
Chapter 6

SUPERVISED OUTLIER DETECTION

“True, a little learning is a dangerous thing, but it
still beats total ignorance.” – Abigail van Buren

1. Introduction

The discussion in the previous chapters focussed on the problem of
unsupervised outlier detection in which no prior information is available
about the abnormalities in the data. In such scenarios, many of the
anomalies found correspond to noise, and may not be of any interest to
an analyst. It has been observed [284, 315, 440] in diverse applications
such as system anomaly detection, financial fraud, and web robot detec-
tion that the nature of the anomalies is often highly specific to particular
kinds of abnormal activity in the underlying application. In such cases,
unsupervised outlier detection methods may often discover noise, which
may not be specific to that activity, and therefore may not also be of
any interest to an analyst. The goal of supervised outlier detection is to
incorporate application-specific knowledge into the outlier analysis pro-
cess, so as to obtain more meaningful anomalies with the use of learning
methods. Because of the rare nature of anomalies, such data is often
limited, and it is hard to create robust and generalized models on this
basis. Nevertheless, the general observation has been that the incor-
poration of learning methods can significantly improve the robustness
of the outlier analysis process. The general recommendation for outlier
analysis is to always use supervision where possible.

In most real data domains, some examples of normal or abnormal
data may be available. This is referred to as training data, and can be
used to create a classification model, which distinguishes between normal
and anomalous instances. The problem of classification has been widely

© Springer Science+Business Media New York 2013
1 69, DOI 10.1007/978- - -C.C. Aggarwal, Outlier Analysis 1 4614 6396-2_6,

170 OUTLIER ANALYSIS

studied in its own right, and numerous algorithms are available in the
literature [146] for creating supervised models from training data. In
many cases, different kinds of abnormal instances may be available, in
which case the classification model may be able to distinguish between
them. For example, in an intrusion scenario, different kinds of intrusion
anomalies are possible, and it may be desirable to distinguish among
them.

So how is the supervised outlier detection problem different from clas-
sification? The supervised outlier detection problem may be considered
a very difficult special case (or variation) of the classification problem,
depending upon the following possibilities, which may be present either
in isolation or in combination.

Class Imbalance: Since outliers are defined as rare instances in
the data, it is natural that the distribution between the normal
and rare class will be very skewed. From a practical perspective,
this implies that the optimization of classification accuracy may
not be meaningful, especially since the misclassification of positive
(outlier) instances is less desirable than the misclassification of neg-
ative (normal) instances. In other words, false positives are more
acceptable than false negatives. This leads to cost-sensitive varia-
tions of the classification problem, in which the objective function
for classification is changed.

Contaminated Normal Class Examples (Positive-Unlabeled Class
Problem): In many real scenarios, the data may originally be
present in unlabeled form, and manual labeling is performed for
annotation purposes. In such cases, only the positive class is la-
beled, and the remaining “normal” data contains some abnormal-
ities. This is natural in large scale applications such as the web
and social networks, in which the sheer volume of the underlying
data makes contamination of the normal class more likely. For
example, consider a social networking application, in which it is
desirable to determine spam in the social network feed. A small
percentage of the documents may be spam. In such cases, it may
be possible to recognize and label some of the documents as spam,
but many spam documents may remain in the examples of the
normal class. Therefore, the “normal” class may also be consid-
ered an unlabeled class. In practice however, the unlabeled class
is predominantly the normal class, and the anomalies in it may
be treated as contaminants. The classification models need to be
built to account for this. Technically, this case can be considered a
form of partial supervision [306], though it can also be treated as a

Supervised Outlier Detection 171

difficult special case of full supervision, in which the normal class
is more noisy and contaminated. Standard classifiers can be used
on the positive-unlabeled version of the classification problem, as
long as the relative frequency of contaminants is not extreme. In
cases where the unlabeled class does not properly reflect the dis-
tribution in the test instances, the use of such unlabeled classes
can actually harm classification accuracy [301].

A different flavor of incomplete supervision refers to missing train-
ing data about an entire class, rather than imperfect or noisy la-
bels. This case is discussed below.

Partial Training Information (Semi-supervision or novel class de-
tection): In many applications, examples of one or more of the
anomalous classes may not be available. For example, in an intru-
sion detection application, one may have examples of the normal
class, and some of the intrusion classes, as new kinds of intrusions
arise with time. In some cases, examples of one or more normal
classes are available. A particularly commonly studied case is the
one class variation, in which only examples of the normal class are
available. The only difference between this extreme case and the
unsupervised scenario is that the examples of the normal class are
typically guaranteed to be free of outliers. In many applications,
this is a very natural consequence of the extreme rarity of the out-
lier. For example, in a bio-terrorist attack scenario, no examples
of anomalous classes may be available, since no such event may
have occurred in the first place. Correspondingly, the examples of
the training class are also guaranteed to be free of outliers. This
particular special case, in which the training data contains only
normal classes, is much closer to the unsupervised version of the
outlier detection problem. This will be evident from the subse-
quent discussion in the chapter.

It is evident that most of the above cases are either a special case, or a
variant of the classification problem, which provides different challenges.
Furthermore, it is possible for some of these conditions to be present in
combination. For example, in an intrusion detection application, labeled
data may be available for some of the intrusions, but no labeled informa-
tion may be available for other kinds of intrusions. Thus, this scenario
requires the determination of both rare classes and novel classes. In
some cases, rare class scenarios can be reduced to partially supervised
scenarios, when only the rare class is used for training purposes. There-
fore, the boundaries between these scenarios are often blurred in real
applications. Nevertheless, since the techniques for the different scenar-

172 OUTLIER ANALYSIS

ios can usually be combined with one another, it is easier to discuss each
of these challenges separately. Therefore, a section will be devoted to
each of the aforementioned variations of the supervised outlier detection
problem.

The discussion in this chapter will be focussed on more generic forms
of multidimensional data, rather than specific kinds of data such as
temporal and spatial data. This is because the general principles of
supervised outlier detection are often independent of specific data type
and can be easily generalized to more complex data domains. The goal of
this chapter is to provide an understanding of how classification methods
need to be modified in order to address the challenges of supervised
outlier analysis. Therefore, a working knowledge of the classification
problem is assumed [146] for the purposes of this chapter. Furthermore,
a section on supervised methods will be included in many of the chapters
which address the more complex data types.

A particular form of supervision is active learning, when human ex-
perts may intervene during the outlier detection process in order to iden-
tify relevant instances. Very often, active learning may be accomplished
by providing an expert with candidates for outliers, which are followed by
the expert explicitly labeling these pre-filtered examples. In such cases,
label acquisition is combined with model construction in order to pro-
gressively incorporate more human knowledge into the outlier analysis
process. Such a human-computer cooperative approach can sometimes
provide more effective results than automated techniques.

Paucity of training data is a common problem, when the class distri-
bution is imbalanced. Even in a modestly large training data set, only
a small number of rare instances may be available. Typically, it may
be expensive to acquire examples of the rare class. Imbalanced class
distributions could easily lead to training algorithms which show differ-
entially overfitting behavior. In other words, the algorithm may behave
robustly for the normal class, but may overfit the rare class. Therefore,
it is important to design the training algorithms, so that overfitting is
avoided.

This chapter is organized as follows. The next section will discuss
the problem of rare-class detection in the fully supervised scenario. The
semi-supervised case of classification with positive and unlabeled data
will be studied in section 3. Section 4 will discuss the problem of novel
class detection. This is also a form of semi-supervision, though it is of
a different kind. Methods for outlier detection with human supervision
are addressed in section 5. The conclusions and summary are presented
in section 6.

Supervised Outlier Detection 173

2. The Fully Supervised Scenario: Rare Class
Detection

The problem of rare-class detection or class imbalance is a common
one in the context of supervised outlier detection. The straightforward
use of evaluation metrics and classifiers which are not cognizant of this
class imbalance may lead to very surprising results. For example, con-
sider a medical application in which it is desirable to identify tumors
from medical scans. In such cases, 99% of the instances may be normal,
and only 1% are abnormal.

Consider the trivial classification algorithm, in which every instance
is labeled as normal without even examining the feature space. Such a
classifier would have a very high absolute accuracy of 99%, but would
not be very useful in the context of a real application. In fact, many
forms of classifiers (which are optimized for absolute accuracy) may show
a degradation to the trivial classifier. For example, consider a k-nearest
neighbor classifier, in which the majority class label in the neighborhood
is reported as the relevant class label. Because of the inherent bias
in the class distribution, the majority class may very often be normal
even for abnormal test instances. Such an approach fails because it
does not account for the relative behavior of the test instances with
respect to the original class distribution. For example, if 49% of the
training instances among the k-nearest neighbors of a test instance are
anomalous, then that instance is much more likely to be anomalous
relative to its original class distribution. By allowing changes to the
classification criterion, such as reporting non-majority anomalous classes
as the relevant label, it is possible to improve the classification accuracy
of anomalous classes. However, the overall classification accuracy may
degrade. Of course, the question arises whether the use of measures
such as overall classification accuracy is meaningful in the first place.
Therefore, the issue of evaluation and model construction are closely
related in the supervised scenario. The first step is to identify how the
rare class distribution relates to the objective function of a classification
algorithm, and the algorithmic changes required in order to incorporate
the modifications to the modeling assumptions.

There are two primary classes of algorithms which are used for han-
dling class imbalance:

Cost Sensitive Learning: The objective function of the classifica-
tion algorithm is modified in order to weight the errors in classifi-
cation differently for different classes. Classes with greater rarity
have higher costs. Typically, this approach requires algorithm-

174 OUTLIER ANALYSIS

specific changes to different classifier models in order to account
for costs.

Adaptive Re-sampling: The data is re-sampled so as to magnify the
relative proportion of the rare classes. Such an approach can be
considered an indirect form of cost-sensitive learning, since data
re-sampling is equivalent to implicitly assuming higher costs for
misclassification of rare classes.

Both these methodologies will be discussed in this section. For the case
of the cost-sensitive problem, it will also be discussed how classification
techniques can be heuristically modified in order to approximately reflect
costs. A working knowledge of classification methods is assumed in order
to understand the material in this section. The reader is also referred
to [146] for a description of the different types of classifiers.

For the discussion in this section, it is assumed that the training
data set is denoted by D, and the labels are denoted by L = {1, . . . k}.
Without loss of generality, it can be assumed that the normal class is
indexed by 1. The ith record is denoted by Xi, and its label li is drawn
from L. The number of records belonging to the ith class are denoted
by Ni, and

∑k
i=1 Ni = N . The class imbalance assumption implies that

N1 >> N −N1. While imbalances may exist between other anomalous
classes too, the major imbalance occurs between the normal and the
anomalous classes.

2.1 Cost Sensitive Learning

In cost sensitive learning, the goal is to learn a classifier, which max-
imizes the weighted accuracy over the different classes. The misclassi-
fication cost of the ith class is denoted by ci. Some models [145] use a
O(k × k) cost matrix to represent the full spectrum of misclassification
behavior. In such models, the cost is dependent not only on the class
identity of the misclassified instance, but is also dependent on the spe-
cific class label to which it is misclassified. A simpler model is introduced
here, which is more relevant to the rare class detection problem. Here
the cost only depends on the origin class, and not on a combination of
the origin and destination class. The goal of the classifier is to learn a
training model which minimizes the weighted misclassification rate.

The choice of ci is picked in an application specific manner, though
numerous heuristics exist to pick the costs in an automated way. The
work in [497] proposes methods to learn the costs directly in a data
driven manner. Other simpler heuristic rules are used often in many
practical scenarios. For example, by choosing the value of ci to be pro-
portional to 1/Ni, the aggregate impact of the instances of each class on

Supervised Outlier Detection 175

the weighted misclassification rate is the same, in spite of the imbalance
between the classes. Such methods are at best rule-of-thumb techniques
for addressing imbalance, though more principled methods also exist in
the literature. Many such methods will be discussed in this chapter.

2.1.1 MetaCost: A Relabeling Approach. A general
framework known as MetaCost [145] uses a relabeling approach to clas-
sification. This is a meta-algorithm, which can be applied to any clas-
sification algorithm. In this method, the idea is to relabel some of the
training instances in the data, by using the costs, so that normal training
instances, which have a reasonable probability of classifying to the rare
class are relabeled to that rare class. Of course, rare classes may also be
relabeled to a normal class, but the cost-based approach is intended to
make this less likely. Subsequently, a classifier can be used on this more
balanced training data set. The idea is to use the costs in order to move
the decision boundaries in a cost-sensitive way, so that normal instances
have a greater chance of misclassification than rare instances, and the
expected misclassification cost is minimized.

In order to perform the relabeling, the classifier is applied to each in-
stance of the training data and its classification prediction is combined
with costs for re-labeling. Then, if a classifier predicts class label i with
probability pi(X) for the data instance X , then the expected misclas-
sification cost of the prediction of X , under the hypothesis that it truly
belonged to r, is given by

∑
i �=r ci ·pi(X). Clearly, one would like to min-

imize the expected misclassification cost of the prediction. Therefore,
the MetaCost approach tries different hypothetical classes for the train-
ing instance, and relabels it to the class which minimizes the expected
misclassification cost. A key question arises as to how the probabil-
ity pi(X) may be estimated from a classifier. This probability clearly
depends upon the specific classifier which is being used. While some
classifiers explicitly provide a probability score, not all classifiers pro-
vide such probabilities. The work in [145] proposes a bagging approach
[80] in which the training data is sampled with replacement (bootstrap-
ping), and a model is repeatedly constructed on this basis. The training
instances are repeatedly classified with the use of such a bootstrap sam-
ple. The fraction of predictions (or votes) for a particular class across
different training data samples are used as the classification probabili-
ties.

The challenge of such an approach is that relabeling training data
is always somewhat risky, especially if the bagged classification proba-
bilities do not reflect intrinsic classification probabilities. In fact, each
bagged classification model-based prediction is highly correlated to the

176 OUTLIER ANALYSIS

others (since they share common training instances), and therefore the
aggregate estimate is not a true probability.

In practice, the estimated probabilities are likely to be very skewed
towards one of the classes, which is typically the normal class. For ex-
ample, consider a scenario in which a rare class instance (with global
class distribution of 1%) is present in a local region with 15% concentra-
tion of rare class instances. Clearly, this rare instance shows informative
behavior in terms of relative concentration of the rare class in the local-
ity of the instance. A vanilla 20-nearest neighbor classifier will virtually
always1 classify this instance to a normal class in a large bootstrapped
sample. This situation is not specific to the nearest neighbor classifier,
and is likely to occur in many classifiers, when the class distribution is
very skewed. For example, an unmodified Bayes classifier will usually
assign a lower probability to the rare class, because of its much lower
a-priori probability, which is factored into the classification. Consider
a situation, where a hypothetically perfect Bayes classifier has a prior
probability of 1% and a posterior probability of 30% for the correct clas-
sification of a rare class instance. Such a classifier will typically assign
far fewer than 30% of the votes to the rare class in a bagged prediction,
especially2 when large bootstrap samples are used. In such cases, the
normal class will win every time in the bagging because of the prior skew.
This means that the bagged classification probabilities can sometimes be
close to 1 for the normal class in a skewed class distribution.

This suggests that the effect of cost weighting can sometimes be over-
whelmed by the erroneous skews in the probability estimation attained
by bagging. In this particular example, even with a cost ratio of 100 : 1,
the rare class instance will be wrongly relabeled to a normal class. This
moves the classification boundaries in the opposite direction of what is
desired. In fact, in cases where the unmodified classifier degrades to a
trivial classifier of always classifying to the normal class, the expected
misclassification cost criterion of [145] will result in relabeling all rare
class instances to the normal class, rather than the intended goal of
selective relabeling in the other direction. In other words, relabeling

1The probability can be (approximately) computed from a binomial distribution to be at

least equal to
∑9

i=0

(20
i

) · 0.15i · 0.8520−i and is greater than 0.999.
2The original idea of bagging was not designed to yield class probabilities [80]. Rather,
it was designed to perform robust prediction for instances, where either class is an almost
equally good fit. In cases, where one of the classes has a “reasonably” higher (absolute)
probability of prediction, the bagging approach will simply boost that probability to almost
1, when counted in terms of the number of votes. In the rare class scenario, it is expected for
unmodified classifiers to misclassify rare classes to normal classes with “reasonably” higher
probability.

Supervised Outlier Detection 177

may result in a further magnification of the errors arising from class
skew. This leads to degradation of classification accuracy, even from a
cost-weighted perspective.

In the previous example, if the fraction of the 20-nearest neighbors be-
longing to a class are used as its probability estimate for relabeling, then
much more robust results can be obtained with MetaCost. Therefore,
the effectiveness of MetaCost depends on the quality of the probability
estimate used for re-labeling. Of course, if good probability estimates are
directly available from the training model in the first place, then a test
instance may be directly predicted using the expected misclassification
cost, rather than using the indirect approach of trying to “correct” the
training data by re-labeling. This is the idea behind weighting methods,
which will be discussed in the next section.

2.1.2 Weighting Methods. Most classification algorithms
can be modified in natural ways to account for costs with some simple
modifications. The primary driving force behind these modifications
is to implicitly treat each training instance with a weight, where the
weight of the instance corresponds to its misclassification cost. This
leads to a number of simple modifications to the underlying classification
algorithms. In most cases, the weight is not used explicitly, but the
underlying classification model is changed to reflect such an implicit
assumption. Some methods have also been proposed in the literature
[496] in order to incorporate the weights explicitly into the learning
process. In the following, a discussion is provided about the natural
modifications to the more common classification algorithms.

Bayes Classifier The modification of the Bayes classifier provides the
simplest case for cost-sensitive learning. In this case, changing the weight
of the example only changes the a-priori probability of the class, and all
other terms within the Bayes estimation remain the same. Therefore,
this is equivalent to multiplying the Bayes probability in the unweighted
case with the cost, and picking the largest one. Note that this is the same
criterion that is used in MetaCost, though the latter uses this criterion
for relabeling training instances, rather than predicting test instances.
When good probability estimates are available from the Bayes classifier,
the test instance can be directly predicted in a cost-sensitive way.

Proximity-based Classifiers In nearest neighbor classifiers, the clas-
sification label of a test instance is defined to be the majority class from
its k nearest neighbors. In the context of cost-sensitive classification,
the weighted majority label is reported as the relevant one, where the

178 OUTLIER ANALYSIS

weight of an instance from class i is denoted by ci. Thus, fewer exam-
ples of the rare class need to be present in a neighborhood of a test
instance, in order for it to be reported as the relevant one. In a practical
implementation, the number of k-nearest neighbors for each class can
be multiplied with the corresponding cost for that class. The majority
class is picked after the weighting process. A discussion of methods for
k-nearest neighbor classification in the context of data classification may
be found in [506].

Rule-based Classifiers In rule-based classifiers, frequent pattern min-
ing algorithms may be adapted to determine the relevant rules at a given
level of support and confidence. A rule relates a condition in the data
(eg. ranges on numeric attributes) to a class label. The support of a rule
is defined as the number of training instances which are relevant to that
rule. The confidence of a rule is the fractional probability that the train-
ing instance belongs to the class on the right hand side, if it satisfies the
conditions on the left-hand side. Typically, the data is first discretized,
and all the relevant rules are mined from the data, at pre-specified lev-
els of support and confidence. These rules are then prioritized based on
the underlying confidence (and sometimes also the support). For a given
test instances, all the relevant rules are determined, and the results from
different rules can be combined in a variety of ways (eg. majority class
from relevant rules, top matching rule etc.) in order to yield the final
class label.

Such an approach is not difficult to adapt to the cost-sensitive case.
The main adaptation is that the weights on the different training exam-
ples need to be used during the computation of measures such as the
support or the confidence. Clearly, when rare examples are weighted
more heavily, the confidence of a rule will be much higher, when its
right hand side corresponds to a rare class because of the weighting.
This will result in the selective emphasis of rules corresponding to rare
instances. Some methods for using rule-based methods in imbalanced
data classification are proposed in [245, 247].

2.1.3 Decision Trees. In decision trees, the training data
is recursively partitioned, so that the instances of different classes are
successively separated out at lower levels of the tree. The partitioning
is performed by using conditions on one or more features in the data.
Typically, the split criterion uses the various entropy measures such
as the gini-index for deciding the choice of attribute and the position
of the split. For a node containing a fraction of instances of different
classes denoted by p1 . . . pk, its gini-index is denote by 1 − ∑k

i=1 p
2
i .

Supervised Outlier Detection 179

10 8 6 4 2 0 2 4 6 8 10
10

8

6

4

2

0

2

4

6

8

NORMAL
CLASS

RARE
CLASS

Figure 6.1. Optimal hyperplanes will change because of weighting of examples

Better separations of different classes lead to lower gini-index. The split
attribute and partition point is decided as one which minimizes the gini-
index of the children nodes. By using costs as weights for the instances,
the computation of the gini-index will be impacted so as to selectively
determine regions of the data containing higher proportions of the rare
class. Some examples of cost-sensitive decision trees are discussed in
[450, 463].

2.1.4 SVM Classifier. SVM classifiers work by learning hy-
perplanes, which optimally separate the two classes in order to minimize
the expected error. Thus, SVM classifiers can be modeled as an opti-
mization problem, where the goal is to learn the coefficients of the under-
lying hyperplane. For example, a two-class example has been illustrated
in Figure 6.1. The optimal separator hyperplane for the two classes is
illustrated in the same figure with the solid line. However, it is possible
to change the optimization model by incorporating weights (or costs)
into the optimization problem. This shifts the decision boundary, so as
to allow erroneous classification of a larger number of normal instances,
while correctly classifying more rare instances. The result would be a
reduction in the overall classification accuracy, but an increase in the
cost-sensitive accuracy. For example, in the case of Figure 6.1, the opti-
mal separator hyperplane would move from the solid line to the dotted
line in the figure. The issue of class-boundary re-alignment for SVMs
in the context of imbalanced data sets has been explored in detail in

180 OUTLIER ANALYSIS

[443, 470]. While these models are not designed with the use of example
re-weighting, they achieve similar goals by using class-biased penalties
during the SVM model creation.

2.2 Adaptive Re-sampling

In adaptive re-sampling, the different classes are differentially sam-
pled in order to enhance the impact of the rare class on the classifica-
tion model. Sampling can be performed either with or without replace-
ment. Either the rare class can be oversampled, or the normal class
can be under-sampled, or both. The classification model is learned on
the re-sampled data. The sampling probabilities are typically chosen in
proportion to their misclassification costs. This enhances the propor-
tion of the rare costs in the sample used for learning. It has generally
been observed [143], that under-sampling has a number of advantages
over over-sampling. When under-sampling is used, the sampled training
data is much smaller than the original data set. In some variations, all
instances of the rare class are used in combination with a small sample
of the normal class [106, 278]. This is also referred to as one-sided selec-
tion. Under-sampling also has the advantage of being efficient without
losing too much information, because:

The model construction phase for a smaller training data set re-
quires much less time.

The normal class is less important for modeling purposes, and
most of the rare class is included for modeling. Therefore, the
discarded instances do not take away too much from the modeling
effectiveness.

2.2.1 Relation between weighting and sampling. Since
cost-sensitive learning can be logically understood as methods which
weigh examples differently, a question arises as how these methods relate
to one another. Adaptive re-sampling methods can be understood as
methods which sample the data in proportion to their weights, and then
treat all examples equally. From a practical perspective, this may often
lead to similar models in the two cases, though sampling methods may
throw away some of the relevant data. It should also be evident that a
direct weight-based technique retains more information about the data,
and is therefore likely to be more accurate. This seems to be the case
from many practical experiences with real data [102]. On the other hand,
adaptive re-sampling has distinct efficiency advantages because it works
with a much smaller data set. For example, for a data set containing 1%
of labeled anomalies, it is possible for a re-sampling technique to work

Supervised Outlier Detection 181

effectively with 2% of the original data, when the data is re-sampled into
an equal mixture of the normal and anomalous classes. This translates
to a performance improvement of a factor of 50.

2.2.2 Synthetic Over-sampling: SMOTE. Over-sampling
methods are also used in the literature, though less frequently so than
under-sampling. One of the problems of over-sampling the minority class
is that a larger number of samples with replacement leads to repeated
samples of the same record. This could lead to over-fitting, and does
not necessarily help the effectiveness of the classifier. In other to address
this issue, it was suggested [103] that synthetic over-sampling could be
used to create the over-sampled examples in a way which provides better
effectiveness. The SMOTE approach works as follows. For each minority
instance, its k nearest neighbors are found. Then, depending upon the
level of over-sampling required, a fraction of them are chosen randomly.
A synthetic data example is generated on the line segment connecting
that minority example to its nearest neighbor. The exact position of
the example is chosen uniformly at random along the line segment. The
SMOTE algorithm has been shown to provide more robust over-sampling
than a vanilla over-sampling approach. This approach forces the decision
region of the re-sampled data to become more general than one in which
only members from the rare classes in the original training data are
over-sampled.

2.2.3 One Class Learning with Positive Class. It is pos-
sible to take adaptive re-sampling to its logical extreme by not includ-
ing any examples of the normal class. This artificially transforms the
problem to the semi-supervised scenario, though the nature of the semi-
supervision is quite different from naturally occurring scenarios. In most
natural forms of semi-supervision, the positive class is missing, and co-
pious examples of the normal class may be available. Here the normal
class examples are removed from the data. This problem is also different
from the positive-unlabeled classification problem. Such a problem may
sometimes occur naturally in scenarios where the background class is
too diverse or noisy to be sampled in a meaningful way.

In such cases, unsupervised models can be constructed on the subset
of the data corresponding to the positive class. The major difference is
that higher fit of the data to the positive class corresponds to greater
outlier scores. This is the reverse of what is normally performed in outlier
detection. The assumption is that the representative data contains only
anomalies, and therefore outliers are more likely to be similar to this
data. Proximity-based classifiers are very natural to construct in the

182 OUTLIER ANALYSIS

one-class scenario, since the propensity of a test instance to belong to a
class can be naturally modeled in terms of distances.

In the case of SVM classifiers, it is possible to create a two-class
distribution by using the origin as one of the classes [396]. Typically, a
kernel function is used in order to transform the data into a new space in
which the dot product corresponds to the value of the kernel function. In
such a case, an SVM classifier will naturally create a hyperplane which
separates out the combination of features which describe the one class in
the data. However, the strategy of using the origin as the second class in
combination with a feature transformation is not necessarily generic and
may not work well in all data domains. This differential behavior across
different data sets has already been observed in the literature. In some
cases, the performance of vanilla one-class SVM methods is quite poor,
without careful changes to the model [382]. Other one-class methods for
SVM classification are discussed in [250, 323, 382, 445].

2.2.4 Ensemble Techniques. A major challenge of under-
sampling is the loss of the training data, which can have a detrimental
effect on the quality of the classifier. A natural method to improve
the quality of the prediction is to use ensemble techniques, in which
the data instances are repeatedly classified with different samples, and
then the majority vote is used for predictive purposes. In many of these
methods, all instances from the rare class are used, but the majority
class is under-sampled [106, 312]. Therefore, the advantages of selective
sampling may be retained without a significant amount of information
loss from the sampling process. In addition, a special kind of ensemble
known as the sequential ensemble has also been proposed in [312]. In
the sequential ensemble, the choice of the majority class instances picked
in a given iteration depends upon the behavior of the classifier during
previous iterations. Specifically, only majority instances which are cor-
rectly classified by the classifier in a given iteration are not included in
future iterations. The idea is to reduce the redundancy in the learning
process, and improve the overall robustness of the ensemble. Note that
this is a supervised sequential ensemble, and is exactly analogous to the
sequential ensemble method introduced in Chapter 1 for general-purpose
outlier analysis.

2.3 Boosting Methods

Boosting methods are commonly used in classification in order to im-
prove the classification performance on difficult instances of the data.
The well known Adaboost algorithm [394] works by associating each
training example with a weight, which is updated in each iteration,

Supervised Outlier Detection 183

depending upon the results of the classification in the last iteration.
Specifically, instances which are misclassified, are given higher weights
in successive iterations. The idea is to give higher weights to “difficult”
instances which may lie on the decision boundaries of the classification
process. The overall classification results are computed as a combina-
tion of the results from different rounds. In the tth round, the weight of
the ith instance is Dt(i). The algorithm starts off with equal weight of
1/N for each of the N instances, and updates them in each iteration. In
practice, it is always assumed that the weights are normalized in order
to sum to 1, though the approach will be described below in terms of
(unscaled) relative weights for notational simplicity. In the event that
the ith iteration is misclassified, then its (relative) weight is increased
to Dt+1(i) = Dt(i) · eαt , whereas in the case of a correct classification,
the weight is decreased to Dt+1(i) = Dt(i) · e−αt . Here αt is chosen as
the function (1/2) · ln((1− εt)/εt), where εt is the fraction of incorrectly
predicted instances on a weighted basis. The final result for the clas-
sification of a test instance is a weighted prediction over the different
rounds, where αt is used as the weight for the tth iteration.

In the imbalanced and cost-sensitive scenario, the AdaCost method
has been proposed [158], which can update the weights based on the
cost of the instances. In this method, instead of updating the misclassi-
fied weights for instance i by the factor eαt , they are instead updated by
eβ−(ci)·αt , where ci is the cost of the ith instance. Note that β−(ci) is a
function of the cost of the ith instance and serves as the “adjustment”
factor, which accounts for the weights. For the case of correctly classified
instances, the weights are updated by the factor e−β+(ci)·αt . Note that
the adjustment factor is different depending upon whether the instance
is correctly classified. This is because for the case of costly instances, it
is desirable to increase weights more than less costly instances in case
of misclassification. On the other hand, in cases of correct classification,
it is desirable to reduce weights less for more costly instances. In either
case, the adjustment is such that costly instances get relatively higher
weight in later iterations. Therefore β−(ci) is a non-decreasing func-
tion with cost, whereas β+(ci) is a non-increasing function with cost. A
different way to perform the adjustment would be to use the same ex-
ponential factor for weight updates as the original Adaboost algorithm,
but this weight is further multiplied with the cost ci [158], or other non-
decreasing function of the cost. Such an approach would also provide
higher weights to instances with larger costs. The use of boosting in
weight updates has been shown to significantly improve the effectiveness
of the imbalanced classification algorithms.

184 OUTLIER ANALYSIS

Boosting methods can also be combined with synthetic oversampling
techniques. An example of this is the SMOTEBoost algorithm, which
combines synthetic oversampling with a boosting approach. A num-
ber of interesting comparisons of boosting algorithms are presented in
[246, 248]. In particular, an interesting observation in [248] is that the
effectiveness of the boosting strategy is dependent upon the quality of
the learner that it works with. When the boosting algorithm starts off
with a weaker algorithm to begin with, the final (boosted) results are
also not as good as those derived by boosting a stronger algorithm.

3. The Semi-Supervised Scenario: Positive and
Unlabeled Data

In many data domains, the positive class may be easily identifiable,
though examples of the negative class may be much harder to model
simply because of their diversity and inexact modeling definition. Con-
sider for example, a scenario where it is desirable to classify or collect
all documents which belong to a rare class. In many scenarios, such as
the case of web documents, the types of the documents available are
too diverse, and it is hard to define a representative negative sample of
documents from the web.

This leads to numerous challenges at the data acquisition stage, where
it is unknown, what kinds of negative examples one might collect for
contrast purposes. The problem is that the universe of instances in
the negative class is rather large and diverse, and the collection of a
representative sample may be difficult. For very large scale collections
such as the web and social networks [493], this scenario is quite common.
A number of methods are possible for negative data collection, none of
which are completely satisfactory in terms of being truly representative
of what one might encounter in a real application. For example, for web
document classification, one simple option would be to simply crawl a
random subset of documents off the web. Nevertheless, such a sample
would contain contaminants which do belong to the positive class, and
it may be hard to create a purely negative sample, unless a significant
amount of effort is invested in creating a clean sample. The amount
of human effort involved in human labeling in rare class scenarios is
especially high because the vast majority of examples are negative, and
a manual process of filtering out the positive examples would be too
slow and tedious. Therefore, a simple solution is to use the sampled
background collection as the unlabeled class for training, but this may
contain positive contaminants. This could lead to two different levels of
challenges:

Supervised Outlier Detection 185

The contaminants in the negative class can reduce the effectiveness
of a classifier, though it is still better to use the contaminated
training examples rather than completely discard them.

The collected training instances for the unlabeled class may not
reflect the true distribution of documents. In such cases, the clas-
sification accuracy may actually be harmed by using the negative
class [301].

A number of methods have been proposed in the literature for this vari-
ant of the classification problem, which can address the aforementioned
issues.

While some methods in the literature treat this as a new problem
which is distinct from the fully supervised classification problem [306],
other methods [152] recognize this problem as a noisy variant of the
classification problem, to which traditional classifiers can be applied with
some modifications. An interesting and fundamental result proposed in
[152] is that the accuracy of a classifier trained on this scenario differs by
only a constant factor from the true conditional probabilities of being
positive. The underlying assumption is that the labeled examples in
the positive class are picked randomly from the positive examples in the
combination of the two classes. These results provides strong support for
the view that learning from positive and unlabeled examples is essentially
equivalent to learning from positive and negative examples.

There are two broad classes of methods which can be used in order
to address this problem. In the first class of methods, heuristics are
used in order to identify training examples which are negative. Subse-
quently, a classifier is trained on the positive examples, together with
the examples, which have already been identified to be negative. A less
common approach is to assign weights to the unlabeled training exam-
ples [293, 306]. The second case is a special one of the first, in which
each weight is chosen to be binary. It has been shown in the literature
[307], that the second approach is superior. An SVM approach is used
in order to learn the weights. The work in [507] uses the weight vector
in order to provide robust classification estimates.

3.1 Difficult Cases and One-Class Learning

While the use of the unlabeled class provides some advantage to clas-
sification in most cases, this is not always true. In some scenarios, the
unlabeled class in the training data reflects the behavior of the negative
class in the test data very poorly. In such cases, it has been shown,
that the use of the negative class actually degrades the effectiveness of
classifiers. In such cases, it has been shown in [301] that the use of one-

186 OUTLIER ANALYSIS

class learners provides more effective results than the use of a standard
classifier. Thus, in such situations, it may be better to simply discard
the training class examples, which do not truly reflect the behavior of
the test data. Most of the one-class SVM classifiers discussed in the
previous section can be used in this scenario.

4. The Semi-Supervised Scenario: Novel Class
Detection

The previous section discussed cases, where it is difficult to obtain a
clean sample of normal data, when the background data is too diverse
or contaminated. A more common situation in the context of outlier
detection is one in which no training data is available about one or more
of the anomalous classes. Such situations can arise, when the anomalous
class is so rare that it may be difficult to collect concrete examples of its
occurrence, even when it is recognized as a concrete possibility. Some
examples of such scenarios are as follows:

In a bio-terrorist attack application, it may be easy to collect nor-
mal examples of environmental variables, but no explicit examples
of anomalies may be available, if an attack has never occurred.

In an intrusion or viral attack scenario, many examples of normal
data and previous intrusions or attacks may be available, but new
forms of intrusion may arise over time.

This is truly a semi-supervised version of the problem, since training data
is available about some portions of the data, but not others. Therefore,
such scenarios are best addressed with a combination of supervised and
unsupervised techniques. It is also important to distinguish this prob-
lem from one-class classification, in which instances of the positive class
are available. In the one-class classification problem, it is desirable to
determine other examples, which are as similar as possible to the train-
ing data, whereas in the novel class problem, it is desirable to determine
examples, which are as different as possible from the training data.

In cases, where only examples of the normal class are available, the
only difference from the unsupervised scenario is that the training data is
guaranteed to be free of outliers. The specification of normal portions of
the data makes the determination of further outliers easier, because this
data can be used in order to construct a model of what the normal data
looks like. Another distinction between unsupervised outlier detection
and one-class novelty detection, is that novelties are often defined in a
temporal context, and eventually become a normal part of the data.

Supervised Outlier Detection 187

4.1 One Class Novelty Detection

Since the novel-class detection problem is closely related to the one-
class problem in cases where only the normal class is specified, it is
natural to question whether it is possible to adapt some of the one-
class detection algorithms to this scenario. The major difference in this
case is that it is desirable to determine classes which are as different
as possible from the specified training class. This is a more difficult
problem, because a data point may be different from the training class
in several ways. If the training model is not exhaustive in describing the
corresponding class, it is easy for mistakes to occur.

For example, nearest neighbor models are easy to adapt to the one
class scenario. In the one-class models discussed in the previous section,
it is desirable to determine data points which are as close as possible
to the training data. In this case, the opposite is desired, where it is
desirable to determine data points which are as different as possible
from the specified training data. This is of course no different from
the unsupervised methods for creating proximity-based outlier detection
methods. In fact, any of the unsupervised models for outlier detection
can be used in this case. The major difference is that the training data
is guaranteed to contain only the normal class, and therefore the outlier
analysis methods are likely to be more robust. Strictly speaking, when
only examples of the normal class are available, the problem is hard to
distinguish from the unsupervised version of the problem, at least from
a methodological point of view. From a formulation point of view, the
training and test records are not distinguished from one another in the
unsupervised case (any record can be normal or an anomaly), whereas
the training (only normal) and test records (either normal or anomaly)
are distinguished from one another in the semi-supervised case.

One class SVM methods have also been adapted to novelty detection
[397]. The main difference from positive example training-based one-class
detection is that the class of interest lies on the opposite side of the sepa-
rator as the training data. Some of the one-class methods such as SVMs
are unlikely to work quite as well in this case. This is because a one-class
SVM may really only be able to model the class present in the training
data (the normal class) well, and may not easily be able to design the
best separator for the class which is most different from the normal class.
Typically, one-class SVMs use a kernel-based transformation along with
reference points such as the origin in order to determine a synthetic ref-
erence point for the other class, so that a separator can be defined. If
the transformation and the reference point is not chosen properly, the
one-class SVM is unlikely to provide robust results in terms of identify-

188 OUTLIER ANALYSIS

ing the outlier. One issue with the one-class SVM is that the anomalous
points (of interest) and the training data now need to lie on opposite
sides of the separator. This is a more difficult case than one in which
the anomalous points (of interest) and the training data need to lie on
the same side of the separator (as was discussed in a previous section
on positive-only SVMs). The key difference here is that the examples of
interest are not available on the interesting side of the separator, which
is poorly modeled.

It has been pointed out that the use of the origin as a prior for the
anomalous class [91] can lead to incorrect results, since the precise nature
of the anomaly is unknown a-priori. Therefore, the work in [91] attempts
to determine a linear or non-linear decision surface which wrap around
the surfaces of the normal class. Points which lie outside this decision
surface are anomalies. It is important to note that this model essentially
uses an indirect approach such as SVM to model the dense regions in
the data. Virtually all unsupervised outlier detection methods attempt
to model the normal behavior of the data, and can be used for novel
class detection, especially when the only class in the training data is the
normal class. Therefore the distinction between normal-class only vari-
ations of the novel class detection problem and the unsupervised version
of the problem are limited and artificial, especially when other labeled
anomalous classes do not form a part of the training data. Numerous
analogues of unsupervised methods have also been developed for novelty
detection, such as extreme value methods [383], direct density ratio esti-
mation [214], and kernel-based PCA methods [220]. This is not surpris-
ing, given that the two problems are different only at a rather superficial
level. In spite of this, the semi-supervised version of the (normal-class
only) problem seems to have a distinct literature of its own. This is
somewhat unnecessary, since any of the unsupervised algorithms can
be applied to this case. The main difference is that the training and
test data are distinguished from one another, and the outlier score is
computed for a test instance with respect to the training data. Nov-
elty detection can be better distinguished from the unsupervised case in
temporal scenarios, where novelties are defined continuously based on
the past behavior of the data. This will be discussed in more detail in
Chapter 8 on temporal outlier detection, though a brief introduction is
provided in the following subsections.

Supervised Outlier Detection 189

4.2 Combining Novel Class Detection with Rare
Class Detection

A more challenging scenario arises, when labeled rare classes are
present in the training data, but novel classes may also need to be de-
tected. Such scenarios can arise quite often in many applications such
as intrusion detection, where partial knowledge is available about some
of the anomalies, but others may need to be modeled in an unsuper-
vised way. Furthermore, it is important to distinguish different kinds of
anomalies from one another, whether they are found in a supervised or
unsupervised way. The labeled rare classes already provides important
information about some of the outliers in the data. This can be used to
determine different kinds of outliers in the underlying data, and distin-
guish them from one another. This is important in applications, where
it is not only desirable to determine outliers, but also obtain an under-
standing of the kind of outlier which is discovered. The main challenge
in these methods is to seamlessly combine unsupervised outlier detection
methods with fully supervised rare class detection methods. For a given
test data point two decisions need to be made, in the following order:

1. Is the test point a natural fit for a model of the training data?
This model also includes the currently occurring rare classes. A
variety of unsupervised models such as clustering can be used for
thus purpose. If not, it is immediately flagged as an outlier, or a
novelty.

2. If the test point is a fit for the training data, then a classifier model
is used to determine whether it belongs to one of the rare classes.
Any cost-sensitive model (or an ensemble of them) can be used for
this purpose.

Thus, this model requires a combination of unsupervised and supervised
methods in order to determine the outliers in the data. This situation
arises more commonly in online and streaming scenarios, which will be
discussed in the next section.

4.3 Online Novelty Detection

The most common scenario for novel class detection occurs in the con-
text of online scenarios in concept drifting data streams. In fact, novel
class detection usually has an implicit assumption of temporal data,
since classes can be defined as novel only in terms of what has already
been seen in the past. In many of the batch-algorithms discussed above,
this temporal aspect is not fully explored, since a single snapshot of

190 OUTLIER ANALYSIS

training data is assumed. Many applications such as intrusion detec-
tion are naturally focussed on a streaming scenario. In such cases, novel
classes may appear at any point in the data stream, and it may be desir-
able to distinguish different kinds of novel classes from one another [328,
329, 36]. Furthermore, when new classes are discovered, these kinds of
anomalies may recur over time, albeit quite rarely. In such cases, the
effectiveness of the model can be improved by keeping a memory of the
rarely recurring classes. This case is particularly challenging because
aside from the temporal aspects of modeling, it is desirable to perform
the training and testing in an online manner, in which only one pass is
allowed over the incoming data stream. This scenario is a true amalga-
mation of supervised and unsupervised methods for anomaly detection,
and is discussed in detail in section 4.3 of Chapter 8.

In the streaming scenario containing only unlabeled data, unsuper-
vised clustering methods [25, 26] can be used in order to identify signifi-
cant novelties in the stream. In these methods, novelties occur as emerg-
ing clusters in the data, which eventually become a part of the normal
clustering structure of the data. Both the methods in [25, 26] have sta-
tistical tests to identify, when a newly incoming instance in the stream
should be considered a novelty. Thus, the output of these methods
provides an understanding of the natural complementary relationship
between the clusters (normal unsupervised models) and novelties (tem-
poral abnormalities) in the underlying data. This issue will be discussed
in some more detail in Chapter 8 on temporal outlier detection.

5. Human Supervision

A natural form of supervision in outlier detection is one in which a
human expert may intervene in the outlier detection process in order to
further improve the effectiveness of the underlying algorithms. One of
the major challenges in outlier detection is that the anomalies found by
an algorithm which is either purely unsupervised or only partially super-
vised may not be very useful. This is because unsupervised algorithms
(or even supervised methods with a small amount of training data) may
not be able to effectively distinguish between useless noise and useful
outliers. In such cases, it may be valuable to add human supervision to
outlier analysis in order to detect more meaningful outliers. The incor-
poration of human supervision can augment the limited knowledge of
outlier analysis algorithms. Specifically, the augmentation may be done
in several ways:

An unsupervised or supervised outlier detection algorithm may
present pre-filtered results to a user, and the user can provide

Supervised Outlier Detection 191

Random Set
of Records

Query Experts
for Some Record

Labels
Select Important

Records

Build
Classification

Models
Apply Model

to Data

Figure 6.2. The overall procedure for active learning

their feedback on this small number of pre-filtered examples. This
process would not be possible to perform manually on the origi-
nal data set, which may large, and in which the vast majority of
examples are normal [360].

The user-provided examples can be combined with the results from
an unsupervised algorithm to learn which outliers determined by
the unsupervised algorithm are relevant. The combined results
can then be used in order to train a traditional rare class detection
model, as discussed earlier in this chapter. For example, an SVM
approach was used in [512].

Each of the aforementioned methodologies are discussed in detail below.

5.1 Active Learning

An interesting procedure for active learning from unlabeled data is
proposed in [360]. An iterative procedure is used in order to label some
of the examples in each iteration. In each iteration, a number of inter-
esting instances are identified, for which the addition of labels would be
helpful for further classification. These are considered the “important”
instances. The human expert provides labels for these examples. These
are then used in order to classify the data set with the augmented labels.

192 OUTLIER ANALYSIS

The first iteration is special, in which a purely unsupervised approach
is used for learning. These procedure is performed iteratively until the
addition of further examples is no longer deemed helpful for further clas-
sification. The overall procedure is illustrated in Figure 6.2. It should
be noted that this approach can also be used in scenarios in which a
small number of positive examples are available to begin with.

A key question arises as to which examples should be presented to
the user for the purposes of labeling. It is clear that examples which
are very obviously positive or negative (based on current models) are
not particularly useful to present to the user. Rather, it is the examples
with the greatest uncertainty or ambiguity, which should be presented
to the user in order to gain the greatest knowledge about the decision
boundaries between the different classes. It is expected that the selected
examples should lie on the decision boundaries, in order to maximize
the learning of the contours separating different classes, with the use
of least amount of expert supervision, which can be expensive in many
scenarios.

A common approach to achieve this goal in active learning is the
principle of query by committee [400]. . In these methods, an ensemble
of classifiers is learned, and the greatest disagreement among them is
used to select data points which lie on the decision boundary. A variety
of such criteria based on ensemble learning are discussed in [331]. It is
also possible to use the model characteristics directly in order to select
such points. For example, two primary criteria which can be used for
selection, are as follows [360]:

Low Likelihood: These are data points which have low fit to the
model describing the data. For example, if an EM algorithm is
used for modeling, then these are points which have low fit to the
underlying model.

High Uncertainty: These are points which have the greatest un-
certainty in terms of the component of the model to which they
belong. In other words, in an EM model, such a data point would
show relatively even soft probabilities for different components of
the mixture.

All data points are ranked on the basis of the two aforementioned crite-
ria. The lists are merged by alternating between them, and adding the
next point in the list, which has not already been added to the merged
list. Details of other relevant methods such as interleaving are discussed
in [360].

Supervised Outlier Detection 193

5.2 Outlier by Example

The outlier by example method follows the same principle of learn-
ing from (user-provided) positive and unlabeled examples, which was
discussed earlier in this chapter, except for the difference that an unsu-
pervised approach is utilize to perform feature transformations on the
examples, and augment the user provided examples by comparing the
deviations of the objects with those of the user-provided examples. The
algorithm proceeds in the following steps:

Feature Extraction: In this step, all the objects are transformed
to their MDEF-based representations as discussed in the section
on the LOCI method in Chapter 4. This is done by using the
LOCI method discussed in Chapter 4, except that different sam-
pling neighborhoods are used in order to create a vector of devi-
ations for different sampling neighborhoods. Thus, this approach
transforms the objects into a vector representation of MDEF val-
ues.

Example Augmentation: A major challenge with all supervised
learning methods is the paucity of training examples for effective
training. Therefore, the user-provided examples are augmented
in order to increase the number of positive examples. Two kinds
of outliers are added. The first kind are outliers for which any
component of the MDEF vector is greater than a user-specified
threshold. These are referred to as outstanding outliers. The sec-
ond kind of examples are artificially generated from the user spec-
ified outliers, by creating MDEF values which lie between their
current maximum MDEF value and the threshold K. Depending
upon the number of outliers which need to be generated, equally
spaced intervals between the MDEF value and the threshold are
generated. Note that the representation of the data is still in the
form of MDEF vectors, and the artificially generated data is also
represented in this form.

Final Classification: The augmented training data is used to learn
an SVM classifier, which distinguishes the unlabeled examples from
the positive examples.

An interesting observation about the technique above is that the ad-
ditional labeling and augmentation is done with the use of automated
techniques. This is different from the method of [360] in which label-
ing is done by human experts. In both methods, human experts and
automated methods are involved, but in different parts of the process.

194 OUTLIER ANALYSIS

6. Conclusions and Summary

This chapter discusses the problem of supervised outlier analysis. In
many real scenarios, training data is available, which can be used in
order to greatly enhance the effectiveness of the outlier detection process.
Many of the standard classification algorithms in the literature can be
adapted to this problem, especially when full supervision is available.
The major challenge of using the standard classification algorithms is
that they may not work very well in scenarios where the distribution
of classes is imbalanced. In order to address this issue, sampling and
re-weighting can be used quite effectively.

The partially supervised variations of the problem are diverse. Some
of these methods do not provide any labels on the normal class. This cor-
responds to the fact that the normal class may be contaminated with an
unknown number of outlier examples. Furthermore, in some cases, the
distribution of the normal class may be very different in the training and
test data. One-class methods can sometimes be effective in addressing
such issues.

Another form of partial supervision is the identification of novel classes
in the training data. Novel classes correspond to scenarios in which the
labels for some of the classes are completely missing from the train-
ing data. In such cases, a combination of unsupervised and supervised
methods need to be used for the detection process. In cases where exam-
ples of a single normal class are available, the scenario becomes almost
equivalent to the unsupervised version of the problem.

Supervised methods are closely related to active learning in which
human experts may intervene in order to add more knowledge to the
outlier detection process. Such combinations of automated filtering with
human interaction can provide insightful results. The use of human
intervention sometimes provides the more insightful results, because the
human is involved in the entire process of label acquisition and final
outlier detection.

7. Bibliographic Survey

Supervision can be incorporated in a variety of ways, starting from
partial supervision to complete supervision. In the case of complete
supervision, the main challenges arise in the context of class imbalance
and cost-sensitive learning [102, 105, 151]. The issue of evaluation is
critical in cost-sensitive learning because of the inability to model the
effectiveness with measures such as the absolute accuracy. Methods for
interpreting ROC curves and classification accuracy in the presence of
costs and class imbalance are discussed in [144, 159, 249, 376, 377]. The

Supervised Outlier Detection 195

impact of class imbalance is relevant even for feature selection [335, 511],
because it is more desirable to select features which are more indicative
of the rare class.

A variety of general methods have been proposed for cost-sensitive
learning such as MetaCost [145], weighting [496], and sampling [106,
102, 143, 278, 496]. Weighting methods are generally quite effective,
but may sometimes be unnecessarily inefficient, when most of the train-
ing data corresponds to the background distribution. In this context,
sampling methods can significantly improve the efficiency. Numerous
cost-sensitive variations of different classifiers have been proposed along
the lines of weighting, and include the Bayes classifier [496], nearest
neighbor classifier [506], decision trees [450, 463], rule-based classifiers
[245, 247] and SVM classifiers [443, 470].

Ensemble methods for improving the robustness of sampling are pro-
posed in [106, 312]. Since the under-sampling process reduces the num-
ber of negative examples, it is natural to use an ensemble of classifiers
which combine the results of classifiers trained on different samples. This
provides more robust results, and ameliorates the instability which arises
from under-sampling. The major problem in over-sampling of the minor-
ity class is the over-fitting obtained by re-sampling duplicate instances.
Therefore, a method known as SMOTE creates synthetic data instances
in the neighborhood of the rare instances [103].

The earliest work on boosting rare classes was proposed in [252]. This
technique is designed for imbalanced data sets, and the intuition is to
boost the positive training instances (rare classes) faster than the neg-
atives. Thus, it increases the weight of false negatives more the false
positives. However, it is not cost-sensitive, and it also decreases the
weight of true positives more than true negatives, which is not desir-
able. The AdaCost algorithm proposed in this chapter was proposed in
[158]. Boosting techniques can also be combined with sampling meth-
ods, as in the case of the SMOTEBoost algorithm [104]. An evaluation
of boosting algorithms for rare class detection is provided in [246]. Two
new algorithms for boosting are also proposed in the same paper. The
effect of the base learner on the final results of the boosting algorithm
are investigated in [248]. It has been shown that the final result from
the boosted algorithm is highly dependent on the quality of the base
learner.

A particular case which is commonly encountered is one in which
the instances of the positive class are specified, whereas the other class
is unlabeled [152, 301, 293, 306, 307, 493, 507]. Since the unlabeled
class is pre-dominantly a negative class with contaminants, it is essen-
tially equivalent to a fully supervised problem, with some loss in accu-

196 OUTLIER ANALYSIS

racy which can be quantified [152]. In some cases, when the collection
mechanisms for the negative class are not reflective of what would be
encountered in test instances, the use of such instances may harm the
performance of the classifier. In such cases, it may be desirable to dis-
card the negative class entirely and treat the problem as a one-class
problem [301]. However, as long as the training and test distributions
are not too different, it is generally desirable to also use the instances
from the negative class.

The one-class version of the problem is an extreme variation in which
only positive instances of the class are used for training purpose. SVM
methods are particularly popular for one-class classification [250, 323,
382, 396, 445]. Methods for one-class SVM methods for scene classifica-
tion are proposed in [480]. It has been shown that the SVM method is
particularly sensitive to the data set used [382].

An important class of semi-supervised algorithms is known as nov-
elty detection, in which no training data is available about some of the
anomalous classes. This is common in many scenarios such as intrusion
detection, in which the patterns in the data may change over time, and
may therefore lead to novel anomalies (or intrusions). These problems
are combination of the supervised and unsupervised case, and numerous
methods have been designed for the streaming scenario [328, 329, 36].
The special case, where only the normal class is available is not very
different from the unsupervised scenario, other than the fact that it may
have an underlying temporal component. Numerous methods have been
designed for this case such as single-class SVMs [397, 91], minimax prob-
ability machines [282], kernel-based PCA methods [383], direct density
ratio estimation [214], and extreme value analysis [220]. Single class
novelty detection has also been studied extensively in the context of the
first story detection in text streams [515], and will be discussed in detail
in Chapter 7. The methods for the text streaming scenario are most
highly unsupervised, and use standard clustering or nearest neighbor
models. In fact, a variety of stream clustering methods [25, 26] discover
newly forming clusters (or emerging novelties) as part of their output
of the overall clustering process. A detailed survey of novelty detection
methods may be found in [325, 326].

Human supervision is a natural goal in anomaly detection, since most
of the anomalous instances are not interesting, and it is only by incor-
porating user feedback that the interesting examples can be separated
from noisy anomalies. Methods for augmenting user-specified examples
with automated methods are discussed in [512, 513]. These methods
also add artificially generated examples to the training data, in order to
increase the number of positive examples for the learning process. Other

Supervised Outlier Detection 197

methods are designed for selectively presenting examples to a user, so
that only the relevant ones are labeled [360]. A nearest-neighbor method
for active learning is proposed in [207]. The effectiveness of active learn-
ing methods for selecting good examples to present to the user is crit-
ical in ensuring minimal human effort. Such points should lie on the
decision boundaries separating two classes [121]. Methods which use
query by committee to select such points with ensembles are discussed
in [331, 400]. A selective sampling method which uses active learning
in the context of outlier detection is proposed in [1]. A method has
also been proposed in [309] as to how unsupervised outlier detection al-
gorithms can be leveraged in conjunction with limited human effort in
order to create a labeled training data set.

8. Exercises

1. Download the Arrythmia data set from the UCI Machine Learning
Repository.

Implement a 20-nearest neighbor classifier which classifies the
majority class as the primary label. Use a 3 : 1 ratio of costs
between the normal class, and any other minority cost. De-
termine the overall accuracy and the cost-weighted accuracy.

Implement the same algorithm as above, except that each
data point is given a weight, which is proportional to its cost.
Determine the overall accuracy and the cost-weighted accu-
racy.

2. Repeat the exercise above for the quantitative attributes of the
KDD CUP 1999 Network Intrusion data set of the UCI Machine
Learning Repository.

3. Repeat each of the exercises above with the use of the MetaCost
classifier, in which 100 different bagged executions are utilized in
order to estimate the probability of relabeling. An unweighted 10-
nearest neighbor classifier is used as the base learner. For each
bagged execution, use a 50% sample of the data set. Determine
the overall accuracy and the cost-weighted accuracy.

4. Repeat Exercises 1 and 2 by sampling one-thirds the examples
from the normal class, and including all examples from the other
classes. An unweighted 20-nearest neighbor classifier is used as the
base learner. Determine the overall accuracy and the cost-weighted
accuracy.

198 OUTLIER ANALYSIS

5. Repeat Exercise 4, by using an ensemble of five classifiers, and
using the majority vote.

6. Repeat Exercises 1 and 2 with the use of cost-sensitive boosting.
An unweighted 10-nearest neighbor classifier is used as the base
learner.

	Chapter 6 SUPERVISED OUTLIER DETECTION
	1. Introduction
	2. The Fully Supervised Scenario: Rare Class Detection
	2.1 Cost Sensitive Learning
	2.1.1 MetaCost: A Relabeling Approach.
	2.1.2 Weighting Methods.
	2.1.3 Decision Trees.
	2.1.4 SVM Classifier.

	2.2 Adaptive Re-sampling
	2.2.1 Relation between weighting and sampling.
	2.2.2 Synthetic Over-sampling: SMOTE.
	2.2.3 One Class Learning with Positive Class.
	2.2.4 Ensemble Techniques.

	2.3 Boosting Methods

	3. The Semi-Supervised Scenario: Positive and Unlabeled Data
	3.1 Difficult Cases and One-Class Learning

	4. The Semi-Supervised Scenario: Novel Class Detection
	4.1 One Class Novelty Detection
	4.2 Combining Novel Class Detection with Rare Class Detection
	4.3 Online Novelty Detection

	5. Human Supervision
	5.1 Active Learning
	5.2 Outlier by Example

	6. Conclusions and Summary
	7. Bibliographic Survey
	8. Exercises

