 + x + tn.

Proof. Suppose the affine equation for S is of the third type of Proposition 3. Then
S admits a semistable fiber and in particular the fibration cannot be isotrivial. If
the affine equation for S is of the first type of Proposition 3, then the generic fiber
is (after an extension of the base field) isomorphic to m1 + m2 + m3; in particular,
each two smooth fibers of the standard fibration are isomorphic and therefore this
fibration is isotrivial. In this case S is the pullback of m1 + m2 + (1 + tn)m3.

Hence we may restrict ourselves to the case where we have an affine equation of
the form ya = xb f (x, t) where f consists of three monomials, f (0, t) is not zero, and
the exponent of x in each of the three monomials in f is different. Moreover, after a
Delsarte birational map we may assume that b < a.

The surface S is birational to a surface ya = xbzc+deg( f ) f (x/z, t) in P(1, w, 1), with
0 ≤ c < a and w = (b+c+deg( f ))/a ∈ Z. The standard fibration on S is isotrivial if
and only if the moduli of the zero set of xbzc+deg( f ) f (x/z, t) in P1

(x:z) are independent
of t. We will now consider this problem.

We cover first the case where d′ := degx( f ) > 2 holds.
After swapping the role of x and z, if necessary, we may assume that the co-

efficient of xzd′−1 is zero. We claim that after a map of the form y = tc1 y, x =
tc2 x, z = z, t = tc3 , we may assume that f = xd′ + xc′zd′−c′ + tzd′ . To see this, take
an affine equation for S of the form ya = xb(a1xd′ + a2xc′ + a3), where ai ∈ {1, t}
and two of the ai equal 1. If a1 = t, then we need to take an integer solution of
ac1 = bc2 + d′c2 + c3 = bc2 + c′c2 and if a2 = t, then we need to take an integer
solution of ac1 = bc2 + d′c2 + c3 = bc2 + c′c2. In both cases we obtain an affine
equation of the form ya = xb(xd′ + xc′ + tn). This fibration is isotrivial if and only if
ya = xb(xd′ + xc′ + t) is isotrivial, which proves the claim.

Hence from now on we assume that f is of the form xd′ + xc′zd′−c′ + tzd′ with
d′ > 2 and c′ > 1.

Let s denote the number of distinct zeroes of g(x, z) := xbzc+deg( f ) f (x/z, t) for a
general t-value. We say that the fiber at t = t0 is bad if xbzc+deg( f ) f (x/z, t) has at
most s− 1 distinct zeroes. The main result from [6] yields that if the fiber at t = t0
is bad, then g(x, z) has at most 3 distinct zeroes. We are first going to classify all g
satisfying this condition. Then we will check case-by-case whether the moduli of
the zeroes of g are independent of t.

Consider the fiber over t = 0. From c′ > 1 it follows that x = 0 is a multiple zero
of f (x, 0). Hence that the fiber over t = 0 is bad. If c is positive, then the criterion
from [6] implies that g(x, 0) can have at most one further zero and hence d′ = c′ + 1.
If c = 0, then g can have at most two further zeroes and therefore d′ − c′ ∈ {1, 2}.



324 B. Heijne and R. Kloosterman

Suppose first d′ = c′ + 1. Consider f ′(x, t) := ∂
∂x f (x, t). Our assumption on f

implies that f ′(x, t) is a polynomial only in x. The fiber at t = t0 is bad if and only if
f ′(x, t0) and f (x, t0) have a common zero. From c′ = d′−1, it follows that f ′(x, t) has
a unique zero different from 0, say x0, and x0 is a simple zero of f ′(x, t). Now f (x0, t)
is a linear polynomial in t. Hence there is a unique nonzero t-value t0 over which
there is a bad fiber. Since x0 is a simple zero of f ′(x, t0), it follows that (x − x0)2

divides f (x, t0) and that there are d′ − 2 further distinct zeroes, all different from 0.
Using that g has at most 3 zeroes, it follows that if both b and c are nonzero, then
d′ − 2 = 0; if one of b, c is zero, then d′ − 2 ≤ 1; and if both b and c are zero,
then d′ − 2 ≤ 2. Using that we assumed that d′ is at least 3, we obtain the following
possibilities for g: xb(x3+ x2z+ tz3), zc(x3+ x2z+ tz3), x3+ x2z+ tz3 and x4+ x3z+ tz4.

Suppose now c = 0 and d′ = c′ + 2. Then f ′ is of the form β(x2 + α)xd′−3.
In particular, there are two possible x-values for a bad point in a bad fiber. If they
occur in the same fiber and b = 0, then d′ ∈ {4, 5}, otherwise d′ ∈ {3, 4}. Since
2 ≤ c′ = d′ − 2, we may exclude d′ = 3 and we obtain that the two polynomials
x4 + x2 + t and x5 + x3 + t are the only possibilities for f . We can exclude x5 + x3 + t,
since it has bad fibers at t2 = −3125

108 and a necessary condition to have d′ = 5 is that
there is at most one bad fiber with t � 0,∞.

If b > 0, then d′ ≤ 4; in particular, we have only xb(x4 + x2 + t) to check.
Actually only in one of the above cases the moduli are independent of t, namely,

g = x3 + x2z + tz3.
Note that the j-invariants of the elliptic curves y2 = x3+ x2+ t and y2 = tz3+ z+1

are not constant; hence, the moduli of the zeros of xb(x3 + x2z + tz3) and of zc(x3 +

x2z + tz3) depend on t (if b > 0 resp. c > 0 holds). Since x3 + x2z + tz3 has degree 3,
the moduli of its zeroes are obviously constant.

The family of genus one curves y2 = x4+x2+t has a semistable fiber at t = 1
4 , and

the family of genus one curves y2 = x4 + x3z + tz4 has a semistable fiber at t = 27
256 .

Hence the moduli of the zeroes of xb(x4 + x2 + t) for b ≥ 0 and of x4 + x3z + tz4

depend on t.
Consider now the final case d′ = 2. Then f = x2 + x + t, and therefore automati-

cally two of the three possibilities for g, namely, zc(x2+ xz+ tz2) and xb(x2+ xz+ tz2),
have constant moduli since they define three points in P1. Now yb+2 = zb(x2+xz+tz2)
and yb+2 = xb(x2 + xz+ tz2) are birationally equivalent up to a Delsarte base change,
e.g., take ((x : y : z), t) �→ ((z : y

t : x
tb+2 ), tb+2). Hence these two cases yield

only one case up to isomorphism. We may assume that the affine equation equals
yb + x2 + x + tn. If b = c = 0 holds, then the generic fiber is a cyclic cover of P1

ramified at two points, and in particular has genus 0. Hence we can exclude this
case. Finally, xbzc(x2 + xz+ tz2) does not have constant moduli since the j-invariant
of y2 = x3 + x2 + tx is nonconstant.

Remark 7. In the case of ya + x2 + x + t, we may complete the square. This yields a
surface that is isomorphic to ya + x2 + 1+ t; in particular, the fibration is birationally
equivalent to a fibration of the first kind. However, they are not Delsarte birational.

In [4, Sect. 3.5.1] it is shown that y3 + x3 + x2 + t is birational to y2 + x3 + t3 + 1;
however, the given birational map is not a Delsarte birational map.
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Hence both exceptional cases are fibrations that are birational to a fibration of the
first type.

From the previous discussion, it follows that almost all minimal isotrivial Del-
sarte fibrations are of the form m1 + m2 + (1 + t)m3.

We will calculate the Picard numbers for one class of such fibrations and consider
the behavior of the Picard number under Delsarte base change, i.e., base changes of
the form t �→ ta.

Example 3. Let p = 2g + 1 be a prime number. Consider the isotrivial fibration
y2 = xp + t2ap + s2ap of genus g-curves over P1

(s:t). This equation defines a quasi-
smooth surface S of degree 2ap in P(2a, ap, 1, 1). The surface S has one singular
point, namely, at (1 : 1 : 0 : 0). A single blowup of this suffices to obtain a smooth
surface S̃ . The Lefschetz number of S̃ can be computed by using Shioda’s algorithm,
which we do below. The exceptional divisor of S̃ → S is a smooth rational curve.
In particular, using the Mayer–Vietoris sequence, one easily obtains that h2(S̃ ) =
h2(S ) + 1 and ρ(S̃ ) = ρ(S ) + 1. From the fact that S is quasi-smooth, it follows
that the mixed Hodge structure on H2(S ) is a pure weight 2 Hodge structure. To
determine the Hodge numbers of this Hodge structure, we use a method of Griffiths
and Steenbrink. Note first that dim H2(S )prim = h2(S )− 1 = h2(S̃ )− 2.

Let R be the Jacobian ring of S , i.e.,

R = C[x, y, s, t]/

(
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂s
,
∂ f

∂t

)

= C[x, y, s, t]/(xp−1, y, t2p−1, s2p−1).

This is a graded ring with weights (2a, ap, 1, 1). Let d = 2ap be the degree of S and
w = ap + 2a + 2 the sum of the weights.

From Griffiths–Steenbrink [9], it follows that H2−q,q(S )prim is isomorphic with
R(q+1)d−w. The set

B0 := {xit j sk | 2ai + j + k = (q + 1)d − w, 0 ≤ i < p− 1, 0 ≤ j, k < 2ap− 1}
is a basis for R(q+1)d−w. From now on we consider the elements of B0 as elements of
C[x, y, s, t]. Multiplying each element of B0 with yxts shows that the elements of B0

are in a one-to-one correspondence with the elements of

B := {yxit j sk | ap + 2ai + j + k = (q + 1)d, 0 < i ≤ p− 1, 0 < j, k ≤ 2ap− 1}.
We associate to an element yxit jsk ∈ B the vector v =

(
1
2 , i

p , j
2ap , k

2ap

) ∈ Q4.

From yxit jsk ∈ B, it follows that each entry of v is a rational number α such that
0 < α < 1 holds. In particular, v is determined by its image in (Q/Z)4, and none of
the coordinates of v is zero in Q/Z. Summarizing we have constructed a one-to-one
correspondence between a basis for H2−q,q

prim (S ) and the elements of

{(
1

2
,

i

p
,

j

2ap
,

k

2ap

)

∈ (Q/Z)4

∣
∣∣
∣
∣∣

i, j, k ∈ Z; 0 < i < p; 0 < j, k < 2ap;
1
2 +

i
p +

j
2ap +

k
2ap = q + 1

}

. (1)
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(Here we consider 1
2 +

i
p +

j
2ap +

k
2ap as an element of Q.)

In [4, Sect. 2.1] a variant of Shioda’s algorithm [7] is presented. This algorithm
calculates the Lefschetz number of a resolution of singularities of T̃ a Delsarte sur-
face T in P3. In our case we apply this algorithm to the surface T ⊂ P4 given by

−Y2Z2ap−2 + XpZ2ap−p +W2ap + Z2ap.

Since the Lefschetz number is a birational invariant, one has that the Lefschetz num-
bers of S̃ and T̃ coincide.

To determine the Lefschetz number, we follow [4]. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 2ap− 2
p 0 0 (2a− 1)p
0 0 2ap 0
0 0 0 2ap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be the exponent matrix of T . Define v1, v2, v3 as follows:

v1 := (1, 0, 0,−1)A−1, v2 := (1, 0, 0,−1)A−1, and v3 := (0, 0, 1,−1)A−1.

In our case this yields the vectors

v1 =

(

0,
1

p
, 0,
−1

p

)

, v2 =

(
1

2
, 0, 0,

−1

2

)

, and v3 =

(

0, 0,
1

2ap
,
−1

2ap

)

.

Consider now the set L := iv1 + kv2+ jv3 ∈ Q/Z. These are precisely the vectors
of the form

{(
k

2
,

i

p
,

j

2ap
,
−apk− 2ai− j

2ap

)

∈ (Q/Z)4

∣
∣∣
∣
∣∣
i, j, k ∈ Z

}

.

For an element α ∈ Q/Z denote with {α} the fractional part, i.e., the unique
element β ∈ Q ∩ [0, 1) such that α − β ≡ 0 mod Z and with ord+(α) the smallest
integer k > 0 such that kα ∈ Z.

Let L0 ⊂ L be the set of vectors v ∈ L such that none of the entries of v equals 0
modulo Z, i.e.,
{(

1

2
,

i

p
,

j

2ap
,
−ap− 2ai− j

2ap

)

∈ (Q/Z)4

∣
∣∣
∣
∣∣

i, j ∈ Z, 0 < i < p, 0 < j < 2ap,
j � −ap− 2ai mod 2ap

}

.

For an element v = (α1, α2, α3, α4) ∈ (Q/Z)4 define q(v) := {a1}+ {a2}+ {a3}+ {a4}.
Note that for v ∈ L0 we have q(v) ∈ {1, 2, 3}. Moreover for q = 0, 1, 2, we have that
the set {v ∈ L0 | q(v) = q + 1} corresponds to a basis of H2−q,q(S )prim by (1). In
particular, #L0 is precisely h2(S )prim.

Define Λ ⊂ L0 as the set of elements (α1, α2, α3, α4) ∈ L0 such that there is a
t ∈ Z for which ord+(αkt) = ord+(αk) holds for k = 1, 2, 3, 4 and {tα1} + {tα2} +
{tα3}+ {tα4} � 2. The condition ord+(αkt) = ord+(αk) for k = 1, 2, 3, 4 is equivalent
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with t being invertible modulo 2a′p, where a′ = a/ gcd(a, j). Then the Lefschetz
number λ = h2(T̃ )− ρ(T̃ ) equals #Λ.

Since λ(S̃ ) = λ(T̃ ) and h2(S̃ ) = 2 + #L0, it follows that ρ(S ) equals

2 + #

{

(α1, α2, α3, α4) ∈ L0

∣∣
∣
∣∣
∣

{tα1} + {tα2} + {tα3} + {tα4} = 2 for t ∈ Z
such that ord+(tαk) = ord+(αk), k = 1, 2, 3, 4

}

.

We now determine this set.
Consider now a vector v from L0, i.e., a vector

(
1

2
,

i

p
,

j

2ap
,

ap− 2ai− j

2ap

)

with i, j ∈ Z, i � 0 mod p, j � 0 mod 2ap, ap− 2api− j � 0 mod 2ap.
Take t ∈ {1, . . . , 2a′p − 1} such that gcd(t, 2a′p) = 1 and t ≡ i−1 mod p. Then

v ∈ Λ if and only if tv ∈ Λ. Hence, to determine whether a vector is in Λ, it suffices
to assume i ≡ 1 mod p.

Suppose now that p > 7. In Lemma 6 we show that v � Λ if and only if the frac-
tional part { j

2ap } is in the set
{

p−1
2p , 1

2 , p+2
2p , 2p−4

2p , 2p−2
2p , 2p−1

2p

}
. Each of the six values

for j yields (p− 1) elements in L0 \ Λ; hence, ρ(S̃ ) = 2 + 6(p− 1).
One can easily find several divisors on S̃ . We will describe a subgroup of finite

index in NS(S̃ ). Since the maximal Picard number is attained for a = 1, we may
assume that a equals 1. We remarked in the introduction that the pullback of the
hyperplane class H and the exception divisor E yield two independent classes in
NS(S̃ ). We give now 6(p − 1) further independent classes: Let α± be p-th roots of
±√2. Consider now the curves C1 given by x− t2 = y− sp = 0, and the curves C2,3

given by x = α±t, y = tp ± sp. Let Di be the curve obtained by swapping s and t.
An easy argument using the intersection pairing shows that H, E, C1, C2, C3 are

independent in NS(S̃ ). Let ζ be a primitive p-th root of unity. Let σ be the auto-
morphism t �→ ζt, let G = 〈σ〉. Consider now the subgroup of NS(S̃ ) generated by
H, E, C1, C2, C3 and its conjugates under the powers of σ. This subgroup has a natu-
ral structure Zr⊕Z[ζ]s. Since H and E are fixed under G, it follows that r ≥ 2. Since
C1, C2 and C3 are linearly independent and not mapped to an algebraically equiva-
lent divisor under σ, it follows that s ≥ 3. For each i we have [

∑
σ∈G Cσ

i ] = [H] in
NS(S̃ ); hence, the conjugates of H, E, C1, C2, C3 generate a subgroup of NS(S̃ ) or
rank at most 2 + 3(p− 1). Hence r = 2 and s = 3.

Now the above constructed subgroup of NS(S̃ ) is invariant under the automor-
phism τ mapping s to ζs. However this automorphism does map each Di to a di-
visor that is non-algebraically equivalent to Di. As above one can show that the
H, E, Ci, Di and all their conjugates generate a rank 2+6(p−1) subgroup of NS(S̃ ).

Lemma 6. Suppose p > 7. Let

v =
(
1

2
,

1

p
,

j

2ap
,
−2a− ap− j

2ap

)

∈ (Q/Z)4
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such that j � 0 mod 2ap, 2a + j + ap � 0 mod 2ap. Then v � Λ if and only if

j

2ap
∈
{

p − 1

2p
,

1

2
,

p + 2

2p
,

2p− 4

2p
,

2p− 2

2p
,

2p− 1

2p

}

.

Proof. Without loss of generality we may assume that gcd(a, j) = 1.
We start by proving that if a prime � ≥ 5 divides a, then v ∈ Λ. For this it suffices

to give a t, invertible modulo 2ap such that

{ t

2

}

+

{
t

p

}

+

{
t j

2ap

}

+

{
(−2a− ap− j)t

2ap

}

= 1.

Since the left hand side is an integer for any choice of t and each summand is smaller
than one, it suffices to prove that

{ t

2

}

+

{
t

p

}

+

{
t j

2ap

}

≤ 1.

Consider the value

t = 1 + ck
2ap

�
,

with c ≡ j−1 mod � and k ∈ Z such that k � (c 2ap
�

)−1 mod � and k in the interval

(

− � j

2ap
,− � j

2ap
+

�(p− 2)

2p

)

.

Note that we have to assume p > 7 or � ≥ 5 to ensure the existence of such a k.
Then { t

2 } = 1
2 and

{
t

p

}

=

{
1

p
+ ck

2a

�

}

=
1

p
.

Moreover, we have that

{
t j

2ap

}

=

⎧
⎪⎪⎨
⎪⎪⎩

(1 + ck 2ap
�

) j

2ap

⎫
⎪⎪⎬
⎪⎪⎭
=

{
j

2ap
+

k

�

}

≤ (p− 2)

2p
.

From this it follows that

{ t

2

}

+

{
t

p

}

+

{
t j

2ap

}

≤ 1

holds, which finishes this case.
Suppose now that the only primes dividing a are 2 or 3. If p = 11, 13, 17 and

a = 3, then one can find by hand a t-value such that

{ t

2

}

+

{
t

p

}

+

{
t j

2ap

}

+

{
(−2a− ap− j)t

2ap

}

= 1
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holds. For all other combinations (a, j, p) with a > 1 we give a value for t in Table 1
such that the above formula holds.

Table 1: t-values for the case a = 2v23v3 , a � 1

a j
2ap ∈ I t

4 | a (0, p−2
2p ) 1

p > 3 ( 1
2 , p−1

p ) 1 + ap

(0, p−4
4p ) ∪ ( 3

4 , 1) j ≡ 1 mod 4 1 + ap
2

( 1
4 , 3p−4

4p ) j ≡ 1 mod 4 1 + 3ap
2

(0, p−4
4p ) ∪ ( 3

4 , 1) j ≡ 3 mod 4 1 + 3ap
2

( 1
4 , 3p−4

4p ) j ≡ 3 mod 4 1 + ap
2

2 | a, 4 � a′ (0, p−2
2p ) 1

p > 7 ( 1
2 , p−1

p ) 1 + ap

(0, 1
8 − 1

p ) ∪ ( 3
8 , 5

8 − 1
p ) ∪ ( 7

8 , 1) j ≡ 1 mod 4 2 + ap
2

( 3
8 , 5

8 − 1
p ) j ≡ 3 mod 4 2 + 3ap

2

9 | a (0, p−2
2p ) 1

p > 5 ( 1
3 , 5

6 − 1
p ) j ≡ 2 mod 3 1 + 2ap

3

(0, 1
3 − 1

p ) ∪ ( 2
3 , 1) j ≡ 2 mod 3 1 + 4ap

3

( 1
3 , 5

6 − 1
p ) j ≡ 1 mod 3 1 + 4ap

3

(0, 1
3 − 1

p ) ∪ ( 2
3 , 1) j ≡ 1 mod 3 1 + 2ap

3

a = 3 (0, p−2
2p ) 1

p ≡ 1 mod 3 ( 1
3 , 5

6 − 1
p ) j ≡ 1 mod 3 1 + 4p

p > 18 ( 8
9 , 19

18 − 1
p ) j ≡ 1 mod 3 3 + 2p

( 7
9 , 17

18 − 1
p ) j ≡ 1 mod 3 3 + 4p

( 2
3 , 1) j ≡ 2 mod 3 1 + 4p

( 4
9 , 11

18 − 1
p ) j ≡ 2 mod 3 3 + 2p

( 5
9 , 13

18 − 1
p ) j ≡ 2 mod 3 3 + 4p

a = 3 (0, p−2
2p ) 1

p ≡ 2 mod 3 ( 2
3 , 1) j ≡ 1 mod 3 1 + 2p

p > 18 ( 5
9 , 13

18 − 1
p ) j ≡ 1 mod 3 3 + 2p

( 4
9 , 11

18 − 1
p ) j ≡ 1 mod 3 3 + 4p

( 1
3 , 5

6 − 1
p ) j ≡ 2 mod 3 1 + 2p

( 7
9 , 17

18 − 1
p ) j ≡ 2 mod 3 3 + 2p

( 8
9 , 19

18 − 1
p ) j ≡ 2 mod 3 3 + 4p

The only case left to consider is the case a = 1. If p ≤ 30, then one can easily
find an appropriate t-value by hand. Hence we may assume that p > 30. If we take
t = 1, then we see that v ∈ Λ whenever

j

2ap
=

j

2p
∈
(

0,
1

2
− 1

p

)

.

We will consider what happens if j
2p > p−2

2p .
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Suppose t < p is an odd integer and k is an integer such that k ≤ t j
2p < k + 1.

Then we have { t

2

}

+

{
t

p

}

+

{
t j

2p

}

=
1

2
+

t

p
+

t j

2p
− k

The right hand side is at most 1 if

j

2p
≤ 1 + 2k

2t
− 1

p
.

Hence if
j

2p
∈
(

k

t
,

1 + 2k

2t
− 1

p

)

,

then v ∈ Λ.
If we take k = t − 1, then we get the interval

It :=

(

1− 1

t
, 1− 1

2t
− 1

p

)

and if we take k = (t + 1)/2, then we get

I′t :=

(
1

2
+

1

2t
,

1

2
+

1

t
− 1

p

)

.

Note that I3 = I′3.
We claim that if p > 30 and 5 ≤ t ≤ p−1

2 − 3, then I′t ∩ I′t−2 � ∅ and It ∩ It−2 � ∅.
For this, it suffices to check that

1

2
+

1

2(t − 2)
<

1

2
+

1

t
− 1

p
and 1− 1

2(t− 2)
− 1

p
> 1− 1

t
.

Both conditions are equivalent with

2t2 − (p + 4)t + 4p < 0. (2)

The smallest value to check is t = 5; then the above formula yields that p > 30,
which is actually the case. For fixed p we have that the above bound is equivalent
with t ∈ ( 1

4 p + 1 − 1
4

√
p2 − 24p + 16, 1

4 p + 1 + 1
4

√
p2 − 24p + 16). The previous

argument already shows that the left boundary of this interval is smaller than 5.
Substituting t = p−1

2 − 3 in (2) yields that for p > 77/3 the boundary point on the

right is bigger than p−1
2 − 3. In particular, if p > 30, t is odd, then I′t ∩ I′t−2 � ∅ and

It ∩ It−2 � ∅. Take now the union of I′t and It for all odd t with 3 < t < p−1
2 − 5.

This yields an interval I = (α, β) such that for all j
2p ∈ I, we have that v ∈ Λ. The

maximal t-value is either p−1
2 − 3 or p−1

2 − 4 (depending on p mod 4). Hence we

know only that the maximal t is at least p−1
2 − 4. From this it follows that
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I ⊃
(

1

2
+

1

p− 9
, 1− 1

p
− 1

p− 9

)

.

Note that p − 9 > 2
3 p and hence 1

p +
1

p−9 ≤ 5
2p . Hence the only possibilities for

j
2p � I and p− 2 < j < 2p are

{
p− 1

2p
,

p

2p
,

p + 1

2p
,

p + 2

2p
,

2p− 4

2p
.
2p− 3

2p
,

2p− 2

2p
,

2p− 1

2p

}

.

If j
2p ∈ { p+1

2p , 2p−3
2p }, then we have that v is in Λ. This can be verified by taking

t = p− 2. Hence we have shown that for all but six values for j
2p , the corresponding

vector is in Λ.
It remains to show that for the remaining values of j

2p , we have that v � Λ. If
j

2p ∈ { 1
2 , 2p−2

2p }, then two coordinates α, β of v equal 1
2 . Hence for any admissible t

we have

{ t

2

}

+

{
t

p

}

+

{
t j

2ap

}

+

{
(−2a− ap− j)t

2ap

}

>
1

2
+

1

2
= 1

Since the left hand side is an integer, it is at least 2.
In the other four cases we have two entries α, β such α = β + 1

2 . Since t is odd,
we have then that |{tα} − {tβ}| = 1

2 and therefore

{ t

2

}

+

{
t

p

}

+

{
t j

2p

}

+

{
(−2− p− j)t

2p

}

>

{
1

2

}

+ {tα} + {tβ} > 1.

Summarizing we have that for all t that are invertible modulo 2p that

{ t

2

}

+

{
t

p

}

+

{
t j

2p

}

+

{
(−2− p− j)t

2p

}

≥ 2

holds. Using the symmetry of the coordinates it follows that for all t that are invert-
ible modulo 2p, we have

{ t

2

}

+

{
t

p

}

+

{
t j

2p

}

+

{
(−2− p− j)t

2p

}

≤ 2;

hence v � Λ, which finishes the proof.

Remark 8. The description of the generators for NS(S̃ ) we gave at the end of Exam-
ple 3 does not require that p is prime, i.e., if we drop the assumption that p is prime,
we get that ρ(S̃ ) ≥ 2 + 6(p− 1).

For the primes p = 3, 5, 7, one can calculate the maximal Picard numbers. It turns
out that if p = 7 and 3|a holds, then ρ(S̃ ) equals 2 + 14(p − 1); if p = 5 and 6|a
holds, then ρ(S̃ ) equals 2+ 18(p− 1); and if p = 3 and 60|a holds, then ρ(S̃ ) equals
2 + 30(p− 1).
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Fourier–Mukai Partners and Polarised K3
Surfaces

K. Hulek and D. Ploog

Abstract The purpose of this note is twofold. We first review the theory of Fourier–
Mukai partners together with the relevant part of Nikulin’s theory of lattice embed-
dings via discriminants. Then we consider Fourier–Mukai partners of K3 surfaces
in the presence of polarisations, in which case we prove a counting formula for the
number of partners.

Key words: K3 surfaces, Fourier–Mukai partners, Torelli theorem, Lattice
embeddings

Mathematics Subject Classifications: Primary 14J28; Secondary 11E12, 18E30

The theory of Fourier-Mukai (FM) partners has played a crucial role in algebraic
geometry and its connections to string theory in the last 25 years. Here we shall
concentrate on a particularly interesting aspect of this, namely, the theory of FM
partners of K3 surfaces. We shall survey some of the most significant results in this
direction. Another aspect, and this has been discussed much less in the literature,
is the question of Fourier–Mukai partners in the presence of polarisations. We shall
also investigate this in some detail, and it is here that the paper contains some new
results.

To begin with, we review in Sect. 1 the use of derived categories in algebraic
geometry focusing on Fourier–Mukai partners. In Sects. 2 and 3 we then give a self-
contained introduction to lattices and lattice embeddings with emphasis on indefi-
nite, even lattices. This contains a careful presentation of Nikulin’s theory as well
as some enhancements which will then become important for our counting formula.
From Sect. 4 onwards we will fully concentrate on K3 surfaces. After recalling the
classical as well as Orlov’s derived Torelli theorem for K3 surfaces, we describe
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the counting formula for the FM number of K3 surfaces given by Hosono et al.
[22]. In Sect. 5 we discuss polarised K3 surfaces and their moduli. The relation-
ship between polarised K3 surfaces and FM partners was discussed by Stellari in
[42, 43]. Our main result in this direction is a counting formula given in Sect. 7 in
the spirit of [22].

In a number of examples we will discuss the various phenomena which occur
when considering Fourier–Mukai partners in the presence of polarisations.

Conventions: We work over the field C.
We will denote bijections of sets as A

1:1
= B. Also, all group actions will be left

actions. In particular, we will denote the sets of orbits by G\A whenever G acts on
A. However, factor groups are written G/H.

If we have group actions by G and G′ on a set A which are compatible (i.e. they
commute), then we consider this as a G×G′-action (and not as a left–right bi-action).
In particular, the total orbit set will be written as G ×G′\A (and not G\A/G′).

1 Review Fourier–Mukai Partners of K3 Surfaces

For more than a century algebraic geometers have looked at the classification of
varieties up to birational equivalence. This is a weaker notion than biregular iso-
morphism which, however, captures a number of crucial and interesting properties.

About two decades ago, a different weakening of biregularity has emerged in
algebraic geometry: derived equivalence. Roughly speaking, its popularity stems
from two reasons: on the one hand, the seemingly ever-increasing power of homo-
logical methods in all areas of mathematics and, on the other hand, the intriguing
link, which derived categories provide to other mathematical disciplines such as
symplectic geometry and representation theory as well as to theoretical physics.

1.1 History: Derived Categories in Algebraic Geometry

Derived categories of abelian categories were introduced in the 1967 thesis of
Grothendieck’s student Verdier [45]. The goal was to set up the necessary homo-
logical tools for defining duality in greatest generality—which meant getting the
right adjoint of the push-forward functor f∗. This adjoint cannot exist in the abelian
category of coherent sheaves; if it did, f∗ would be exact. Verdier’s insight was to
embed the abelian category into a bigger category with desirable properties, the de-
rived category of complexes of coherent sheaves. The reader is referred to [21] for
an account of this theory.

In this review, we will assume that the reader is familiar with the basic theory
of derived categories [16, 47]. An exposition of the theory of derived categories
in algebraic geometry can be found in two textbooks, namely, by Huybrechts [23]
and by Bartocci et al. [3]. We will denote by Db(X) the bounded derived category
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of coherent sheaves. This category is particularly well behaved if X is a smooth,
projective variety. Later on we will consider K3 surfaces, but in this section, we
review some general results.

We recall that two varieties X and Y are said to be derived equivalent (sometimes
shortened to D-equivalent) if there is an exact equivalence of categories Db(X) �
Db(Y).

It should be mentioned right away that the use of the derived categories is crucial:
a variety is uniquely determined by the abelian category of coherent sheaves, due to
a theorem of Gabriel [15]. Thus, the analogous definition using abelian categories
does not give rise to a new equivalence relation among varieties.

After their introduction, derived categories stayed in a niche, mainly considered
as a homological bookkeeping tool. They were used to combine the classical derived
functors into a single derived functor, or to put the Grothendieck spectral sequence
into a more conceptual framework. The geometric use of derived categories started
with the following groundbreaking result:

Theorem (Mukai [29]). Let A be an abelian variety with dual abelian variety Â.
Then A and Â are derived equivalent.

Since an abelian variety and its dual are in general not isomorphic (unless they
are principally polarised) and otherwise never birationally equivalent, this indicates
a new phenomenon. For the proof, Mukai employs the Poincaré bundle P on A× Â
and investigates the functor Db(A) → Db(Â) mapping E �→ Rπ̂∗(P ⊗ π∗E) where
π̂ and π denote the projections from A× Â to Â and A, respectively.

Mukai’s approach was not pursued for a while. Instead, derived categories were
used in different ways for geometric purposes: Beilinson et al. [5] introduced per-
verse sheaves as certain objects in the derived category of constructible sheaves of
a variety in order to study topological questions. The school around Rudakov in-
troduced exceptional collections (of objects in the derived category), which under
certain circumstances leads to an equivalence of Db(X) with the derived category of
a finite-dimensional algebra [39]. It should be mentioned that around the same time,
Happel introduced the use of triangulated categories in representation theory [19].

1.2 Derived Categories as Invariants of Varieties

Bondal and Orlov started considering Db(X) as an invariant of X with the following
highly influential result:

Theorem (Bondal, Orlov, [7]). Let X and Y be two smooth, projective varieties
with Db(X) � Db(Y). If X has ample canonical or anti-canonical bundle, then
X � Y.

In other words, at the extreme ends of the curvature spectrum, the derived cate-
gory determines the variety. Note the contrast with Mukai’s result, which provides
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examples of non-isomorphic, derived equivalent varieties with zero curvature (triv-
ial canonical bundle). This begs the natural question: which (types of) varieties can
possibly be derived equivalent? The philosophy hinted at by the theorems of Mukai,
Bondal and Orlov is not misleading.

Proposition. Let X and Y be two smooth, projective, derived equivalent varieties.
Then the following hold true:

1. X and Y have the same dimension.
2. The singular cohomology groups H∗(X,Q) and H∗(Y,Q) are isomorphic as un-

graded vector spaces; the same is true for Hochschild cohomology.
3. If the canonical bundle of X has finite order, then so does the canonical bundle

of Y and the orders coincide; in particular, if one canonical bundle is trivial,
then so is the other.

4. If the canonical (or anti-canonical) bundle of X is ample (or nef), the same is
true for Y.

The proposition is the result of the work of many people; see [23, Sects. 4–
6]. Stating it here is ahistorical because some of the statements rely on the no-
tion of Fourier–Mukai transform which we turn to in the next section. It should be
said that our historical sketch is very much incomplete: for instance, developments
like spaces of stability conditions [10] or singularity categories (Buchweitz, 1986,
Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings,
tspace.library.utoronto.ca/handle/1807/16682, unpublished), [36] are
important but will not play a role here.

1.3 Fourier–Mukai Partners

Functors between geometric categories defined by a “kernel”, i.e. a sheaf on a prod-
uct (as in Mukai’s case), were taken up again in the study of moduli spaces: if a mod-
uli space M of sheaves of a certain type on Y happens to possess a (quasi-)universal
family E ∈ Coh(M×Y), then this family gives rise to a functor Coh(M) → Coh(Y),
mapping A �→ pY∗(E ⊗ p∗MA), where pM and pY are the projections from M × Y
to M and Y, respectively. In particular, skyscraper sheaves of points [E] ∈ M are
sent to the corresponding sheaves E. This (generally non-exact!) functor does not
possess good properties, and it was soon realised that it is much better to consider
its derived analogue, which we define below. Sometimes, for example, the functors
between derived categories can be used to show birationality of moduli spaces.

In the following definition, we denote the canonical projections of the product
X × Y to its factors by pX and pY , respectively.

Definition. Let X and Y be two smooth, projective varieties and let K ∈ Db(X×Y).
The Fourier–Mukai functor with kernel K is the composition

FMK : Db(X)
p∗X �� Db(X × Y)

K
L⊗ �� Db(X × Y)

RpY∗ �� Db(Y)
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of pullback, derived tensor product with K and derived push-forward. If FMK is an
equivalence, then it is called a Fourier–Mukai transform.

X and Y are said to be Fourier–Mukai partners if a Fourier–Mukai transform
exists between their derived categories. The set of all Fourier–Mukai partners of X
up to isomorphisms is denoted by FM(X).

Remarks. This important notion warrants a number of comments.

1. Fourier–Mukai functors should be viewed as classical correspondences, i.e.
maps between cohomology or Chow groups on the level of derived categories.
In particular, many formal properties of correspondences as in [14, Sect. 14]
carry over verbatim: the composition of Fourier–Mukai functors is again such
with the natural “convoluted” kernel; the (structure sheaf of the) diagonal gives
the identity. In fact, a Fourier–Mukai transform induces correspondences on the
Chow and cohomological levels, using the Chern character of the kernel.

2. Neither notation nor terminology is uniform. Some sources mean “Fourier–
Mukai transform” to be an equivalence whose kernel is a sheaf, for example.
Notationally, often used is ΦX→Y

K which is inspired by Mukai’s original article
[30]. This notation, however, has the drawback of being lengthy without giving
additional information in the important case X = Y.

Fourier–Mukai transforms play a very important and prominent role in the theory
due to the following basic and deep result:

Theorem (Orlov, [34]). Given an equivalence Φ : Db(X) ∼→ Db(Y) (as C-linear,
triangulated categories) for two smooth, projective varieties X and Y, then there
exists an object K ∈ Db(X × Y) with a functor isomorphism Φ � FMK. The kernel
K is unique up to isomorphism.

By this result, the notions “derived equivalent” and “Fourier–Mukai partners” are
synonymous.

The situation is very simple in dimension 1: two smooth, projective curves are
derived equivalent if and only if they are isomorphic. The situation is a lot more in-
teresting in dimension 2: apart from the abelian surfaces already covered by Mukai’s
result, K3 and certain elliptic surfaces can have non-isomorphic FM partners. For
K3 surfaces, the statement is as follows (see Sect. 4 for details):

Theorem (Orlov, [34]). For two projective K3 surfaces X and Y, the following
conditions are equivalent:

1. X and Y are derived equivalent.
2. The transcendental lattices TX and TY are Hodge isometric.
3. There exist an ample divisor H on X, integers r ∈ N, s ∈ Z and a class c ∈

H2(X,Z) such that the moduli space of H-semistable sheaves on X of rank r,
first Chern class c and second Chern class s is non-empty, fine and isomorphic
to Y.

In general, it is a conjecture that the number of FM partners is always finite. For
surfaces, this has been proven by Bridgeland and Maciocia [8]. The next theorem
implies finiteness for abelian varieties, using that an abelian variety has only a finite
number of abelian subvarieties up to isogeny [17].
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Theorem (Orlov, Polishchuk [35, 38]). Two abelian varieties A and B are derived
equivalent if and only if A× Â and B× B̂ are symplectically isomorphic, i.e. there
is an isomorphism f =

(α
γ

β
δ

)
: A× Â ∼→ B× B̂ such that f−1 =

( δ̂
−γ̂

−β̂
α̂

)
.

The natural question about the number of FM partners has been studied in great-
est depth for K3 surfaces. The first result was shown by Oguiso [33]: a K3 surface
with a single primitive ample divisor of degree 2d has exactly 2p(d)−1 such partners,
where p(d) is the number of prime divisors of d. In [22], a formula using lattice
counting for general projective K3 surfaces was given. In Sect. 4, we will reprove
this result and give a formula for polarised K3 surfaces. We want to mention that
FM partners of K3 surfaces have been linked to the so-called Kähler moduli space;
see Ma [26] and Hartmann [20].

1.4 Derived and Birational Equivalence

We started this review by motivating derived equivalence as a weakening of isomor-
phism, like birationality is. This naturally leads to the question whether there is an
actual relationship between the two notions. At first glance, this is not the case: since
birational abelian varieties are already isomorphic, Mukai’s result provides exam-
ples of derived equivalent but not birationally equivalent varieties. And in the other
direction, let Y be the blowing up of a smooth projective variety X of dimension at
least two in a point. Then X and Y are obviously birationally equivalent but never
derived equivalent by a result of Bondal and Orlov [6].

Nevertheless, some relation is expected. More precisely,

Conjecture (Bondal, Orlov [6]). If X and Y are smooth, projective, birationally
equivalent varieties with trivial canonical bundles, then X and Y are derived
equivalent.

Kawamata suggested a generalisation using the following notion: two smooth,
projective varieties X and Y are called K-equivalent if there is a birational corre-

spondence X
p← Z

q→ Y with p∗ωX � q∗ωY . He conjectures that K-equivalent
varieties are D-equivalent.

The conjecture is known in some cases, for example, the standard flop (Bondal,
Orlov [6]), the Mukai flop (Kawamata [25], Namikawa [31]), Calabi–Yau threefolds
(Bridgeland [9]) and Hilbert schemes of K3 surfaces (Ploog [37]).

2 Lattices

Since the theory of K3 surfaces is intricately linked to lattices, we provide a review
of the lattice theory as needed in this note. By a lattice, we always mean a free
abelian group L of finite rank equipped with a nondegenerate symmetric bilinear
pairing (·, ·) : L× L → Z. The lattice L is called even if (v, v) ∈ 2Z for all v ∈ L. We
shall assume all our lattices to be even.
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Sometimes, we denote by LK the K-vector space L⊗K, where K is a field among
Q,R,C. The pairing extends to a symmetric bilinear form on LK . The signature of
L is defined to be that of LR.

The lattice L is called unimodular if the canonical homomorphism dL : L →
L∨ = Hom(L,Z) with dL(v) = (v, ·) is an isomorphism. Note that dL is always
injective, as we have assumed (·, ·) to be nondegenerate. This implies that for every
element f ∈ L∨, there is a natural number a ∈ N such that a f is in the image of dL.
Thus L∨ can be identified with the subset {w ∈ L⊗Q | (v, w) ∈ Z ∀v ∈ L} of L⊗Q
with its natural Q-valued pairing.

We shall denote the hyperbolic plane by U. A standard basis of U is a basis e, f
with e2 = f 2 = 0 and (e, f ) = 1. The lattice E8 is the unique positive definite even
unimodular lattice of rank 8, and we denote by E8(−1) its negative definite opposite.
For an integer n � 0 we denote by 〈n〉 the rank one lattice where both generators
square to n. Finally, given a lattice L, then aL denotes a direct sum of a copies of
the lattice L.

Given any non-empty subset S ⊆ L, the orthogonal complement is S⊥ := {v ∈
L | (v, S ) = 0}. A submodule S ⊆ L is called primitive if the quotient group L/S
is torsion free. Note the following obvious facts: S⊥ ⊆ L is always a primitive
submodule; we have S ⊆ S⊥⊥; and S is primitive if and only if S = S⊥⊥. In
particular, S⊥⊥ is the primitive hull of S .

A vector v ∈ L is called primitive if the lattice Zv generated by it is primitive.
The discriminant group of a lattice L is the finite abelian group DL = L∨/L. Since

we have assumed L to be even, it carries a natural quadratic form qL with values in
Q/2Z. By customary abuse of notation, we will often speak of a quadratic form q
(or qL), suppressing the finite abelian group it lives on. Finally, for any lattice L, we
denote by l(L) the minimal number of generators of DL.

2.1 Gram Matrices

We make the above definitions more explicit using the matrix description. After
choosing a basis, a lattice on Zr is given by a symmetric r× r matrix G (often called
Gram matrix), the pairing being (v, w) = vtGw for v, w ∈ Zr. To be precise, the
(i, j)-entry of G is (ei, e j) ∈ Z where (e1, . . . , er) is the chosen basis.

Changing the matrix by symmetric column-and-row operations gives an isomor-
phic lattice; this corresponds to G �→ S GS t for some S ∈ GL(r,Z). Since our
pairings are nondegenerate, G has full rank. The lattice is unimodular if the Gram
matrix has determinant ±1. It is even if and only if the diagonal entries of G are
even.

The inclusion of the lattice into its dual is the map G : Zr ↪→ Zr, v �→ vtG.
Considering a vector ϕ ∈ Zr as an element of the dual lattice, there is a natural
number a such that aϕ is in the image of G, i.e. vtG = aϕ for some integral vector v.
Then (ϕ, ϕ) = (v, v)/a2 ∈ Q.
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The discriminant group is the finite abelian group with presentation matrix G, i.e.
D � Zr/im(G). Elementary operations can be used to diagonalise it. The quadratic
form on the discriminant group is computed as above, only now taking values in
Q/2Z.

The discriminant of L is defined as the order of the discriminant group. It is the
absolute value of the determinant of the Gram matrix: disc(L) := #DL = | det(GL)|.
Classically, discriminants (of quadratic forms) are defined with a factor of ±1 or
±1/4; see Example 2.3.

2.2 Genera

Two lattices L and L′ of rank r are said to be in the same genus if they fulfil one of
the following equivalent conditions:

1. The localisations Lp and L′p are isomorphic for all primes p, including R.
2. The signatures of L and L′ coincide and the discriminant forms are isomorphic:

qL � qL′ .
3. The matrices representing L and L′ are rationally equivalent without essential

denominators, i.e. there is a base change in GL(r,Q) of determinant ±1, trans-
forming L into L′ and whose denominators are prime to 2 · disc(L).

For details on localisations, see [32]. The equivalence of (1) and (2) is a deep
result of Nikulin [32, 1.9.4]. We elaborate on (2): a map q : A → Q/2Z is called a
quadratic form on the finite abelian group A if q(na) = n2q(a) for all n ∈ Z, a ∈ A
and if there is a symmetric bilinear form b : A × A → Q/Z such that q(a1 + a2) =
q(a1) + q(a2) + 2b(a1, a2) for all a1, a2 ∈ A. It is clear that discriminant forms of
even lattices satisfy this definition. Two pairs (A, q) and (A′, q′) are defined to be
isomorphic if there is a group isomorphism ϕ : A ∼→ A′ with q(a) = q′(ϕ(a)) for all
a ∈ A.

The history of the equivalence between (1) and (3) is complicated: using analytic
methods, Siegel [41] proved that L and L′ are in the same genus if and only if for
every positive integer d there exists a rational base change S d ∈ GL(r,Q) carrying
L into L′ and such that the denominators of S d are prime to d (and he called this
property rational equivalence without denominators). There are algebraic proofs of
that statement, e.g. [24, Theorem 40] or [46, Theorem 50]. These references also
contain (3) above, i.e. the existence of a single S ∈ GL(r,Q) whose denominators
are prime to 2 · disc(L).

For binary forms, all of this is closely related to classical number theory. In par-
ticular, the genus can then also be treated using the ideal class group of quadratic
number fields. See [12] or [48] for this. Furthermore, there is a strengthening of (3)
peculiar to field discriminants (see [12, Sect. 3.B]):

4. Let L =
( 2a

b
b
2c

)
and L′ =

( 2a′
b′

b′
2c′
)

be two binary even, indefinite lattices with
gcd(a, b, c) = gcd(a′, b′, c′) = 1 and of the same discriminant D := b2−4ac such
that either D ≡ 1 mod 4, D square-free, or D = 4k, k � 1 mod 4, k square-
free. Then L and L′ are in the same genus if and only if they are rationally
equivalent, i.e. there is a base change S ∈ GL(2,Q) taking L to L′.
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The genus of L is denoted by G(L) and it is a basic but non-trivial fact that G(L)
is a finite set. We will also have to specify genera in other ways, using a quadratic
form q : Dq → Q/2Z on a finite abelian group Dq, as follows:

G(t+, t−, q) lattices with signature (t+, t−) and discriminant form q,
G(sgn(K), q) lattices with same signature as K and discriminant form q.

Example 2.3. We consider binary forms, that is, lattices of rank 2. Clearly, a sym-
metric bilinear form with Gram matrix

( a
b

b
c

)
is even if and only if both diagonal

terms are even.
Note that many classical sources use quadratic forms instead of lattices. We ex-

plain the link for binary forms f (x, y) = ax2 + bxy + cy2 (where a, b, c ∈ Z). The
associated bilinear form has Gram matrix G = 1

2

( 2a
b

b
2c

)
—in particular, it need not

be integral. An example is f (x, y) = xy. In fact, the bilinear form, i.e. G, is integral
if and only if b is even (incidentally, Gauß always made that assumption). Note that
the quadratic form 2xy corresponds to our hyperbolic plane

( 0
1

1
0

)
. The discriminant

of f is classically defined to be D := b2− 4ac which differs from our definition (i.e.
| det(G)| = #D) by a factor of ±4.

We proceed to give specific examples of lattices as Gram matrices. Both A =
( 2

4
4
0

)
and B =

( 0
4

4
0

)
are indefinite, i.e. of signature (1, 1), and have discriminant

16, but the discriminant groups are not isomorphic: DA = Z/2Z× Z/8Z and DB =

Z/4Z× Z/4Z. Thus, A and B are not in the same genus.
Another illuminating example is given by the forms A and C =

(−2
4

4
0

)
. We first

notice that these forms are not isomorphic: the form A represents 2, but C does not,
as can be seen by looking at the possible remainders of −2x2 + 8xy modulo 8. The
two forms have the same signature and discriminant groups, but the discriminant
forms are different. To see this we note that DA is generated by the residue classes
of t1 = e1/2 and t2 = (2e1+ e2)/8, whereas DC is generated by the residue classes of
s1 = e1/2 and s2 = (−2e1+ e2)/8. The quadratic forms qA and qC are determined by
qA(t1) = 1/2, qA(t2) = 3/8 and qC(s1) = −1/2, qC(s2) = −3/8. The forms cannot be
isomorphic, for the subgroup of DA of elements of order 2 consists of {0, t1, 4t2, t1 +
4t2} (this is the Klein four group) and the values of qA on these elements in Q/2Z
are 0, 1/2, 42 · 3/8 = 0, 42/4 = 1/2. Likewise, the values of qC on the elements of
order 2 in DC are 0 and −1/2. Hence (DA, qA) and (DC , qC) cannot be isomorphic.

Zagier’s book also contains the connection of genera to number theory and their
classification using ideal class groups [48, Sect. 8]. An example from this book [48,
Sect. 12] gives an instance of lattices in the same genus which are not isomorphic:
the forms D =

( 2
1

1
12

)
and E =

( 4
1

1
6

)
are positive definite of field discriminant −23.

They are in the same genus (one is sent to the other by the fractional base change
− 1

2

( 1
−3

1
1

)
) but not equivalent: D represents 2 as the square of (1, 0), whereas E does

not represent 2 as 4x2 + 2xy + 6y2 = 3x2 + (x + y)2 + 5y2 ≥ 4 if x � 0 or y � 0.
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Unimodular, indefinite lattices are unique in their genus, as follows from their
well-known classification. A generalisation is given by [32, Corollary 1.13.3]:

Lemma 2.4 (Nikulin’s criterion) An indefinite lattice L with rk(L) ≥ 2 + l(L) is
unique within its genus. This holds in particular when L contains a hyperbolic plane.

Recall that l(L) denotes the minimal number of generators of the finite group DL.
Since always rk(L) ≥ l(L), Nikulin’s criterion only fails to apply in two cases,
namely, if l(L) = rk(L) or l(L) = rk(L) − 1. As a corollary of Nikulin’s criterion,
L⊕ U is unique within its lattice for any L.

For a lattice L, we denote its group of isometries by O(L). An isometry of lattices
f : L ∼→ L′ gives rise to fQ : LQ ∼→ L′

Q
and hence to D f : DL

∼→ DL′ . In particular,
there is a natural homomorphism O(L) → O(DL) which is used to define the stable
isometry group as

Õ(L) := ker(O(L) → O(DL)).

Finally, we state a well-known result of Eichler [13, Sect. 10]. It uses the notion
of the divisor div(v) of a vector v ∈ L, which is the positive generator of the ideal
(v, L). Note that this is the largest positive integer a such that v = av′ for some
element v′ ∈ L∨.

Lemma 2.5 (Eichler’s criterion) Suppose that an even lattice L contains U ⊕ U
as a direct summand. The O(L)-orbit of a primitive vector v ∈ L is determined by
the length v2 and the element v/div(v) ∈ D(L) of the discriminant group.

3 Overlattices

In this section, we elaborate on Nikulin’s theory of overlattices and primitive em-
beddings [32]; we also give some examples. Eventually, we generalise slightly to
cover a setting needed for the Fourier–Mukai partner counting in the polarised case.

We fix a lattice M with discriminant form qM : DM → Q/2Z.
By an overlattice of M, we mean a lattice embedding i : M ↪→ L with M and L

of the same rank. Note that we have inclusions

M
i ��

dM

��L
dL ��L∨ i∨ ��M∨

with dL : L ↪→ L∨ and dM : M ↪→ M∨ the canonical maps. (For now, we will denote
these canonical embeddings just by d and later not denote them at all.) From this,
we get a chain of quotients:

L/iM
d ��L∨/diM

i∨ ��M∨/i∨diM = DM.
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We call the image Hi ⊂ DM of L/iM the classifying subgroup of the overlattice.
Note that DM is equipped with a quadratic form, so we can also speak of the orthog-
onal complement H⊥

i . We will consider L∨/diM as a subgroup of DM in the same
way via i∨.

We say that two embeddings i : M ↪→ L and i′ : M ↪→ L′ define the same over-
lattice if there is an isometry f : L ∼→ L′ such that f i = i′:

M
i �� L

f
��

M
i′ �� L′

.

This means in particular that within each isomorphism class, we can restrict to
looking at embeddings i : M ↪→ L into a fixed lattice L.

Lemma 3.1 [32, Proposition 1.4.1] Let i : M ↪→ L be an overlattice. Then the
subgroup Hi is isotropic in DM, i.e. qM|Hi = 0. Furthermore, H⊥

i = L∨/diM and
there is a natural identification H⊥

i /Hi � DL with qM|H⊥
i /Hi
= qL.

We introduce the following sets of overlattices L of M and quotients L/M, re-
spectively, where we consider L/M as an isotropic subgroup of the discriminant
group DM:

O(M) := {(L, i) | L lattice, i : M ↪→ L overlattice}
Q(M) := {H ⊂ DM isotropic}.

We also use the notation O(M, L) to specify that the target lattice is isomorphic to
L. With this notation we can write O(M) as a disjoint union

O(M) =
∐

L

O(M, L)

where L runs through all isomorphism classes of possible overlattices of M.

Example 3.2. The set Q(M) is obviously finite. On the other hand, an overlattice
i : M ↪→ L can always be modified by an isometry f ∈ O(M) to yield an overlattice
i f : M ↪→ L. However, if f ∈ Õ(M) is a stable isometry, then it can be extended
to an isometry of L and hence i and i f define the same overlattice. This shows that
O(M) is also finite.

The following lemma is well known and implicit in [32].

Lemma 3.3 There is a bijection between O(M) and Q(M).

Proof. We use the maps

H : O(M) → Q(M), (L, i) �→ Hi,

L : Q(M) → O(M), H �→ (LH , iH)
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where, for H ∈ Q(M), we define LH := {ϕ ∈ M∨ | [ϕ] ∈ H} = π−1(H) where
π : M∨ → DM is the canonical projection. The canonical embedding d : M ↪→
M∨ factors through LH , giving an injective map iH : M → LH . All of this can be
summarised in a commutative diagram of short exact sequences

0 �� M
iH �� LH

��
� �

��

H ��� �

��

0

0 �� M �� M∨ π �� DM
�� 0.

The abelian group LH inherits a Q-valued form from M∨. This form is actually
Z-valued because of qM|H = 0. Furthermore, the bilinear form on LH is even since
the quadratic form on DM is Q/2Z-valued. Hence, LH is a lattice and iH is obviously
a lattice embedding.

It is immediate that HL = idQ(M). On the other hand, the overlattices LH(L, i) and
(L, i) are identified by the embedding L → M∨, v �→ 〈v, i(·)〉M which has precisely
LH(L, i) as image. $%
We want to refine this correspondence slightly. For this we fix a quadratic form
(D, q) which occurs as the discriminant of some lattice (and forget L) and set

O(M, q) := {(L, i) ∈ O(M) | [L] ∈ G(sgn(M), q)},
Q(M, q) := {H ∈ Q(M) | qM|H⊥/H � q}.

The condition qM|H⊥/H � q here includes H⊥/H � D.

Lemma 3.4 There is a bijection between O(M, q) and Q(M, q).

Proof. We only have to check that the maps H : O(M, q) → Q(M) and L : Q(M, q)→
O(M) have image in Q(M, q) and O(M, q), respectively. For H, this is part of
Lemma 3.1. For L, we have sgn(LH) = sgn(M) and the discriminant form of LH

is DM|H⊥/H � q, by assumption on H. $%
In the course of our discussions we have to distinguish carefully between dif-

ferent notions of equivalence of lattice embeddings. The following notion is due to
Nikulin ([32, Proposition 1.4.2]):

Definition 3.5 Two embeddings i, i′ : M ↪→ L define isomorphic overlattices, de-
noted i � i′, if there exists an isometry f ∈ O(L) with f i(M) = i′(M)—inducing an
isometry f |M ∈ O(M)—or, equivalently, if there is a commutative diagram:

M
i ��

f |M
��

L

f
��

M
i′ �� L

.
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Note that this definition also makes sense if M and L do not necessarily have the
same rank. Two embeddings of lattices i, i′ : M ↪→ L of the same rank defining the
same overlattice are in particular isomorphic.

Definition 3.6 Two embeddings i, i′ : M ↪→ L are stably isomorphic, denoted i ≈
i′, if there exists a stable isometry f ∈ Õ(L) with f i(M) = i′(M), i.e. there is a
commutative diagram

M
i ��

f |M
��

L

f stable
��

M
i′ �� L

.

We note that embeddings of lattices of the same rank defining the same overlattice
are not necessarily stably isomorphic.

We can put this into a broader context. For this we consider the set

E(M, L) := {i : M ↪→ L}
of embeddings of M into L where, for the time being, we do not assume M and L to
have the same rank. The group O(M) × O(L) acts on this set by (g, g̃) : i �→ g̃ig−1.
Instead of the action of O(M) × O(L) on E(M, L), one can also consider the action
of any subgroup, and we shall see specific examples later when we discuss Fourier–
Mukai partners of K3 surfaces. If M and L have the same rank, then the connection
with our previously considered equivalence relations is the following:

O(M, L) = ({idM} ×O(L))\E(M, L).

The set of all isomorphic overlattices of M isomorphic to L is given by (O(M) ×
O(L))\E(M, L), whereas stably isomorphic embeddings are given by (O(M) ×
Õ(L))\E(M, L).

We now return to our previous discussion of the connection between overlattices
and isotropic subgroups.

Lemma 3.7 Let i, i′ : M ↪→ L be embeddings of lattices of the same rank. Then
i � i′ if and only if there exists an isometry g ∈ O(M) such that Dg(Hi) = Hi′ .

Proof. Given f ∈ O(L) with f i(M) = i′(M), then g := f |M will have the correct
property.

Given g, recall that the lattices are obtained from their classifying subgroups as
π−1(Hi) and π−1(Hi′). Then, Dg(Hi) = Hi′ implies that the map g∨ : M∨ ∼→ M∨
induced from g sends L to itself, and f = g∨|L gives the desired isomorphism. $%

Note that an isometry g ∈ O(M) with Dg(Hi) = Hi′ induces an isomorphism
H⊥

i
∼→ H⊥

i′ and hence an isomorphism of the quotients. Recall that there is a natural
identification H⊥

i /Hi = DL.

Lemma 3.8 Let i, i′ : M ↪→ L be embeddings of lattices of the same rank. i ≈ i′
if and only if there exists an isometry g ∈ O(M) such that Dg(Hi) = Hi′ and the
induced map DL = H⊥

i /Hi → H⊥
i′ /Hi′ = DL is the identity.
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Proof. Just assuming Dg(Hi) = Hi′ , we get a commutative diagram

Hi
� � ��

Dg

��

H⊥
i

(i∨)−1
�� ��

Dg

��

DL

Df

��
Hi′

� � �� H⊥
i′

(i′∨)−1
�� �� DL

which, together with the proof of Lemma 3.7, shows the claim. $%

3.9 Overlattices from Primitive Embeddings

A natural source of overlattices is M := T ⊕ T⊥ ⊂ L for any sublattice T ⊂ L.
If T is moreover a primitive sublattice of L, then the theory sketched above can be
refined, as we explain next. We start with an elementary lemma.

Lemma 3.10 Let A, B ⊂ L be two sublattices such that i : A ⊕ B ↪→ L is an
overlattice, i.e. A and B are mutually orthogonal and rk(A ⊕ B) = rk(L). Then
pA : Hi ↪→ DA⊕B →→ DA is injective if and only if B is primitive in L.

Proof. The commutative diagram with exact rows

0 �� A⊕ B ��

��

L ��

��

Hi
��

��

0

0 �� A �� A∨ �� DA
�� 0

leads to the following short exact sequence of the kernels:

0 → B → B⊥⊥ → ker(pA) → 0

(note that the kernel of the map L → A∨, v �→ 〈v, ·〉|A is the primitive hull of B).
Hence pA is injective if and only if B = B⊥⊥, i.e. B is a primitive sublattice. $%
Example 3.11. We consider the rank 2 lattice L with Gram matrix

( 2
0

0
2

)
; let e1, e2

be an orthogonal basis, so that e2
1 = e2

2 = 2. With T = 〈8〉 having basis 2e1 and
K := T⊥, we get that Hi → DT is injective whereas Hi → DK is not.

Let jT : T ↪→ L be a sublattice and K := T⊥ its orthogonal complement with
embedding jK : K ↪→ L. By Lemma 3.1, the overlattice i := jT ⊕ jK : T ⊕ K ↪→ L
corresponds to the isotropic subgroup Hi ⊂ DT⊕K .

By Lemma 3.10, the map pT : Hi ↪→ DT⊕K →→ DT is always injective, since
K ⊂ L is an orthogonal complement, hence primitive. The map pK : Hi ↪→
DT⊕K →→ DK is injective if and only if T ⊂ L is a primitive sublattice.
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If jT : T ↪→ L is primitive, then Γi := pT (Hi) ⊆ DT is a subgroup such that there
is a unique, injective homomorphism γi : Γi → DK . The image of γi is pK(Hi) and
its graph is Hi.

For fixed lattices L, K, T , we introduce the following sets:

P(T, L) := { jT : T ↪→ L primitive},
P(T, K, L) :=

{
( jT , jK)

∣∣
∣
∣

jT ∈ P(T, L), jK ∈ P(K, L)
jT ⊕ jK ∈ E(T ⊕ K, L)

}
.

As in the previous section, we can consider various notions of equivalence on the set
P(T, K, L) by considering the action of suitable subgroups of O(T )×O(K)×O(L).
Since we are only interested in overlattices in this section, we shall assume for the
rest of this section that

Assumption 3.12 rk(T ) + rk(K) = rk(L).

In the previous section we said that two embeddings define the same overlattice if
they differ by the action of {idT } × {idK} ×O(L) and accordingly we set

O(T, K, L) = ({idT } × {idK} ×O(L))\P(T, K, L).

We now also consider a quadratic form (D, q) which will play the role of the
discriminant of the overlattice. Choosing a representative L for each element in
G(sgn(T ⊕ K), q), we also introduce the equivalents of the sets of the previous sec-
tion:

P(T, K, q) :=
{
(L, jT , jK)

∣∣
∣
∣

[L] ∈ G(sgn(T ⊕ K), q),
( jT , jK) ∈ P(T, K, L)

}
,

Q(T, K, q) := {H ∈ Q(T ⊕ K, q) | pT |H and pK |H are injective}.
Dividing out by the action of the overlattice, we also consider O(T, K, q). The con-
dition in the definition of Q(T, K, q) means that H is the graph of an injective group
homomorphism γ : Γ ↪→ DK with Γ := pT (H) and im(γ) = pK(H). Note that
qT⊕K |H = 0 is equivalent to qKγ = −qT |Γ .

Evidently, P(T, K, q), respectively O(T, K, q), is the disjoint union of P(T, K, L),
respectively O(T, K, L) over representative lattices L of the genus prescribed by
sgn(T ⊕ K) and discriminant form q. The difference between P(T, K, q) and
P(T, K, L) is that the former set does not specify the overlattice but just its genus and
we need P(T, K, q) because we are interested in describing lattices by discriminant
forms, but those forms only see the genus.

Lemma 3.13 For T , K and q as above, the sets O(T, K, q) and Q(T, K, q) are in
bijection.

Proof. The main idea is that the restrictions of H and L to the newly introduced sets
factor as follows:
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O(T, K, q) �
�

��

��
�
�
� O(T ⊕ K, q)

H

��

(L, jT , jK) �→ (L, jT ⊕ jK)

Q(T, K, q) �
�

��

���
�
�

Q(T ⊕ K, q)

L

��

H �→ H

.

Indeed, the map H|P(T,K,q) factors via Q(T, K, q) in view of Lemma 3.10.
In order to see that L|Q(T,K,q) factors over O(T, K, q), we take an isotropic sub-

group H ⊂ DT⊕K . Then we can form the overlattice LH = π−1(H) of T ⊕ K.
Obviously, this gives embeddings jT : T ↪→ LH and jK : K ↪→ LH . These are prim-
itive since the projections H → pT (H) and H → pK(H) are isomorphisms. Next,
the sublattices are orthogonal to each other: jT : T → T∨ ⊕ K∨, v �→ (〈v, ·〉, 0) and
jK : K → T∨ ⊕ K∨, w �→ (0, 〈w, ·〉). Finally, they obviously span LH over Q. $%

Fix a subgroup GT ⊆ O(T ). Two pairs (L, i, j), (L′, i′, j′) ∈ P(T, K, q) are called
GT -equivalent if there is an isometry ϕ : L ∼→ L′ such that ϕ(iT ) = i′T and ϕT :=
(i′)−1 ◦ ϕ|i(T ) ◦ i ∈ GT for the induced isometry of T .

Lemma 3.14 [32, 1.15.1] Let H, H′ ∈ Q(T, K, q). Then L(H) and L(H′) are GT -
equivalent if and only if there is ψ ∈ GT × O(K) such that Dψ(H) = H′.

Proof. First note that the condition Dψ(H) = H′ is equivalent to the one in [32]:
there are ψT ∈ GT and ψK ∈ O(K) such that DψT (Γ) = Γ′ and DψK γ = γ′DψT where
H and H′ are the graphs of γ : Γ → DK and Γ′ : H′ → DK , respectively.

Suppose that (L, i, j) and (L′, i′, j′) are GT -equivalent. Thus there is an isometry
ϕ : L ∼→ L′ with ϕ(iT ) = i′T . In particular, ϕ(i(T )⊥L ) = i′(T )⊥L′ ; using the isomor-
phisms j and j′, we get an induced isometry ϕK ∈ O(K). We have established the
following commutative diagram with exact rows:

0 �� iT ⊕ jK ��

ϕT⊕ϕK

��

L ��

ϕ

��

L/(iT ⊕ jK) ��

Dϕ

��

0

0 �� i′T ⊕ j′K �� L′ �� L′/(i′T ⊕ j′K) �� 0.

Put ψ := (ϕT , ϕK) ∈ GT × O(K). Using the identification of L/(iT ⊕ jK) with
H ⊂ DT⊕K obtained from i and j (and analogously for H′), the isomorphism Dϕ on
discriminants turns into the isomorphism Dψ : H ∼→ H′. Note that by construction
ψ∨|L = ϕ.

Given ψ ∈ GT ×O(K), consider the induced isomorphism on the dual ψ∨ : (T ⊕
K)∨ ∼→ (T ⊕ K)∨. By the assumption Dψ(H) = H′, this isomorphism restricts to
ϕ := ψ∨T ⊕ ψ∨K |LH : LH

∼→ LH′ . Finally, under the embeddings iH , jH , iH′ , jH′ the
induced isometries of ϕ combine to (ϕT , ϕK) = ψ. $%
Assumption 3.15 From now on we suppose that the embedding lattice is uniquely
determined by the signature (derived from T ⊕ K) and the discriminant form q.
In other words, we postulate that there is a single lattice L in that genus, i.e.
P(T, K, L) = P(T, K, qL).
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We say that two primitive embeddings (i, j), (i′, j′) ∈ P(T, K, L) are GL-equivalent
if there is an isometry f ∈ GL such that f (iT ⊕ jK) = i′T ⊕ j′K.

Combining the two isometry subgroups GT ⊂ O(T ) and GL ⊂ O(L), we say
that (i, j), (i′, j′) ∈ P(T, K, L) are equivalent up to GL and GT if there is an isometry
f ∈ GL such that f (iT ⊕ jK) = i′T ⊕ j′K and f (iT ) = i′T and fT ∈ GT for the
induced isometry.

For later use, we now present a version of Lemma 3.14 in the presence of a
subgroup GL but with Assumption 3.15.

Lemma 3.16 Assume that L is an overlattice of T ⊕ K which is unique within its
genus. Let H, H′ ∈ Q(T, K, qL).

Then L(H) and L(H′) are equivalent in P(T, K, L) up to GL and GT if and only if
there is an isometry ψ ∈ GT × O(K) such that Dψ(H) = H′ and ψ∨|L ∈ GL.

Proof. Note that the GL-action is well defined by Assumption 3.15. The proof of
the lemma is the same as the one of Lemma 3.14, taking into account the additional
assumption. $%
Lemma 3.17 ([27, Lemma 23]) Let L be an overlattice of T ⊕ K such that L is
unique in its genus and let K′ be a lattice in the genus of K. Then there is a bijection

O(T, K, L)
1:1
= O(T, K′, L).

In particular, there is a primitive embedding K′ ↪→ L such that L becomes an
overlattice of T ⊕ K′.

Proof. We observe that the set Q(T, K, q) = Q(T, K, L) does not really depend on
K but rather just on the discriminant form qK . Hence from Lemma 3.13 and using
Assumption 3.15, we get a chain of bijections

O(T, K, L)
1:1
= Q(T, K, L)

1:1
= Q(T, K′, L)

1:1
= O(T, K′, L)

and hence the claim. $%
The situation is particularly nice for indefinite unimodular overlattices where we

recover a result proved by Hosono et al.:

Corollary 3.1 ([22, Theorem 1.4]). Let T⊕K be indefinite. Then there is a bijection

GT\Q(T, K, 0)
1:1
= GT × O(K)\O(DK), where GT acts on DK via GT ↪→ O(T ) →

O(DT ) ∼→ O(DK).

Proof. We have DT � DK by the following standard argument: the map L = L∨ →
T∨ is surjective with kernel K; hence L � T∨⊕K, and T∨/T � (T∨⊕K)/(T⊕K) �
L/(T⊕K), similarly for K∨/K by symmetry. Also, the forms on DT and DK coincide
up to sign: qT � −qK . This also shows that subgroups H of Lemmas 3.14 and 3.16
are graphs of isomorphisms.

Therefore, primitive embeddings T ↪→ L are determined by anti-isometries
γ : DT

∼→ DK . If there exists such an embedding (and hence such an anti-isometry),
this set is bijective to O(DT ). We deduce the claim from Lemma 3.16. $%
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Example 3.18. Note that in the unimodular case (q = 0), the prescription of T and
of the genus of the overlattice (i.e. just the signature in this case) already settles the
genus of K by qK = −qT and the signature of K is obviously fixed. This statement
is wrong in the non-unimodular case: it can happen that a sublattice has two em-
beddings with orthogonal complements of different discriminant (so in particular of
different genus) as in the following example:

Example 3.19. Let T := 〈2〉 with generator t and L := U ⊕ 〈2〉 with generators
e, f ∈ U, x ∈ 〈2〉. Consider the embeddings ι1, ι2 : T ↪→ L given by ι1(t) = e + f
and ι2(t) = x. Then, bases for the orthogonal complements are {e − f , x} ⊂ ι1(T )⊥
and {e, f } ⊂ ι2(T )⊥. Hence disc(ι1(T )⊥) = 4 but disc(ι1(T )⊥) = 1.

4 K3 Surfaces

In this text, a K3 surface will mean a smooth compact complex surface which is
simply connected and carries a nowhere vanishing 2-form. By classical surface the-
ory, the latter two conditions are equivalent to zero irregularity (H1(X,OX) = 0) and
trivial canonical bundle (Ω2

X � OX). See [2, VIII] or [4] for details.
We denote the Picard rank of a K3 surface X by ρX . It is the number of indepen-

dent line bundles on X. If X is projective, then ρX is also the number of independent
divisor classes and always positive but not vice versa. The cohomology groups listed
below carry lattice structures coming from the cup product on the second cohomol-
ogy:

H2
X = H2(X,Z) full second cohomology, sgn(H2

X) = (3, 19)

TX transcendental lattice, sgn(TX) = (2, 20− ρX)

NS X Néron–Severi lattice, sgn(NS X) = (1, ρX − 1)

where the signatures in the second and third cases are valid only for X projective.
Following usage in algebraic geometry, we will often write α.β = (α, β) for the
pairing. Likewise, we will use the familiar shorthand L.M for the pairing of the first
Chern classes c1(L).c1(M) of two line bundles L and M.

By Poincaré duality, H2
X is a unimodular lattice; it follows from Wu’s formula that

the pairing is even. Indefinite, even, unimodular lattices are uniquely determined by
their signature; we get that H2

X is isomorphic to the so-called K3 lattice made up
from three copies of the hyperbolic plane U and two copies of the negative E8

lattice:

LK3 = 3U ⊕ 2E8(−1).

The Néron–Severi and transcendental lattices are mutually orthogonal primitive
sublattices of H2

X . In particular, H2
X is an overlattice of TX ⊕ NS X .

We denote by ωX the canonical form on X. It has type (2, 0) and is unique up
to scalars, since H0(X, Ω2

X) = C for a K3 surface. By abuse of notation, we also
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write ωX for its cohomology class, so that ωX ∈ TX ⊗ C. In fact, TX is the smallest
primitive submodule of H2

X whose complexification contains ωX .
As X is a complex Kähler manifold, the second cohomology H2

X comes equipped
with a pure Hodge structure of weight 2: H2

X ⊗ C = H2,0(X)⊕ H1,1(X)⊕ H0,2(X).
Note that H1,1(X) = (CωX + CωX)⊥. The transcendental lattice TX is an irreducible
Hodge substructure with unchanged (2, 0) and (0, 2) components.

A Hodge isometry of H2
X (or TX) is an isometry that maps each Hodge sum-

mand to itself. As the (2, 0)-component is one-dimensional, Hodge isometries are
just isometries ϕ : H2

X
∼→ H2

X with ϕC(ωX) = cωX for some c ∈ C∗ (analogous for
Hodge isometries of TX). If L is a lattice with Hodge structure, we denote the group
of Hodge isometries by OH(L).

The following two Torelli theorems are basic for all subsequent work. They say
that essentially everything about a K3 surface is encoded in its second cohomology
group, considered as a lattice with Hodge structure—for both the classical and de-
rived point of view. (We repeat Orlov’s result about equivalent surfaces up to derived
equivalence.)

Classical Torelli Theorem for K3 surfaces. Two K3 surfaces X and Y are isomor-
phic if and only if there is a Hodge isometry between their second cohomology lat-
tices H2

X and H2
Y .

Derived Torelli Theorem for K3 surfaces (Orlov). Two projective K3 surfaces X
and Y are derived equivalent if and only if there is a Hodge isometry between the
transcendental lattices TX and TY.

See [4] or [2, Sect. VIII] for the classical case (the latter reference gives an ac-
count of the lengthy history of this result) and [34] or [23, Sect. 10.2] for the derived
version.

A marking of X is the choice of an isometry λX : H2
X

∼→ LK3. The period domain
for K3 surfaces is the following open subset of the projectivised K3 lattice:

ΩLK3 = {ω ∈ P(LK3 ⊗ C) | ω.ω = 0, ω.ω > 0}.
Since LK3 has signature (3, k) with k > 2, this set is connected. By the surjectivity
of the period map [2, VIII.14], each point of ΩLK3 is obtained from a marked K3
surface. Forgetting the choice of marking by dividing out the isometries of the K3
lattice, we obtain a space F = O(LK3)\ΩLK3 parametrising all (unmarked) K3 sur-
faces. As is well known, F is a 20-dimensional, non-Hausdorff space. In particular,
it is not a moduli space in the algebro-geometric sense.

Denote by K3FM the set of all K3 surfaces up to derived equivalence—two K3
surfaces get identified if and only if they are Fourier–Mukai partners, i.e. if and
only if their transcendental lattices are Hodge isometric. Its elements are the sets
FM(X) of Fourier–Mukai partners of K3 surfaces X. One cannot expect this set
to have a good analytic structure: the fibres of the map F → K3FM can become
arbitrarily large (see [33]). On the other hand, any K3 surface has only finitely many
FM partners ([8]), so that the fibres are finite at least.
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Since the transcendental lattices determine D-equivalence by Orlov’s derived
Torelli theorem, the Fourier–Mukai partners of a K3 surface X are given by embed-
dings TX ⊆ LK3, modulo automorphisms of TX . This can be turned into a precise
count:

Theorem (Hosono, Lian, Oguiso, Yau [22, Theorem 2.3]). The set of Fourier–
Mukai partners of a K3 surface X has the following partition:

FM(X) =
∐

S∈G(NS X )

OH(TX)× O(S )\O(DS )

with O(S ) and OH(TX) acting on O(DS ) as in Corollary 3.1 above.

The special case of a generic projective K3 surface, rk(NS X) = 1, was treated
before, leading to a remarkable formula reminiscent of classical genus theory for
quadratic number fields (and proved along these lines):

Theorem (Oguiso [33]). Let X be a projective K3 surface with Pic(X) generated
by an ample line bundle of self-intersection 2d. Then X has 2p(d)−1 FM partners,
where p(d) is the number of distinct prime factors of d, and p(1) = 1.

Oguiso’s theorem can also be interpreted as a result about polarised K3 surfaces,
which we turn to next: recall that the number 2p(d)−1 is the order of O(DL2d )/〈±1〉,
where L2d is the orthogonal complement of a primitive vector of degree 2d in the
K3 lattice LK3.

5 Polarised K3 Surfaces

A semi-polarised K3 surface of degree d > 0 is a pair (X, hX) of a K3 surface X
together with a class hX ∈ NS X of a nef divisor with h2

X = 2d > 0. A nef divisor of
positive degree is also called pseudo-ample. We recall that an effective divisor is nef
if and only if it intersects all−2-curves nonnegatively [2, Sect. VIII.3]. We will also
assume that hX is primitive, i.e. not a non-trivial integer multiple of another class.

We speak of a polarised K3 surface (X, hX) if hX is the class of an ample divisor.
However, we call hX the polarisation, even if it is just nef and not necessarily ample.
For details, see [2, Sect. VIII.22]. The relevant geometric lattice is the complement
of the polarisation

HX = (hX)⊥
H2

X
non-unimodular of signature (2, 19).

which inherits lattice and Hodge structures from H2
X .

On the side of abstract lattices, recall that LK3 � 3U⊕2E8(−1); we denote the three
orthogonal copies of U in LK3 by U (1), U (2) and U (3). Basis vectors ei, fi of U (i),
defined by e2

i = f 2
i = 0 and ei. fi = 1, always refer to such a choice. For h ∈ LK3

with h2 > 0, set
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Lh = h⊥LK3
non-unimodular of signature (2, 19),

L2d = 2U ⊕ 〈−2d〉 ⊕ 2E8(−1) the case h = e3 + d f3.

The choice of the lattice L2d is motivated as follows: since all primitive vectors
of fixed length appear in a single O(LK3)-orbit by Eichler’s criterion (Lemma 2.5),
we can assume h = e3 + d f3. Note that HX � L2d as lattices. Obviously, DL2d is the
cyclic group of order 2d. The non-unimodular summand 〈−2d〉 of L2d is generated
by e3 − d f3; thus, DL2d is generated by the integer-valued functional 1

2d (e3 − d f3, ·).
The quadratic form DL2d → Q/2Z is then given by mapping this generator to the
class of −2d

4d2 =
−1
2d .

There are two relevant groups in this situation: the full isometry group O(L2d)
and the subgroup Õ(L2d) of stable isometries which by definition act trivially on the
discriminant DL2d . The next lemma gives another description of stable isometries.

Lemma 5.1 The stable isometry group coincides with the group of LK3-isometries
stabilising h, i.e. Õ(L2d) = {g ∈ O(LK3) | g(h) = h}.
Proof. Given g ∈ O(LK3) with g(h) = h, we make use of the fact that the discrim-
inant groups of h⊥ = L2d and 〈2d〉 (the latter generated by h) are isomorphic and
their quadratic forms differ by a sign. This is true because these are complementary
lattices in the unimodular LK3; see the proof of Corollary 3.1. The induced maps
on discriminants, Dg,h⊥ : h⊥ ∼→ h⊥ and Dg,h : 〈2d〉 ∼→ 〈2d〉, are the same under the
above identification. Since Dg,h is the identity by assumption, Dg,h⊥ is, too. Hence,
g|L2d is stable.

On the other hand, any f ∈ O(L2d) allows defining an isometry f̃ of the lattice
L2d ⊕ Zh, by mapping h to itself. Note that L2d ⊕ Zh ⊂ LK3 is an overlattice. If f
is a stable isometry, i.e. D f = id, then f̃ extends to an isometry of LK3. (This can be
seen by considering a representative of the discriminate of the two summands, i.e.
by explicit gluing; cf. Remark 3.2.) $%

An isomorphism of semi-polarised K3 surfaces is an isomorphism of the surfaces
respecting the polarisations. Here we recall two Torelli theorems which are essential
for the construction of moduli spaces of K3 surfaces.

Strong Torelli Theorem for polarised K3 surfaces. Given two properly polarised
K3 surfaces (X, hX) and (Y, hY), i.e. hX and hY are ample classes, and a Hodge isom-
etry ϕ : H2

X
∼→ H2

Y with ϕ(hX) = hY , there is an isomorphism f : Y ∼→ X such that
ϕ = f ∗.

This result only holds for polarised K3 surfaces. For semi-polarised K3 surfaces,
we have a different result, where we say that (X, hX) and (Y, hY) are isomorphic if
there is an isomorphism f : X ∼→ Y such that f ∗(hY) = hX .

Torelli Theorem for semi-polarised K3 surfaces. Two semi-polarised K3 surfaces
(X, hX) and (Y, hY) are isomorphic if and only if there is a Hodge isometry ϕ : H2

X
∼→

H2
Y with ϕ(hX) = hY.
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Proof. Let ϕ : H2
X

∼→ H2
Y be a Hodge isometry with ϕ(hX) = hY . Since hX is

not ample, we cannot immediately invoke the strong Torelli theorem. Following
[4, p. 151], let Γ be the subgroup of the Weyl group of Y generated by those roots
of H2(Y,Z) which are orthogonal to hY . Then Γ acts transitively on the chambers of
the positive cone, whose closure contains hY . Hence we can find an element w ∈ Γ
such that w(hY) = hY and w ◦ ϕ maps the ample cone of X to the ample cone of Y.
By the strong Torelli theorem, w ◦ ϕ is now induced by an isomorphism f : Y ∼→ X.
This gives the claim. $%

The counterpart of the unpolarised period domain is the open subset

Ω±L2d
= {ω ∈ P(L2d ⊗ C) = P20 | (ω, ω) = 0, (ω, ω) > 0} = ΩLK3 ∩ h⊥

where we abuse notation to also write h⊥ for the projectivised hyperplane. Obvi-
ously, both O(L2d) and its subgroup Õ(L2d) act on Ω±L2d

. Since the signature of L2d is
(2, 19), the action is properly discontinuous.

Furthermore, signature (2, 19) also implies that Ω±L2d
has two connected com-

ponents. These are interchanged by the (stable) involution induced by idU(1) ⊕
(−idU(2) ) ⊕ idU(3)⊕2E8 (−1). Denote by Ω+L2d

one connected component; this is a type

IV domain. Also, let O+(L2d) and Õ
+
(L2d) be the subgroups of the (stable) isometry

group of L2d fixing the component. They are both arithmetic groups, as they have
finite index in O(L2d).

Next, let Δ ⊂ L2d be the subset of all (−2)-classes, and for δ ∈ Δ denote by
δ⊥ ⊂ L2d ⊗ C the associated hyperplane (“wall”). In analogy to the unpolarised
case, we define a parameter space as the quotient by the group action— however,
there are certain differences to be explained below: let

F2d = Õ(L2d)\Ω±L2d
= Õ

+
(L2d)\Ω+L2d

.

This space has an analytic structure as the quotient of a type IV domain by a group
acting properly discontinuously. Furthermore, F2d is actually quasi-projective by
Baily–Borel [1]. Note that the group actions preserve the collection of walls δ⊥,
which by abuse of notation are given the same symbol in the quotient. Hence, the
group action also preserves the complement

F◦
2d = F2d \

⋃

δ∈Δ

δ⊥.

The definition of F◦
2d means that −2-classes orthogonal to the polarisation are

transcendental. In other words, the polarisation is ample, as it is nef and non-zero
on all −2-curves.

The subspace F◦
2d is the moduli space of pairs (X, hX) consisting of (isomorphism

classes of) a K3 surface X and the class hX of an ample, primitive line bundle with
h2

X = 2d: given such a pair, we choose a marking, i.e. an isometry λX : H2
X

∼→ LK3

such that λX(hX) = h. This induces λX |HX : HX
∼→ L2d and gives the period point

λX(ωX) ∈ Ω±2d. Since hX is ample, the period point avoids the walls.
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Conversely, given an Õ(L2d)-orbit of a point [ω] ∈ Ω±2d not on any wall, we get
a pair (X, hX) by considering [ω] as period point for the full K3 lattice: this uses the
surjectivity of the period map. Now our assumptions on ω imply h2

X = 2d and that
hX is ample as ω avoids the walls. Then, the strong Torelli theorem says that both
the K3 surface X and the polarisation hX are unique (up to isomorphism).

Finally, using again the surjectivity of the period map, one can find for ev-
ery element [ω] ∈ F2d \ F◦

2d a semi-polarised K3 surface (X, hX) and a marking
ϕ : H2(X,Z) → LK3 with ϕ(hX) = h, ϕ([ωX]) = ω. The fact that the points contained
in F2d correspond to isomorphism classes of semi-polarised K3 surfaces of degree
2d now follows from the Torelli theorem for semi-polarised K3 surfaces.

Example 5.2. For d = 1, the smallest example of a proper semi-polarisation (i.e. nef,
not ample) occurs for a generic elliptic K3 surface X with section. Its Néron–Severi
lattice will be generated by the section s and a fibre f . The intersection form on
NS (X) is

(−2
1

1
0

)
and we set D := s + 2 f . This effective divisor is primitive and nef

as D.s = 0, D. f = 1, D2 = 2.

We remark that the lattice L2d is more difficult to work with than LK3 as it is
not unimodular anymore. On the other hand, the moduli space F2d of 2d-polarised
K3 surfaces is a quasi-projective variety which is a huge improvement over F =
O(LK3)\ΩLK3 .

In the polarised case, another natural quotient appears, taking the full isometry
group of the lattice L2d:

F̂2d = O(L2d)\Ω±2d = O+(L2d)\Ω2d.

(The unpolarised setting has DLK3 = 0 and hence there is only one natural group to
quotient by.)

There is an immediate quotient map π : F2d → F̂2d. It has finite fibres and was
investigated by Stellari:

Lemma 5.3 ([42, Lemma 2.3]) The degree of π is deg(π) = 2p(d)−1 where p(d) is
the number of distinct primes dividing d (see also [43, Theorem 2.2]).

Proof. The degree is given by the index [O(L2d) : Õ(L2d)] up to the action of the
non-stable isometry −id which acts trivially on the period domain.

We use the exact sequence 0 → Õ(L2d) → O(L2d) → O(DL2d ) → 0 where
the right-hand zero follows from [32, Theorem 1.14.2]. The index thus equals the
order of the finite group O(DL2d ). Now DL2d is the cyclic group of order 2d and
decomposes into the product of various p-groups. Automorphisms of DL2d factorise
into automorphisms of the p-groups. However, the only automorphisms of Z/pl

respecting the quadratic (discriminant) form are those induced by 1 �→ ±1. Hence
|O(DL2d )| = 2p(d). The degree is then 2p(d)−1, taking the non-stable isometry −id of
L2d into account.

In case d = 1, we have Õ(L2d) = O(L2d), fitting with p(1) = 1. $%
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Points of F̂2d or rather the fibres of π have the following property (see also [43,
Theorem 2.2]):

Lemma 5.4 Given semi-polarised K3 surfaces (X, hX) and (Y, hY) with π(X, hX) =
π(Y, hY), there are Hodge isometries HX � HY and TX � TY. In particular, X and Y
are FM partners.

Proof. Fix markings λX : H2
X

∼→ LK3 and λY : H2
Y

∼→ LK3 with λX(hX) = λY (hY ) =
h and λX(ωX) = ω, λY (ωY ) = ω′. By π(X, hX) = π(Y, hY), there is some g ∈ O(L2d)
such that g(λX(ωX)) = λY (ωY ). In particular, the primitive lattices generated by ωX

and ωY (which are the transcendental lattices TX and TY) get mapped into each other
by λ−1

Y ◦ g ◦ λX . Thus, the latter isometry respects the Hodge structures and induces
Hodge isometries TX

∼→ TY and HX = h⊥X
∼→ HY = h⊥Y . $%

6 Polarisation and FM Partners

In this section, we want to consider the relationship between polarisations and FM
partners. A priori these concepts are very different: the condition that two K3 sur-
faces are derived equivalent is a property of their transcendental lattices, whereas
the existence of polarisations concerns the Néron–Severi group. Indeed, we shall
see that there are FM partners where one K3 surface carries a polarisation of given
degree but the other does not. On the opposite side, we shall see in the next Sect. 7
that one can count the number of FM partners among polarised K3 surfaces of a
given degree.

Introduce the set

K32d
FM :=

{
X
∣
∣
∣∣
K3 surface admitting a primitive
nef line bundle L with L2 = 2d

}
/ ∼

where X ∼ Y if and only if Db(X) � Db(Y).
We shall first discuss two examples which shed light on the relationship between

FM partnership and existence of polarisations.

Example 6.1. Derived equivalence does not respect the existence of polarisations of
a given degree. To give an example, we use the rank 2 Néron–Severi lattices defined
by

( 0
−7

−7
−2

)
and

( 0
−7

−7
10

)
which are related by the rational base change 1

3

( 1
−2

0
9

)
. The

former obviously represents−2, whereas the latter does not. Furthermore, the latter
primitively represents 10 via the vector (0, 1) and 6 via the vector (2, 3), whereas the
former does not. For example, if we had 10 = −14xy− 2y2, then y would have to
be one of 1, 2, 5, 10 up to sign and neither of these eight cases works.

The orthogonal lattices in LK3 are isomorphic, as follows from Nikulin’s crite-
rion. Denote the common orthogonal complement by T . As in the previous example,
we choose a general vector ω ∈ TC with (ω, ω) = 0, (ω, ω) > 0. We see that T ad-
mits primitive embeddings ι, ι′ : T ↪→ LK3 such that ι(T )⊥ does not contain any
vectors of square 2d whereas ι′(T )⊥ does, for d = 3 or d = 5. Furthermore, ι′(T )⊥
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does not contain any −2-classes. The surface X′ corresponding to ι′(ω) ∈ TC can
actually be 2d-polarised since ι′(ω) ∈ L⊥h � L2d and we have F◦

2d = F2d by the
absence of −2-classes. On the other hand, the surface X corresponding to ι(ω) has
no 2d-(semi-)polarisations—there are not even classes in NS (X) of these degrees.

Example 6.2. Let d > 1 be an integer, not divisible by 3 such that 2d can be
represented primitively by the positive definite root lattice A2 (e.g. d = 7). Let
T = 2U ⊕ E8(−1) ⊕ E6(−1) ⊕ 〈−2d〉. Following an idea of M. Schütt, we con-
struct two primitive embeddings ι, ι′ : T ↪→ L2d. Both of them are the identity on
2U ⊕ E8(−1). On the E6(−1)⊕ 〈−2d〉 part of T , we use

ι : E6(−1) ↪→ E8(−1), 〈−2d〉 ∼→ 〈−2d〉 with ι(T )⊥L2d
� A2(−1)

ι′ : E6(−1)⊕ 〈−2d〉 ↪→ E8(−1) with ι′(T )⊥L2d
� 〈−6d〉 ⊕ 〈−2d〉.

We choose a general point ω ∈ TC with (ω, ω) = 0 and (ω, ω̄) > 0. Then
the points ι(ω) and ι′(ω) in F2d represent (semi-)polarised K3 surfaces (X, hX) and
(X′, hX ′). In the first case hX is only semi-polarised, as A2(−1) contains (−2)-vectors;
in other words ι(ω) ∈ F2d \ F◦

2d. In the second case ι(ω) ∈ F◦
2d since the orthogo-

nal complement of hX ′ in NS (X′) equals 〈−2d〉 ⊕ 〈−6d〉 which does not contain a
(−2)-class. This shows that there are examples of polarised and semi-polarised K3
surfaces of the same degree which have the same FM partner.

Incidentally we notice that NS (X) � NS (X′) � A2(−1) ⊕ 〈2d〉. This follows
from Nikulin’s criterion since both lattices have rank 3 and length 1 since we have
assumed that (3, d) = 1.

We want to construct a map

τ : F2d → K32d
FM.

By Lemma 5.4, we have a map π : F̂2d → K32d
FM; combining it with σ : F2d → F̂2d,

we obtain a commutative triangle

F2d
σ ��

τ

��
��

��
��

��
��

��
��

F̂2d

π

		��
��
��
��
��
��
��

K32d
FM

.

By the counting results of Proposition 7.1, the fibres are finite. Here we give a
geometric argument for that fact, following Stellari [43, Lemma 2.5], where we pay
special attention to the ‘boundary points’ of F2d.

Proposition 6.3. Given a 2d-(semi-)polarised K3 surface (X, hX), there are only
finitely many 2d-(semi-)polarised K3 surfaces (Y, hY) up to isomorphism with
Db(X) � Db(Y).
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Proof. Disregarding polarisations, there are only finitely many FM partners of X,
as X is a smooth projective surface [8]. Given such an FM partner Y, consider the
set AY,2d = {c ∈ C(Y) | c2 = 2d} of elements of length 2d in the positive cone
of Y. If the divisor c is ample, then 3c is very ample, by Saint-Donat’s result [40].
By Bertini, there are irreducible divisors D ∈ |3c|. The set BY,18d = {OX(D) | D2 =

18d, D irreducible} of divisor classes of irreducible divisors of length 18d is finite up
to automorphisms of Y by Sterk [44]. As AY,2d → BY,18d, c �→ |3c| is injective (this
uses H1(OY ) = 0), this shows that the number of non-isomorphic 2d-polarisations
on Y is finite.

However, there are points (Y, hY) where hY is only pseudo-ample. Denote the set
of pseudo-ample divisors of degree 2d by AY,2d = {c ∈ C(Y) | c2 = 2d}. If we have a
non-ample polarisation hY , then contracting the finitely many −2-curves which are
orthogonal to hY produces a projective surface Y ′ with only ADE singularities, trivial
canonical bundle and H1(OY ′ ) = 0. Morrison shows that Saint-Donat’s result is also
true for this surface [28, Sect. 6.1], i.e. 3c is again very ample. We can then proceed
as above, as the generic divisor in |3c|will be irreducible and avoid the finitely many
singularities. Sterk’s result on finiteness of BY ′,18d/Aut(Y ′) still applies as he simply
assumes that a linear system is given whose generic member is irreducible. $%

7 Counting FM Partners of Polarised K3 Surfaces
in Lattice Terms

Taking our cue from the fact that the fibres of F → F/FM are just given by FM
partners (the unpolarised case), and the latter can be counted in lattice terms, we
study the following general setup: let L be an indefinite, even lattice, let T be another
lattice, occurring as a sublattice of L, and let finally GT ⊆ O(T ) and GL ⊆ O(L) be
two subgroups, the latter normal. As in Sect. 3, we consider the set P(T, L) of all
primitive embeddings ι : T ↪→ L. This set is partitioned into P(T, K, L), containing
all primitive embeddings ι : T ↪→ L with ι(T )⊥L � K.

In the application to geometry, we will have L = L2d = h⊥ the perpendicular
lattice of the polarisation inside the K3 lattice, T = TX the transcendental lattice of
a K3 surface X and K the orthogonal complement of h in NS (X) the Néron–Severi
lattice of X. By Nikulin’s criterion (Lemma 2.4), L2d is unique in its genus, thus
fulfilling Assumption 3.15. As to the groups, GT = OH(T ) is the group of Hodge
isometries of TX , and GL is either the full or the stable isometry group of L2d .

We recall when two embeddings ι1, ι2 : T ↪→ L are equivalent with respect to GT

and GL (see page 348): if there are isometries g ∈ GT and g̃ ∈ GL such that

T
ι1 ��

g

��

L

g̃

��
T

ι2 �� L

.
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This corresponds to orbits of the action GT ×GL × P(T, L) → P(T, L), (g, g̃) · ι =
g̃ιg−1.

All of this is essentially the setting of [22]—the novelty is the subgroup GL,
which always was the full orthogonal group in loc. cit.

Proposition 7.1. For a 2d-polarised K3 surface (X, hX), there are bijections

σ−1([X, hX])
1:1
= OH(TX)×O(HX)\P(TX , HX),

τ−1([X, hX])
1:1
= OH(TX)× Õ(HX)\P(TX , HX).

Example 7.1. The unpolarised analogue of the proposition was given in Theorem 2.4
of [22], stating FM(X) = OH(TX)× O(H2

X)\P(TX, H2
X).

Proof. The proof proceeds along the lines of [22, Theorem 2.4]. Fix a marking
λX : HX

∼→ L2d for X. Set T := λX(TX). This yields a primitive embedding

ι0 : T
∼

λ−1
X

�� TX
� � HX

∼
λX

�� L2d .

This embedding (or rather the equivalence class of ι0λX(ωX)) gives a point in F2d.
By definition of F2d, this period point does not depend on the choice of marking.

If (Y, hY) belongs to (a period point given by an embedding in) P(T, L2d), then—
as the transcendental lattice is the smallest lattice containing the canonical form in
its complexification—there is a Hodge isometry TX � TY ; hence Db(X) � Db(Y)
and then FM(X) = FM(Y). We therefore get maps

c̃ : P(T, L2d) → τ−1(X, hX),

c : P(T, L2d)
c̃→ τ−1(X, hX)

π→ σ−1(X, hX).

with the fibre τ−1(X, hX) consisting of FM partners of (X, hX) up to isomorphism.
The map c̃ is surjective (and hence c is, as well): if (Y, hY) ∈ F2d is an FM partner

of X, then we first fix a marking λY : HY
∼→ L2d. By the derived Torelli theorem,

there is a Hodge isometry g : TX
∼→ TY . Using g and the markings for X and Y, we

produce an embedding

ι : TX
∼
g

�� TY
� � HY

∼
λY

�� L2d
∼

λ−1
X

�� HX .

This gives a point ι ∈ P(TX, HX) and by construction, c̃(ι) = (Y, hY) ∈ τ−1(X, hX).
For brevity, we temporarily introduce shorthand notation

Peq(TX , HX) := OH(TX)×O(HX)\P(TX, HX),

P̃eq(TX , HX) := OH(TX)× Õ(HX)\P(TX, HX),

and the goal is to show P̃eq(TX, HX) = τ−1([X, hX]) andPeq(TX , HX) = σ−1([X, hX]).
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Now suppose that two embeddings ι, ι′ : T ↪→ L2d give the same equivalence
class in P̃eq(T, L2d). This means that there exist isometries g ∈ O(T ) and g̃ ∈ Õ(L2d)
with ι′ ◦g = g̃◦ι. Denote the associated polarised K3 surfaces by (Y, hY) and (Y ′, hY ′ );
choose markings λY and λY ′ as above. Then we obtain a Hodge isometry

HY
∼
λY

�� L2d
∼
g̃

�� L2d
∼

λ−1
Y′

�� HY ′

TY
�� ∼ �� T

��

ι

��

∼
g

�� T
��

ι′

��

∼ �� TY ′
��

and hence (Y, hY) and (Y ′, hY ′) define the same point in F2d. Thus the map c̃ fac-
torises over equivalences classes and descends to a surjective map c̃ : P̃eq(T, L2d) →
τ−1(X, hX).

Analogous reasoning applies if ι and ι′ are equivalent in Peq(T, L2d): we get
isometries g ∈ O(T ) and ĝ ∈ O(L2d) with ι′ ◦ g = ĝ ◦ ι and use a diagram similar to
the one above. In this case, with the isometry ĝ not necessarily stable, we can only
derive that the period points coincide in F̂2d; hence c : Peq(T, L2d) → σ−1(X, hX).

Finally, we show that these maps are injective, as well. Let [ι], [ι′] ∈ P̃eq(T, L2d)
be two equivalence classes of embeddings with c̃([ι]) = c̃([ι′]). This implies the
existence of a stable isometry in O(L2d) mapping ω �→ ω′ where ω and ω′ are given
by the construction of the map c̃ (they correspond to semi-polarised K3 surfaces
(Y, hY) and (Y ′, hY ′ )). Using markings HY

∼→ L2d and HY ′
∼→ L2d, we get an induced

Hodge isometry ϕ : HY
∼→ HY ′ with ϕ(ωY ) = ωY ′ and ϕ(hY) = hY ′ . Once more

invoking the minimality of transcendental lattices, we also get a Hodge isometry
ϕT : TY

∼→ TY ′ . These isometries combine to

L2d
∼

λ−1
Y

�� HY
∼
ϕ

�� HY ′
∼
λY′

�� L2d

T
��

ι

��

∼ �� TY
�� ∼

ϕT

�� TY ′
�� ∼ �� T

��

ι′

��

the outer square of which demonstrates [ι] = [ι′].
For [ι], [ι′] ∈ Peq(T, L2d) with c([ι]) = c([ι′]), we argue analogously, only now

starting with an isometry of L2d mapping ω → ω′ which is not necessarily stable.
Since periods of the K3 surfaces get identified up to O(L2d) in this case, the outer
square gives [ι] = [ι′] up to OH(T ) and O(L2d). $%

From Lemma 3.16 and Proposition 7.1, we derive the following statement.

Proposition 7.2. Given an 2d-polarised K3 surface (X, hX), there are bijections

σ−1([X, hX])
1:1
=
∐

S

OH(TX)×O(HX)\Q(TX, S , q2d)

τ−1([X, hX])
1:1
=
∐

S

OH(TX)× Õ(HX)\Q(TX, S , q2d),



Fourier–Mukai Partners and Polarised K3 Surfaces 361

where the unions run over isomorphism classes of even lattices S which admit an
overlattice S ⊕ TX ↪→ HX such that the induced embedding S ⊆ HX is primitive.
The discriminant q2d on the right-hand sides has Dq2d = Z/2d as abelian group with
q2d(1) = −1

2d .

Proof. The fibres are obviously partitioned by the orthogonal complements that can
occur (this is in general a bigger choice than just of an element in the genus).

Once a complement S is chosen, then the set Peq(TX , S , HX), i.e. the set of em-
beddings of TX into HX with complement isomorphic to S , up to Hodge isometries
of TX and isometries of HX , coincides with (O(HX), OH(TX))-equivalence classes;
this follows from Lemma 3.16. Analogous reasoning addresses the σ-fibres. $%
Example 7.2. Following Remark 7.1 and Lemma 3.13, we note that the formula for
FM partners of an unpolarised K3 surface X from [22] can be written as

FM(X) =
∐

S

OH(TX)×O(H2
X)\Q(TX, S , 0)

where S now runs through isomorphism classes of lattices admitting an overlattice
S ⊕ TX ↪→ H2

X such that S is primitive in H2
X . As H2

X is unimodular, the genus of
S is uniquely determined by that of TX (see Remark 3.18). One candidate for S is
NS (X), and we can describe FM(X) as the same union, with S running through the
genus G(NS X). By Lemma 3.17, the sets Q(TX, S , 0) are all mutually bijective.

We will temporarily work with the sets P(TX, S , H2
X) instead. On each such set,

OH(TX) and O(H2
X) act in the natural way. Hence, there are not just bijections

P(TX, S , H2
X)

1:1
= P(TX , S ′, H2

X) but also bijections of the quotients by OH(TX) ×
O(H2

X). We thus get

FM(X)
1:1
= G(NS X)× (

OH(TX)×O(H2
X)\P(TX , NS X , H2

X)
)

1:1
= G(NS X)× (

OH(TX)×O(H2
X)\Q(TX , NS X , 0)

)
.

However, by Corollary 3.1, this implies

FM(X)
1:1
= G(NS X)× (

OH(TX)× O(NS X)\O(DNS X )
)
.

Similar formulae in the polarised (hence non-unimodular) case are generally
wrong.

8 Examples

Proposition 7.1 phrases the problem of classifying polarised K3 surfaces up to de-
rived equivalence in lattice terms. Using the results of Sect. 3, this can be rephrased
as Proposition 7.2 which clearly makes this a finite problem. Given hX ∈ LK3 prim-
itive and TX ⊆ HX = h⊥X , or equivalently, TX ⊂ L2d, one can (in principle) list all
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potential subgroups H of the discriminant group. This, together with the fact that
Hom(L2d, H) is finite, makes it possible to test all potential overlattice groups.

Picard Rank One

We consider the special case of Picard rank 1. Here, h⊥X = TX . Also, any FM partner
of a 2d-polarised K3 surface is again canonically 2d-polarised (since the orthogonal
complement of the transcendental lattice is necessarily of the form 〈−2d〉). Oguiso
showed that the number of non-isomorphic FM partners is 2p(d)−1 (where p(d) is the
number of prime divisors) [33]. This is also half of the order of O(DL2d ).

Stellari [43, Theorem 2.2] shows that the group O(DL2d )/{±id} acts simply tran-
sitively on the fibre τ−1(X, hX). In particular, σ is one to one on these points.

We look at the situation from the point of view of Proposition 7.2. In this case
TX = HX and OH(TX)×O(HX)\P(TX, HX) clearly contains only one element, which
says that the fibre of σ contains only one element. The situation is different for τ.
For this we have to analyse the action of the quotient OH(TX) × O(HX)/ OH(TX) ×
Õ(HX) � O(DL2d ). We note that−id is contained in both OH(TX) and O(HX), and the
element (−id,−id) acts trivially on P(TX, HX). On the other hand, since the Picard
number of X is 1, it follows that every element in OH(TX) extends to an isometry
of H2(X) which maps h to ±h. Hence the group O(DL2d )/〈±1〉 acts transitively and
freely on the fibre of τ showing again that the number of FM partners equals 2p(d)−1.

Large Picard Rank

For Picard ranks of 12 or more, derived equivalence implies isomorphism since
any Hodge isometry of TX lifts to an isometry of H2

X , using [32, 1.14.2]: we have
�(NS X) = �(TX) ≤ rk(TX) = 22 − '(X) for the minimal number of generators of
DNS X ; the lifting is possible if 2 + �(NS X) ≤ rk(NS X) = '(X)—hence � ≤ 10 and
' ≥ 12. Still, there can be many non-isomorphic polarisations on the same surface.
See below for an example where the fibres of τ and σ can become arbitrarily large
in the case of ' = 20 maximal.

Positive Definite Transcendental Lattice

We consider the following candidates for transcendental lattices: T =
( 2a

0
0
2b

)
with

a > b > 0. We denote the standard basis vectors for T by u and v, so that u2 = 2a
and v2 = 2b. Note that the only isometries of this lattice are given by sending the
basis vectors u, v to ±u,±v. In the lattice L2d = 2U ⊕ 2E8(−1)⊕ 〈−2d〉, denote by
l a generator of the non-unimodular summand 〈−2d〉.

In this setting, we are looking for embeddings ι1, ι2 : T ↪→ L2d such that ι1(v) and
ι2(v) belong to different O(L2d)-orbits. This would then immediately imply that the
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two embeddings cannot be equivalent. In order to show this, we appeal to Eichler’s
criterion.

Let us restrict to the special case d = b = p3 for a prime p. Recall that the divisor
of a vector w is the positive generator of the ideal (w, L2d). We want the divisor of
the vector v to be p2. Setting, for c ∈ Z,

vc := p2e2 + p(1 + c2) f2 + cl,

we have v2
c = 2p3 and div(vc) = (p2, p(1+c2), 2cp3). Choosing c with 1+c2 ≡ 0 (p),

which enforces p ≡ 1 (4), we get div(vc) = p2. Now, by Eichler’s criterion, the
Õ(L2p3 )-orbit of vc is determined by the length v2

c = 2p3 and the class [vc/div(vc)] =
[c/p2] ∈ DL2p3 . The latter discriminant group is cyclic of order 2p3. Hence, the

number of orbits of vectors with length 2p3 and divisor p2 equals the number of
solutions of 1 + c2 ≡ 0 (p) for c = 0, . . . p2 − 1. The equation 1 + c2 ≡ 0 has two
solutions in Z/p, as p ≡ 1 (4), hence 2p solutions in Z/p2. (The above computation
is a very special case of the obvious adaption of [18, Proposition 2.4] to the lattice
L2d.)

Together with u := e1 + a f1, we get 2p lattices Tc = 〈u, vc〉 embedded into
L2p3 and such that these embeddings are pairwise nonequivalent under the action
of Õ(L2p3 ). The discriminant group of L2p3 is DL2p3 � Z/2p3, hence O(DL2p3 ) =

{±id} � Z/2. We have to take the action of O(L2p3 )/Õ(L2p3 ) � O(DL2p3 ) on the set

of Õ(L2p3 )-orbits into account. As this is a 2-group, there must at least p orbits under
the action of O(L2p3 ). We remark that O(DL2p3 ) is a 2-group in greater generality, see
[18, Proposition 2.5].

In particular, the number of pairwise nonequivalent embeddings is finite, but un-
bounded when varying T .

Unimodular (T)⊥
L2d

We use that there are precisely two inequivalent negative definite unimodular even
lattices of rank 16, namely, 2E8 and D+16 (the latter is an extension of the non-
unimodular root lattice D16); see [11, Sect. 16.4]. They become equivalent after
adding a hyperbolic plane: 2E8 ⊕ U � D+16 ⊕ U, since unimodular even indefi-
nite lattices are determined by rank and signature. Setting T := 2U ⊕ 〈−2d〉, we
get

2E8(−1)⊕ T � L2d � D+16(−1)⊕ T.

Hence, since the orthogonal complements are different, there must at least be two
different embeddings of T into L2d. This example allows for arbitrary polarisations
(in contrast to the previous one).
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On a Family of K3 Surfaces with S4 Symmetry
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Abstract The largest group which occurs as the rotational symmetries of a
three-dimensional reflexive polytope is S 4. There are three pairs of three- dimen-
sional reflexive polytopes with this symmetry group, up to isomorphism. We identify
a natural one-parameter family of K3 surfaces corresponding to each of these pairs,
show that S 4 acts symplectically on members of these families, and show that a
general K3 surface in each family has Picard rank 19. The properties of two of
these families have been analyzed in the literature using other methods. We com-
pute the Picard–Fuchs equation for the third Picard rank 19 family by extend-
ing the Griffiths–Dwork technique for computing Picard–Fuchs equations to the
case of semi-ample hypersurfaces in toric varieties. The holomorphic solutions to
our Picard–Fuchs equation exhibit modularity properties known as “Mirror Moon-
shine”; we relate these properties to the geometric structure of our family.
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1 Introduction

Families of Calabi–Yau varieties with discrete symmetry groups provide a fertile
source of examples and conjectures in geometry and theoretical physics. Greene
and Plesser’s construction of the mirror to a family of Calabi–Yau threefolds re-
lied on the construction of a special pencil of threefolds admitting a discrete group
symmetry (see [14]). More recent studies of Calabi–Yau threefolds with discrete
symmetry groups include [2, 9, 24].

In the case of K3 surfaces, actions of a finite group of symplectic automorphisms,
which preserve the holomorphic two-form, are of particular interest. Nikulin classi-
fied the finite abelian groups which can act symplectically on K3 surfaces in [27].
Mukai showed in [26] that any finite group G with a symplectic action on a K3
surface is a subgroup of a member of a list of eleven groups, and gave an example
of a symplectic action of each of these maximal groups. Xiao and Kondō gave al-
ternate proofs of the classification in [19, 36], respectively; [36, Table 2] includes a
complete list of finite groups which admit symplectic group actions on K3 surfaces.

If a K3 surface X admits a symplectic action by a group G, then the Picard group
of X must contain a primitive definite sublattice S G; in [35], the last author gives a
procedure for computing the lattice invariants of S G for any of the groups in [36,
Table 2]. The relationship between a symplectic action and the Picard group has
been worked out in detail for particular finite groups; cf. [10–13, 15, 28]. Thus,
symplectic group actions may be used to identify K3 surfaces with high Picard rank.

Families of K3 surfaces with Picard rank 19 admit a particularly nice construc-
tion of the mirror map, which relates the moduli of a family of K3 surfaces to the
moduli of the mirror family (see [7]). One may study the mirror map using Picard–
Fuchs differential equations. The dissertation [31] uses symplectic group actions to
produce pencils of K3 surfaces with Picard rank 19 in projective space P3 and the
weighted projective space P(1, 1, 1, 3), and computes the associated Picard–Fuchs
equations.

In [23], Lian and Yau drew attention to the “Mirror Moonshine” phenomenon,
whereby the holomorphic solution to the Picard–Fuchs equation for a family of K3
surfaces becomes a Γ-modular form of weight 2 for some genus 0 modular group
Γ ⊂ PS L2(R). Verrill and Yui studied the mirror map and “Mirror Moonshine” for
specific pencils of K3 surfaces in [34]. In [8], Doran uses Picard–Fuchs differential
equations to determine when a mirror map for a Picard rank 19 family of K3 surfaces
is an automorphic function.

In this paper, we study special one-parameter families of K3 hypersurfaces in
toric varieties obtained from three-dimensional reflexive polytopes. The key idea is
to use symmetries of the polytopes to identify a group action on a family of hyper-
surfaces. The largest group which occurs as the rotational symmetries of a three-
dimensional reflexive polytope is S 4. Up to automorphism, there are three pairs of
three-dimensional reflexive polytopes with this symmetry group. We identify a nat-
ural one-parameter family of K3 surfaces corresponding to each of these pairs, show
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that S 4 acts symplectically on members of these families, and show that a general
K3 surface in each family has Picard rank 19.

The Picard–Fuchs equations for two of our families were analyzed in [18, 29, 33].
We compute the Picard–Fuchs equation for the third Picard rank 19 family, using
coordinates which arise naturally from the reflexive polytope. In order to do so, we
extend the Griffiths–Dwork algorithm to the case of semi-ample hypersurfaces in
toric varieties. Our method relies on the theory of residue maps for hypersurfaces in
toric varieties developed in [1] and extended in [25]. Our families all exhibit “Mirror
Moonshine”: we show that the modularity properties are a natural consequence of
underlying geometric structures.

2 Toric Varieties and Semiample Hypersurfaces

2.1 Toric Varieties and Reflexive Polytopes

We begin by recalling some standard constructions involving toric varieties. Let N
be a lattice isomorphic to Zn. The dual lattice M of N is given by Hom(N,Z); it is
also isomorphic to Zn. We write the pairing of v ∈ N and w ∈ M as 〈v, w〉. A cone
in N is a subset of the real vector space NR = N ⊗ R generated by nonnegative
R-linear combinations of a set of vectors {v1, . . . , vm} ⊂ N. We assume that cones
are strongly convex, that is, they contain no line through the origin. Note that each
face of a cone is a cone.

A fan Σ consists of a finite collection of cones such that each face of a cone in the
fan is also in the fan, and any pair of cones in the fan intersects in a common face.
We say Σ is simplicial if the generators of each cone in Σ are linearly independent
over R. If every element of NR belongs to some cone in Σ, we say Σ is complete. In
the following, we shall restrict our attention to complete fans.

A fan Σ defines a toric variety VΣ . We may describe VΣ using homogeneous
coordinates, in a process analogous to the construction of Pn as a quotient space of
(C∗)n. We follow the exposition in [17]. Let Σ(1) = {ρ1, . . . , ρq} be the set of one-
dimensional cones of Σ. For each ρ j ∈ Σ(1), let v j be the unique generator of the
semigroup ρ j ∩ N.

We construct the toric variety VΣ as follows. To each edge ρ j ∈ Σ(1), we asso-
ciate a coordinate z j. Let S denote any subset of Σ(1) that does not span a cone of
Σ. Let V (S ) ⊆ Cq be the linear subspace defined by setting z j = 0 for each ρ j ∈ S .
Let Z(Σ) be the union of the spaces V (S ). Note that (C∗)q acts on Cq − Z(Σ) by
coordinatewise multiplication. Fix a basis for N, and suppose that v j has coordi-
nates (v j1, . . . , v jn) with respect to this basis. Consider the map ϕ : (C∗)q → (C∗)n

given by

ϕ(t1, . . . , tq) �→
⎛
⎜⎜⎜⎜⎜⎜⎝

q∏

j=1

t
v j1

j , . . . ,

q∏

j=1

t
v jn

j

⎞
⎟⎟⎟⎟⎟⎟⎠

Then the toric variety VΣ associated with the fan Σ is given by
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VΣ = (Cq − Z(Σ))/Ker(ϕ).

Given a lattice polytope Δ in N, we define its polar polytope Δ◦ to be Δ◦ = {w ∈
M | 〈v, w〉 ≥ −1 ∀ v ∈ K}. If Δ◦ is also a lattice polytope, we say that Δ is a reflexive
polytope and that Δ and Δ◦ are a mirror pair.

Example 1. The generalized octahedron in N with vertices at (±1, 0, . . . , 0), (0,±1,
. . . , 0), . . . , (0, 0, . . . ,±1) is a reflexive polytope. Its polar polytope is the hypercube
with vertices at (±1,±1, . . . ,±1).

A reflexive polytope must contain 0; furthermore, 0 is the only interior lattice
point of the polytope. We may obtain a fan R by taking cones over the faces of
Δ. Let Σ be a simplicial refinement of R such that the one-dimensional cones of Σ
are generated by the nonzero lattice points vk, k = 1, . . . , q, of Δ; we call such a
refinement a maximal projective subdivision. Then the variety VΣ is an orbifold; if
n = 3, VΣ is smooth (see [6]).

Example 2. Let N � Z3, and let Δ be the octahedron with vertices v1 = (1, 0, 0),
v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (−1, 0, 0), v5 = (0,−1, 0), and v6 = (0, 0,−1)
(Fig. 1). Then the only lattice points of Δ are the vertices and the origin. Let R be
the fan obtained by taking cones over the faces of Δ. Then R defines a toric variety
VR which is isomorphic to P1 × P1 × P1.

Fig. 1: The octahedron of Example 2

Proof. The vertices of the octahedron v1, . . . , v6 generate the one-dimensional cones
ρ1, . . . , ρ6 of R. The two-element subsets of Σ(1) that do not span cones are {ρ1, ρ4},
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{ρ2, ρ5}, and {ρ3, ρ6}; larger subsets of Σ(1) that do not span cones contain one of
the two-element subsets that do not span cones. Thus, Z(Σ) consists of points of the
form (0, z2, z3, 0, z5, z6), (z1, 0, z3, z4, 0, z6), or (z1, z2, 0, z4, z5, 0).

The map ϕ is given by:

ϕ(t1, t2, t3, t4, t5, t6) = (t1t−1
4 , t2t−1

5 , t3t−1
6 )

Then VR is given by the quotient C6\Z(Σ)/ ker(ϕ), where ker(ϕ) contains points
satisfying t1 = t4, t2 = t5, and t3 = t6. This corresponds to the equivalence relations

(z1, z2, z3, z4, z5, z6) ∼ (λ1z1, z2, z3, λ1z4, z5, z6)

(z1, z2, z3, z4, z5, z6) ∼ (z1, λ2z2, z3, z4, λ2z5, z6)

(z1, z2, z3, z4, z5, z6) ∼ (z1, z2, λ3z3, z4, z5, λ3z6)

where λ1, λ2, λ3 ∈ C∗. Thus, VR is isomorphic to the toric variety P1 × P1 × P1.

Example 3. Let N � Z3, and let Δ be the octahedron with vertices v1 = (1, 0, 0),
v2 = (1, 2, 0), v3 = (1, 0, 2), v4 = (−1, 0, 0), v5 = (−1,−2, 0), and v6 = (−1, 0,−2)
(Fig. 2). Let R be the fan obtained by taking cones over the faces of Δ. Then R defines
a toric variety VR which is isomorphic to (P1 × P1 × P1)/(Z2 × Z2 × Z2). If Σ is a
simplicial refinement of R such that the one-dimensional cones of Σ are generated
by the nonzero lattice points of Δ, then VΣ is a smooth variety and the map VΣ → VR

is a resolution of singularities.

Proof. As in Example 2, Z(Σ) consists of points of the form (0, z2, z3, 0, z5, z6),
(z1, 0, z3, z4, 0, z6), or (z1, z2, 0, z4, z5, 0). The map ϕ is defined as

ϕ(t1, t2, t3, t4, t5, t6) = (t1t2t3t−1
4 t−1

5 t−1
6 , t2

2t−2
5 , t2

3t−2
6 ).

Thus, elements of ker(ϕ) must satisfy t1t2t3 = t4t5t6, t2
2 = t2

5, and t2
3 = t2

6. These
equations simplify to t2

1 = t2
4, t2

2 = t2
5 and t2

3 = t2
6. We obtain the equivalence relations

(z1, z2, z3, z4, z5, z6) ∼ (λ1z1, z2, z3,±λ1z4, z5, z6)

(z1, z2, z3, z4, z5, z6) ∼ (z1, λ2z2, z3, z4,±λ2z5, z6)

(z1, z2, z3, z4, z5, z6) ∼ (z1, z2, λ3z3, z4, z5,±λ3z6)

where λ1, λ2, λ3 ∈ C∗.
We conclude that VR is isomorphic to (P1×P1×P1)/(Z2×Z2×Z2). Since n = 3,

the simplicial refinement Σ yields a smooth variety.

2.2 Semiample Hypersurfaces and the Residue Map

In this section, we review properties of hypersurfaces in toric varieties, and give a
brief outline of the results of [25] on the residue map in this setting. Let Σ be a
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Fig. 2: The octahedron of Example 3

complete, simplicial n-dimensional fan, and let S = C[z1, . . . , zq] be the homoge-
neous coordinate ring of the corresponding toric variety VΣ . Each variable zi defines
an irreducible torus-invariant divisor Di, given by the points where zi = 0. The ho-
mogeneous coordinate ring is graded by the Chow group of VΣ , according to the
rule

deg

⎛
⎜⎜⎜⎜⎜⎝

n∏

i=1

xai
i

⎞
⎟⎟⎟⎟⎟⎠ =

n∑

i=1

aiDi.

A homogeneous polynomial p in S β defines a hypersurface X in VΣ .

Definition 1. [1] If the partial derivatives ∂p/∂zi, i = 1, . . . , q do not vanish simul-
taneously on X, we say X is quasismooth.

Definition 2. [25] If the partial derivatives zi ∂p/∂zi, i = 1, . . . , q do not vanish si-
multaneously on X, we say X is regular and p is nondegenerate.

Let R be a fan over the faces of a reflexive polytope, and assume Σ is a refinement
of R. We have a proper birational morphism π : VΣ → VR. Let Y be an ample divisor
in VR, and suppose X = π∗(Y). Then X is semiample:

Definition 3. [6, Lemma 4.1.2] We say that a Cartier divisor D is semiample if D is
generated by global sections and the intersection number Dn > 0.
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Note that if Σ is not identical to R, then X is not ample. If Σ is a maximal projec-
tive subdivision of R, then general representatives X of the anticanonical class of VΣ

are Calabi–Yau varieties; if n = 3, then the representatives are K3 surfaces. (See [6]
and [25, Sect. 1] for a more detailed exposition.)

Now, let us assume that X is a semiample, quasismooth hypersurface defined by
a polynomial p ∈ S β. The residue map relates the cohomology of VΣ − X to the
cohomology of X:

Res : Hn(VΣ − X) → Hn−1(X).

In order to give a precise definition of the residue map, let us represent elements
of Hn(VΣ − X) using rational forms. Choose an integer basis m1, . . . , mn for the
dual lattice M. For any n-element subset I = {i1, . . . , in} of {1, . . . , q}, let det vI =

det (〈m j, vik〉1≤ j,ik≤n), dzI = dzi1 ∧ · · · ∧ dzin , and ẑI =
∏

i�I zi. Let Ω be the n-form
on VΣ given in global homogeneous coordinates by

∑
|I|=n det vI ẑIdzI . (Note that if

VΣ = P
n, then Ω is the usual holomorphic form on Pn.) Let β0 =

∑n
i=1 deg(xi), and

let A ∈ S (a+1)β−β0 . Then the rational form ωA := AΩ
pa+1 is a class in Hn(VΣ − X). Let γ

be any n− 1-cycle in X, and let T (γ) be the tube over γ in VΣ − X. Then the residue
of ωA is the class in Hn−1(X) satisfying

∫

γ

Res

(
AΩ

pa+1

)

=

∫

T (γ)

AΩ

pa+1
. (1)

The residue class Res(ωA) lies in Hn−1−a,a(X). (See [25, Sect. 3].) We shall have
occasion to use the following special case of this construction:

Lemma 1. [25, Sect. 3] Let X be a quasismooth K3 hypersurface in VΣ described in
global homogeneous coordinates by a polynomial p. Then ω := Res(Ω/p) generates
H2,0(X).

We may use rational forms and the residue map to relate Hn−1(X) to certain
quotient rings.

Definition 4. [1] Let p ∈ S β. Then the Jacobian ideal J(p) is the ideal of S gener-
ated by the partial derivatives ∂p/∂zi, i = 1, . . . , q, and the Jacobian ring R(p) is the
quotient ring S/J(p). The Jacobian ring inherits a grading from S .

Proposition 1. [25, Sect. 3] If X is a quasismooth, semiample hypersurface defined
by a polynomial p, then the residue map induces a well-defined map of rings

ResJ : R(p) → Hn−1(X)

satisfying ResJ([A]R(p)) = Res(ωA).

If VΣ is isomorphic to Pn or a weighted projective space, then the map ResJ

is injective. (See [1, Sect. 11].) One may obtain injective maps for more general
ambient spaces by working with a different quotient ring; however, these results
only apply when the hypersurface X is regular.
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Definition 5. [1] Let p ∈ S β. Then the ideal J1(p) is the ideal quotient

〈z1∂p/∂z1, . . . , zq∂p/∂zq〉 : z1 · · · zq.

The ring R1(p) is the quotient ring S/J1(p); this ring inherits a grading from S .

Theorem 1. [25, Theorem 4.4] If X is a regular, semiample hypersurface defined
by a polynomial p, then the residue map induces a well-defined, injective map of
rings

ResJ1 : R1(p) → Hn−1(X)

satisfying ResJ1 ([A]R1(p)) = Res(ωA).

3 Three Symmetric Families of K3 Surfaces

3.1 Symplectic Group Actions on K3 Surfaces

Let X be a K3 surface and let g be an automorphism of X. We say that g acts
symplectically if g∗(ω) = ω, where ω is the unique holomorphic two-form on X.
If G is a finite group of automorphisms of X, we say G acts symplectically on X if
every element of G acts symplectically.

The cup product induces a bilinear form 〈 , 〉 on H2(X,Z) � H⊕H⊕H⊕E8⊕E8.
(We take E8 to be negative definite.) Using this form, we define S G = (H2(X,Z)G)⊥.
The Picard group of X, Pic(X), consists of H1,1(X) ∩ H2(X,Z); the group T (X) ⊆
H2(X,Z) of transcendental cycles is defined as (Pic(X))⊥. Nikulin showed that the
groups Pic(X) and S G are related:

Proposition 2. [27, Lemma 4.2] S G ⊆ Pic(X) and T (X) ⊆ H2(X,Z)G. The lattice
S G is nondegenerate and negative definite.

The rank of the lattice S G depends only on the group G. [36, Table 2] lists the
rank of S G for each group G which admits a symplectic action on a K3 surface; a
discussion of methods for computing lattice invariants of S G may be found in [35].

Lemma 2. [35, Example 2.1] Let X be a K3 surface which admits a symplectic
action by the permutation group G = S4. Then Pic(X) admits a primitive sublattice
S G which has rank 17 and discriminant d(S G) = −26 · 32.

3.2 An S4 Symmetry of Polytopes and Hypersurfaces

Let Δ be a reflexive polytope in a lattice N � Z3, and let Σ be a simplicial refinement
of the fan over the faces of Δ. Demazure and Cox showed that the automorphism
group A of the toric variety VΣ is generated by the big torus T � (C∗)3, symmetries
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of the fan Σ induced by lattice automorphisms, and one-parameter families derived
from the “roots” of VΣ (see [6]). We are interested in finite subgroups of A which
act symplectically on K3 hypersurfaces X in VΣ .

Let us consider the automorphisms of VΣ induced by symmetries of the fan Σ.
Since Σ is a refinement of the fan R consisting of cones over the faces of Δ, the
group of symmetries of Σ must be a subgroup H′ of the group H of symmetries of
Δ (viewed as a lattice polytope). We will identify a family FΔ of K3 surfaces in VΣ

on which H′ acts by automorphisms, and then compute the induced action of G on
the (2, 0) form of each member of the family.

Let h ∈ H′, and let X be a K3 surface in VΣ defined by a polynomial p in global
homogeneous coordinates. Then h maps lattice points of Δ to lattice points of Δ, so
we may view h as a permutation of the global homogeneous coordinates zi: h is an
automorphism of X if p ◦ h = p. Alternatively, since H is the automorphism group
of both Δ and its polar dual polytope Δ◦, we may view h as an automorphism of Δ◦:
from this vantage point, we see that h acts by a permutation of the coefficients cx of
p, where each coefficient cx corresponds to a point x ∈ Δ◦. Thus, if h is to preserve
X, we must have cx = cy whenever h(x) = y. We may define a family of K3 surfaces
fixed by H′ by requiring that cx = cy for any two lattice points x, y ∈ Δ◦ which lie in
the same orbit of H′:

Proposition 3. Let FΔ be the family of K3 surfaces in VΣ defined by the following
family of polynomials in global homogeneous coordinates:

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

Q∈O
cQ

∑

x∈Q

q∏

k=1

z〈vk ,x〉+1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

q∏

k=1

zk,

where O is the set of orbits of nonzero lattice points in Δ◦ under the action of H′.
Then H′ acts by automorphisms on each K3 surface X in FΔ.

Proposition 4. Let X be a quasismooth K3 surface in the family FΔ, and let h ∈
H′ ⊂ GL(3,Z). Then h∗(ω) = (det h)ω.

Proof. Once again, we use the fact that we may view h as either an automorphism
of the lattice N which maps Δ to itself, or as an automorphism of the dual lattice M
which restricts to an automorphism of Δ◦. (If we fix a basis {n1, n2, n3} of N, take
the dual basis {m1, m2, m3} = {n∗1, n∗2, n∗3} on M, and treat h as a matrix, then h acts
on M by the inverse matrix.) By Proposition 1, each choice of basis for M yields a
generator of H3,0(V). Thus, if Ω is the generator of H3,0(V) corresponding to a fixed
choice of integer basis m1, m2, m3, we see that we may obtain a new generator Ω′ of
H3,0(V) by applying the change of basis h−1 to M. Recall that Ω =

∑
|I|=3 det vI ẑIdzI ,

where det vI = det (〈m j, vik〉1≤ j,ik≤3).
We compute:
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Ω′ =
∑

|I|=3

det (h−1(vI))ẑIdzI (2)

=
∑

|I|=3

det (h−1)det vI ẑIdzI (3)

= det h
∑

|I|=3

det vI ẑIdzI (4)

since det h = ±1.
By Proposition 3, h∗(p) = p, so h∗(ω) = Res(Ω′/p) = (det h)ω.

Thus the group G of orientation-preserving automorphisms of Δ which preserve
Σ acts symplectically on quasismooth members of FΔ.

The largest group which occurs as the orientation-preserving automorphism
group of a three-dimensional lattice polytope is S 4. There are three distinct pairs
of isomorphism classes of reflexive polytopes which have this symmetry group. In
the following examples, we analyze families derived from these pairs of polytopes.

Example 4. Let Δ be the cube with vertices of the form (±1,±1,±1). The dual
polytope Δ◦ is an octahedron, with vertices {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. We
may choose our fan Σ such that the group of lattice automorphisms of Δ preserves Σ.
The group G of orientation-preserving automorphisms of Δ is isomorphic to S 4. FΔ

is a one-parameter family, and if X is a quasismooth member of FΔ, rank Pic(X) ≥
19.

Proof. The action of G on Δ◦ has two orbits: the origin, and the vertices of the
octahedron. Thus, FΔ is a one-parameter family. Using Lemma 2, we conclude that
for any quasismooth member of FΔ, rank S G = 17.

Let X be a quasismooth member of FΔ. We wish to determine which of the
divisors of X inherited from the ambient toric variety VΣ are in H2(X,Z)G. The
action of G on the lattice points of Δ has four orbits: the origin, the vertices of the
cube, the interior points of edges, and interior points of faces. Let v1, . . . , v8 be the
vertices of the cube and v9, . . . , v20 be the interior points of edges; let W1, . . . , W20

be the corresponding torus-invariant divisors of the toric variety VΣ . Since v1, . . . , v8

and v9, . . . , v20 are orbits of the action of G, W1 + · · · +W8 and W9 + · · · +W20 are
elements of Pic(V) which are fixed by G. These two divisors span a rank-two lattice
in Pic(V). Since there are no lattice points strictly in the interior of the edges of Δ◦
and none of the points v1, . . . , v20 lies in the relative interior of a facet of Δ, Wk ∩ X
is connected and nonempty for 1 ≤ k ≤ 20 and the divisors W1 ∩ X + · · · +W8 ∩ X
and W9 ∩ X + · · · +W20 ∩ X span a rank-two lattice in Pic(X). This rank-two lattice
is contained in H2(X,Z)G.

Since S G is the orthogonal complement of H2(X,Z)G, rank Pic(X) ≥ 17+2 = 19.

Remark 1. This family is analyzed in [18, 29].

Example 5. Let Δ be a three-dimensional reflexive polytope with fourteen vertices
and twelve faces. Up to lattice isomorphism, Δ is unique; moreover, Δ has the most
vertices of any three-dimensional reflexive polytope. We may choose our fan Σ
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such that the group of lattice automorphisms of Δ preserves Σ. The group G of
orientation-preserving automorphisms of Δ is isomorphic to S 4, and FΔ is a one-
parameter family. If X is a quasismooth member of FΔ, rank Pic(X) ≥ 19.

Proof. The lattice points of Δ◦ consist of vertices and the origin, and G acts transi-
tively on the vertices of Δ◦, so FΔ is a one-parameter family. As above, Lemma 2
shows that for any quasismooth member of FΔ, rank S G = 17.

Let X be a quasismooth member of FΔ. Once again, we determine which of
the divisors of X inherited from the ambient toric variety VΣ are in H2(X,Z)G. The
action of G on the lattice points of Δ has three orbits; one orbit contains the ori-
gin, another contains eight vertices, and the last contains the remaining six vertices.
Let {v1, . . . , v8} and {v9, . . . , v14} be the vertex orbits; let W1, . . . , W14 be the corre-
sponding torus-invariant divisors of VΣ . Then W1 + · · · + W8 and W9 + · · · + W14

are elements of Pic(V) fixed by the action of G; these two divisors span a rank-two
lattice in Pic(V). Since there are no lattice points strictly in the interior of the edges
of Δ◦ and the facets of Δ have no points in their relative interiors, Wk ∩ X is con-
nected and nonempty for 1 ≤ k ≤ 14 and the divisors W1 ∩ X + · · · +W8 ∩ X and
W9 ∩ X + · · · +W14 ∩ X span a rank-two lattice in Pic(X). This rank-two lattice is
contained in H2(X,Z)G, so rank Pic(X) ≥ 17 + 2 = 19.

Remark 2. An explicit analysis of the same family appears in [33].

Example 6. Let Δ be the octahedron with vertices (1, 1, 1), (−1,−1, 1), (−1, 1,−1),
(1,−1, 1), (1, 1,−1), and (−1,−1,−1). The polar dual Δ◦ has vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), (−1, 1, 1), (1,−1,−1), (0, 0,−1), (0,−1, 0), and (−1, 0, 0). We
may choose our fan Σ such that the group of lattice automorphisms of Δ preserves Σ.
The group G of orientation-preserving automorphisms of Δ is isomorphic to S 4. FΔ

is a one-parameter family. If X is a quasismooth member of FΔ, rank Pic(X) ≥ 19.

Proof. The action of G on Δ◦ has two orbits, the origin and the polytope’s vertices,
so FΔ is a one-parameter family. As in the previous example, Lemma 2 shows that
for any quasismooth member of FΔ, rank S G = 17.

Let X be a quasismooth member of FΔ. As before, we determine which of the
divisors of X inherited from the ambient toric variety VΣ are in H2(X,Z)G. The
action of G on the lattice points of Δ has three orbits: the origin, the octahedron’s
vertices, and the interior points of edges. Let v1, . . . , v6 be the vertices and v7, . . . , v18

be the interior points of edges; let W1, . . . , W18 be the corresponding torus-invariant
divisors of VΣ . Then W1 + · · · + W6 and W7 + · · · + W18 are elements of Pic(V)
fixed by the action of G. These two divisors span a rank-two lattice in Pic(V). Since
there are no lattice points strictly in the interior of the edges of Δ◦ and the facets of
Δ have no points in their relative interiors, Wk ∩ X is connected and nonempty for
1 ≤ k ≤ 18 and the divisors W1 ∩X + · · ·+W6∩X and W7 ∩X + · · ·+W18 ∩X span
a rank-two lattice in Pic(X). This rank-two lattice is contained in H2(X,Z)G. Thus,
rank Pic(X) ≥ 17 + 2 = 19.
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4 Picard–Fuchs Equations

4.1 The Griffiths–Dwork Technique

A period is the integral of a differential form with respect to a specified homology
class. The Picard–Fuchs differential equation of a family of varieties is a differen-
tial equation which describes the way the value of a period changes as we move
through the family. We may use Picard–Fuchs differential equations for periods of
holomorphic forms to understand the way the complex structure of a family of vari-
eties varies within the family. The Griffiths–Dwork technique provides an algorithm
for computing Picard–Fuchs equations for families of hypersurfaces in projective
space. This technique has been generalized to hypersurfaces in weighted projec-
tive space and in some toric varieties. Unlike other methods for computing Picard–
Fuchs equations, the Griffiths–Dwork technique allows the study of arbitrary ratio-
nal parametrizations.

Let us begin by reviewing the Griffiths–Dwork technique for one-parameter fami-
lies of hypersurfaces Xt in Pn described by homogeneous polynomials pt of degree �.
We may define a flat family of cycles γt. We then differentiate as follows:

d

dt

∫

γt

Res

(
AΩ

pk
t

)

=

∫

γt

Res

(
d

dt

(
AΩ

pk
t

))

(5)

= −k
∫

γt

Res

⎛
⎜⎜⎜⎜⎜⎝

( dpt

dt )AΩ

pk+1
t

⎞
⎟⎟⎟⎟⎟⎠ .

Thus, we may express successive derivatives of the period
∫

γt

Ω
p as periods of the

residues of rational forms. If Hn−1(X,C) is r-dimensional as a vector space over C,
then at most r residues of rational forms can be linearly independent. Therefore, the
period must satisfy a linear differential equation with coefficients in C(t) of order
at most r; this linear differential equation is the Picard–Fuchs differential equation
which we seek.

In order to compute the Picard–Fuchs differential equation in practice, we need

a way to compare expressions of the form Res
(

AΩ
pk

t

)

to expressions of the form

Res
(

BΩ
pk+1

t

)

. Suppose we have an element of Hn−1(X,C) of the form Res
(

KΩ0

pk+1

)
, where

K =
∑

i Ai
∂p
∂xi

is a member of the Jacobian ideal, and each Ai is a homogeneous
polynomial of degree k · �− n. Then the following equation allows us to reduce the
order of the pole:

Ω0

pk+1

∑

i

Ai
∂p

∂xi
=

1

k

Ω0

pk

∑

i

∂Ai

∂xi
+ exact terms (6)

We may find the Picard–Fuchs equation by systematically taking derivatives of∫

γt
Res

(
Ω0
p

)
and using (6) to rewrite the results in terms of a standard basis for
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Hn−1(X,C). This method is known as the Griffiths–Dwork technique. Practical im-
plementations of the Griffiths–Dwork technique use the Jacobian ring J(p) and the
induced residue map ResJ to transform the problem into a computation suitable for
a computer algebra system. (See [5], [6] or [9] for a more detailed discussion of the
technique.)

In order to extend the Griffiths–Dwork technique to hypersurfaces in toric vari-
eties, we need two tools: an appropriate version of the residue map, and an analogue
of (6) to reduce the order of the poles. In the case of semiample hypersurfaces in
toric varieties, we may use the results of [1, 25] described in Sect. 2.2 to define Res.
We must be aware, however, that the induced residue map ResJ need not be injective
for an arbitrary family of semiample hypersurfaces.

To construct an analogue of (6), we note that the results of [1] apply in the semi-
ample case:

Definition 6 ([1, Definition 9.8]). Let i ∈ {1, . . . , q}. We define the (n− 1)-form Ωi

on VΣ as follows:

Ωi =
∑

|J|=n−1,i�J

det(v{i}∪J)ẑ{i}∪JdzJ.

Here we use the convention that i is the first element of {i} ∪ J.

Lemma 3 ([1, Lemma 10.7]). If A ∈ S kβ−β0+βi , then

d

(
AΩi

pk

)

=

(
p ∂A

∂zi
− kA ∂p

∂zi

)
Ω0

pk+1
.

Now, let X be a hypersurface in a toric variety VΣ described by a homoge-
neous polynomial p ∈ S β. Suppose we have an element of Hn−1(X,C) of the
form Res

(
KΩ0

pk+1

)
, where K =

∑
i Ai

∂p
∂xi

is a member of the Jacobian ideal, and
Ai ∈ S kβ−β0+βi . The following reduction of pole order equation follows immedi-
ately:

Ω0

pk+1

∑

i

Ai
∂p

∂xi
=

1

k

Ω0

pk

∑

i

∂Ai

∂xi
+ exact terms (7)

4.2 A Picard–Fuchs Equation

Let Δ be the octahedron with vertices (1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1, 1),
(1, 1,−1), and (−1,−1,−1), as in Example 6, and let FΔ be the associated one-
parameter family. In this section, we describe the Picard–Fuchs equation for FΔ. We
use our result to show that the Picard rank of a general member of FΔ is exactly 19.

Doran analyzed the properties of Picard–Fuchs equations for lattice-polarized
families of K3 surfaces with Picard rank 19 in [8], and showed that the Picard–Fuchs
equations for the K3 surfaces are related to Picard–Fuchs equations for families of
elliptic curves.
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Proposition 5 ([30, Lemma 3.1.(b)]). Let L(y) be a homogeneous linear differential
polynomial with coefficients in C(t). Then there exists a homogeneous linear differ-
ential equation M(y) = 0 with coefficients in C(t) and solution space the C-span of

{ν1ν2 | L(ν1) = 0 and L(ν2) = 0} .

Definition 7. We call the operator M(y) constructed above the symmetric square
of L.

The symmetric square of the second-order linear, homogeneous differential
equation

a2
∂2ω

∂t2
+ a1

∂ω

∂t
+ a0ω = 0

is

a2
2
∂3ω

∂t3
+ 3a1a2

∂2ω

∂t2
+ (4a0a2 + 2a2

1 + a2a′1 − a1a′2)
∂ω

∂t
+(4a0a1 + 2a′0a2 − 2a0a′2)ω = 0 (8)

where primes denote derivatives with respect to t.

Theorem 2. [8, Theorem 5] The Picard–Fuchs equation of a family of rank-19
lattice-polarized K3 surfaces is a third-order ordinary differential equation which
can be written as the symmetric square of a second-order homogeneous linear Fuch-
sian differential equation.

Recall that a member of FΔ is described by the polynomial

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
cQ

∑

x∈Q

18∏

k=1

z〈vk ,x〉+1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

18∏

k=1

zk, (9)

where Q is the orbit consisting of the nonzero lattice points of Δ◦. To simplify our
computations, we set t = 1

cQ
and work with hypersurfaces Xt ∈ FΔ described by the

polynomial

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

x∈Q

18∏

k=1

z〈vk ,x〉+1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+ t

18∏

k=1

zk. (10)

Theorem 3. The Picard–Fuchs equation for FΔ is

d3ω

dt3
+

6(t2 − 32)

t(t2 − 64)

d2ω

dt2
+

7t2 − 64

t2(t2 − 64)

dω

dt
+

1

t(t2 − 64)
ω = 0. (11)

Proof. We apply the Griffiths–Dwork technique. Let ω =
∫

Res
(

Ω
f

)
be a period of

the holomorphic form. The parameter t only appears in a single term of f , so the
derivatives of ω have a particularly nice form:
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d j

dt j
ω =

∫

(−1) j j!(z1 . . . z18) jRes

(
Ω

f j+1

)

. (12)

Using the computer algebra system MAGMA [3], we find that (z1 . . . z18)3 ∈ J.
We may now apply (7) to compare d3

dt3 ω to lower-order terms. We conclude that ω
must satisfy (11).

Corollary 1. A general member of FΔ has Picard rank 19.

Proof. By Example 6, a general member of FΔ has Picard rank at least 19. Families
of K3 surfaces of Picard rank 20 are isotrivial, so if all members of FΔ had Picard
rank 20, ω would be constant. But a constant, non-trivial holomorphic two-form ω
cannot satisfy (11).

We now show that (11) is the symmetric square of a second-order differential
equation, as predicted by Theorem 2. Multiplying (11) by t2(t2−64) and simplifying,
we find that ω satisfies

t2(t2 − 64)
d3ω

dt3
+ 6t(t2 − 32)(t2 − 64)

d2ω

dt2
+ (7t2 − 64)(t2 − 64)

dω

dt
+ t(t2 − 64)ω = 0

Comparing with (8), we see that the parameters a2, a1, and a0 are given by a2 =

t(t2− 64), a1 = 2t2− 64 and a0 =
t
4 . Therefore, the symmetric square root of (11) is

d2ω

dt2
+

(2t2 − 64)

t(t2 − 64)

dω

dt
+

1

4(t2 − 64)
ω = 0. (13)

The symmetric square root is linear and Fuchsian, as expected.

5 Modularity and Its Geometric Meaning

All three S 4 symmetric families of K3 surfaces exhibit “Mirror Moonshine” [23]:
the mirror map is related to a hauptmodul for a genus 0 modular group Γ ⊂
PS L2(R), which gives a natural identification of the base minus the discriminant lo-
cus with H/Γ or a finite cover of H/Γ, where PS L2(R) acts on the upper half-plane
H as linear fractional transformations. Under this identification, the holomorphic
solution to the Picard–Fuchs equation becomes a Γ-modular form of weight 2.

In the cases studied in this article, this modularity is not an accident, but rather is
a consequence of special geometric properties of the K3 surfaces.
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5.1 Elliptic Fibrations on K3 Surfaces

We can determine the geometric structures related to modularity by identifying el-
liptic fibrations with section on these K3 surfaces. We briefly recall a few facts about
elliptic fibrations with section on K3 surfaces.

Definition 8. An elliptic K3 surface with section is a triple (X, π, σ) where X is a K3
surface, and π : X → P1 and σ : P1 → X are morphisms with the generic fiber of π
an elliptic curve and π ◦ σ = idP1 .

Any elliptic curve over the complex numbers can be realized as a smooth cubic
curve in P2 in Weierstrass normal form

y2z = 4x3 − g2xz2 − g3z3 (14)

Conversely, (14) defines a smooth elliptic curve provided Disc(g2, g3)= g3
2−27g2

3 � 0.
Similarly, an elliptic K3 surface with section can be embedded into the P2 bundle

P(OP1⊕OP1 (4)⊕OP1 (6)) as a subvariety defined by (14), where now g2, g3 are global
sections of OP1 (8), OP1 (12) respectively (i.e. they are homogeneous polynomials of
degrees 8 and 12). The singular fibers of π are the roots of the degree 24 homoge-
neous polynomial Disc(g2, g3) = g3

2 − 27g2
3 ∈ H0(OP1 (24)). Tate’s algorithm [32]

can be used to determine the type of singular fiber over a root p of Disc(g2, g3) from
the orders of vanishing of g2, g3 , and Disc(g2, g3) at p.

Proposition 6 ([4, Lemma 3.9]). A general fiber of π and the image of σ span a
copy of H in Pic(X). Further, the components of the singular fibers of π that do not
intersect σ span a sublattice S of Pic(X) orthogonal to this H, and Pic(X)/(H ⊕ S )
is isomorphic to the Mordell–Weil group MW(X, π) of sections of π.

When K3 surfaces are realized as hypersurfaces in toric varieties, one can con-
struct elliptic fibrations combinatorially from the three-dimensional reflexive poly-
tope Δ. As before, let Σ be a refinement of the fan over faces of Δ. Suppose P ⊂ N
is a plane such that Δ ∩ P is a reflexive polygon ∇, let m be a normal vector to P,
and let Ξ be the fan over faces of ∇. Then P induces a torus-invariant map VΣ → P1

with generic fiber VΞ , given in homogeneous coordinates by

πP : (z1, . . . zr) �→
⎡
⎢⎢⎢⎢⎢⎢⎣

∏

〈vi ,m〉>0

z〈vi ,m〉
i ,

∏

〈vi ,m〉<0

z−〈vi ,m〉
i

⎤
⎥⎥⎥⎥⎥⎥⎦ (15)

Restricting πP to an anticanonical K3 surface, we get an elliptic fibration. If ∇ has
an edge without interior points, this fibration will have a section as well. See [20]
for more details.

Example 7. We can use such an elliptic fibration with section to study the lattice
structure of the Picard group of a generic member X of the family defined by (10).
The map π : VΣ → P1 defined by the procedure above with m = (0, 1, 0), is an
elliptic fibration with section σ : P1 → X.
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For this particular π, examining the singular fibers gives an embedding of the
rank 19 lattice H ⊕ S = H ⊕ D6 ⊕ D6 ⊕ A3 ⊕ A1 ⊕ A1 into Pic(X). Because this
fibration has more than one section, H ⊕ S � Pic(X). To determine MW(X, σ) =
NS (X)/(H⊕S ), we note that the order of this group must divide 16, the square root
of the determinant of the intersection matrix of H ⊕ S . By putting the fibration into
the Legendre normal form

y2z = x(x + z)(x +
stz

16(1 + t)2
) (16)

one can see immediately that there are three two-torsion sections, namely [0, 1, 0],
[0, 0, 1], [−1, 0, 1], and [− st

16(1+t)2 , 0, 1]. Applying results of [16] shows there are
no four- or eight-torsion sections. Hence MW(X, π) � Z/2 × Z/2. While this still
doesn’t completely determine Pic(X), we know now that it a rank 19 lattice of sig-
nature (1,18) with discriminant ±16 which contains the sublattice H ⊕ D6 ⊕ D6 ⊕
A3 ⊕ A1 ⊕ A1.

5.2 Kummer and Shioda–Inose Structures Associated to Products
of Elliptic Curves

Let E1 , E2 be elliptic curves. We think of E1 and E2 as quotients C/(Z ⊕ Zτ1),
C/(Z ⊕ Zτ2) for τ1, τ2 ∈ H. The action of {±1} on A = E1 × E2 has sixteen fixed
points, leading to sixteen nodes on the quotient A = A/{±1}. The minimal resolution
of A is a K3 surface Km(A) called the Kummer Surface of A. The Picard group of
Km(A) contains a lattice DK of rank 18, generated by the sixteen exceptional curves
of the resolution, together with the strict transforms of the images of E1 × {pt},
{pt}×E2. Conversely, any K3 surface X with a primitive embedding DK ↪→ Pic(X)
is isomorphic to Km(A) for some A = E1 × E2 [4, Proposition 3.21].

A Kummer surface carries a symplectic involution β, with the minimal resolution
of Km(A)/β again a K3 surface S I(A), called the Shioda–Inose surface of A. [4]
shows that X � S I(A) for A = E1×E2 if and only if the rank 18 lattice H⊕E8⊕E8

embeds primitively into Pic(X). Generically, this will be exactly the Picard lattice,
and so the transcendental lattice will be H ⊕ H.

If E1, E2 are n-isogenous, i.e. if there exists a degree n morphism E1 → E2,
then the Picard ranks of Km(A) and S I(A) have rank 19, with an extra generator
corresponding to the strict transform of the graph of the isogeny. In this case, the
Picard lattice of the Shioda–Inose surface will generically be H⊕E8⊕E8⊕〈−2n〉,
and the transcendental lattice will be H ⊕ 〈2n〉.

E1, E2 are n-isogenous if and only if, up to the action of PS L2(Z) onH, τ2 =
−1
nτ1

.
(Note then that the relation is symmetric; given an isogeny E1 → E2, there exists a
dual isogeny E2 → E1.) Thus if

Γ0(n) =

{(
a b
c d

)

∈ PSL2(Z)

∣
∣
∣∣
∣
∣

c ≡ 0 (mod n)

}

(17)
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then the moduli space of ordered pairs of n-isogenous elliptic curves is given by
X0(n) = H/Γ0(n). To form the moduli space of products of n-isogenous elliptic
curves, we need to quotient also by the involution τ �→ −1

nτ
on X0(n). We call the

function wh : H → H defined by wh(τ) = −1
hτ

an Atkin–Lehner map. Note that

wh can be represented by the matrix

⎛
⎜⎜⎜⎜⎝

0 −1√
h√

h 0

⎞
⎟⎟⎟⎟⎠ ∈ PS L2(R), and also that if h|n,

then wh descends to an involution on X0(n). We write Γ0(n) + h for the subgroup of
PS L2(R) generated by Γ0(n) and wh, and X0(n) + h for the quotient of X0(n) by wh

(or equivalently for H/(Γ0(n) + h).
Thus, X0(n) + n is the moduli space of products of n-isogenous elliptic curves,

and hence also of the Kummer surfaces and Shioda–Inose surfaces associated to
such products. It is important to note, however, that while the transcendental lattices
of E1×E2 and S I(E1×E2) are isomorphic, the transcendental lattice of Km(E1×E2)
differs from these by scaling by 2.

5.3 Modular Groups Associated to Our Families of K3 Surfaces

For Examples 3.5 and 3.7, Γ is Γ0(6)+6 and Γ0(6)+3 respectively ([18, Proposition
5.4], [33, Theorem 2]).

In these two cases, explicit calculations of Picard lattices in [29, 33] show that
the K3 surfaces have Shioda–Inose structures associated to the product of 6- and
3-isogenous elliptic curves respectively. The transcendental lattices of the generic
K3’s in these pencils are H ⊕ 〈12〉 and H ⊕ 〈6〉 respectively. The role of Γ0(6) + 6
for Example 3.5, then, follows from identifying the base of the family with a com-
pactification of the moduli space X0(6) + 6 of S I(E1 × E2) for E1, E2 6-isogenous.
Similarly, in the case of Example 3.7, Γ0(6)+3 ⊂ Γ0(3)+3, so this example realizes
the base of the family as a covering of the moduli space of the Shioda–Inose surface
S I(E1 × E2) for E1, E2 3-isogenous.

Example 3.9 is somewhat different. In this case, the K3 surfaces are not Shioda–
Inose surfaces but Kummer surfaces. To see this, we will use the elliptic fibration of
Example 7. Elliptic fibrations on Km(E1 × E2) have been classified by [21], where
in particular they show that generically Km(E1 × E2) has a fibration giving lattice
H ⊕ D6 ⊕ D6 ⊕ (A1)⊕4 and Mordell–Weil group Z/(2)⊕ Z/(2). If the two elliptic
curves are presented in Legendre normal form

y2 = x(x− 1)(x− λi)

then [21] gives the Legendre equation for this fibration as

Y2 = X(X − u(u− 1)(λ2u− λ1))(X − u(u− λ1)(λ2u− 1))

(where u is an appropriately chosen parameter on the base of the fibration).
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Comparing with our fibration, we see that our family then sits inside the family
of Km(E1 × E2) as a locus where two of the A1 singular fibers collide to give an A3

singular fiber. The only possibilities are for λ1 = λ2 or λ1 = 1/λ2. In either case,
E1 and E2 must be isomorphic. Thus, our family is the family of K3 surfaces of the
form Km(E × E).

To determine for what group Γ this family is modular, we consider the symmetric
square root of the Picard–Fuchs equation given in (13). By scaling the solutions
appropriately, we may put this equation into a projective normal form d2 f

dt2 +Q(t) f =
0, where

Q(t) =

(
t2 − 8t + 64

) (
t2 + 8t + 64

)

4(t− 8)2t2(t + 8)2
(18)

Changing variables via t = 1
iz and comparing with the table of [22], we see that

Γ = Γ0(4|2) =

{(
a b/2
4c d

)

∈ PS L2(R)

∣
∣∣
∣
∣
∣

a, b, c, d ∈ Z
}

(19)
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of Elliptically Fibered K3 Surfaces:
A Tale of Two Cycles

Matt Kerr

Abstract We discuss two approaches to the computation of transcendental invari-
ants of indecomposable algebraic K1 classes. Both the construction of the classes
and the evaluation of the regulator map are based on the elliptic fibration structure
on the family of K3 surfaces. The first computation involves a Tauberian lemma,
while the second produces a “Maass form with two poles”.

Key words: Regulator map, Indecomposable K-theory, K3 surfaces, Tauberian
theory, Higher Green’s function

Mathematics Subject Classifications (2010): Primary 14C25; Secondary 14C30,
14J28

1 Introduction

By a seminal result of Chen and Lewis [8], one already knows that (for fixed lat-
tice L) on a very general L-polarized K3 surface X, the indecomposable K1-classes
proliferate like loaves and fishes to span H1,1

tr (X,R) under the real regulator map.
However, things in general are not settled for ever: the literature lacks a large class
of concrete, nontrivial examples occurring in modular families (with the possible
exception of Collino’s examples obtained by degenerating the Ceresa cycle [11]1).
The most natural source of such examples should be cycles supported on singular
fibers of Kodaira type In≥1 in torically-induced or Weierstrass-type internal fibra-
tions. In this paper we consider two families of higher Chow cycles of this type, and
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investigate properties of the transcendental functions produced by the real regulator
map (and a variant reviewed in Sect. 2).

The first cycle is on the family of H ⊕ E8 ⊕ E8 ⊕ 〈−12〉-polarized Kummer
K3’s studied by Beukers, Peters and Stienstra [5, 20, 21], which is parametrized by
Γ1(6)+6\H. By representing it as a family of toric hypersurfaces, one may produce
an elliptic structure by restricting a fibration of the ambient toric Fano threefold
constructed by appropriately “slicing” its reflexive polytope [2, 22]. In the spirit
of mirror symmetry, we perform a power series computation of the transcendental
regulator for our cycle (Sect. 3, with a technical detail resolved in Sect. 5). For our
second example, we revisit the computation of [9] for the Clingher–Doran M :=
H⊕E8⊕E8-polarized two-parameter family of K3’s, and prove the results (partially
described there) relating the real regulator to higher Green’s functions and the thesis
of A. Mellit [18].

While neither wise nor foolish, nor meriting any superlative degree of compar-
ison, we hope these constructions lead to something far, far better (or just more
general). The author would also like to thank Chuck Doran, James Lewis, Greg
Pearlstein, Duco van Straten, and Stefan Müller–Stach for discussions related to this
paper, and to acknowledge partial support from NSF Standard Grant DMS-1068974.
We are especially grateful to Adrian Clingher for supplying Remark 4.

2 Real and Transcendental Regulators

We shall introduce only the groups and maps we require; for a more general treat-
ment of cycle maps see Lewis’s lectures in this volume [17] (or Sect. 1 of [13]). Let
X be a smooth K3 surface overC, and consider the abelian group of “empty rational
equivalences”

K̃1(X) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(finite sums)
∑

q j.( f j, D j)

∣∣
∣
∣∣
∣

q j ∈ Q, D j ⊂ X curves, f j ∈ C(D̃ j)∗;
and

∑
q j(ı j)∗(( f j)) = 0

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

〈( f , D) + (g, D)− ( f g, D)〉

where ı j : D̃ j → X is the composition of the inclusion of the curve with its desin-
gularization. Algebraic K1 is the quotient by Tame symbols

K1(X) := K̃1(X)
/

Tame{K2(C(X))},
with Q-coefficients understood (here and throughout). There is a “formal” (but al-
ways zero) fundamental class map

cl : K1(X) → Hg2,1(X) := F2H3(X,C) ∩ H3(X,Q) = {0}
which is “computed” by sending
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Z =
∑

q j.( f j, D j) �−→
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ΩZ := 1
2πi

∑
q j(ı j)∗

d f j

f j
∈ F2D3(X)

TZ :=
∑

q j(ı j)∗( f−1
j (R−)) ∈ Z3

top(X)
.

Vanishing of Hg2,1(X) implies the existence of a (2, 0) current and piecewise C∞
chain

Ξ ∈ F2D2(X)
Γ ∈ C2

top(X)

}

such that

{
ΩZ = dΞ
TZ = ∂Γ

.

The Abel–Jacobi map

AJ : K1(X) → J2,1(X) :=
H2(X,C)

H2,0(X,C)⊕ H2(X,Q)
�
{F1H2(X,C)}∨

H2(X,Q)

is the basic invariant, and a special case of the arithmetic Bloch–Beilinson con-
jecture says it should be injective. Writing log−(·) for the (discontinuous) branch
with imaginary part ∈ (−π, π] (thought of as a 0-current), and δ(·) for the current of
integration over a chain, AJ is induced by

Z �−→ R̃Z :=
1

2πi

∑
q j(ı j)∗ log−( f j)

︸������������������������︷︷������������������������︸
RZ

− Ξ + δΓ ∈ D2(X).

To spell this out, evaluating the R̃Z against a d-closed smooth test form ω ∈ F1A2(X)
gives

AJ(Z)(ω) =
1

2πi

∑
q j

∫

D̃ j

(log−( f j))ı
∗
jω +

∫

Γ

ω,

where Γ is defined “up to a cycle”.
Now the group which interests us is the indecomposables

Kind
1 (X) := K1(X)

/
image

(
C∗ ⊗ Div(X)

)
,

and it is conjecturally detected by

AJ : Kind
1 (X) → {

F1H2
tr(X,C)

}∨/
Htr

2 (X,Q).

Since AJ is hard to compute, one tends instead to compute one of two “quotients”.
The so-called transcendental regulator

Ψ : Kind
1 (X) →

{
Ω2(X)

}∨/
image

{
Htr

2 (X,Q)
}

is given (on ω2,0 ∈ Ω2(X)) by

Ψ (Z)(ω2,0) =
∫

Γ

ω2,0.
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Since image{Htr
2 (X,Q)} is intractable for fixed X (except for Picard rank 20), this is

primarily of use variationally: if Xt is a family of K3 surfaces over a Zariski open
U ⊂ P1, carrying

• An algebraic family of cycles Zt ∈ Kind
1 (Xt).

• A smoothly varying (but possibly multivalued) family of chains Γt as above.
• An algebraically family of holomorphic forms ωt ∈ Ω2(Xt) with Picard–Fuchs

operator Dω
PF annihilating its periods,

then

Dω
PF

∫

Γt

ωt ∈ C(t)

is an invariant of {Zt} [12, Theorem 3.2]. We will compute this “inhomogeneous
term” for the cycle in Sect. 2, with a small caveat (cf. Remark 3).

For the real regulator

r : Kind
1 (X) → {

H1,1
tr (X,R)

}∨
,

which is really the imaginary part of AJ, the main difficulty is in producing appro-
priate test forms. It is defined by

r(Z)(ωR) = 1
{

2πi
∫

R̃Z ∧ ωR

}

=
∑

qi

∫

D̃ j

log | f j|ı∗jωR,

on 2-forms ωR which must be smooth, real, d-closed, of pure type (1, 1), and or-
thogonal to H1,1

alg . This approach is applied to a family of cycles in Sect. 3.
In both cases, the cycles of interest arise from an elliptic fibration of X

p ← 0,∞
X ⊃ D � P1

z
↓ ↓
P1 � {t0}

with a nodal rational (Kodaira type I1) fiber. The class of (za, D) ∈ Kind
1 (X) is in-

dependent of how we scale the coordinate z; it depends only on a. The primitive
class associated to such a fiber, defined up to sign, is the one with |a| = 1. Note that
its construction requires normalizing D, which can have implications for its mini-
mal field of definition (or its monodromy). It has been known for a long time that
similar constructions on In fibers in modular elliptic surfaces have trivial class in
Kind

1 , being in the Tame image of Beilinson’s Eisenstein symbols [4]. More recent
work of Asakura showed that this is not so on elliptic “Tate surfaces” [1], but did not
compute the regulator. We defer to [9] for further discussion of the context for these
computations; our personal interest lies in the novel relationships between geometry
and arithmetic they uncover through transcendental means.



Tale of Two Cycles 391

3 The Apéry Family and an Inhomogeneous Picard–Fuchs
Equation

Our first “mathematical short story” begins with the Laurent polynomial

φ(u, v, w) :=
(u− 1)(v− 1)(w− 1)(1− u− v + uv− uvw)

uvw

and the toric threefold PΔ attached to its Newton polytope

(whose singularity corresponding to the • shall not trouble us). The minimal res-
olution Xt of the Zariski closure of {1 − tφ = 0} in PΔ defines a K3 surface for
t � {0, (

√
2± 1)4,∞} =: L, which has Picard rank 19 for general t and is birational

to the family considered in [20] (cf. [13]). We shall work with t � 0 small, for which
the singular fibers of the internal elliptic fibration2

π : Xt → P1

(u,v,w) �→ w

have Kodaira types

w = 0 1 ∞ w(t) 3 more near∞
type I∗1 I5 I8 I1 3 more I1’s

More precisely, a computation shows that the I1 fibers occur at the solutions of

0 = (t3)w4 + (3t2 − 2t3)w3 + (t3 + 5t2 + 3t)w2 + (−8t2 − 20t + 1)w + (16t), (1)

all of which but

w(t) = −16tH(t) := −16t{1 + 20t + 456t2 + 11280t3 + · · · }

2 In the setup of [2], π is induced by slicing Δ horizontally. This suggests a significant generalization
of the computation carried out in this section. Also note that this particular π has Mordell–Weil
rank 1.



392 M. Kerr

are large (and asymptotic to −t−1 +3e
2πi
3 jt−

2
3 + · · · for j = 0, 1, 2). With our running

assumption of “t small”, w is of course 1-to-1.

Remark 1. Globally speaking, (1) tells us how singular fibers swap and collide; tak-
ing the fixed fibers into account, a resultant calculation shows that all collisions
occur for t ∈ L′ := L ∪

{
1, 27

40

}
.

On the family of K3 surfaces {Xt}, let ϕt represent a family of topological two-cycles
with class in H2

tr(Xt) and vanishing in homology at t = 0, where Xt degenerates3 to
X0 = PΔ\(C∗)3. Its class is invariant about t = 0 and unique up to scale; we fix this
by saying that its image under the map Tube : H2(Xt) → H3(PΔ\Xt) is the class of
the torus |u| = |v| = |w| = 1. We shall also need relative vanishing cycles for the
internal fibration. Similarly, for w close to 1, we let ϕt,w denote a family of 1-cycles
on the elliptic curves Xt,w := π−1(w) vanishing in H1(Xt,1); and let it also denote the
multivalued family resulting from their topological continuation. The link between
these cycles is via the Lefschetz thimble

Φt,w0 :=
⋃

w∈−−→1.w0

ϕt,w ∈ C2
top(Xt),

which has monodromy Φt,w0 �→ Φt,w0 + ϕt as w0 goes about the unit circle coun-
terclockwise. (Here, “ϕt” is to be understood up to coboundary.) That w0 is going
around both 0 and w(t) is what is important here; that Xt,1 is singular is not an issue.
The monodromy is the same on circles of radius less than 1 and ≥ w(t).

Let Zt ∈ Kind
1 (Xt) be the primitive class supported on Xt,w(t), and note that Γt :=

Φt,w(t) bounds on TZt . Over P1\L′, the continuation of Zt has significant monodromy,
which can be eliminated by lifting to (the preimage of P1\L′ in) a double-cover of
the curve (1). However, as long as t remains small, we need only that Zt has no
monodromy about t = 0; one way to see this is by a limiting argument, cf. Remark 2
below. For the family of holomorphic 2-forms, take

ωt :=
1

2πi
ResXtω̂t :=

1

2πi
ResXt

⎧
⎪⎪⎨
⎪⎪⎩

du
u ∧ dv

v ∧ dw
w

1− tφ(u, v, w)

⎫
⎪⎪⎬
⎪⎪⎭

and write also

ωt,w :=
1

2πi
ResXt,wω̂t,w :=

1

2πi
ResXt,w

⎧
⎪⎪⎨
⎪⎪⎩

du
u ∧ dv

v

1− tφ(u, v, w)

⎫
⎪⎪⎬
⎪⎪⎭

.

Then we are aiming to compute

Ψ (Zt)(ωt) =
∫

Φt,w(t)

ωt =
1

2πi

∫ w(t)

1

⎛
⎜⎜⎜⎜⎜⎝

∫

|u|=|v|=1

du
u ∧ dv

v

1− tφ(u, v, w)

⎞
⎟⎟⎟⎟⎟⎠

dw

w

in terms of power series in t.

3 This degeneration is not semistable, which can be fixed by blowing up the components of X0 at a
few points; this need not trouble us.
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Fix real numbers 0 < η < α 2 1. We will study the behavior of the (singular,
multivalued) functions

ν(t, t0) :=
∫

Φt,w(t0)

ωt , ν̃(t, t0) := ν(t, t0)− log(t0)

2πi

∫

ϕt

ωt

on the set
S := {|t| ≤ α + η} × {α− η ≤ |t0| ≤ α + η} ⊂ C2.

For fixed t, the previous remarks on Φt,w0 imply that ν̃ has no monodromy in t0 about
a circle of radius ≥ |t|. For fixed t0, ν̃ (or ν) has no monodromy in t about circles of
radius≤ |t0|, while remaining finite as t → 0; and so we may write (uniquely)

ν̃(t, t0) =
∞∑

n=0

An(t0)tn for |t| < |t0|.

As w → w(t),
∫

ϕt,w
ωt,w is asymptotic to (a constant multiple of) log(w−w(t)), which

translates to (w0−w(t)) log(w0−w(t))-type behavior for
∫

Φt,w0
ωt and thence to (t0−t)

log(t0 − t) for ν̃ (or ν). More precisely, we must have on S

ν̃(t, t0) =

{

(t − t0) log

(
t

t0
− 1

)}

F0(t, t0) +G0(t, t0) (2)

and (therefore)

δtν̃(t, t0) = log

(
t

t0
− 1

)

F(t, t0) +G(t, t0) (3)

where F, G, F0, G0 ∈ O(S) and δt := t ∂
∂t .

Clearly, the function we must compute is ν(t) := ν(t, t). By the above formula, at
least on the annulus A := {α− η ≤ |t0| ≤ α + η}, ν̃(t) := ν̃(t, t) is monodromy-free
about 0.

Lemma 1. ν̃(t) extends to a holomorphic function on the disk D := {|t| < α + η},
and so is representable by power series on A, viz.

ν̃(t) =
∞∑

m=0

νmtm.

Proof. Since the family {Zt} extends to a (global algebraic) higher Chow cycle
on a cover of the total space ∪t∈P1\L′Xt, the associated higher normal function is
admissible on D\{0}. (See for example [7].) One easily deduces (as in the proof
of Proposition 5.28 in [24]) that its period ν(t), and hence ν̃(t), is of the form
∑

a,q fa,q(t)ta logq(t) on D\{0}, where a ∈ Q ∩ [0, 1), q ∈ Z≥0, and fa,q ∈ O(D).
Any function of this form with no monodromy is in O(D).

The proof of the following key “Tauberian lemma” is deferred to Sect. 5:

Lemma 2.
∑∞

n=0 An(t)tn converges uniformly on {|t| = α}, to ν̃(t).
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The computations below will show (without using Lemma 2!) that the An are given
by Laurent series onA with poles of order n. Assuming this, we may apply Cauchy’s
theorem and Lemma 2 to obtain

νm =
1

2π

∫

|t|=α
ν̃(t)

tm+1
dt = lim

N→∞

∫

|t|=α

∑N
n=0 An(t)tn

tm+1
dt

= lim
N→∞

N∑

n=0

[
An(t)tn]

m =

∞∑

n=0

[
An(t)tn]

m

=

∞∑

n=0

[An(t)]m−n , (4)

where [·]m takes the mth power series coefficient. (Notice that a corollary here is that
the last sum itself is convergent.) This will justify the rearrangements we perform
below.

Fix w0 ∈ D̄∗1 (i.e., 0 < |w0| ≤ 1), and assume t � 0 is “sufficiently small”. Then
we have

∫

Φt,w0

ωt

= 2πi
∫ w0

1

(
1

(2πi)2

∫

|u|=|v|=1

dlogu ∧ dlogv

1− tφ(u, v, w)

)
dw

w

= 2πi
∫ w0

1

∑

n≥0

tn(w−1)n

wn

[
(u−1)n(v−1)n(1−u−v+uv−uvw)n

unvn

]

(0,0)

dw

w

where [·](0) takes the coefficient of u0v0, which in this case equals

n∑

k=0

(−w)n−k

(
n

k

)(
n + k

n

)2

.

With this substitution, the above integral

= 2πi
∞∑

n=0

n∑

k=0

(−1)n−k

(
n

k

)(
n + k

k

)2

tn
∫ w0

1

(w− 1)n

wk+1
dw

= 2πi
∞∑

n=0

tn
n∑

k, � = 0
k � �

(−1)�−k

(
n

k

)(
n

�

)(
n + k

n

)2 w�−k
0 − 1

�− k

+ 2πi log w0

∞∑

n=0

tn
n∑

k=0

(
n

k

)2(n + k

n

)2

in which we recognize the sum in the second term as
∑∞

n=0 tn[φn](0) =
1

(2πi)2

∫

ϕλ
ωt.
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Having carried out this calculation, the result can be continued in t to |t| <
|w−1(w0)| as

∫

Φt,w0
ωt is holomorphic there. We conclude that for (t, t0) ∈ S with

|t| < |t0|,
ν̃(t, t0)

2πi
=

1

2πi

∫

Φt,w(t0)

ωt − log t0
(2πi)2

∫

ϕt

ωt

=

∞∑

n=0

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑ n
k, � = 0
k � �

(
n
k

)(
n
�

)(
n+k

n

)2 16�−k t�−k
0 H(t0)�−k−(−1)�−k

�−k

+
∑n

k=0

(
n
k

)2(n+k
n

)2
log(−16H(t0))

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

tn,

and the term in braces is our 1
2πiAn(t0) from above. Interpreting powers and log of

H(t0) as power series in t0, the claim below Lemma 2 is now verified. We may sum-
marize what has been proved by saying that ν̃(t) may be computed by substituting
t0 = t in the last sum and rearranging by power of t. Each coefficient becomes an
infinite series (due to the terms with k > �) whose convergence is nontrivial and
guaranteed by the preceding argument, as is the convergence of the resulting power
series for small t. See Remark 3 below for the precise domain of convergence.

Performing this computation—that is, applying (4)—we find the first few power
series coefficients:

ν0

2πi
= log 16−

∑

n≥1

(
2n
n

)2

16nn
,

ν1

2πi
= 22 + 5 log 16− 20

∑

n≥2

(
2n
n

)2

16n(n− 1)
,

ν2

2πi
=

1703

4
+ 73 log 16− 8

∑

n≥3

(
2n
n

)2

16n

259n2 − 258n + 64

(n− 2)(2n− 1)2
.

In particular, we recognize4 the first of these as 8
π
G, where G is Catalan’s con-

stant
∑

k≥0
(−1)k

(2k+1)2 ; one naturally wonders if the others hold arithmetic interest. The
sought-for function is, of course,

ν(t)

2πi
=
∑

m≥0

νm

2πi
tm +

log t

(2πi)2

∫

ϕt

ωt.

The log term can be removed by tweaking our choice of Γ by a cycle (and hence
ν by a period); this will simplify the computation with DPF. Using results from [20],
one can compute the periods of integral cycles ϕ, ξ, η (sent by monodromy about
t = 0 to ϕ, ξ − 12ϕ, η + ξ − 6ϕ resp.) to be

4 Cf. (for example) [13, (6.15)ff].
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∫

ϕt

ωt = (2πi)2{1 + 5t + 73t2 + 1445t3 + · · · },
∫

ξt

ωt = −12
log t

2πi

∫

ϕt

ωt + (2πi){−144t− 2520t2 − · · · },
∫

ηt

ωt = 6
log2 t

(2πi)2

∫

ϕt

ωt +
log t

2πi

∫

ϕξ

ωt − 864t2 − 25920t3 − · · · ,

the coefficients in the first of which are just [φn](0). Replacing Γt by Γ̂t := Γt +
1

12ξt,
changes ν

2πi to

ν̂(t)

2πi
=

ν(t)

2πi
+

1

12

1

2πi

∫

ξt

ωt = A + Bt + · · ·

where A = ν0
2πi , B = ν1

2πi − 12.
Using [op. cit.], one finds that the Picard–Fuchs operator killing periods of ωt is

Dω
PF = (t2 − 34t + 1)δ3

t + 2t(t − 17)δ2
t + 3t(t− 9)δt + t(t − 5).

Applied to our “higher normal function”, this gives

(

Dω
PF

ν

2πi
=

)

Dω
PF

ν̂

2πi
= (B− 5A) t + h.o.t.

where

B− 5A = 10 + 5
∑

n≥1

(
2n
n

)2

16nn
− 20

∑

n≥2

(
2n
n

)2

16n(n− 1)

= 10 + 5
∑

n≥1

(
2n
n

)2

16nn(2n + 2)
> 0.

So ν̂ is not a period, and we conclude

Theorem 1. For very general t, (the continuation of) Zt has nontrivial class in
Kind

1 (Xt), detected by the transcendental regulator.

Remark 2. The I1 fiber Xt,w(t) supporting Zt limits, as t → 0, to the nodal rational
curve Y = {16uv = (u − 1)2(v − 1)2 , w = 0} ⊂ X0. It follows that Xt,w(t) ad-
mits a normalization over C[[t]], justifying the statement that Zt has no monodromy
about 0.

In fact, Zt itself limits to a class Z0 ∈ H2
M(X0,Q(3)) in motivic cohomology, and

one can use this give an alternative proof of Zt’s nontriviality. More precisely, in
the sense of [13, Sect. 6] Z0 belongs to W−2H2

M(X0,Q(3)) � CH2(Spec(C), 3) �
Kind

3 (C) with AJ map to C/Q(2). Now the tangent vectors of Y at the singularity
(u, v) = (−1,−1) have slopes ±i, which implies that Y admits a normalization—
and hence that Z0 is defined—over Q(i) (but not Q). By Beilinson’s variant of
Borel’s theorem (cf. [3, 19], and especially [13, Proposition 6.2]) AJ of any cycle in
Kind

3 (Q(i)) has imaginary part a rational multiple of G.
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With our choices above, AJ(Z0) must match up with limt→0 ν̂(t) (cf. [13, Proposi-
tion 6.3]). In a different guise, AJ(Z0) has been computed in [15, Sect. 4]5 and comes
out to exactly 16iG. This proves immediately that ν̂ cannot have been a period, and
satisfyingly explains the presence of 8

π
G = 16iG

2πi as the leading coefficient above.

Note that the computational method really requires little more than knowing φ, w(t),
and DPF, and is likely to work in greater generality than the approach outlined in the
last remark. For instance, uncovering Z0 in general could require a nontrivial moving
lemma calculation, and even here we did not discover Z0 until the presence of G in
ν̂0 suggested it.

Remark 3. Because there are no collisions of internal singular fibers until t0 =
(
√

2 − 1)4, Zt remains well-defined and ν̂(t) = Ψ (Zt)(ωt) monodromy- and pole-
free on Dt0 . Since Zt (hence ν̂) has monodromy about t0, this is precisely the radius
of convergence of

∑
νmtm.

The monodromy of {Zt}means that the “inhomogeneous term” Dω
PFν̂ is algebraic

rather than rational in t. It becomes single-valued upon pullback to the double cover
of (1) which makes {Zt} globally well-defined (so that monodromy of the pullback
of ν̂ is by periods alone). It was pointed out by D. van Straten that the curve (1) is in
fact rational; it is not known whether this is so for the double cover.

4 M-Polarized K3 Surfaces and a Higher Green’s Function

The cycle whose real regulator we shall study appeared in Sect. 6 of [9], and we shall
preface our second tale with a review of that construction, starting with a brief sum-
mary of material from [10]. Let Eλ, for each λ ∈ P1\{0, 1,∞}, denote the Legendre
elliptic curve

{
y2 = x(x− 1)(x− λ)

}
. Given (a, b) ∈ C2, the minimal resolution of

{

Y2Z − (4u3 − 3au− b)W2Z − 1

2
Z2W − 1

2
W3 = 0

}

⊂ P2
[Y:Z:W] × P1

u

defines a K3 surface Xa,b of Shioda–Inose type: that is, its Hodge structure H2
tr(Xa,b)

is integrally isomorphic to H2
tr(Eλ1 × Eλ2 ) for certain Legendre parameters λ1, λ2. It

turns out that these must satisfy j(λ1) j(λ2) = a3, j(λ1)+ j(λ2) = a3−b2+1. The nat-
ural Weierstrass fibration θ : Xa,b → P1

u has an I∗12 singular fiber over u =∞, which
gives the generic Picard rank 18. However, for a K3 we must have deg(θ∗ωXa,b/P1 ) =
2, which implies the presence (for generic a, b) of 6 additional singular fibers, each
of type I1. Our cycle Za,b ∈ Kind

1 (Xa,b) will be the primitive class supported on one of
these, ignoring for the moment which one, as well as issues of sign and monodromy.

One of the achievements of [10] was an explicit correspondence inducing the
isomorphism of Hodge structures above. To produce this, notice that the I∗12 embeds
a D+16 lattice in H2(Xa,b,Z). This implies the existence of two sections of θ with

5 Where G is incorrectly identified as a transcendental number; that is the conjecture, but its irra-
tionality is still unproven. This has no bearing on nontriviality of 16iG modulo Q(2).
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2-torsion difference, translating by which gives a Nikulin involution N . This invo-
lution has a fixed point (the node) on each I1 and two fixed points on the I∗12, from
which one deduces that the minimal resolution of Xa,b/N has one I∗6 and 6 I2 fibers.
This Kummer surface, which we denote Kλ1,λ2 , fits into a diagram of the form

K̃′′λ1,λ2

π2

������
��
��
��
�

π1

		 		�
��

��
��

�
K̃′λ1,λ2

π′1





��
��
��
�� π′2

�� ���
��

��
��

�

Eλ1 × Eλ2

2:1

/(-id)×2

�� ����
���

���
�

K
resolve





��
��
��
��

resolve

		 		�
��

��
��

�

ρ

����

Xa,b

��

2:1

/N
������
��
��
��

Ǩ′′λ1,λ2
Ǩ′λ1,λ2

P1 P1�
κ

��

(5)

where for the moment we think of (a, b) and (λ1, λ2) as fixed and very general.
Explicitly, Kλ1,λ2 can be given as the minimal resolution of Ǩλ1,λ2 :=

{
U2X1X2 = (X1 − V)(X1 − λ1V)(X2 − V)(X2 − λ2V)

}
⊂ P3

[X1:X2:U:V] ,

and the elliptic fibration ρ by [
∑2

i=1

(

− X2
i

λi
+ λi+1

λi
XiV

)

−V2 : X1X2], in terms of which

the I2 fibers lie over 1, 1
λ1

, 1
λ2

, 1
λ1λ2

, λ1λ2+1
λ1λ2

, λ1+λ2
λ1λ2

and the I∗6 fiber over∞.
The cycle Za,b is taken to lie on the I1 fiber over κ−1(1). With the aid of the

diagram

of curves (rational except for D1 and Ď1) in the top half of (5), we may construct
classes in Kind

1 of Kλ1,λ2 and Eλ1 × Eλ2 with the same real regulator class as Za,b.
Indeed, noting that

(π′2)∗
{
(C̃1, z̃1) + (C2, z2)

}
= Za,b,
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we can set

Zλ1,λ2 := (π′1)∗
{
(C̃1, z̃1) + (C2, z2)

}
≡ 1

2
(π1)∗

{
(D1, z1 ◦ ξ) + (C2, z2

2)
}

andWλ1,λ2 := 1
2 (π2)∗

{
(D1, z1 ◦ ξ) + (C2, z2

2)
}
. Explicit normalization of C1 (or rather

its image Č1 in Ǩλ1,λ2 ) shows that Zλ1,λ2 has ± monodromy in accordance with
√

λ1(λ2−1)
(λ1−1)λ2

. Note that this function is constant on the diagonal.

For our test form, we now let6

ωR,λ := 1
⎧
⎪⎪⎨
⎪⎪⎩

dx1

y1
∧
(

dx2

y2

)⎫⎪⎪⎬
⎪⎪⎭
∈ A1,1(Eλ1 × Eλ2 ).

The maps πi, π
′
i are isomorphisms on H2

tr,Q, and we denote also by [ωR]K, [ωR]X two

more classes, in H1,1
tr,R of Kλ1,λ2 resp. Xa,b, such that all three agree under pullback

to K̃λ1,λ2 , K̃′λ1,λ2
. Since AJ commutes with pushforward, we have r(Za,b) {[ωR]X} =

r(Zλ1,λ2 ) {[ωR]K} = r(Wλ1,λ2 )(ωR) =

R(λ1, λ2) :=
1

2

∫

D1

(log |z1 ◦ ξ|)π∗2ı∗Ď1
ωR =

1

2

∫

C1

log |z1|ξ∗{ı∗D1
π∗2ωR}

︸���������︷︷���������︸
∈D1,1(C1)

. (6)

At this point, it is convenient to specialize to the Picard rank 19 locus λ1 = λ2 =: λ,
along which the collisions of singular fibers do not affect ρ−1(1); this eliminates the
monodromy in Z, hence that in R. Writing z = x+ iy = reiφ, the computation of (6)
carried out in [9] specializes to

R(λ) := R(λ, λ) = −4|λ + 1|1
∫

P1
z log

∣
∣
∣∣
∣

z + i

z− i

∣
∣
∣∣
∣

Pλ(z)Qλ(z)

|S λ(z)| dz ∧ dz̄ (7)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pλ(z) := (λ2 − λ− 1)z4 + 2z2 + (λ3 − λ2 − 2λ + 1)

Qλ(z) := (λ3 − λ2 − 2λ + 1)z4 + 2z2 + (λ2 − λ− 1)

S λ(z) := (z2 − λ)(1− λz2)(z2 + 1)
(
z2 − (1 + λ− λ2)

)

× ((1 + λ− λ2)z2 − 1
) (

z4 + (λ3 − 3λ)z2 + 1
)
.

An analytic argument [op. cit.] is required to show that limλ→1 R(λ, λ) agrees with7

R(1) = −16
∫

P1

log
∣
∣
∣ z+i
z−i

∣
∣
∣ r sin φ

|z2 + 1||z2 − 1|2 dx dy < 0, (8)

whereupon we have

6 We will usually drop the subscript λ.
7 Since

∣
∣∣log

∣
∣∣ z+i
z−i

∣
∣∣
∣
∣∣ < C

∣
∣∣z2 − 1

∣
∣∣ for z near ±1, this clearly converges.
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Theorem 2. For very general (a, b) resp. (λ1, λ2), (the continuation of) Za,b resp.
Zλ1,λ2 ,Wλ1,λ2 is real-regulator indecomposable.

We now turn to the magnificent properties of the functionR. More precisely, writing

f (λ) := i
∫

Eλ

dx

y
∧
(

dx

y

)

, ηλ :=
ωR,λ

f (λ)
∈ A1,1

R
(Eλ × Eλ),

and λ : Γ(2)\H �→ P1\{0, 1,∞} for the classical elliptic modular function, we will
study

Ψ (τ) :=
R(λ(τ))

f (λ(τ))
= r

(
Wλ(τ)

) (
ηλ(τ)

)

for τ ∈ H. As pointed out to the author by C. Doran, some of the general results be-
low have also appeared in A. Mellit’s thesis [18]; we expect that a simple exposition
of these matters is nevertheless of value.

Denote by E π→ H the family of elliptic curves with fibers π−1(τ) = C/Z 〈1, τ〉,
by E (2) π(2)→ H its fiber-product with itself, and by EU resp. E (2)

U the restrictions to an
analytic open neighborhood U in any fundamental domain for a congruence sub-
group Γ ⊂ S L2(Z). Let Y denote a (complex-) analytic family of K̃1-cycles on the
fibres of π(2). We may regard this as an “analytic higher Chow cycle” on E (2)

U —
that is, as a formal sum

∑
qi.(Fi,Si) of surfaces paired with meromorphic functions

Fi on their analytic desingularizations, with sum of divisors
∑

qi(Fi) = 0 in E (2)
U .

Therefore, rY :=
∑

qi log |Fi|δSi makes sense as a (1, 1) normal current on E (2)
U ,

of intersection type with respect to the fibers; likewise for the closed (2, 1) current
Ω′
Y

:= (2πiΩY =)
∑

qi
dFi

Fi
δSi .

Write τ = X + iY. Let z = x + iy resp. z1, z2 be the usual coordinates (modulo
Z〈1, τ〉) on fibers of π resp. π(2). By abuse of notation, we have

ητ :=
dz1 ∧ dz̄2 + dz̄1 ∧ dz2

4Y
(9)

which is in general Γ-invariant, and in case Γ = Γ(2) matches up with the form ηλ(τ)

under the isomorphism (π(2))−1(τ) � (Eλ(τ))×2. We shall denote by Hk
π(2) , Hp,q

π(2) the
C∞ relative cohomology sheaves on U, and by L• the Leray filtration on C∞ forms
Ak(E (2)

U ). Calling α ∈ LaAk(E (2)
U ) π(2)-closed if dα ∈ La+1, we have natural maps

[ ]{a}U : LaAm(E (2)
U )π(2)-cl −→ Aa(U;Hm−a

π(2) )

to cohomology-sheaf valued forms.

Lemma 3. There exists a smooth form η̃ ∈ A1,1(E (2)
U ) pulling back to ητ on fibers,

and satisfying:

(i) [∂η̃]{1}U ∈ A0,1(U;H2,0
π(2) );

(ii) [∂̄η̃]{1}U ∈ A1,0(U;H0,2
π(2) ); and

(iii) ∂̄∂η̃ = 1
2Y2 η̃ ∧ dτ ∧ dτ̄.
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Proof. Consider the C∞ uniformization F : U × (C/Z〈1, i〉) �−→ EU given by
F(τ, w) := (τ,1(w) + τ3(w)). According to the easy pullback computation

F∗
(

dz− y

3(τ)
dτ

)

= 1(dw) + τ3(dw),

d̃z := dz − y
3(τ) dτ ∈ A1,0(EU) is smooth and well-defined on EU (whereas “dz” is

not), while pulling back to dz on fibers. We compute

d(d̃z) =
dz̄− dz

τ− τ̄
∧ dτ +

z− z̄

(τ− τ̄)2
dτ ∧ dτ̄,

from which it follows that

∂(d̃z) =
d̃z ∧ dτ

τ̄− τ
, ∂̄(d̃z) =

dz̄ ∧ dτ

τ− τ̄
+

z− z̄

(τ− τ̄)2
dτ ∧ dτ̄ =

d̃z ∧ dτ

τ− τ̄
,

and then (by conjugation) ∂(d̃z) = d̃z∧dτ̄
τ̄−τ

.

Swtiching to E (2)
U , since

η̃ :=
i

2

d̃z1 ∧ d̃z2 + d̃z1 ∧ d̃z2

τ− τ̄

pulls back to ητ on fibers, it is vertically closed. More concretely, we easily compute

∂η̃ = i
d̃z1 ∧ d̃z2

(τ− τ̄)2
∧ dτ̄ , ∂̄η̃ = −i

d̃z1 ∧ d̃z2

(τ− τ̄)2
∧ dτ,

which gives (i)–(ii) . At this point, (iii) is easy and left to the reader.

The next few Lemmas deduce properties of the function

Υ(τ) := R(Yτ)(ητ) = π(2)
∗
(
rY ∧ η̃

)

on U; of course, we have the case Y = W|U and Υ = Ψ |U (and Γ = Γ(2)) in mind.

Lemma 4. We have ΔhypΥ = −2Υ, where

Δhyp := −Y2Δ = −4Y2 ∂

∂τ̄

∂

∂τ

is the hyperbolic Laplacian.

Proof. We shall use the fact that the pairing

π(2)
∗ : D1,1(E (2)

U )π(2)-cl ⊗ L1A1,2(E (2)
U )π(2)-cl −→ D0,1(U)

factors, via [ ]{0}U ⊗ [ ]{1}U , through D0(U;H1,1
π(2) ) ⊗ A0,1(U;H1,1

π(2) ). In particular, any

components of type A1,0(U;H0,2
π(2) ) in the right-hand factor are killed. (A similar ob-
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servation applies to L1A2,1(E (2)
U )π(2)-cl.) Moreover, rY belongs to the left-hand factor,

with d[rY] = 1
2Ω′Y +

1
2Ω′Y.

From Lemma 3(ii), we have

∂̄Υ = ∂̄π(2)
∗ (rY ∧ η̃) = π(2)

∗

(
1

2
Ω′Y ∧ η̃

)

+ π(2)
∗
(
rY ∧ ∂̄η̃

)
=

1

2
π(2)
∗
(
Ω′Y ∧ η̃

)
.

Since ∂[Ω′
Y

] = 0,

∂∂̄Υ = −1

2
π(2)
∗
(
Ω′
Y
∧ ∂η̃

)
= π(2)

∗
(
rY ∧ ∂̄∂η̃

)− π(2)
∗
(
∂̄[rY ∧ ∂η̃]

)

which by Lemma 3(i),(iii)

= π(2)
∗
(
rY ∧ ∂̄∂η̃

)
=

1

2Y2
π(2)
∗
(
rY ∧ η̃

)
dτ ∧ dτ̄ =

Υ

2Y2
dτ ∧ dτ̄.

Lemma 5. Let τ0 ∈ U be a CM point (i.e. quadratic irrationality), so that π−1(τ0)
is a CM elliptic curve. Assume that Yτ0 is defined over Q̄. Then Υ(τ0) is of the form
∑
Q logQ (i.e., is a sum of algebraic multiples of logarithms of algebraic numbers).

Proof. On (π(2))−1(τ0) =: E0 × E0, write D1 = E0 × {0}, D2 = {0} × E0, D3 = ΔE0 ,
and D4 for the graph of multiplication by τ0. The presence of D4 makes H1,1(E0 ×
E0), and thus [ητ0], algebraic. In fact, a simple computation shows that

ητ0 ≡ α1δD1 + α2δD2 + α3δD3 + α4δD4

in H1,1, with α1 := 1−X0
2Y0

, α2 := |τ0|2−X0

2Y0
, α3 := X0

2Y0
, α4 := − 1

2 (all obviously in
Q(3(τ0))). We may assume (by Bloch’s moving lemma [6]) that Yτ0 =

∑
i(gi, Di)

with Di and gi Q-rational, and such that Di intersectsD j properly (with multiplicities
all 1) away from |(gi)|. This yields immediately Υ(τ0) =

r(Yτ0)(ητ0) =
∑

i

4∑

j=1

α j

∫

Di

log |gi|δD j

=
∑

i, j

∑

p∈Di∩D j

α j log |gi(p)|,

with gi(p) ∈ Q.

Next, we allow Y to fail to be a cycle over a point τ̂ ∈ U; that is, suppose that the

1-cycle C :=
∑

qi(Fi) is supported on
(
π(2)

)−1
(τ̂). We say Y is singular at τ̂.

Lemma 6. If τ̂ is a CM point, then either (i) Υ is smooth at τ̂ or (ii) Υ ∼ c log |τ− τ̂|
as τ → τ̂, for some c ∈ Q(3(τ̂))∗. If τ̂ is not a CM point, then the singularity is
apparent; that is, Υ remains smooth at τ̂.
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Proof. Since
∑

qi

∫

Si,τ
|ητ| is bounded by a constant and Fi|τ depends algebraically

on τ, Υ(τ) =
∑

qi

∫

Si,τ
(log |Fi|τ|)ητ (resp. ∂Υ

∂τ̄
) is bounded by a multiple of log |τ− τ̂|

(resp. 1
τ−τ̂

). As in the proof of Lemma 4, we have ∂̄Υ = 1
2π

(2)
∗
(
Ω′
Y
∧ η̃

)
, but ∂[ΩY] =

−2πiδC instead of 0. Hence

∂∂̄Υ = −1

2
π(2)
∗
(
Ω′
Y
∧ ∂η̃

)− 2πi

2
π(2)
∗ (δC ∧ η̃)

=
Υ

2Y2
dτ ∧ dτ̄− πicδ{τ̂},

where c :=
∫

C ητ̂ belongs to Q(3(τ̂)) by the proof of Lemma 5 if τ̂ is CM. From

Δhyp (Υ − c log |τ− τ̂|) = −2Υ it now follows that Υ−c log |τ−τ̂|
log |τ−τ̂| → 0.

If τ̂ is not CM, or if c = 0 above, then [C] extends to a section of H1,1
π(2),alg;

indeed, C =M · (π(2))
−1

(τ̂) for some surface M =
∑

q′iMi ⊂ E (2)
U . Subtracting the

decomposable cycle
∑

q′i.(τ− τ̂,Mi) from Y (and applying Bloch’s moving lemma

to make it properly intersect the fiber (π(2))−1(τ̂)) removes the singularity without
affecting Υ.

Finally, let Ē (2)
Γ

π̄→ X(Γ) be Shokurov’s smooth compactification [23] of the Kuga
modular variety Γ\E (2) → Y(Γ). (In case Γ = Γ(2), it has fibers Eλ × Eλ for
λ ∈ Y(Γ).) Consider a (higher Chow) precycle ȲΓ =

∑
qi.(Fi,Si) on Ē (2)

Γ , with
“boundary”

∑
qi(Fi) supported on π̄−1(Ξ) for some finite set Ξ ⊂ X(Γ). Let ηΓ be

the (nonholomorphic, real) section of the logarithmically extended Hodge bundle
H1,1

π̄,e → X(Γ) provided by (9). Asymptotics of ΥΓ(x) := r(ȲΓ,x)(ηΓ,x) at points in
Ξ ∩ Y(Γ) are clear from Lemma 6, so let κ ∈ X(Γ)\Y(Γ) be a cusp (with local
holomorphic coordinate q).

Lemma 7. (a) |ΥΓ| is bounded by a constant near κ. (b) If κ � Ξ, then this bound is
improved to a constant multiple of 1

log |q| .

Proof. Assume for simplicity κ is unipotent, so that Ē (1)
Γ has a Néron N-gon over

q = 0. Writing ωq for a local generator of the extended relative canonical sheaf,
log |q|ηΓ,q = 1(ωq,1 ∧ ω̄q,2) limits to a nonzero homology class on π̄−1(κ). If κ � Ξ,
then r(ȲΓ) restricts to a cohomology class on π̄−1(κ), which pairs with the former
to give a (finite) number. Dividing by log |q| gives (b). For (a), the beginning of the
proof of Lemma 6 shows that when x ∈ Ξ, the bound is worse than that in (b) by a
factor of log |q|.
For our purposes, a higher Green’s function G(τ) of weight 2k and level Γ on H will
be defined by the following properties:

• G is smooth and real-valued on H◦ := H\{Γ.τ̂} for some τ̂ ∈ H.
• G is Γ-invariant.
• ΔhypG = k(1− k)G (on H◦).
• G tends to zero at all cusps.
• G(τ) ∼ c log |τ− τ̂| (as τ → τ̂) for some c ∈ Q∗.
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Uniqueness is clear given c, k, τ̂, Γ: the difference of two distinct such functions
would be a Maass form with eigenvalue −2, which is impossible since Δhyp is a
positive definite operator. Existence is explained in [18].

Under the conditions that τ̂ is CM and S 2k(Γ) = {0}, Gross and Zagier [14]
conjectured (roughly) that

for any CM point τ0, G(τ0) is of the form
∑
Q logQ. (10)

(Clearly, its validity is independent of c ∈ Q∗.) Mellit was able to prove this for the
case k = 2, τ̂ = i, Γ = PS L2(Z) using the above ideas together with an explicit
family of cycles. Noting that S 4(Γ(2)) = {0}, λ(1 + i) = −1 and λ( 1+i

2 ) = 2, our
cycle leads to another case:

Theorem 3. Ψ is a Q-linear combination of two higher Green’s function of weight
4 and level Γ(2) with τ̂ = 1 + i and 1+i

2 ; moreover, it verifies conjecture (10).

Proof. This follows from Lemmas 4–7, once we verify that W extends to a cycle

on Ē (2)
Γ \π̄−1({−1, 2}) π̄→ X(Γ)\{−1, 2}.8 Equivalently, we may check this for Z on

the (1-parameter) Kummer family, for which the following analysis on the singular
model Ǩλ,λ will suffice. Referring to (6) and (7), the function on the nodal rational
curve Č1 ⊂ Ǩλ,λ ⊂ P3 whose zero and pole cancel at the node is z1 =

z+i
z−i . By a

computation in [9], Č1 is a double cover of a rational curve with parameter

u =
1− λz2

z2 − λ
, (11)

in terms of which its equation is

U2(u2 + λu + 1)2 = V2(u + 1)2(u + λ)(λu + 1). (12)

We need to determine the values of λ for which (12) acquires a component where
z1 ≡ 0 or∞ (⇔ z2 ≡ −1), i.e. where Ž := (z1, Č1) has boundary.

Inverting the parameter (11) to z2 = 1+λu
u+λ , this happens when λ = −1, and also if

(12) has a component with u ≡ −1, which occurs when λ = 2. (In spite of singular
fiber collisions or degeneration of the K3 at λ = 0, 1,∞, the cycle extends.) It
follows that Ž has boundary only at λ = −1, 2. In fact, z1 limits to both 0 and∞ on
components of Č1 in each case, and so the boundary cannot be corrected by adding
a decomposable cycle.

So for example this shows that Ψ (ζ6) = R(ζ6)/ f (ζ6) (made quite explicit by (7))
satisfies (10). More generally, one might optimistically view (10) as predicting
(for each k, τ̂, Γ as above) the existence of a family of indecomposable K1-classes.
The moral of this story is perhaps that (generalized) algebraic cycles are far more

8 It is possible, but tedious, to instead check the asymptotics for Ψ at 0,±1, 2,∞ directly from the
formula (7), cf. the appendix to Sect. 6 of [9].
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ubiquitous, and useful, than the Hodge or Bloch–Beilinson conjectures would sug-
gest on their own.

Remark 4. In fact, we can say precisely what the linear combination in Theorem 3
is. A computation by A. Clingher (private communication) shows that there is a
rational involution of the family {Kλ,λ}λ∈P1 over λ �→ 1 − λ sending the alternate

fibration ρ �→ 1−2λ+λ2ρ
(1−λ)2 (hence ρ−1(1) → ρ−1(1)) and restricting to the identity on

K 1
2 , 1

2
. Since the cycle family {Zλ,λ} is preserved by this involution, Ψ is invariant

under λ ↔ 1− λ, and so we get that the Q̄-coefficients of log |λ+ 1| and log |λ− 2|
in Ψ are equal.

5 Proof of the Tauberian Lemma 2

Though we could not find this result in the literature, what follows makes substantial
use of ideas from [16]. We will give a fairly detailed proof, since those working in
cycles may not be familiar with this part of complex analysis. We retain the notation
of Sect. 3, with α fixed throughout.

Since F, G, F0, G0 are holomorphic on S, they are uniformly continuous there,
hence also in

S := {(t, t0) ∈ S ||t0| = α, |t| ≤ α } .
It is clear from Sect. 3 that ν̃ is (uniformly) continuous on S . Defining also

S 0 :=

{

(t, t0) ∈ S
∣∣
∣
∣
∣|t0| = α,

t

t0
∈ [0, 1]

}

,

we have S 0 ⊂ S ⊂ S.
We work first on S 0, writing t = βt0 (β ∈ [0, 1]) with t0 = αeiλ0 . Set

V(β, λ0) := ν̃
(
βαeiλ0 , αeiλ0

)
,

an(λ0) := An(αeiλ0 )αneinλ0 , and sN(λ0) :=
∑N

n=0 an(λ0), so that V(β, λ0) =
∑∞

n=0
an(λ0)βn for β ∈ [0, 1). We will show that as N →∞,

sN(λ0) converges uniformly to V(1, λ0) (13)

in λ0. On {|t| = α}, ν̃(t) = V(1, λ0) and
∑N

n=0 An(t)tn = sN(λ0), so (13) is equivalent
to Lemma 2.

The first step is to break this problem into three pieces ((i)–(iii) below). Using9

1− βn ≤ n(1− β) for β ∈ [0, 1],

9 To see this, examine the function (n − 1)− nβ + βn.
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|sN(λ0)− V(β, λ0)| =
∣
∣∣
∣
∣∣
∣

N∑

n=1

an(λ0)(1− βn)−
∞∑

n=N+1

an(λ0)βn

∣
∣∣
∣
∣∣
∣

≤
N∑

n=1

n(1− β) |an(λ0)| + 1

N

∞∑

n=N+1

n |an(λ0)| βn

≤ (1− β)
N∑

n=1

|nan(λ0)| + 1

N(1− β)
sup
n>N
|nan(λ0)| ,

and so
∣∣
∣
∣
∣∣
sN (λ0)− V

(

1− 1

N
, λ0

)∣∣
∣
∣
∣∣
≤ 1

N

N∑

n=1

|nan(λ0)| + sup
n>N
|nan(λ0)| .

Noting V(1, λ0) = ν̃
(
αeiλ0 , αeiλ0

)
, we therefore have the bound

|sN(λ0)− ν̃(t0, t0)|
≤
∣
∣∣
∣
∣
∣
sN(λ0)− V

(

1− 1

N
, λ0

)∣∣∣
∣
∣
∣
+

∣
∣∣
∣
∣
∣
V

(

1− 1

N
, λ0

)

− V (1− λ0)

∣
∣∣
∣
∣
∣

≤ 1

N

N∑

n=1

|nan(λ0)|
︸�������������︷︷�������������︸

(i)

+ sup
n>N
|nan(λ0)|

︸���������︷︷���������︸
(ii)

+

∣
∣∣
∣
∣∣
V

(

1− 1

N
, λ0

)

− V(1, λ0)

∣
∣∣
∣
∣∣

︸����������������������������︷︷����������������������������︸
(iii)

. (14)

To prove (13), we need to bound (i)–(iii) uniformly in λ0 (by taking N sufficiently
large). In fact, (iii) is obvious by uniform continuity of V on S 0, and so we turn
to (ii).

Now δtν̃(t, t0) =
∑∞

n=0 nAn(t0)tn in S for |t| < |t0|; moreover, for fixed t0 with
|t0| = α, the function δtν̃(t, t0) on {|t| = α} is both L1 and L2 (as log, log2 are
integrable). Working on S , with t = γt0 = βt0eiλ = βαei(λ+λ0) (|γ|≤1), we now define

Vt(γ, λ0) := (δtν̃) (γαeiλo , αeiλ0 ),

which for |γ| < 1

=

∞∑

n=0

nan(λ0)γn.

By the Cauchy integral formula, for 0 < |β| < 1,

nAn(t0) =
1

2πi

∫

|t|=αβ

(δtν̃)(t, t0)

tn+1
dt

=
1

2πi

∫ π

−π

(δtν̃)(βt0eiλ, t0)

(βαei(λ+λ0))n+1
iβαei(λ+λ0)dλ

=
1

2παnβneinλ0

∫ π

−π

Vt

(
βeiλ, λ0

)
e−inλdλ. (15)
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For fixed (small) ε > 0, the reader will readily verify that

lim
β→1−

∫ ε

−ε

∣
∣
∣log(eiλ − 1)− log(βeiλ − 1)

∣
∣
∣ dλ = 0.

In conjunction with (3), and the uniform continuity of Vt(γ, λ0) (in γ) on {|γ| ≤
1}\{arg(γ) ∈ (−ε, ε)}, this implies

lim
β→1−

∫ π

−π

∣
∣
∣Vt(eiλ, λ0)− Vλ(βeiλ, λ0)

∣
∣
∣ dλ = 0.

Therefore, taking the limit of (15) as β → 1, we obtain

nan(λ0) = nAn(t0)αneinλ0 =
1

2π

∫ π

−π

Vt

(
eiλ, λ0

)
e−inλdλ (16)

and then

nan(λ0 + δ)− nan(λ0)

=
1

2π

∫ π

−π

{
Vt

(
eiλ, λ0 + δ

)− Vt

(
eiλ, λ0

)}
e−inλdλ

=
1

2π

∫ π

−π

{
(δtν̃)(eiλ · αei(λ0+δ), αei(λ0+δ))
−(δtν̃)

(
eiλ · αeiλ0 , αeiλ0

)

}

e−inλdλ

=
1

2π

∫ π

−π

⎧
⎪⎪⎨
⎪⎪⎩

log(eiλ − 1)
[
F
(
αei(λ0+λ+δ), αei(λ0+δ)

)
− F

(
αei(λ0+λ), αeiλ0

)]

+
[
G
(
αei(λ0+λ+δ), αei(λ0+δ)

)−G
(
αei(λ0+λ), αeiλ0

)]

⎫
⎪⎪⎬
⎪⎪⎭

× e−inλdλ.

By uniform continuity of F and G, the differences in square brackets can be
bounded < ε by taking δ sufficiently small. Together with L1 integrability of
log(eiλ − 1), this gives (uniform) continuity of an(λ0). Similar reasoning shows that
∫ π

−π

∣∣
∣Vt(eiλ, λ0)

∣∣
∣
2

dλ is (uniformly) continuous in λ0.

As Vt(eiλ, λ0) is L2, Parseval gives

∞∑

n=0

|nan(λ0)|2 = 1

2π

∫ π

−π

∣
∣
∣Vt(e

iλ, λ0)
∣
∣
∣
2

dλ.

The right-hand side minus the Nth partial sums of the left yields a decreasing se-
quence of continuous, non-negative functions limiting to 0 pointwise. A standard
argument using compactness of the circle shows this limit must be uniform. This
proves that

|nan(λ0)| → 0 uniformly in λ0,

which takes care of (14)(ii).
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To treat (14)(i), let ε > 0 be given, and let N ∈ N be such that n ≥ N =⇒
|nan(λ0)| < ε

2 (∀λ0). For all n ≤ N (and hence for all n), there exists M ∈ N such
that |nan(λ0)| ≤ M. Now, taking m ≥ 2NM

ε
, we have

1

m

m∑

n=0

|nan(λ0)| ≤ ε

2
· 1

NM

N∑

n=0

|nan(λ0)| + 1

m

m∑

n=N+1

|nan(λ0)|

<
ε

2
+

ε

2
= ε,

uniformly in λ0, which completes the proof.
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A Note About Special Cycles on Moduli Spaces
of K3 Surfaces

Stephen Kudla

Abstract We describe the application of the results of Kudla–Millson on the
modularity of generating series for cohomology classes of special cycles to the case
of lattice polarized K3 surfaces. In this case, the special cycles can be interpreted as
higher Noether–Lefschetz loci. These generating series can be paired with the coho-
mology classes of complete subvarieties of the moduli space to give classical Siegel
modular forms with higher Noether–Lefschetz numbers as Fourier coefficients.
Examples of such complete families associated to quadratic spaces over totally real
number fields are constructed.

Key words: K3 surface, Shimura varieties, Modular forms

Mathematics Subject Classifications: Primary 14J28; Secondary 11F41, 11F46

1 Introduction

This article contains a short survey of some results about special cycles on certain
Shimura varieties that occur as moduli spaces of lattice polarized K3 surfaces. The
two points that may be of interest are the Siegel modular forms arising as gen-
erating series for higher Noether–Lefschetz numbers and the description of some
complete subvarieties in certain of these moduli spaces. The families of K3 surfaces
parametrized by these subvarieties ought to have particularly nice properties and
I do not know to what extent they already occur implicitly or explicitly in the lit-
erature. Finally, I ask the indulgence of the experts in this area for my very naive
treatment of things that may be very well known to them.
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2 Special Cycles for Orthogonal Groups

We begin by reviewing a very special case of old joint work with John Millson
[13–15].

2.1 Arithmetic Quotients

Let L, ( , ) be a lattice with a Z-valued symmetric bilinear form of signature (2, n).
In particular, for V = LQ = L⊗Z Q, the dual lattice

L∨ = { x ∈ V | (x, L) ⊂ Z }
contains L. Let

D = D(L) = { w ∈ VC | (w, w) = 0, (w, w̄) > 0 }/C×
� {oriented positive 2-planes in VR}
� SO(VR)/K

be the associated symmetric space, where K � SO(2) × SO(n) is the stabilizer of
an oriented positive 2-plane. Here VC = V ⊗Q C (resp. VR = V ⊗Q R), and we
sometimes write w for the image of w ∈ VC in D. Let ΓL ⊂ SO(V) be the isometry
group of L and let Γ ⊂ ΓL be a subgroup of finite index. Then

MΓ = Γ\D(L), dimC MΓ = n

is (isomorphic to) a quasi-projective variety. This variety is a connected component
of a Shimura variety1 and has a model defined over a cyclotomic field. For small
values of n, this space can be the moduli space of polarized K3 surfaces and, for
smaller values, of abelian varieties.

2.2 Special Cycles

To define special cycles, suppose that x ∈ L is a vector with (x, x) < 0, and let

Dx = {w ∈ D | (x, w) = 0} = D(L ∩ x⊥).

Thus Dx has codimension 1 in D and gives rise to a divisor

Z(x) : Γx\Dx −→ Γ\D = MΓ,

1 For n ≤ 2, we need to add the condition that Γ be a congruence subgroup; this is automatic for
n ≥ 3. In general, MΓ can have two components, since D(L) does.
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in MΓ, where Γx is the stabilizer of x in Γ. We call such a divisor, which depends
only on the Γ-orbit of x, a special divisor.

Composite divisors are defined as follows. Let Γo
L ⊂ ΓL be the subgroup of

isometries that act trivially on L∨/L, and suppose that Γ ⊂ Γo
L. For t ∈ Z>0 and

h ∈ L∨ a coset representative for L∨/L, let

L(t, h) = {x ∈ L + h | (x, x) = −t}.
There is an associated special divisor

Z(t, h) =
∑

x∈L(t,h)
mod Γ

Z(x).

Remark. For the following observation, see [32], Lemma 1.7. The space D
parametrizes polarized Hodge structures of weight 2 on the rational vector space
V with dimC V2,0

C
= 1. Such a HS is simple if it does not contain any proper ratio-

nal Hodge substructure. Then, in fact, the polarized HS corresponding to w ∈ D is
simple if and only if w � Dx for any nonzero vector x ∈ V . Thus the set

D −
⋃

x∈V, x�0

Dx

parametrizes the simple HS’s of this type.

More generally, for 1 ≤ r ≤ n, consider an r-tuple of vectors

x = [x1, . . . , xr], xi ∈ V,

and suppose that

T (x) = −(x, x) = −((xi, x j)) > 0.

Let

Dx = {w ∈ D | (x, w) = 0},
Γx = stablizer of x in Γ,

and

Z(x) : Γx\Dx −→ Γ\D = MΓ.

The condition T (x) > 0 implies that D(x) has codimension r in D so that the special
cycle Z(x) has codimension r in MΓ . Again, this cycle depends only on the Γ-orbit
of x.

Again there is a composite version. For

T ∈ Symr(Z)>0, h ∈ (L∨)r,

let

L(T, h) = {x ∈ Lr + h | T (x) = T },
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and define the cycle

Z(T, h) =
∑

x∈L(T,h)
mod Γ

Z(x).

These are the special cycles in question.

Remarks. (a) In the rest of this note, we will suppress the coset parameter h, al-
though it plays an evident and important role in many places in the literature.

(b) We can make the same construction with any T ∈ Symr(Z)≥0 except that we
require that for x ∈ L(T, h) the subspace spanned by the components of x has
dimension equal to the rank of T . We write Znaive(T, h) for the resulting cycle.
It has codimension equal to the rank of T . For example, for h = 0,

Znaive(0, h) = MΓ,

while, for h � 0, Znaive(0, h) is empty.

3 Modular Generating Series

First, for τ = u + iv ∈ H, the upper half-plane, consider the series

φ1(τ) = [Z(0)] +
∑

t∈Z>0

[Z(t)] qt, [Z(t)] ∈ H2(MΓ).

Here [Z(0)] = [ω] = c1(L) is the Chern class of the tautological line bundle

L −→ MΓ,

defined by:
L = b∗(O(−1)), b : D(L) −→ D(L)∨,

where
D∨(L) = { w ∈ VC | (w, w) = 0 }/C× ⊂ P(VC)

is the compact dual of D(L). Here Hr(MΓ) is the usual Betti cohomology group of
the (quasi-projective) variety MΓ with complex coefficients.2

Theorem 1 ([15]) ϕ1(τ) is an elliptic modular form of weight n
2 + 1 and level deter-

mined3 by L, valued in H2(MΓ).

2 If Γ has fixed points on D(L), MΓ is viewed as an orbifold and Hr(MΓ) is the space of Γ/Γ1-
invariants in Hr(MΓ1 ) where Γ1 ⊂ Γ is a normal subgroup of finite index which acts freely on
D(L).
3 This means that the components of φ1(τ) with respect to any basis of the finite dimensional space
H2(MΓ) are scalar valued modular forms of the given weight and level. The level divides 4|L∨/L|
and is determined by the usual recipe for theta functions, cf., for example, [29], Sect. 2.
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The analogous generating series with values in the first Chow group CH1(MΓ)⊗Z
C of MΓ was considered by Borcherds4

Theorem 2 ([2])

φCH
1 (τ) = {Z(0)} +

∑

t∈Z>0

{Z(t)} qt, {Z(t)} ∈ CH1(MΓ)⊗ C

is an elliptic modular form of weight n
2 + 1, etc. Its image under the cycle class map

CH1(MΓ)⊗ C −→ H2(MΓ)

is φ1(τ).

More generally, for any r, 1 ≤ r ≤ n, and for τ = u + iv ∈ Hr, the Siegel space
of genus r, we can define a generating series

φr(τ) =
∑

T∈Symr(Z)
T≥0

[Znaive(T )] ∪ [ω]r−rankT qT ,

= [ω]r +
∑

rankT<r
T�0

[Znaive(T )] ∪ [ω]r−rankT qT +
∑

T∈Symr(Z)>0

[Z(T )] qT .

The point is that we have shifted the classes [Znaive(T )] by a suitable power of [ω]
so that all of the coefficients lie in H2r(MΓ).

Theorem 3 ([15]) (contd.) φr(τ) is a Siegel modular form of weight n
2 + 1 and level

determined by L, valued in H2r(MΓ).

Remark 1. (1) In [10] I asked whether the Chow group version φCH
r (τ) is a Siegel

modular form valued in CHr(MΓ). Using Borcherds’ result mentioned above
and an inductive argument based on Fourier–Jacobi expansions, Wei Zhang
proved this in his Columbia thesis [33], conditionally on some finiteness/con-
vergence assumption.

(2) A key point is that the pairing of φr(τ) with any compactly supported class
c ∈ H2n−2r

c (MΓ) defines a classical Siegel modular form5 of the same weight
and level as φr(τ).

(3) It is worth noting that the modularity of the φr(τ) is proved by constructing a
theta function θ(τ, ϕ(r)

KM ) valued in A(r,r)(MΓ) the space of smooth differential
forms of type (r, r) on MΓ . This theta function is a non-holomorphic modu-
lar form of weight n

2 + 1 in τ, analogous to the classical Siegel theta func-
tion for an indefinite quadratic form. Moreover, it is a closed (r, r)-form and its
cohomology class [θ(τ, ϕ(r)

KM)] ∈ H(r,r)(MΓ) is φr(τ). In particular, if the class

4 More precisely, he views MΓ as an orbifold/stack and defines a group by generators and relations
that maps to the usual Chow group, at least after tensoring with C.
5 This form will be vector-valued if we keep track of the parameter h ∈ L∨/L.
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c ∈ H2n−2r
c (MΓ) is the class of an algebraic cycle c = [S ], as will be the case in

several examples below, the pairing of c and φr(τ) is given by an integral

c · φr(τ) =
∫

S
θ(τ, ϕ(r)

KM).

(4) The extension of such integrals to classes c that are not compactly supported
has been studied in important work of Funke and Millson, [5–7], and involves
interesting correction terms related to the boundary of the Borel–Serre com-
pactification of MΓ .

4 The Case of K3 Surfaces

In some cases, the MΓ’s and the Z(T )’s can be interpreted in terms of moduli spaces
of lattice polarized6 K3 surfaces. Here is an amateur’s version of this. Start from the
K3 lattice:

K = H3 ⊕ E8(−1)2, sig(K) = (3, 19),

where H is the unimodular hyperbolic plane, and, letting KQ = K ⊗Z Q, choose an
orthogonal decomposition

KQ = V ⊕ V ′

with
sig(V ′) = (1, 19− n), sig(V) = (2, n),

for some n, 0 ≤ n ≤ 19. Let

L = K ∩ V, L′ = K ∩ V ′,

be the corresponding primitive sublattices in K. Note that they are both even integral.
A marked L′-polarized K3 surface is a collection (X, u, λ) where X is an algebraic

K3 surface over C,
u : H2(X,Z)

∼−→ K

is an isometry for the intersection form on H2(X,Z), a marking, and

λ : L′ ↪→ Pic(X) ⊂ H2(X,Z)

is an embedding such that
u ◦ λ : L′ ↪→ K

is the given inclusion. Moreover, λ is required to satisfy the “ample cone” condi-
tion,7 cf. Sect. 10 of [4].

6 Good references for lattice polarized K3 surfaces are [3, 4].
7 More precisely, let (L′)−2 be the set of vectors x in L′ with (x, x) = −2, and let V(L′)0 be one
component of the set of vectors x ∈ L′

R
with (x, x) > 0, i.e., a choice of positive light cone. Finally,
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These conditions imply that

(a) The embedding λ : L′ ↪→ Pic(X) is primitive and isometric.
(b) The period point of (X, u) lies in D(V).

Recall that the period point of (X, u) is the complex line uC(H2,0(X)), where uC :
H2(X,Z)⊗Z C −→ KC is the complex linear extension of u. The moduli space of
such gadgets (X, λ), obtained by eliminating the marking, is the quotient

MΓ = Γ\D(V),

Γ = Γ0
L = {γ ∈ ΓL | γ|L∨/L = 1}.

This gives a moduli interpretation of MΓ . Details of this construction can be found
in [4], Sect. 10.

Remark 2. (1) It is easy to check that, for n ≤ 17, any rational quadratic space of
signature (2, n) can occur as V . If n = 18 or 19, there are restrictions on V , since
then L′

Q
has rank 2 or 1.

(2) In certain cases, a precise description of what lattices L′ and L can occur was
given by Nikulin [25]. As summarized in [24], Sect. 2, the result is the follow-
ing. If 0 ≤ n ≤ 9, then any even integral lattice L of signature (2, n) can occur,
and, if n < 9, the primitive embedding L ↪→ K is unique up to an isometry of
K. Similarly, if 0 ≤ n′ ≤ 10, then any even integral lattice L′ of signature (1, n′)
can occur, and, if n′ < 10, the embedding L′ ↪→ K, is unique up to an isometry
of K.

(3) In such a family the generic element has Picard number ρ(X) = rank(L′) =
20− n,

For small values of n, the resulting MΓ’s are familiar classical objects. Here is a
table:

n ρ G = SO(V) MΓ classically Accidental iso.

0 20 SO(2) U(1) CM
1 19 SO(2, 1) SL(2,R) Shimura curves
2 18 SO(2, 2) SL(2,R)× SL(2,R) Hilbert modular surfaces
3 17 SO(2, 3) Sp(2,R) Siegel threefolds
4 16 SO(2, 4) SU(2, 2) Unitary Shimura fourfolds
– – – – –
19 1 SO(2,19) – Moduli of polarized K3’s

let C(L′)+ be a component of
V(L′)0 −

⋃

x∈(L′ )−2

x⊥.

Then the ample cone condition is that

λR(C(L′)+) ∩KX � ∅
where KX is the closure of the ample cone in Pic(X)R.
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For example, for n = 19, we have L′ = (2d), and we get the moduli space of po-
larized K3’s of polarization degree 2d. Note that K is an even lattice and represents
every positive even integer.

At the other extreme, for n = 0, we have sig(L) = (2, 0), rank L′ = 20, and X is a
singular K3 surface.

4.1 Modular Interpretation of the Special Cycles

In the case of families of lattice polarized K3 surfaces MΓ for a lattice L of signature
(2, n) as described in the previous section, vectors in L correspond to additional
elements of Pic(X). Let N = Zr, and, for T ∈ Symr(Z)>0, let N = NT be the
quadratic lattice of signature (0, r) defined by −T .

Proposition 1 The codimension r cycle Z(T ) can be identified with the locus of
objects (X, λ, j) where

j : NT ↪→ Pic(X)

is a quadratic embedding with

j(NT ) · λ(L′) = 0.

Here, if (X, λ, u) is a marked object, then

u ◦ j : Zr = NT ↪→ L, ei �→ xi,

determines an r-tuple x ∈ Lr with T (x) = −T and the period point of (X, u) lies in
Dx ⊂ D(L).

Remark 3. (1) In this construction, we have fixed the basis Zr � N. A change in this
basis corresponds to a right multiplication of the row vectors x by an element
of GLr(Z).

(2) For r = 1, we are imposing a single additional class in Pic(X) and the Z(t)’s are
essentially the Noether–Lefschetz divisors in MΓ , cf. [8, 23].

4.2 Some Applications

I. Suppose that, for a smooth projective curve C,

iπ : C −→ MΓ

is a morphism corresponding to a family

π : X −→ C
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of L′-polarized K3 surfaces. Recall that Z(t) → MΓ is the locus of collections
(X, λ, j), j · j = −t, and consider the fiber product

Z(t)×MΓ
C −→ Z(t)

↓ ↓
C −→ MΓ.

Then, for [C] ∈ H2n−2
c (MΓ),

[Z(t)] · [C] = degOZ(t)|C .

=
∑

z∈C

#{(Xz, λz, j) | j · j = −t, j · λ = 0} (generically)

=: m(t, X/C) = Noether–Lefschetz number.

For example, if the Picard number of a generic member of the family is 20− n,
then C is not contained in any of the Z(t)’s and the loci in question are all finite sets
of points.

Corollary 1
φ1(τ) · [C] = degL|C +

∑

t∈Z>0

m(t, X/C) qt,

is an elliptic modular form of weight n
2 + 1 and level determined by L. In particular,

the numbers m(t, X/C) are the Fourier coefficients of this form.

This result is due to Maulik–Pandharipande [23], where it is derived from
Borcherds’ Theorem and its significance in Gromov–Witten theory is explained.

II. Similarly, suppose that

π : X −→ S , iπ : S −→ MΓ

is a family of L′-polarized K3 surfaces where S is a projective surface. For
T ∈ Sym2(Z)>0, Z(T ) → MΓ is the locus of collections (X, λ, j), where j =
[ j1, j2] is a pair of classes in Pic(X) orthogonal to λ(L′) and with matrix of
inner products j · j = −T . Consider

Z(T )×MΓ
S −→ Z(T )

↓ ↓
S −→ MΓ.

Then, for the cohomology class [S ] ∈ H2n−4
c (MΓ), we can define

[Z(T )] · [S ] =
∑

z∈S

#{(Xz, λz, j) | j · j = −T, j · λ = 0} (generically)

=: m(T, X/S ) = a higher Noether–Lefschetz number.
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Here there can be curves in Z(T ) ∩ S and, in this case, more care must be
taken to interpret the intersection number [Z(T )] · [S ] . By the modularity
results above, the m(T, X/S ) are Fourier coefficients of a Siegel modular form
of genus 2 and weight n

2 + 1. It would be interesting to compute these Siegel
modular forms for specific families X → S , e.g., ones coming from explicit
classical geometry.

III. Suppose that L has signature (2, 2) and is anisotropic. Then we have a family
where S = MΓ is itself a projective surface, so that

φ2(τ, MΓ) ∈ H4(MΓ)
deg
∼−→ C.

The following result from [10] is obtained by combining the results of [15]
with the extended Siegel–Weil formula of [16].

Theorem 4 Assume that condition (1) below holds. Then

deg φ2(τ, MΓ) = E

(

τ,
1

2
, L

)

where E(τ, s, L) is a Siegel Eisenstein series of genus 2 and weight 2 associated to
L, evaluated at the Siegel–Weil critical point s = s0 =

1
2 .

Note that, for T > 0, Z(T ) is a 0-cycle, and, when T ≥ 0 has rank 1, then Z(T )naive

is a curve on MΓ . Thus

deg φ2(τ, MΓ) = vol(MΓ, ω2) +
∑

rank(T )=1

vol(Z(T )naive, ω) qT

+
∑

T>0

deg(Z(T )) qT .

Here, the Siegel–Eisenstein series is defined by

E(τ, s, L) =
∑

γ∈Γ′∞\Γ′
det(cτ + d)

n
2+1| det(cτ + d)|s−s0 det(v)

1
2 s−s0 Φ(γ, L),

where

γ =

(
a b
c d

)

∈ Γ′ = Sp2(Z).

and Φ(γ, L) is a generalized Gauss sum attached to γ and L, [12, 30]. This series
is termwise absolutely convergent for Re(s) > 3

2 . Its value at s0 =
1
2 is defined by

analytic continuation, [16]. The main point behind Theorem 4 is that, as explained
in Remark 1(3), there is a genus 2 theta function θ(τ, ϕ(2)

KM) valued in A(2,2)(MΓ), i.e.,
in top degree forms, and the degree generating series deg φ2(τ, MΓ) is obtained by
integrating this form over MΓ . Let H = O(V) be the orthogonal group of V and
assume that there is an open compact subgroup K ⊂ H(A f ), the group of finite
adèle points of H, such that
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H(A) = H(Q)H(R)K, Γ = H(Q) ∩ K. (1)

Then the geometric integral of θ(τ, ϕ(2)
KM) over

MΓ � H(Q)\H(A)/K∞K

coincides with the integral of a scalar valued theta function on H(A) over the adelic
quotient H(Q)\H(A)—cf. [11], Sect. 4, for a more detailed discussion. The extended
Siegel–Weil formula, [12, 16], identifies the result as a special value at s = s0,
perhaps outside the range of absolute convergence, of a certain Eisenstein series
attached to L.

IV. Here is an amusing example. Let F = Q(
√

d), d ∈ Z>0 square free, be a real
quadratic field with ring of integers OF . Let M be a projective OF -lattice with a
symmetric OF-bilinear form ( , )M , and suppose that the signature of M is given
by

sig(M) = ((2, m), (0, m+ 2)).

Let L be M, viewed as a Z-module, with bilinear form ( , )L given by

(x, y)L = trF/Q(x, y)M.

The signature of L is (2, 2m + 2). Let V = L⊗Z Q and note that

V ⊗Q R = (V ⊗F F)⊗Q R = (V ⊗F,σ1 R)× (V ⊗F,σ2 R),

where σ1 and σ2 are the two real embeddings of F. The two factors on the right
have signatures (2, m) and (0, m + 2) respectively. Then there is an embedding

D(M) = D(V ⊗F,σ1 R) ↪→ D(VR) = D(L).

Let ΓM ⊂ Γ be the subgroup of OF-linear isometries of in Γ. Then

ΓM\D(M) −→ Γ\D(L),

is an algebraic cycle of codimension m+ 2, and, since the quotient ΓM\D(M) is
compact, this cycle is projective.

For example, when m = 2, we get a projective surface

S −→ MΓ = MΓ(2, 6), [S ] ∈ H8
c (MΓ).

It would be nice to have a concrete description of the corresponding family of
K3 surfaces X → S . The Siegel modular generating function for higher Noether–
Lefschetz numbers for this family is

φ2(τ, MΓ) · [S ] = i∗EF

(

τ,
1

2
, Φ

)

, i : SL2/Q −→ SL2/F,
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the pullback of the special value of a genus 2 Hilbert–Siegel Eisenstein series
EF(τ, 1

2 , Φ) of weight (2, 2) over F to a weight 4 modular Siegel modular form over
Q! This is again a consequence of the extended Siegel–Weil formula together with a
seesaw identity, [9]. Note that, in general, such a pullback will now have lots of cus-
pidal components and so the Fourier coefficients of such a form are essentially more
complicated than those of an Eisenstein series like that occurring in Theorem 4.

Remark 4. A more or less explicit geometric construction of an example for m = 1
is described in [32], Sect. 3. In this case, sig(M) = ((2, 1), (0, 3)) and the base of the
family will be a Shimura curve C over F. In this case, the generating series for the
Noether–Lefschetz numbers will be an elliptic modular form of weight 3 arising as
the pullback for a Hilbert modular Eisenstein series of weight (3/2, 3/2).

V. The previous example can be further generalized. Suppose that F is a totally real
number field with ring of integers OF , |F : Q| = d > 1, and real embeddings
σi : F ↪→ R, 1 ≤ i ≤ d. Let M, ( , )M be a quadratic OF-lattice of rank m + 2
over OF and with

sig(M) = ((2, m), (0, m+ 2)d−1).

Define a quadratic lattice L as in example IV, so that

sig(L) = (2, d(m + 2)− 2).

Again setting V = L⊗Z Q, we have

V ⊗Q R = (V ⊗F,σ1 R)× (V ⊗F,σ2 R)× · · · × (V ⊗F,σd R),

an embedding

D(M) = D(V ⊗F,σ1 R) ↪→ D(VR) = D(L),

and a projective algebraic cycle

Y = ΓM\D(M) −→ Γ\D(L) = MΓ,

of codimension (d − 1)(m + 2) and dimension m. For this construction to fall
into the world of K3 moduli, we must require that

2 ≤ d(m + 2) ≤ 21,

and hence we have the following table of the possibilities: (Note that N =
dim MΓ = d(m + 2)− 2.)

d 2 3 4 5 6 7 8 9 10
m = dim Y 0 ≤ m ≤ 8 0 ≤ m ≤ 5 0 ≤ m ≤ 3 0 ≤ m ≤ 2 0, 1 0, 1 0 0 0

N = dim MΓ 2 ≤ N ≤ 18 4 ≤ N ≤ 19 6 ≤ N ≤ 19 8 ≤ N ≤ 18 10, 16 12, 19 14 16 18

It would be interesting to give an account of the families of K3 surfaces over the
projective varieties Y occurring here.
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One nice case is the following. Let k = Q(ζ13) be the 13th cyclotomic field and
let F = Q(ζ13+ζ−1

13 ), so that |F : Q| = 6. Let M⊗OF F to be the space of elements of
trace 0 in a quaternion algebra B/F with B⊗F,σ1 R = M2(R) and B⊗F,σi R � H, the
Hamiltonian quaternions, for i > 1. To specify B, we need to choose an additional
set Σ f (B) of finite places of F with |Σ f (B)| odd. The algebra B is determined by
the condition that, for a finite place v of F, B ⊗F Fv is a division algebra if and
only if v ∈ Σ f (B). The simplest choice would be Σ f (B) = {v13}, where v13 is the
unique place above 13. We fix a maximal order OB in B and let M be the set of
trace 0 elements in it. As quadratic form on M, we take (x, y) = tr(xyι). In this case,
V = L⊗ZQ has signature (2, 16), and, as noted in Remark 2(1), the rational quadratic
space V occurs as a summand of KQ. I have not checked8 if the lattice L just defined
can occur as V ∩ K. In any case, we obtain a Shimura curve C embedded in the 16-
dimensional moduli space MΓ , and the generating series for the Noether–Lefschetz
numbers for the associated family of K3 surfaces will be an elliptic modular form
of weight 9 arising as the pullback of a Hilbert modular Eisenstein series of weight
(3/2, . . . , 3/2) for F.

5 Kuga–Satake Abelian Varieties and Special Endomorphisms

In this last section, we give another interpretation of the special cycles Z(T ). For
convenience, we change the sign and consider rational quadratic forms of signature
(n, 2).

5.1 The Kuga–Satake Construction

The moduli spaces MΓ of lattice polarized K3 surfaces carry families of abelian
varieties arising from (a slight variant of) the Kuga–Satake construction, which we
now review.

For a quadratic lattice L of signature (n, 2) and for V = LQ, let

C = C(V) = C+(V)⊕C−(V)

be the Clifford algebra of V . For a basis v1, . . . , vn+2 of V , let δ = v1 · · · vn+2 ∈ C(V),
and let k = Q(δ) be the discriminant field. For n even, δ ∈ C+(V), k is the center of
C+(V), and δ anticommutes with elements of C−(V). For n is odd, δ ∈ C−(V) and k
is central in all of C(V). Now

OC = C(L) = Clifford algebra of L

8 If it differs from the primitive lattice V∩K, then some “level structure” will have to be introduced.
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is an order in C and Ok = k ∩C(L) is an order in k. We obtain a real torus

Atop = C(LR)/C(L)

of dimension 2n+2 with an action

ι : C(L)⊗Z Ok −→ End(Atop), ι(c⊗ α) : x �−→ cxα,

via left-right multiplication. Let

G = GSpin(V) = {g ∈ C+(V)× | gVg−1 = V}
and, for an element a ∈ C+(L)∩C(V)× with aι = −a, define an alternating form on
C by

〈 x, y 〉 = 〈 x, y 〉a = tr(axyι).

Here x �→ xι is the main involution on C(V), determined by the conditions (xy)ι =
yιxι for all x, y ∈ C, and vι = v for all v ∈ V ⊂ C−(V). Note that for g ∈ G,

〈 xg, yg 〉 = ν(g) 〈 x, y 〉, ν(g) = ggι = spinor norm.

A variation of complex structures on Atop is defined as follows. For an oriented
negative 2-plane z ∈ D(L) in VR, let z1, z2 be a properly oriented orthonormal basis
and let jz = z1z2 ∈ C+(VR). This element is independent of the choice of basis.
Note that j2z = −1, so that right multiplication by jz defines a complex structure on
C(VR), and hence we have a complex torus Az = (Atop, jz) for each z ∈ D(L). Since
the action of C(L)⊗ Ok commutes with the right multiplication by jz, we have

ι : OC ⊗Z Ok −→ End(Az) (1)

with
ι(c⊗ α)∗ = ι(c∗ ⊗ αι), c∗ = acιa−1,

for the Rosati involution determined by 〈 , 〉. If γ ∈ Γ ⊂ ΓL, and9 if γ̃ ∈ O×C is
an element mapping to γ under the natural homomorphism GSpin(V) → SO(V),
then right multiplication by γ̃ on C(LR) induces an isomorphism of the complex tori
Aγ(z) and Az, equivariant for the action of OC ⊗ Ok. Finally, fix a rational splitting
V = V+ + V− of signature (n, 0) + (0, 2) and let a1, a2 be a Z-basis for the negative
definite lattice L− = L∩V−. Let a = a1a2. With this choice of a, the form 〈 , 〉a is Z-
valued on C(L) and defines a Riemann form on each complex torus Az, i.e., the form
〈 x jz, y 〉a is symmetric and definite (hence positive definite on one of the connected
components of D(L)). Thus, MΓ carries a family of polarized abelian varieties:

π : KS(L) −→ MΓ, (Az, ι, λ), dim Az = 2n+1

9 In general, there is an orbifold issue here that can be eliminated by introducing a suitable level
structure.
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with endomorphisms (1). Note that these abelian varieties are Z2-graded,

Az = A+z ⊕ A−z ,

since the construction respects the decomposition C(L) = C+(L)⊕C−(L).

Remark 5. (1) For n ≤ 4, MΓ is the moduli space for such PE type abelian varieties
and is a Shimura variety of PEL type.10

(2) For general n ≥ 5, the abelian varieties in the family are not characterized by
the given PE; more Hodge classes are required, and MΓ is a Shimura variety of
Hodge type. The family π corresponds to a morphism

iπ : MΓ −→ Ag, g = 2n+1.

5.2 Special Cycles and Special Endomorphisms

Special endomorphisms arise as follows. For x ∈ L, let

rx : Atop −→ Atop = C(LR)/C(L),

be the endomorphism induced by right multiplication by x. Note that this endomor-
phism has degree 1 with respect to the Z2-grading, and that, since x2 = Q(x) in
C(L),

r2
x = [Q(x)],

is just multiplication by the integer Q(x) = (x, x) ∈ Z. Moreover,

rx ◦ ι(c⊗ b) =

⎧
⎪⎪⎨
⎪⎪⎩

ι(c⊗ b) ◦ rx for n odd

ι(c⊗ bσ) ◦ rx for n even.
(2)

and the adjoint of rx with respect to 〈 , 〉 is

(rx)∗ = rxι = rx. (3)

Definition 1. For a given z ∈ D(L), the endomorphism rx is said to be a special
endomorphism of the abelian variety Az when it is holomorphic, i.e., when rx ∈
End(Az).

Lemma 1. Let L(Az) be the space of special endomorphisms of Az, with quadratic
form defined by j2 = Q( j). Then

L(Az) = L ∩ z⊥

is an isometry.

10 We could add a level structure here.
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Note that, rx is a special endomorphism of Az precisely when x commutes with jz.
Since conjugation by jz induces the endomorphism of V that is −1 on z and +1 on
z⊥, it follows that rx is a special endomorphism precisely when x ∈ z⊥, i.e., z ∈ Dx.

Corollary 2 For T ∈ Symr(Z)>0, the special cycle Z(T ) is the image in MΓ of

Z̃(T ) = {(Az, j) | j ∈ L(Az)r, (j, j) = T }.
In fact, to give the right definition of special endomorphism, one should start with

an object (A, ι, λ, ε, ξ) where A is an abelian variety (scheme) with OC ⊗ Ok-action
ι, a Z/2Z-grading ε and additional Hodge tensors ξ. A special endomorphism is
then an element j ∈ End(A) of degree 1 with respect to the Z/2Z-grading satisfying
conditions (2) and (3), with an additional compatibility with respect to the Hodge
tensors ξ. For 0 ≤ n ≤ 3, where the classes ξ can be expressed in terms of endo-
morphisms, such a definition of special endomorphism was given in [19] (n = 0),
[20] (n = 1), [17] (n = 2), and [18] (n = 3) and used to define special cycles in
integral models of the associated PEL type Shimura varieties. The results of these
papers concerning the intersection number of integral special cycles and Fourier co-
efficients of modular forms should have some consequences in the arithmetic theory
of K3 surfaces. To reveal it one would have to relate these integral models to the
integral models of moduli spaces of K3 surfaces developed by Rizov, [26, 27]. The
extension to the case of general n, i.e., to integral models of Shimura varieties at-
tached to GSpin(n, 2) is the subject of ongoing work of Andreatta–Goren [1] and of
Howard–Madapusi (private communication).

Remark 6. In the references that follow, I have made no attempt at completeness and
apologize in advance for the many omitted citations.
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Enriques Surfaces of Hutchinson–Göpel Type
and Mathieu Automorphisms

Shigeru Mukai and Hisanori Ohashi

Abstract We study a class of Enriques surfaces called of Hutchinson–Göpel type.
Starting with the projective geometry of Jacobian Kummer surfaces, we present the
Enriques’ sextic expression of these surfaces and their intrinsic symmetry by G =
C3

2. We show that this G is of Mathieu type and conversely, that these surfaces are
characterized among Enriques surfaces by the group action by C3

2 with prescribed
topological type of fixed point loci. As an application, we construct Mathieu type
actions by the groups C2 × A4 and C2 × C4. Two introductory sections are also
included.

Key words: Enriques surfaces, Mathieu groups

Mathematics Subject Classifications (2010): Primary 14J28; Secondary 14E07,
14J50

1 Introduction

From a curve C of genus two and its Göpel subgroup H ⊂ (Jac C)(2), we can con-
struct an Enriques surface (Km C)/εH, which we call of Hutchinson–Göpel type. We
may say that surfaces of this type among all Enriques surfaces occupy an equally
important place as Jacobian Kummer surfaces Km C, or Km (Jac C), do among all
K3 surfaces. In [9] we characterized these Enriques surfaces as those which have
numerically reflective involutions.
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In this paper, we will study the group action of Mathieu type on these Enriques
surfaces of Hutchinson–Göpel type. In particular we will characterize them by using
a special sort of action of Mathieu type by the elementary abelian group C3

2. As a
byproduct, we will also give examples of actions of Mathieu type by the groups
C2 × A4 (of order 24) and C2 × C4 (of order 8). These constructions are crucial in
the study of automorphisms of Mathieu type on Enriques surfaces; in particular they
answer the conjecture we posed in the lecture notes [11].

Our starting point is the fact that the Kummer surface Km C is the (2, 2, 2)-
Kummer covering1 of the projective plane P2,

Km C
C3

2−→ P2,

whose equation can be written in the form

u2 = q1(x, y, z), v2 = q2(x, y, z), w2 = q3(x, y, z).

All branch curves {(x, y, z) ∈ P2 | qi(x, y, z) = 0} (i = 1, 2, 3) are reducible conics
and our Enriques surface S of Hutchinson–Göpel type sits in between this covering
as the quotient of Km C by the free involution

(u, v, w) �→ (−u,−v,−w).

By computing invariants, we will see that S is the normalization of the singular
sextic surface

x2 + y2 + z2 + t2 +

(
a

x2
+

b

y2
+

c

z2
+

d

t2

)

xyzt = 0 (1)

in P3, where a, b, c, d ∈ C∗ are constants. They satisfy the condition abcd = 1 cor-
responding to the Cremona invariance of the six lines {q1q2q3 = 0} ⊂ P2.

In general, an involution σ acting on an Enriques surface is said to be Mathieu or
of Mathieu type if its Lefschetz number χtop(Fix σ) equals four,2 [12]. This is equiv-
alent to saying that the Euler characteristic of the fixed curves Fix−(σ) is equal to 0
(see the beginning of Sect. 7 for this notation). We have the following classification
of Fix−(σ) according to its topological types.

(M0) Fix−(σ) = ∅, namely σ is a small involution.
(M1) Fix−(σ) is a single elliptic curve.
(M2) Fix−(σ) is a disjoint union of two elliptic curves.

1 This octic model of Km C is different from the standard nonsingular octic model given by the
smooth complete intersection of three diagonal quadrics. See ()2) of Sect. 5.
2 This number is exactly the number of fixed points of non-free involutions in the small Mathieu
group M12, which implies that the character of Mathieu involutions on H∗(S ,Q) coincides with
that of involutions in M11. This is the origin of the terminology. See also [11].
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(M3) Fix−(σ) is a disjoint union of a genus g ≥ 2 curve and (g−1) smooth rational
curves.3

Our motivation comes from the following observation.

Observation 1. The Enriques surface S = (Km C)/εH of Hutchinson–Göpel type
has an action of Mathieu type4 by the elementary abelian group G = C3

2 with the
following properties. Let h be the polarization of degree 6 given by (1) above.

(1) The group G preserves the polarization h up to torsion.
(2) There exists a subgroup G0 of index two, which preserves the polarization h

while the coset G \G0 sends h to h + KS .
(3) All involutions in G0 are of type (M2) above.
(4) All involutions in G \G0 are of type (M0) above.

These are the properties of Mathieu type actions by which we characterize Enriques
surfaces of Hutchinson–Göpel type.

Theorem 1. Let S be an Enriques surface with a group action of Mathieu type by
G = C3

2 which satisfies the properties (3) and (4) in Observation 1 for a subgroup
G0 of index two. Then S is isomorphic to an Enriques surface of Hutchinson–Göpel
type.

Our proof of Theorem 1 (Sect. 7) exhibits the effective divisor h of Observation 1
in terms of the fixed curves of the group action. In particular we can reconstruct the
sextic equation (1) of S . In this way, we see that the group action perfectly charac-
terizes Enriques surfaces of Hutchinson–Göpel type and all parts of Observation 1
hold true.

The sextic equation (1) also has the following application to our study of Mathieu
automorphisms.

Theorem 2. Among those Enriques surfaces of Hutchinson–Göpel type (1), there
exists a 1-dimensional subfamily whose members are acted on by the group C2×A4

of Mathieu type. Similarly there exists another one-dimensional subfamily whose
members are acted on by the group C2 ×C4 of Mathieu type.

The paper is organized as follows. Sections 2 and 3 give an introduction to En-
riques surfaces. In Sect. 2 we explain the constructions of Enriques surfaces from
rational surfaces, while in Sect. 3 we focus on the quotients of Kummer surfaces.
In Sect. 4, we introduce a larger family of sextic Enriques surfaces which we call
of diagonal type. They contain our Enriques surfaces of Hutchinson–Göpel type as
a subfamily of codimension one. We derive the sextic equation by computing the
invariants from a K3 surface which is a degree 8 cover of the projective plane P2. In
Sect. 5 we restrict the family to the Hutchinson–Göpel case. We give a discussion of
the related isogenies between Kummer surfaces and also give the definition of the

3 In fact only g = 2 is possible.
4 This means that every involution is Mathieu.
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group action by G = C3
2. In Sect. 6 we use the sextic equation to study their singu-

larities and give a precise computation for the group actions. Theorem 2 is proved
here. In Sect. 7 we prove Theorem 1.

Throughout the paper, we work over the field C of complex numbers.

2 Rational Surfaces and Enriques Surfaces

An algebraic surface is rational if it is birationally equivalent to the projective
plane P2. It is easy to see that a rational surface has vanishing geometric genus
pg = 0 and irregularity q = 0. At the beginning of the history of algebraic surfaces
the converse problem was regarded as important.

Problem 1. Is an algebraic surface with pg = q = 0 rational?

Enriques surfaces were discovered by Enriques as counterexamples to this prob-
lem. They have Kodaira dimension κ = 0. Nowadays we know that even some
algebraic surfaces of general type have also pg = q = 0, the Godeaux surfaces for
example.

Definition 1. An algebraic surface S is an Enriques surface if it satisfies pg = 0, q =
0 and 2KS ∼ 0.

By the adjunction formula, a nonsingular rational curve C ⊂ S satisfies (C2) = −2,
hence there are no exceptional curves of the first kind on S . This means that S is
minimal in its birational equivalence class.

If a K3 surface X admits a fixed-point-free involution ε, then the quotient surface
X/ε is an Enriques surface. Conversely, for an Enriques surface S the canonical
double cover

X = SpecS (OS ⊕OS (KS ))

turns out to be a K3 surface and is called the K3-cover of S . Since a K3 surface
is simply connected, π is the same as the universal covering of S . In this way, an
Enriques surface is nothing but a K3 surface modded out by a fixed-point-free invo-
lution ε.

Example 1. Let X be a smooth complete intersection of three quadrics in P5, defined
by the equations

q1(x) + r1(y) = q2(x) + r2(y) = q3(x) + r3(y) = 0,

where (x : y) = (x0 : x1 : x2 : y0 : y1 : y2) ∈ P5 are homogeneous coordinates of
P5. If the quadratic equations qi, ri (i = 1, 2, 3) are general so that the intersections
q1 = q2 = q3 = 0 and r1 = r2 = r3 = 0 considered in P2 are both empty, then the
involution

ε : (x : y) �→ (x : −y)

is fixed-point-free and we obtain an Enriques surface S = X/ε.
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As we mentioned, an Enriques surface appeared as a counterexample to Prob-
lem 1. Even though it is not a rational surface, it is closely related to them; plenty of
examples of Enriques surfaces are available by the quadratic twist construction as
follows.

Let us consider a rational surface R and a divisor B belonging to the linear system
| − 2KR|. The double cover of R branched along B,

X = SpecR(OR ⊕ OR(−KR)) → R,

gives a K3 surface if B is nonsingular. More generally, if B has at most simple singu-
larities, then X has at most rational double points and its minimal desingularization
X̃ is a K3 surface.

Example 2. Well-known examples are given by sextic curves in R = P2 or curves of
bidegree (4, 4) in R = P1 × P1.

Let us assume that the surface R admits an involution e : R → R which is small,
namely with at most finitely many fixed points over R. Further, let us assume that
the curve B is invariant under e, e(B) = B. Then we can lift e to involutions of
X. There are two lifts, one of which acts symplectically on X (namely acts on the
space H0(Ω2

X) trivially) and the other anti-symplectically (namely acts by (−1) on
the space H0(Ω2

X)). We denote the latter by ε. (The former is exactly the composition
of ε and the covering transformation.) We can see that ε acts on X freely and the
quotient X/ε gives an Enriques surface if B is disjoint from the fixed points of e. We
call this Enriques surface the quadratic twist of R by (e, B).

Example 3. Let e0 be an arbitrary involution of P1 and consider the small involution
e = (e0, e0) acting on R = P1 × P1. According to our recipe, we can construct an
Enriques surface S which is the quadratic twist of R obtained from e and an e-stable
divisor B of bidegree (4, 4).

Example 4. We consider the Cremona transformation

e : (x : y : z) �→ (1/x : 1/y : 1/z)

of P2, where (x : y : z) are the homogeneous coordinates of P2. Let B be a sextic
curve with nodes or cusps at three points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and
such that e(B) = B. (More generally, the singularities at the three points can be any
simple singularities of curves.) Then we can construct the quadratic twist S of P2

by (e, B).
In this example, it might be easier to consider the surface R obtained by blowing

the three points up. The Cremona transformation e induces a biregular automor-
phism of R and the strict transform C of C belongs to the linear system | − 2KR|.
The Enriques surface S is nothing but the quadratic twist of the surface R by (e, C).
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We borrowed the terminology from the following example.

Example 5 (Kondo [8], Hulek–Schütt [4]). Let f : R → P1 be a rational elliptic
surface with the zero-section and a 2-torsion section. Let e be the translation by
the 2-torsion section, which we assume to be small. Let B be a sum of two fibers
of f . Then B belongs to | − 2KR| and is obviously stable under e. Thus we obtain
an Enriques surface from the quadratic twist construction. In this case the Enriques
surface naturally has an elliptic fibration S → P1. In the theory of elliptic curves
this is called the quadratic twist of f .

We remark that the Enriques surface obtained as the quadratic twist of a rational
surface always admits a nontrivial involution. In general any involution σ of an
Enriques surface admits two lifts to the K3-cover X, one of which is symplectic and
the other non-symplectic. We denote the former by σK and the latter by σR. With
one exception, the quotient X/σR becomes a rational surface.

This operation can be seen as the converse construction of the quadratic twist.
The exception appears in the case where σR is also a fixed-point-free involution, in
which case the quotient X/σR is again an Enriques surface.

3 Abelian Surfaces and Enriques Surfaces

A two-dimensional torus T = C2/Γ, where Γ � Z4 is a full lattice in C2, is acted
on by the involution (−1)T . It has 16 fixed points which are exactly the 2-torsion
points T(2) of T . The Kummer surface Km T is obtained as the minimal desingular-
ization of the quotient surface Km T = T/(−1)T . This is known to be a K3 surface,
equipped with 16 exceptional (−2)-curves.

When T is isomorphic to the direct product E1 × E2 of elliptic curves, the Kum-
mer surface Km(E1× E2) is the same as the desingularized double cover of P1× P1

defined by

Km(E1 × E2) : w2 = x(x− 1)(x− λ)y(y− 1)(y− μ), (2)

where λ, μ ∈ C−{1, 0} are constants and x, y are inhomogeneous coordinates of P1.
The strict transforms of the eight divisors on P1 × P1 defined by

x = 0, 1,∞, λ and y = 0, 1,∞, μ (3)

give eight smooth rational curves on Km(E1 × E2). In this product case, together
with 16 exceptional curves, it has 24 smooth rational curves with the following
configuration (called the double Kummer configuration) (Fig. 1).
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Fig. 1: The double Kummer configuration

There are many studies on Km T when T is a principally polarized abelian sur-
face, too. In this case, using the theta divisor Θ, the linear system |2Θ| gives an
embedding of the singular surface T/(−1)T into P3 as a quartic surface

x4 + y4 + z4 + t4 + A(x2t2 + y2z2) + B(y2t2 + x2z2) +C(z2t2 + x2y2) + Dxyzt = 0,

A, B, C, D ∈ C
which is stable under the Heisenberg group action.

Let us consider the following question: How many Enriques surfaces are there
whose universal covering is one of these Kummer surfaces Km T? The easiest ex-
ample is given by the following.

Example 6 (Lieberman). On the Kummer surface Km(E1× E2) of product type (2),
we have the involutive action

ε : (x, y, w) �→
(
λ

x
,
μ

y
,
λμw

x2y2

)

.

We can see easily that ε is fixed-point-free. Hence Km(E1 × E2)/ε is an Enriques
surface, which is the quadratic twist of P1 × P1 by e : (x, y) �→ (λ/x, μ/y) and the
branch divisor (3).

The surface Km(E1 × E2) is equivalently the desingularized double cover of P2

branched along six lines
x = 0, 1, λ, y = 0, 1, μ.

(See Fig. 2.) The involution above is given as the lift of the Cremona involution
(x, y) �→ ( λ

x , μ
y ), which exhibits the Enriques surface Km(E1×E2)/ε as the quadratic

twist of blown up P2. Another Enriques surface can be obtained from the surface
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Fig. 2: Product Kummer as a double plane

Km(E1 × E2) as follows when λ � μ. We note that under this condition, the three
lines passing through two of the points (0, 0), (1, 1), (λ, μ) can be given by

x− y, μx− λy, (μ− 1)(x− 1)− (λ− 1)(y− 1).

We make the coordinate change

X =
μx− λy

x− y
, Y =

(μ− 1)(x− 1)− (λ− 1)(y− 1)

x− y
.

The six branch lines then become

X = λ, μ

Y = λ− 1, μ− 1

X/Y = λ/(λ− 1), μ/(μ− 1).

These six lines are preserved by the Cremona transformation

(X, Y) �→
(
λμ

X
,

(λ− 1)(μ− 1)

Y

)

.

Hence the Kummer surface

Km(E1 × E2) :

w2 = (X − λ)(X − μ)(Y − λ + 1)(Y − μ + 1)(λY − (λ− 1)X)(μY − (μ− 1)X)

has the automorphism

ε : (X, Y, w) �→
(
λμ

X
,

(λ− 1)(μ− 1)

Y
,
λ(λ− 1)μ(μ− 1)w

X2Y2

)

whenever λ � μ. Moreover, this automorphism has no fixed points; hence we obtain
the Enriques surface Km(E1 × E2)/ε. This Enriques surface with λ = μ = 11/3
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was found by Kondo and constructed in full generality by Mukai [9]. It is called an
Enriques surface of Kondo–Mukai type.

Remark 1. It is interesting to find the limit of the above Enriques surface Km(E1 ×
E2)/ε when λ goes to μ. The limit is no longer an Enriques surface but a rational
surface with quotient singularities of type 1

4 (1, 1). A more precise description is the
following: Let R be the minimal resolution of the double cover of P2 branched along
the union of four tangent lines

x = 0, x− 2y + z = 0, x− 2λy + λ2z = 0, z = 0

of the conic xz = y2. The pullback of the conic splits into two smooth rational curves
C1 and C2 in R. Let R′ be the blow-up of R at the four points C1 ∩ C2. Then the
strict transforms of C1 and C2 become (−4)-P1’s. The limit of the Enriques surface
Km(E1 × E2)/ε is the rational surface R′ contracted along these two (−4)-P1’s.

Remark 2 (Ohashi [13]). When E1 and E2 are taken generically, these two surfaces
are the only Enriques surfaces (up to isomorphism) whose universal covering is the
surface Km(E1 × E2).

Let us proceed to the study of Km(A), where (A, Θ) is a principally polarized abelian
surface. In this case, there are three Enriques surfaces known whose universal cover-
ings are isomorphic to Km A [10, 14]. Here we introduce the surface obtained from
a Göpel subgroup H ⊂ A(2). The next observation is fundamental.

Lemma 1. Suppose that we are given six distinct lines l1, . . . , l6 in the projective
plane, whose three intersection points p1 = l1 ∩ l4, p2 = l2 ∩ l5, p3 = l3 ∩ l6 are
not collinear and such that the lines pi p j are different from li. Then the following
conditions are equivalent.

(1) A suitable quadratic Cremona transformation with center p1, p2, p3 sends l1, l2, l3
to l4, l5, l6 respectively.

(2) All l1, . . . , l6 are tangent to a smooth conic or both l1, l2, l3 and l4, l5, l6 are
concurrent (after suitable renumberings 2 ↔ 5 or 3 ↔ 6).

Proof. This is an extended version of [10, Proposition 5.1]. We sketch the proof.
Let us choose linear coordinates (x : y : z) such that p1, p2, p3 are the vertices of the
coordinate triangle xyz = 0. Then the six lines are given by

li : y = αix (i = 1, 4), l j : z = α jy ( j = 2, 5), lk : x = αkz (k = 3, 6)

for α1, . . . , α6 ∈ C∗. We easily see that the condition (1) is equivalent to
∏6

i=1 αi = 1.
Let us consider a conic in the dual projective plane

Q : ax2 + by2 + cz2 + dyz + ezx + f xy = 0.

For Q to contain the six points qi corresponding to li, we have the following
conditions:
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α1α4 =
b

a
, α2α5 =

c

b
, α3α6 =

a

c
,

α1 + α4 =
f

a
, α2 + α5 =

d

b
, α3 + α6 =

e

c
.

Thus
∏6

i=1 αi = 1 is equivalent to the existence of such Q. If Q is smooth, then
the former condition of (2) is satisfied by taking the dual of Q. If Q is a union of
two distinct lines, then the points qi and qi+3 must lie on different components for
i = 1, 2, 3, hence the latter configuration of (2) occurs. (For the same reason, Q
cannot be a double line.)

We have already encountered the latter configuration of lines in Fig. 2; in this case
the double cover of P2 branched along

∑
li is birational to Km(E1 × E2). Even in

the former case of (2) of Lemma 1, the lift of the Cremona involution to the double
cover gives an automorphism of Km(A) without fixed points. Hence we obtain an
Enriques surface Km(A)/ε.

This Enriques surface is described in the following way (and characterized by the
presence of a numerically reflective involution) by Mukai [10]. Let H ⊂ A(2) be a
Göpel subgroup; namely, H is a subgroup consisting of four elements and the Weil
pairing with respect to 2Θ,

A(2) × A(2) → μ2,

is trivial on H × H. There are 15 such subgroups. One such H defines four nodes
of the Kummer quartic surface in P3, and if we take the homogeneous coordinates
(x : y : z : t) of P3 so that the coordinate points coincide with the four nodes, then
the Kummer quartic surface has the equation

q(xt + yz, yt + xz, zt + xy) + (const.)xyzt = 0. (4)

(We assume that the four nodes are not coplanar.) This equation is invariant under
the standard Cremona transformation

(x : y : z : t) �→
(

1

x
:

1

y
:

1

z
:

1

t

)

.

Moreover, this involutive automorphism is free from fixed points over the Kum-
mer quartic surface. Let us denote by εH this free involution of Km(A). The En-
riques surface Km(A)/εH is thus determined by the principally polarized abelian
surface (A, Θ) and the Göpel subgroup H. We call this surface the Enriques surface
of Hutchinson–Göpel type since the expression (4) was first found by Hutchinson
[5] using theta functions. (See also Keum [7, Sect. 3].)

Remark 3. The limit of the Enriques surface Km(A)/εH when H becomes coplanar
is also a rational surface with two quotient singular points of type 1

4 (1, 1) as in
Remark 1.
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4 Sextic Enriques Surfaces of Diagonal Type

Now we consider the Kummer (2, 2, 2)-covering of the projective plane P2 with
coordinates x = (x1 : x2 : x3) branched along three conics qi(x) = 0, i = 1, 2, 3:

X : w2
1 = q1(x), w2

2 = q2(x), w2
3 = q3(x).

These equations define a (2, 2, 2) complete intersection in P5 with homogeneous
coordinates (w1 : w2 : w3 : x1 : x2 : x3). Hence the minimal desingularization X
of X is a K3 surface if it has at most rational double points. It has the action by C3

2
arising from covering transformations. Among them, we focus on the involution

ε : (w1 : w2 : w3 : x1 : x2 : x3) �→ (−w1 : −w2 : −w3 : x1 : x2 : x3).

It is free of fixed points on X if and only if the locus q1(x) = q2(x) = q3(x) = 0 is
empty in P2. In this way we obtain the Enriques surface S = X/ε.

Let us specialize to the case where all qi(x) are reducible conics. More precisely
our assumption is as follows.

()) The conic {qi = 0} is the sum of two lines li, li+3 (i = 1, 2, 3) for six distinct
lines l1, . . . , l6. The three points l1 ∩ l4, l2 ∩ l5, l3 ∩ l6 are also distinct.

Under assumption ()), the (2, 2, 2)-covering X has at most rational double points
and we obtain the minimal desingularization X and the quotient Enriques surface
S . The singularities of X consists of 12 nodes located above the three points l1 ∩
l4, l2 ∩ l5, l3 ∩ l6. (It follows that the Enriques surface S contains six disjoint smooth
rational curves as images of the exceptional curves.)

Remark 4. The quotient surface X/ε is nothing but the normalization of the surface

u2
1 = q1q3, u2

2 = q2q3

which is the covering of P2 of degree 4.

The projection of P2 from the singular point of qi defines a rational map to the
projective line, which in turn defines an elliptic fibration on X and on S . We denote
by G0 the Galois group of S → P2. Each nontrivial element g ∈ G0 corresponds
to and defines the double covering of the rational elliptic surface branched along
two smooth fibers. Hence Fix(g) has two smooth elliptic curves as its 1-dimensional
components. This shows

Proposition 1. Under assumption ()), the action of G0 � C2
2 on the Enriques sur-

face S is of Mathieu type and every nontrivial element has (M2) type.

For later use, we give the sextic equation of the Enriques surface S under the con-
dition ()). Here we additionally assume that the three points Sing(qi) (i = 1, 2, 3)
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are not collinear. (See also Remark 7.) Then we can choose homogeneous coor-
dinates of P2 so that the three points are the coordinate points (x1 : x2 : x3) =
(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0). The degree 8 cover X over P2 has the form

w2
i =

xi+1 − αixi+2

xi+1 − βi xi+2
, (i = 1, 2, 3 ∈ Z/3), (5)

hence it has the following field of rational functions

C

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2
,

x2

x3
,

√
x2 − α1x3

x2 − β1x3
,

√
x3 − α2x1

x3 − β2 x1
,

√
x1 − α3 x2

x1 − β3x2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Here we put qi(x) = (const.)(xi+1 − αi xi+2)(xi+1 − βixi+2). X is exactly the mini-
mal model of this field of algebraic functions in two variables. Since we have the
relations

xi+1

xi+2
=

βiw2
i − αi

w2
i − 1

, i = 1, 2, 3,

by multiplying them, X is also the minimal desingularization of the (2, 2, 2) divisor

())) (β1w2
1 − α1)(β2w2

2 − α2)(β3w2
3 − α3) = (w2

1 − 1)(w2
2 − 1)(w2

3 − 1)

in P1 × P1 × P1. Here we consider wi(i = 1, 2, 3) as inhomogeneous coordinates of
P1 × P1 × P1.

Proposition 2. Assume that the three reducible conics q1 = 0, q2 = 0, q3 = 0 satisfy
()) and the three points Sing q1, Sing q2, Sing q3 are not collinear. Then the En-
riques surface S → P2 is isomorphic to the minimal desingularization of the sextic
surface in P3 defined by

() ) )) a0x2
0 + a1x2

1 + a2x2
2 + a3x2

3 =

⎛
⎜⎜⎜⎜⎝

b0

x2
0

+
b1

x2
1

+
b2

x2
2

+
b3

x2
3

⎞
⎟⎟⎟⎟⎠ x0x1x2x3,

where we put

a0 = α1α2α3 − 1, a1 = α1β2β3 − 1,

a2 = β1α2β3 − 1, a3 = β1β2α3 − 1,

b0 = β1β2β3 − 1, b1 = β1α2α3 − 1,

b2 = α1β2α3 − 1, b3 = α1α2β3 − 1

Proof. The Enriques surface is the quotient of the (2, 2, 2) surface ())) by the in-
volution

(w1, w2, w3) �→ (−w1,−w2,−w3)

followed by the minimal desingularization. We focus on the ambient spaces and
construct a birational map between P3 and the quotient of P1 × P1 × P1 by the
involution above.
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We consider a rational map

P1 × P1 × P1 � P3

defined by (w1, w2, w3) �→ (x0 : x1 : x2 : x3) = (1 : w2w3 : w1w3 : w1w2). It
has four points of indeterminacy (∞,∞,∞), (∞, 0, 0), (0,∞, 0), (0, 0,∞). In other
words, the rational map is the projection of the Segre variety P1×P1×P1 ⊂ P7 from
the 3-space spanned by the four points. The indeterminacy is resolved by blowings
up and we obtain a morphism

Bl4-pts(P1 × P1 × P1) → P3.

This morphism factors through the double cover

Y : w2 = x0 x1x2x3

of P3 branched along the tetrahedron and Bl4-pts(P1 × P1 × P1) → Y is a birational
morphism which contracts six quadric surfaces

w1 = 0,∞, w2 = 0,∞, w3 = 0,∞,

into six edges. Since ())) is an irreducible surface which does not contain any of
these six quadric surfaces, by multiplying w2

1w2
2w2

3,

(β1x2x3 − α1x0x1)(β2x1 x3 − α2 x0x2)(β3x1x2 − α3 x0x3)

= (x2x3 − x0x1)(x1x3 − x0x2)(x1x2 − x0x3)

defines the sextic surface which is birational to the Enriques surface. By reducing
coefficients, we obtain () ) )).

Remark 5. In the proof we have used the four invariants 1, w2w3, w1w3, w1w2. In-
stead, we could use the anti-invariants w1w2w3, w1, w2, w3 to obtain another sextic
equation. In this case the indeterminacies are given by

(0, 0, 0), (0,∞,∞), (∞, 0,∞), (∞,∞, 0)

and the computation results in the sextic surface

() ) )′) :
3∑

i=0

bix
2
i = x0x1x2x3

3∑

i=0

ai

x2
i

.

This is nothing but the surface obtained from () ) )) by applying the standard
Cremona transformation (xi) �→ (1/xi).

Remark 6. More generally, a (2, 2, 2) K3 surface in P1 × P1 × P1 which is invariant
under the involution

(w1, w2, w3) �→ (−w1,−w2,−w3)
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is mapped to the sextic Enriques surface

q(x0, x1, x2, x3) = x0x1 x2x3

3∑

i=0

bi

x2
i

,

not necessarily of diagonal type. The proof is the same as above.

As is well-known, these sextic surfaces have double lines along the six edges of the
tetrahedron x0x1x2x3 = 0.

5 Action of C3
2

of Mathieu Type on Enriques Surfaces
of Hutchinson–Göpel Type

In this section we study Enriques surfaces of Hutchinson–Göpel type explained in
Sect. 3. We show that they are (2, 2)-covers of the projective plane P2 branched along
three reducible conics and extend the action of G0 � C2

2 to an action of C3
2, which

is still of Mathieu type.
Let us begin with the configuration of six distinct lines l1, . . . , l6 in P2. We recall

that there exists uniquely a C5
2-cover of P2 branched along these lines; it is repre-

sented by the diagonal complete intersection surface in P5 as

W :
6∑

i=1

aix
2
i =

6∑

i=1

bix
2
i =

6∑

i=1

cix
2
i = 0,

where (x1 : · · · : x6) are the homogeneous coordinates of P5.
We restrict ourselves to the case

()0) All l1, . . . , l6 are tangent to a smooth conic Q ⊂ P2.

More concretely, we have a nonsingular curve B of genus two

()1) w2 =

6∏

i=1

(x− λi), λi ∈ C

and the quadratic Veronese embedding v2 : P1 → P2 whose image is Q = v2(P1) so
that the lines l1, · · · , l6 are nothing but the tangent lines to Q at v2(λi). By an easy
computation (e.g. [10, Sect. 5]), the desingularized double cover of P2 branched
along the sum

∑6
i=1 li is isomorphic to the Jacobian Kummer surface Km B of the

curve B. The C5
2-cover branched along six lines in this case is given by the equation

W :
6∑

i=1

x2
i =

6∑

i=1

λi x
2
i =

6∑

i=1

λ2
i x2

i = 0.

The morphism from W to the double plane branches only along the 15 exceptional
curves of Km B corresponding to 15 nonzero 2-torsions of J(B), hence the induced
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map W � Km B is the same as induced from the multiplication morphism x �→ 2x
of J(B). In particular we see that W is isomorphic to Km B. (See [15, Theorem 2.5]
for the alternative proof using the traditional quadric line complex.)

We take the subgroup H0 of J(B) consisting of 2-torsions p1−p4, p2−p5, p3−p6

and the zero element. Here pi are the Weierstrass points corresponding to λi ∈ C.
This H0 is a Göpel subgroup of J(B) and the quotient abelian surface J(B)/H0 again
has a principal polarization. There are two cases:

1. The quotient surface J(B)/H0 is isomorphic to the Jacobian J(C) of a curve C
of genus two.

2. The surface J(B)/H0 is isomorphic to a product E1 × E2 of two elliptic curves.

The group H0 acts on the Kummer surface W � Km B by the formulas

(x1 : x2 : x3 : x4 : x5 : x6) �→ (−x1 : x2 : x3 : −x4 : x5 : x6), and

(x1 : x2 : x3 : x4 : x5 : x6) �→ (x1 : −x2 : x3 : x4 : −x5 : x6).

Hence the quotient Km B/H0 is a C3
2-cover of P2 branched along the three reducible

conics
()2) l1 + l4 : q1 = 0, l2 + l5 : q2 = 0, l3 + l6 : q3 = 0.

Proposition 3. Assume in ()2) that the three points Sing qi (i = 1, 2, 3) are not
collinear. Then the minimal resolution of the quotient surface Km B/H0 is isomor-
phic to the Jacobian Kummer surface Km C of C and the involution

(w1, w2, w3) �→ (−w1,−w2,−w3)

of Km C coincides with the Hutchinson–Göpel involution εH associated to the
Göpel subgroup H := J(B)(2)/H0 of J(C) [10]. In particular, the Enriques cover
S → P2 of degree 4 with branch curve ()2) is an Enriques surface of Hutchinson–
Göpel type.

Proof. We consider the polar mi of Q at the point Sing qi = li ∩ li+3, namely the
line connecting v2(λi) and v2(λi+3). Since Sing qi are not collinear, m1, m2, m3 are
not concurrent.

We introduce homogeneous coordinates (x1 : x2 : x3) such that m1, m2, m3

are defined by x1, x2, x3. Let q(x1, x2, x3) be the defining equation of Q. Replacing
q, m1, m2, m3 by suitable constant multiplications, we can put the defining equations
of the conics li + li+3 : qi = 0 as −q + x2

i . Now the K3 surface X is defined by the
equations

w2
i = −q(x1, x2, x3) + x2

i (i = 1, 2, 3).

In particular we see that X is contained in the (2, 2) complete intersection

V : w2
1 − x2

1 = w2
2 − x2

2 = w2
3 − x2

3

in P5. This (quartic del Pezzo) threefold V is nothing but the image of the rational
map
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()3) P3 � P5

(x : y : z : t) �→ (x1 : x2 : x3 : w1 : w2 : w3)

= (xt + yz : yt + xz : zt + xy : xt − yz : yt − xz : zt − xy)

More precisely, V is isomorphic to the P3 first blown up at four coordinate points
and then contracted along the six (−2) smooth rational curves which are strict trans-
forms of the six edges of the tetrahedron xyzt = 0. The rational map ()3) induces a
birational equivalence between X and the quartic surface

()4) q(xt + yz, yt + xz, zt + xy) = 4xyzt.

Under ()3), the involution (x : w) �→ (x : −w) corresponds to the Cremona involu-
tion

(x : y : z : t) �→
(

1

x
:

1

y
:

1

z
:

1

t

)

.

Hence S is of Hutchinson–Göpel type (see Sect. 3).

Remark 7. The collinearity property of the three points Sing qi (i = 1, 2, 3) is equiv-
alent to the three quadratic equations (x − λi)(x − λi+3) being linearly dependent.
In this case, there exists an involution σ of P1 which sends λi to λi+3 for i = 1, 2, 3.
This involution σ lifts to an involution σ̃ of the curve B in ()1) and the quotient
B/σ̃ becomes an elliptic curve. We call such pair (B, H0) bielliptic. In this case the
quotient J(B)/H0 is isomorphic to the product of two elliptic curves as principally
polarized abelian surfaces.

Corollary 1. Assume that the pair (C, H) is not bielliptic. Then the Enriques surface
Km C/εH obtained from the curve C of genus two and the Göpel subgroup H ⊂
J(C)(2) is isomorphic to the desingularization of the (2, 2)-cover of the projective
plane P2 branched along three reducible conics ()2) satisfying the condition ()0).

Proof. The quotient abelian surface J(C)/H has a principal polarization which is
not reducible. Hence it is isomorphic to the Jacobian J(B) of some curve B of genus
two. Also the quotient H0 = J(C)(2)/H gives a Göpel subgroup of J(B). The pair
(B, H0) is not bielliptic, hence the three points Sing qi (i = 1, 2, 3) are not collinear.
By the proposition, Km C/εH is isomorphic to the Enriques surface which is the
(2, 2)-covering of the projective plane.

By Lemma 1, we have a Cremona involution σ which exchanges l1, l2, l3 with
l4, l5, l6 respectively. This involution σ lifts to Km C, hence we obtain an action
by C4

2 on Km C and on the Enriques surface S we get the extension of G0 � C2
2 to

the group G � C3
2. The Cremona involution σ has only four isolated fixed points.

Hence the lift of σ as an anti-symplectic involution of Km C has no fixed points.
This together with Proposition 1 proves the following.

Proposition 4. The Enriques surface Km C/εH of Hutchinson–Göpel type has an
action of Mathieu type by the elementary abelian group G � C3

2.
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In fact, every involution in the coset G \G0 has type (M0). Although we can prove
this from geometric consideration so far, we postpone it until Theorem 3 where a
straightforward computation of the fixed locus is given.

Remark 8. The image T of the rational map ()3) is the octahedral toric threefold and
its automorphism group is isomorphic to the semi-direct product (C∗)3.(S4 × S2).
The obvious C3

2 of Aut(Km C) is induced from the Klein’s four-group inS4 and the
Cremona involution, the generator of S2. But any lift of the Cremona involution σ
does not come from Aut T .

Let us study the symmetry of the sextic surface

()5)
3∑

i=0

aix
2
i =

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

i=0

bi

x2
i

⎞
⎟⎟⎟⎟⎟⎟⎠ x0x1 x2x3.

The group G0 � C2
2 acts by the simultaneous change of signs of two coordinates.

The coefficients ai, bi (i = 0, . . . , 3) are given as in Proposition 2. When we are
treating Enriques surfaces of Hutchinson–Göpel type, since the six lines satisfy the
condition ()0), we have

3∏

i=1

αi

3∏

i=1

βi = 1.

By the identity

3∏

i=0

ai −
3∏

i=0

bi = (
3∏

i=1

αi

3∏

i=1

βi − 1)
3∏

i=1

(αi − βi),

we obtain
∏3

i=0 ai =
∏3

i=0 bi. By choosing the constants appropriately, the sextic
surface ()5) acquires the action of the standard Cremona involution

(x0 : x1 : x2 : x3) �→
(

(const.)

x0
:

(const.)

x1
:

(const.)

x2
:

(const.)

x3

)

. (6)

This action together with G0 gives us the action of G � C3
2.

Remark 9. (1) When a principally polarized abelian surface A is the product E1 ×
E2, then the morphism Φ|2Θ| : A → P3 is of degree 2 onto a smooth quadric.
The limit of Enriques surfaces of Hutchinson–Göpel type, when (Jac C, H) be-
comes (E1 × E2, H0), is the Enriques surface Km(E1 × E2)/ε of Lieberman
type (Example 6) or Kondo–Mukai type according as the Göpel subgroup H0

is a product or not. Km(E1 × E2) is also a (2, 2, 2)-cover of P2 branched along
three reducible quadrics ()2). In the latter case they satisfy ()0) and Sing(qi)
(i = 1, 2, 3) are collinear.

(2) When the three points Sing(qi) are collinear, there exists an involution of P2

which exchanges li with li+3 for i = 1, 2, 3. Thus we have an extension of the
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group action of G0 to a group C3
2 in this case, too. However this action is not

of Mathieu type. In this case the Enriques surface coincides with the one in [9]
and the coset C3

2 \G0 contains a numerically trivial involution.
Further discussions on these topics will be pursued elsewhere.

6 Examples of Mathieu Actions by Large Groups

In this section we treat more directly the sextic Enriques surfaces of Hutchinson–
Göpel type (Sect. 5, () 5)). We start by studying the singularities of sextic Enriques
surfaces and then as an application we give explicit examples of Enriques surfaces
of Hutchinson–Göpel type which are acted on by the groups C2 × A4 and C2 × C4

of Mathieu type [12].
We recall the sextic equation of an Enriques surface of diagonal type from Propo-

sition 2,

F(x0, x1, x2, x3) =

(a0x2
0 + a1x2

1 + a2x2
2 + a3x2

3)x0x1x2x3 +

⎛
⎜⎜⎜⎜⎝

b0

x2
0

+
b1

x2
1

+
b2

x2
2

+
b3

x2
3

⎞
⎟⎟⎟⎟⎠ x2

0x2
1 x2

2x2
3,

(7)

where
∏

i ai
∏

i bi � 0. Let S be the singular surface defined by F. By Bertini’s
theorem every general element in this linear system is smooth outside the coordinate
tetrahedron Δ = {x0x1x2x3 = 0}, whereas along the intersection Δ ∩ S it always has
singularities.

At each coordinate point, say at P = (0 : 0 : 0 : 1), F is expanded to

(a3x3
3)x0x1x2 + (higher terms in x0, x1, x2)

as a polynomial in the variables x0, x1, x2. This shows that S has an ordinary triple
point at P. It can be resolved by the normalization π : S → S and π−1(P) consists
of three points. These three points correspond to the three components {xi = 0}(i =
0, 1, 2) of the resolution of the triple point {x0x1x2 = 0}, so it may be natural to
denote them by

π−1(P) = {(0 : 0 : 0 : 1), (0 : 0 : 0 : 1), (0 : 0 : 0 : 1)}.
Along each edges of the tetrahedron Δ, say along l = {x0 = x1 = 0}, F is

expanded to

x2x3((b0x2x3)x2
1 + (a2x2

2 + a3x2
3)x1x0 + (b1x2x3)x2

0) + (higher terms in x0, x1)

as a polynomial in the variables x0, x1. Therefore S has the singularity of ordinary
double lines at (0 : 0 : x2 : x3) if g(T ) = (b0x2x3)T 2 + (a2x2

2 + a3x2
3)T + b1x2x3 has

only simple roots; if g(T ) has multiple roots, it becomes a pinch point (also called a
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Whitney umbrella singularity). We see that both of these singularities are resolved
by the normalization π. The double cover l̃ := π−1∗ (l) → l branches at the pinch

points. Since the discriminant condition of g(T ),

∣
∣
∣∣
∣
∣

2b0x2x3 a2x2
2 + a3x2

3
a2x2

2 + a3x2
3 2b1x2x3

∣
∣
∣∣
∣
∣
= 0,

gives in general four pinch points, the curve l̃ is an elliptic curve. At each coor-
dinate point, say at (0 : 0 : 0 : 1), we see that l̃ contains exactly the two points
(0 : 0 : 0 : 1) and (0 : 0 : 0 : 1). We denote by l̃i j the strict transform of the edge
li j = {xi = x j = 0}.

As is proved in Sect. 5, the Enriques surface S of Hutchinson–Göpel type satisfies
∏

i ai =
∏

i bi in (7). By a suitable scalar multiplication of coordinates, the equation
of S is normalized into

(x2
0 + x2

1 + x2
2 + x2

3) +

⎛
⎜⎜⎜⎜⎝

b0

x2
0

+
b1

x2
1

+
b2

x2
2

+
b3

x2
3

⎞
⎟⎟⎟⎟⎠ x0x1x2 x3,

3∏

i=0

bi = 1. (8)

To make use of Cremona transformations, we work also with Bi =
√

bi,
∏

i Bi = 1.
With the previous notation we can give a full statement of Proposition 4.

Theorem 3. The Enriques surface of Hutchinson–Göpel type (8) has the automor-
phisms

s1 : (x0 : x1 : x2 : x3) �→ (−x0 : −x1 : x2 : x3),

s2 : (x0 : x1 : x2 : x3) �→ (−x0 : x1 : −x2 : x3),

σ : (x0 : x1 : x2 : x3) �→
(

B0

x0
:

B1

x1
:

B2

x2
:

B3

x3

)

.

The involutions s1, s2 generate the group G0 � C2
2 and s1, s2, σ generate the group

G � C3
2. Their types as regards the fixed locus are as follows.

(1) Every non-identity element of G0 has type (M2).
(2) Every element of the coset G \G0 has type (M0).

Proof. Let π : S → S be the normalization. Then S is the smooth minimal model
and the actions extend. It is easy to see that

Fix(s1) = l̃01 ∪ l̃23 ∪ {(0 : 0 : 0 : 1), (0 : 0 : 1 : 0), (0 : 1 : 0 : 0), (1 : 0 : 0 : 0)}
and similarly for s2, s3 = s1s2. This shows the assertion about fixed points of si.
As for σ and σsi, first we note that they exchange the three pairs of opposite edges
of the tetrahedron Δ. Hence their fixed loci exist only in the complement of the
coordinate hyperplanes, on which the whole group acts biregularly. In fact we see
that, for example, the fixed points of σ consist of the four points of the form

(e0

√
B0 : e1

√
B1 : e2

√
B2 : e3

√
B3),
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where ei ∈ {±1} satisfy
∏

ei = −1 and we fix once and for all
√

Bi for which
∏ √

Bi = 1. Thus the fixed points of Cremona transformations are of type (M0).

We remark that if the pair (C, H) (or (B, H0)) admits a special automorphism, it
induces a further automorphism of the Enriques surface S = (Km C)/εH . Theo-
rem 4 below is an example of this general idea. Recall that a finite group of semi-
symplectic automorphisms5 of an Enriques surface is called of Mathieu type if every
element g of order 2 or 4 acts with χtop(Fix(g)) = 4 (see [12]). Our theorem provides
two examples of large group actions of Mathieu type on Enriques surfaces.

Theorem 4. Let S be the Enriques surface of Hutchinson–Göpel type in Sect. 5.

(1) If B admits an automorphism ψ of order 3, then B has a Göpel subgroup H0

preserved by ψ, and S acquires an action of Mathieu type by the group C2×A4.
(2) If B has an action by the dihedral group D8 of order 8, then B has a Göpel

subgroup H0 preserved by D8, and S acquires an action by the group C3
2 � C2

2 .
The restriction to a certain subgroup isomorphic to C2 ×C4 is of Mathieu type.

Proof. Consult, e.g., [2] or [6, Sect. 8] for automorphisms of curves of genus two.

(1) We may assume that B is defined by

w2 = (x3 − λ3)(x3 − λ−3), λ ∈ C∗.
Then the curve B has the automorphism ψ : (x, w) �→ (ζ3x, w) where ζ3 is the
primitive cube root of unity. We label the six branch points as

λi = ζ i−1
3 λ (i = 1, 2, 3), λi = ζ i−1

3 λ−1 (i = 4, 5, 6)

Then the automorphism ψ acts on the Göpel subgroup H0 ⊂ J(B)(2) of Sect. 5
as follows.

p1 − p4 �→ p2 − p5 �→ p3 − p6 �→ p1 − p4.

The induced automorphism on S is denoted by the same letter ψ. More explic-
itly, by (5) and Proposition 2, we see that ψ permutes the coordinates w1, w2, w3

and x1, x2, x3. This symmetry has the effect on (8) of S that b1 = b2 = b3 =: A2,
hence we get the family

(x2
0 + x2

1 + x2
2 + x2

3) +

⎛
⎜⎜⎜⎜⎝

1

A6x2
0

+
A2

x2
1

+
A2

x2
2

+
A2

x2
3

⎞
⎟⎟⎟⎟⎠ x0x1x2 x3 = 0. (9)

The action of ψ is given by (x0 : x1 : x2 : x3) �→ (x0 : x3 : x1 : x2) and it
extends the group G = C3

2 to C2×A4. Theorem 3 shows that its unique 2-Sylow
subgroup acts with Mathieu character, hence this is an example of a family with
a group action of Mathieu type.

5 An automorphism is semi-symplectic if it acts on the space H0(S ,OS (2KS )) trivially.
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(2) We may assume that B is defined by

w2 = x(x2 − λ2)

(

x2 − 1

λ2

)

, λ ∈ C∗,

and has the automorphisms

ψ : (x, w) �→ (−x,
√−1w), ϕ : (x, w) �→

(
1

x
,

w

x3

)

.

These ψ, ϕ generate a group isomorphic to D8. Here we label the six branch
points as

λ1 = 0, λ4 =∞; λ2 = λ, λ5 = −λ; λ3 = 1/λ, λ6 = −1/λ.

Then the Göpel subgroup H0 is preserved by ψ, ϕ. This extends the group G of
automorphisms of the Enriques surface S in Theorem 3 to C3

2 �C2
2 (the index 4

of the extention from G corresponds to the order of the reduced automorphism
group 〈ψ, ϕ〉/ψ2 of B).

Their action on the equation is as follows. As before, we use the notation of (5)
and Proposition 2. First the action of ϕ on wi is given by

w1 �→ w−1
1 , w2 ↔ w3

and we have (1 : w2w3 : w3w1 : w1w2) �→ (w1 : w1w2w3 : w2 : w3). In view of
Remark 5, this is the same as a Cremona transformation followed by a permutation.
Next, the action of ψ on wi is given by

w1 �→ w1, w2 �→ w−1
2 , w3 �→ w−1

3

and we have (x0 : x1 : x2 : x3) �→ (x1 : x0 : x3 : x2). This implies that our Enriques
surface has the sextic equation

(x2
0 + x2

1 + x2
2 + x2

3) +
√−1

⎛
⎜⎜⎜⎜⎝

A2

x2
0

+
A2

x2
1

+
1

A2x2
2

+
1

A2x2
3

⎞
⎟⎟⎟⎟⎠ x0x1x2x3 = 0. (10)

(See Remark 10.) Although S has a group of automorphisms of order 32, most of
them do not satisfy the Mathieu condition. However, we claim that there are some
that do.

Claim. The action

g : (x0 : x1 : x2 : x3) �→
(

A

x1
:

A

x0
:

1

Ax3
: − 1

Ax2

)

is of Mathieu type of order 4.
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Proof. We show this by the computation of the fixed locus. The action of g on the
edges of the tetrahedron Δ is as follows: it exchanges l01 and l23, while it stabilizes
the other four edges. For each intersecting pair of stable edges, we have an isolated
fixed point. Hence there are four isolated fixed points. These are exactly the isolated
points of Fix(s1), in view of the relation g2 = s1.

In this way, we find that the family (10) has the Mathieu type actions generated by
g and

h : (x0 : x1 : x2 : x3) �→
(

A

x1
: − A

x0
:

1

Ax3
:

1

Ax2

)

.

The relations g2 = h2 = s1, gh = hg show that they in fact generate the group
C2 ×C4.

Remark 10. The coefficient
√−1 is a kind of subtlety of Enriques surfaces, which

makes (10) irreducible. Note that without this adjustment, we obtain the reducible
equation

(x2
0 + x2

1 + x2
2 + x2

3) +

⎛
⎜⎜⎜⎜⎝

A2

x2
0

+
A2

x2
1

+
1

A2x2
2

+
1

A2x2
3

⎞
⎟⎟⎟⎟⎠ x0x1x2x3

=

(

x2
0 + x2

1 +
x0x1

A2x2x3
(x2

2 + x2
3)

) (

1 + A2 x2 x3

x0 x1

)

.

The octahedral Enriques surface. A careful look at (9) and (10) shows that they
have a member S oct in common,

S oct : (x2
0 + x2

1 + x2
2 + x2

3) +
√−1

⎛
⎜⎜⎜⎜⎝

1

x2
0

+
1

x2
1

+
1

x2
2

+
1

x2
3

⎞
⎟⎟⎟⎟⎠ x0x1 x2x3 = 0.

This surface is associated to the curve B (()1), Sect. 5) which is ramified over the
six vertices of the regular octahedron inscribed in P1. Hence we call the desingular-
ization S oct of this surface the octahedral Enriques surface.

The additional automorphisms are quite visible on S oct; it is generated by the
symmetric groupS4 acting on the coordinates {xi} and three involutions β j : (xi) �→
(εi j/xi) ( j = 1, 2, 3) where εi j takes value −1 if i = j and 1 otherwise. Thus S oct

is acted on by the group C3
2S4 of order 192. For convenience, we give here a table

of topological structures of the fixed loci of these automorphisms, sorted by the
conjugacy classes in C3

2S4.
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Representative Length Order Fixed loci
id 1 1 S oct

β1 4 2 {4pts.}
β1β2 3 2 (Two elliptic curves) + {4pts.}

β1(x0x1)(x2x3) 12 4 {4pts.}
β1β2(x0x1)(x2x3) 6 2 (Two rational curves) + {4pts.}

(x0x1)(x2x3) 6 2 {4pts.}
β2(x0x1) 12 2 (A rational curve) + {4pts.}
(x0x1) 12 2 (A genus-two curve) + {4pts.}

β1(x0x1) 12 4 {2pts.}
β1β2(x0x1) 12 4 {2pts.}
β1(x1x2x3) 32 6 {1pt.}
(x1x2 x3) 32 3 {3pts.}

β1(x0x1x2x3) 24 4 {4pts.}
(x0x1 x2x3) 24 4 {2pts.}

We remark that, as the specialization of the families (9) and (10), the group C2×A4

is generated by β2β3, β3β1, β1β2, (x1x2x3) and the group C2 × C4 is generated by
β1(x0x1)(x2x3), β3(x0x1)(x2x3).

7 The Characterization

In this section we prove a converse of Theorem 3 (resp. Proposition 1), stating that
sextic Enriques surfaces of Hutchinson–Göpel type (resp. of diagonal type) are char-
acterized by the group actions by G (resp. G0).

To begin with, let us recall the study of involutions of Mathieu type. Every in-
volution s on an Enriques surface S acts on the space H0(S ,OS (2KS )) trivially.
This means that at a fixed point P of s, the derivative of s satisfies det(ds)P = ±1.
The fixed point P is called symplectic (resp. anti-symplectic) according to the value
det(ds)P = +1 (resp.−1). The set of symplectic (resp. anti-symplectic) fixed points
is denoted by Fix+(s) (resp. Fix−(s)). Geometrically, Fix+(s) is exactly the set of
isolated fixed points and Fix−(s) is the set of fixed curves since s has order two. By
topological and holomorphic Lefschetz formulas, we see always # Fix+(s) = 4 and
the Mathieu condition is equivalent to χtop(Fix−(s)) = 0. A more precise argument
shows that there are only four types (M0)-(M3) mentioned in the introduction.

Lemma 2. Let s be an involution of (M2) type on an Enriques surface S ; we denote
the two elliptic curves of Fix−(s) by E, F. Then there exists an elliptic fibration
S → P1 in which 2E and 2F are multiple fibers.

Proof. It is well-known that the linear system of some multiple of E gives an elliptic
fibration f : S → P1, [1, Chap. VIII]. Since s fixes the fibers E, F and those which
contain the four points of Fix+(s), s acts on the base trivially. Thus s is induced
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from an automorphism s0 of the Jacobian fibration J( f ). Since s does not have fixed
horizontal curves, s0 acts as a fiberwise translation. Hence E and F must be multiple
fibers.

Here we first give the characterization of Enriques surfaces of diagonal type.

Proposition 5. Let S be an Enriques surface with an action of Mathieu type by the
group G0 := C2

2 such that every nontrivial element is of (M2) type. Then S is bira-
tionally equivalent to the sextic Enriques surface of diagonal type, Proposition 2,
() ) )).

Proof. We let the group G0 = {1, s1, s2, s3} and let Ei, Fi be the two elliptic curves
in the fixed locus Fix(si) respectively for i = 1, 2, 3. Lemma 2 shows that the divisor
class of 2Ei ∼ 2Fi defines an elliptic fibration fi : S → P1. Moreover, since fi has
exactly two multiple fibers, for j � i the curves E j and F j are horizontal in the
fibration fi. In particular the intersections

Ei ∩ E j, Ei ∩ F j, Fi ∩ E j, Fi ∩ F j (11)

are all nonempty.
On the other hand, each of the four intersections of (11) defines an isolated fixed

point of sk because si s j = sk, where k is taken as the element in {1, 2, 3} \ {i, j}.
These isolated fixed points belong to the set Fix+(sk), which consists of four points.
Hence we see that the intersections of (11) all are transversal and consists of one
point.

Next let us consider the linear system L := |E1 + E2 + E3| with L2 = 6. This is a
nef and big divisor, hence it maps S into P3. Note that the relation

E1 + E2 + E3 ∼ E1 + F2 + F3 ∼ F1 + E2 + F3 ∼ F1 + F2 + E3 (12)

shows that L is base-point-free. Then we can use [3, Remark 7.9] to see that at
least either L or L + KS gives a birational morphism onto a sextic surface. Noting
that L + KS is nothing but the system |E1 + E2 + F3|, exchanging E3 and F3 if
necessary, we can assume that L gives a birational morphism ϕ onto a sextic surface
S ⊂ P3. As is known, S becomes a sextic surface with double lines along edges of
a tetrahedron Δ. In our case the edges of Δ consist of the images of the six elliptic
curves E1, · · · , F3.

We denote by x0, x1, x2, x3 the respective global sections of OS (E1+E2+E3) cor-
responding to the divisors (12). In these coordinates Δ is nothing but the coordinate
tetrahedron Δ = {x0x1x2x3 = 0}. Thus our surface S belongs to the following linear
system of sextics,

q(x0, x1, x2, x3) + x0x1x2x3(b0/x2
0 + b1/x2

1 + b2/x2
2 + b3/x2

3),

where q is a quadric and b0, · · · , b3 ∈ C are constants.
The involution si induces a linear transformation of the ambient P3. More pre-

cisely, since si stabilizes each divisor in (12), si(x j) is just a scalar multiple of x j for
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any i, j. By considering their fixed locus, we easily deduce that this action is given
by changing the signs of two coordinates. Since S is invariant under this change of
signs, we have q(x, y, z, t) = a0x2

0 + a1x2
1 + a2x2

2 + a3x2
3. Therefore, S is birationally

equivalent to a sextic Enriques surface of diagonal type.

Proof of Theorem 1. We identify the subgroup G0 with the one in the previous
proposition and keep the same notation. Recall from Sect. 5 that the sextic surface
()5) is an Enriques surface of Hutchinson–Göpel type exactly when

∏
i ai =

∏
i bi.

This is the case when there exists an action of standard Cremona transformation (6).
Let σ ∈ G −G0. We claim that σ exchanges Ei and Fi for any i.

Suppose σ preserves E1 and F1. Then we would obtain an effective action of
〈σ, s2〉 � C2

2 on both E1 and F1. Since s2 has fixed points on them, it negates the
periods. It follows that the elements σ and σs2, both in the set G \ G0, cannot act
on E1 freely, so that for example it would happen that σ has four fixed points on E1

and σs2 has four fixed points on F1. But this is not possible, since on the K3 cover
X, the symplectic lift σ̃ has eight fixed points inside the inverse image of E1 which
is an irreducible elliptic curve (since E1 is a double fiber). Thus we have proved that
σ exchanges E1 and F1. The same applies to Ei and Fi for i = 2, 3.

Thus σ sends
∑

Ei to
∑

Fi. It follows that σ transforms the sextic model defined
by L to a sextic model defined by L + KS . As was noticed in Remark 5 (or [11,
Remark 4.2]), these two models are related via the Cremona transformation. Thus
the Enriques surface is of Hutchinson–Göpel type.
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Quartic K3 Surfaces and Cremona
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Abstract We prove that there is a smooth quartic K3 surface automorphism that
is not derived from the Cremona transformation of the ambient three-dimensional
projective space. This gives a negative answer to a question of Professor Marat
Gizatullin.

Key words: Automorphisms, Quartic K3 surfaces, Cremona transformations
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14J50

1 Introduction

Throughout this note, we work over the complex number field C.
In his lecture “Quartic surfaces and Cremona transformations” [2] in the work-

shop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds held at
the Fields Institute (August 16–25, 2011), Professor Igor Dolgachev discussed the
following question with several beautiful examples supporting it:

Question 1. Let S ⊂ P3 be a smooth quartic K3 surface. Is any biregular automor-
phism g of S (as abstract variety) derived from a Cremona transformation of the
ambient space P3? More precisely, is there a birational automorphism g̃ of P3 such
that g̃∗(S ) = S and g = g̃|S ? Here g̃∗(S ) is the proper transform of S , and g̃|S is the
necessarily biregular, birational automorphism of S then induced by g̃.
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Later, Dolgachev pointed out to me that, to his best knowledge, Gizatullin was
the first who asked this question. The aim of this short note is to give a negative
answer to the question:

Theorem 1. (1) There exists a smooth quartic K3 surface S ⊂ P3 of Picard number
2 such that Pic (S ) = Zh1 ⊕ Zh2 with intersection form:

((hi.h j)) =

(
4 20

20 4

)

.

(2) Let S be as above. Then Aut (S ) has an element g such that it is of infinite order
and g∗(h) � h. Here Aut (S ) is the group of biregular automorphisms of S as
an abstract variety, and h ∈ Pic (S ) is the hyperplane section class.

(3) Let S and g be as above. Then there is no element g̃ of Bir (P3) such that g̃∗(S ) =
S and g = g̃|S . Here Bir (P3) is the Cremona group of P3, i.e., the group of
birational automorphisms of P3.

Our proof is based on a result of Takahashi concerning the log Sarkisov program
[7], which we quote as Theorem 2, and standard argument concerning K3 surfaces.

Remark 1. (1) Let C ⊂ P2 be a smooth cubic curve, i.e., a smooth curve of genus 1.
It is classical that any element of Aut (C) is derived from a Cremona transforma-
tion of the ambient space P2. In fact, this follows from the fact that any smooth
cubic curve is written in Weierstrass form after a linear change of coordinates
and the explicit form of the group law in terms of the coordinates.

(2) Let n be an integer such that n ≥ 3 and Y ⊂ Pn+1 be a smooth hypersurface
of degree n + 2. Then Y is an n-dimensional Calabi–Yau manifold. It is well
known that Bir (Y) = Aut (Y), it is a finite group, and any element of Aut (Y)
is derived from a biregular automorphism of the ambient space Pn+1. In fact,
the statement follows from KY = 0 in Pic (Y) (adjunction formula), H0(TY) = 0
(by TY � Ωn−1

Y together with Hodge symmetry), and Pic (Y) = Zh, where h
is the hyperplane class (Lefschetz hyperplane section theorem). We note that
KY = 0 implies that any birational automorphism of Y is an isomorphism in
codimension one, so that for any birational automorphism g of Y, we have a
well-defined group isomorphism g∗ on Pic (Y). Then g∗h = h. This implies that
g is biregular and it is derived from an element of Aut (Pn+1) = PGL (Pn+1).

2 Proof of Theorem 1(1)(2)

In this section, we shall prove Theorem 1(1)(2) by dividing it into several steps. The
last lemma (Lemma 5) will be used also in the proof of Theorem 1(3).

Lemma 1. There is a projective K3 surface such that Pic (S ) = Zh1 ⊕ Zh2 with

((hi.h j)) =

(
4 20

20 4

)

.
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Proof. Note that the abstract lattice given by the symmetric matrix above is an even
lattice of rank 2 with signature (1, 1). Hence the result follows from [4], Corollary
(2.9), which is based on the surjectivity of the period map for K3 surfaces (see, e.g.,
[1, Page 338, Theorem 14.1]) and Nikulin’s theory [5] of integral bilinear forms.

From now on, S is a K3 surface in Lemma 1.
Note that the cycle map c1 : Pic (S ) → NS (S ) is an isomorphism for a K3

surface. So, we identify these two spaces. NS (S )R is NS (S ) ⊗Z R. The positive
cone P(S ) of S is the connected component of the set

{x ∈ NS (S )R | (x2)S > 0} ,

containing the ample classes. The ample cone Amp (S ) ⊂ NS (S )R of S is the open
convex cone generated by the ample classes.

Lemma 2. NS (S ) represents neither 0 nor−2. In particular, S has no smooth ratio-
nal curve and no smooth elliptic curve and (C2)S > 0 for all nonzero effective curves
C in S . In particular, the positive cone of S coincides with the ample cone of S .

Proof. We have ((xh1 + yh2)2)S = 4(x2 + 10xy + y2). Hence there is no (x, y) ∈ Z2

such that ((xh1 + yh2)2)S ∈ {−2, 0}.
Lemma 3. After replacing h1 by−h1, the line bundle h1 is very ample. In particular,
Φ|h1| : S → P3 is an isomorphism onto a smooth quartic surface.

Proof. h1 is non-divisible in Pic (S ) by construction. It follows from Lemma 2 and
(h2

1)S = 4 > 0 that one of ±h1 is ample with no fixed component. By replacing h1

by −h1, we may assume that it is h1. Then, by Saint-Donat [6], Theorem 6.1, h1 is
a very ample line bundle with the last assertion.

By Lemma 3, we may and will assume that S ⊂ P3 and denote this inclusion by ι
and a general hyperplane section by h. That is, h = H ∩ S for a general hyperplane
H ⊂ P3, from now on. Note that h = h1 in Pic (S ).

Lemma 4. There is an automorphism g of S such that g is of infinite order and
g∗(h) � h in Pic (S ).

There are several ways to prove this fact. The following simpler proof was sug-
gested by the referee.

Proof. Let us consider the following orthogonal transformation σ of NS (S )):

σ(h1) = 10h1 − h2 , σ(h2) = h1 .

It is straightforward to see that σ is certainly an element of O(NS (S )) and preserves
the positive cone of S , which is also an ample cone of S by Lemma 2. Note also
that σ is of infinite order, because one of the eigenvalues is 5 + 4

√
6 > 1.

Let n be a positive integer such that σn = id on the discriminant group
(NS (S ))∗/NS (S ). Such an n exists as (NS (S ))∗/NS (S ) is a finite set. Let T (S )
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be the transcendental lattice of S , i.e., the orthogonal complement of NS (S ) in
H2(S , Z). Then, by [5], Proposition 1.6.1, the isometry (σn, idT (S )) of O(NS (S ))×
O(T (S )) extends to an isometry τ of H2(S , Z). Since τ also preserves the Hodge
decomposition and the ample cone, there is then an automorphism g of S such that
g∗ = τ by the global Torelli theorem for K3 surfaces (see, e.g., [1], Chap. VIII). This
g satisfies the requirement.

Let g be as in Lemma 4. Then the pair (S ⊂ P3, g) satisfies all the requirements
of Theorem 1(1)(2).

Lemma 5. Let (S ⊂ P3, g) be as in Theorem 1(1)(2). Let C ⊂ S be a nonzero
effective curve of degree < 16, i.e.,

(C · h)S = (C · H)P3 < 16 .

Then C = S ∩ T for some hypersurface T in P3.

Proof. Recall that h = h1 in Pic (S ). There are m, n ∈ Z such that C = mh1 + nh2 in
Pic (S ). Then

(C · h)S = 4(m + 5n) > 0 , (C2)S = 4(n2 + 10mn + m2) > 0 .

Here the last inequality follows from Lemma 2. Thus, if (C · h)S < 16, then m + 5n
is either 1, 2, or 3 by m, n ∈ Z. Hence we have either one of

m = 1− 5n , , m = 2− 5n , m = 3− 5n .

Substituting into n2 + 10mn + m2 > 0, we obtain one of either

1− 24n2 > 0 , 4− 24n2 > 0 , 9− 24n2 > 0 .

Since n ∈ Z, it follows that n = 0 in each case. Therefore, in Pic (S ), we have
C = mh for some m ∈ Z. Since H1(P3,OP3(�)) = 0 for all � ∈ Z, the natural
restriction map

ι∗ : H0(P3,OP3(m)) → H0(S ,OS (m))

is surjective for all m ∈ Z. This implies the result.

3 Proof of Theorem 1(3)

In his paper [7], Theorem 2.3 and Remark 2.4, N. Takahashi proved the following
remarkable theorem as a nice application of the log Sarkisov program (for termi-
nologies, we refer to [3]):

Theorem 2. Let X be a Fano manifold of dimension ≥ 3 with Picard number 1,
S ∈ |− KX | be a smooth hypersurface. Let Φ : X · · · → X′ be a birational map to a



Quartic K3 Surfaces and Cremona Transformations 459

Q-factorial terminal variety X′ with Picard number 1, which is not an isomorphism,
and S ′ := Φ∗S . Then:

(1) If Pic (X) → Pic (S ) is surjective, then KX ′ + S ′ is ample.
(2) Let X = P3 and H be a hyperplane of P3. Note that then S is a smooth quartic

K3 surface. Assume that any irreducible reduced curve C ⊂ S such that (C ·
H)P3 < 16 is of the form C = S ∩ T for some hypersurface T ⊂ P3. Then
KX ′ + S ′ is ample.

Applying Theorem 2(2), we shall complete the proof of Theorem 1(3) in the
following slightly generalized form:

Theorem 3. Let S ⊂ P3 be a smooth quartic K3 surface. Then:

(1) Any automorphism g of S of infinite order is not the restriction of a biregular
automorphism of the ambient space P3, i.e., the restriction of an element of
PGL(P3).

(2) Assume further that S contains no curves of degree < 16 which are not cut out
by a hypersurface. Then, any automorphism g of S of infinite order is not the
restriction of a Cremona transformation of the ambient space P3.

Recalling Lemma 5, we see that the pair (S ⊂ P3, g) in Theorem 1(1)(2) satisfies
all the requirements of Theorem 3(2). So, Theorem 1(3) follows from Theorem 3(2).
We prove Theorem 3.

Proof. Let us first show (1). Consider the group G := {g ∈ PGL(P3) | g(S ) = S }. Let
H be the connected component of Hilb (P3) containing S . Then G is the stabilizer
group of the point [S ] ∈ H under the natural action of PGL(P3) on H. In particular,
G is a Zariski closed subset of the affine variety PGL(P3). In particular, G has only
finitely many irreducible components. Note that the natural map G → Aut (S ) is
injective and H0(S , TS ) = 0. Thus dim G = 0. Hence G is a finite set.

Let g ∈ Aut (S ). If there is an element g̃ ∈ PGL (P3) such that g = g̃|S , then
g ∈ G, and therefore g is of finite order. This proves (1).

Let us show (2). We argue by contradiction, i.e., assuming to the contrary that
there would be a birational map g̃ : P3 · · · → P3 such that g̃∗(S ) = S and that
g = g̃|S , we shall derive a contradiction.

We shall divide it into two cases:
(i) g̃ is an isomorphism, and (ii) g̃ is not an isomorphism.

Case (i). By (1), g would be of finite order, a contradiction.
Case (ii). By the case assumption, our S would satisfy all the conditions of Theo-

rem 2(2). Recall also that g̃∗S = S . However, then, by Theorem 2(2), KP3 + S
would be ample, a contradiction to KP3 + S = 0 in Pic (P3).

This completes the proof.
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Invariants of Regular Models of the Product
of Two Elliptic Curves at a Place
of Multiplicative Reduction

Chad Schoen

Abstract The divisor class group, (co)homology, and Picard group of the closed
fibers of various regular proper models of the product of two elliptic curves at a
place of multiplicative reduction are computed. The variation of the isomorphism
class of the closed fiber with the variation of the elliptic curves is discussed. The
higher direct images of the sheaf, Z/n, are computed when n is prime to the residue
characteristic.

Key words: Degenerations of surfaces, Degenerations of abelian varieties, Regular
models
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1 Introduction

The purpose of this note is to compute invariants of the degeneration of a product
of two elliptic curves at a place where both have split multiplicative reduction. It
is natural to focus on such degenerations, since the reduction of an elliptic curve at
a given place becomes either good or split multiplicative after an appropriate finite
base change (cf. [23, VII.5.4]). The Weil divisor class group, the (co)homology, and
the Picard group of the closed fiber of the canonical regular model will be computed.
Write V for the closed fiber, CH1(V) for the Weil divisor class group, Im and Im′ for
the Kodaira types of the reductions of the two elliptic curves. Set m′′ = gcd(m, m′).
Our first result is

Theorem 1. CH1(V) � Z2mm′+2 ⊕ Z/m′′.
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It is interesting to note that the torsion may be non-trivial. The same phenomenon
occurs for the (co)homology with Zl coefficients (see Proposition 1). Torsion is not
detected by the method commonly applied to analyze the cohomology of degenerate
fibers, the local invariant cycle theorem [8, 3.11], as this requires cohomology with
Ql coefficients as well as additional hypotheses on the degeneration. Some related
techniques have been applied to Chow groups tensored with R [4, 4.4], but again the
torsion goes undetected.

In the notation introduced above, the main result about the Picard group is the
following:

Theorem 2. Pic(V) � (k∗)2 × Z2mm′+2−κ, where κ ∈ {0, 1}. If k is contained in the
algebraic closure of a finite field, then κ = 0. Otherwise both values of κ can occur.

It is intriguing that Pic(V) is not always determined by the reduction type. This
points to the perhaps surprising fact that the isomorphism class of the special fiber,
V , may vary as the elliptic curves change, even as the reduction type is held fixed.
The Chow groups and (co)homology are insensitive to this variation, but the Picard
group registers it faintly in the variation of κ.

The first part of the paper is organized as follows: The first section serves to
set notation. In Sect. 3 Theorem 1 is proved. Brief treatments of the homology and
cohomology of Vk̄ and of the cycle class map, CH1(V) → H2(Vk̄,Zl(−1)), are given
in Sect. 4. The variation of the closed fiber V is the subject of Sect. 5. Theorem 2 is
proved in Sect. 6.

As mentioned above, there is a canonical choice of regular, projective model for
a product of two elliptic curves at a place where both have multiplicative reduc-
tion. Unfortunately, this canonical model has the defect of never being semi-stable.
Semi-stable degenerations are often the simplest to work with and play a distin-
guished role in the theory of degenerations [8, Sect. 3]. In Sect. 7 it is noted that
semi-stable models exist if m > 1 and m′ > 1 and that similar results to those proved
for the closed fiber of the canonical model hold for the closed fibers of the semi-
stable models. It is noteworthy that if a semi-stable model exists, there are usually
several different ones and the various closed fibers are not generally isomorphic.
Nonetheless their Weil divisor class groups, (co)homology, and Picard groups are
isomorphic.

The final section of the paper is devoted to another important invariant of the
degeneration, the higher direct image sheaves, Ri f∗Z/n, where f is the structure
morphism of the canonical regular, projective model and n is not divisible by the
characteristic of the residue field. The stalk at the geometric closed point is the
cohomology of the closed fiber described in Corollary 1. The stalk at a geometric
generic point is the cohomology of the product of two elliptic curves. Thus the task
is to describe the cospecialization map between the stalks. This is accomplished
with the help of the semi-stable models introduced in Sect. 7 and the vanishing cycle
spectral sequence.

One hopes that local results about degenerations will have global applications.
The global objects most closely related to the degenerations treated here are the
projective threefolds obtained by desingularizing the fiber product of two projec-
tive elliptic surfaces over a common base curve. In fact this is an important class
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of threefolds which have found diverse applications, many closely related to the
themes of this conference [14, Chap. 2], [5, 18, 19]. The main result of Sect. 8 finds
application in [22] where it plays an important role in the proof of a formula for the
torsion in the third and fourth cohomology of these desingularized fiber products. A
formula of this type for any class of projective threefolds appears to be new.

2 Notations

We collect notations in this section for easy reference.

2.1 Basic Notations

K = a discretely valued field.
o = the corresponding valuation ring.
T = S pec(o).
k = the residue field, assumed perfect.
0 = S pec(k).
E = elliptic curve over K with split multiplicative reduction of type Im [13, 10.2.2].
E′ = an elliptic curve over K with split multiplicative reduction of type Im′ .
π : E → T the relatively minimal model of E [13, Sect. 9.3.3].
π′ : E ′ → T the relatively minimal model of E′.
W = E ×T E ′, the fiber product.
f : W → T the canonical morphism.

V = f
−1

(0), the closed fiber of the fiber product.
σ : W → W the blow-up of the ideal sheaf of the non-regular locus, W sing.
f = f ◦ σ : W → T , the canonical, regular, projective model.
V = f−1(0), the closed fiber of the canonical, regular, projective model.
m′′ = gcd(m, m′).
k = an algebraic closure of k.

2.2 Notations Related to the Closed Fiber, F, of π : E → T

F = π−1(0). F ′ = (π′)−1(0).
Fi with i ∈ Z/m denote the irreducible components of F indexed so that F0 meets
the identity section of E and Fi meets Fi−1 and Fi+1.
F ′j with j ∈ Z/m′ denote the irreducible components of F ′ with analogous indexing.
Fsing = the singular locus of F. F ′sing = the singular locus of F ′.
qi with i ∈ Z/m denote the points of Fsing indexed so that qi ∈ Fi ∩ Fi+1

q′j with j ∈ Z/m′ denote the points of F ′sing indexed analogously.
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Completion gives an isomorphism, ÔE ,qi � ô[[x, y]]/(xy − u), where u ∈ o
is a uniformizing parameter [13, 10.3.20]. It follows that the point (qi, q′j) ∈
Fsing × F ′sing ⊂ F × F ′ � V ⊂ W is an isolated ordinary double point of W.

The projectivized tangent cone to W , Qi j, is isomorphic to P1 ×k P
1, while the pro-

jectivized tangent cone of V , Ξi j ⊂ Qi j, may be identified with the configuration of
four rulings,

P1 × {0,∞} ∪ {0,∞}× P1 ⊂ P1 ×k P
1.

Identify Qi j with the fiber of the blow-up, σ : W → W , over (qi, q′j).

2.3 Notation Related to Components of V
and Their Intersections

L = Vred, the reduced subscheme of V (cf. Lemma 5).
Pi j ⊂ W denotes the strict transform of Fi × F j ⊂ V ⊂ W .
Q :=

∐
i, j Qi j, the disjoint union.

P :=
∐

i, j Pi j, the disjoint union.
ai j = qi × F ′j+1 ⊂ Pi, j+1 ∩ Pi+1, j+1 ⊂ W.
bi j = Fi+1 × q′j ⊂ Pi+1, j ∩ Pi+1, j+1 ⊂ W.

When m > 1 and m′ > 1 define
ci j = Qi j ∩ Pi+1, j+1,
di j = Qi j ∩ Pi, j+1,
ei j = Qi j ∩ Pi+1, j,
fi j = Qi j ∩ Pi j.
It will be necessary to define ci j, di j, ei j, fi j even when m = 1 or m′ = 1. If m =

m′ = 1 the tangent cone to F0 at q0 (respectively to F ′0 at q′0) consists of two lines
denoted, TC+ and TC− (respectively TC′+ and TC′−). Define c00 ⊂ Q00 (respectively
d00, e00, f00) to be the projectivization of TC+ × TC′+ (respectively TC− × TC′+,
TC+× TC′−, TC− × TC′−). If m = 1 but m′ > 1 write Tqj F

′
j for the tangent space to

F ′j at q′j and define c0 j (respectively d0 j, e0 j, f0 j) to be the projectivization of TC+×
Tqj F

′
j+1 (respectively of TC−×Tqj F

′
j+1, TC+×Tqj F

′
j, TC−×Tqj F

′
j) in Q0 j. Similarly

if m > 1 but m′ = 1, let ci0 (respectively di0, ei0, fi0) denote the projectivization of
Tqi Fi+1 × TC′+ (respectively Tqi Fi × TC′+, Tqi Fi+1 × TC′−, Tqi Fi × TC′−) in Qi0.

In any case ci j � di j � ei j � fi j � P1
k as abstract varieties. Together with ai j and

bi j these are the irreducible components of the singular locus of L. Figure 1 should
help visualize L = Vred.

3 The Weil Divisor Class Group of V

The purpose of this section is to prove Theorem 1. The main tool in the computation
of CH1(V) is the (exact) localization sequence [6, 1.8],
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Fig. 1: L = Vred locally near Pi j when m > 1 and m′ > 1

CH1(V − Q, 1)
∂→ CH1(Q) → CH1(V) → CH1(V − Q) → 0,

where for any reduced, separated, finite type k-scheme, Z,

CH1(Z, 1) := Ker k(Z)∗ div→ Div(Z).

To define the boundary map, view f ∈ CH1(V − Q, 1) as a rational function on the
closure, V̌ , of V − Q in V . Extend to an element f ∈ k(V̌)∗ × k(Q)∗ � k(V)∗ by
means of an arbitrary factor in k(Q)∗. Then div( f ) has support in Q and defines an
element ∂( f ) ∈ CH1(Q) independent of choices.

We remark in passing that CH1(Z, 1) is canonically isomorphic to the Bloch
higher Chow group designated by the same symbol [17, 1.2]. However familiarity
with higher Chow groups is not needed to understand the arguments which follow.

The group CH1(Z, 1) is seldom finitely generated, but may be replaced by a more
manageable group as follows: Let CH1(Z, 1)0 ⊂ CH1(Z, 1), denote the image of the
obvious map,

CH0(Z)⊗CH1(Spec(k), 1) → CH1(Z, 1).

Define CH1(Z, 1)1 := CH1(Z, 1)/CH1(Z, 1)0. Now CH1(V − Q, 1)0 ⊂ Ker(∂) and
CH1(V − Q, 1)1 is a finitely generated free abelian group. We want a basis. For this
we introduce some notation:

gi ∈ k(Fi)∗ satisfies div(gi) = qi − qi−1. (i ∈ Z/m.)
g′j ∈ k(F ′j)

∗ satisfies div(g′j) = q′j − q′j−1. ( j ∈ Z/m′.)
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V ss := (V sing)sing.

For each j ∈ Z/m′ define an element

η′j ∈ CH1(V , 1)1 � CH1(V − V ss, 1)1 � CH1(V − Q, 1)1,

by pulling back
∏

i∈Z/m gi ∈ CH1(F, 1) to CH1(F × F ′j, 1) and then extending by

1 on the other irreducible components of V . Similarly for each i ∈ Z/m pull back
∏

j∈Z/m′ g
′
j ∈ CH1(F ′, 1) to CH1(Fi×F ′, 1) and extend by 1 to define ηi ∈ CH1(V−

Q, 1)1.

Lemma 1. {η0, . . . , ηm−1, η
′
0, . . . , η

′
m′−1} is a basis for CH1(V − Q, 1)1.

Proof. For linear independence note that the product

ηc0
0 . . . η

cm−1

m−1η
′
0

c′0 . . . η′m′−1
c′

m′−1

restricts to g
c′j
i g′j

ci on Pi j. Thus the product is constant on each irreducible component
if and only if each ci and c′j is zero.

An arbitrary element of CH1(V − Q, 1)1 may be represented by a rational func-
tion, f ∈ k(V − Q)∗ � k(V − V ss)∗ whose restriction to each Fi × F ′j has the form

g
c′j
i g′j

ci . Fix i1 ∈ Z/m. The condition div( f ) = 0 forces the exponent of gi to be
independent of i ∈ Z/m for fixed j. Similarly the exponent of g′j is independent of
j ∈ Z/m′ for fixed i. Thus the given set generates. $%

For the purpose of describing the image of the map, ∂, it is convenient to work
with a different basis of CH1(V−Q, 1)1. Writing the group law additively we define

D0 :=
∑

i∈Z/m

[i]mηi −
∑

j∈Z/m′
[ j]m′η

′
j ∈ CH1(V − Q, 1)1

where [ ]m : Z/m → Z is the section of the quotient map which takes values in
[0, m− 1] and [ ]m′ : Z/m′ → Z is defined analogously. Set

A := {∑i∈Z/m ηi,
∑

i′∈Z/m′ η
′
i′ },

B := {η1, . . . , ηm−1},
C := {η′2, . . . , η′m′−1},
D := {D0}.

Lemma 2. A basis of CH1(V , 1)1 is given by

(i) A ∪ B ∪C ∪ D when m > 1 and m′ > 1.
(ii) A when m = m′ = 1.

(iii) A ∪ B when m > 1 and m′ = 1.

Proof. Straightforward from Lemma 1. $%
In Lemma 2 we have ignored the case m = 1, m′ > 1 as this becomes case (iii)

after interchanging the factors in the fiber product.
Define δi j = ci j − di j ∈ CH1(Qi j) and observe that {ci j} ∪ {δi j} is a basis of

CH1(Q).
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Lemma 3. (i) ∂ηi =
∑

j∈Z/m′(δi j − δi−1, j).
(ii) ∂η′j =

∑
i∈Z/m(δi j − δi, j−1).

(iii) ∂ maps Span(B ∪C) isomorphically to a direct summand, Σ ⊂ CH1(Q).
(iv) Assume m > 1 and m′ > 1. Then 1

m′′ ∂D0 ∈ CH1(Q)/Σ is indivisible.
(v) A = Ker(∂).

Proof. (i) Regard g′j as an element of k(Pi j)∗. From Fig. 1

div(g′j) = bi−1, j + ei−1, j + fi j − (bi−1, j−1 + ci−1, j−1 + di, j−1).

Now ∂ηi =
∑

j∈Z/m′ div(g′j) and the assertion follows from δi j = fi j − di j and
δi−1, j = ci−1, j − ei−1, j.

(ii) The proof is analogous to that of (i).
(iii) Form a matrix with columns indexed by η ∈ B ∪ C and rows indexed by

(i, j) ∈ Z/m × Z/m′. The (i, j)-th entry in column η is the coefficient of δi j in
∂η. Restricting (i, j) to lie in the set,

S := {(0, 0), (1, 0), . . . , (m− 2, 0)} ∪ {(0, 1), . . . , (0, m′ − 2)},
gives an (m + m′ − 3)× (m + m′ − 3) square matrix in which all entries above
the diagonal are zero and diagonal entries are −1.

(iv) The coefficient of δi j in ∂D0 is

[i]m − [i + 1]m − [ j]m′ + [ j + 1]m′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if i � m− 1, j � m′ − 1

m, if i = m− 1, j � m′ − 1

−m′, if i � m− 1, j = m′ − 1

m− m′, if i = m− 1, j = m′ − 1

.

For (i, j) ∈ S the coefficient of δi j in ∂D0 is zero. Since the coefficients of
δ0,m′−1 (−m′/m′′) and δm−1,0 (m/m′′) in ∂D0/m′′ are coprime, the assertion
follows.

(v) By (i) and (ii) A ⊂ Ker(∂). Equality follows from (iii) and (iv). $%
Lemma 4. (i) CH1(V − Q) � CH1(V) � Zm+m′ .
(ii) CH1(V) � Z2mm′+2 ⊕ Z/m′′.

(iii) If CH1(V)tors � 0, for any i, j, τi,j := m
m′′
∑

j δi, j − m′
m′′
∑

i δi,j is a generator.

Proof. (i) The first isomorphism follows from V − V ss � V − Q and the fact that
V ss ⊂ V has codimension 2. To compute CH1(V) observe that CH1(Fi × F ′j)
is generated by qi × F ′j and Fi × q′j. In CH1(Fi × F ′j) we have the relations,

qi−1 × F ′j = qi × F ′j and Fi × q′j = Fi × q′j−1.

Thus qi × F ′j ∈ CH1(V) is independent of i and Fi × q′j ∈ CH1(V) is in-

dependent of j. Thus there is a surjective map, Zm+m′ → CH1(V). To show
injectivity intersect these divisors with the pullbacks to V of the standard gen-
erators of the Néron–Severi groups, N.S .(F) := Pic(F)(k)/Pic0(F)(k) � Zm

and N.S .(F ′) � Zm′ .
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(ii) Since CH1(V−Q) is a free abelian group, CH1(V) � Coker(∂)⊕CH1(V−Q).
The first summand is easily computed from the previous lemma and the basis
of CH1(Q) � Z2mm′ given above.

(iii) By Lemma 3(iv) a generator of Coker(∂)tors is given by τm−1,m′−1. In fact τi,j =

τm−1,m′−1 ∈ Coker(∂) for all i ∈ Z/m, j ∈ Z/m′ by Lemma 3(i)–(ii). $%
Remark 1. There are interesting extensions of this material to the case that E and
E′ are allowed to have genus > 1 which I hope to discuss in a sequel to this
paper.

4 The Homology and Cohomology of V
k

In this section the residue field, k, is assumed to be algebraically closed. The goal
is to compute the étale homology of V [12]. When k = C this may be identified
with the Borel–Moore homology of the associated analytic space [25, 2.8.4]. If the
analytic space is compact, this is isomorphic to the singular homology. Fix a prime
l � char(k) and let l′′ denote the largest power of l which divides m′′.
Proposition 1. The étale homology is given by

(i) H0(V,Zl) � Zl.
(ii) H1(V,Zl) � Z2

l .
(iii) H2(V,Zl) � Z2mm′+2

l (1)⊕ Z/l′′(1)⊕ Zl.
(iv) H3(V,Zl) � Z2

l (1).
(v) H4(V,Zl) � Z2mm′

l (2).

The first step towards a proof is the following:

Proposition 2. There is a commutative diagram with exact rows,

CH1(V , 1)1 ⊗ Zl
∂ ��

α #
��

CH1(Q)⊗ Zl
��

β #
��

CH1(V) ⊗ Zl
��

γ

��

CH1(V)⊗ Zl
��

ν

��

0

H3(V)
∂H �� H2(Q) �� H2(V)

ε �� H2(V) �� 0.

where ∂ is induced from the map ∂ of Sect. 3 and υ maps CH1(V)⊗Zl isomorphically
to the Künneth component,

H2(V)0 := H2(F)⊗ H0(F ′,Zl) ⊕ H0(F,Zl)⊗ H2(F ′),

of H2(V) and where the omitted coefficients in the homology are Zl(−1).

Proof of Proposition 1 assuming Proposition 2. Define H2(V)0 = ε−1(H2(V)0).
When the subscript 0 is placed on the last two terms in the bottom row of the di-
agram all vertical maps become isomorphisms. Use the isomorphism, H1(F,Zl) ⊗
H1(F ′,Zl) � Zl, the Künneth formula [12, 4.1], and Lemma 4(ii) to conclude
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H2(V,Zl(−1)) � Z2mm′+2
l ⊕ Z/l′′ ⊕ Zl(−1).

The bottom row of the diagram in Proposition 2 is part of a longer exact sequence,

0 → H4(Q) → H4(V) → H4(V) → H3(Q) → H3(V) → H3(V)
∂H→ H2(Q) → H2(V) → . . .

This comes from the exact étale homology sequence of the pair (V, Q) [3, 1.1.1,
1.2.3, 2.1] and the observation that Hi(V − Q) � Hi(V) for i > 1 since

V − Q � V − V ss and Hi(V − V ss) � Hi(V)

for i > 1 by the exact sequence for the pair (V , Vss). Now

H3(V) � Ker(∂H) � Ker(∂) � Z2
l

by Lemma 3(v). H4(V) is the free module on the irreducible components. The rank
of H1(V) may be computed from the Euler characteristic, e(V) = 4mm′. To show
H1(V)tors = 0 use the Leray spectral sequence for the map, V → V , to conclude that
H2(V,Zl)tors = 0 and apply the isomorphism [12, 2.2]:

Hi(V,Zl) � Hom(Hi(V,Zl),Zl)⊕ Hom(Hi+1(V,Zl)tors,Ql/Zl). (1)

Proof of Proposition 2. The top row in the diagram is obtained from the localization
sequence in Sect. 3 by applying ⊗Zl and recalling the isomorphisms CH1(V)1 �
CH1(V − Q, 1)1 and CH1(V) � CH1(V − Q) from Sect. 3. The maps β, γ, υ are
the usual functorial cycle class maps [12, Sect. 6]. That υ gives an isomorphism,
CH1(V) ⊗ Zl � H2(V)0, is immediate from the explicit descriptions of these two
modules (cf. the proof of Lemma 4(i)).

It remains only to describe the map α and verify the commutativity of the first
square in the diagram. This may be done using the classical cycle class map for
divisors on a non-singular surface and some diagram chasing. First some notation:

V̌ = the closure of V − Q in V .
V̇ = V̌ − V̌sing.
S = (V − Q)sing

V̈ = (V − Q)− S .
Z = V̇ − V̈ .
ν : Ṽ → V − Q, the normalization. (Ṽ is non-singular.)
S̃ = Ṽ − V̈ , a double cover of S .
Now use the commutative diagram
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Here the second row comes from the exact sequence of the pair, V̈ ⊂ V̇ . The
last term is canonically identified with H0

Z(V̇ , Div) so that the map δ identifies with
f �→ div( f ) [15, VI.6]. The middle set of vertical maps come from the Kummer
sequence. To define ζ replace Z by its closure in Q, this doesn’t change H2, and
push forward. Thus β ◦ ∂ in Proposition 2 comes from ζ ◦ e ◦ d ◦ δ ◦ a by passing to
the inverse limit over n.

To finish the argument we show that c ◦ b ◦ a may be viewed as a map to
H3(V ,Z/ln(−1)). Then α in Proposition 2 may be constructed from lim←−n

(c ◦ b ◦ a).

The point is that H3(V ,Z/ln(−1)) is canonically identified with H3(V−Q,Z/ln(−1))
and the latter is canonically identified with a subgroup of H3(V̈ ,Z/ln(−1)) via the
exact sequence of the pair, V̈ ⊂ V − Q, as in the final row of the commutative
diagram,

As above, the map, h ◦ g ◦ δG, sends a rational function to the homology class of
its divisor. For f ∈ CH1(V−Q, 1)1, div( f ) = 0 ∈ Div(V−Q), so h ◦ g ◦ δG ◦ a( f ) ∈
Ker( j). Thus the image of c ◦ b ◦ a lies in H3(V − Q,Z/ln(−1)) as desired.

Finally α in Proposition 2 sends the basis in Lemma 1 of CH1(V − Q, 1)1 to
the standard basis of H3(V ,Zl(−1)) coming from the Künneth decomposition and is
thus an isomorphism. $%

The cohomology, H•(V,Zl), may be computed from Proposition 1 and (1). A
standard exact sequence then computes H•(V,Z/lr) [15, V.1.11]. This determines
H•(V,Z/n) for n not divisible by char(k). For use in Sect. 8 we record the result.
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Corollary 1. Assume char(k) does not divide n. Set n′′ = gcd(n, m′′). Then

(i) H0(V,Z/n) � Z/nZ.
(ii) H1(V,Z/n) � (Z/nZ)2.

(iii) H2(V,Z/n) � Z/nZ ⊕ (Z/nZ)2mm′+2(−1) ⊕ Z/n′′Z(−1).
(iv) H3(V,Z/n) � (Z/nZ)2(−1) ⊕ Z/n′′Z(−1).
(v) H4(V,Z/n) � (Z/nZ)2mm′(−2).

Remark 2. (i) Corollary 1(iv) was obtained previously by a less natural method [20,
12.1].

(ii) Presumably the map α in Proposition 2 is a particular case of a general cycle
class map for higher Chow groups, cf. [2, Sect. 4].

5 Variation of the Isomorphism Class of V

The purpose of this section is to show that the isomorphism class of V may vary as
the elliptic curves E and E′ vary even as m and m′ remain fixed. This is perhaps sur-
prising as the closed fiber F (respectively F ′) does not change as E (respectively E′)
varies over elliptic curves with split Im (respectively Im′ ) reduction. Thus V = F×F ′
also does not vary. Furthermore L := Vred is the union of the reduced exceptional
divisor, Q, and the blow-up, V !, of V = F×F ′ along Fsing×F ′sing. The isomorphism

classes of Q and V ! also do not change as E and E′ vary. To show that L varies we
examen how Q is attached to V !.

For concreteness we assume m = m′ = 1. This implies in particular that E and E ′
are minimal Weierstrass models [24, IV.9]. Thus E is determined by a Weierstrass
equation,

Y2 + a1XY + a3Y − (X3 + a2X2 + a4X + a6) = 0,

where we may assume that a3, a4, a6 lie in the maximal ideal,m of o, b2 := a2
1+4a2 ∈

o∗ and a6 � m2 [24, p. 370]. The closed fiber is given by

Y2 + a1XY − a2X2 = X3.

Since the reduction is split, the left hand side of the equation factors in o/m[X, Y]
as the product of distinct linear factors. Assume that o is henselian, so that this
factorization lifts to o[X, Y]. After a linear change of variables the equation for E
becomes,

xy− g1(x, y)− u− uh1(x, y) = 0,

where g1(x, y) is a homogeneous cubic, u ∈ o is a uniformizer, and h1(x, y) ∈
(x, y) ⊂ o[x, y]. Assume that E ′ is given by

ax′y′ − ag2(x′, y′)− u− uh2(x′, y′) = 0,
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where a ∈ o∗, g2 is a homogeneous cubic and h2(x′, y′) ∈ (x′, y′). Write E ′a for E ′
to emphasize the dependence on a. Define Wa := E ×T E ′a and let Wa denote the
blow-up along (Wa)sing.

Proposition 3. Given a, a′ ∈ o∗, the reduced closed fibers La ⊂ Wa and La′ ⊂ Wa′

are isomorphic if and only if a and a′ have the same image in k∗.

Proof. An affine open subscheme of the fiber product E ×T E ′a is given by Spec of

o[x, y, x′, y′]/(xy− g1(x, y)− u− uh1(x, y) , ax′y′ − ag2(x′, y′)− u− uh2(x′, y′)).

The corresponding equation for the closed fiber V (u = 0) is independent of a:

xy− g1(x, y) = 0 = x′y′ − g2(x′, y′).

The tangent space to the fiber product at the singular point is given by Spec of
o[x, y, x′, y′]/(u) � k[x, y, x′, y′]. The projectivized tangent cone of the fiber product
is the quadric surface in Pro j(k[x, y, x′, y′]),

Qa : xy− ax′y′ = 0.

Let V ! → V = F × F ′ denote the blow-up at the point Fsing × F ′sing. The reduced
closed fiber, La, in the desingularized fiber product is obtained by gluing Qa to
V ! along the configuration of four lines, Ξ, in Pro j(k[x, y, x′, y′]) defined by the
homogeneous ideal (xy, x′y′). The identification depends only on the image of a in
k∗. To show that La 	 La′ it suffices to show that there is no isomorphism, ϕ :
(Qa, Ξ) → (Qa′ , Ξ), such that ϕ|Ξ = ψ|Ξ for some ψ ∈ Aut(V !). Now

Aut(Qa) � Aut(P1 × P1) � (PGL2 × PGL2) � 〈τ〉,
is a projective orthogonal group; the involution τ interchanges the factors in the
product.

Every isomorphism, ϕ : Qa → Qa′ , is the restriction of an automorphism of
the ambient projective space. If ϕ stabilizes Ξ then, after composing with τ if
necessary, it fixes Ξsing pointwise. In x, y, x′, y′ coordinates Ξsing consists of the
four points (1 : 0 : 0 : 0),. . . ,(0 : 0 : 0 : 1). Thus ϕ acts on the coordinates
x, y, x′, y′ by a diagonal matrix, diag(α, β, α′, β′). Since ϕ(Qa) = Qa′ , α′β′α−1β−1 =

a′/a ∈ k∗.
View V as the self-product of P1 with 0 and ∞ identified. The action of α ∈ Gm

on (P1, {0,∞}) gives an action on the tangent cone of P1/{0,∞} at the singular
point. The coordinates x, y (respectively x′, y′) above are naturally coordinates on
the tangent cone of F (respectively F ′) at the singular point. The action of α ∈ Gm

on these coordinates, which may be identified with uniformizers on P1 at 0 and ∞,
is by α, α−1. Since the normalization of V is isomorphic to P1 × P1 and the inverse
image of V sing is a configuration of four lines which may be identified with Ξ we find

Aut(V !) � Aut(V) � Aut(P1 × P1, Ξ) � (Gm ×Gm) � 〈τ〉.
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Consequently, the restriction of Aut(V !) to Aut(Ξ) is represented by matrices of the
form, diag(α, α−1, α′, (α′)−1), times a power of τ. One checks that the composition,

diag(α, β, α′, β′) → Aut(P3, Ξ) → Aut(Ξ),

is injective. Thus if a � a′ ∈ k∗, there is no ψ ∈ Aut(V !) with ϕ|Ξ = ψ|Ξ . $%
Remark 3. Even when (m, m′) � (1, 1) the isomorphism class of the reduced closed
fiber of the desingularized fiber product may vary. Replacing E and E′a with appro-
priate isogenous elliptic curves leads to finite étale Z/m×Z/m′-covers of La. As La

varies in moduli, not all of its Z/m× Z/m′-étale covers can be isomorphic if k is an
infinite field.

6 The Picard Group of V

In this section we prove Theorem 2 of the introduction.

Proposition 4. Pic(V) � (k∗)2 ⊕ Z2mm′+2−κ, where κ ∈ {0, 1}.
The precise value of κ will be discussed later in this section. The proof of Proposi-
tion 4 will be given in several steps.

Lemma 5. The exceptional divisor in the blow-up, σ : W → W, appears with
multiplicity two in the closed fiber, V ⊂ W.

Proof. Up to étale morphisms we may replace E with Spec(o[x, y]/(xy− u)) and W
with Spec(o[x, y, x′, y′]/(xy−u, x′y′−u)), where u ∈ o is a uniformizer. The maximal
ideal at the non-regular point is (x, y, x′, y′). An affine chart in the blow-up is given
by applying Spec to the o-algebra homomorphism,

o[x, y, x′, y′]/(xy− u, x′y′ − u) → o[x, Y, X′, Y ′]/(x2Y − u, x2X′Y ′ − u),

x, y, x′, y′ �→ x, xY, xX′, xY ′.

The assertion follows since u ∈ (x)2, u � (x)3, and (x) defines the exceptional
locus. $%
Lemma 6. Pic(V) � Pic(Vred).

Proof. Recall L := Vred. The ideal sheaf, IL, of L in V is isomorphic to OQ(1),
which is componentwise the restriction of OP3 (1) to a quadric hypersurface. The
lemma follows from the exact sequence,

1 → 1 + IL → O∗
V → O∗

L → 1,

and Hi(Q,OQ(1)) = 0 for i ∈ {1, 2}. $%
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Write Lsing ⊂ L for the singular locus with its reduced scheme structure. Let
ν0 : L[0] → L and ν1 : L[1] → Lsing denote the normalizations. Let ν2 : L[2] :=
(Lsing)sing → Lsing denote the inclusion.

Proposition 5. There is an exact sequence of étale sheaves on L,

1 → GmL
ν∗0→ ν0∗GmL[0]

β∗→ ν1∗GmL[1]
α∗→ ν2∗GmL[2] → 1.

Proof. The main point is to specify liftings, αi : L[2] → L[1] (respectively β j :
L[1] → L[0]) of the inclusion, ν2 : L[2] → Lsing (respectively of ν1 : L[1] → L) for
i ∈ {0, 1, 2} (respectively for j ∈ {0, 1}) in such a way that the restrictions of the αi’s
(respectively the β j’s) to each component of L[2] (respectively L[1]) give all possible
liftings and such that the identities

β0 ◦ α1 = β0 ◦ α0, β0 ◦ α2 = β1 ◦ α0, β1 ◦ α2 = β1 ◦ α1, (2)

hold. Define α∗ = α∗0 · (α∗1)−1 · α∗2 and β∗ = β∗0 · (β∗1)−1. The identities imply that
α∗ ◦ β∗ = 1. Furthermore β∗ ◦ ν∗0 = 1. That the natural maps, im(ν∗0) → Ker(β∗) and
im(β∗) → Ker(α∗), are isomorphisms and that α∗ is surjective may be checked on
stalks using the fact that L is a local normal crossing surface.

To describe one choice of αi’s and β j’s which fulfill the conditions when m =
m′ = 1 consider the following picture of the two components, P and Q, of L[0] and
the curves on these components which get identified to form Lsing: $%

Fig. 2: L[0] when m = m′ = 1

The curves are labeled a, b, c, etc. as in Fig. 1. The + and − copies of each curve
are identified by ν0 to form Lsing (e.g., c+ and c− are identified to the component c
of Lsing). The vertex labels 1, 2, 3, 4 correspond to the singular points of Lsing. That
is the three vertecies labeled 1 represent the inverse image of 1 ∈ (Lsing)sing in L[0]

and similarly for 2, etc.
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Now we fix the lifting β0 of ν1 on the components of L[1]. This determines β1:

β0 : a, b, c, d, e, f �→ a−, b−, c+, d+, e+, f+
β1 : a, b, c, d, e, f �→ a+, b+, c−, d−, e−, f−

The required identities uniquely determine the liftings αi of ν2:

α0 : 1 2 3 4 �→ c, d, c, e

α1 : 1 2 3 4 �→ a, b, b, a

α2 : 1 2 3 4 �→ d, f , e, f .

To treat the case that m and m′ are arbitrary, write Lm,m′ for Vred. To verify ex-
actness we are free to replace the base ring o by a strict henselization. Now the
m-torsion group scheme E[m] � (Z/m)2. Similarly E ′[m′] � (Z/m′)2. Translation
by appropriate torsion points gives rise to a free action of Z/m × Z/m′ on Lm,m′

and on L[i]
m,m′ for i ∈ {0, 1, 2}. Write Lm,m′ → L1,1 for the quotient map. There is a

commutative diagram of finite, étale Z/m× Z/m′-covers:

L[2]
m,m′

α̃i ��

��

L[1]
m,m′

��

β̃ j �� L[0]
m,m′

γ

��

ν̃0 �� Lm,m′

��
L[2]

1,1
αi �� L[1]

1,1

β j �� L[0]
1,1

ν0 �� L1,1.

Here ν̃0 is the normalization. The map β̃ j is uniquely determined by specifying that
the middle square commute and that ν̃0 ◦ β̃ j : L[1]

m,m′ → (Lm,m′)sing is the normaliza-
tion. Furthermore α̃i is determined by specifying that the left square commute and
that

ν̃0 ◦ β̃0 ◦ α̃i : L[2]
m,m′ → ((Lm,m′)sing)sing

is the canonical identification. Now (2) holds with α̃i replacing αi and β̃ j replacing
β j, because a point in L[0]

m,m′ whose image in Lm,m′ is fixed is specified by its image
under γ. $%
Lemma 7. There is an exact sequence, 1 → (k∗)2 → Pic(L) → M → 0, where M
is a free abelian group of rank at most 2mm′ + 2.

Proof. Since GmL is quasi-isomorphic to the complex,

ν0∗GmL[0]
β∗→ ν1∗GmL[1]

α∗→ ν2∗GmL[2]

we may compute Pic(V) � H1(L,GmL) using the spectral sequence for hypercoho-
mology. This yields the exact sequence,

1 → E10
∞ → H1(L,Gm) → E01

∞ → 1,
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where E10∞ � E10
2 is computed as H1 of the dual graph of L with k∗-coefficients [16,

p. 105]. Since the dual graph triangulates a torus E10
2 � (k∗)2. As all the components

of L[0] are rational surfaces and those of L[1] are isomorphic to P1, the differential,

d01
1 : E01

1 � H1(L[0],Gm)
H1(β∗)−→ H1(L[1],Gm) � E11

1 ,

after tensoring with Zl may be identified with the map on cohomology, H2(β∗,Zl).
The kernel is isomorphic to Zmm′+2

l [20, Sect. 13]. Thus E01
2 � Z2mm′+2. Since

M = E01
∞ � E01

3 � Ker d01
2 : E01

2 → E20
2 ,

the lemma follows. $%
Corollary 2. Suppose k is a subfield of the algebraic closure of a finite field. Then
rank(M) = 2mm′ + 2.

Proof. Observe that E20
2 is a torsion group since it is a quotient of the torsion group,

E20
1 � H0(L[2],Gm) � (k∗)4mm′ .

Since the image of d01
2 is torsion, M � Ker(d01

2 ) � Z2mm′+2. $%
Remark 4. In fact E20

2 � H2(S 1×S 1, k∗) � k∗ since the dual graph of L triangulates
the torus, S 1 × S 1 [16, p. 105].

Now Proposition 4 is an immediate consequence of part (i) of the next proposi-
tion.

Proposition 6. (i) rank(M) ≥ 2mm′ + 1.
(ii) If E and E′ are isogenous over K, then rank(M) = 2mm′ + 2.

Proof. Consider the composition, ξ,

ξ : Pic(W)
i∗V→ Pic(V) → M

cl→ H2(V,Ql(1)) � R2 f∗Ql(1)|0 → ( j∗ j∗R2 f∗Ql(1))|0 ,

where cl is the cycle class map, the isomorphism is the proper base change map [15,
VI.2], and the final term may be decomposed by applying the Künneth theorem to
the cohomology of (E × E′)K̄ . Now the closures in W of E × e′, e× E′ (and if E is
isogenous to E′, of the graph of an isogeny) give rise to elements of Pic(W) whose
images under ξ are non-zero and lie in distinct Künneth components. Hence they are
linearly independent. Since ξ maps the image of iV∗ : CH0(V) → Pic(W) to zero,
the proposition will follow from the next lemma.

Lemma 8. rank( im iV∗i∗V CH0(V) → Pic(V) ) = 2mm′ − 1.

Proof. This is a consequence of the known rank of the intersection matrix of the
fiber components of a fibered surface. For the convenience of the reader we give the
argument. Since iV∗([V]) = 0 ∈ Pic(W), rank(iV∗i∗V (CH0(V))) ≤ 2mm′ −1. To show
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the opposite inequality let S ⊂ W be a regular, relatively very ample hypersurface
with the property that each irreducible component of V meets S in a prime divisor.
Now the intersection matrix between the irreducible components of the closed fibers
of W and S ,

(Vi · S j)W = (S i · S j)S ,

has rank 2mm′ − 1 by [13, Theorem 9.1.23]. $%$%
In order to establish Theorem 2 of the Introduction it remains to show that κ

in the statement of Proposition 4. can take the value 1 when k is not contained in
the algebraic closure of a finite field. The computation will be done in the concrete
setting of Sect. 5 where m = m′ = 1. Let Va denote the closed fiber of Wa, defined
in Sect. 5. Set La = Va red. Since a will be fixed, we often drop it from the notation.
Define κ as in Proposition 4.

Proposition 7. If a ∈ k∗ is not a root of unity, then κ = 1.

Proof. By the formula for M in the proof of Lemma 7 κ = 1, if there is an element
Δ ∈ E01

2 such that d01
2 (Δ) ∈ E20

2 has infinite order. By Remark 4 E20
2 � k∗. The idea

is to choose a cover U of L, to represent Δ by a Cech cocycle with respect to U and
to compute d01

2 (Δ) as in [7, p. 446] using the diagram,

where α∗ and β∗ are defined in Proposition 5 and the vertical maps are the usual Cech
coboundaries. The cocycle Δ will come from a Cartier divisor, Δ, on L[0] which is
the sum of two rational curves, ΔP+ΔQ. The coverUwill be by Zariski open subsets
and chosen as simply as possible to represent Δ by functions on open subsets.

Recall that L[0] is the disjoint union of the two components P and Q pictured in
Fig. 2. One may view P as the blow-up of P1 × P1 at the four points

((1 : 0), (1 : 0)), ((1 : 0), (0 : 1)), ((0 : 1), (1 : 0)), ((0 : 1), (0 : 1)),

where the exceptional curves c−, d−, f−, e− contract to these points in the order
indicated. Let ΔP ⊂ P denote the strict transform of the diagonal of P1 × P1 in
P. The inclusion of the line ΔQ in the surface Q = Qa is defined by the inclusion
of ideals (x − ax′, y − y′) ⊃ (xy − ax′y′) using the homogeneous coordinates of
Proposition 3. The lines on Q defined by the ideals (x, x′), (x′, y), (x, y′), (y, y′) are
labeled respectively c+, d+, e+, f+ in Fig. 2. The cohomology class Δ ∈ H1(L[0],Gm)
associated to the Cartier divisor, Δ = ΔP +ΔQ, lies in E01

2 = Ker(d01
1 ) = Ker(H1(β∗))

because OP(ΔP) and OQ(ΔQ) have isomorphic restrictions to each component of
L[1], namely OP1 (1) for c and f and OP1 for d and e.
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Choose a Zariski open cover, U = {U0, U1, U2, . . .} of L and functions, hi ∈
ν0∗OL[0] (Ui), to represent the effective Cartier divisor, Δ, as follows:

U0 : ν−1
0 (U0) does not meet the support of Δ. It contains all labeled curves in

Fig. 2 except c−, f−, c+, f+. Furthermore h0 = 1 ∈ ν0∗OL[0] (U0).

U1: The only labeled curves in Fig. 2 meeting ν−1
0 (U1) are c− and c+. Choose

h1 ∈ ν0∗OL[0] (U1) such that div(h1) = Δ|ν−1
0 (U1 ) and

β∗(h1) = h1 ◦ β0/h1 ◦ β1 = 1|U1∩Lsing .

This is possible because the Cartier divisors ΔP and ΔQ both restrict to give the same
divisor, the point (0 : 0 : 1 : 1) in the above coordinate system, on c. Finally U0, U1

restrict to give an open cover of c.

U2: The only labeled curves in Fig. 2 meeting ν−1
0 (U2) are f+ and f−. U0, U2

restrict to give an open cover of f . Choose h2 ∈ ν0∗OL[0] (U2) such that div(h2) =
Δ|ν−1

0 (U2 ) and
β∗(h2) = h2 ◦ β0/h2 ◦ β1 = (x− x′)/(x− ax′)|V2 ,

where V2 = U2∩Lsing. This is possible because ΔP restricts to the point (1 : 1 : 0 : 0)
on f while ΔQ restricts to (a : 1 : 0 : 0).

Ui, i > 2: No labeled curves in Fig. 2 meet ν−1
0 (Ui); div(hi) = Δ|ν−1

0 (Ui ).

Define ∂Δ ∈ C1(U, ν0∗Gm) by ∂Δ(Ui×LU j) = h j/hi ∈ ν0∗OL[0] (Ui×LU j). The Cech
coboundary of ∂Δ vanishes. Thus ∂Δ gives rise to an element in H1(U, ν0∗Gm),
whose image in H1(L, ν0∗Gm) � E01

1 is denoted Δ. As noted above, Δ ∈ Ker(d01
1 ) =

E01
2 . To compute d01

2 (Δ) it suffices to find ω ∈ C0(U, ν1∗Gm) with δ1(ω) = β∗(∂Δ)
and to then evaluate α∗(ω) ∈ Ker(δ2).

Set r = β∗(∂Δ). Now ri j ∈ ν1∗Gm(Ui ×L U j) is given by

r20 = (x− x′)/(x− ax′), ri j = 1 if (i, j) � {(0, 2), (2, 0)}.
Define ω ∈ C0(U, ν1∗Gm) by defining ω0 ∈ Gm(ν−1

1 (U0)) by

ω0| f∩ν−1
1 (U0 ) := (x− x′)/(x− ax′) and ω0|(a∪b∪c∪d∪e)∩ν−1

1 (U0 )) = 1,

and ωi = 1 ∈ GmL1 (ν−1
1 (Ui)) for i ≥ 1. Now δ1(ω) = r.

Observe that C0(U, ν2∗GmL[2] ) � Ker(δ2) � Gm(L[2]) as U0 ∩ (Lsing)sing =

(Lsing)sing and Ui ∩ (Lsing)sing = ∅ for i > 0. Under this identification α∗(ω) be-
comes the function on L[2] whose value at 4 ∈ L[2] (see Fig. 2) is a−1 and whose
value elsewhere is 1. The natural composition,

Gm(L[2]) � Ker(δ2) → E02
1 → E02

1 /im(d01
1 ) � E02

2 � k∗,

takes a function on L[2] to the product of its values. Thus α∗(ω2) maps to an element
of infinite order if a ∈ k∗ has infinite order. $%
Remark 5. One may rephrase the results about Pic(V) in the language of Picard
schemes. Write P(V) for the Picard scheme of V [10, 4.18.3], P0(V) for the con-
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nected component of the identity [10, 5.1] and define N.S .(V) := P(V)(k)/P0(V)(k).
Then P0(V) � G2

m and N.S .(V) � Z2mm′+2−κ.

7 Semi-stable Models and Small Resolutions

Semi-stable degenerations play a distinguished role in the theory of degenerations
because of their simplicity and the techniques available for their construction [9,
Chap. II]. Recall that semi-stable models are regular and proper and the closed fiber
is a reduced normal crossing divisor [8, Sect. 3.1]. The canonical model, W, is never
semi-stable by Lemma 5. In this section we recall the use of small resolutions to
create semi-stable models when m > 1 and m′ > 1 and various variants of this result
which apply even when m = 1 or m′ = 1. Then we compare the invariants of the
closed fiber of the resulting models with the invariants of the closed fiber of the
canonical model.

Suppose that m > 1 and m′ > 1. Then it is possible to desingularize the scheme
W without introducing exceptional divisors. Note that the hypothesis m > 1 and
m′ > 1 implies that the irreducible components of V are non-singular. They are Weil
divisors which are not Cartier, because they are non-singular at singular points of W.
To desingularize W choose an order on the irreducible components of V . Blow up
the first component giving a scheme, W1. Now blow up W1 along the strict transform
of the second irreducible component of V . Continue until a strict transform of every
irreducible component of V has been blown up. The composition of blow-ups is a
projective morphism, γ : Ŵ → W. An easy local computation [1, pp. 177–178],
[19, Sect. 1] at W sing shows that Ŵ is regular, f̂ := f ◦ γ : Ŵ → T is semi-stable,
and the positive dimensional fibers of γ, are all isomorphic to P1. Blowing up Ŵ
up along these P1’s recovers W. The map γ : Ŵ → W is called a small resolution
because the exceptional locus consists of curves.

When m = 1 or m′ = 1 each component of V is a Cartier divisor on W, since
it is the pull back of a fiber component, Fi ⊂ E or F ′i′ ⊂ E ′, via projection on one
of the factors. Note that Fi and F ′i′ are Cartier divisors since E and E ′ are regular.
Blowing up a Cartier divisor has no effect on the ambient space. If E and E′ are not
isogenous, the semi-local ring, OW ,Wsing

, is factorial and no small resolution of W
exists in the category of schemes [1, p. 179], [19, Proof of 3.1(ii–iii)], [21, 10.1].
On the other hand if o is the local ring at a point on a smooth algebraic curve over
C, then one can associate to the scheme W the germ of a complex analytic space
along V , which we denote W

an
. An irreducible component of V will have two (four

if m = m′ = 1) branches passing through each point of W
an
sing which it contains.

In the complex analytic category we may pick one of these branches and blow it
up obtaining a small resolution. If this is done at each point in W

an
sing we obtain the

germ, Ŵan, of a complex manifold along the normal crossing closed fiber, V̂an. This
gives a semi-stable model in the complex analytic sense.
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An analogous construction is possible in the category of algebraic spaces [1, pp.
177–185] for arbitrary m and m′. The closed fiber V̂ ⊂ Ŵ is always a proper scheme,
since its normalization is projective [11, Corollary 48].

A disadvantage of working with Ŵ in place of W, is that the isomorphism class of
the former depends on the order in which the blow-ups (or modifications of algebraic
spaces) are performed. The same is generally true for V̂ . Nonetheless many of the
invariants of V̂ are independent of these choices as the following proposition shows:

Proposition 8. (i) CH1(V̂) � (Z)mm′+2 ⊕ Z/m′′.
(ii) Suppose that char(k) does not divide n. Then H0(V̂k̄,Z/n) � Z/n,

H1(V̂k̄,Z/n) � (Z/n)2,
H2(V̂k̄,Z/n) � Z/n⊕ (Z/n)mm′+2(−1)⊕ Z/n′′(−1),
H3(V̂k̄,Z/n) � (Z/n)2(−1)⊕ Z/n′′(−1),
and H4(V̂k̄,Z/n) � (Z/n)mm′(−2).

(iii) There is a short exact sequence,

1 → Pic(V̂)
ρ∗→ Pic(V) → Zmm′ → 0.

(iv) If κ = 1 and either m = 1 or m′ = 1, then V̂ is not projective.

Proof. (i) The natural morphism ρ : V → V̂ collapses each Qi j to a P1 and
exactly one of the curves, ci j or di j, to a point. Write ti j for the contracted
curve and define T = Span({ti j}). Recall that {ti j} ∪ {δi j} is a basis of CH1(Q).
By Lemma 3(i)–(ii) the natural map, T → CH1(Q)/im(∂) is a split injection.
Thus the following exact sequence splits:

0 → T → CH1(V) → CH1(V̂) → 0.

(ii) In the Leray spectral sequence associated to ρ : V → V̂ , E3 � E2. The only
possible non-zero differential in E3 is the map,

d02
3 : (Z/n)mm′ � H0(V̂k̄, R2ρ∗Z/n) � E02

3 → E30
3 � H3(V̂k̄,Z/n),

whose kernel has the form,

Ker(d02
3 ) � H2(Vk̄,Z/n)/H2(V̂k̄,Z/n).

The term on the right contains a submodule isomorphic to (Z/n)mm′ generated
by the chern classes of the normal bundles, NQi j/W . Thus d02

3 = 0, the spectral
sequence degenerates at E2 and the assertion follows from Corollary 1.

(iii) Apply the Leray spectral sequence for the morphism, ρred : Vred → V̂ , to the
sheaf Gm. We have ρred∗Gm � Gm and R1ρred∗Gm � υ∗Z, where υ is the inclu-
sion of the positive dimensional fibers of V̂ → V . The subgroup of H1(V,Gm)
generated by isomorphism classes of sheaves of the form, OW (Qi j)|V , is free
of rank mm′. Under the natural map, H1(V,Gm) → H0(V̂ , R1ρred∗Gm), it is
mapped isomorphically to the target. The assertion follows since Pic(V) �
Pic(Vred) by Lemma 6.

(iv) Assume m = 1. By Proposition 4 and (iii) N.S .(V̂) � Zm′+1. Let e ⊂ E (respec-
tively e′ ⊂ E ′) denote the identity section. Let P ⊂ Pic(V) denote the subgroup
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generated by restricting invertible sheaves associated to the following Cartier
divisors on W to V:

E ×X e′, e×X E ′, and irreducible components of V .

The latter are Cartier divisors, since they are pulled back from the components of
F ′ on the regular surface, E ′. NowP � Zm′+1 and pullback induces an injection,
P → N.S .(V̂). Thus the cokernel of the pullback, γ∗ : Pic(V) → Pic(V̂), is
finite. Consequently there is no invertible sheaf on V̂ whose restriction to the
curves on V̂ which are collapsed by γ is ample. Thus V̂ has no ample invertible
sheaf. $%

8 The Sheaves Ri f∗Z/n

For the purpose of computing cohomology by the Leray spectral sequence it is im-
portant to describe the sheaves Ri f∗Z/n. This will be accomplished in this section
under the assumption that char(k) � n and the discrete valuation ring o is strictly
henselian. Tate twists will be ignored.

8.1 Notations

n′′ = gcd(m′′, n).
t = Spec(K).
j : t → T , the inclusion of the generic point.
j0 : 0 → T , the inclusion of the closed point.

To begin observe that the espace étalé of the sheaf R1π∗μn may be identified
with the n-torsion sub group scheme of the Néron model of E which meets only the
identity component of the closed fiber. In particular, the stalk at 0 is isomorphic to
Z/n, the stalk at t to (Z/n)2 and the cospecialization map [15, II.3.16] is injective.

Lemma 9. (i) f∗Z/n � Z/n.
(ii) R1 f∗Z/n � R1π∗Z/n⊕ R1π′∗Z/n.

(iii) R3 f∗Z/n � R1π∗Z/n⊕ R1π′∗Z/n⊕ j0∗Z/n′′.
(iv) R4 f∗Z/n � Z/n⊕ j0∗(Z/n)2mm′−1.

Proof. (ii) By the Leray spectral sequence for the composition, f = f ◦ σ,
R1 f ∗Z/n � R1 f∗Z/n. The assertion follows from the Künneth formula [15,
VI.8.5].

(iii) The Leray spectral sequence for f = f ◦ σ gives an exact sequence,

f ∗R
2σ∗Z/n → R3 f ∗Z/n

σ∗→ R3 f∗Z/n → 0,

where the support of the first term is 0. By the Künneth formula [15, VI.8.5]

R3 f ∗Z/n � R1π∗Z/n⊗ R2π′∗Z/n ⊕ R2π∗Z/n⊗ R1π′∗Z/n.
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Now

R2π∗μn � Z/n⊕ j0∗(Z/n)m−1 and R2π′∗μn � Z/n⊕ j0∗(Z/n)m′−1,

where the summands with support 0 are generated by the cohomology classes
of the fiber components F1,. . . ,Fm−1 and F ′1,. . . ,F ′m′−1. This establishes the de-
sired isomorphism up to a summand supported at 0. The latter is determined
by Corollary 1(iv), since R3 f∗Z/n|0 � H3(V,Z/n).

(iv) The Leray spectral sequence for f = f ◦ σ gives a split exact sequence,

0 → R4 f ∗Z/n → R4 f∗Z/n → f ∗R
4σ∗Z/n → 0.

Now use the isomorphisms, f ∗R4σ∗Z/n � j0∗(Z/n)mm′ and

R4 f ∗Z/n � R2π∗Z/n⊗ R2π′∗Z/n � Z/n⊕ j0∗(Z/n)mm′−1.

$%
In order to describe the sheaf R2 f∗Z/n, consider the composition of canonical

maps,

R2 f∗Z/n
r→ j∗ j∗R2 f∗Z/n

j∗◦pr→ j∗ j∗(R1π∗Z/n⊗ R1π′∗Z/n), (3)

where pr is the Künneth projection on the stalk at the generic point. Denote the im-
age of this composition by Gn. Since the other Künneth components of j∗ j∗R2 f∗Z/n
are Tate twists of constant sheaves corresponding to the cohomology classes of the
two factors in the product, we have, im(r) � (Z/n)2 ⊕ Gn, ignoring Tate twists.

Proposition 9. R2 f∗Z/n � j0∗(Z/nZ)2mm′−1 ⊕ (Z/nZ)2 ⊕ Gn.

To prepare for the proof of Proposition 9 it is convenient to recall a tool for work-
ing in the category, S, of étale sheaves of Z/n modules on T . This is the category,
M, the objects of which are triples, (N0, N, ϕ), where N is a Z/nZ-module with an
action of I := Gal(K/K), N0 is a Z/nZ-module, and ϕ : N0 → NI is a group homo-
morphism. A morphism inM, Ψ : (N0, N, ϕ) → (N′0, N′, ϕ′), is given by a I-module
homomorphism, ψ : N → N′, and a group homomorphism, ψ0 : N0 → N′0, such
that ϕ′ ◦ ψ0 = ψ ◦ ϕ.

Lemma 10. An equivalence of categories, S→ M, is defined by

F → ( j∗0F , j∗F |K , ϕ),

where the cospecialization map, ϕ, corresponds to the natural map, j∗0F →
j∗0 j∗ j∗F .

Proof. [15, II.3.10–3.12].
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Proof of Proposition 9. It is convenient to apply the vanishing cycle spectral se-
quence [8, Sect. 3],

Epq
2 = Hp(V̂k̄, RqΨZ/n) ⇒ Hp+q(E × E ′̄K ,Z/n).

So that the sheaves RqΨZ/n may be identified with more familiar sheaves on the
closed fiber, we work with a semi-stable model in the sense of [8, 3.1]. As noted in
the previous section this precludes working with W. We assume until further notice
that m > 1 and m′ > 1 and that the semi-stable model, Ŵ, is constructed from W
by successively blowing up fiber components as described in Sect. 7. Then there are
canonical identifications of sheaves on V̂ [8, Théorème 3.2(c)]:

R0ΨZ/n � Z/n, R1ΨZ/n � (ν∗Z/n)/(Z/n),

where ν : V̂ [0] → V̂ is the normalization. The cospecialization map may be ex-
pressed in terms of the map ϕ̂,

R2 f̂∗Z/n|0 � H2(V̂k̄,Z/n) � H2(V̂k̄, R0ΨZ/n)
ϕ̂→ H2(E × E ′̄K ,Z/n) � R2 f̂∗Z/n|K .

which appears in the five term exact sequence associated to the spectral sequence,

0 → H1(V̂k̄,Z/n)→ H1(E × E ′̄K ,Z/n)→ H0(V̂k̄, R1ΨZ/n)
d01

2→
H2(V̂k̄,Z/n)

ϕ̂→ H2(E × E′K̄ ,Z/n). (4)

The first two terms in (4) are free Z/n-modules of ranks 2 and 4 respectively. The
third term is free of rank mm′ + 1 as one sees from the exact sequence of sheaves
on V̂:

0 �� Z/n �� ν∗Z/n �� R1ΨZ/n �� 0,

h0 1 mm′

h1 2 0

where the numbers give the ranks of cohomology groups which are free Z/n-
modules. It follows that Ker(ϕ̂) is a free Z/n-module of rank mm′ − 1.

The Leray spectral sequence for the morphism, ρ : W → Ŵ, which contracts
each Qi j to a P1 gives an exact sequence

0 → R2 f̂∗Z/n → R2 f∗Z/n
ξ→ f̂∗R2ρ∗Z/n.

The sheaf on the right is isomorphic to j0∗(Z/n)mm′ . The map ξ has a left inverse
given by taking the cohomology classs of the Qi j’s in W. In the notation of (3) it
follows that Ker(r) � j0∗(Z/n)2mm′−1. Using Lemma 10 and the fact that Z/n is an
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injective Z/n-module one verifies that Ker(r) is a direct summand of R2 f∗Z/n [22,
2.4(iii)]. This proves Proposition 9 when m > 1 and m′ > 1.

The case where m = 1 or m′ = 1 may be reduced to the situation considered
above. Fix m0 ∈ N prime to nmm′. As o is strictly henselian the Néron models of
E and E′ have unique constant subgroup schemes over T which may be identified
with Z/m0. Let Ẽ → E (respectively Ẽ′ → E′) denote the isogeny which is dual to
the isogeny obtained by taking the quotient by this subgroup scheme. Extending the
isogeny to the relative minimal model, Ẽ of Ẽ (respectively Ẽ ′ of Ẽ′) yields a finite
étale Z/m0 cover Ẽ → E (respectively Ẽ ′ → E ′). Take the fiber product and blow up
the singular locus to get a finite étale cover, W̃ → W, which is Galois with Galois
group, H := (Z/m0)2. Consider the natural map,

R2 f∗Z/n → R2 f̃∗Z/n.

There is a corresponding map in the category,M,

Ψ : (H2(V,Z/n), H2(E × E′
K
,Z/n), ϕ)

→ (H2(Ṽ ,Z/n), H2(Ẽ × Ẽ′
K
,Z/n), ϕ̃),

where Ṽ ⊂ W̃ denotes the closed fiber. The action of H on H2(Ẽ×Ẽ′
K
,Z/n) is trivial,

since translation by torsion points acts trivially on cohomology. By Corollary 1(iii)
and the Hochschild–Serre spectral sequence,

(Z/n)2mm′+3 � H2(V,Z/n) � H2(Ṽ,Z/n)H.

Since Z/n-free Z/n[H]-modules are semi-simple, the isomorphism,

ψ : H2(E × E′
K
,Z/n)→ H2(Ẽ × Ẽ′

K
,Z/n),

maps the image of ϕ isomorphically to the image of ϕ̃. From the analysis of the
case m > 1 and m′ > 1 above, H2(V̂ ,Z/n) � (Z/n)mm′+3 (as n′′ = 1) and Ker(ϕ̂) �
(Z/n)mm′−1 in (4) so

im(ϕ̃) � im(ϕ̂) � (Z/n)4.

Thus im(ϕ) � (Z/n)4. Apply Corollary 1(iii) to V to conclude that Ker(ϕ) �
(Z/n)2mm′−1 as desired. $%

To describe the structure of the sheaf Gn it is convenient to introduce the notation
(M0, M, ϕ) (respectively (M′

0, M′, ϕ′)) for the object ofM corresponding to the sheaf
R1π∗Z/n (respectively R1π′∗Z/n). Since ϕ and ϕ′ are injective, we may identify M0

with a submodule of MI and M′
0 with a submodule of (M′)I . Define

M∗ := (M ⊗ M′)I ∩ (M ⊗ M′
0 + M0 ⊗ M′) ⊂ M ⊗ M′.

Proposition 10. (i) Gn|0 � (Z/nZ)2 ⊕ Z/n′′.
(ii) There is a short exact sequence,
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0 → R1π∗Z/n⊗ R1π′∗Z/n → Gn → j0∗(Z/n⊕ Z/n′′) → 0.

(iii) M∗ � (Z/n)2 ⊕ Z/n′′.
(iv) The object (M∗, M ⊗ M′, i) of M corresponds to Gn. Here i : M∗ → M ⊗ M′

is the inclusion.

Proof. (i) The structure of the stalk of Gn at 0 follows from Corollary 1(iii) and
Proposition 9.

(ii) This follows from the Künneth formula applied to R2 f ∗Z/n, the injectivity
of R2 f ∗Z/n → R2 f∗Z/n, the isomorphism, (R1π∗Z/n ⊗ R1π′∗Z/n)|0 � Z/n,
and (i).

(iii) The inertia group acts through its tame quotient which is topologically gener-
ated by a single element, τ. By [24, V.5 Exercise 13] one may choose a basis e0

of M0 (respectively e′0 of M′
0) and extend to a basis {e0, e1} of M (respectively

{e′0, e′1} of M′) so that τ acts by

e0 �→ e0, e1 �→ e1 + me0, e′0 �→ e′0, e′1 �→ e′1 + m′e′0.

Define

M̃ := S pan

{

e0 ⊗ e′0,
m′

m′′
e1 ⊗ e′0 −

m

m′′
e0 ⊗ e′1

}

⊂ M ⊗ M′.

Reducing the matrix for τ− Id acting on M ⊗ M′ to Smith normal form gives
diag(m′′, m′′, 0, 0). Thus

(M ⊗ M′)I = M̃ +
n

n′′
(M ⊗ M′).

As the second term is a free Z/n′′-module, M∗ � M̃ ⊕ Z/n′′ � (Z/n)2 ⊕ Z/n′′.
(iv) The cup product pairing on H2(E × E ′̄

K
,Z/n) gives rise to pairing on M ⊗ M′

with respect to which,

(e0 ⊗ e′0)⊥ = M ⊗ M′
0 + M0 ⊗ M′.

To complete the proof of (iv) it suffices to check that Gn|0 is orthogonal to
e0 ⊗ e′0.

A generator, ω ∈ H1(F,Z/n) ⊗ H1(F ′,Z/n), gives by the Künneth formula an
element of H2(V ,Z/n). By the Leray spectral sequence this group maps injectively
to H2(V,Z/n) which by the proper base change theorem may be identified with
the stalk, R2 f∗Z/n|0. After multiplying ω by an element in (Z/n)∗ if necessary, the
element, r(ω), in the following commutative diagram involving stalks of sheaves at
0, may be identified with e0 ⊗ e′0.
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The orthogonality of Gn|0 and e0⊗ e′0 is equivalent to the composition of maps from
the upper left along the top row then down the right hand side being zero. To check
this it suffices show that the vertical map on the left is zero:

Lemma 11. The cup product map, H2(V,Z/n)
ω∪→ H4(V,Z/n), is zero.

Proof. We may replace V by L := Vred [15, I.3.23]. There is an exact sequence of
sheaves on L,

0 → Z/n
ν∗0→ ν0∗Z/n

β∗→ ν1∗Z/n
α∗→ ν2∗Z/n → 0,

whose derivation is similar to Proposition 5 and a corresponding spectral sequence,
Epq

1 � Hq(L[p],Z/n) ⇒ Hp+q(L,Z/n). Since the dual graph of L triangulates a
topological two torus, one gets an isomorphism (cf. [16, p. 105])

Z/n � E20
2 � Ker [ H2(L,Z/n)

H2(ν∗0)−→ H2(L[0],Z/n) ].

As H2(ν∗0)(ω) = 0, Ker(H2(ν∗0)) � (Z/n)ω. Furthermore ω ∪ ω = 0, since the map,

H1(F)⊗ H1(F)
∪→ H2(F),

is zero. The lemma now follows from the commutativity of the diagram,

H2(L,Z/n)
ω∪ ��

H2(ν∗0)
��

H4(L,Z/n)

#H4(ν∗0)
��

H2(L[0],Z/n)
H2(ν∗0)(ω)∪ �� H4(L[0],Z/n). $%

$%
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Abstract We prove some general density statements about the subgroup of invert-
ible points on intermediate jacobians; namely those points in the Abel–Jacobi image
of nullhomologous algebraic cycles on projective algebraic manifolds.
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group
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1 Introduction

Let X/C be a projective algebraic manifold, CHr(X) the Chow group of codimen-
sion r algebraic cycles on X (with respect to the equivalence relation of rational
equivalence), and CHr

hom(X) the subgroup of cycles that are nullhomologous under
the cycle class map to singular cohomology with Z-coefficients. Largely in relation
to the celebrated Hodge conjecture, as well as with regard to equivalence relations
on algebraic cycles, the Griffiths Abel–Jacobi map

Φr : CHr
hom(X) → Jr(X)

Carlson� Ext1MHS
(
Z(0), H2r−1(X,Z(r))

)
,

has been a focus of attention for the past 60 years. The role of the Abel–Jacobi map
in connection to the celebrated Hodge conjecture began with the work of Lefschetz
in his proof of his famous “Lefschetz (1, 1) theorem”; and which inspired Griffiths
to develop his program of updating Lefschetz’s ideas as a general line of attack on
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the Hodge conjecture (see [8], as well as [7, Lec. 6, 12, 14]). To this day, a precise
statement about what the image of Φr is in general seems rather elusive. What we do
know is that there are examples where the image of Φr can be a countable set (even
infinite dimensional over Q) [1, 3], or completely torsion [2]. One can ask whether
the image of Φr is always dense in Jr(X), but even that is unlikely to be true in light
of some results in the literature inspired by some of the conjectures in [4]. In this
paper, we seek to come up with a general statement about the image of Φr, which
however is modest, is indeed is better than no statement at all. There are two key
ideas exploited in this paper, viz., the business of Lefschetz pencils and associated
normal functions, and the classical Kronecker’s theorem (see [5] (Chap. XXIII)),
which we state in the following form:

Theorem 1. Let A = Rn/Zn be a compact real torus of dimension n. For a point p =
(x1, x2, . . . , xn) ∈ A, Zp = {kp : k ∈ Z} is dense in A if and only if 1, x1, x2, . . . , xn

are linearly independent over Q. In particular, the set

{
p ∈ A : Zp is not dense in A

}
(1)

is of the first Baire category.

The main results are stated in Theorem 2 and Corollaries 1 and 2 below.

We are grateful to our colleagues Matt Kerr, Phillip Griffiths and Chuck Doran
for enlightening discussions, as well as the referee for suggesting improvements in
presentation.

2 Some Preliminaries

All integral cohomology is intended modulo torsion. Let X/C be a projective al-
gebraic manifold of dimension 2m and {Xt}t∈P1 a Lefschetz pencil of hyperplane
sections of X arising from a given polarization on X. Let D :=

⋂
t∈P1 Xt be the

(smooth) base locus and X = BD(X), the blow-up. One has a diagram:

XU ↪→ X

ρU

⏐⏐⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐⏐⏐�ρ

U
j

↪→ P1,

(2)

where Σ := P1\U = {t1, . . . , tM} is the singular set, viz., where the fibers are singular
Lefschetz hyperplane sections. One has a short exact sequence of sheaves

0 → j∗R2m−1ρU,∗Z→ Fm,∗ → J → 0, (3)
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where

Fm,∗
= OP1

(∐

t∈P1

H2m−1(Xt,C)

FmH2m−1(Xt,C)

)

(canonical extension),

and where the cokernel sheaf J is the sheaf of germs of normal functions. The
canonical (sometimes called the privileged) extension Fm,∗

of the vector bundle

Fm,∗ := OU

(∐

t∈U

H2m−1(Xt,C)

FmH2m−1(Xt,C)

)

,

is introduced in [8] (as well as in the references cited there). It plays a role in the
required limiting behaviour of the group H0(P1,J ) of normal functions “at the
boundary”, viz., at Σ. Roughly speaking then, a normal function ν ∈ H0(P1,J )
is a holomorphic cross-section,

ν : P1 →
∐

t∈P1

Jm(Xt),

where for t ∈ Σ, Jm(Xt) are certain “generalized” intermediate jacobians, and where
ν is locally liftable to a section of Fm,∗

.1 The results in [8, Corollary 4.52] show
that (3) induces a short exact sequence:

0 → Jm(X) → H0(P1,J )
δ−→ H1(P1, j∗R2m−1ρU,∗Z)(m,m) → 0, (4)

where it is also shown that with respect to the aforementioned polarization of X
defining primitive cohomology,

H1(P1, j∗R2m−1ρU,∗C) � Prim2m(X,C)
⊕

H2m−2
v (D,C), (5)

where H2m−2
v (D,C) = ker

(
H2m−2(D,C) → H2m+2(X,C)

)
, (induced by the inclusion

D ↪→ X, and where H1(P1, j∗R2m−1ρU,∗Z)(m,m) are the integral classes of Hodge
type (m, m) in H1(P1, j∗R2m−1ρU,∗Z), and the fixed part Jm(X) is the Griffiths inter-
mediate jacobian of X. It should be pointed out that there is an intrinsically defined
Hodge structure on the space H1(P1, j∗R2m−1ρU,∗C) and that (5) is an isomorphism
of Hodge structures [9]. For t ∈ U, the Lefschetz theory guarantees an orthogonal
decomposition

H2m−1(Xt,C) = H2m−1(X,C)⊕ H2m−1
v (Xt,C),

where by the weak Lefschetz theorem, H2m−1(X,C) is identified with its image
H2m−1(X,C) ↪→ H2m−1(Xt,C) and integrally speaking, H2m−1

v (Xt,Z) is the space

1 There is also a horizontality condition attached to the definition of normal functions of families
of projective algebraic manifolds, which automatically holds in the Lefschetz pencil situation (see
[8, Theorem 4.57]).
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generated by the vanishing cocycles {δ1, . . . , δM} (cf. [7, Lec. 6, p. 71]). For fixed
t ∈ U, we put

Jm
v (Xt) = Ext1MHS

(
Z(0), H2m−1

v (Xt,Z(m))
)
.

For each ti ∈ Σ, we recall the Picard–Lefschetz transformation Ti, and formula
Ti(γ) = γ + (−1)m(γ, δi)δi, where (δi, δ j) := (δi, δ j)Xt ∈ Z is the cup product on Xt

(followed by the trace). Note that a lattice in H2m−1
v (Xt,Z) (i.e. defining a basis of

H2m−1
v (Xt,Q)), is given (up to relabelling) by a suitable subset {δ1, . . . , δ2g}, (2g ≤

M), of vanishing cocycles. However we are going to choose our lattice generators
{δ1, . . . , δ2g} more carefully as follows:

• Given δ1, choose δ2 such that (δ1, δ2) � 0. Since (δ2
j) = 0 ∀ j = 1, . . . , M, it

follows that {δ1, δ2} are Q-independent.
• Next, we argue inductively on k with 1 ≤ k ≤ 2g− 1, that

{δ1, . . . , δk, δk+1} are Q-independent and (6)

(δ�, δk+1) � 0 for some � ∈ {1, . . . , k}.
Indeed if (6) failed to hold for any or all such k, then in light of the Picard–Lefschetz
formula, {δ1, . . . , δM}would not be conjugate under the monodromy group action [7,
Lec. 6, p. 71].

3 Main Results

The class δ(ν) ∈ H1(P1, j∗R2m−1ρU,∗Z)(m,m) is called the topological invariant or the
cohomology class of the normal function ν.

Theorem 2. Let ν ∈ H0(P1,J ) be a normal function with nontrivial cohomology
class, i.e., satisfying δ(ν) � 0. Then for very general t ∈ U, the subgroup 〈ν(t)〉 ⊂
Jm

v (Xt) generated by ν(t), is dense in the strong topology. In particular, the family of
rational curves in the manifold (see [8], Proposition 2.9):

J :=
∐

t∈P1

Jm
v (Xt),

(viz., the images of non-constant holomorphic maps P1 → J), is dense in the strong
topology.

Proof. From the Picard–Lefschetz formula,

Ni = log Ti = (Ti − I), using (Ti − I)2 = 0.

Now let ν ∈ H0(P1,J ) and ω ∈ H0(P1,Fm
) be given. Note that

ν : P1 → J,
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defines a rational curve on J. Next, the images

{[δ1], . . . , [δ2g]} in Fm,∗H2m−1
v (Xt,C) := H2m−1

v (Xt,C)/FmH2m−1
v (Xt,C),

define a lattice. In terms of this lattice and modulo the fixed part Jm(X), a local lifting
of ν is given by

∑2g
j=1 x j(t)[δ j], for suitable real-valued functions {x j(t)}, multivalued

on U. Let Tiν(ω(t)) be the result of analytic continuation of ν(ω(t)) counterclockwise
in P1 about ti and Niν(ω(t)) = Tiν(ω(t))− ν(ω(t)). About ti, we pick up a period

Niν(ω(t)) = ci

∫

δi

ω(t), for some ci ∈ Z,

dependent only on ν (not on ω), where we identify δi with its corresponding homol-
ogy vanishing cycle via Poincaré duality. Likewise in terms of the lattice description,

Niν(ω(t)) =
2g∑

j=1

Ti(x j(t))
∫

δ j+(−1)m (δ j ,δi)δi

ω(t) −
2g∑

j=1

x j(t)
∫

δ j

ω(t)

=

2g∑

j=1

Ni(x j(t))
∫

δ j

ω(t) + (−1)m
( 2g∑

j=1

Ti(x j(t))(δ j, δi)
)

·
∫

δi

ω(t).

Thus

ci = Ni(xi(t)) + (−1)m
2g∑

j=1

Ti(x j(t))(δ j, δi), (7)

and

Ni(x j(t)) = 0 for all i � j. (8)

Hence Ti(x j(t)) = x j(t) for all i � j and further, using (δi, δi) = 0, we can rewrite (7)
as:

ci = Ni(xi(t)) + (−1)m
2g∑

j=1

x j(t)(δ j, δi). (9)

Note that if Ni(xi(t)) = 0 for all i, then from the linear system in (9), xi(t) ∈ Q for all
i, and so δ(ν) = 0 ∈ H1(P1, j∗R2m−1ρU,∗Q). Now suppose that we have a nontrivial
relation:

2g∑

j=1

λ jx j(t) = λ0, for some λi ∈ Q, ∀i, t ∈ U. (10)

Then by (8) and (10) we have

λiNi(xi(t)) =
2g∑

j=1

λ jNi(x j(t)) = 0.
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So λi � 0 ⇒ Ni(xi(t)) = 0. Let us assume for the moment that λ1 � 0. Then
N1(x1(t)) = 0, hence from (9):

(−1)mc1 = (δ2, δ1)x2(t) + (δ3, δ1)x3(t) + · · · + (δ2g, δ1)x2g(t), (11)

and applying N2 and (6) we arrive at

0 = N2(c1) = (δ2, δ1)N2(x2(t)) ⇒ N2(x2(t)) = 0.

Hence again from (9):

(−1)mc2 = (δ1, δ2)x1(t) + (δ3, δ2)x3(t) + · · · + (δ2g, δ2)x2g(t). (12)

Applying N3 to both (11) and (12), and (6) we arrive at

(0, 0) =
(
N3(c1), N3(c2)

)
=
(
(δ3, δ1), (δ3, δ2)

) · N3(x3(t)) ⇒ N3(x3(t)) = 0,

and so on. Now it may happen that λ1 = 0. Since (λ1, . . . , λ2g) � (0, . . . , 0) we can
assume that λ�1 � 0 for some 1 ≤ �1 ≤ 2g. Thus by (10), N�1 (x�1 (t)) = 0 and
accordingly by (9):

(−1)mc�1 =

2g∑

j=1

(δ j, δ�1 )x j(t). (13)

By (6), (δ�2 , δ�1) � 0 for some 1 ≤ �2 < �1 (assuming �1 > 1). Applying N�2 to (13),
we arrive at N�2 (x�2 (t)) = 0, and hence again by (9):

(−1)mc�2 =

2g∑

j=1

(δ j, δ�2 )x j(t).

Again by (6), (δ�3 , δ�2 ) � 0 for some 1 ≤ �3 < �2 (assuming �2 > 1), and thus we
can repeat this process until we get N1(x1(t)) = 0. This puts in the situation of (11),
where the same arguments imply that Ni(xi(t)) = 0 for all i = 1, . . . , 2g.

Corollary 1. Let V be a general quintic threefold. Then the image of the Abel–
Jacobi map AJ : CH2

hom(V) → J2(V) is a countable dense subset of J2(V).

Proof. Let X ⊂ P5 be the Fermat quintic fourfold, and {Xt}t∈P1 a Lefschetz pencil of
hyperplane sections of X. We will assume the notation given in diagram (2). For the
Fermat quintic, it is easy to check that H1(P1, R3ρU,∗Q)(2,2) � 0, so by the sequence
in (4), there exists ν ∈ H0(P1,J ) such that δ(ν) � 0 ∈ H1(P1, R3ρU,∗Q) (this being
related to Griffiths’ famous example [3]). Thus by Theorem 2 and for general t ∈ P1,
the Abel–Jacobi image is dense in J2(Xt). But it is well known that the lines in Xt

for general t ∈ P1, deform in the universal family of quintic threefolds in P4. The
corollary follows from this.
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Remark 1. In light of the conjectures in [4], Corollary 1 most likely does not gener-
alize to higher degree general hypersurface threefolds. However there is a different
kind of generalization that probably holds. Namely, let S be the universal family of
smooth threefolds {Vt}t∈S of degree d say in P4. Put

JS :=
∐

t∈S

J2(Vt),

and

J2
S ,inv := Image

(∐

t∈S

CH2
hom(Vt)

Abel−−Jacobi−−−−−−−→ JS

)

.

Then in the strong topology, we anticipate that J2
S ,inv ⊂ JS is a dense subset.

In this direction, we have the following general result.

Corollary 2. Let
∐

λ∈S 0
Wλ→ S 0 be a smooth proper family of 2m-dimensional

projective varieties in some PN with the following property:

There exists a dense subset Σ ⊂ S 0 such that λ ∈ Σ ⇒ Primm,m
alg (Wλ,Q) � 0, where

Prim is primitive cohomology with respect to the embedding Wλ ⊂ PN. Further, let
us assume that H2m−1(Wλ,Q)π1(S 0) = H2m−1(Wλ,Q) and let

T :=
{
t := (c, λ) ∈ PN,∗ × S 0

∣
∣∣ Vt := PN−1

c ∩Wλ smooth, & dim Vt = 2m− 1
}
,

with corresponding Jm
T,inv ⊂ Jm

T (where this jacobian space only involves the orthog-
onal complement of the fixed part of a corresponding variation of Hodge structure).
Then in the strong topology Jm

T,inv is dense in Jm
T .

Proof. This easily follows from the techniques of this section and is left to the
reader.

Remark 2. (i) The following is obvious, but certainly merits mentioning: Let us
assume given the setting and assumptions in Corollary 2, and further assume
that for all λ ∈ Σ and general c with t = (c, λ) ∈ T, the m-th Q-Griffiths group
{
CHm

hom(Vt)
/
CHm

alg(Vt)
}⊗ Q = 0. Then Jm

T is a family of Abelian varieties. (The
general Hodge conjecture would imply in this situation that Jm

T,inv = Jm
T , but we

don’t yet know this.)
(ii) Our results say nothing about the arithmetic nature of the invertible points on

the jacobians. Matt Kerr pointed out to us Proposition 124 in [6, p. 92], which
appears to be related to our results, and may have some potential in this direc-
tion; albeit it is unclear how to move forward with this.

Acknowledgements Both authors partially supported by a grant from the Natural Sciences and
Engineering Research Council of Canada.
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Calabi–Yau Conifold Expansions

Slawomir Cynk and Duco van Straten

Abstract We describe examples of computations of Picard–Fuchs operators for fam-
ilies of Calabi–Yau manifolds based on the expansion of a period near a conifold
point. We find examples of operators without a point of maximal unipotent mon-
odromy, thus answering a question posed by J. Rohde.

Key words: Calabi–Yau threefolds, Picard–Fuchs operator, Maximal unipotent
monodromy, Conifold point

Mathematics Subject Classifications (2010): Primary 14J32; Secondary 14Qxx,
32S40, 34M15

1 Introduction

The computation of the instanton numbers nd for the quintic X ⊂ P4 using the period
of the quintic mirror Y by P. Candelas, X. de la Ossa and co-workers [10] marked
the beginning of intense mathematical interest in the mechanism of mirror symmetry
that continues to the present day. On a superficial and purely computational level the
calculation runs as follows: one considers the hypergeometric differential operator

P = θ4 − 55t(θ + 1
5 )(θ + 2

5 )(θ + 3
5 )(θ + 4

5 )
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where θ = t d
dt denotes the logarithmic derivation. The power series

ϕ(t) =
∑ (5n)!

(n!)5
tn

is the unique holomorphic solution ϕ(t) = 1 + . . . to the differential equation

Pϕ = 0.

There is a unique second solution ψ that contains a log:

ψ(t) = log(t)ϕ(t) + ρ(t)

where ρ ∈ tQ[[t]]. We now define

q := eψ/ϕ = teρ/ϕ = t + 770t2 + . . . .

We can use q as a new coordinate, and as such it can be used to bring the operator
P into the local normal form

P = D2 5

K(q)
D2

where D = q d
dq and K(q) is a power series. When we write this series K(q) in the

form of a Lambert series

K(q) = 5 +
∞∑

d=1

ndd3 qd

1− qd
,

one can read off the numbers

n1 = 2875, n2 = 609250, n3 = 317206375, . . . .

The data in the calculation are tied to two Calabi–Yau threefolds:

A. The quintic threefold X ⊂ P4 (h11 = 1, h12 = 101). The nd have the interpreta-
tion of number of rational degree d curves on X, counted in the Gromov–Witten
sense (see [11, 15]).

B. The quintic mirror Y (h11 = 101, h12 = 1). Y is member of a pencil Y −→ P1,
and P is Picard–Fuchs operator of this family. The series ϕ is the power-series
expansion of a special period near the point 0, which is a point of maximal
unipotent monodromy, a so-called MUM-point.

As one can see, the whole calculation depends only on the differential operator
P or its holomorphic solution ϕ and never uses any further geometrical properties
of X or Y, except maybe for choice of 5, which is the degree of X.

In [1] this computation was taken as the starting point to investigate so-called
CY3-operators , which are Fuchsian differential operators P ∈ Q(t, θ) of order four
with the following properties:
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1. The operator has the form

P = θ4 + tP1(θ) + . . . + trPr(θ)

where the Pi are polynomials of degree at most four. This implies in particular
that 0 is a MUM-point.

2. The operator P is symplectic. This means the P leaves invariant a symplectic
form in the solution space. The operator than is formally self-adjoint, which can
be expressed by a simple condition on the coefficients [1, 7].

3. The holomorphic solution ϕ(t) is in Z[[t]].
4. Further integrality properties: the expansion of the q-coordinate has integral

coefficients, and the instanton numbers are integral (possibly up to a common
denominator) [26, 29].

There is an ever-growing list of operators satisfying the first three and probably
the last conditions [2]. It starts with the above operator and continues with 13 further
hypergeometric cases, which are related to Calabi–Yau threefolds that are complete
intersections in weighted projective spaces. Recently, M. Bogner and S. Reiter [7, 8]
have classified and constructed the symplectically rigid Calabi–Yau operators, thus
providing a solid understanding for the beginning of the list.

Another nice example is operator no. 25 from the list:

P = θ4 − 4t(2θ + 1)2(11θ2 + 11θ + 3)− 16t2(2θ + 1)2(2θ + 3)2.

The holomorphic solution of the operator is ϕ(t) =
∑

Antn where

An :=

(
2n

n

)2 n∑

k=1

(
n

k

)2(n + k

k

)

.

This operator was obtained in [6] as follows: one considers the Grassmannian
Z :=G(2, 5), a Fano manifold of dimension 6, with Pic(Z) ≈ Z, with ample gen-
erator h, the class of a hyperplane section in the Plücker embedding. As the canon-
ical class of Z is −5h, the complete intersection X := X(1, 2, 2) by hypersurfaces
of degree 1, 2, 2 is a Calabi–Yau threefold with h11 = 1, h12 = 61. The small quan-
tum cohomology of Z is known, so that one can compute its quantum D-module.
The quantum Lefschetz theorem then produces the above operator nr. 25 which thus
provides the numbers nd for X:

n1 = 400, n2 = 5540, n3 = 164400, . . .

Also, a mirror manifold Y = Yt was described as (the resolution of the toric closure
of) a hypersurface in the torus (C∗)4 given by a Laurent polynomial.

The question arises which operators in the list are related in a similar way to a
mirror pair (X, Y) of Calabi–Yau threefolds with h11(X) = h12(Y) = 1. This is cer-
tainly not to be expected for all operators, but it suggests the following attractive
problem.
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Problem. A. Construct examples of Calabi–Yau threefolds X with h11 = 1 and try
to identify the associated quantum differential equation.

B. Construct examples of pencils of Calabi–Yau threefolds Y −→ P1 with
h12(Yt)= 1 and try to compute the associated Picard–Fuchs equation.

It has been shown that in many cases one can predict from the operator P alone
topological invariants of X like (h3, c2(X)h, c3(X)) [27] and the zeta function of Yt

[23, 30]. In either case we see that the operators of the list provide predictions
for the existence of Calabi–Yau threefolds with quite precise properties. Recently,
A. Kanazawa [18] has used weighted Pfaffians to construct some Calabi–Yau three-
folds X whose existence were predicted in [27]. In this note we report on work in
progress to compute the Picard–Fuchs equation for a large number of families of
Calabi–Yau threefolds with h12 = 1.

2 How to Compute Picard–Fuchs Operators

2.1 The Method of Griffiths–Dwork

For a smooth hypersurface Y ⊂ Pn defined by a polynomial F ∈ C[x0, . . . , xn] of
degree d, one has a useful representation of (the primitive part of) the middle coho-
mology Hn−1

prim(Y) using residues of differential forms on the complement U := Pn\Y.
One can work with the complex of differential forms with poles along Y and com-
pute modulo exact forms. Although this method was used in the nineteenth century
by mathematicians like Picard and Poincaré, it was first developed in full generality
by P. Griffiths [16] and B. Dwork [13] in the sixties of the last century.

The Griffiths’ isomorphism identifies the Hodge space Hp,q
prim with a graded piece

of the Jacobian algebra

R := C[x0, . . . , xn]/(∂0F, ∂1F, . . . , ∂nF).

More precisely one has

Rd(k+1)−(n+1)
≈−→ Hn−1−k,k

prim (Y)

P �→ Res( PΩ
Fk+1 )

where Ω := ιE(dx0∧ dx1∧ . . . dxn) and E =
∑

xi∂/∂xi is the Euler vector field. This
enables us to find an explicit basis.

If the polynomial F depends on a parameter t, we obtain a pencil Y −→ P1

of hypersurfaces, which can be seen as a smooth hypersurface Yt over the function
field K := C(t), and the above method provides a basis ω1, . . . , ωr of differential
forms over K. We now can differentiate the differential forms ωi with respect to t
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and express the result in the basis. This step involves a Gröbner-basis calculation.
As a result we obtain an r × r matrix A(t) with entries in K such that

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1

ω2

. . .
ωr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A(t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1

ω2

. . .
ωr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The choice of a cyclic vector for this differential system then provides a differential
operator P ∈ C(t, θ) that annihilates all period integrals

∫

γ
ω. In the situation of

Calabi–Yau manifolds there is always a natural vector obtained from the holomor-
phic differential. For details we refer to the literature, for example [11].

This methods works very well in simple examples and has been used by many au-
thors. It can be generalised to the case of (quasi-)smooth hypersurfaces in weighted
projective spaces and more generally complete intersections in toric varieties [4].
Also, it is possible to handle families depending on more than one parameter.
A closely related method for tame polynomials in affine space has been implemented
by M. Schulze [25] and H. Movasati [21] in Singular. The ultimate generalisation of
the method would be an implementation of the direct image functor in the category
of D-modules, which in principle can be achieved by Gröbner-basis calculations in
the Weyl algebra.

The Griffiths–Dwork method however also has some drawbacks:

• In many situations the varieties one is interested in have singularities. For the
simplest types of singularities, it is still possible to adapt the method to take the
singularities into account, but the procedure becomes increasingly cumbersome
for more complicated singularities.
• In many situations the variety under consideration is given by some geometrical

construction, and a description with equations seems less appropriate.

In some important situations the following alternative method can be used with
great success.

2.2 Method of Period Expansion

In order to find Picard–Fuchs operator for a familyY −→ P1, one does the following:

• Find the explicit power-series expansion of a single period

ϕ(t) =
∫

γt

ωt =

∞∑

n=0

Antn.
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• Find a differential operator

P = P0(θ) + tP1(θ) + . . . + trPr(θ)

that annihilates ϕ by solving the linear recursion

r∑

i=0

Pi(n)An−i = 0

on the coefficients. Here the Pi are polynomials in θ of a certain degree d. As
P contains (d + 1)(r + 1) coefficients, we need the expansion of ϕ only up to
sufficiently high order to find it.

This quick-and-dirty method surely is very old and goes back to the time of
Euler. And of course, many important issues arise like: To what order do we need
to compute our period? For this one needs a priori estimates for d and r, which
might not be available. Or Is the operator P really the Picard–Fuchs operator of
the family? We will not discuss these issues here in detail, as they are not so im-
portant in practice: one expands until one finds an operator, and if the monodromy
representation is irreducible, the operator obtained is necessarily the Picard–Fuchs
operator.

However, it is obvious that the method stands or falls with our ability to find such
an explicit period expansion. It appears that the critical points of our family provide
the clue.

Principle
If one can identify explicitly a vanishing cycle, then its period can be computed

“algebraically”.

If our family Y −→ P1 is defined overQ, or more generally over a number field,
then it is known that such expansions are G-functions and thus have very strong
arithmetical properties [3].

Rather than trying to prove here a general statement in this direction, we will
illustrate the principle in two simple examples. The appendix contains a general
statement that covers the case of a variety acquiring an ordinary double point.

I. Let us look at the Legendre family of elliptic curves given by the equation

y2 = x(t− x)(1− x).

If the parameter t is a small positive real number, the real curve contains a cycle
γt that runs from 0 to t and back. If we let t go to zero, this loop shrinks to a
point and the curve acquires an A1 singularity. The period of the holomorphic
differential ω = dx/y along this loop is

ϕ(t) =
∫

γt

ω = 2F(t)
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where

F(t) :=
∫ t

0

dx√
(x(t− x)(1− x)

.

By the substitution x �→ tx we get

F(t) =
∫ 1

0

1√
(1− xt)

dx√
x(1− x)

.

The first square root expands as

1√
(1− xt)

=

∞∑

n=0

(
2n

n

) ( xt

4

)n

so that

F(t) =
∞∑

n=0

(
2n

n

) (∫ 1

0

xn

√
x(1− x)

dx

)

tn.

The appearing integral is well known since the work of Wallis and is a special
case of Eulers beta integral.

∫ 1

0

xn

√
(x(1− x)

dx = π

(
2n

n

)
1

4n
.

So the final result is the beautiful series

F(t) = π
∞∑

n=0

(
2n

n

)2( t

16

)n

= π

⎛
⎜⎜⎜⎜⎜⎝1 +

(
1

2

)2

t +

(
1 · 3
2 · 4

)2

t2 +

(
1 · 3 · 5
2 · 4 · 6

)2

t3 + . . .

⎞
⎟⎟⎟⎟⎟⎠.

From this series it is easy to see that the second-order operator with F(t) as
solution is

4θ2 − t(2θ + 1)2.

In fact, the first six coefficients suffice to find the operator.
This should be compared to the Griffiths–Dworkmethod, which would consist
of considering the basis

ω1 = dx/y, ω2 = xdx/y

of differential forms on Et and expressing the derivative

∂tω1 = − x(1− x)dx

(x(t− x)(1− x))3/2

in terms of ω1, ω2 modulo exact forms.
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II. In mirror symmetry one often encounters families of Calabi–Yau manifolds that
arise from a Laurent polynomial

f ∈ Z[x1, x−1
1 , x2, x−1

2 , . . . , xn, x−1
n ].

Such a Laurent polynomial f determines a family of hypersurfaces in a torus
given by

Vt := {1− t f (x1, . . . , xn) = 0} ⊂ (C∗)n.

In case the Newton polyhedron N( f ) of f is reflexive, a crepant resolution of
the closure of Vt in the toric manifold determined by N( f ) will be a Calabi–Yau
manifold Yt. To compute its Picard–Fuchs operator, the Griffiths–Dwork
method is usually cumbersome.

The holomorphic n− 1-form on Yt is given on Vt

ωt := ResVt

(
1

1− t f

dx1

x1

dx2

x2
. . .

dxn

xn

)

.

There is an n − 1-cycle γt on Vt whose Leray coboundary is homologous to
T :=Tε := {|xi| = ε} ⊂ (C∗)n. The so-called principal period is

ϕ(t) =
∫

γt

ωt =
1

(2πi)n

∫

T

1

1− t f

dx1

x1

dx2

x2
. . .

dxn

xn
=

∞∑

n=0

[ f n]0tn

where [g]0 denotes the constant term of the Laurent series g. For this reason, the
series ϕ(t) is sometimes called the constant term series of the Laurent polynomial.
This method was used in [5] to determine the Picard–Fuchs operator for certain fam-
ilies Yt and has been popular ever since. A fast implementation for the computation
of [g]0 was realised by P. Metelitsyn [19].

3 Double Octics

One of the simplest types of Calabi–Yau threefolds is the so-called double octic ,
which is a double cover Y of P3 ramified over a surface of degree 8. It can be given
by an equation of the form

u2 = f8(x, y, z, w)

and thus can be seen as a hypersurface in weighted projective space P(14, 4). For
a general choice of f8 the variety Y is smooth and has Hodge numbers h11 = 1,
h12 = 149. A nice subclass of such double octics consists of those for which f8 is a
product of eight planes. In that case Y has singularities at the intersections of the
planes. In the generic such situation Y is singular along 8.7/2 = 28 lines, and by
blowing up these lines (in any order), we obtain a smooth Calabi–Yau manifold Ỹ
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with h11 = 29, h12 = 9. By taking the eight planes in special positions, the double
cover Y acquires other singularities, and a myriad of different Calabi–Yau threefolds
with various Hodge numbers appear as crepant resolutions Ỹ . In [20], 11 configura-
tions leading to rigid Calabi–Yau varieties were identified. Furthermore, C. Meyer
listed 63 one-parameter families which thus give 63 special one-parameter families
of Calabi– Yau threefolds Ỹt, and it is for these that we want to compute the as-
sociated Picard–Fuchs equation. Due to the singularities of f8, a Griffiths–Dwork
approach is cumbersome, if not impossible. So we resort to the period expansion
method.

In many of the 63 cases one can identify a vanishing tetrahedron: for a special
value of the parameter one of the eight planes passes through a triple point of inter-
section, caused by three other planes. In appropriate coordinates we can write our
affine equation as

u2 = xyz(t − x− y− z)Pt(x, y, z)

where Pt is the product of the other four planes and we assume P0(0, 0, 0) � 0.
Analogous to the above calculation with the elliptic curve we now “see” a cycle γt,
which consists of two copies of the real tetrahedron Tt bounded by the plane x = 0,
y = 0, z = 0, x + y + z = t. For t = 0 the tetrahedron shrinks to a point. So we have

ϕ(t) =
∫

γt

ω = 2F(t),

where

F(t) =
∫

Tt

dxdydz
√

xyz(t − x− y− z)Pt(x, y, z)
.

Proposition 1. The period ϕ(t) expands in a series of the form

ϕ(t) = π2t(A0 + A1t + A2t2 + . . .)

with Ai ∈ Q if Pt(x, y, z) ∈ Q[x, y, z, t], P0(0, 0, 0) � 0.

Proof. When we replace x, y, z by tx, ty, tz, respectively, we obtain an integral over
the standard tetrahedron T := T1:

F(t) = t
∫

T

dxdydz
√

xyz(1− x− y− z)

1
√

Pt(tx, ty, tz)
.

We can expand the last square root in a power series

1
√

Pt(tx, ty, tz)
=
∑

iklm

Ciklm xkylzmti

and thus find F(t) as a series

F(t) = t
∑

i,k,l,m

∫

T

xkylzmdxdydz
√

xyz(1− x− y− z)
Ciklmti.
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The integrals appearing in this sum can be evaluated easily in terms of the gen-
eralised beta integral

∫

T
xα1−1

1 xα2−1
2 . . . xαn−1

n (1− x1 − . . .− xn)αn+1−1dx1dx2 . . . dxn

= Γ(α1)Γ(α2) . . . Γ(αn+1)/Γ(α1 + α2 + . . . + αn+1).

In particular we get

∫

T

xkylzmdxdydz
√

xyz(1− x− y− z)
=

Γ(k + 1/2)Γ(l + 1/2)Γ(m + 1/2)Γ(1/2)

Γ(k + l + m + 2)

= π2 (2k)!(2l)!(2m)!

4k+l+mk!l!m!(k + l + m + 1)!
∈ π2Q

and thus we get an expansion of the form

F(t) = π2t(A0 + A1t + A2t2 + A3t3 + . . .)

where Ai ∈ Q when Pt(x, y, z) ∈ Q[x, y, z, t]. $%
Example 1. Configuration no. 36 of C. Meyer ([20], p. 57) is equivalent to the double
octic with equation

u2 = xyz(t − x− y− z)(1− x)(1− z)(1− x− y)(1 + (t− 2)x− y− z).

A smooth model has h11 = 49, h12 = 1. For t = 0 the resolution is a rigid Calabi–Yau
with h11 = 50, h12 = 0, corresponding to arrangement no. 32. The expansion of the
tetrahedral integral around t = 0 reads

F(t) = π2t(1 + t +
43

48
t2 +

19

24
t3 +

10811

15360
t4 +

9713

15360
t5 + . . .).

The operator is determined by the first 34 terms of the expansion and reads

32 θ (θ − 2) (θ − 1)2 − 16 tθ (θ − 1)
(
9 θ2 − 13 θ + 8

)

+8 t2θ
(
33 θ3 − 32 θ2 + 38 θ− 10

)− t3(252 θ4 + 104 θ3 + 304 θ2 + 76 θ + 20)

+t4(132 θ4 + 224 θ3 + 292 θ2 + 160 θ + 38)

−t5(36 θ4 + 104 θ3 + 140 θ2 + 88 θ + 21) + 4 t6 (θ + 1)4 .

The Riemann symbol of this operator is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 2 ∞
0 0 0 1
1 0 0 1
1 0 2 1
2 0 2 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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At 0 we have indeed a “conifold point” with its characteristic exponents 0, 1, 1, 2.
At t = 1 and t =∞ we find MUM-points. M. Bogner has shown that via a quadratic
transformation this operator can be transformed to operator number 10∗ from the
AESZ list, which has Riemann symbol

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1/256 ∞
0 0 1/2
0 0 1
0 1 1
0 1 3/2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

which is symplectically rigid [8]. So the family of double octics provides a clean
B-interpretation for this operator.

Example 2. Configuration no. 70 of Meyer is isomorphic to

u2 = xyz(x + y + z− t)(1− x)(1− z)(x + y + z− 1)(x/2 + y/2 + z/2− 1).

Again, for general t we obtain a Calabi–Yau threefold with h11 = 49, h12 = 1 and
for t = 0 we have h11 = 50, h12 = 0, corresponding to the rigid Calabi–Yau of
configuration no. 69 of [20]. The tetrahedral integral expands as

F(t) = π2t

(

1 +
13

16
t +

485

768
t2 +

12299

24576
t3 +

534433

1310720
t4 +

21458473

62914560
t5 + . . .

)

and is annihilated by the operator

16 θ (θ − 2) (θ − 1)2 − 2 tθ (θ − 1)
(
24 θ2 − 24 θ + 13

)

+t2θ2
(
52 θ2 + 25

)− 2 t3
(
3 θ2 + 3 θ + 2

)
(2 θ + 1)2

+t4 (2 θ + 1) (θ + 1)2 (2 θ + 3) .

The Riemann symbol of this operator is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 2 ∞
0 0 0 1/2
1 0 0 1
1 1 1 1
2 1 1 3/2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

so we see that it has no point of maximal unipotent monodromy!

The first examples of families Calabi–Yau manifolds without MUM-point were
described by J. Rohde [22] and studied further by A. Garbagnati and B. van Geemen
[14]. It should be pointed out that in those cases the associated Picard–Fuchs opera-
tor was of second order, contrary to the above fourth-order operator. M. Bogner has
checked that this operator has Sp4(C) as differential Galois group. It is probably one
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of the simplest examples of this sort. J. Hofmann has calculated with his package
[17] the integral monodromy of the operator. In an appropriate basis it reads

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −7 1 0
0 1 0 1

−1 7 0 7
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −2 0 0
2 3 0 0

11 7 2 1
−3 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
8 −16 4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 23 −3 −2
0 −15 2 1
0 −84 11 6
1 −75 11 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with T2T1T0T∞ = id.

As Calabi–Yau operators in the sense of [1] need a to have a MUM, W. Zudilin
has suggested to call an operator without such a point of maximal unipotent mon-
odromy an orphan.

Example 3. Configuration no. 254 of C. Meyer gives a family of Calabi–Yau three-
folds with h11 = 37, h12 = 1:

u2 = xyz(t − x− y− z)Pt(x, y, z)

with
Pt(x, y, z) = (1− 3z + t − t2 x + tz− tx − 2y)(1− z + tx− 2x)

·(1− tx + z)(1 + t − t2 x + tz− 5tx + z− 2y− 4x).

For t = 0 we obtain the rigid configuration no. 241 with h11 = 40, h12 = 0. The
tetrahedral integral expands as

F(t) = π2t

(

1 +
1

2
t +

37

24
t2 +

41

16
t3 +

13477

1920
t4 +

14597

768
t5 + . . .

)

.

The operator is very complicated and has the following Riemann symbol:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 α2 0 ρ1 ρ2 ρ3 −1 1 ∞
0 0 0 0 0 0 0 0 3/2
1 1 1 1 1 1 0 0 3/2
1 1 1 3 3 3 0 0 3/2
2 2 2 4 4 4 0 0 3/2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where at 0 and α1,2 = −2 ± √
5 we find conifold points, at the ρ1,2,3, roots of the

cubic equation 2t3 − t2 − 3t + 4 = 0 we have apparent singularities and at −1, 1 we
find point of maximal unipotent monodromy, which we also find at∞, after taking
a square root. This operator was not known before.

These three examples illustrate the current win–win–win aspect of these calcula-
tions. It can happen that the operator is known, in which case we get a nice geometric
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incarnation of the differential equation. It can happen that the operator does not
have a MUM-point, in which case we have found a further example of family of
Calabi–Yau threefolds without a MUM-point. From the point of mirror symmetry
these cases are of special importance, as the torus for the SYZ fibration, which in
the ordinary cases vanishes at the MUM-point, is not in sight. Or it can happen that
we find a new operator with a MUM-point, thus extending the AESZ table [2].

Many more examples have been computed, in particular also for other types of
families, like fibre products of rational elliptic surfaces of the type considered by
C. Schoen [24]. The first example of Sp4(C)-operators without MUM-point was
found among these [28]. A paper collecting our results on periods of double octics
and fibre products is in preparation [12].

4 An Algorithm

Let Y be a smooth variety of dimension n and f : Y −→ P1 a nonconstant map
to P1 and let P ∈ Y be a critical point. In order to analyse the local behaviour of
periods of cycles vanishing at P, we replace Y by an affine part, on which we have
a function f : Y −→ A1, with f (P) = 0. An n-form

ω ∈ Ωn
Y ,P

gives rise to a family of differential forms on the fibres of f :

ωt := ResYt

(
ω

f − t

)

.

The period integrals ∫

γt

ωt

over cycles γt vanishing at P only depend on the class of ω in the Brieskorn module
at P, which is defined as

HP := Ωn
Y ,P/d f ∧ dΩn−2

Y ,P .

If P is an isolated critical point, it was shown in [9] that the completion ĤP is a
(free) C[[t]]-module of rank μ( f , P), the Milnor number of f at P. In particular, if
f has an A1-singularity at P, we have μ( f , P) = 1, and the image of the class of ω

under the isomorphism ĤP −→ C[[t]] is, up to a factor, just the expansion of the
integral of the vanishing cycle. We will now show how one can calculate this with a
simple algorithm.

Proposition 2. If f : Y −→ A1 and the critical point P of type A1. If f : Y −→ A1,
P and ω ∈ ΩY ,P are defined over Q, then the period integral over the vanishing
cycle γ(t)
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ϕ(t) =
∫

γ(t)
ωt

has an expansion of the form

ϕ(t) = ctn/2−1(1 + A1t + A2t2 + . . .)

where

c = d
n

2

Γ(1/2)n

Γ( n
2 + 1)

where d2 ∈ Q and the Ai ∈ Q can be computed via a simple algorithm.

Proof. As P and f are defined over Q, we may assume that in appropriate formal
coordinates xi on Y , we have P = 0, f (P) = 0, and the map is represented by a
series

f = f2 + f3 + f4 + . . .

where f2 is a nondegenerate quadratic form and the fd ∈ Q[x1, . . . , xn] are homo-
geneous polynomials of degree d. After a linear coordinate transformation (which
may involve a quadratic field extension), we may and will assume that

f2 = x2
1 + x2

2 + . . . + x2
n.

For t > 0 small enough, the part of solution set {(x1, x2, . . . , xn) ∈ Rn | f = t}
near 0 looks like a slightly bumped sphere γ(t) and is close to standard sphere
{(x1, x2, . . . , xn) ∈ Rn | f2 = t}. This is the vanishing cycle we want to integrate
ωt = Res(Ω/( f − t)) over. Note that

∫ t

0

∫

γ(t)
ωt =

∫

Γ(t)
ω

where
Γ(t) = ∪s∈[0,t]γ(s) = {(x1, x2, . . . , xn) ∈ Rn | f ≤ t}

is the Lefschetz thimble, which is a slightly bumped ball, that is near to the standard
ball

B(t) := {(x1, x2, . . . , xn) ∈ Rn | f2 ≤ t}.
The idea is now to change to coordinates that map f into its quadratic part f2. An
automorphism ϕ : xi �→ yi of the local ring R := Q[[x1, x2, . . . , xn]] is given by
n-tuples of series (y1, y2, . . . , yn) with the property that

∣
∣∣
∣
∣

∂y

∂x

∣
∣∣
∣
∣ =

∣
∣
∣
∣∣
∣
∣∣
∣

∂y1

∂x1
. . . ∂y1

∂xn

. . . . . . . . .
∂yn

∂x1
. . . ∂yn

∂xn

∣
∣
∣
∣∣
∣
∣∣
∣

�M := (x1, x2, . . . , xn) ⊂ R.

One has the following Formal Morse Lemma: there exist an automorphism ϕ of
R such that
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ϕ( f ) = f2.

Such a ϕ is obtained by an iteration: if

f = f2 + fk + fk+1 + . . . ,

then we can find an automorphism ϕk such that

ϕk( f ) = f2 + f̃k+1 + . . . .

To find ϕk it is sufficient to write fk =
∑

ai∂ f /∂xi and set ϕk(xi) = xi − ai.
Alternatively, we may say that one can find formal coordinates yi = ϕ(xi) such

that
f2 + f3 + . . . = y2

1 + y2
2 + . . . + y2

n.

By the transformation formula for integrals we get
∫

Γ(t)
ω =

∫

B(t)
ϕ∗(ω).

When we write
ω := A(x)dx1dx2 . . . dxn,

then

ϕ∗(ω) = A(x(y))

∣
∣
∣∣
∣
∣

∂x(y)

∂y

∣
∣
∣∣
∣
∣
dy1dy2 . . . dyn

which can be expanded in a series in the coordinates yi as

ϕ∗(ω) =
∑

α

Jαyαdy1dy2 . . . dyn

where the Jα ∈ Q. So we get
∫

Γ(t)
ω =

∫

B(t)
ϕ∗(ω) =

∑

α

Jα

∫

B(t)
yαdy1dy2 . . . dyn.

The integrals

I(α) :=
∫

B(t)
yαdy1dy2 . . . dyn

can be reduced to the generalised beta integral, and one has

Lemma 1. (i)
I(α1, α2, . . . , αn) = 0

when some αi is odd. (ii)

I(2k1, 2k2, . . . , 2kn)

=
Γ(k1 + 1/2)Γ(k2 + 1/2) . . . Γ(kn + 1/2)

Γ(k1 + k2 + . . . + n/2 + 1)
tk1+k2...+kn+n/2.
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As a consequence we have
∫

Γ(t)
=
∑

JαI(α)tk1+k2+...+kn+n/2

= I(0)tn/2(1 + a1t + a2t2 + . . .).

The coefficient

I(0) =
Γ(1/2)n

Γ(n/2 + 1)

is the volume of the n-dimensional unit ball. As I(α)/I(0, 0, . . . , 0) ∈ Q, we see that
the ai are also in Q.

So we see that the period integral

ϕ(t) =
d

dt

∫

Γ(t)
ω

has, up to a prefactor, a series expansion with rational coefficients that can be com-
puted algebraically be a very simple although memory-consuming algorithm. Pavel
Metelitsyn is currently working on an implementation.
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Math. 2, 103–161 (1970)

10. P. Candelas, X. de la Ossa, P. Green, L. Parkes, An exactly soluble superconformal theory
from a mirror pair of Calabi–Yau manifolds. Phys. Lett. B 258(1–2), 118–126 (1991)

11. D. Cox, S. Katz, in Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and
Monographs, vol. 68 (American Mathematical Society, Providence, 1999)

12. S. Cynk, D. van Straten, Picard-Fuchs equations for double octics and fibre products
(in preparation)

13. B. Dwork, On the zeta function of a hypersurface, III. Ann. Math. (2) 83, 457–519 (1966)
14. A. Garbagnati, B. van Geemen, The Picard–Fuchs equation of a family of Calabi–Yau

threefolds without maximal unipotent monodromy. Int. Math. Res. Not. IMRN, 16 (2010),
pp. 3134–3143

15. A. Givental, The mirror formula for quintic threefolds, in Northern California Symplectic
Geometry Seminar. American Mathematical Society Translations Series 2, vol. 196 (American
Mathematical Society, Providence, 1999), pp. 49–62

16. P. Griffiths, On the periods of certain rational integrals I, II. Ann. Math. (2) 90, 460–495
(1969); Ann. Math. (2) 90, 496–541 (1969)

17. J. Hofmann, A Maple package for the monodromy calculations (in preparation)
18. A. Kanazawa, Pfaffian Calabi–Yau Threefolds and Mirror Symmetry arXiv: 1006.0223

[math.AG]
19. P. Metelitsyn, How to compute the constant term of a power of a Laurent polynomial efficiently

arXiv:1211.3959 [cs.SC]
20. C. Meyer, in Modular Calabi–Yau Threefolds. Fields Institute Monographs, vol. 22 (American

Mathematical Society, Providence, 2005)
21. H. Movesati, Calculation of mixed Hodge structures, Gauss–Manin connections and Picard–

Fuchs equations, in Real and Complex Singularities. Trends in Mathematics (Birkhäuser,
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Abstract We consider rigid Calabi–Yau threefolds defined over Q and the question
of whether they admit quadratic twists. We give a precise geometric definition of the
notion of a quadratic twists in this setting. Every rigid Calabi–Yau threefold over Q
is modular so there is attached to it a certain newform of weight 4 on some Γ0(N).
We show that quadratic twisting of a threefold corresponds to twisting the attached
newform by quadratic characters and illustrate with a number of obvious and not
so obvious examples. The question is motivated by the deeper question of which
newforms of weight 4 on some Γ0(N) and integral Fourier coefficients arise from
rigid Calabi–Yau threefolds defined over Q (a geometric realization problem).
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1 Introduction

Suppose X is a rigid Calabi–Yau threefold defined over Q. As Gouvêa and Yui ob-
serve in [8] (see also [4, 5]), it follows from work of Khare and Winterberger that
X is modular: The L-series of X coincides with the L-series of a certain newform f
of weight 4 on some Γ0(N). Alternatively, there is a newform f with integer coef-
ficients such that, for any prime �, the �-adic representation of GQ = Gal(Q/Q) on
H3(X̄,Q�) is isomorphic to the �-adic representation of GQ attached to f .

Very little seems to be known about the form f . Notably, the relation between
the conductor N and the geometry of X still seems to be poorly understood. (See the
discussions and conjectures of Sect. 6.4 of [12], as well as the paper [3].)

Another unresolved and probably very hard question is the following. The form
f above obviously has integral Fourier coefficients. Can one conversely characterize
the newforms of weight 4 on some Γ0(N) with integral coefficients that arise from
rigid Calabi–Yau threefolds overQ? Do all such forms arise from Calabi–Yau three-
folds? (This is a kind of the geometric realization problem. See [6] for the case of
“singular” K3 surfaces and forms of weight 3.)

A very weak version of this question is the topic of this paper: Given a rigid
Calabi–Yau threefold X with form f as above, for any non-square rational number
d there is a twist fd of f by the quadratic character corresponding to the quadratic
extension K = Q(

√
d) over Q. This fd is again of the above form and so we can ask

whether fd arises from a rigid Calabi–Yau threefold Xd overQ. This will be the case
whenever X admits a quadratic twist by d in the sense we discuss next.

2 Quadratic Twists of Rigid Calabi–Yau Threefolds

Let X be a rigid Calabi–Yau threefold defined over Q. Suppose that d ∈ Q× is a
squarefree integer, let K := Q(

√
d), and let σ be the non-trivial automorphism of

K/Q. We say that a rigid Calabi–Yau threefold Xd defined over Q is a twist of X by
d if there exist:

• An involution ι of XQ that acts as −1 on H3(X̄,Q�) for some prime �.

• An isomorphism θ : (Xd)K
�→ XK defined over K

such that:
θσ ◦ θ−1 = ι.

Notice that the condition ι = θσ ◦ θ−1 necessarily implies that the involution ι
satisfies ισ = ι, i.e., that ι is defined over Q. Conversely, given an involution ι on
XQ, one can always find the isomorphism θ. One takes the quotient of XK = XQ⊗K
by ι ⊗ σ, checks that it is defined over Q and that it is the twist Xd as above. This
will become clear in the examples below: whenever we can find the appropriate
involution we can also construct a twist.
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Since X is a rigid Calabi–Yau threefold, H3,0(X) is one-dimensional so there is
a unique (up to scalar) holomorphic 3-form Ω on X. The involution ι should act
on Ω non-symplectically, sending it to −Ω. Conversely, since X is rigid we have
h2,1(X) = 0, so if ι sends Ω to−Ω we see that ι acts as−1 on all of H3(X̄,Q�). (Here
the rigidity of X is used in an essential way.)

This is the method that we will primarily employ in the examples below to ensure
this part of the condition on the involution ι.

One could envision relaxing the above definition in the direction of just requiring
the existence of an algebraic correspondence between (Xd)K and XK and still retain
(a somewhat stronger version of) the theorem below. However, in the examples that
we will give, we actually find isomorphisms in all cases and have hence chosen to
work with the above definition.

The principles of proof of the following theorem should be well-known, but we
provide the details because of lack of a precise reference.

Recall that, given a newform f of some weight and a non-square d ∈ Q there
is a twist fd of f by d which is again a newform of the same weight as f (but
potentially at another level) and whose attached �-adic Galois representation (for
some prime � and hence for all primes �) is isomorphic to the �-adic representation
attached to f twisted by the quadratic character χ corresponding to K/Q. If the
Fourier coefficients of f and fd are an and bn, respectively, we have the relation
bp = χ(p)ap for almost all primes p. In particular, since χ is quadratic, if f has
coefficients in Z then so does fd .

Theorem 1. In the above setting, suppose that the newform (of weight 4) attached to
X is f . Then, if Xd is a twist by d of X the newform attached to Xd is fd, the twist of f
by the Dirichlet character χ corresponding to the quadratic extension K = Q(

√
d)

of Q.
If we keep all hypotheses above except possibly that ι acts as −1 on H3(X̄,Q�),

we can still deduce that the newform attached to Xd is either f or fd.

Proof. Fix a prime number �, and consider the �-adic Galois representations ρ and
ρd attached to X and Xd, respectively: these are given by the action of GQ =Gal(Q/Q)
on the two-dimensionalQ�-vector spaces V := H3(X̄,Q�) and Vd := H3(X̄d,Q�), re-
spectively.

Now, the newform f attached to X is determined uniquely by the requirement
that its attached �-adic representation be isomorphic to ρ. Similarly, the newform at-
tached to Xd is determined by the requirement that its attached �-adic representation
be isomorphic to ρd.

Since the �-adic representation attached to fd is isomorphic to the twist by χ of
the one attached to f , we see that what we have to prove boils down to:

ρd � ρ⊗ χ.

Put N := GK = Gal(Q/K) so that N is a normal subgroup of GQ. The existence
of the isomorphism θ : (Xd)/K � X/K defined over K translates into the existence
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of a Q�-linear isomorphism Vd → V commuting with the action of GK . That is, in
matrix terms we have an invertible matrix A with:

ρ(n)A = Aρd(n) for all n ∈ N.

In matrix terms the conjugate isomorphism θσ of Vd onto V is then given by the
matrix

ρ(σ)Aρd(σ)−1;

notice that we have here viewed σ as an element of GQ via choice of a representative;
the expression ρ(σ)Aρd(σ)−1 does not depend on this choice.

If now ι acts as −1 on H3(X̄,Q�) we can deduce that the matrix

ρ(σ)Aρd(σ)−1A−1

is a non-trivial involution.

Define the representation ρ′ of GQ by ρ′ := A−1ρA so that ρ′(n) = ρd(n) for
n ∈ N. Then, for arbitrary g ∈ GQ and n ∈ N we have

ρd(g)ρ′(n)ρd(g)−1 = ρd(g)ρd(n)ρd(g)−1

= ρd(gng−1) = ρ′(gng−1) = ρ′(g)ρ′(n)ρ′(g)−1

so that
ρ′(g)−1ρd(g)ρ′(n) = ρ′(n)ρ′(g)−1ρd(g)

i.e., for any g ∈ GQ the matrix ρ′(g)−1ρd(g) commutes with all matrices ρ′(n), n ∈ N.
Now, suppose first that ρ (and hence ρ′) is absolutely irreducible when restricted

to N. In that case we deduce that ρ′(g)−1ρd(g) is a scalar matrix, say with diagonal
entry μ(g). We have μ(n) = 1 for n ∈ N and see that g �→ μ(g) is in fact a character
of GQ factoring through N = GK . So, either μ = 1 or μ = χ.

If we had μ = 1 we would have A−1ρ(g)A = ρ′(g) = ρd(g) for all g ∈ GQ and so
in particular the matrix

ρ(σ)Aρd(σ)−1A−1

would be trivial. As we noted above, this can not happen if ι acts as−1 on H3(X̄,Q�).
Hence, in that case we must have μ = χ and so ρd = ρ′ ⊗ χ � ρ⊗ χ, as desired.

Suppose now that ρ is not absolutely irreducible when restricted to GK . The same
is then true of ρ′ and ρd. In this case it is known, cf. (4.4), (4.5) of [15], that ρ′ is
induced from the �-adic representation ψ attached to a Grössencharacter over K:
ρ′ = IndK/Q(ψ), and ρ′|GK

splits up as the sum of the two characters ψ and ψσ. Notice
that IndK/Q(ψ) = IndK/Q(ψσ). Since ρ′ and ρd have the same restriction to GK we
may then conclude that in fact ρ′ = ρd as representations of GQ, and hence that the
newform attached to Xd is f . Furthermore, the matrix ρ(σ)Aρd(σ)−1A−1 must then
be trivial, and so we see that this case in fact does not materialize if ι acts as −1 on
H3(X̄,Q�).

Remark 1. What we have proved, in fact, is that if ι is nontrivial the Galois repre-
sentation on the middle cohomology of Xd is isomorphic to the tensor product of
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the representation on the middle cohomology of X and the one-dimensional Galois
representation corresponding to K = Q(

√
d). For rigid Calabi–Yau manifolds, we

know these representations correspond to modular forms, but the question can, of
course, be asked without knowing anything about modularity. We are grateful to the
referee for pointing this out to us.

2.1 Easy Examples of Twists

The standard, simple example of twisting is of course for an elliptic curve E overQ,
say given by a Weierstrass equation y2 = x3 + ax2 + bx + c. The twisted curve Ed is
then given by the equation dy2 = x3+ax2+bx+c with the isomorphism θ : Ed → E
defined over K = Q(

√
d) by θ(x, y) = (x,

√
dy). The corresponding involution ι is

(x, y) �→ (x,−y). It is clear that ι sends the holomorphic 1-form Ω =
dx

y
to −Ω.

For a number of rigid Calabi–Yau threefolds over Q we can display twists by
essentially the same method: Consider for examples the various cases of double
octic Calabi–Yau threefolds over Q (see [12] for instance for a good overview).
They are defined as hypersurfaces of the form

y2 = f8(x1, x2, x3, x4)

where f8 is a degree 8 homogeneous polynomial. As in the case of elliptic curves,
we have an obvious twist given by

dy2 = f8(x1, x2, x3, x4).

The corresponding involution is of course again given by y �→ −y. Again it is
clear that ι sends the holomorphic 3-form

Ω =

∑4
i=1(−1)ixi dx1 ∧ · · · ∧̂dxi ∧ · · · ∧ dx4

y

to −Ω.
This is also completely analogous to the case certain modular double sextic K3

surfaces, see [13]. These have form

w2 = f6(x, y, z)

where f6 is a projective smooth curve of degree 6. As above, we get a twist of this
surface (in the sense analogous to Theorem 1) via the twisted equation

dw2 = f6(x, y, z)
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for a non-square rational number d. The involution is again given by w �→ −w. The
holomorphic 2-form

Ω =
z dx ∧ dy− x dy ∧ dz + y dx ∧ dz

w

is sent by ι to −Ω.

2.2 Self-fiber Products of Rational Elliptic Surfaces
with Section and Their Twists

Slightly more complicated examples arise in connection with the rigid Calabi–Yau
threefolds studied by H. Verrill in the appendix to [21]: She determined the L-series
via the point counting method for the six isomorphism classes of rigid Calabi–Yau
threefolds constructed as self-fiber products of rational elliptic surfaces with section
by Schoen [17]. Along the way, she discussed twists by quadratic characters.

These six rigid Calabi–Yau threefolds over Q are defined as follows: Start with
semi-stable families of elliptic curves π : Y → P1, i.e., Y is a smooth surface and
the singular fibers have type Im. Beauville [1] gave a complete list of these families.
These are realized as the resolutions of singular surfaces Ȳ ⊂ P2 × P1 given by the
following equations:

# Equation for Ȳ
I (x3 + y3 + z3)μ = λxyz
II x(x2 + z2 + 2zy)μ = λ(x2 − y2)z
III x(x− z)(y− z)μ = λ(x− y)yz
IV (x + y + z)(xy + yz + zx)μ = λxyz
V (x + y)(xy− z2)μ = λxyz
VI (x2y + y2z + z2 x)μ = λxyz

The fibration π̄ : Ȳ → P1 is given by projecting to P1, and Y is obtained by
resolving Ȳ . Now take the self-fiber product Y ×P1 Y . Schoen [17] shows that a
small resolution exists and that the resulting smooth variety X is a rigid Calabi–Yau
threefold defined overQ. Thus, in each case there is a newform of weight 4 attached
to f . In each case, the form was identified by Verrill via determination of the L-series
of X (point counting.) Here is the table of newforms from Verrill.

# Newform Modular group Level
I η(q3)8 Γ(3) 9
II η(q2)4η(q4)4 Γ1(4) ∩ Γ(2) 8
III η(q)4η(q5)4 Γ1(5) 5
IV η(q)2η(q2)2η(q3)2η(q6)2 Γ1(6) 6
V η(q4)16η(q8)−4η(q2)−4 Γ0(8) ∩ Γ1(4) 16
VI η(q3)8 Γ0(9) ∩ Γ1(3) 9
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In each case, one can display a twist Xd of X so that Xd corresponds to twisting the
newform by the quadratic character belonging to Q(

√
d)/Q. Consider for instance

type V above. Given a non-square d ∈ Q× let Xd be the variety arising from the
equation

(x + y)(xy− dz2)μ = λxyz

by a process analogous to the one leading to X above.
Then we have an isomorphism θ : Xd → X defined over Q(

√
d) and given by

((x : y : z), (μ : λ)) �→ ((
√

dx :
√

dy : z), (μ :
√

dλ)).

In the setup of Theorem 1, the involution ι is given by

ι((x : y : z), (μ : λ)) = ((−x : −y : z), (μ : −λ)).

That Xd is a genuine twist of X, i.e., that the attached newform is fd rather than
f can be ascertained via point counting, cf. appendix in [21].

The other examples can be dealt with in similar fashions.

2.3 The Schoen Quintic and Its Quadratic Twists

As a more interesting test case, we consider the Schoen quintic

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = 5x0x1x2x3x4.

We write

f = f (x0, x1, x2, x3, x4) = x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5x0x1x2x3 x4 = 0.

This is a singular threefold with 125 nodes (ordinary double points) as only sin-
gularities, and a small resolution of singularities produces a rigid Calabi–Yau three-
fold X that is known, cf. [16], to be associated to a newform of weight 4 and level
25 (the modular form 25k4A1); see also [12], Sect. 3.1.

We seek an involution ι of X that acts on H3,0(X) as multiplication by −1. Since
H3,0(X) is generated by a unique holomorphic 3-form Ω (up to scalar), ι should send
Ω to −Ω.

To determine the action of ι on Ω we can use either of the following two argu-
ments:

According to Cox and Katz [2], especially Sect. 2.3 and the formula (2.7) therein,
Ω can be computed on the smooth part as

Ω = Res(
ω

f
)
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where

ω =
4∑

i=0

(−1)ixi dx0 · · · ∧ d̂xi ∧ · · · dx4

and where ‘Res’ denotes Poincaré residue.
Alternatively, it follows from Lemma 1 below that we have a holomorphic 3-form

dx0 ∧ dx1 ∧ dx2

∂ f /∂x3
.

on the Zariski open set where x4 and ∂ f /∂x3 are both non-vanishing, and that this
extends to the Calabi–Yau threefold X.

Can one construct the requisite quadratic twists of the Schoen quintic? In Gouvêa
and Yui [8] it was briefly asserted that quadratic twist indeed exists for the Schoen
quintic. We now discuss details of this claim.

Proposition 1. For any non-square d ∈ Q× the Schoen quintic has a twist by d. The
corresponding involution ι defined over Q is given explicitly on the coordinates by

ι : (x0, x1, x2, x3, x4) �→ (x1, x0, x2, x3, x4),

and sends Ω ∈ H3,0(X) to −Ω.

Proof. First, it is plain that ι sends the above Ω to−Ω (using any of the two descrip-
tions of Ω.)

Put u = x0 + x1 and v = x0 − x1. Then the equation for the quintic equation can
be written as a polynomial in u and v2 as follows:

u5 + 10u3v2 + 5uv4 + 16(x5
2 + x5

3 + x5
4)− 20(u2 − v2)x2x3x4 = 0.

Replacing v by
√

dv, we obtain the following quintic equation:

(∗) u5 + 10du3v2 + 5d2uv4 + 16(x5
2 + x5

3 + x5
4)− 20(u2 − dv2)x2x3 x4 = 0,

and we see how to apply Theorem 1: The equation (∗) gives rise to a rigid
Calabi–Yau threefold Xd defined overQ. Then we have an isomorphism θ : Xd → X
defined over Q(

√
d) and given by

(u, v, x2, x3, x4) �→ (u,
√

dv, x2, x3, x4)

so that θσ ◦ θ−1 is the involution given by (u, v, x2, x3, x4) = (u,−v, x2, x3, x4). This
is precisely the involution ι so the existence of the twist follows from Theorem 1.
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2.4 Explicit Description for a Holomorphic 3-Form for a Complete
Intersection Calabi–Yau Threefold

Before we go into further examples, we give an explicit description of a holomorphic
3-form for a complete intersection Calabi–Yau threefold, by the Griffiths residue
theorem or its generalized version. We are grateful to Bert van Geemen for commu-
nicating to us the following lemma as well as its proof.

Lemma 1. Let Y = V( f1, · · · , fk) be a complete intersection in Pn of dimension d =:
n − k where f1, . . . , fk are homogeneous equations in the homogeneous variables
x0, . . . , xn. Assume that Y is a normal crossings divisor.

Let i0 ∈ {0, . . . , n}, let I ⊆ {0, . . . , n}\{i0} have cardinality k, and consider

DI := det

(
∂ fi
∂x j

)

1≤i≤k
j∈I

Then, on the Zariski open set where xi0 and DI are both non-vanishing, a holo-
morphic d-form is given by

Ω =

∧
j∈{0,...,n}\({i0}∪I) dx j

DI

If additionally Y has a crepant resolution X that is Calabi–Yau variety of dimen-
sion dim X ≤ 3, then Ω extends to all of X.

Let us remind that a “crepant resolution” is one that does not change the canoni-
cal class, cf. [14], Sect. 2.

The Lemma applies to the Schoen quintic as well as the threefolds that we shall
consider below because the singularities involved are ordinary double point in all
cases.

The proof is given below in the appendix.

2.5 Two Rigid Calabi–Yau Threefolds of Werner and van Geemen

Werner and van Geemen [20] constructed a number of examples of rigid Calabi–Yau
threefolds over Q. They are complete intersection Calabi–Yau threefolds.

We consider two of them. First, the rigid Calabi–Yau threefold denoted by Ṽ33:
Let V33 ⊂ P5 be the threefold defined by the system of equations

x3
0 + x3

1 + x3
2 + x3

3 = 0
x3

2 + x3
3 + x3

4 + x3
5 = 0.
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V33 has 9 singularities, and let Ṽ33 be the blow up of V33 along its singular locus
(big resolution). Then Ṽ33 is a rigid Calabi–Yau threefold over Q, and it is modular
with a corresponding newform f of weight 4 on Γ0(9):

f (q) = η(q3)8.

It is shown by Kimura [11] that if E ⊂ P2 is the curve defined by x3
0+ x3

1+ x3
2 = 0,

then there is a dominant rational map from E3 to V33 of degree 3. Consequently, the
L-series coincide. By Lemma 1, a holomorphic 3-form of V33 is given in affine
coordinates by

Ω =
dx2 ∧ dx3 ∧ dx4

x2
1 x2

5

.

Proposition 2. For any non-square d ∈ Q× the rigid Calabi–Yau threefold Ṽ33 has
a twist Ṽ33,d by d. The corresponding involution ι is defined by permuting x2 and x3.

Proof. Put u = x2 + x3, v = x2 − x3. Then the equation for V33 can be expressed in
terms of x0, x1, x4, x5 and u and v2:

4x3
0 + 4x3

1 + u3 + 3uv2 = 0
u3 + 3uv2 + 4x3

4 + 4x3
5 = 0.

Replacing v by
√

dv in this system we obtain a system of equations that gives
rise to Ṽ33,d. Applying Theorem 1 shows that Ṽ33,d is twist by d of Ṽ33 with the
corresponding involution given by v �→ −v, i.e., by (x2, x3) �→ (x3, x2).

The holomorphic 3-form Ω above clearly changes sign when x2 and x3 are inter-
changed.

Secondly, we can consider the rigid Calabi–Yau threefold denoted by Ṽ24: Let
V24 ⊂ P5 be the threefold defined by the equations:

x2
0 + x2

1 + x2
2 − x2

3 − x2
4 − x2

5 = 0
x4

0 + x4
1 + x4

2 − x4
3 − x4

4 − x4
5 = 0.

Then V24 has 122 nodes (ordinary double points) as only singularities. Let Ṽ24 be
the blow up of V24 along its singular locus (small resolution). Then Ṽ24 is a rigid
Calabi–Yau threefold over Q, and it is modular with a corresponding newform g
which is the newform of weight 4 on Γ0(12).

Proposition 3. For any non-square d ∈ Q× the rigid Calabi–Yau threefold Ṽ24 has
a twist Ṽ24,d by d. The corresponding involution ι is given by:

ι : x1 �→ −x1 (or x2 �→ −x2)

and all other coordinates fixed with x0 � 0.

Proof. Replacing x2
1 and x4

1 in the defining equations for Ṽ24 by dx2
1 and d2x4

1, re-
spectively, we get a system of equations that give rise to Ṽ24,d isomorphic to Ṽ24 over
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Q(
√

d). The corresponding involution ι is clearly as stated. A holomorphic 3-form
on V24 is given by

Ω =
dx3 ∧ dx4 ∧ dx5

8x1x3
2 − 8x3

1x2

and under the involution x1 �→ −x1, Ω is mapped to −Ω.

2.6 The Rigid Calabi–Yau Threefold of van Geemen and Nygaard

Another interesting example is the case of the rigid Calabi–Yau threefold of van
Geemen and Nygaard. In [18], van Geemen and Nygaard gave an example of a rigid
Calabi–Yau threefold defined over Q: Let Y ⊂ P7 be the complete intersection of
the four quadrics:

y2
0 = x2

0 + x2
1 + x2

2 + x2
3

y2
1 = x2

0 − x2
1 + x2

2 − x2
3

y2
2 = x2

0 + x2
1 − x2

2 − x2
3

y2
3 = x2

0 − x2
1 − x2

2 + x2
3.

The variety Y has 96 isolated singularities, which are ordinary double points. Let
X be a (small) blow-up of Y along its singular locus. (A recent article of Freitag and
Salvati-Manni [7] asserts that Y admits a resolution that is a projective Calabi–Yau
threefold, X.) Then X is a rigid Calabi–Yau threefold over Q. Its attached newform
is the unique newform of weight 4 on Γ0(8), cf. [18], Theorem 2.4. Notice that there
is a misprint in the equations on p. 56 of that paper: In the second equation x2

3 should
occur with a minus sign as above rather than a plus sign as in [18], p. 56. This is
evident from the theta relations on p. 54 of [18].

Again, we instantly see the existence of twists of X via replacing x2
0 by dx2

0 in the
above equations. Thus:

Proposition 4. For any non-square d ∈ Q× the above rigid Calabi–Yau threefold X
has a twist Xd by d. The corresponding involution ι is given by

x0 �→ −x0

and all other coordinates fixed.

Proof. The only thing we need to check is whether a holomorphic 3-form is send
by ι to −Ω. Let

f0 := y2
0 − (x2

0 + x2
1 + x2

2 + x2
3),

and similarly, define f1, f2 and f3 by the second, third and the fourth equation, re-
spectively. Then Ω may be given by

Ω =
dx0 ∧ dx2 ∧ dx3

D
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where

D = det

(
∂ fi
∂y j

)

0≤i, j≤3

= 24y0y1y2y3.

Thus the involution given by ι : x0 �→ −x0 and fixing all other coordinates will
send Ω to −Ω.

3 Remarks on the Levels of Twists

Suppose that d ∈ Z is squarefree and suppose that f is a newform of level N.
One may ask about the level of the twisted newform fd. Viewed from the Galois
representation side, this amounts to asking for the conductor of ρ⊗ χ where ρ has
conductor N and χ is a (quadratic) character of conductor D, say (so D divides 4d
in the above setup).

As is well-known, the answer is ND2 if (N, D) = 1. (This can be proved either via
basic theory of conductors, or, alternatively, more directly via the theory of modular
forms.) When (N, D) > 1, however, the question has no simple answer: the level of
the twisted representation will depend heavily on the behavior of the representation
ρ at inertia groups over common prime divisors of N and D. Nevertheless, see [9, 10]
for the cases where ρ has a “small” image.

For the concrete examples of twisting that we have discussed in this paper, a
more modest question can be asked, namely whether the newform that we start
with is “twist minimal” or not, i.e., whether it has the lowest level among all of its
quadratic twists. This question can be easily answered with a little computation.

Let us for example consider the case of the Schoen quintic. By Proposition 5.3
of [16] (and its proof) one has that the attached newform f is of weight 4 on Γ0(25)
given as an explicit linear combination of certain η-products. From this explicit
description of f one computes that the coefficient of q2 in its q-expansion is −84.

On the other hand, there is a unique newform f0 of weight 4 on Γ0(5), namely
f0(z) := η(z)4η(5z)4. We compute that the coefficient of q2 in the q-expansion of f0
is −4.

Since −4 � ±(−84) we can deduce that f0 is not a twist of f and hence that
f is twist minimal. In particular, the unique newform f0 of level 4 is not the form
attached to a twist of the Schoen quintic. Is it attached to any Calabi–Yau threefold?

4 Final Remarks

4.1 An Explicit Unresolved Case

As we implied in the introduction, the main contribution of this paper is to put fo-
cus on the question whether any rigid Calabi–Yau threefold over Q has a twist by d
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for any non-square d ∈ Q. In contrast with the classical situation involving elliptic
curves, the question for rigid Calabi–Yau threefolds over Q seems genuinely more
difficult. One difference is that one does not know in general the automorphism
group of a rigid Calabi–Yau threefold overQ. Another point is the poor understand-
ing of the conductor of a rigid Calabi–Yau threefold over Q, i.e., the level of its
associated newform.

For many other cases than the ones we have considered here, the existence of
quadratic twists of a given Calabi–Yau threefold over Q can be shown along the
same lines as above, i.e., inspection of the defining equation(s) combined with an ap-
plication of Theorem 1. For instance, one can try to show the existence of quadratic
twists for many rigid Calabi–Yau threefolds over Q discussed in Meyer [12].

However, in some cases the question does not seem as easy. For instance, does
the rigid Calabi–Yau threefold of Hirzebruch (Theorem 5.11 in Yui [21]) admit
quadratic twists? Let X0 be the quintic threefold defined over Q by the equation
F(x, y)− F(u, w) = 0 where

F(x, y) =

(

x +
1

2

) (

y4 − y2(2x2 − 2x + 1) +
1

5
(x2 + x− 1)2

)

.

Then X0 has 126 nodes (ordinary double points) as only singularities. Let X be
the blow up of X0 along its singular locus. Then X is a rigid Calabi–Yau threefold de-
fined overQwith the Euler characteristic 306. The map sending y to−y gives rise to
an involution on X and this raises the obvious question of whether this induces a non-
trivial involution on H3 so that we get a quadratic twist of X by replacing y2 by dy2.

4.2 The Question About Existence of Geometric Twists

Does there exist a rigid Calabi–Yau threefold X defined over Q and a non-square
rational d such that X does not have a quadratic twist Xd by d?

Perhaps, in order to approach this question, one needs to loosen the definition
of “quadratic twist by d” so that the existence of Xd becomes equivalent to (rather
than just implying) the existence of a rigid Calabi–Yau threefold over Q whose
attached �-adic Galois representation (for some prime �) is the twist by the quadratic
character ofQ(

√
d)/Q of the �-adic representation attached to the original threefold.

Maybe this is possible by considering, more generally, algebraic correspondences
rather than isomorphisms in the setting of Theorem 1.

Calabi–Yau threefolds, even rigid ones, in general, may not have involutions;
even when they do, it might be rather difficult to find one. So geometric realization
of modular forms of weight 4 on some Γ0(N) with integral Fourier coefficients along
our proposed approach may in fact not be overly promising. But this remark once
again raises the question of when the kind of twisting that we have discussed in this
paper is possible.
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4.3 The Fixed Point Set of the Involution ι

We should include here a description of the fixed point set of the involution ι acting
on a rigid Calabi–Yau threefold (though we did not make use of it in the examples.)
The following observation is due to B. van Geemen.

Let X be a Calabi–Yau threefold overQ. Let ι be an involution acting on X. Then
the fixed point set of ι on X is determined as follows.

Suppose that p is a fixed point of ι, then in suitable local coordinates zi, i = 1, 2, 3,
zi(p) = 0, and

ι(z1, z2, z3) = (e1z1, e2z2, e3z3) where ei = ±1,

and the dimension of the fixed point set is thus the number of ei’s which are equal
to +1 (so if ι � 1, then at least one ei must be −1.)

If Ω is the nowhere vanishing holomorphic 3-form in H3,0(X), then in these co-
ordinates,

Ω = f (z1, z2, z3)dz1 ∧ dz2 ∧ dz3 and f (0, 0, 0) � 0.

But f (0, 0, 0) � 0 forces that

f (e1z1, e2z2, e3z3) = + f (z1, z2, z3),

and hence
ι∗Ω = e1e2e3Ω.

From this we see that if the fixed point locus consists of isolated points and
divisors, then all or exactly one of the ei are −1, else two of the ei = +1 and the
one−1.

Appendix

Proof (Proof of Lemma 1). Permuting variables if necessary we may, and will, as-
sume i0 = 0 and I = {1, . . . , k}. We put D := DI with this particular I.

Let us first recall some general facts about the Griffiths residue map: Suppose
that V is a smooth projective variety of dimension n and that W is a smooth codi-
mension 1 subvariety, or, more generally, a normal crossings divisor. The Griffiths
residue map (see for instance the proof of Proposition 8.32 in [19]) is a surjective
homomorphism

Res : Ωn
V (log W) → Ωn−1

W

defined as follows: If (U, (z1, . . . , zn)) is a complex chart of V such that W is given
locally by the equation z1 = 0 then Ωn

V (log W)|U is the free sheaf of OU -modules
generated by

α :=
dz1

z1
∧ dz2 ∧ . . .∧ dzn,
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and Res is then defined locally by

Res(gα) := (gdz2 ∧ . . .∧ dzn)U∩W .

Notice that (U ∩W, (z1, . . . , zn−1)U) is a complex chart of W.
Now, for the proof of the Lemma, let us first consider the case k = 1 where we

specialize the above to the situation V = Pn and W = Y the hypersurface given by
the equation f1 = 0. Consider the open set U0 where x0 � 0, let zi := xi/x0 on U0,
and let F := f1/xt

0 where t is the degree of f1. Then ωn := dz1 ∧ . . . ∧ dzn is a
generator of Ωn

U0
.

The open subset U ′
0 of U0 where ∂F/∂z1 � 0 coincides with the open subset

where ∂ f1/∂x1 � 0. On U ′
0 we have local coordinates F, z2, . . . , zn. Since

dF =
n∑

i=1

(∂F/∂zi)dzi

we find

dF ∧ dz2 ∧ . . .∧ dzn =

(
∂F

∂z1

)

ωn

so that

Res(
ωn

F
)|U′0 = Res(

dF ∧ dz2 ∧ . . . ∧ dzn

F
(

∂F
∂z1

) )|U′0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

dz2 ∧ . . .∧ dzn
(

∂F
∂z1

)

⎞
⎟⎟⎟⎟⎟⎟⎠

|U′0

which coincides up to a power of x0 with

dx2 ∧ . . .∧ dxn
(

∂ f1
∂x1

)

on U ′
0.

Since the residue is holomorphic on all of Y, this differential form on U ′
0 will

extend holomorphically to all of Y.

For the general case, one can argue inductively with respect to k: We see Y as
the end of a chain Y := Yk ⊆ . . . ⊆ Y1 ⊆ Pn where each Yi is a codimension 1
subvariety of the Yi−1 defined by the equation fi = 0. Dividing by suitable powers
of x0 to define Fi from fi as above and retaining local coordinates zi := xi/x0 for
i > 0, the conclusion is now that we get a holomorphic 3-form on U0 (where x0 � 0)
by taking the residue of the form ωn/(F1 · · ·Fk).

If we define D := det
(

∂Fi
∂z j

)

1≤i, j≤k
then

dF1 ∧ . . . dFk ∧ dzk+1 ∧ . . . ∧ dzn = D · dz1 ∧ . . .∧ dzn

as dF j =
∑n

i=1(∂F j/∂zi)dzi, and by the definition of the determinant and alternating
property of wedge products. Redefining U ′

0 as the open subset of U0 where D � 0
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then U ′
0 coincides with the open subset of U0 where D � 0 as D differs from D by

a power of x0.
Thus, on U ′

0 we can compute the above residue:

Res(
ωn

F1 · · ·Fk
)|U′0 = Res(

dF1 ∧ . . . dFk ∧ dzk+1 ∧ . . .∧ dzn

F1 · · · FkD
)|U′0

=

(
dzk+1 ∧ . . . ∧ dzn

D

)

|U′0

which coincides with
dxk+1 ∧ . . . dxn

D

up to a power of x0 on U ′
0.

Again this form extends to all of Y for the same reasons as in the case k = 1.

Now suppose that Y has a crepant resolution X that is Calabi–Yau variety of
dimension dim X ≤ 3. There is then a surjective map Ω3

X → Ω3
Y . Hence the holo-

morphic 3-form on Y that we constructed above on Y extends to a holomorphic
3-form on X.
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Let X be a Calabi–Yau threefold, in the weak sense that the canonical sheaf ωX is
trivial. The aim of Donaldson–Thomas theory is to make sense of “counting” the
number of stable sheaves on X.

This text consists of two parts: in the first part, Sect. 1, we give an informal and
somewhat simplified introduction to the foundations for Donaldson–Thomas invari-
ants, following Behrend–Fantechi [2, 3], Li–Tian [12], Siebert [17], Thomas [19],
Huybrechts–Thomas [7], Behrend [1], and Joyce–Song [8]. We put some emphasis
on the possibility of having nontrivial H1(OX), so that line bundles may deform, as
we have the abelian situation in mind: in the second part, Sect. 2, we discuss recent
work by the author [5], where we modify the standard setup surveyed in the first
part, to obtain nontrivial Donaldson–Thomas invariants for abelian threefolds X.
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1 Virtual Counts

We work over C for simplicity. Fix a polarization H on the Calabi–Yau threefold X,
and let M denote the Simpson moduli space [6, 18] of H-stable coherent sheaves on
X, with fixed Chern character ch ∈⊕

p H2p(X,Q). We assume that M is compact,
for instance by choosing the Chern classes such that strictly semistable sheaves are
excluded for numerical reasons. For simplicity we shall also assume that there is a
universal family, denoted F , on X × M.

The virtual dimension is the guess at dim M one obtains from deformation theory;
at any point p ∈ M it is

dvir = dim Ext1(Fp, Fp)
︸�����������︷︷�����������︸

tangents

− dim Ext2(Fp, Fp)
︸�����������︷︷�����������︸

obstructions

= 0

by Serre duality. Our aim is to “count M”, even if the prediction fails, so that M
has positive dimension. The number arrived at is the Donaldson–Thomas invariant
DT(M).

1.1 Deformation Invariance

Here is a thought model: if M fails to be finite, suppose we can deform X to a new
Calabi–Yau threefold X′ such that the corresponding moduli space M′ of sheaves on
X′ is finite. Then we want to declare that M should have had the same number of
points as M′, but for some reason M came out oversized. So we define the virtual
count DT(M) as the number of points in M′. Of course we ask whether this count
is independent of the chosen deformation and, if it is, whether it can be phrased
intrinsically on M. The answer is affirmative, and this intrinsically defined invariant
is the Donaldson–Thomas invariant.

This presentation is misleading in that we rarely can find a finite M′, but it moti-
vates the following demands: the virtual count should be such that

• If M is finite and reduced, then DT(M) is its number of points.
• DT(Mt) is constant in (smooth) families Xt.

Note that the topological Euler characteristic does specialize to the number of points
when M is finite and reduced, but it is certainly not invariant under deformation of
X. We return to Euler characteristics in Sect. 1.4.

1.2 Virtual Fundamental Class

The Donaldson–Thomas invariant is defined as the degree of the virtual fundamental
class [M]vir, which is a Chow class on M of dimension dvir = 0. It is in some sense
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a characteristic class attached to an obstruction theory on M. The same construction
underlies Gromov–Witten invariants, where M is instead a moduli space for stable
maps. This machinery was first developed by Li–Tian [12]; our presentation follows
Behrend–Fantechi [2], and is also influenced by Siebert [17].

Here is a toy model (cf. [19, Sect. 3]), which serves as a guide for the actual
construction. Suppose the moduli space comes out naturally as the zero locus M =
Z(s) of a section s ∈ Γ(V, E) of a vector bundle on a smooth variety V . Then the
expected dimension of M is

dvir = dim V − rkE

and if this is indeed the dimension of M, then its fundamental class is ctop(E). But in
any case, there is the localized top Chern class Z(s) [4, Sect. 14.1], which is a degree
dvir class in the Chow group of M. This should be our [M]vir.

The section s embeds M into E; recall that deformation to the normal cone in
this context [4, Remark 5.1.1] says that as λ →∞, the locus λs(M) ⊂ E becomes
the normal cone CM/V ⊂ E|M . The localized top Chern class Z(s) is the (refined)
intersection of CM/V with the zero section of E|M . Thus we can forget about V: all
we need to be able to write down our toy virtual fundamental class [M]vir = Z(s)
is a cone (CM/V ) in a vector bundle ( E|M) on M. It turns out that the normal cone
CM/V , or at least an essential part of it, is in some sense intrinsic to M, whereas an
embedding into a vector bundle is a (perfect) obstruction theory on M.

Now return to the actual moduli space M: choose an embedding M ⊂ V into a
smooth variety V (our M is projective, so we may take V = Pn). Let I ⊂ OV be the
ideal of the embedding. The natural map

LM : I /I 2 → ΩV |M , (1)

considered as a complex with objects in degrees−1 and 0, is the truncated cotangent
complex for M. We define

TV = SpecSymΩV ,

NM/V = SpecSymI /I 2,

CM/V = Spec
⊕

I d/I d+1

(the first two are vector space fibrations, with possibly varying fibre dimensions, and
the last one is a cone fibration) so (1) gives a map

TV |M → NM/V (2)

and there is an embedding CM/V ⊆ NM/V . Now Behrend–Fantechi define stack quo-
tients

NM = [NM/V/ TV |M], CM = [CM/V/ TV |M]
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and prove that they are independent of V . They are the intrinsic normal space and
intrinsic normal cone. The reader not comfortable with stacks can safely view NM

as the map (2) between vector space fibrations, modulo some equivalence relation,
and similarly for CM (this viewpoint is carried further by Siebert [17]). But it is
also useful for intuition to think of them as somewhat weird vector space and cone
fibrations over M. For instance, the fibre of NM over a smooth point p ∈ M is the
trivial vector space together with the stabilizer group TM(p).

So we have the intrinsically defined (stacky) normal cone CM on M, embedded
into NM . But the latter is a (stacky) vector space fibration, which is not necessarily
locally free. So the lacking piece of data is an embedding of NM into a vector bundle.
We enlarge our notion of vector bundles to allow stack quotients E = [E1/E0],
where E0 → E1 is a linear map of vector bundles on M. Ad hoc, we define a map
f : NM ⊂ E to be something induced by a commutative square

TM|V ��

f 0

��

NM/V

f 1

��
E0 �� E1

(3)

and to count as an embedding, the map f 1 should take distinct TM|V -orbits in NM/V

to distinct E0-orbits in E1, i.e. the induced map on cokernels should be a monomor-
phism. Furthermore we require that the induced map on kernels should be an iso-
morphism, so that stabilizer groups in NM and in E agree.

In summary, we want to equip the scheme M with a (stacky) vector bundle E and
an embedding NM ⊂ E of the intrinsic normal space. Then we define the virtual
fundamental class [M]vir as the intersection of the cone CM ⊂ E with the zero
section in E. (This does make sense on stacks [10].)

1.3 Obstruction Theory

Obstruction theory is a systematic answer to the problem of extending a morphism
f : T → M to an infinitesimal thickening T ⊂ T , where the ideal I ⊂ OT of T has
square zero. We may and will assume that T and T are affine. To each such situation,
there is a canonical obstruction class [2, Sect. 4]

ω ∈ Ext1T ( f ∗LM , I )

whose vanishing is equivalent to the existence of a morphism f : T → M extending
f . Moreover, when ω = 0, the set of such extensions f forms in a natural way a
torsor under HomT ( f ∗LM , I ). These statements, if unfamiliar to the reader, may be
taken on trust for the purposes of this text.
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Obstruction theory is connected with the construction of virtual fundamental
classes as follows: diagram (3) is obtained by applying SpecSym(−) to the dual
diagram of coherent sheaves

ΩM|V I /I 2��

E 0

φ0

��

E −1

φ−1

��

��

i.e. a morphism of complexes
φ : E → LM

(to be precise, this happens in the derived category, so quasi-isomorphisms are in-
verted).

Theorem 1 (Behrend–Fantechi [2]). Let E be a complex of locally free sheaves
concentrated in nonpositive degrees and let φ : E → LM be a morphism (in the
derived category). Then the following are equivalent:

(i) For each deformation situation T ⊂ T, f : T → M, there is a morphism
f : T → M extending f if and only if

φ∗(ω) ∈ Ext1T ( f ∗E , I )

vanishes; furthermore when φ∗(ω) = 0, the set of such extensions f forms a
torsor under HomT ( f ∗E , I ).

(ii) The morphism φ induces an isomorphism in degree 0 and an epimorphism in
degree−1.

The condition that f in Diagram (3) induces an isomorphism on kernels and a
monomorphism on cokernels translates precisely to the condition on φ in (ii) in the
theorem. Thus an embedding NM ⊂ E is equivalent to an obstruction theory of a
particular kind:

Definition 1 (Behrend–Fantechi [2]). A perfect obstruction theory on M is a two
term complex of locally free sheaves E together with a morphism φ : E → LM , such
that φ induces an isomorphism in degree 0 and an epimorphism in degree −1.

The point is, of course, that our moduli space M, or rather the subspace M(L ) ⊂
M of sheaves with fixed determinant line bundle L , carries a natural perfect ob-
struction theory. To construct the obstruction theory, we assume the rank r is
nonzero, and consider the trace map

tr : Hom(F , F ) → OX×M

(do this in the derived category, so Hom means derived Hom; if F is locally free
it doesn’t matter, of course). Let FT be the sheaf on T ×X obtained by pulling back
the universal family F along f : T → M(L ). To extend f to T is the same as to
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extend FT to a T -flat family on T × X with constant determinant. The trace map
induces

tri : Exti(FT , FT ⊗OT I ) → Hi(I ).

We will use a subscript 0 on Hom and Exti to indicate the kernels of tr and tri. By
reasonably elementary arguments (see e.g. Thomas [19]), the existence of such an
extension is equivalent to the vanishing of a certain class

ω ∈ Ext20(FT , FT ⊗OT I ). (4)

Moreover, when ω = 0, the set of extensions of FT form a torsor under

Ext10(FT , FT ⊗OT I ). (5)

This elementary obstruction theory can be lifted to a Behrend–Fantechi type theory,
and for this step we will be brief: the diagonal map OX×M → Hom(F , F ) com-
posed with the trace map is multiplication by the rank r, hence there is a splitting

Hom(F , F ) =Hom0(F , F )⊕ OX×M. (6)

There is a natural morphism (essentially the Atiyah class of F [7])

φ : E = (p2∗Hom0(F , F ))∨[−1]→ LM (7)

(again, derived functors), whose restriction to M(L ) is a perfect obstruction theory.
In fact, there are OT -linear isomorphisms

Exti(FT , FT ⊗OT I ) � Exti−1( f ∗E , I )

such that the obstruction class in (4) agrees with the one in Theorem 1 (i), and the
torsor structures are the same [7, Theorem 4.1].

If we used the full Hom instead of the trace free Hom0 in (7), the complex
E would be too big in two ways: firstly, it would not be concentrated in degrees
[−1, 0]; secondly and more seriously, even if we truncate it, it would contain a trivial
summand by (6), causing the virtual fundamental class to be zero (just as, in our toy
model in Sect. 1.2, the top Chern class of a vector bundle with a trivial summand
is zero). This is why we are led to fixing the determinant, as the trace free part of
Hom(F , F ) is precisely what controls the deformation theory for sheaves with
fixed determinant.

Definition 2 (Thomas [19], Huybrechts–Thomas [7]). The Donaldson–Thomas
invariant DT(M(L )) of M(L ) is the degree of the virtual fundamental class
[M(L )]vir associated to the canonical perfect obstruction theory (7).

The Donaldson–Thomas invariant does fulfill our two requirements from Sect. 1.1.
Firstly, if M(L ) happens to be finite and reduced, and somewhat more generally:
finite and a complete intersection, then the truncated cotangent complex is itself
a perfect obstruction theory, and the associated virtual fundamental class is the
usual fundamental class, hence its degree is the length of M(L ) as a finite scheme.
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Secondly, the obstruction theory we have sketched above generalizes to the relative
situation of a moduli space M → S for sheaves on the fibres of a family X → S of
Calabi–Yau threefolds. The relative obstruction theory gives rise to a virtual funda-
mental class on the whole family, which restricts to the fibrewise virtual fundamental
class. Consequently, the degree of the virtual fundamental class is constant among
the fibres.

1.4 Behrend’s Weighted Euler Characteristic

A priori, the Donaldson–Thomas invariant defined above may depend on the choice
of obstruction theory on M(L ). But in fact, the invariant can be rephrased entirely
in terms of the intrinsic geometry of M(L ): the decisive property of the obstruc-
tion theory (7) is that it is not only of virtual dimension 0, but it is symmetric [3,
Definition 1.10]. Roughly speaking, symmetry is a refinement of the property that

Ext1(Fp, Fp) and Ext2(Fp, Fp)

are Serre dual (and so are the trace free versions).
Now, for any scheme Y, Behrend defines an integral invariant

ν : Y → Z
with the properties (among others) that ν(p) only depends on an étale neighbourhood
of p ∈ Y, at smooth points ν = (−1)dimpM

, and ν−1(n) is a constructible subset for all
n ∈ Z.

Theorem 2 (Behrend [1]). If Y is a compact scheme with a perfect symmetric ob-
struction theory, then the degree of the associated virtual fundamental class equals
the ν-weighted Euler characteristic

χ̃(Y) =
∑

n∈Z
nχ(ν−1(n)).

The theorem has at least three important consequences: Firstly, as promised,
the Donaldson–Thomas invariant is an intrinsic invariant of M(L ). Secondly, the
weighted Euler characteristic is directly accessible for computation in examples
[3]. But deformation invariance does not follow from the weighted Euler charac-
teristic formulation; this is a consequence of the virtual fundamental class machin-
ery. So, for instance, in the presence of strictly semi-stable sheaves, one might at-
tempt to define generalized Donaldson–Thomas invariants as the weighted Euler
characteristic of either the non-compact moduli space M(L ) or the compactified
moduli space M(L ) for semi-stable sheaves, but these numbers would not be de-
formation invariant. Still, and this is the third consequence, Behrend’s weighted
Euler characteristic is the starting point for Joyce–Song’s [8] correct (i.e. defor-
mation invariant) and somewhat mysterious way of counting strictly semi-stable
sheaves (see also Kontsevich–Soibelman [9]). In a nontrivial manner, these gener-
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alized Donaldson–Thomas invariants take into account all ways of putting together
stable (Jordan–Hölder) factors to form semi-stable sheaves as iterated extensions.
At present, this theory only covers the situation where H1(OX) = 0, so that line
bundles do not deform.

2 Abelian Threefolds

Let X be an abelian threefold. The theory outlined in the first part of this text ap-
plies, but almost always results in vanishing Donaldson–Thomas invariants. We will
investigate why this is so, and how the setup can be adjusted to give nontrivial in-
variants.

The Chern character of the sheaves parametrized by M will be written

ch = r + c1 + γ + χ (8)

where r and χ are integers, c1 is a divisor class and γ is a curve class.

2.1 Determinants

Let us apply Behrend’s weighted Euler characteristic to see, in concrete terms, why
the Donaldson–Thomas invariant of the full moduli space M is zero. Afterwards,
we shall see that restricting to M(L ) does not help.

Assume the rank r is nonzero. Let δ : M → Picc1 (X) � X̂ be the morphism that
sends a sheaf F to its determinant line bundle det(F ). Then δ is surjective, in fact
all fibres M(L ) = δ−1(L ) are isomorphic. This can be seen by letting X̂ = Pic0(X)
act on M by twist:

X̂ × M → M, (ξ, F ) �→ F ⊗Pξ

where we write Pξ for the invertible sheaf corresponding to ξ ∈ X̂. Since

det(F ⊗Pξ) = det(F )⊗Prξ,

it follows that every orbit in M surjects onto Picc1 (X), and every fibre of δ can be
moved to any other fibre by the action of some element ξ ∈ X̂.

The topological Euler characteristic of M thus equals the product of the Euler
characteristics of a fibre M(L ) and the base X̂, but the latter has Euler characteristic
zero. Thus χ(M) = 0. Via a stratification, the same argument works for Behrend’s
weighted Euler characteristic: write M =

⋃
n Mn where Mn ⊂ M is the constructible

subset ν−1(n). Each Mn is invariant under the X̂-action, so for all n, χ(Mn) equals
the product of the Euler characteristic of a fibre Mn ∩ M(L ) and the base X̂, hence
is zero. Thus
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χ̃(M) =
∑

n

nχ(Mn) = 0.

This argument applies to any, not necessarily abelian, X. But in the abelian case,
the weighted Euler characteristic of M(L ) is usually zero, too. We look at an ex-
ample before handling the general situation.

Example 1. Let Hilbn(X) be the Hilbert scheme of finite subschemes Z ⊂ X of
length n. By associating with Z its ideal IZ , we view the Hilbert scheme as a mod-
uli space for rank 1 sheaves. These sheaves may be deformed either by moving Z
around, or by twisting with invertible sheaves in Pic0(X), so the full moduli space is
M = X̂ × Hilbn(X), first projection is the determinant map M → X̂, and

M(OX) = Hilbn(X)

is a moduli space for rank 1 sheaves with fixed determinant OX . Writing
∑

Z for
the sum under the group law on X, of the zero cycle underlying Z, we find a second
fibration:

Hilbn(X) → X, Z �→ ∑
Z (9)

By translation with elements x ∈ X, any fibre can be moved to any other fibre, so
that by repeating the argument above, we conclude that Behrend’s weighted Euler
characteristic of Hilbn(X) is zero.

The “second fibration” (9) on the Hilbert scheme generalizes as follows: let
δ̂ : M → X be the morphism that takes a sheaf F to the determinant of its Fourier–
Mukai transform F̂ (we should warn the reader that in the literature, the notation
F̂ is usually reserved for WIT-sheaves [14, Definition 2.3]; our F may well be
a complex). The invertible sheaf det(F̂ ) will be called the codeterminant of F .
It belongs to some component of Pic(X̂), which we identify with Pic0(X̂) = X. In
general, there is no relation between the determinant and the codeterminant. More
precisely, let X × X̂ act on M by translation and twist:

(X × X̂)× M → M, (x, ξ; F ) �→ T ∗−xF ⊗Pξ

Write φc1 : X → X̂ for the homomorphism x �→ OX(T ∗x D − D), for any divisor
D representing c1. Via Poincaré duality, the curve class γ in (8) corresponds to a

divisor class on X̂ [15, Proposition 1.17]; we shall write ψγ : X̂ → ̂̂X = X for the
associated homomorphism. With this notation, the action of X × X̂ on a fixed sheaf
F ∈ M, composed with the determinant/codeterminant (̂δ, δ) : M → X× X̂ is easily
computed [5, Proposition 2.2]: it is

(
χ −ψγ

−φc1 r

)

∈ End(X × X̂). (10)

Thus the condition that the rank r is nonzero, that we used to ensure that δ was
a fibration, is now replaced by the condition that this matrix is an isogeny. Then
X × X̂-orbits in M surjects onto X × X̂ via (̂δ, δ), all fibres are isomorphic and the
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weighted Euler characteristic is zero. Fixing just one determinant does not help: we
need to fix both to obtain a nontrivial invariant.

Our object is thus the fibre M(L ′, L ) ⊂ M of (̂δ, δ), parametrizing sheaves with
determinant L and codeterminant L ′. Examples indicate that its weighted Euler
characteristic is nonzero in general, so there are no further fibrations, which is a
good thing, since we have run out of group actions on M.

Proposition 1. Suppose X has Picard number 1. Then the matrix (10) is an isogeny
if and only if

3rχ � c1γ.

See [5, Lemma 2.3] for a statement without the Picard number restriction, and
proof.

The proposition shows that our isogeny condition is satisfied for almost all
choices of Chern classes. If the condition does fail, as it does for instance for rank
2 vector bundles F with c1(F ) = 0, we may replace F with F (H) and try again.
One can show [5, Proposition 3.5] that by such tricks (to be made precise in 2.2),
the inequality 3rχ � c1γ can always be forced to hold, with the sole exception
of Mukai’s semi-homogeneous sheaves, whose moduli spaces are fully understood
anyway [13].

This observation points to an arbitrariness in the definition of the determi-
nant/codeterminant map, which changes when F is replaced by F (H), since the
Fourier–Mukai transform does not preserve tensor product. We will fix this arbi-
trariness in Sect. 2.2. This can be contrasted with the situation for abelian surfaces
[20], where the determinant/codeterminant pair is just the Albanese map of the mod-
uli space M, and hence is entirely intrinsic. For abelian threefolds, the moduli space
M is not, in general, fibred over its Albanese:

Example 2. Let C ⊂ X be a non hyperelliptic genus 3 curve, embedded into its
Jacobian by an Abel–Jacobi map. Any deformation of C is a translate Tx(C) by some
point x ∈ X, and in fact the Hilbert scheme component containing C is isomorphic to
X [11]. Now consider the Hilbert scheme component H parametrizing translations
of C together with a possibly embedded point. As in Example 1, H can be viewed
as a moduli space for rank 1 sheaves with fixed determinant. There is a map

H → X2

sending a point Tx(C)∪y in H to the pair (x, y). This is clearly the Albanese map, and
it is generically bijective. However, the fibre over a pair (x, y) for which y ∈ Tx(C),
consists of all embedded points in Tx(C) supported at y, hence is a P1. In particular,
the Albanese fibres of H are not isomorphic.

2.2 Translation and Twist

We assume that the matrix (10) is an isogeny throughout this section.
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The fibres M(L ′, L ) of (̂δ, δ) intersect each X× X̂-orbit in finitely many points.
The canonical object lurking here is the quotient space

K = M/X × X̂ = M(L ′, L )/G

(which we consider as a Deligne–Mumford stack), where G is the (finite) kernel
of the isogeny (10). The point is that the “tricks” we alluded to above, such as
twisting with a divisor, preserves the X× X̂-action on M, so that K does not change.
More generally, suppose Y is a second abelian threefold and there exists a derived
equivalence F : D(X) ∼→ D(Y). Then we may equally well consider M as a moduli
space for sheaves F on X or as a moduli space for F(F ) on Y (this may be a
complex, and not a sheaf, and for this reason we work with complexes from the start
in [5]). Orlov shows that there is an induced isomorphism X × X̂ � Y × Ŷ such that
the two actions on M are compatible [16, Corollary 2.13], so M/X×X̂ � M/Y×Ŷ. In
this sense, the space K is invariant under derived equivalence, although M(L ′, L )
is not.

Although weighted Euler characteristics of M(L ′, L ) and K make sense, it is
not clear that they are of interest (in particular, whether they are invariant under
deformation of X) unless there is an underlying perfect obstruction theory.

Theorem 3. There is a perfect symmetric obstruction theory on M(L ′, L ).

Proof. We sketch the main points; the details can be found in [5]. Consider the
problem of extending f : T → M(L ′, L ) over T ⊂ T . The trace map on X̂ × M,

t̂r : Hom(F̂ , F̂ ) → OX̂×M

together with the Fourier–Mukai-induced isomorphism

p2∗Hom(F , F ) � p2∗Hom(F̂ , F̂ ) (11)

(in the derived category) give new trace maps

t̂r
i
: Exti(FT , FT ⊗OT I ) → Hi(I ).

Switching back and forth between X and X̂ we thus see that the obstruction class ω

for extending f to T is a class in ker(tr2)∩ ker(t̂r
2
), and when ω = 0, the set of such

extensions, with fixed determinant and codeterminant, is a torsor under ker(tr1) ∩
ker(t̂r

1
).

Again the setup can be lifted to a Behrend–Fantechi obstruction theory: the two
trace maps taken together and pushed down to M

p2∗Hom(F , F ) → p2∗OX̂×M ⊕ p2∗OX×M (12)

(derived functors) is a split epimorphism in degrees 1 and 2: in fact, the two diagonal
maps
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OX×M → Hom(F , F )

OX̂×M → Hom(F̂ , F̂ )

give, via (11), a map

p2∗OX̂×M ⊕ p2∗OX×M → p2∗Hom(F , F ). (13)

The composition of (13) with (12) realizes the splitting: in degree 1, it is an en-
domorphism of H1(OX̂) ⊕ H1(OX), which is nothing but the derivative of the
isogeny (10) at (0, 0) ∈ X × X̂, hence an isomorphism. By duality, the degree 2
part is an isomorphism, too. Thus, writing τ[1,2] for the truncation of a complex to
degrees [1, 2], we have produced a splitting

τ[1,2] p2∗Hom(F , F ) = E ⊕ τ[1,2](p2∗OX̂×M ⊕ p2∗OX×M
)
. (14)

The morphism (7) induces
φ : E ∨[−1] → LM

whose restriction to M(L ′, L ) is a perfect symmetric (via duality) obstruction the-
ory.

The two trivial summands in (14) shows, in terms of the virtual fundamental class
machinery, why it is not enough to fix one determinant, as this kills just one of the
summands.

Instead of worrying about whether the obstruction theory on M(L ′, L ) descends
to K, we define the Donaldson–Thomas invariant directly:

Definition 3. Assume (10) is an isogeny, and let G be its (finite) kernel. Then the
Donaldson–Thomas invariant of K is

DT(K) =
1

|G| deg[M(L ′, L )]vir.

Theorem 3 generalizes to the relative situation, so that deformation invariance
for the virtual fundamental class of M(L ′, L ) holds. Since the kernel G of the
isogeny (10) has constant order in families, the Donaldson–Thomas invariant DT(K)
is invariant under deformations of X. Moreover, it agrees with Behrend’s weighted
Euler characteristic, hence is an intrinsic invariant of K.

Example 3. We return to the Hilbert scheme of points in Example 1. The summation
map Hilbn(X) → X agrees, up to sign, with the codeterminant map (use that, modulo
short exact sequences, OZ is equivalent to a sum of skyscrapers k(z), with z ∈ Z
repeated according to multiplicity, and k̂(z) =Pz).

The moduli space M(OX̂ , OX) for ideals with trivial determinant and codetermi-
nant, is thus nothing but the locus

Kn(X) = {Z ∈ Hilbn(X)
∑

Z = 0} .
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(For abelian surfaces X, this locus Kn(X) is the generalized Kummer variety of
Beauville.) The kernel G of the isogeny (10) is in this case the group of n-torsion
points Xn in X × 0 ⊂ X × X̂, so

K = Kn(X)/Xn.

Behrend–Fantechi [3] found that Behrend’s weighted Euler characteristic of the
Hilbert scheme of n points on any threefold agrees, up to sign, with the usual Euler
characteristic. Their argument can be adapted to Kn(X), showing that its weighted
Euler characteristic is (−1)n+1χ(Kn(X)), and so

DT (K) =
1

|Xn| χ̃(Kn(X)) =
(−1)n+1

n6
χ(Kn(X)).

See [5, Sect. 4.2] for a conjectural explicit formula for the Euler characteristic of
Kn(X).
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The Segre Cubic and Borcherds Products

Shigeyuki Kondō

Abstract We shall construct a five-dimensional linear system of holomorphic
automorphic forms on a three-dimensional complex ball by applying Borcherds
theory of automorphic forms. We shall show that this linear system gives the dual
map from the Segre cubic threefold to the Igusa quartic threefold.

Key words: Segre cubic threefold, Igusa quartic threefold, Ball quotient, Automor-
phic form
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1 Introduction

The main purpose of this note is to give an application of the theory of automorphic
forms on bounded symmetric domains of type IV due to Borcherds [4, 5]. We con-
sider the Segre cubic threefold X, which is a hypersurface of P4 of degree 3 with ten
nodes. The symmetry groupS6 of degree 6 acts on X as projective transformations.
It is known that the Segre cubic X is isomorphic to the Satake–Baily–Borel compact-
ification of an arithmetic quotient of a three-dimensional complex ball B associated
to a Hermitian form of signature (1, 3) defined over the Eisenstein integers [9–11].
The complex ball B can be embedded into a bounded symmetric domain D of type
IV and of dimension 6. By applying Borcherds’ theory of automorphic forms on
bounded symmetric domains of type IV, we can construct a five-dimensional lin-
ear system of holomorphic automorphic forms of weight 6. We shall show that this
linear system gives the dual map from the Segre cubic X to its dual Igusa quartic
threefold.
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B. van Geemen [15] and B. Hunt [9] observed that both the Segre cubic threefold
and the Igusa quartic threefold are birational to the moduli space of ordered six
points on the projective line. By taking the triple cover of P1 branched along six
points we get a curve of genus 4 with an automorphism of order 3. One can consider
the Segre cubic as a compactification of the moduli space of such curves. On the
other hand, by taking the double cover of P1 branched along 6 points, we get a
hyperelliptic curve of genus 2. The Igusa quartic is the Satake compactification of
an arithmetic quotient of the Siegel space of degree 2 (Igusa [12], page 397). It
is classically known that the dual of the Segre cubic is isomorphic to the Igusa
quartic (Baker [3], Chap. V). We will give an interpretation of this ball quotient as
the moduli space of some K3 surfaces with an automorphism of order 3 which are
obtained from 6 points on the projective line.

We use an idea of Allcock and Freitag [1] to construct a linear system of automor-
phic forms. In [1], they consider a four-dimensional complex ball defined over the
Eisenstein integers and construct a ten-dimensional linear system of automorphic
forms. An arithmetic quotient of the four-dimensional complex ball is birational to
the moduli space of marked cubic surfaces. Our complex ball B appears as a sub-
complex ball of Allcock and Freitag’s one, and hence one can restrict Allcock and
Freitag’s linear system to B. However in this note, instead of using their linear sys-
tem, we apply Borcherds’ theory directly to our situation and get a linear system
on B.

The plan of this note is as follows. In Sect. 1, we recall the Segre cubic X and
some divisors on X. In Sect. 2, we mention the complex ballB, the bounded symmet-
ric domain D and Heegner divisors on them. In Sect. 3, we recall the Weil represen-
tation and calculate its character. In Sect. 4, we shall show that there exist holomor-
phic automorphic forms on the complex ball B of weight 45, 5 with known zeros.
These forms will be used to determine the zeros of a member of a five-dimensional
linear system of automorphic forms on B. In Sect. 5, we construct a five-dimensional
linear system of automorphic forms and show that this linear system gives the dual
map of the Segre cubic.

2 The Segre Cubic Threefold

In this note we consider the variety X called the Segre cubic which is defined by

X :
6∑

i=1

xi = 0,
6∑

i=1

x3
i = 0

in P5. Obviously the symmetric group S6 of degree 6 acts on X projectively. X has
ten nodes which are S6-orbits of (1 : 1 : 1 : −1 : −1 : −1). A linear section of X
given by xi + x j = 0 is the union of three projective planes given by

xi + x j = 0, xk + xl = 0, xm + xn = 0;
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xi + x j = 0, xk + xm = 0, xl + xn = 0;

xi + x j = 0, xk + xn = 0, xl + xm = 0,

respectively, where {i, j, k, l, m, n} = {1, 2, 3, 4, 5, 6}. On the other hand a linear sec-
tion of X given by xi − x j = 0 is an irreducible cubic surface containing four nodes
of X. This irreducible cubic surface with four nodes is projectively unique and is
called the Cayley cubic surface. Thus we have 15 Cayley cubics and 15 planes on
the Segre cubic X. It is known that the dual of X is a quartic threefold Y in P4, called
the Igusa quartic [12]. The dual map d : X → Y is defined on X except at the ten
nodes and is birational. It is given by a linear system of quadrics through ten nodes.
For more details of these facts, we refer the reader to [10], Chap. 3.

3 A Complex Ball Quotient

It is known that the Segre cubic X is isomorphic to the Satake–Baily–Borel compact-
ification of an arithmetic quotient of a three-dimensional complex ball by a certain
arithmetic subgroup ([11], Theorem 1; [10], Chap. 3, 3.2.3). In this section we recall
this fact.

3.1 A Complex Ball

Let

E = Z[ω], ω =
−1 +

√−3

2
be the ring of Eisenstein integers. Consider the Hermitian lattice

Λ = E1,3 = E ⊕ E ⊕ E ⊕ E

with the Hermitian form

h(x, y) = x0ȳ0 − x1ȳ1 − x2ȳ2 − x3ȳ3.

We denote by B the complex ball of dimension 3 defined by

B = {x ∈ P(Λ⊗E C) : h(x, x) > 0}.
Let Γ = Aut(Λ) be an arithmetic subgroup of the unitary group U(3, 1; Q(

√−3))
with respect to the Hermitian form h( , ). Obviously Γ naturally acts on B. Under
the isomorphism

E/
√−3E � F3,
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the Hermitian form h induces a quadratic form q on Λ/
√−3Λ over F3. We define a

subgroup Γ(
√−3) of Γ by

Γ(
√−3) = Ker{Γ −→ O(q)}.

Let L be the real lattice corresponding to Λ with the symmetric bilinear form

〈x, y〉 = h(x, y) + h(y, x).

Then L � A2 ⊕ A2(−1)3 where A2 is a root lattice of rank 2, that is, a positive

definite lattice with Gram matrix

(
2 −1
−1 2

)

and A2(−1) is a negative definite lattice

with Gram matrix

(−2 1
1 −2

)

. The action of ω on Λ induces an isometry ι of L of order

3 without non-zero fixed points. We denote by L∗ the dual of L: L∗ = Hom(L, Z).
Note that A∗2/A2 � F3. Let AL = L∗/L � (F3)4 and let qL : AL → Q/2Z be the
discriminant quadratic form of L defined by qL(x + L) = 〈x, x〉 + 2Z. The form qL

coincides with q, up to scale, under the isomorphism

Λ/
√−3Λ � L∗/L.

We denote by O(L) the orthogonal group of L and by O(qL) the group of au-
tomorphisms of AL preserving qL. Let Õ(L) be the kernel of the natural map
O(L) → O(qL). Then the group Γ is naturally isomorphic to the subgroup O(L, ι)
of O(L) consisting of isometries commuting with ι. Under this isomorphism the
subgroup Γ(

√−3) corresponds to O(L, ι) ∩ Õ(L).
Conversely, first consider the lattice L with an automorphism ι of order 3 without

non-zero fixed points. Then we can consider L as a Z[ω]-module by the action
ω · x = ι(x). The Hermitian form h is given by

h(x, y) =
1

2
{
√−3

3
〈2ι(x) + x, y〉 + 〈x, y〉}.

Define
D = {v ∈ P(L⊗ C) : 〈v, v〉 = 0, 〈v, v̄〉 > 0}.

Then D is a disjoint union of two copies of a bounded symmetric domain of type
IV and of dimension 6. Consider the action of ι on L ⊗ C. Since ι is defined over
Z and has no non-zero fixed vectors, the eigenspaces Vω, Vω̄ with the eigenvalues
ω, ω̄ respectively are isomorphic to C4. Moreover the restriction 〈v, v̄〉 to Vω is a
Hermitian form of signature (1, 3). Note that 〈v, v〉 = 0 for any vector v in Vω or Vω̄

because 〈v, v〉 = 〈ι(v), ι(v)〉 = 〈ωv, ωv〉 or 〈v, v〉 = 〈ω̄v, ω̄v〉. Let i : Λ → Λ⊗Z C =
L ⊗ C be the inclusion map and let p : L ⊗ C → Vω be the projection. For any
ξ ∈ L, write ξ = ξω + ξω̄ as an element in Vω ⊕ Vω̄. Then we can easily see that

h(ξ, ξ) = 〈ξω, ξ̄ω〉.
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Hence the map p ◦ i : Λ → Vω is an isometry which induces an isomorphism from
B to the subdomain

D ∩ P(Vω) = {v ∈ P(Vω) : 〈v, v̄〉 > 0}
of D. Thus the complex ball B can be embedded into D.

3.2 Roots and Reflections

Following to [1], we recall roots and reflections of the Hermitian lattice Λ. A vector
a ∈ Λ is called a short root (resp. long root) if h(a, a) = −1 (resp. h(a, a) = −2).
For a short root or long root a, consider the following isometry ra,ζ of Λ with respect
to h:

ra,ζ : x → x− (1− ζ)
h(a, v)

h(a, a)
a.

If a is a short root and ζ is a primitive third root of unity ω, ra,ω is an isometry of Λ
of order three sending a to ωa. We call ra,ω a trireflection. If a is a short root or long
root, and ζ = −1, then ra,−1 is a reflection in Γ which is an isometry of order two
sending a to −a.

For a short root a in Λ, denote by r the corresponding (−2)-vector in L. Then the
trireflection ra,ω induces an isometry

sr ◦ sι(r) : x → x + 〈x, r〉r + 〈x, ι(r)〉r + 〈x, ι(r)〉ι(r)

of L, where sr : x → x + 〈x, r〉r is the reflection associated to r. On the other hand,
ra,−1 induces an isometry of L:

x → x + 2〈r + 2ι(r)

3
, x〉ι(r) + 2〈2r + ι(r)

3
, x〉r.

For a long root a ∈ Λ, denote by r the corresponding (−4)-vector in L. Then ra,−1

induces an isometry of L:

x → x + 〈r + 2ι(r)

3
, x〉ι(r) + 〈2r + ι(r)

3
, x〉r.

For a ∈ Λ, we denote by ā the image of a in Λ/
√−3Λ. We call the images of

short roots (resp. long roots) in Λ/
√−3Λ the short roots (resp. long roots), too. We

also denote by r̄a,ζ the isometry on Λ/
√−3Λ induced by ra,ζ . Note that if a is a short

root, then ra,ω is contained in Γ(
√−3), that is, r̄a,ω acts trivially on Λ/

√−3Λ. On
the other hand, r̄a,−1 acts on Λ/

√−3Λ as a reflection associated to ā.

Lemma 1. (1) The group Γ acts transitively on the primitive isotropic vectors, on
the short roots and on the long roots, respectively.
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(2) Let a1, a2 be two isotropic vectors, or two short roots, or two long roots. Then
a1 and a2 are equivalent under Γ(

√−3) if and only if their images in Λ/
√−3Λ

coincide.
(3) The number of non-zero isotropic vectors, short roots and long roots in Λ/

√−3Λ
is 20, 30 and 30 respectively.

(4) The map Γ → O(q) is surjective and Γ/Γ(
√−3) � O(q) � S6 × Z/2Z.

Proof. In the case of the Hermitian lattice E1,4, Allcock, Carlson and Toledo proved
the same assertion (1) ([2], Theorems 7.21, 11.13), and Allcock and Freitag ([1],
Proposition 2.1) proved the assertions (2), (3). The same proof works in our case
E1,3. The last assertion is well known. For example, see [6], page 4. $%

3.3 Ball Quotient and Heegner Divisors

We denote a vector α ∈ AL = (F3)4 by α = (x1, x2, x3, x4) where xi ∈ F3 is in the
i-th factor of L∗/L = A∗2/A2⊕ (A2(−1)∗/A2(−1))⊕3. Then an elementary calculation
shows the following:

Lemma 2. The group O(qL) has four orbits Oi (i = 1, . . . , 4) on AL :

O1 = {0}, O2 = {α ∈ AL : α � 0, qL(α) = 0},
O3 = {α ∈ AL : qL(α) = −4/3}, O4 = {α ∈ AL : qL(α) = −2/3}.

We call α ∈ AL a vector of type (00), (0), (1) or (2) if α ∈ O1, O2, O3 or O4 respec-
tively. We can easily see that |O1| = 1, |O2| = 20, |O3| = 30, |O4| = 30, and

O2 = {(±1,±1, 0, 0), (±1, 0,±1, 0), (±1, 0, 0,±1), (0,±1,±1,±1)},
O3 = {(±1, 0, 0, 0), (±1,±1,±1,±1), (0,±1,±1, 0), (0,±1, 0,±1), (0, 0,±1,±1)},
O4 = {(0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1), (±1,±1,±1, 0), (±1,±1, 0,±1),

(±1, 0,±1,±1)}.
Lemma 3. Under the canonical isomorphism Λ/

√−3Λ � AL = L∗/L, the set
of short roots (resp. long roots) in Λ/

√−3Λ corresponds to the set of vectors of
norm −2/3 (resp. vectors of norm −4/3) in AL. Also the set of isotropic vectors in
Λ/
√−3Λ corresponds to the set of isotropic vectors in AL.

Let α be a non-isotropic vector in AL. For a given n ∈ Z, n < 0, we consider
a Heegner divisor Dα,n which is the union of the orthogonal complements r⊥ in
D, where r varies over the vectors in L∗ satisfying 〈r, r〉 = n and r mod L = α.
Obviously r⊥ is a bounded symmetric domain of type IV and of dimension 5. In
the case qL(α) = −2/3 (resp. qL(α) = −4/3) and n = −2/3 (resp. n = −4/3), we
denote Dα,−2/3 (resp. Dα,−4/3) by Dα for simplicity and call it a (−2/3)-Heegner
divisor (resp. (−4/3)-Heegner divisor).

Proposition 1. The Segre cubic X is isomorphic to the Satake–Baily–Borel com-
pactification B̄/Γ(

√−3) of the quotient B/Γ(
√−3) which is, set theoretically, the

union of B/Γ(
√−3) and ten cusps corresponding to ten non-zero isotropic vectors

in AL/{±1}. These ten cusps correspond to ten nodes of the Segre cubic X.
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Proof. The assertion follows from [10], Sect. 3.2. $%
Also, B̄/Γ(

√−3) contains some divisors called Heegner divisors. Let α be a short
root in Λ/

√−3Λ. Let a be a short root in Λ with a mod
√−3Λ = α. We denote by

a⊥ the orthogonal complement of a in B which is a complex ball of dimension 2.
Let

Hα =
⋃

a

a⊥

where a ranges over the set of all short roots satisfying a mod
√−3Λ = α. The

image of Hα in B̄/Γ(
√−3) is denoted by H̄α and is called a (−1)-Heegner di-

visor. There exist 15 (−1)-Heegner divisors H̄α corresponding to 15 short roots
α ∈ (Λ/

√−3Λ)/{±1}, q(α) = −1.
Similarly we can define 15 (−2)-Heegner divisors H̄α corresponding to 15 long

roots α ∈ (Λ/
√−3Λ)/{±1}, q(α) = −2.

Finally we compare the Heegner divisors in D and in B. Let r ∈ L∗ be a
(−2/3)- or (−4/3)-vector. Then both ι(r) and ι2(r) are (−2/3)- or (−4/3)-vectors
and r mod L = ι(r) mod L = ι2(r) mod L. Note that r⊥, ι(r)⊥ and ι2(r)⊥ in D are
different, but their restrictions to B are the same. Thus we have

Lemma 4.
Dα ∩ B = 3Hα

where we identify (−2/3)- (resp. (−4/3)-) vectors in AL and short roots (resp. long
roots) in Λ/

√−3Λ.

3.4 Interpretation via K3 Surfaces

The complex ball quotient B/Γ(
√−3) can be considered as the moduli space of

lattice polarized K3 surfaces. The following is essentially given in [7]. Let N =
U ⊕ E6(−1)⊕ A2(−1)⊕3. Then N can be primitively embedded into the K3 lattice
M = U⊕3 ⊕ E8(−1)⊕2 whose orthogonal complement is isomorphic to L = A2 ⊕
A2(−1)⊕3. Here U is an even lattice with Gram matrix

(
0 1
1 0

)

and Am, Ek are positive

definite root lattices defined by the Cartan matrix of type Am, Ek, and for a lattice
(K, 〈, 〉) we denote by K(−1) the lattice (K,−〈, 〉). In the following we consider N
and L as sublattices of M. The isometry ι of L of order 3 acts trivially on L∗/L and
hence it can be extended to an isometry ι̃ of M acting trivially on N. Let ω ∈ B with
the property ω⊥ ∩ M = N. Let S be a K3 surface and let αS : H2(S , Z) → M be
an isometry satisfying (αS ⊗ C)(ωS ) = ω, where ωS is a holomorphic 2-form on
S . By definition the Picard lattice of S is isomorphic to N. Note that the isometry ι̃
preserves ωS and acts trivially on the Picard lattice. It now follows from the Torelli
type theorem for K3 surface [14] that ι̃ can be represented by an automorphism σ
on S of order 3. Thus an open set of B/Γ(

√−3) is the moduli space of such pairs
(S , σ) of K3 surfaces S with an automorphism σ of order 3.



556 S. Kondō

In the following, we shall show that S is canonically obtained from six points on
P1. Let Q = P1×P1. Let (u0 : u1), (v0 : v1) be homogeneous coordinates of the first
and the second factor of Q. Let p1, . . . , p6 be six distinct points on P1. Consider the
divisors on Q defined by

Li = P1 × {pi} (1 ≤ i ≤ 6), D0 = {0} × P1, D1 = {1} × P1, D∞ = {∞} × P1.

Let Q̃ → Q be the blow-ups of the 18 points on Q which are the intersection of
L1, . . . , L6 and D0, D1, D∞. We denote by the L̃1, . . . , L̃6, D̃0, D̃1 or D̃∞ the strict
transform of L1,. . . , L6, D0, D1 or D∞ respectively. Let π : X̃ → Q̃ be the triple
covering of Q̃ branched along L̃1 + · · · + L̃6 + D̃0 + D̃1 + D̃∞. Then π−1(L̃i) is a
(−1)-curve. Let X̃ → S be the contraction of π−1(L̃i) to the points qi. We can easily
see that S is a K3 surface. The projection from Q to the second factor P1 induces an
elliptic fibration p : S → P1 which has six singular fibers of type IV in the notation
of Kodaira and three sections. Here three components of the singular fiber of type
IV over pi correspond to three exceptional curves over the three intersection points
of Li and D0, D1, D∞ and three sections correspond to D0, D1, D∞. The classes of
components of fibers and a section generate a sublattice of the Picard lattice Pic(S )
isomorphic to U ⊕ A2(−1)⊕6. By adding other two sections, we have a sublattice in
Pic(S ) isomorphic to N = U ⊕ E6(−1)⊕ A2(−1)⊕3. The covering transformation
of S̃ → Q̃ induces an automorphism σ of S of order 3. Note that the set of fixed
points of σ consists of six isolated points q1, . . . , q6 and three sections. Since σ has a
fixed curve as its fixed points, σ∗(ωS ) = ζ3ωS where ωS is a non-zero holomorphic
2-form on S and ζ3 is a primitive cube root of unity. Thus we have a pair (S , σ)
of a K3 surface and an automorphism of order 3. This K3 surface appears as a
degeneration of K3 surfaces associated to a smooth cubic surface given in [7].

Next we consider the case that two points among the 6 points coincide. In this
case, similarly, we have an elliptic K3 surface S ′ with one singular fiber of type
VI∗, four singular fibers of type VI and three sections. The Picard lattice of S ′ is
isomorphic to U⊕E6(−1)2⊕A2(−1) and its transcendental lattice is isomorphic to
A2 ⊕ A2(−1)⊕2. Thus the period domain of K3 surfaces S ′ is a subdomain of B the
orthogonal complement of A2(−1), that is, a (−1)-Heegner divisor. Thus we have

Proposition 2. 15 (−1)-Heegner divisors bijectively correspond to 15 planes on the
Segre cubic X.

Proof. It is known that 15 planes on the Segre cubic correspond to the moduli of 6
points on the projective line in which two points coincide ([10], Proposition 3.2.7).
Hence we have the assertion. $%
Lemma 5. Let H̄α, H̄β be (−1)-Heegner divisors. Then H̄α and H̄β meet along a
line if and only if α and β are orthogonal.

Proof. Note that if α and β are orthogonal, then H̄α∩ H̄β is 1-dimensional, and oth-
erwise H̄α and H̄β meet only at cusps. Thus the assertion follows from the incidence
relation between 15 planes on the Segre cubic. $%

We shall show that 15 (−2)-Heegner divisors correspond to 15 Cayley cubics on
the Segre cubic X (see Lemma 11).
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4 Weil Representation

In this section, we recall a representation of SL(2, Z) on the group ring C[AL] called
the Weil representation. In the following Table 1, for each vector u ∈ AL of given
type, m j is the number of vectors v of the same type with 〈u, v〉 = 2 j/3.

Table 1: A relation of elements in AL

u 00 00 00 00 0 0 0 0 1 1 1 1 2 2 2 2
v 00 0 1 2 00 0 1 2 00 0 1 2 00 0 1 2

m0 1 20 30 30 1 2 12 12 1 8 12 6 1 8 6 12
m1 0 0 0 0 0 9 9 9 0 6 9 12 0 6 12 9
m2 0 0 0 0 0 9 9 9 0 6 9 12 0 6 12 9

Let T =

(
1 1
0 1

)

, S =

(
0 −1
1 0

)

be generators of SL(2, Z). Let ρL be the Weil repre-

sentation of SL(2, Z) on C[AL] defined by:

ρL(T )(eα) = exp(〈α, α〉/2)eα, ρL(S )(eα) =
−1√| AL |

∑

δ

exp(−〈δ, α〉)eδ.

Note that the action of the group O(qL) on C[AL] commutes with ρL. The action ρL

factorizes the action of SL(2, Z/3Z) which is denoted by the same symbol ρL. The
conjugacy classes of SL(2, Z/3Z) consist of ±E, S ,±S T,±S T 2. Let χi (1 ≤ i ≤
7) be the characters of irreducible representations of SL(2, Z/3Z). The following
Table 2 is the character table of SL(2, Z/3Z). Here ω = −1+

√−3
2 and the last line

means the number of elements in a given conjugate class.

Table 2: The character table of SL(2, Z/3Z)

E −E S S T 2 −S T 2 S T −S T
χ1 1 1 1 1 1 1 1
χ2 3 3 −1 0 0 0 0
χ3 1 1 1 ω2 ω2 ω ω
χ4 1 1 1 ω ω ω2 ω2

χ5 2 −2 0 −ω ω ω2 −ω2

χ6 2 −2 0 −1 1 1 −1
χ7 2 −2 0 −ω2 ω2 ω −ω

1 1 6 4 4 4 4

Lemma 6. Let χ be the character of the representation ρL of SL(2, Z/3Z) on
C[AL]. Let χ =

∑
i miχi be the decomposition into irreducible characters. Then

m1 = 1, m2 = 10, m3 = m4 = 5, m5 = 5, m6 = 10, m7 = 5.
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Proof. By definition of ρL and the Table 1, we can easily see that trace(E) = 34,
trace(−E) = 1, trace(S ) = 1, trace(S T 2) = −9, trace(−S T 2) = 1, trace(S T ) = 1,
trace(−S T ) = −9. The assertion now follows from Table 2. $%
Definition 1. Let W be the five-dimensional subspace of C[AL] which is the direct
sum of irreducible representations of SL(2, Z/3Z) with the character χ3 in Lemma 6.

Note that O(qL) naturally acts on W because the actions of O(qL) and ρL com-
mute. In Sect. 6, we associate a five-dimensional space of automorphic forms on B
to W. We remark that there is an another five-dimensional subspace in C[AL] which
is a direct sum of irreducible representations of SL(2, Z/3Z) with the character χ4.
The author does not know whether this subspace corresponds to an interesting linear
system of automorphic forms on B.

5 Borcherds Products

In this section and the next we shall show the existence of some automorphic forms,
called Borcherds products and Gritsenko–Borcherds liftings, on the bounded sym-
metric domain D of type IV. By restricting such forms to the complex ball B(⊂ D),
we obtain automorphic forms on B. First we start by introducing the notion of
vector-valued modular forms. Let

ρ : SL(2, Z) → GL(V)

be a finite-dimensional representation on a complex vector space V . We assume that
ρ factors through SL(2, Z/NZ) for a suitable natural number N. A holomorphic map

f : H+→ V

is called a vector-valued modular form of weight k and of type ρ if

f (Mτ) = ρ(M)(cτ + d)k f (τ)

for any M =

(
a b
c d

)

∈ SL(2, Z) and f is meromorphic at cusps. Borcherds prod-

ucts are automorphic forms on D whose zeros and poles lie on Heegner divisors.
Borcherds [4] gave a systematic method to construct such automorphic forms as-
sociated with suitable vector-valued modular forms of type ρL. Here we employ
Borcherds and Freitag’s observation in [5, 8] to show the existence of such forms.
To do this we introduce the obstruction space consisting of all vector-valued modu-
lar forms { fα}α∈AL of weight (2+6)/2 = 4 and with respect to the dual representation
ρ∗L of ρL:

fα(τ + 1) = e−π
√−1 〈α,α〉 fα(τ), fα(−1/τ) = −τ4

9

∑

β

e2π
√−1 〈α,β〉 fβ(τ).
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Theorem 1. (Borcherds [5], Freitag [8], Theorem 5.2) A linear combination
∑

α∈AL,n<0

cα,nDα,n, cα,n ∈ Z

of Heegner divisors is the divisor of an automorphic form on D of weight k if for
every cusp form

f = { fα(τ)}α∈AL , fα(τ) =
∑

n∈Q

aα,ne2π
√−1nτ

in the obstruction space, the relation
∑

α∈AL ,n<0

aα,−n/2cα,n = 0

holds. In this case the weight k is given by

k =
∑

α∈AL ,n∈Z

bα,n/2cα,−n

where bα,n are the Fourier coefficients of the Eisenstein series in the obstruction
space with the constant term b0,0 = −1/2 and bα,0 = 0 for α � 0.

In the following we shall study the divisors
∑

α∈AL ,n<0 cα,nDα,n where cα,n de-
pends only on the type of α. Recall that O(qL) has four orbits Oi (i = 1, . . . , 4) (see
Lemma 2). We denote the vector-valued modular form ( fα)α∈AL of type ρ∗L by

( f00, f0, f1, f2)

where each ft is the sum of the fα as α varies over the elements of AL of type t.
Then ρ∗L induces a four-dimensional representation ρ̄∗ of SL(2, Z) on V = ⊕tC ft. A
calculation shows that the generators S , T of SL(2, Z) with respect to this basis is
given by

ρ̄∗(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 ω2 0
0 0 0 ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ρ̄∗(S ) =
−1

9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
20 −7 2 2
30 3 3 −6
30 3 −6 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 7. The dimension of the space of modular forms of weight 4 = (2 + 6)/2
and of type ρ̄∗ is 2. The dimension of the space of Eisenstein forms of weight 4 and
of type ρ̄∗ is also 2.

Proof. The dimension is given by

d + dk/12− α(eπ
√−1k/2ρ̄∗(S ))− α((eπ

√−1k/3ρ̄∗(S T ))−1)− α(ρ̄∗(T ))

([5], Sect. 4, [8], Proposition 2.1). Here k = 4 is the weight,
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d = dim{x ∈ V : ρ̄∗(−E)x = (−1)kx} = 4

and
α(A) =

∑

λ

α

where λ runs through all eigenvalues of A and λ = e2π
√−1α, 0 ≤ α < 1. A direct

calculation shows that

α(eπ
√−1k/2ρ̄∗(S )) = 1, α((eπ

√−1k/3ρ̄∗(S T ))−1) = 4/3 and α(ρ̄∗(T )) = 1.

On the other hand, the space of Eisenstein series is isomorphic to the subspace
of V given by

ρ̄∗(T )(x) = x, ρ̄∗(−E)(x) = (−1)kx

(see Remark 2.2 in [8]). Thus we have the assertion. $%
Next we shall calculate a basis of Eisenstein forms of weight 4 and of type ρ̄∗.

Let

E1 = G4(τ, 0, 1; 3), E2 = G4(τ, 1, 0; 3), E3 = G4(τ, 1, 1; 3), E4 = G4(τ, 1, 2; 3)

be Eisenstein series of weight 4 and level 3 (see [8]). Then the action of S , T is as
follows:

T : E2 → E3 → E4 → E2,

T fixes E1, and S switches E1 and E2, E3 and E4 respectively.
Now we can easily see that a basis of Eisenstein forms of weight 4 and of type

ρ̄∗ is given by

f00 = aE1 + b(E2 + E3 + E4),

f0 = (−a− 9b)E1 + (−3a− 7b)(E2 + E3 + E4),

f1 = (−3a + 3b)(E2 + ωE3 + ω2E4),

f2 = (−3a + 3b)(E2 + ω2E3 + ωE4),

where a, b are parameters. The Fourier expansions of Ei are given as follows
(see [8]):

E1 =
(2π)4

2 · 36
+ c(−33q + · · ·),

E2 = c(q1/3 + (23 + 1)q2/3 + 33q + · · ·),

E3 = c(ωq1/3 + (23 + 1)ω2q2/3 + 33q + · · ·),

E4 = c(ω2q1/3 + (23 + 1)ωq2/3 + 33q + · · ·),
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where c = (−2π
√−1)4

343! =
(2π)4

2·35 . Put a = − 36

(2π)4 and a = −9b. Then

f00 = −1/2 + 2 · 33q + · · ·,
f0 = 10 · 33q + · · ·,
f1 = 135q2/3 + · · ·,
f2 = 15q1/3 + · · ·.

It follows from Lemma 7 that there are no non-zero cusp forms in the obstruction
space. Hence Theorem 1 implies that

Theorem 2. There exist automorphic forms on D of weight 135, 15 with some char-
acter whose zero divisors are the (−4/3)-Heegner divisor and the (−2/3)-Heegner
divisor, respectively.

Note that (−4/3)-, (−2/3)-Heegner divisors meet the complex ball with multi-
plicity 3 (Lemma 4). Since B is simply connected, we can take the cube root of these
automorphic forms. Thus we have:

Corollary 1. There exist automorphic forms Φ45, Φ5 on the complex ball B of
weight 45, 5 whose zero divisors are the (−2)-Heegner divisor and the (−1)-Heegner
divisor, respectively.

6 Gritsenko–Borcherds Liftings

In this section, by applying the theory of liftings [4], we construct a linear system
of automorphic forms on B with respect to Γ(

√−3) which gives a birational map
from the Segre cubic to the Igusa quartic.

Let ρL be the Weil representation given in Sect. 4. We shall construct a five-
dimensional space of vector-valued modular forms of weight 4 and of type ρL.

Let W be the five-dimensional subspace of C[AL] in Definition 1. Recall that
O(qL) naturally acts on W. First we shall consider the following special vectors vα0

in W (We remark that the following definition of vα0 is similar to the one given
in Allcock–Freitag [1] to construct liftings in their case). Let α0, α1, α2, α3 be an
orthogonal basis of AL with qL(α0) = −4/3, qL(α1) = qL(α2) = qL(α3) = −2/3. If
we are given α0, then such a basis is uniquely determined up to sign. For each such
basis, we define a vector vα0 = (cα)α∈AL in C[AL] as follows:

cα = 1, 0,−1

according to ∏

i

〈α, αi〉 = 1, 0,−1 ∈ F3.

For example, assume α0 = (1, 0, 0, 0), α1 = (0, 1, 0, 0), α2 = (0, 0, 1, 0), α3 =

(0, 0, 0, 1) ∈ AL = (F3)4. Then cα � 0 if and only if α ∈ {(±1,±1,±1,±1)}.
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Lemma 8. Let vα0 = (cα) be as above. Then

ρL(S )(vα0) = vα0 , ρL(T )(vα0) = ωvα0 .

Moreover rαi (vα0 ) = −vα0 for the reflection rαi associated with αi.

Proof. It suffices to prove the case α0 = (1, 0, 0, 0), α1 = (0, 1, 0, 0), α2 = (0, 0, 1, 0),
α3 = (0, 0, 0, 1). Let M = {(±1,±1,±1,±1)}. Then vα0 =

∑
α∈M cαeα. If cα � 0,

then qL(α) = −4/3. Hence ρL(T )(vα0) = ωvα0 . Next consider

ρL(S )vα0 = −
1

9

∑

β∈AL

(
∑

α∈M

cαe−2π
√−1〈α,β〉)eβ.

A direct calculation shows that the coefficient
∑

α∈M

cαe−2π
√−1〈α,β〉

of eβ is 0 if β � M, 9 if β ∈ M, cβ = −1, and−9 if β ∈ M, cβ = 1. The last assertion
follows from the definition of vα0 . $%

It follows from Lemma 8 that vα0 is contained in W. Thus we have fifteen ele-
ments vα0 in W where α0 is fifteen (−4/3)-vectors in AL/{±1} (see Lemma 2).

Lemma 9. As a O(qL) module, W is irreducible.

Proof. If V is an irreducible representation of S6 and dim V ≥ 2, then dim V ≥ 5.
Hence it suffices to see that there are no 1-dimensional subspaces invariant under
the action of S6. If such a 1-dimensional subspace exists, then all vectors in W are
invariant under the action of S6. However, any special vector vα0 as above is not
invariant under the action of S6. This is a contradiction. $%

Let η(τ) be the Dedekind eta function. Then

η(τ + 1)8 = ω · η(τ)8,

η(−1/τ)8 = τ4 · η(τ).

Therefore, for v ∈ W, η(τ)8 · v = (η(τ)8 · cα)α∈AL is a vector-valued modular form
of weight 4 and of type ρL. By applying the Gritsenko–Borcherds lifting ([4], The-
orem 14.3), we have

Lemma 10. There is a five-dimensional space of holomorphic automorphic forms
of weight 6 on D with respect to Õ(L) on which O(qL) acts irreducibly.

Proof. It suffices to see that the lifting of η(τ)8v is non-zero. Then the assertion
follows from Schur’s lemma. We use Theorem 14.3 in [4]. We first note that
L = A2 ⊕ A2(−1)⊕3 is isomorphic to U ⊕ U(3) ⊕ A2(−1)⊕2 where U (resp.

U(3)) is an even lattice with Gram matrix

(
0 1
1 0

)

(resp.

(
0 3
3 0

)

). This follows from
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[13], Theorem 1.14.2. Let z, z′ be a basis of U with z2 = z′2 = 0, 〈z, z′〉 = 1,
and let K = z⊥/Zz = U(3) ⊕ A2(−1)⊕2 ⊂ L. Let e, f be a basis of U(3) with
e2 = f 2 = 0, 〈e, f 〉 = 3. We consider the Fourier expansion around z. Since
η(τ)8 = q1/3 + · · ·, the initial term of

η(τ)8v =
∑

α∈AL

eα

∑

n∈Q

cα(n)e2π
√−1nτ

is ∑

α∈AL ,α2=2/3

cαq1/3.

If we take λ = (e + f )/3, then 〈λ, λ〉 = 2/3 > 0 and hence λ has positive in-
ner products with all elements in the interior of the Weyl chamber. Also note that
L∗/L = K∗/K. We choose v = (cα) ∈ V satisfying cλ � 0. Now it follows from
[4], Theorem 14.3 that the Fourier coefficient of e2π

√−1〈λ,Z〉 in the lifting of η(τ)8v
is equal to

cλ(λ2/2) · e2π
√−1〈λ,z′〉 = cλ(1/3) = cλ.

Hence the lifting of η(τ)8v is non-zero. $%
Let α0 be a (−4/3)-vector in AL and let vα0 be the element in W as above. Let

Fα0 be the restriction of the Gritsenko–Borcherds lifting of η(τ)8 ·vα0 to the complex
ball B. Then

Theorem 3. Fα0 is a holomorphic automorphic form of weight 6 on B with respect
to Γ(

√−3) which vanishes exactly along the (−2)-Heegner divisor Hα0 with multi-
plicity one and the (−1)-Heegner divisors Hα1 ,Hα2 ,Hα3 with multiplicity three.

Proof. First recall that the reflection rα is induced from the reflection ra,−1 of Λ
where a ∈ Λ is a short or long root with a mod

√−3Λ = α. It follows from
Lemma 8 and the O(qL)-equivariance of the lifting that Fα0 vanishes along Hαi

(i = 0, 1, 2, 3). Moreover, since the trireflection ra,ω associated to a short root a is
contained in Γ(

√−3), Fα0 vanishes along Hαi (i = 1, 2, 3) with multiplicity 3. Then
the product of 15 Fα0 has weight 90 and vanishes along (−2)-Heegner divisors with
at least multiplicity one and along (−1)-Heegner divisors with at least multiplicity
3·15·3

15 = 9. On the other hand Φ45 · Φ9
5 has weight 90 and vanishes along (−2)-

Heegner divisors with exactly multiplicity one and along (−1)-Heegner divisors
with multiplicity 9 (Corollary 1). Then the ratio

∏
v Fv/Φ45 ·Φ9

5 has weight zero and
holomorphic, and hence it is constant by the Koecher principle. $%

Since trireflections are contained in Γ(
√−3), the covering B → B/Γ(

√−3) is
ramified along (−2/3)-Heegner divisors. Hence we have

Theorem 4. The zero divisor (Fα0 ) on B̄/Γ(
√−3) is H̄α0 + H̄α1 + H̄α2 + H̄α3 .

Lemma 11. Let α ∈ AL with qL(α) = −4/3. Then the Heegner divisor H̄α coincides
with a Cayley cubic on X.
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Proof. The zero divisor of Φ45 on B̄/Γ(
√−3) is the union of H̄α where α varies

over 15 (−4/3)-vectors in AL/{±1}. On the other hand, as mentioned as above, the
coveringB→ B/Γ(

√−3) is ramified along (−1)-Heegner divisors. Hence the zero
divisors of Φ3

5 on B̄/Γ(
√−3) is the union of H̄α, where α varies over 15 (−2/3)-

vectors in AL/{±1}. Recall that For a (−2/3)-vector α in AL, the Heegner divisor
H̄α is a plane on X (Proposition 2). Moreover, if α1, α2, α3 are mutually orthogonal
(−2/3)-vectors, then the union of three planes H̄α1 +H̄α2 +H̄α3 is a linear section of
X in P4 (Lemma 5). By comparing the weights of Φ45 and Φ3

5, we can see that each
H̄α with qL(α) = −4/3 is also a linear section, that is, a cubic surface. Since H̄α

with qL(α) = −4/3 contains four cusps, it should be isomorphic to a Cayley cubic
on X. $%
Hence we conclude:

Lemma 12. The divisor (Fα0 ) = H̄α0 + H̄α1 + H̄α2 + H̄α3 is a quadric section of the
Segre cubic X ⊂ P4 where H̄α0 is a Cayley cubic and H̄αi (i = 1, 2, 3) are planes.

For an orthogonal basis {α0, α1, α2, α3} of AL, we can easily see that any isotropic
vector in AL is perpendicular to αi for some i (see Lemma 2). Hence the divisor
H̄α0 + H̄α1 + H̄α2 + H̄α3 contains 10 nodes of X. Thus each (Fα0 ) passes through
the ten nodes of X, and hence the five-dimensional linear system of automorphic
forms has the ten nodes as base points. The linear system defines a rational map
ϕ : X → P5.

Theorem 5. The image of ϕ is the Igusa quartic that is the dual of X.

Proof. Recall that the dual map from the Segre cubic to the Igusa quartic is given
by a linear system of quadrics through the ten nodes ([10], Theorem 3.3.12). The
assertion now follows from Lemma 12. $%
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Quasi-modular Forms Attached to Hodge
Structures

Hossein Movasati

Abstract The space D of Hodge structures on a fixed polarized lattice is known
as Griffiths period domain, and its quotient by the isometry group of the lattice
is the moduli of polarized Hodge structures of a fixed type. When D is a Hermi-
tian symmetric domain, then we have automorphic forms on D, which according
to Baily–Borel theorem, they give an algebraic structure to the mentioned moduli
space. In this article we slightly modify this picture by considering the space U of
polarized lattices in a fixed complex vector space with a fixed Hodge filtration and
polarization. It turns out that the isometry group of the filtration and polarization,
which is an algebraic group, acts on U and the quotient is again the moduli of polar-
ized Hodge structures. This formulation leads us to a notion of quasi-automorphic
forms which generalizes quasi-modular forms attached to elliptic curves.

Key words: Polarized Hodge structure, Period map, Algebraic de Rham
cohomology

Mathematics Subject Classifications (2010): 32G20, 11F46, 14C30, 14J15

1 Introduction

In 1970 Griffiths in his article [5] introduced the period domain D and described
a project to enlarge D to a moduli space of degenerating polarized Hodge struc-
tures. He also asked for the existence of a certain automorphic form theory for D,
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generalizing the usual notion of automorphic forms on Hermitian symmetric
domains. Since then there have been much effort made on the first part of Grif-
fiths’s project (see [8, 13] and the references there). For the second part Griffiths
himself introduced the theory of automorphic cohomology; however, the generating
function role of automorphic forms is somewhat lacking in this theory.

Some years ago, I was looking for some analytic spaces over D for which one
may state the Baily–Borel theorem on the unique algebraic structure of quotients of
Hermitian symmetric domains by discrete arithmetic groups. I realized that even in
the simplest case of Hodge structures, namely, h01 = h10 = 1, such spaces are not
well studied. This led me to the definition of a class of holomorphic functions on the
Poincaré upper half plane which generalize the classical modular forms (see [14]).
Since a differential operator acts on them, I called them differential modular forms.
Soon after I realized that such functions play a central role in mathematical physics
and, in particular, in mirror symmetry (see [11] and the references therein). Inspired
by this special case of Hodge structures with its fruitful applications, I felt the neces-
sity to develop as much as possible similar theories for an arbitrary type of Hodge
structure.

In this note we construct an analytic variety U and an action of an algebraic group
G0 on U from the right such that U/G0 is the moduli space of polarized Hodge struc-
tures of a fixed type. We may pose the following algebraization problem for U, in
parallel to the Baily–Borel theorem in [1]: construct functions on U which have
some automorphic properties with respect to the action of G0 and have some finite
growth when a Hodge structure degenerates. There must be enough of them in or-
der to enhance U with a canonical structure of an algebraic variety such that the
action of G0 is algebraic. In the case for which the Griffiths period domain is Her-
mitian symmetric, for instance, for the Siegel upper half plane, this problem seems
to be promising but needs a reasonable amount of work if one wants to construct
such functions through the inverse of the generalized period maps (see Sect. 5.1).
Among them are calculating explicit affine coordinates in certain moduli spaces and
calculating Gauss–Manin connections. Some main ingredients of such a study for
K3 surfaces endowed with polarizations is already done by many authors; see, for
instance, [2] and the references therein. For the case in which the Griffiths period do-
main is not Hermitian symmetric, we reformulate the algebraization problem further
(see Sect. 4.3), and we solve it for the Hodge numbers h30 = h21 = h12 = h03 = 1
(see Sect. 5.2 and [15]). This gives us a first example of quasi-automorphic forms
theory attached to a period domain which is not Hermitian symmetric.

The realization of the algebraization problem in the case of elliptic curves and the
corresponding Hodge numbers h10 = h01 = 1 clarifies many details of the previous
paragraph; therefore, I explain it here (for more details, see [14]). In this case, U =
SL(2,Z)\P, where

P := {
(
x1 x2

x3 x4

)

∈ SL(2,C) | Im(x1x3) > 0}.
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In order to find an algebraic structure on U we work with the following family of
elliptic curves:

Et : y2 − 4(x− t1)3 + t2(x− t1) + t3 = 0,

where the parameter t = (t1, t2, t3) is a point of the affine variety

T := {(t1, t2, t3) ∈ C3 | 27t2
3 − t3

2 � 0}.
The generalized period map

pm : T → U, (1)

t �→
⎡
⎢⎢⎢⎢⎣

1√
2πi

⎛
⎜⎜⎜⎜⎝

∫

δ1

dx
y

∫

δ1

xdx
y∫

δ2

dx
y

∫

δ2

xdx
y

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

is in fact a biholomorphism. Here, [·] means the equivalence class and {δ1, δ2} is a
basis of the Z-module H1(Et,Z) with 〈δ1, δ2〉 = −1. The algebraic group

G0 = {
(
k k′
0 k−1

)

| k, k′ ∈ C, k � 0}

acts from the right on U by the usual multiplication of matrices. Under pm the action
of G0 is given by

t • g = (t1k−2 + k′k−1, t2k−4, t3k−6),

t = (t1, t2, t3) ∈ C3, g =

(
k k′
0 k−1

)

∈ G0.

In fact, T is the moduli space of pairs (E, {ω1, ω2}), where E is an elliptic curve and
{ω1, ω2} is a basis of H1

dR(E) such that ω1 is represented by a differential form of
the first kind and 1

2πi

∫

E
ω1 ∪ ω2 = 1.

The algebra of quasi-modular forms arises in the following way: we consider the
composition of maps

H
i

↪→ P → U
pm−1→ T ↪→ T̃ , (2)

where H = {τ ∈ C | Im(τ) > 0} is the upper half plane,

i : H→ P, i(τ) =

(
τ −1
1 0

)

,

P → U is the quotient map and T̃ = C3 is the underlying complex manifold of the
affine variety Spec(C[t1, t2, t3]). The pullback of the function ring C[t1, t2, t3] of T̃
by the composition H → T̃ is a C-algebra which we call the C-algebra of quasi-
modular forms for SL(2,Z). Three Eisenstein series
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gi(τ) = ak

(
1 + bk

∞∑

d=1

d2k−1 e2πidτ

1− e2πidτ

)
, k = 1, 2, 3, (3)

where

(b1, b2, b3) = (−24, 240,−504), (a1, a2, a3) = (
2πi

12
, 12(

2πi

12
)2, 8(

2πi

12
)3)

are obtained by taking the pullback of the ti’s. Our reformulation of the algebraiza-
tion problem is based on (2) and the pullback argument; see Sect. 4.3.

We fix some notations from linear algebra. For a basis ω1, ω2, . . . , ωh of a vector
space, we denote by ω an h×1 matrix whose entries are the ωi’s. In this way we also
say that ω is a basis of the vector space. If there is no danger of confusion we also
use ω to denote an element of the vector space. We use At to denote the transpose
of the matrix A. Recall that if δ and ω are two bases of a vector space, δ = pω for
some p ∈ GL(h,C) and a bilinear form on V0 in the basis δ (resp. ω) has the matrix
form A (resp. B) then pBpt = A. By [ai j]h×h we mean an h× h matrix whose (i, j)
entry is ai j.

2 Moduli of Polarized Hodge Structures

In this section we define the generalized period domain U, and we explain its com-
parison with the classical Griffiths period domain.

2.1 The Space of Polarized Lattices

We fix a C-vector space V0 of dimension h, a natural number m ∈ N and a h × h
integer-valued matrix Ψ0 such that the associated bilinear form

Zh × Zh → Z, (a, b)→ atΨ0b

is non-degenerate, symmetric if m is even, and skew if m is odd. Note that, in the
case of Z-modules, by non-degenerate we mean that the associated morphism

Zh → (Zh)∨, a → (b → atΨ0b)

is an isomorphism, where ∨ means the dual of a Z-module.
A lattice VZ in V0 is a Z-module generated by a basis of V0. A polarized lattice

(VZ, ψZ) of type Ψ0 is a lattice VZ together with a bilinear map ψZ : VZ × VZ → Z
such that in a Z-basis of VZ, ψZ has the form Ψ0.

Let L be the set of polarized lattices of type Ψ0 in V0. It has a canonical structure
of a complex manifold of dimension dimC(V0)2. One can take a local chart around
(VZ, ψZ) by fixing a basis of the Z-module VZ. Usually, we denote an element of
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L by x, y, . . . and the associated lattice (resp. bilinear form) by VZ(x), VZ(y), . . . (resp.
ψZ(x), ψZ(y), . . .). Let R be any subring of C. For instance, R can be Q, R, C, Z. We
define

VR(x) := VZ(x)⊗Z R and ψR(x) : VR(x)× VR(x) → R the induced map.

Conjugation with respect to x ∈ L of an element ω =
∑h

i=1 aiδi ∈ V0, where VZ(x) =
∑h

i=1 Zδi, is defined by

ωx :=
h∑

i=1

aiδi,

where s, s ∈ C is the usual conjugation of complex numbers.

2.2 Hodge Filtration

We fix Hodge numbers

hi,m−i ∈ N ∪ {0}, hi :=
m∑

j=i

h j,m− j, i = 0, 1, . . . , m, h0 = h

a filtration

F•0 : {0} = Fm+1
0 ⊂ Fm

0 ⊂ · · · ⊂ F1
0 ⊂ F0

0 = V0, dim(Fi
0) = hi (4)

on V0 and a bilinear form
ψ0 : V0 × V0 → C

such that in a basis of V0, its matrix is Ψ0 and it satisfies

ψ0(Fi
0, F j

0) = 0, ∀i, j, i + j > m. (5)

A basis ωi, i = 1, 2, . . . , h of V0 is compatible with the filtration F•0 if ωi, i =
1, 2, . . . , hi is a basis of Fi

0 for all i. It is sometimes convenient to fix a basis
ωi, i = 1, 2, . . . , h of V0 which is compatible with the filtration F•0 and such that
the polarization matrix [ψ0(ωi, ω j)] is a fixed matrix Φ0:

[ψ0(ωi, ω j)] = Φ0.

The matrices Ψ0 and Φ0 are not necessarily the same. For any x ∈ L we define

Hi,m−i(x) := Fi
0 ∩ Fm−i

0

x
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and the following properties for x ∈ L:

1. ψC(x) = ψ0.
2. V0 = ⊕m

i=0Hi,m−i(x).

3. (−1)
m(m−1)

2 +i(
√−1)−mψC(x)(ω, ωx) > 0, ∀ω ∈ Hi,m−i(x), ω � 0.

Throughout the text we call these properties P1, P2, and P3. Fix a polarized lattice
x ∈ L. P1 implies that

ψ0(Hi,m−i(x), H j,m− j(x)) = 0 except for i + j = m.

This is because if i + j > m, then ψ0(Fi
0, F j

0) = 0 and if i + j < m, then

ψ0(Fi
0

x
, F j

0

x

)= 0. We have also
∑

i Hi,m−i(x) = ⊕iHi,m−i(x) if and only if

Fi
0 ∩ F j

0

x

= 0, ∀ i + j > m. (6)

If am−k,k + · · · + a0,m = 0, ai,m−i ∈ Hi,m−i(x) for some 0 ≤ k ≤ m with am−k,k � 0,
then

−am−k,k = am−k−1,k+1 + · · · + a0,m ∈ Fm−k
0 ∩ Fk+1

0

x ⇒ ak,m−k = 0

which is a contradiction. The proof in the other direction is a consequence of

Fi
0 ∩ F j

0

x

= Hi,m−i(x) ∩ Hm− j, j(x), i + j > m.

2.3 Period Domain U

Define
X := {x ∈ L | x satisfies P1 },

U := {x ∈ L | x satisfies P1,P2, P3 }.

Proposition 1. The set X is an analytic subset of L and U is an open subset of X.

Proof. Take a basis ωi, i = 1, 2, . . . , h of V0 compatible with the Hodge filtration.
The property (5) is given by

ψC(x)(ωr, ωs) = 0, r ≤ hi, s ≤ h j, i + j > m

and so X is an analytic subset of L.
Now choose a basis δ of VZ(x) and write δ = pω. Using ω we may assume that

V0 = C
h and δ is constituted by the rows of p. We have

ω = p−1δ =⇒ ωx
= p−1δ = p−1 pω.
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Therefore, the rows of p−1 p are complex conjugates of the entries of ω. Now it is
easy to verify that if the property (6), dim(Hi,m−i(x)) = hi,m−i and P3 are valid for
one x, then they are valid for all points in a small neighborhood of x (for P3 we may
first restrict ψ0 to the product of sphere of radius 1 and center 0 ∈ Ch).

2.4 An Algebraic Group

Let G0 be the algebraic group

G0 := Aut(F•0, ψ0) :=

{g : V0 → V0 linear | g(Fi
0) = Fi

0, ψ0(g(ω1), g(ω2)) = ψ0(ω1, ω2), ω1, ω2 ∈ V0}.
It acts from the right on L in a canonical way:

xg := g−1(x), ψZ(xg)(·, ·) := ψZ(g(·), g(·)), g ∈ G0, x ∈ L.

One can easily see that for all ω ∈ V0, x ∈ L, and g ∈ G, we have

ωxg = g−1g(ω)
x
.

Proposition 2. The properties P1, P2, and P3 are invariant under the action of G0.

Proof. The property P1 for xg follows from the definition. Let x ∈ L, g ∈ G0 and
ω ∈ V0. We have

Hi,m−i(xg) = Fi
0 ∩ Fm−i

0

xg
= Fi

0 ∩ g−1g(Fm−i
0 )

x
= Fi

0 ∩ g−1(Fm−i
0

x
)

= g−1(Fi
0 ∩ Fm−i

0

x
) = g−1(Hi,m−i(x))

and
ψC(xg)(ω, ωxg) = ψC(x)(g(ω), gg−1g(ω)

x
) = ψC(x)(g(ω), g(ω)

x
).

These equalities prove the proposition.

The above proposition implies that G0 acts from the right on U. We fix a basis
ωi, i = 1, 2, . . . , h, of V0 compatible with the Hodge filtration F•0, and if there is no
danger of confusion, we identify each g ∈ G0 with the h× h matrix g̃ given by

[g−1(ω1), g−1(ω2), . . . , g−1(ωh)] = [ω1, ω2, . . . , ωh]g̃. (7)
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2.5 Griffiths Period Domain

In this section we give the classical approach to the moduli of polarized Hodge
structures due to P. Griffiths. The reader is referred to [8, 9] for more developments
in this direction.

Let us fix the C-vector space V0 and the Hodge numbers as in Sect. 2.2. Let also
F be the space of filtrations (4) in V0. In fact, F has a natural structure of a compact
smooth projective variety. We fix the polarized lattice x0 ∈ L and define the Griffiths
domain

D := {F• ∈ F | (VZ(x0), ψZ(x0), F•) is a polarized Hodge structure }.

The group
ΓZ := Aut(VZ(x0), ψZ(x0))

acts on V0 from the right in the usual way and this gives us an action of ΓZ on D.
The space ΓZ\D is the moduli space of polarized Hodge structures.

Proposition 3. There is a canonical isomorphism

β : U/G0
∼→ ΓZ\D.

Proof. We take x ∈ U and an isomorphism

γ : (VZ(x), ψZ(x))
∼→ (VZ(x0), ψZ(x0)).

The pushforward of the Hodge filtration F•0 under this isomorphism gives us a
Hodge filtration on V0 with respect to the lattice VZ(x0) and so it gives us a point
β(x) ∈ D. Different choices of γ leads us to the action of ΓZ on β(x). Therefore, we
have a well-defined map

β : U → ΓZ\D.

Since G0 = Aut(V0, F•0, ψ0), β induces the desired isomorphism (it is surjective
because for any polarized Hodge structure (VZ(x0), ψZ(x0), F•), we have VZ(x0) =
V0, ψC(x0) = ψ0, and F• = g(F•0) for some g ∈ G0).

The Griffiths domain is the moduli space of polarized Hodge structures of a fixed
type and with a Z-basis in which the polarization has a fixed matrix form. Our do-
main U is the moduli space of polarized Hodge structures of a fixed type and with
a C-basis compatible with the Hodge filtration and for which the polarization has a
fixed matrix form.
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3 Period Map

In this section we introduce Poincaré duals, period matrices, and Gauss-Manin con-
nections in the framework of polarized Hodge structures.

3.1 Poincaré Dual

In this section we explain the notion of Poincaré dual. Let (VZ(x), ψZ(x)) be a polar-
ized lattice and δ ∈ VZ(x)∨, where ∨ means the dual of a Z-module. We will use the
symbolic integral notation

∫

δ

ω := δ(ω), ∀ω ∈ V0.

The equality
∫

δ

ωx
=

∫

δ

ω, ∀ω ∈ V0, δ ∈ VZ(x)∨ (8)

follows directly from the definition. The Poincaré dual of δ ∈ VZ(x)∨ is an element
δpd ∈ VZ(x) with the property

∫

δ

ω = ψZ(x)(ω, δpd), ∀ω ∈ VZ(x).

It exists and is unique because ψZ is non-degenerate. Using the Poincaré duality one
defines the dual polarization

ψZ(x)∨(δi, δ j) := ψZ(x)(δpd
i , δ

pd
j ), δi, δ j ∈ VZ(x)∨.

We have
(A∨δ)pd = A−1δpd, ∀A ∈ ΓZ, δ ∈ VZ(x0)∨,

where A∨ : VZ(x0)∨ → VZ(x0)∨ is the induced dual map. This follows from:
∫

A∨δ

ω =

∫

δ

Aω = ψZ(x0)(Aω, δpd) = ψZ(x0)(ω, A−1δpd), ∀ω ∈ V0.

We define
Γ∨Z := Aut(VZ(x0)∨, ψZ(x0)∨).

It follows that ΓZ → Γ∨
Z
, A �→ A∨ is an isomorphism of groups.
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3.2 Period Matrix

Let ωi, i = 1, 2, . . . , h be a C-basis of V0 compatible with F•0. Recall that ω means
the h × 1 matrix with entries ωi. For x ∈ U, we take a Z-basis δi, i = 1, 2, . . . , h
of VZ(x)∨ such that the matrix of ψZ(x)∨ in the basis δ is Ψ0. We define the abstract
period matrix/period map in the following way:

pm = pm(x) = [
∫

δi

ω j]h×h :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫

δ1
ω1

∫

δ1
ω2 · · ·

∫

δ1
ωh∫

δ2
ω1

∫

δ2
ω2 · · ·

∫

δ2
ωh

...
...

...
...∫

δh
ω1

∫

δh
ω2 · · ·

∫

δh
ωh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Instead of the period matrix it is useful to use the matrix

q = q(x), where δpd = qω.

Then we have
Ψ t

0 = pm · qt.

If we identify V0 with Ch through the basis ω, then q is a matrix whose rows are the
entries of δ. We define P to be the set of period matrices pm. We write an element
A of ΓZ in a basis of VZ(x0) and redefine ΓZ:

ΓZ := {A ∈ GL(h,Z) | AΨ0At = Ψ0}.
The group ΓZ acts on P from the left by the usual multiplication of matrices and

U = ΓZ\P.

In a similar way, if we identity each element g of G0 with the matrix g̃ in (7), then
G0 acts from the right on P by the usual multiplication of matrices.

3.3 A Canonical Connection on L

We consider the trivial bundle H = L × V0 on L. On H we have a well-defined
integrable connection

∇ : H→ Ω1
L ⊗OL H

such that a section s of H in a small open set V ⊂ L with the property

s(x) ∈ {x} × VZ(x), x ∈ V

is flat. Let ω1, ω2, . . . , ωh be a basis of V0 compatible with the Hodge filtration F•0.
We can consider ωi as a global section of H and so we have
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∇ω = A⊗ ω, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω11 ω12 · · · ω1h

ω21 ω22 · · · ω2h
...

...
. . .

...
ωh1 ωh2 · · · ωhh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ωi j ∈ H0(L, Ω1
L). (9)

A is called the connection matrix of∇ in the basis ω. The connection∇ is integrable
and so dA = A ∧ A:

dωi j =

h∑

k=1

ωik ∧ ωk j, i, j = 1, 2, . . . , h. (10)

Let δ be a basis of flat sections. Write δ = qω. We have

ω = q−1δ ⇒ ∇(ω) = d(q−1)qω⇒
A = dq−1 · q = d(pmt · Ψ−t

0 ) · (Ψ t
0 · pm−t) = d(pmt) · pm−t.

and so
A = d(pmt) · pm−t. (11)

where pm is the abstract period map. We have used the equality Ψ0 = pm · qt. Note
that the entries of A are holomorphic 1-forms on L and a fundamental system for
the linear differential equation dY = A · Y in L is given by Y = pmt:

dpmt = A · pmt.

We define the Griffiths transversality distribution by:

Fgr : ωi j = 0, i ≤ hm−x, j > hm−x−1, x = 0, 1, . . . , m− 2. (12)

A holomorphic map f : V → U, where V is an analytic variety, is called a period
map if it is tangent to the Griffiths transversality distribution, that is, for all ωi j as in
(12), we have f−1ωi j = 0.

3.4 Some Functions on L

For two vectors ω1, ω2 ∈ V0, we have the following holomorphic function on L:

L→ C, x �→ ψC(x)(ω1, ω2).

We choose a basis ω of V0 and δ of VZ(x)∨ for x ∈ L and write δpd = q · ω. Then

F := [ψC(x)(ωi, ω j)] = (q−1)Ψ0q−t = pmtΨ−t
0 pm (13)
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(we have used the identity Ψ t
0 = pm · qt). The matrix F satisfies the differential

equation
dF = A · F + F · At, (14)

where A is the connection matrix. The proof is a straightforward consequence of
(13) and (11):

dF = d(pmtΨ−t
0 pm)

= (dpmt)Ψ−t
0 pm + pmtΨ−t

0 (dpm)

= A · F + F · At

It is easy to check that every solution of the differential equation (14) is of the form
pmt ·C · pm for some constant h× h matrix C with entries in C (if F is a solution of
(14), then F · pm−1 is a solution of dY = A · Y). We restrict F, A, and pm to U and
we conclude that

Φ0 = pmtΨ−t
0 pm (15)

A ·Φ0 = −Φ0 · At,

where by definition F|U is the constant matrix Φ0.
We have a plenty of non-holomorphic functions on L. For two elements ω1, ω2 ∈

V0, we define
L→ C, x �→ ψC(x)(ω1, ω2

x).

Let ω and δ be as before. We write δpd = q · ωx and we have

G := [ψC(x)(ωi, ω̄
x
j)] = pmtΨ−t

0 pm = (q−1)Ψ0q−t (16)

The matrix G satisfies the differential equation

dG = A ·G +G · A
t
, (17)

where A is the connection matrix.

4 Quasi-modular Forms Attached to Hodge Structures

In this section we explain what is a quasi-modular form attached to a given fixed
data of Hodge structures and a full family of enhanced projective varieties.

4.1 Enhanced Projective Varieties

Let X be a complex smooth projective variety of a fixed topological type. This means
that we fix a C∞ manifold X0 and assume that X as a C∞-manifold is isomorphic to
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X0 (we do not fix the isomorphism). Let n be the complex dimension of X and let m
be an integer with 1 ≤ m ≤ n. We fix an element θ ∈ H2n−2m(X,Z) ∩ Hn−m,n−m(X).
By Hi(X,Z) we mean its image in Hi(X,C) = Hi

dR(X); therefore, we have killed the
torsion. We consider the bilinear map

〈·, ·〉C : Hm
dR(X)× Hm

dR(X) → C, 〈ω, α〉 = 1

(2πi)m

∫

X
ω ∪ α ∪ θ.

The (2πi)−m factor in the above definition ensures us that the bilinear map 〈·, ·〉C
is defined for the algebraic de Rham cohomology (see, for instance, Deligne’s
lecture in [3]). We assume that it is non-degenerate. The cohomology Hm

dR(X) is
equipped with the so-called Hodge filtration F•. We assume that the Hodge num-
bers hi,m−i, i = 0, 1, 2, . . . , m coincide with those fixed in this article. We consider
Hodge structures with an isomorphism

(Hm
dR(X), F•, 〈·, ·〉C) � (V0, F•0 , ψ0).

From now on, by an enhanced projective variety, we mean all the data described in
the previous paragraph.

We also need to introduce families of enhanced projective varieties. Let V be an
irreducible affine variety and OV be the ring of regular functions on V . By definition
V is the underlying complex space of Spec(OV) and OV is a finitely generated re-
duced C-algebra without zero divisors. Also, let X → V be a family of smooth pro-
jective varieties as in the previous paragraph. We will also use the notations {Xt}t∈V

or X/V to denote X → V . The de Rham cohomology Hm
dR(X/V) and its Hodge fil-

tration F•Hm
dR(X/V) are OV -modules (see, for instance, [7]), and in a similar way

we have 〈·, ·〉OV : Hm
dR(X/V) × Hm

dR(X/V) → OV . Note that we fix an element
θ ∈ Fn−mH2n−2m

dR (X/V) and assume that it induces in each fiber Xt an element in
H2n−2m(Xt,Z). We say that the family is enhanced if we have an isomorphism
(
Hm

dR(X/V), F•Hm
dR(X/V), 〈·, ·〉OV

)
�
(
V0 ⊗C OV , F•0 ⊗C OV , ψ0 ⊗C OV

)
. (18)

We fix a basis ωi, i = 1, 2, . . . , h of V0 compatible with the filtration F•0. Under the
above isomorphism we get a basis ω̃i, i = 1, 2, . . . , h of the OV -module Hm

dR(X/V)
which is compatible with the Hodge filtration and the bilinear map 〈·, ·〉OV written
in this basis is a constant matrix. This gives us another formulation of an enhanced
family of projective varieties. An enhanced family of projective varieties {Xt}t∈V is
full if we have an algebraic action of G0 (defined in Sect. 2.4) from the right on
V (and hence on OV ) such that it is compatible with the isomorphism (18). This
is equivalent to saying that for Xt and ω̃i, i = 1, 2, . . . , h as above, we have an
isomorphism

(Xtg, [ω̃1, ω̃2, . . . , ω̃h]) � (Xt, [ω̃1, ω̃2, . . . , ω̃h]g), t ∈ V, g ∈ G0,



580 H. Movasati

(recall the matrix form of g ∈ G0 in (7)). A morphism Y/W → X/V of two families
of enhanced projective varieties is a commutative diagram

Y → X
↓ ↓
W → V

such that
Hm(X/V) → Hm(Y/W)

↓ ↓
V0 ⊗C OV → V0 ⊗C OW

is also commutative.

4.2 Period Map

For an enhanced projective variety X, we consider the image of Hm(X,Z) in
Hm(X,C) � Hm

dR(X) � V0, and hence we obtain a unique point in U. Note that
by this process we kill torsion elements in Hm(X,Z). We fix bases ωi and ω̃i as in
Sect. 4.1 and a basis δi, i = 1, 2, . . . , h of Hm(X,Z) = Hm(X,Z)∨ with [〈δi, δ j〉] = Ψ0,
and we see that the corresponding point in U := ΓZ\P is given by the equivalence
class of the geometric period matrix [

∫

δi
ω̃ j].

For any family of enhanced projective varieties {Xt}t∈V , we get

pm : V → U

which is holomorphic. It satisfies the so-called Griffiths transversality, that is, it is
tangent to the Griffiths transversality distribution. It is called a geometric period
map. The pullback of the connection ∇ constructed in Sect. 3.3 by the period map
pm is the Gauss–Manin connection of the family {Xt}t∈V . If the family is full, then
the geometric period map commutes with the action of G0:

pm(tg) = pm(t)g, g ∈ G0, t ∈ V.

4.3 Quasi-modular Forms

Let M be the set of enhanced projective varieties with the fixed topological data
explained in Sect. 4.1. We would like to prove that M is in fact an affine variety. The
first step in developing a quasi-modular form theory attached to enhanced projective
varieties is to solve the following conjectures.
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Conjecture 1. There is an affine variety T and a full family X/T of enhanced projec-
tive varieties which is universal in the following sense: for any family of enhanced
projective varieties Y/S , we have a unique morphism of Y/S → X/T of enhanced
projective varieties.

We would also like to find a universal family which describes the degeneration of
projective varieties:

Conjecture 2. There is an affine variety T̃ ⊃ T of the same dimension as T and with
the following property: for any family f : Y → S of projective varieties with fixed
prescribed topological data, but not necessarily enhanced and smooth, and with the
discriminant variety Δ ⊂ S , the map Y\ f−1(Δ) → S \Δ is an underlying morphism
of an enhanced family, and hence, we have the map S \Δ → T which extends to
S → T̃ . The conjecture is about the existence of T̃ with such an extension property.

Similar to Shimura varieties, we expect that T and T̃ are affine varieties defined
over Q̄. Both conjectures are true in the case of elliptic curves (see the discussion in
the Introduction). In this case, the function ring of T (resp. T̃ ) is C[t1, t2, t3, 1

27t2
3−t3

2
]

(resp. C[t1, t2, t3] ). We have also verified the conjectures for a particular class of
Calabi–Yau varieties (see Sect. 5.2 and [15]).

Now, consider the case in which both conjectures are true. We are going to ex-
plain the rough idea of the algebra of quasi-modular forms attached to all fixed data
that we had. It is the pullback of the C-algebra of regular functions in T̃ by the
composition

H
i

↪→ P|Im(pm) → U |Im(pm)
pm−1→ T ↪→ T̃ . (19)

Here pm is the geometric period map. We need that the period map is locally in-
jective (local Torelli problem) and hence pm−1 is a local inverse map. The set H
is a subset of the set of period matrices P, and it will play the role of the Poincaré
upper half plane. If the Griffiths period domain D is Hermitian symmetric, then it is
biholomorphic to D (see Sect. 5.1); however, in other cases, it depends on the uni-
versal period map T → U and its dimension is the dimension of the deformation
space of the projective variety. In this case we do not need to defineH explicitly (see
Sect. 5.2). More details of this discussion will be explained by two examples of the
next section.

5 Examples

In this section we discuss two examples of Hodge structures and the corresponding
quasi-modular form algebras: those attached to mirror quintic Calabi–Yau varieties
and principally polarized Abelian varieties. The details of the first case are done in
[15, 16] and we will sketch the results which are related to the main thread of the
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present text. For the second case there is much work that has been done and I only
sketch some ideas. Much of the work for K3 surfaces endowed with polarizations
has been already done by many authors; see [2] and the references therein. The
generalization of such results to Siegel quasi-modular forms is work for the future.

5.1 Siegel Quasi-modular Forms

We consider the case in which the weight m is equal to 1 and the polarization ma-
trix is:

Ψ0 =

(
0 −Ig

Ig 0

)

,

where Ig is the g×g identity matrix. In this case g := h10 = h01 and h = 2g. We take
a basis ωi, i = 1, 2, . . . , 2g, of V0 compatible with F•0, that is, the first g elements
form a basis of F1

0. We further assume that the polarization ψ0 : V0×V0 → C in the
basis ω has the form Φ0 := Ψ0. Because of the particular format of Ψ0, both these
assumptions do not contradict each other. We take a basis δ of VZ(x)∨ such that the
intersection form in this basis is of the form Ψ0 and we write the associated period
matrix in the form

[
∫

δi

ω j] =

(
x1 x2

x3 x4

)

,

where xi, i = 1, . . . , 4, are g× g matrices. Since Ψ−t
0 = Ψ0, we have

(
0 −Ig

Ig 0

)

=

(
xt

1 xt
3

xt
2 xt

4

) (
0 −Ig

Ig 0

) (
x1 x2

x3 x4

)

=

(
xt

3 x1 − xt
1x3 xt

3x2 − xt
1x4

xt
4 x1 − xt

2x3 xt
4x2 − xt

2x4

)

and

[〈ωi, ω̄
x
j〉] =

(
xt

1 xt
3

xt
2 xt

4

) (
0 −Ig

Ig 0

) (
x̄1 x̄2

x̄3 x̄4

)

=

(
xt

3 x̄1 − xt
1 x̄3 xt

3 x̄2 − xt
1 x̄4

xt
4 x̄1 − xt

2 x̄3 xt
4 x̄2 − xt

2 x̄4

)

.

The properties P1, P2, and P3 are summarized in the properties

xt
3x1 = xt

1x3, xt
3 x2 − xt

1 x4 = −Ig,

x1, x2 ∈ GL(g,C),
√−1(xt

3 x̄1 − xt
1 x̄3) is a positive matrix.
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By definition P is the set of all 2g×2g matrices

(
x1 x2

x3 x4

)

satisfying the above proper-

ties: the matrix x := x1 x−1
3 is well defined and invertible and satisfies the well-known

Riemann relations:
xt = x, Im(x) is a positive matrix.

The set of matrices x ∈ Matg×g(C) with the above properties is called the Siegel
upper half space and is denoted by H. We have U = ΓZ\P, where

ΓZ = Sp(2g,Z) = {
(
a b
c d

)

∈ GL(2g,Z) | abt = bat, cdt = dct, adt − bct = Ig}.

We have also

G0 = {
(
k k′
0 k−t

)

∈ GL(2g,C) | kk′ t = k′kt}

which acts on P from the right. The group Sp(2g,Z) acts on H by
(
a b
c d

)

· x = (ax + b)(cx + d)−1,

(
a b
c d

)

∈ Sp(2g,Z), x ∈ H,

and we have the isomorphism

U/G0 → Sp(2g,Z)\H,

given by (
x1 x2

x3 x4

)

→ x1 x−1
3 .

To each point x of P we associate a triple (Ax, θx, αx) as follows: we have Ax :=
Cg/Λx, where Λx is the Z-submodule of Cg generated by the rows of x1 and x3.
We have cycles δi ∈ H1(Ax,Z), i = 1, 2, . . . , 2g, which are defined by the property

[
∫

δi
dz j] =

(
x1

x3

)

, where z j, j = 1, 2, . . . , g, are linear coordinates of Cg. There is a

basis αx = {α1, α2, . . . , α2g} of H1
dR(Ax) such that

[
∫

δi

α j] =

(
x1 x2

x3 x4

)

.

The polarization in H1(Ax,Z) � Λx (which is defined by [〈δi, δ j〉] = Ψ0) is an
element θx ∈ H2(Ax,Z) =

∧2
i=1 Hom(Λx,Z). It gives the following bilinear map

〈·, ·〉 : H1
dR(Ax)× H1

dR(Ax) → C, 〈α, β〉 = 1

2πi

∫

Ax

α ∪ β ∪ θg−1
x

which satisfies [〈αi, α j〉] = Ψ0.
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The triple (Ax, θx, αx) that we constructed in the previous paragraph does not
depend on the action of Sp(2g,Z) from the left on P; therefore, for each x ∈ U, we
have constructed such a triple. In fact U is the moduli space of the triples (A, θ, α)
such that A is a principally polarized abelian variety with a polarization θ and α is a
basis of H1

dR(A) compatible with the Hodge filtration F1 ⊂ F0 = H1
dR(A) and such

that [〈αi, α j〉] = Ψ0.
We constructed the moduli space U in the framework of complex geometry. In

order to introduce Siegel quasi-modular forms, we have to study the same moduli
space in the framework of algebraic geometry. We have to construct an algebraic
variety T over C such that the points of T are in one-to-one correspondence with
the equivalence classes of the triples (A, θ, α). We also expect that T is an affine
variety and it lies inside another affine variety T̃ which describes the degeneration
of varieties (as it is explained in Sect. 4.3). The pullback of the C-algebra of regular
functions on T̃ through the composition

H→ P → U
pm−1→ T ↪→ T̃

is, by definition, the C-algebra of Siegel quasi-modular forms. The first map is
given by

z →
(

z −Ig

Ig 0

)

and the second is the canonical map. The period map in this case is a biholomor-
phism. If we impose a functional property for f regarding the action of G0, then this
will be translated into a functional property of a Siegel quasi-modular form with
respect to the action of Sp(2g,Z). In this way we can even define a Siegel quasi-
modular form defined overQ (recall that we expect T̃ to be defined overQ). It is left
to the reader to verify that the C-algebra of Siegel quasi-modular forms is closed
under derivations with respect to zi j with z = [zi j] ∈ H. For the realization of all
these in the case of elliptic curves, g = 1; see the Introduction and [14]. See the
books [4, 10, 12] for more information on Siegel modular forms.

5.2 Hodge Numbers, 1, 1, 1, 1

In this section we consider the case m = 3 and the Hodge numbers h30 = h21 =

h12 = h03 = 1, h = 4. The polarization matrix written in an integral basis is given by

Ψ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us fix a basis ω1, ω2, ω3, ω4 of V0 compatible with the Hodge filtration F•0, a
basis δ1, δ2, δ3, δ4 ∈ VZ(x)∨ with the intersection matrix Ψ0, and let us write the
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period matrix in the form pm(x) = [xi j]i, j=1,2,...,4. We assume that the polarization ψ0

in the basis ωi is given by the matrix

Φ0 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The algebraic group G0 is defined to be

G0 :=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11 g12 g13 g14

0 g22 g23 g24

0 0 g33 g34

0 0 0 g44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, gtΦ0g = Φ0, gi j ∈ C

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

One can verify that it is generated by six one-dimensional subgroups, two of them
isomorphic to the multiplicative group C∗ and four of them isomorphic to the ad-
ditive group C. Therefore, G0 is of dimension 6. We consider the subset H̃ of P
consisting of matrices

τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ0 1 0 0
1 0 0 0
τ1 τ3 1 0
τ2 −τ0τ3 + τ1 −τ0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where τi, i = 0, 1, 2, 3, are some variables in C (they are coordinates of the cor-
responding moduli space of polarized Hodge structures and so this moduli space
is of dimension four). The particular expressions for the (4, 2) and (4, 3) entries of
the above matrix follow from the polynomial relations (15) between periods. The
connection matrix A restricted to H̃ is

dτt · τ−t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 dτ0 −τ3dτ0 + dτ1 −τ1dτ0 + τ0dτ1 + dτ2

0 0 dτ3 −τ3dτ0 + dτ1

0 0 0 −dτ0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Griffiths transversality distribution is given by

−τ3dτ0 + dτ1 = 0, −τ1dτ0 + τ0dτ1 + dτ2 = 0,

and so if we consider τ0 as an independent parameter defined in a neighborhood of
+
√−1∞, and all other quantities τi depending on τ0, then we have

τ3 =
∂τ1

∂τ0
,

∂τ2

∂τ0
= τ1 − τ0

∂τ1

∂τ0
. (21)

In [15] we have checked the conjectures in Sect. 4.3 for the Calabi–Yau threefolds
of mirror quintic type. In this case dim(T ) = 7 = 1 + 6, where 1 is the dimension of
the moduli space of mirror quintic Calabi–Yau varieties and 6 is the dimension of
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the algebraic group G0. Hence, we have constructed an algebra generated by seven
functions in τ0, which we call it the algebra of quasi-modular forms attached to
mirror quintic Calabi–Yau varieties. The image of the geometric period map lies in
H with

τ1 = −25

12
+

5

2
τ0(τ0 + 1) +

1

(2πi)2

∞∑

n=1

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

d|n
ndd3

⎞
⎟⎟⎟⎟⎟⎟⎠

e2πiτ0n

n2
. (22)

Here, nd’s are instanton numbers and the second derivative of τ1 with respect to τ0

is the Yukawa coupling. The Yukawa coupling itself turns out to be a quasi-modular
form in our context but not its double primitive τ1. The set H is a subset of H̃ de-
fined by (21) and (22). As far as I know this is the first case in which the Griffiths
period domain is not Hermitian symmetric, and we have an attached algebra of
quasi-modular forms and even the Global Torelli problem is true; that is, the period
map is globally injective (see [6]). However, note that in [15] we have only used the
local injectivity of the period map. In this case we can prove that the pullback map
from the algebra of regular functions on T̃ to the algebra of holomorphic functions
on H is injective. Our quasi-modular form theory in this example is attached to mir-
ror quintic Calabi–Yau varieties and not the corresponding period domain. There
are other functions τ1 attached to one-dimensional families of varieties and the cor-
responding period maps. They may have their own quasi-modular forms algebra
different from the one explained in this section.
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The Zero Locus of the Infinitesimal Invariant

G. Pearlstein and Ch. Schnell

Abstract Let ν be a normal function on a complex manifold X. The infinitesimal
invariant of ν has a well-defined zero locus inside the tangent bundle T X. When X
is quasi-projective, and ν is admissible, we show that this zero locus is constructible
in the Zariski topology.

Key words: Normal functions, Hodge classes, Algebraic cycles, Mixed Hodge
modules
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14K30

1 Introduction

Let H be a variation of Hodge structure of weight −1 on a Zariski open subset of
a smooth complex projective variety X. We shall assume that H is polarizable and
defined over Z. We denote the Hodge filtration on the underlying flat vector bundle
HO by the symbol F•HO . Let ν be a normal function, that is to say, a holomorphic
and horizontal section of the family of intermediate Jacobians J(H). For any local
lifting ν̃ to a holomorphic section of HO , we have

∇ ν̃ ∈ Ω1
X ⊗OX F−1HO ,

G. Pearlstein (�)
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
e-mail: gpearl@math.msu.edu

C. Schnell
Department of Mathematics, Stony Brook University, Stony Brook NY 11794-3651
e-mail: cschnell@math.sunysb.edu

R. Laza et al. (eds.), Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds,
Fields Institute Communications 67, DOI 10.1007/978-1-4614-6403-7 24,
© Springer Science+Business Media New York 2013

589

mailto:gpearl@math.msu.edu
mailto:cschnell@math.sunysb.edu


590 G. Pearlstein and C. Schnell

which is independent of the choice of lifting modulo ∇(F0HO ). We are interested
in the subset of the tangent bundle T X defined by the condition ∇ ν̃ ∈ ∇(F0HO ).
Concretely, this is the set

I(ν) =
{
(x, ξ) ∈ T X

∣
∣∣ ∇ξ(ν̃− σ)(x) = 0 for some σ ∈ F0HO

}
.

The following theorem describes the structure of I(ν) for admissible ν.

Theorem 1.1. Suppose that ν is an admissible normal function on a Zariski open
subset of a smooth complex projective variety X. Then I(ν) is constructible with
respect to the Zariski topology on T X.

Recall that a subset of an algebraic variety is constructible if it is a finite union
of subsets that are locally closed in the Zariski topology. At least locally, there is no
reason for I(ν) to be closed, as the following example shows.

Example 1.2. On the unit disk Δ with coordinate t, the constant local system Z3 can
be made into a variation of mixed Hodge structure V , letting W−1VO be spanned
by the vectors (1, 0, 0) and (0, 1, 0), and letting F0VO be spanned by the vectors
(1, i+ t2, 0) and (0, t, 1). Since Im(t2) < 1 for t ∈ Δ, the variation of Hodge structure
on W−1VO is polarized by the standard alternating form on Z2. For the corresponding
normal function ν, one shows easily that the tangent vector a d

dt at the point t ∈ Δ
belongs to the set I(ν) if and only if there is a holomorphic function f such that

a · f ′(t) = 0 and a ·
(
t2 f ′(t) + 2t f (t) + 1

)
= 0

are satisfied at t. It follows that I(ν) is equal to the tangent bundle of Δ with all
nonzero tangent vectors over t = 0 removed, and therefore not closed.

Remark 1.3. If one defines the infinitesimal invariant of ν via the quotient sheaf
construction

δν = [∇ ν̃] ∈ (F−1 ⊗ Ω1)/(∇F0)

then ν is locally constant as soon as δν vanishes on any stalk. In contrast, as shown
above, we are defining the vanishing of the infinitesimal invariant pointwise.

Remark 1.4. The previous example can be made geometric as follows: Let Q ⊂ P3

be the quadric defined by x2
0+ x2

1+ x2
2+ x2

3 = 0. Fix a ∈ C−{1, 0,−1}. Then, for each
u ∈ S = C−{1, 0,−1,−a} the quadric Qu ⊂ P3 defined by ax2

0 + x2
1− x2

2− ux2
3 = 0

intersects Q in a smooth curve Eu of genus 1. The algebraic cycle Z on Q given
by twice the difference of two non-parallel lines determines a normal function νZ

over S which vanishes at the point u = a (see Example 3.7). Therefore, if we set
u = a+ t2 we obtain a normal function ν over Δ such that ν(0) = 0 and the derivative
of the local period map of the associated variation of Hodge structure also vanishes
to order 1 at t = 0.

The proof of Theorem 1.1 is given in Sect. 2. In Sect. 3, we describe the relation-
ship between this paper and the study of algebraic cycles via the approach to the
Hodge conjecture by Green–Griffiths [7] using singularities of normal functions.
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2 Proof of the Theorem

2.1 Algebraic Description of the Zero Locus

Since X is a projective algebraic variety, it is possible to describe the zero locus I(ν)
of the infinitesimal invariant of ν purely in terms of algebraic objects. In this section,
we shall do this by a straightforward classical argument.

Using resolution of singularities, we may assume without loss of generality that ν
is an admissible normal function on X − D, where X is a smooth projective variety,
and D ⊆ X is a divisor with normal crossings. Let V be the admissible variation
of mixed Hodge structure with Z-coefficients corresponding to ν; then W−1V =
H and W0V/W−1V � Z(0) by our choice of weights. The integrable connection
∇ : VO → Ω1

X−D⊗VO on the underlying holomorphic vector bundle VO has regular
singularities; because X is projective algebraic, it follows from [5] that VO and ∇
are algebraic. Admissibility implies that each Hodge bundle F pVO is an algebraic
subbundle of VO ; note that they satisfy ∇(F pVO

) ⊆ Ω1
X−D ⊗ F p−1VO because of

Griffiths transversality.
To prove the constructibility of I(ν), our starting point is the exact sequence

0 → F0HO → F0VO → O → 0 (1)

of algebraic vector bundles on X − D. Let U be any affine Zariski open subset
of X − D with the following two properties: (1) both F0HO and F−1HO/F0HO

restrict to trivial bundles on U; (2) there are coordinates x1, . . . , xn ∈ Γ(U, OU),
where Γ(U,−) always denotes the space of all algebraic sections of an algebraic
coherent sheaf. Since X − D can be covered by finitely many such open subsets, it
is clearly sufficient to show that I(ν) ∩ TU is a constructible subset of TU.

By our choice of U, the tangent bundle TU is trivial; let ξ1, . . . , ξn ∈ Γ(TU, OTU)
be the coordinates in the fiber direction corresponding to the algebraic vector fields
∂/∂x1, . . . , ∂/∂xn. Let q = rkF0HO and p = rkF−1HO ≥ q; we can then choose
algebraic sections e1, . . . , ep ∈ Γ(U, F−1HO) such that e1, . . . , eq ∈ Γ(U, F0HO ) are
a frame for F0HO , and e1, . . . , ep are a frame for F−1HO . For i = 1, . . . , q, we get

∇ei =

n∑

k=1

p∑

j=1

dxk ⊗ ak
i, je j

with certain functions ak
i, j ∈ Γ(U, OU). Let ν̃ ∈ Γ(U, F0VO ) be any lifting of the

element 1 ∈ Γ(U, OX); then ∇ ν̃ ∈ Γ(U, Ω1
U ⊗ F−1HO ) can be written in the form

∇ ν̃ =
n∑

k=1

p∑

j=1

dxk ⊗ f k
j e j

for certain functions f k
j ∈ Γ(U, OU). By definition, a point (x, ξ) ∈ TU lies in the

zero locus I(ν) of the infinitesimal invariant if and only if there are holomorphic
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functions ϕ1, . . . , ϕq defined in a small open ball around x ∈ U, such that

∇
⎛
⎜⎜⎜⎜⎜⎝ν̃−

q∑

i=1

ϕiei

⎞
⎟⎟⎟⎟⎟⎠

vanishes at the point (x, ξ). When expanded, this translates into the condition that

n∑

k=1

p∑

j=1

ξk f k
j (x)e j =

q∑

i=1

n∑

k=1

ξk
∂ϕi

∂xk
(x)ei +

q∑

i=1

ϕi(x)
n∑

k=1

p∑

j=1

ξkak
i, j(x)e j.

This is a system of p linear equations in the q(n + 1) complex numbers

ϕi(x) and
∂ϕi

∂xk
(x) (for 1 ≤ i ≤ q and 1 ≤ k ≤ n),

with coefficients in the ring Γ(TU, OTU) of regular functions on TU. The proof of
Proposition 2.9 shows that the set of points (x, ξ) ∈ TU, where this system has a
solution, is a constructible subset of TU. This completes the proof of Theorem 1.1.

Remark 2.1. In the case of an normal function ν arising from a family of cycles
defined over a subfield k of C, I(ν) is defined over a finite extension of k. More
precisely, let ν : S → J(H) be a k-motivated normal function as in Sect. 4.5 of [10].
Then, as in the proof of Theorem 89 of [10], we see that by virtue of the algebraicity
of the Gauss–Manin connection, Gal(C/k) permutes the components of I(ν).

2.2 A More Sophisticated Description

For some purposes, it is better to have a natural extension of I(ν) to the entire cotan-
gent bundle T X, without modifying the ambient variety X. In this section, we in-
dicate how such an extension can be constructed using the theory of mixed Hodge
modules [11].

We begin by recalling how one associates a short exact sequence of the form

0 → F0M→ F0N → OX → 0 (2)

to the given admissible normal function; here F0M and F0N are algebraic coherent
sheaves on X, and all three morphisms are morphisms of algebraic coherent sheaves.

The polarizable variation of Hodge structure H extends uniquely to a polarizable
Hodge module with strict support equal to X. We denote by M the underlying regu-
lar holonomic DX-module; it is the minimal extension of the flat vector bundle HO .
It has a good filtration F•M by OX-coherent subsheaves, and FkM is an extension
of the Hodge bundle F−kHO . Since X is a complex projective variety, each FkM is
an algebraic coherent sheaf, and M is an algebraic DX-module.
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Because the normal function ν is admissible, the corresponding variation of
mixed Hodge structure extends uniquely to a mixed Hodge module on X; in fact,
this condition is equivalent to admissibility [12], p. 243. Let N denote the under-
lying regular holonomic DX-module, and F•N its Hodge filtration; as before, N is
an algebraic DX-module, and each FkN is an algebraic coherent sheaf. We have an
exact sequence of regular holonomic DX-modules

0 →M→ N → OX → 0,

in which all three morphisms are strict with respect to the Hodge filtration; in par-
ticular, (2) is an exact sequence of algebraic coherent sheaves on X. Because N is a
filtered DX-module, we have C-linear morphisms TX ⊗ FkN → Fk+1N ; note that
they are not OX-linear.

We can use the exact sequence in (2) to construct an extension of the zero locus
I(ν) to all of X. Inside the tangent bundle T X, we define a subset

Ĩ(ν) =
{
(x, ξ) ∈ T X

∣
∣
∣ (ξ · σ)(x) = 0 for some σ ∈ F0N with σ �→ 1

}
,

where the notation “σ ∈ F0N ” means that σ is a holomorphic section of the sheaf
F0N , defined in some open neighborhood of the point x ∈ X.

Lemma 2.2. We have Ĩ(ν) = I(ν) over the Zariski open subset of X where the vari-
ation of Hodge structure H is defined.

Proof. This is obvious from the definitions.

Denote by p : T X → X the projection. The pullback p∗TX of the tangent sheaf
has a tautological global section θ; in local holomorphic coordinates x1, . . . , xn on
X, and corresponding coordinates (x1, . . . , xn, ξ1, . . . , ξn) on T X, it is given by the
formula

θ(x1, . . . , xn, ξ1, . . . , ξn) = ξ1
∂

∂x1
+ · · · + ξn

∂

∂xn
.

Let M̃ denote the pullback of M to a filtered D-module on the tangent bundle;
because p is smooth, we have M̃ = p∗M and FkM̃ = p∗FkM. Similarly define Ñ .

Lemma 2.3. In the notation introduced above, we have

Ĩ(ν) =
{
(x, ξ) ∈ T X

∣
∣
∣ (θ · σ̃)(x, ξ) = 0 for some σ̃ ∈ F0Ñ with σ̃ �→ 1

}
.

Proof. The set on the right-hand side clearly contains Ĩ(ν). To prove that the two sets
are equal, suppose that we have (θ · σ̃)(x, ξ) = 0 for some holomorphic section σ̃
of F0Ñ , defined in a neighborhood of the point (x, ξ) ∈ T X. Since F0Ñ = p∗F0N ,
we can write σ̃ =

∑
k fk · p∗σk for suitably chosen fk ∈ OT X and σk ∈ F0N .

Define σ =
∑

k fk(−, ξ)σk by setting ξ constant; then σ ∈ F0N and σ �→ 1. A brief
calculation in local coordinates shows that

(ξ · σ)(x) = (θ · σ̃)(x, ξ) = 0,

and so we get (x, ξ) ∈ Ĩ(ν) as desired.
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The next step is to show that Ĩ(ν) is the zero locus of a holomorphic section of
an analytic coherent sheaf on T X. Let F denote the analytic coherent sheaf on T X
obtained by taking the quotient of F1M̃ by the analytic coherent subsheaf generated
by θ · F0M̃. For any local holomorphic section σ ∈ F0Ñ with σ �→ 1, we have
θ · σ ∈ F1M̃, and the image of θ · σ in the quotient sheaf F is independent of
the choice of σ, due to the exactness of (2). In this manner, we obtain a global
holomorphic section s of the sheaf F .

Lemma 2.4. Ĩ(ν) is the zero locus of the section s of the coherent sheaf F .

Proof. If (x, ξ) ∈ Ĩ(ν), then we have (θ · σ̃)(x, ξ) = 0 for some choice of σ̃ ∈ F0Ñ
with σ �→ 1; in particular, s(x, ξ) = 0. Conversely, suppose that we have s(x, ξ) = 0
for some point (x, ξ) ∈ T X. By definition of F , we can then find local sections
σ̃k ∈ F0M̃ and local holomorphic functions fk ∈ OT X , such that

θ · σ̃−
∑

k

fkθ · σ̃k

vanishes at the point (x, ξ). Set ak = fk(x, ξ) ∈ C; then

θ ·
⎛
⎜⎜⎜⎜⎜⎝σ̃−

∑

k

aiσ̃k

⎞
⎟⎟⎟⎟⎟⎠ = θ · σ̃−

∑

k

akθ · σ̃k

also vanishes at (x, ξ), and this shows that (x, ξ) ∈ Ĩ(ν).

Despite the analytic definition, both F and s are actually algebraic objects.

Lemma 2.5. F is an algebraic coherent sheaf on T X, and s ∈ Γ(T X, F ) is an
algebraic global section.

Proof. Each FkM̃ = p∗FkM is an algebraic coherent sheaf on T X, and since the
tautological section θ ∈ Γ(T X, p∗TX) is clearly algebraic, it follows that F is an
algebraic coherent sheaf. To show that the global section s ∈ Γ(T X, F ) is algebraic,
observe that we have an exact sequence of algebraic coherent sheaves

0 → F0M̃→ F0Ñ → OT X → 0;

indeed, (2) is exact, and p : T X → X is a smooth affine morphism. At every point
(x, ξ) ∈ T X, we can therefore find an algebraic section σ ∈ F0Ñ , defined in a
Zariski open neighborhood of (x, ξ), such that σ �→ 1. This clearly implies that s,
which is locally given by the image of θ · σ in F , is itself algebraic.

To prove Theorem 1.1, it is clearly sufficient to show that the set Ĩ(ν) is con-
structible in the Zariski topology on T X. Lemmas 2.4 and 2.5 reduce the problem to
the following general result in abstract algebraic geometry: On any algebraic variety,
the zero locus of a section of a coherent sheaf is constructible (but not, in general,
Zariski closed). This fact is certainly well-known, but since it was surprising to us
at first, we have decided to include a simple proof in the following section.
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Remark 2.6. As outlined in the introduction of [3], higher Chow cycles give rise to
higher normal functions which can be viewed as extensions of Z(0) by variations of
Hodge structure negative weight. The formalism of mixed Hodge modules remains
valid in this setting, and hence the corresponding infinitesimal vanishing locus Ĩ(ν)
is the zero locus of a section of a coherent sheaf, and hence constructible.

2.3 Zero Loci of Sections of Coherent Sheaves

In this section, we carefully define the “zero locus” for sections of coherent sheaves,
and show that it is always constructible in the Zariski topology. This is obviously a
local problem, and so it suffices to consider the case of affine varieties. Let R be a
commutative ring with unit; to avoid technical complications, we shall also assume
that R is Noetherian. For any prime ideal p ⊆ R, we denote by the symbol

κ(p) = Rp/pRp

the residue field at p; it is isomorphic to the field of fractions of the local ring Rp.
Let X = Spec R be the set of prime ideals of the ring R, endowed with the Zariski
topology. For any ideal I ⊆ R, the set

V(I) =
{
p ∈ X

∣
∣∣ p ⊇ I

}

is closed in the Zariski topology on X, and any closed subset is of this form; likewise,
for any element f ∈ R, the set

D( f ) =
{
p ∈ X

∣
∣∣ p 
 f

}

is an open subset, and these open sets form a basis for the Zariski topology.

Definition 2.7. A subset of X is called constructible if it is a finite union of subsets
of the form D( f ) ∩ V(I).

Here is how this algebraic definition is related to constructibility on complex
algebraic varieties. Suppose that R is a C-algebra of finite type. Let X(C) be the
set of all maximal ideals of R, endowed with the classical topology; it is an affine
complex algebraic variety, and the inclusion mapping X(C) ↪→ X is continuous.

Definition 2.8. A subset of X(C) is called constructible (in the Zariski topology) if
it is the set of maximal ideals in a constructible subset of X.

Any coherent sheaf on X = Spec R is uniquely determined by the finitely gener-
ated R-module of its global sections; conversely, any finitely generated R-module M
defines a coherent sheaf on X, and hence by restriction to the subset X(C) an alge-
braic coherent sheaf FM on X(C). Its fiber at the point corresponding to a maximal
ideal m ⊆ R is the finite-dimensional C-vector space
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M ⊗R κ(m) = Mm/mMm.

Similarly, any element m ∈ M defines an algebraic global section sm of the
sheaf FM . Obviously, sm vanishes at the point corresponding to a maximal ideal
m ⊆ R if and only if m goes to zero in M ⊗R κ(m). Thus if we define

Z(M, m) =
{
p ∈ X

∣∣
∣ m goes to zero in M ⊗R κ(p)

}
,

then the zero locus of sm on X(C) is precisely the set of maximal ideals in Z(M, m).
Thus the desired result about zero loci of sections of coherent sheaves is a conse-
quence of the following general theorem in commutative algebra.

Proposition 2.9. Let R be a commutative Noetherian ring with unit. Then for any
finitely generated R-module M, and any m ∈ M, the set Z(M, m) is constructible.

Proof. We are going to construct a finite covering

Spec R =
n⋃

k=1

D( fk) ∩ V(Ik)

with f1, . . . , fn ∈ R and I1, . . . , In ⊆ R, such that for every k = 1, . . . , n, one has

Z(M, m) ∩ D( fk) ∩ V(Ik) = D( fk) ∩ V(Ik + Jk),

for a certain ideal Jk ⊆ R. This is sufficient, because it implies that

Z(M, m) =
n⋃

k=1

D( fk) ∩ V(Ik + Jk)

is a constructible subset of Spec R.
Since M is finitely generated and R is Noetherian, we may find a presentation

R⊕q A−→ R⊕p →→ M, (3)

in which A is a p× q-matrix with entries in R. Let y ∈ R⊕p be any vector mapping
to m ∈ M. Then Z(M, m) is the set of p ∈ Spec R such that the equation y = Ax has
a solution over the field κ(p).

We construct the desired covering of Spec R by looking at all possible minors
of the matrix A. Fix an integer 0 ≤ � ≤ min(p, q) and an � × �-submatrix of A;
to simplify the notation, let us assume that it is the � × �-submatrix in the upper
left corner of A. Let f be the determinant of the submatrix, and let I be the ideal
generated by all minors of A of size (� + 1) × (� + 1); if � = 0, we set f = 1,
and if � = min(p, q), we set I = 0. We can then make a coordinate change in R⊕q,
invertible over the localization R f = R[ f−1], and arrange that
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 0 · · · 0 0 · · · 0
0 f · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · f 0 · · · 0
a�+1,1 a�+1,2 · · · a�+1,� a�+1,�+1 · · · a�+1,q

...
...

...
...

...
ap,1 ap,2 · · · ap,� ap,�+1 · · · ap,q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Matp×q(R).

Note that our change of coordinates involves multiplication by the adjugate of the
submatrix, and hence the determinant of the submatrix is now f �. To continue, let
J ⊆ R be the ideal generated by the elements

f yi −
�∑

j=1

ai, jy j

for i = � + 1, . . . , p. Then we have

Z(M, m) ∩ D( f ) ∩ V(I) = D( f ) ∩ V(I + J).

Indeed, suppose that p is any prime ideal with f � p and I ⊆ p. Since ai, j ∈ p for
every � + 1 ≤ i ≤ p and � + 1 ≤ j ≤ q, the equation y = Ax reduces over the field
κ(p) to the equations yi = f xi for i = 1, . . . , �, and

yi =

�∑

j=1

ai, jx j

for i = � + 1, . . . , p; they are obviously satisfied if and only if J ⊆ p.
We now obtain the assertion by applying the above construction of f , I, and J to

all possible � × �-submatrices of A.

Here is a simple example to show that, when the coherent sheaf is not locally
free, the zero locus of a section need not be Zariski closed.

Example 2.10. Let R = C[x, y], let M be the ideal of R generated by x, y, and let
m = x. Then M has a free resolution of the form R → R⊕2, and p ∈ Z(M, m) if and
only if the equations 1 + y f = 0 and x f = 0 have a common solution f ∈ κ(p). A
simple computation now shows that

Z(M, m) =
{
p ∈ Spec R

∣∣
∣ x ∈ p and y � p

}
.

As a subset of C2, the zero locus consists of the y-axis minus the origin; it is con-
structible, but not Zariski closed.
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3 Relation to Algebraic Cycles

3.1 Green-Griffiths Program

Our interest in the algebraicity of I(ν) is motivated in part by the program [7] of
Green and Griffiths to study the Hodge conjecture via singularities of normal func-
tions. More precisely, given a smooth complex projective variety X, a very ample
line bundle L → X and a non-torsion, primitive Hodge class ζ of type (n, n) on X,
Griffiths and Green construct an admissible normal function

νζ : P− X̂ → J(H)

on the complement of the dual variety X̂ in P = PH0(X,O(L)). At each point x̂ ∈ X̂,
the cohomology class of νζ localizes to an invariant

singx̂(νζ) ∈ IH1
x̂(H)

called the singularity of νζ at x̂. A normal function νζ is said to be singular if there
is a point x̂ ∈ X̂ at which singx̂(νζ) is non-torsion.

Conjecture 3.1. Let (X, L, ζ) be as above. Then, there exists an integer k > 0 such
that after replacing L by Lk, the associated normal function νζ is singular.

Theorem 3.2 ([2, 4, 7]). Conjecture (3.1) holds (for every even dimensional X and
every non-torsion, primitive middle dimensional Hodge class ζ) if and only if the
Hodge conjecture holds (for all smooth projective varieties).

Now, as explained in part III of [7] one can also define a notion singx̂(δνζ) of the
singularities of infinitesimal invariant δνζ of νζ . Moreover,

singx̂(δνζ) = singx̂(νζ)

for L 5 0. As a first attempt at constructing points at which νζ is singular, observe
that

Z(νζ ) = { p ∈ P− X̂ | νζ(p) = 0 }
is an analytic subset of P − X̂, and hence it is natural to ask if its closure is an
algebraic subvariety of P which intersects X̂ at some point where νζ is singular. An
affirmative answer is provided by the following two results:

Theorem 3.3 ([1, 9, 14]). If S is a smooth complex algebraic variety and ν : S →
J(H) is an admissible normal function then Z(ν) is an algebraic subvariety of S .

Proposition 3.4 ([13]). Let νζ be the normal function on P \ X̂, associated to a non-
torsion primitive Hodge class ζ ∈ H2n(X,Z) ∩ Hn,n(X). Assume that Z(νζ) contains
an algebraic curve C, and that P = |Ld| for L very ample and d ≥ 3. Then νζ is
singular at one of the points where the closure of C meets X̂.
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The caveat here, which is illustrated in the example (3.7) below, is that there is no
reason for Z(νζ) to contain a curve. The advantage of working with the infinitesimal
invariant is that it is often easier to compute [8], and will vanish along directions
tangent to Z(ν). Of course, I(ν) will also contain the directions tangent to any m-
torsion locus of ν, as well as potentially other components.

Question 3.5. Is there an analog of Proposition (3.4) for I(νζ)?

Remark 3.6. The study of zero loci of normal function also arises in connection with
the construction of the Bloch–Beilinson filtration on Chow groups. For a survey of
results of this type, see [10].

The determination of a good notion of the expected dimension of the zero locus of
a normal function is an important open problem in the study of algebraic cycles. In
particular, in the Green–Griffiths setting, if a smooth projective variety has moduli,
any reasonable expected dimension count is probably only valid at the generic point
of the locus where the class ζ remains a Hodge class.

In the case of a smooth projective surface X, if L = O(D) is a very ample line
bundle, then a Riemann–Roch calculation shows the expected dimension of the zero
locus of the associated normal functions arising from the Green–Griffiths program
(i.e., comparing the dimensions of the fiber and the base) is

−(D · KX) + χ(OX)− 2

where KX is the canonical bundle of X. For X of general type, on the basis of this
calculation one would expect the zero locus to be empty for all sufficiently ample
L. We close with a careful study of a simple example of normal function of Green–
Griffiths type for which the naive expected dimension count is positive.

Example 3.7. Let X = P1×P1 viewed as the smooth quadric Q = V(q) ⊆ P3 defined
by the vanishing of q = x2

0 + x2
1 + x2

2 + x2
3. Let Lα and Lβ be the lines on Q defined

by the equations

Lα : t �→ [1, t, it, i], Lβ : t �→ [1, t,−it, i]

Then, the difference ζ = [Lα]− [Lβ] is a primitive Hodge class on X. For future use,
we also introduce the line

Lγ : t �→ [1, t,−it,−i]

which is parallel to Lα and intersects Lβ at t =∞.
Let P = PH0(X,O(2)). Then, the associated normal function νζ assigns to each

smooth section
Xσ = V(q) ∩ V(σ)

the class of (Lα − Lβ) ∩ V(σ) in the Jacobian of Xσ. A naive expected dimension
count for the zero locus of νζ can be obtained as follows: The dimension of P is
8 = 10 − 1 − 1 since the space of quadratic forms on C4 has dimension 10, and
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we need mod out by Q and then projectivize. The adjunction formula shows the
fibers Xσ to have genus 1. Accordingly, the graph of νζ in the associated bundle
of Jacobians J → P has codimension 1. Likewise, the zero section of J is also
codimension 1, and so to first approximation the zero locus of νζ in this case should
have codimension 2 in J, which corresponds to a seven-dimensional subvariety of P.

To see that the zero locus of νζ is in fact empty, let Y ⊂ P3 be a smooth quadric
which intersects X in a smooth curve E. Let Λ ⊂ X be a line of the form {z} × P1

which intersects E in a pair of distinct points

e = (z, w), f = (z, w′)

Let the line Υ = P1 × {w} intersect E in the divisor e + g. Then, since every line on
X is parallel to either Λ or Υ, it follows that Lα − Lβ intersects E in a divisor which
is linearly equivalent to

(e + f )− (e + g) ∼ f − g

Accordingly, if νζ vanishes at Y then f ∼ g and hence Λ = Υ.
As a consequence of symmetries however, the 2-torsion locus of νζ is non-zero.

To be explicit, let S = C − {−1,−i, 0, i, 1} and μ : S → P be the map which
associates to a point s ∈ S the quadric

Qs = V(s2x2
0 + x2

1 − x2
2 − s2x2

3)

Then, for each s ∈ S , the associated curve Xμ(s) is smooth.
Let θ be the involution of P3 induced by the linear map

(c0, c1, c2, c3) �→ (−c3,−c2, c1, c0)

on C4. Then, the lines Lα and Lγ are the projectivizations of the ±i-eigenspaces
of this map, and hence are pointwise fixed under the action of θ. The involution θ
also fixes the quadrics Q and Qs, and hence the curve Xμ(s). Consequently, the fixed
points of the action θ on Xμ(s) are exactly the four points

α1 = [1, is,−s, i], α2 = [1,−is, s, i]

γ1 = [1, is, s,−i], γ2 = [1,−is,−s,−i]

corresponding to the intersection of the lines Lα and Lγ with Qs. The line Lβ on the
other hand intersects Qs at the points

β1 = [1, is, s, i], β2 = [1,−is,−s, i]

which are interchanged under the action of θ.
Let

F1 = sx0 + ix1 − x2 + isx3

F2 = sx0 − ix1 + x2 + isx3

F3 = ix1 + x2
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Then, direct calculation shows that V(F1) is a plane passing through
{α1, α2, γ1} which is also tangent to Es at γ1. Similarly, V(F2) is a plane passing
through {α1, α2, γ2} which is tangent to Es at γ2. Finally, V(F3) is a plane pass-
ing through {β1, β2, γ1, γ2}. Moreover, one can easily check that these planes have
no additional points of intersection or tangency other than the ones listed above.
Therefore, the rational function

F = (F1F2)/F2
3

on P3 restricts to a meromorphic function on Es with divisor

(α1 + α2 + 2γ1) + (α1 + α2 + 2γ2)− 2(β1 + β2 + γ1 + γ2) = 2(α1 + α2)− 2(β1 + β2)

and hence 2νζ vanishes along the image of μ.
Finally, to get a 7-dimensional subvariety of P as predicted above, observe that

the group S O(4) has dimension 6 and acts on P3 preserving the quadric Q. This ac-
tion also fixes the integral Hodge class ζ, and hence acts on the 2-torsion locus. The
orbit of S under the action of S O(4) therefore provides a 7-dimensional complex
analytic subvariety of P on which 2νζ vanishes.
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