
Chapter 5

HIGH-DIMENSIONAL OUTLIER
DETECTION: THE SUBSPACE
METHOD

“In view of all that we have said in the foregoing sections,
the many obstacles we appear to have surmounted, what
casts the pall over our victory celebration? It is the curse
of dimensionality, a malediction that has plagued the
scientist from the earliest days.”– Richard Bellman

1. Introduction

Many real data sets are very high dimensional. In some scenarios,
real data sets may contain hundreds or thousands of dimensions. With
increasing dimensionality, many of the conventional outlier detection
methods do not work very effectively. This is an artifact of the well
known curse of dimensionality. In high-dimensional space, the data
becomes sparse, and the true outliers become masked by the noise effects
of multiple dimensions, when analyzed in full dimensionality.

A main cause of the dimensionality curse is the difficulty in defining
locality for the high dimensional case. For example, proximity-based
methods define locality with the use of distance functions. On the other
hand, it has been shown in [65, 215], that all pairs of points are almost
equidistant in high-dimensional space. This is referred to as data spar-
sity. Since outliers are defined as data points in sparse regions, this
results in a poorly discriminative situation where all data points are sit-
uated in an almost equally sparse regions in full dimensionality. The
challenges arising from the dimensionality curse are not specific to out-
lier detection. It is well known that many problems such as clustering
and similarity search experience qualitative challenges with increasing
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dimensionality [5, 7, 95, 215]. In fact, it has been suggested that al-
most any algorithm which is based on the notion of proximity would
degrade qualitatively in higher dimensional space, and would therefore
need to re-defined in a more meaningful way [8]. The impact of the
dimensionality curse on the outlier detection problem was first noted in
[4].

In order to further explain the causes of the ineffectiveness of full
dimensional outlier analysis algorithms, a motivating example will be
presented. In Figure 5.1, four different 2-dimensional views of a hypo-
thetical data set have been illustrated. Each of these views corresponds
to a disjoint set of dimensions. It is evident that point A is exposed
as an outlier in the first view of the data set, whereas point B is ex-
posed as an outlier in the fourth view of the data set. However, neither
of the data points A and B are exposed as outliers in the second and
third views of the data set. These views are therefore noisy from the
perspective of measuring the outlierness of A and B. In this case, three
of the four views are quite non-informative and noisy for exposing any
particular outlier A or B. In such cases, the outliers are lost in the ran-
dom distributions within these views, when the distance measurements
are performed in full dimensionality. This situation is often naturally
magnified with increasing dimensionality. For data sets of very high di-
mensionality, it is possible that only a very small fraction of the views
may be informative for the outlier analysis process.

What does the aforementioned pictorial illustration tell us about the
issue of locally relevant dimensions? The physical interpretation of this
situation is quite intuitive in practical scenarios. An object may have
several measured quantities, and significantly abnormal behavior of this
object may be reflected only in a small subset of these quantities. For
example, in an airplane mechanical fault detection scenario, the results
of thousands of different airframe tests on the same plane may mostly
be normal, with some noisy variations, which are not significant. On the
other hand, some deviations in a small subset of tests may be significant
enough to be indicative of anomalous behavior. When the data from the
tests are represented in full dimensionality, the anomalous data points
will not appear significant in virtually all views of the data, except for
a very small fraction of the dimensions. Therefore, aggregate proximity
measures are unlikely to expose the outliers, since the noisy variations
of the vast number of normal tests will mask the outliers. Furthermore,
when different objects (instances of different airframes) are tested, then
different tests (subsets of dimensions) may be relevant to finding the
outliers, which emphasizes the local nature of the relevance.
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Figure 5.1. The outlier behavior may be lost in a majority of randomly chosen sub-
spaces in the high dimensional case.
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What does this mean for full-dimensional analysis in such scenarios?
When full-dimensional distances are used in order to measure deviations,
the dilution effects of the vast number of “normally noisy” dimensions
will make the detection of outliers difficult. In most cases, this will show
up as concentration effects in the distances, from the noise in the other
dimensions. This may make the computations more erroneous. Fur-
thermore, the additive effects of the noise present in the large number
of different dimensions will interfere with the detection of actual devia-
tions. Simply speaking, outliers are lost in low-dimensional subspaces,
when full-dimensional analysis is used, because of the masking and dilu-
tion effects of the noise in full dimensional computations [4].

Similar effects are also experienced for other distance-based methods
such as clustering and similarity search. For these problems, it has
been shown [5, 7, 215] that by examining the behavior of the data in
subspaces, it is possible to design more meaningful clusters which are
specific to the particular subspace in question. This broad observation
is generally true of the outlier detection problem as well. Since the
outliers may only be discovered in low dimensional subspaces of the data,
it makes sense to explore the lower dimensional subspaces for deviations
of interest. Such an approach filters out the additive noise effects of the
large number of dimensions, and results in more robust outliers.

Such a problem is very challenging to address effectively. This is be-
cause the number of possible projections of high dimensional data is
exponentially related to the dimensionality of the data. The problem
of outlier detection is like finding a needle in a haystack, even when we
know the relevant dimensions of interest. Being forced to determine the
relevant subsets of dimensions in addition to this challenge is equivalent
to suggesting that even the haystack of interest is hidden in an exponen-
tial number of possible haystacks. An important observation is that sub-
space analysis in the context of the outlier detection problem is generally
more difficult than in the case for problems such as clustering, which are
based on aggregate behavior. This is because outliers, by definition, are
rare, and therefore statistical aggregates on individual dimensions in a
given locality often provide very weak hints for the subspace exploration
process as compared to aggregation-based methods such as clustering.
When such weak hints result in the omission of relevant dimensions,
the effects can be much more drastic than the inclusion of irrelevant di-
mensions, especially in the interesting cases when the number of locally
relevant dimensions is a small fraction of the full data dimensionality.
A common mistake is to assume that the complementarity relationship
between clustering and outlier analysis can be extended to the problem
of local subspace selection. In particular, blind adaptations of dimension
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selection methods from earlier subspace clustering methods, which are
unaware of the nuances of subspace analysis principles across different
problems, may sometimes miss important outliers. In this context, it is
also crucial to recognize the difficulty in identifying relevant subspaces
for outlier analysis, and use robust methods which combine the results
from different subspaces.

An effective outlier detection method would need to search the data
points and dimensions in an integrated way, so as to reveal the most
relevant outliers. This is because different subsets of dimensions may be
relevant to different outliers, as is evident from the example in Figure
5.1. The integration of point and subspace exploration leads to a further
expansion in the number of possibilities which need to be examined
for outlier analysis. This chapter will focus on subspace exploration
methods, which attempt to find the relevant outliers by sifting through
different subsets of dimensions in the data in an ordered way. This
is accomplished simultaneously with a data-specific evaluation process,
so that relevant data points are reported as outliers without having to
explore all the subspaces in an exhaustive way. The idea is to determine
the relevant subsets of dimensions in which the most important outliers
are revealed as quickly as possible. This model is referred to as projected
outlier detection [4]. Correspondingly, this chapter will present a number
of algorithms, which achieve this goal.

Several classes of methods are commonly used in order to discover the
relevant subspaces:

Rarity-based: These methods attempt to discover the subspaces
based on rarity of the underlying distribution. The major challenge
here is computational, since the number of rare subspaces is far
larger than the number of dense subspaces in high dimensionality.

Unbiased: In these methods, the subspaces are sampled in an
unbiased way, and scores are combined across different subspaces.

Aggregation-based: In these methods, aggregate statistics such
as cluster statistics, variance statistics, or non-uniformity statistics
of local or global subsets of the data are used in order to determine
the relevance of subspaces. Note that the difference from rarity-
based statistics, is that instead of trying to determine the number
of data points in a pre-specified local subspace, these methods typ-
ically analyze the statistical distributions of pre-specified local or
global reference sets of points. Since such methods use statistics
over local or global subsets of the data, it provides some hints
for relevant subspaces for exploration. However, since such hints
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are weak, and are not guaranteed to be the correct ones, multiple
subspace sampling is crucial.

This chapter is organized as follows. Evolutionary algorithms for out-
lier detection are discussed in section 2. These algorithms are based on
a grid-based approach for defining outliers. Distance-based methods for
subspace outlier detection are studied in section 3. Methods for using
and combining multiple subspaces in order to determine relevant outliers
are discussed in section 4. The problem of determining outliers in gen-
eralized subspaces is discussed in section 5. The limitations of subspace
analysis are discussed in section 6. The conclusions and summary are
presented in section 7.

2. Projected Outliers with Grids

A first approach to projected outlier detection was presented in [4].
Projected outliers are determined by finding localized regions of the data
in low dimensional space, which have abnormally low density. Thus,
the first step is to identify and mine those localized patterns which con-
tain data points, but have abnormally low density. Thus, the goal is
to determine interesting anomalies, rather than the noise in the data.
Once such localized regions have been identified, then the outliers are
defined as those records which have such patterns present in them. An
interesting observation is that such lower dimensional projections can
be determined even in data sets with missing attribute values. This is
quite useful for many real applications, in which feature extraction is
a difficult process and full feature descriptions often do not exist. For
example, in the airframe fault detection scenario introduced earlier in
this chapter, it is possible that only a subset of tests may have been
applied, and therefore the values in only a subset of the dimensions may
be available for outlier analysis.

2.1 Defining Abnormal Lower Dimensional
Projections

In order to find such abnormal lower dimensional projections, it is
important to provide a proper statistical definition of an abnormal lower
dimensional projection. An abnormal lower dimensional projection is
one in which the density of the data is exceptionally lower than average.
In this context, the methods for extreme value analysis introduced in
Chapter 2 are useful.

A grid-based approach is used in order to determine projections of
interest. The first step is to perform a grid discretization of the data.
Each attribute of the data is divided into φ ranges. These ranges are
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created on an equi-depth basis. Thus, each range contains a fraction f =
1/φ of the records. The reason for using equi-depth ranges as opposed
to equi-width ranges is that different localities of the data have different
densities. Therefore, such an approach partially adjusts for the local
variations in data density during the initial phase. These ranges form
the units of locality which are used in order to define low dimensional
projections which have unreasonably sparse regions.

Consider a k-dimensional cube which is created by picking grid ranges
from k different dimensions. The expected fraction of the records in that
region is equal to fk, if the attributes were statistically independent. Of
course, the data is far from statistically independent and therefore the
actual distribution of points in a cube would differ significantly from
average behavior. Many of the local regions may contain very few data
points, if any. It is precisely these abnormally sparse regions, which are
useful for the purpose of outlier detection.

It is assumed that the total number of points in the database is de-
noted by N . Under the afore-mentioned independence assumption, the
presence or absence of any point in a k-dimensional cube is a bernoulli
random variable with probability fk. Then, the expected fraction and
standard deviation of the points in a a k-dimensional cube is given by
N ·fk and

√
N · fk · (1− fk). Furthermore, if the number of data points

N is large, then the central limit theorem can be used to approximate
the number of points in a cube by a normal distribution. Let n(D) be
the number of points in a k-dimensional cube D. The sparsity coefficient
S(D) of the data set D can be computed as follows:

S(D) = n(D)−N · fk√
N · fk · (1− fk)

Only sparsity coefficients which are negative are indicative of local pro-
jected regions, in which the presence of the points is significantly lower
than expected. Since n(D) is assumed to fit a normal distribution, the
normal distribution tables can be used to quantify the probabilistic level
of significance of its deviation. Of course, while the independence as-
sumption is almost never completely true, it provides a good heuristic
for determining the level of abnormality of the underlying data points
in practice.

2.2 Evolutionary Algorithms for Outlier
Detection

It is evident from the discussion in the introduction, that an exhaus-
tive search of all the subspaces in the data for outliers is unlikely to be
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fruitful, because of high computational complexity. Therefore, an or-
dered search method is required, which prunes off most of the subspaces
automatically during the exploration process. Since the search space is
noisy and unstructured in this case, this is a natural candidate for the
use of evolutionary algorithms.

The nature of this problem is such that there are no upward or
downward-closed properties on the grid-based subspaces satisfying the
sparsity condition.1 Unlike problems such as frequent pattern mining
[28] where one is looking for large aggregate patterns, the problem of
finding subsets of dimensions which are sparsely populated has the fla-
vor of finding a needle in haystack. Furthermore, it may often be the
case that even though particular regions may be well populated on cer-
tain sets of dimensions, they may be very sparsely populated when such
dimensions are combined together. For example, in a given data set,
there may be a large number of individuals clustered at the age of 20
(low local variance), and a modest number of individuals with varying
levels of diabetes (modest local variance). However, very rare individu-
als would satisfy both criteria, because the disease does not affect young
individuals. From the perspective of outlier detection, a 20-year old
with diabetes is a very interesting record. However, the interestingness
of the pattern is not even hinted at by its lower dimensional projections,
or the relative variances in these individual projections. Therefore, the
best projections are often created by an unknown combination of dimen-
sions, whose lower dimensional projections may contain very few hints
for proper subspace exploration. One solution is to change the measure
in order to force better closure or pruning properties; however this can
worsen the quality of the solution substantially by forcing the choice of
the measure to be driven by algorithmic considerations. In general, it
is not possible to predict the behavior of the data when two sets of di-
mensions are combined. Therefore, a natural option is to develop search
methods which can identify such hidden combinations of dimensions.
In order to search the exponentially increasing space of possible projec-
tions, the work in [4] borrows ideas from a class of evolutionary search
methods in order to reduce the size of the search space.

Evolutionary Algorithms [223] are methods which imitate the process
of organic evolution [125] in order to solve parameter optimization prob-
lems. In evolutionary methods, every solution to an optimization prob-
lem can be disguised as an individual in an evolutionary system. The

1An upward closed pattern is one in which all supersets of the pattern are also valid patterns.
A downward closed set of patterns is one in which all subsets of the pattern are also members
of the set.
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measure of fitness of this “individual” is equal to the objective func-
tion value of the corresponding solution, and the other species which
this individual has to compete with are a group of other solutions to
the problems. Appropriate operations are defined in order to imitate
the recombination and mutation processes as well, and the simulation is
complete. Each feasible solution is encoded in the form of a string and is
the chromosome representation of the solution. The process of conver-
sion of feasible solutions of the problem into strings which the algorithm
can use is referred to as its encoding. The measure of fitness of a string
is evaluated by the fitness function. This is equivalent to the objective
function value of the solution. The better the objective function value,
the better the fitness value. As the process of evolution progresses, all
the individuals in the population typically improve in fitness and also
become more similar to each other. Dejong [134] defined convergence
of a particular position in the string, as the the stage at which 95% of
the population had the same value for that gene. The population is said
to have converged when all positions in the string representation have
converged.

The relevant localized subspace patterns can be easily represented
as strings. Let us assume that the grid range for the ith dimension
is denoted by mi. Then, the value of mi can take on any of the val-
ues 1 through φ, or it can take on the value ∗, which denotes a “don’t
care”. Thus, there are a total of φ+1 values that the dimension mi can
take on. Thus, consider a 4-dimensional problem with φ = 10. Then,
one possible example of a solution to the problem is given by *3*9. In
this case, the ranges for the second and fourth dimension are identified,
whereas the first and third are left as “don’t cares”. The evolutionary
algorithm uses the dimensionality of the projection k as an input pa-
rameter. Therefore, for a d-dimensional data set, the string of length
d will contain k specified position and (d − k) “don’t care” positions.
The fitness for the corresponding solution may be computed using the
sparsity coefficient discussed earlier. The evolutionary search technique
starts with a population of p random solutions and iteratively used the
processes of selection, crossover and mutation in order to perform a
combination of hill climbing, solution recombination and random search
over the space of possible projections. The process is continued until
the population converges to a global optimum according to the Dejong
convergence criterion[134]. At each stage of the algorithm, the m best
projection solutions (most negative sparsity coefficients) are kept track
of. At the end of the algorithm, these solutions are reported as the best
projections in the data. The following operators are defined for selection,
crossover and mutation:
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Selection: The copies of a solution are replicated by ordering
them by rank and biasing them in the population in the favor of
higher ranked solutions. This is referred to as rank selection.

Crossover: The crossover technique is key to the success of the
algorithm, since it implicitly defines the subspace exploration pro-
cess. One solution is to use a uniform two-point crossover in order
to create the recombinant children strings. The two-point crossover
mechanism works by determining a point in the string at ran-
dom called the crossover point, and exchanging the segments to
the right of this point. However, such a blind recombination pro-
cess may create poor solutions too often. Therefore, an optimized
crossover mechanism is defined. In this case, it is guaranteed that
both children solutions correspond to a k-dimensional projection
as the parents, and the children typically have high fitness values.
This is achieved by examining a subset of the different possibilities
for recombination and picking the best among them.

Mutation: In this case, random positions in the string are flipped
with a predefined mutation probability. Care must be taken to
ensure that the dimensionality of the projection does not change
after the flipping process.

At termination, the algorithm is followed by a postprocessing phase.
In the postprocessing phase, all data points containing the abnormal
projections are reported by the algorithm as the outliers. The approach
also provides the relevant projections which provide the causality (or in-
tensional knowledge) for the outlier behavior of a data point. Thus, this
approach also has a high degree of interpretability in terms of providing
the reasoning for why a data point should be considered an outlier.

3. Distance-based Subspace Outlier Detection

In these methods, distance-based models are used in lower dimensional
subspaces of the data in order to determine the relevant outliers. There
are two major variations to the common task.

In one class of models, the outliers are determined by exploring
relevant subspaces.

In another class of methods, the relevant outlying subspaces for a
given data point are determined. This is more useful for providing
intensional knowledge, for illustrating why a specific data point is
an outlier.
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The second class of methods shares similarities with the approach used
in [262] for finding intensional knowledge from distance-based outliers.
Both classes of methods will be discussed in subsequent sections.

3.1 Subspace Outlier Degree

A distance-based method for finding outliers in lower dimensional pro-
jections of the data is proposed in [273]. In this approach, instead of
trying to find local subspaces of abnormally low density over the whole
data, a local analysis is provided specific to each data point. For each
data point X , a set of reference points S(X) are determined, which
represent the proximity of the current data point being examined.

Once this reference set S(X) has been determined, the relevant sub-
space for S(X) is determined as the set Q(X) of dimensions in which
the variance is small. The specific threshold is picked as a user-specified
fraction of the average dimension-specific variance of the data points in
S(X). Thus, this approach analyzes the statistics of individual dimen-
sions independently of one another during the crucial step of subspace
selection, though this may sometimes not be helpful for picking the best
subspace projections. The approach of analyzing the distance behavior
of individual dimensions for picking the subspace set Q(X) is a rather
naive generalization derived from subspace clustering methods. Unlike
data clustering, the effectiveness of subspace outlier methods is almost
entirely dependent upon the identification of dimensions containing rare
points rather than dimensions with specific kinds of aggregate statis-
tics. In outlier analysis, aggregate data measures such as the dimension-
specific variance tell us very little about the subspace behavior of the
rare points, and which choices of subspaces are likely to be most rele-
vant for identification of these very unusual points. In some cases such
as the example of the young diabetes patient discussed earlier, the un-
usual behavior is manifested in combinations of dimensions rather than
the variances of the individual dimensions. If the absolute variance of
a particular dimension such as the diabetes level is not deemed to be
sufficiently low, it will not selected in the projection.

In the interesting cases, where the number of relevant dimensions is
limited, the negative effects of removing a single relevant dimension can
be even more drastic than keeping many irrelevant dimensions. The par-
ticularly problematic factor here is that if a mistake is made in subspace
selection, there is virtually no chance of recovering from the mistake,
when a single subspace is picked for analysis. As we will discuss later,
other more insightful techniques in [256, 337] mitigate these impacts by
using multiple subspaces for outlier analysis.
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The euclidian distance of X is computed to the mean of the reference
set S(X) in the subspace defined by Q(X). This is denoted by G(X).
The value of G(X) is affected by the number of dimensions in Q(X). The
subspace outlier degree SOD(X) of a data point is defined by normalizing
this distance G(X) by the number of dimensions in Q(X).

SOD(X) =
G(X)

|Q(X)|
It remains to explain how the reference set S(X) is generated with the
use of distances. This may sometimes turn out to be a challenge, since
the concept of proximity is itself hard to define in full dimensional space.
Therefore, there is a circularity in using full dimensional distances to
pick the reference set. The work [273] uses a shared nearest neighbor
approach in order to compute this locality.

This work tries to find the outliers in a single subspace of the data, on
the basis of local analysis. In practice, the deviations may be hidden in
unusual subspaces which are not evident from the 1-d variance statistics
of the reference set. Therefore, if the wrong subspace is selected by
aggregate analysis, it is quite likely that many outliers may be missed.
Furthermore, since the different dimensions in the data may combine
to provide unusual results, it is sometimes more helpful to evaluate the
locality of a data point in a subspace by examining the data distribution
in the entire subspace, rather than examining the different dimensions
independently from one another.

3.2 Finding Distance-based Outlying Subspaces

Most of the methods for outlier detection attempt to search for rele-
vant subspaces in order to find outliers. However, some recent methods
[499–501] are designed for finding the outlying subspaces for a given data
point. Thus, the causality in this case is the other way around, where
subspaces are determined from points.

A system called HOS-Miner was presented in [499]. According to this
work, the definition of the outlying subspace for a given data point X is
as follows:

Definition 5.1 For a given data point X, determine the set of sub-
spaces such that the sum of its k-nearest neighbor distances in that sub-
space is at least δ.

This approach does not normalize the distances with the number of
dimensions. Therefore, a subspace becomes more likely to be outly-
ing with increasing dimensionality. This definition also exhibits closure
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properties in which any subspace of a non-outlying subspace is also not
outlying. Similarly, every superset of an outlying subspace is also outly-
ing. Clearly, only minimal subspaces which are outliers are interesting.
The method in [499] uses both downward- and upward-closure properties
to prune off subspaces which are either not relevant or not interesting.
An X-Tree is used in order to perform the indexing for performing the
k-nearest neighbor queries in different subspaces efficiently. It should
be noted that while the closure properties result in better efficiency and
algorithmic convenience, they do not necessarily imply greater effective-
ness. As the earlier example with the young diabetes patient illustrated,
true outliers are often hidden in subspaces of the data, which cannot be
inferred from their lower or higher dimensional projections.

In order to further improve the efficiency of the learning process, the
work in [499] uses a random sample of the data in order to learn about
the subspaces before starting the subspace exploration process. This is
achieved by estimating a quantity called the Total Savings Factor (TSF)
of the outlying subspaces. These are used to regulate the search process
for specific query points and prune the different subspaces in an ordered
way. Furthermore, the TSF values of different subspaces are dynamically
updated as the search proceeds. It has been shown in [499] that such
an approach can be used in order to determine the outlying subspaces
of specific data points efficiently. Numerous methods for using different
kinds of pruning properties and genetic algorithms for finding outlying
subspaces are presented in [500, 501].

4. Combining Outliers from Multiple Subspaces

One of the major challenges of subspace analysis is that a given data
point may show very different behavior in terms of its outlier degree in
different subspaces. This also corresponds to the fact that the outlier
scores from different subspaces may all be very different. These need
to be combined into a unified outlier score. This principle is generally
related to that of ensemble-analysis, which was discussed in Chapter 1. A
variety of methods have been proposed for examining different subspaces
for outlier ranking.

4.1 Random Subspace Sampling

The simplest method for combining outliers from multiple subspaces
is the use of random subspace sampling. In the work in [289], an ap-
proach called feature bagging is used, which is analogous to the ensemble
technique often used in data classification. This approach also falls in
the class of independent ensembles introduced in Chapter 1.



148 OUTLIER ANALYSIS

The broad approach is to repeatedly apply the following two steps:

Randomly select between (d/2) and d features from the underlying
data set in iteration t in order to create a data set Dt in the tth
iteration.

Apply the outlier detection algorithm Ot on the data set Dt in
order to create score vectors St.

In principle, the outlier detection algorithm Ot used for the tth iteration
could be different. However, the work in [289] uses the LOF algorithm
for all the iterations.

At the end of the process, the outlier scores from the different algo-
rithms need to be combined. There are two distinct methods which are
used in order to combine the different subspaces:

Breadth-first Approach: In this approach, the ranking of the al-
gorithms is used for combination purposes. The top-ranked out-
liers over all the different executions are ranked first, followed by
the second-ranked outliers (with repetitions removed), and so on.
Minor variations could exist because of tie-breaking between the
outliers within a particular rank.

Cumulative Sum Approach: The outlier scores over the different
algorithm executions are summed up. The top ranked outliers are
reported on this basis.

It was shown in [289] by synthetic data analysis, that combining meth-
ods are important when some of the features are noisy. In such cases,
full-dimensional algorithms are unable to distinguish the true outliers
from the normal data, because of the additional noise. Improvements
over the base LOF-approach were also observed with the use of real-data
analysis. At first sight, it would seem that random subspace sampling
[289] does not attempt to optimize the discovery of subspaces to finding
rare instances at all. Nevertheless, it does have the paradoxical merit
that it is relatively efficient to sample subspaces, and therefore a large
number of subspaces can be sampled in order to improve robustness.
The robustness resulting from multiple subspace sampling is clearly a
very desirable quality, as long as the combination function at the end
recognizes the differential behavior of different subspace samples for a
given data point. In a sense, this approach implicitly recognizes the dif-
ficulty of detecting relevant and rare subspaces for the outlier detection
problem, and therefore approaches the problem by sampling as many
subspaces as possible in order to reveal the rare behavior. From a con-
ceptual perspective, this approach is similar to that of harnessing the
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power of many weak learners to create a single strong learner in clas-
sification problems. The approach has been shown to show consistent
performance improvement over full dimensional methods for many real
data sets in [289]. This approach may also be referred to as the feature
bagging method or random subspace ensemble method. This approach is
likely to have significant potential for improving subspace analysis, by
experimenting with different choices of combination functions.

The work in [310] designs the concept of isolation forest, which de-
rives its motivation from another ensemble technique known as random
forests, which are commonly used in classification. In this case, the data
is recursively partitioned by axis-parallel cuts along randomly selected
attributes, so as to isolate different kinds of instances from one another.
In such cases, the tree branches containing outliers are noticeably less
deep, because these data points are quite different from the normal data.
Thus, data points which have noticeably shorter paths in the branches
of different trees are more likely to be outliers. The different branches
correspond to different local subspace regions of the data, depending on
how the attributes are selected for splitting purposes. The smaller path
methods correspond to lower dimensionality of the subspaces in which
the outliers have been isolated. The final combination step is performed
by using the path lengths of the data points in the different samples.
One major challenge of using such an approach is that when the di-
mensionality of the data increases, an incorrect choice of attribute for
splitting at the higher levels of the tree is more likely to mislead the
detection approach. Nevertheless, the approach is efficient in determin-
ing each subspace sample, and the use of multiple subspace samples is a
desirable quality of the approach.

4.2 Selecting High Contrast Subspaces

The subspace ensemble method [289] discussed in the last section
randomly samples subspaces. If many dimensions are noisy, at least a
few of them are likely to be included in each subspace sample. This
implies that a larger number of subspace samples will be required in
order to obtain more robust results. Therefore, it is natural to ask
whether it is possible to perform a pre-processing in which a smaller
number of high-contrast subspaces are selected.

In the work proposed in [256], the outliers are found only in these
high-contrast subspaces, and the corresponding scores are combined to-
gether. Thus, this approach decouples the subspace search as a a gener-
alized pre-processing approach from the outlier ranking of the individual
data points. The approach discussed in [256] is quite interesting because
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of its pre-processing approach to finding relevant subspaces in order to
reduce the irrelevant subspace exploration. While the high contrast sub-
spaces are obtained using aggregation-based methods, the aggregation
behavior is only used as hints in order to identify multiple subspaces
for greater robustness. The assumption here is that rare events are
statistically more likely to occur in subspaces where there is significant
non-uniformity and contrast. The final outlier score combines the results
over different subspaces. The insight in the work of [256] is to combine
subspace selection and multiple subspaces analysis in order to determine
the relevant outlier scores. Therefore, the risk of not picking the correct
subspace is reduced. This approach has been shown to work well in [256]
over the random subspace sampling method.

The conditional probability for an an attribute value along any par-
ticular dimension P (x1|x2 . . . xd) is the same as its unconditional prob-
ability P (x1) for the case of uncorrelated data. High-contrast subspaces
are likely to violate this assumption because of non-uniformity in data
distribution. In our earlier example of the young diabetes patients, this
corresponds to the unexpected rarity of the combination of youth and the
disease. The idea is that subspaces with such unexpected non-uniformity
are more likely to contain outliers, though it is treated only as a weak
hint for pre-selection of one of multiple subspaces.

A variety of tests based on the student’s t-distribution can be used in
order to measure the deviation of this sample from the basic hypothesis
of independence. This provides a measure of the non-uniformity of the
subspace, and therefore provides a way to measure the quality of the
subspaces in terms of their propensity to contain outliers. A bottom-
up Apriori style [29] approach was proposed in order to determine the
relevant projections. In this approach the subspaces are continuously
extended to higher dimensions for testing. Details of the approach are
available in [256].

4.3 Local Selection of Subspace Projections

The work in [337] uses local statistical selection of relevant subspace
projections in order to determine outliers. In other words, the selec-
tion of the subspace projections is optimized to specific data points, and
therefore the locality of a given data point matters in the selection pro-
cess. For each data point X , a set of subspaces is identified, which are
considered high contrast subspaces from the perspective of outlier detec-
tion. However, this exploration process uses the high contrast behavior
as statistical hints in order to explore multiple subspaces for robustness,
since a single subspace may often miss the true projection.
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Algorithm OUTRES(Data Point: X
Subspace: S);

begin
for each attribute i not in S
if Si = S ∪ {i} passes non-uniformity test then
begin
Compute OS(Si,X);
O(X) = OS(Si,X) ·O(X);
OUTRES(X,Si);

end
end

Figure 5.2. The OUTRES Algorithm

TheOUTRESmethod [337] examines the density of lower dimensional
subspaces in order to identify relevant projections. The basic hypothesis,
is that for a given data point X it is desirable to determine subspaces
in which the data is sufficiently non-uniformly distributed in its locality.
In order to characterize the distribution of the locality of a data point,
the work in [337] computes the density of the locality of data point X
in subspaces S as follows:

den(S,X) = |N (X,S)| = |{Y : dist(X,Y ≤ ε}|
This is the simplest possible definition of the density, though other more
sophisticated methods such as kernel density estimation [409] are used
in OUTRES in order to obtain more refined results. Kernel density es-
timation is also discussed in Chapter 4. A major challenge here is in
comparing the subspaces of varying dimensionality. This is because the
density of the underlying subspaces reduces with increasing dimension-
ality. It has been shown in [337], that it is possible to obtain comparable
density estimates across different subspaces of different dimensionalities,
by selecting the bandwidth of the density estimation process according
to the dimensionality of the subspace.

Furthermore, the work in [337] uses statistical techniques in order to
meaningfully compare different subspaces. For example, if the data is
uniformly distributed, then the number of data points lying within a dis-
tance ε of the data point should be regulated by the fractional volume
of the data in that subspace. Specifically, the fractional parameter de-
fines a binomial distribution characterizing the number of points in that
volume, if that data were to be uniformly distributed. Of course, one
is really interested in subspaces which deviate significantly from this
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behavior. The (local) relevance of the subspace for a particular data
point X is computed using statistical testing. The two hypothesis are
as follows:

Hypothesis H0: The local subspace neighborhood N (X,S) is uni-
formly distributed.

Hypothesis H1: The local subspace neighborhood N (X,S) is not
uniformly distributed.

The Kolmogorov-Smirnoff goodness of fit test [424] is used to determine
which of the afore-mentioned hypothesis are true. It is important to note
that this process provides an idea of the usefulness of a subspace, and
is used in order to enable a filtering condition for removing irrelevant
subspaces from the process of computing the outlier score of a specific
data point. A subspace is defined as relevant, if it passes the hypoth-
esis condition H1. In other words, outlier scores are computed using a
combination of subspaces which must satisfy this relevance criterion.

In order to combine the scores which are obtained from multiple rel-
evant subspaces, the work in [337] uses the product of the outlier scores
obtained from different subspaces. Thus, if S1 . . . Sk be the different ab-
normal subspaces found for data point X, and if O(Si,X) be the outlier
score from subspace Si, then the overall outlier score OS(X) is defined
as follows:

OS(X) =
∏
i

O(Si,X)

It is evident that low scores represent a greater tendency to be an outlier.
The advantage of using the product over the sum, is that the latter
is dominated by the high scores, as a result of which a few subspaces
containing normal behavior will dominate the sum. On the other hand,
in the case of the product, the outlier behavior in a small number of
subspaces will be greatly magnified. This is particularly appropriate for
the problem of outlier detection. So far, it has not been discussed, how
the actual subspaces S1 . . . Sk are determined. This will be achieved with
a careful subspace exploration.

In order to actually define the outlier score, subspaces are consid-
ered significant for particular objects only if their density is at least two
standard deviations less than the mean value. This is essentially a filter
condition for that subspace to be considered deviant. Thus, the devi-
ation dev(X,Si) of the data point X in subspace Si is defined as the
ratio of the deviation of the density of the object from the mean density,
divided by two standard deviations.

dev(Si,X) =
μ− den(Si,X)

2 · σ
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The outlier score of a data point in a subspace is the ratio of the density
of the point in the space to its deviation, if it satisfies the filter condi-
tion of the density being at least two standard deviations less than the
mean. Otherwise the outlier score is considered to be 1, and it does not
affect the overall outlier score in the product function defined earlier for
combining different subspaces. Thus, for the points satisfying the filter
condition, the outlier score OS(Si,X) is defined as follows:

O(Si,X) =
den(Si,X)

dev(Si,X)

An observation in [337] is that subspaces which are either very low
dimensional (eg. 1-d subspaces) or very high dimensional are not very
informative from an outlier detection perspective. A recursive explo-
ration of the subspaces is performed, where an additional attribute is
included in the subspace for statistical testing. Therefore, the work in
[337] uses recursive processing in which the subspaces are built in re-
cursive fashion. When an attribute is added to the current subspace
Si, the non-uniformity test is utilized to determine whether or not that
subspace should be used. Otherwise, this subspace is discarded.

The overall algorithm uses a recursive subspace exploration procedure
in order to measure the outlierness of any particular object. Note that
the entire recursive algorithm uses the data point X as input, and there-
fore the procedure needs to be applied separately for each data point.
For any given subspace, an attribute is incrementally added. Then,
the non-uniformity test is applied to determine if it is relevant. If it is
not relevant, then the subspace is discarded. Otherwise, the outlier score
O(Si,X) in that subspace is computed for the data point, it is multiplied
with the current value of OS(X). Since the outlier scores of subspaces,
which do not meet the filter condition are set to 1, they do not affect
the density computation in this multiplicative approach. The procedure
is then recursively called in order to explore the next subspace. Thus,
such a procedure potentially explores an exponential number of sub-
spaces, though the real number is likely to be much smaller in practice.
This is because of the non-uniformity test, which prunes off large parts
of the recursion tree during the exploration. The overall algorithm for
subspace exploration for a given data point X is illustrated in Figure
5.2.

5. Generalized Subspaces

A significant amount of success has been achieved for finding outliers
in axis-parallel subspaces in recent work. While these methods are effec-
tive for finding outliers in cases where the outliers naturally deviate in
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Figure 5.3. The example of Figure 3.4 re-visited: Global PCA can discover outliers
in cases, where the entire data is aligned along lower dimensional manifolds.

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

FEATURE X

FE
A

TU
R

E
 Y

X <  POINT A

X <  POINT B

Figure 5.4. The example of Figure 2.7 revisited: Outliers are best discovered by
determining deviations from local PCA-based clusters. Neither axis-parallel subspace
outliers nor global-PCA can capture such clusters.
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specific subspaces from the clusters, they are not very useful for finding
clusters in cases where the points are aligned along lower-dimensional
manifolds of the data. For example, in the case of Figure 5.4, no 1-
dimensional subspace analysis from the 2-dimensional data can find the
outliers. On the other hand, it is possible to find localized 1-dimensional
correlated subspaces so that most of the data aligns along these localized
1-dimensional subspaces, and the remaining deviants can be classified as
outliers.

These algorithms are generalizations of the following two classes of
algorithms:

The PCA-based linear models discussed in Chapter 3 find the global
regions of correlation in the data. For example, in the case of Fig-
ure 5.3, the outliers can be effectively identified by determining
these global directions of correlation. However, no such global di-
rections of correlation exist in the case of Figure 5.4.

The axis-parallel subspace outliers discussed earlier in this chapter
can find deviants, when the data is naturally aligned along low
dimensional axis-parallel subspace clusters. However, this is not
the case in Figure 5.4, where the data is aligned along arbitrary
directions of correlation.

This problem can be partially addressed with the use of generalized
projected clustering methods, where the clusters are determined in arbi-
trarily aligned subspaces of the data [7]. The method discussed in [7] has
a built-in mechanism in order to determine the outliers in addition to
the clusters. Such outliers are naturally data points which do not align
with the clusters. However, the approach is not particularly optimized
for finding the outliers, because the primary purpose of the method is
to determine the clusters. The outliers are discovered as a side-product
of the clustering algorithm, rather than as the primary goal. There-
fore, the approach may discover the weaker outliers, which correspond
to the noise in the data. Similarly, the approach in [132] is focussed
on determining the noise in the data for improving mixture modeling of
probabilistic PCA algorithms. In order to determine the outliers which
are optimized to the locality of a particular data point, it is critical
to determine localized subspaces which are optimized to the data point
X, which is being evaluated for its outlier score. The determination of
such subspaces is non-trivial, since it often cannot be inferred from lo-
cally aggregate properties of the data, for detecting the behavior of rare
instances.

Another method was recently proposed in [274] for finding outliers in
generalized subspaces of the data. The main difference from earlier gen-
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eralized subspace clustering methods is that local reference sets are used
for local correlation analysis. For a given data point X, this method
finds the full-dimensional k-nearest neighbors of X . This provides a ref-
erence set S with mean vector μ. The PCA approach of Chapter 3 is
applied to the covariance matrix Σ(S) of the local reference set S in order
to determine the key eigenvectors e1 . . . ed, in increasing order of vari-
ance, with corresponding eigenvalues λ1 ≤ λ2 . . . ≤ λd. The discussion
in section 3 of Chapter 3 performs these same steps [406] except that
they are performed on a global basis, rather than on a local reference
set S. Even if all d dimensions are included, it is possible to create a
normalized outlier score of a data point X , to the centroid μ of the data
with the use of local eigenvalue scaling, as discussed in Chapter 3:

Score(X) =

d∑
j=1

|(X − μ) · ej |2
λj

(5.1)

As discussed in section 2.2.2 of Chapter 2, this can be approximately
modeled as a χ2 distribution with d degrees of freedom for each data
point, and the outlier scores of the different data points can be reason-
ably compared to one another. Such an approach is used in [406] in
the context of global data analysis. The survey paper of Chandola et
al. [107] provides a simpler exposition. The work in [274] uses a similar
approach with the use of a local reference set, selected with the use of
full dimensional k-nearest neighbor distances.

Eigenvectors with large values of λi will usually not contribute much
to the score, though as discussed below, this may not always be the
case. Such directions are pruned from the score. The δ eigenvectors2

with the smallest eigenvalues are picked for the computations above.
Correspondingly, the pruned score is defined on the basis of the first
δ ≤ d eigenvectors only with the smallest eigenvalues.

Score(X, δ) =
δ∑

j=1

|(X − μ) · ej|2
λj

(5.2)

How should the value of δ be determined for a particular data point
X? The score is a χ2-distribution with δ-degrees of freedom. It was
observed in [274] that the value of δ can be parameterized, by treating
the χ2 distribution as a special case of the Γ distribution.

Score(X, δ) ∼ Γ(δ/2, 2)

2The work in [274] uses δ as the number of longest eigenvectors, which is only a notational
difference, but is noted here to avoid confusion.
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Figure 5.5. Local reference set may sometimes contain points from multiple gener-
ating mechanisms

The optimal value of δ is picked specifically for each data point, by pick-
ing the value of δ in order to determine the maximal unlikely deviation
based on this model. This is done by using the cumulative density func-
tion of the aforementioned distribution. While this value can be directly
used as an outlier score, it was also shown in [274], how this score may
be converted into a more intuitive probability value.

This approach has several issues:

A single subspace has been used by this approach for finding the
outliers with the use of the local reference set S. If the local refer-
ence set S is not accurately determined, then this will not provide
the proper directions of local correlation. The use of a single sub-
space is risky, especially with the use of weak aggregation-based
hints, because it is often possible to unintentionally remove rele-
vant subspaces. This can have drastic effects. The use of multiple
subspaces may be much more relevant in such scenarios, such as
the methods proposed in [289, 256, 337, 341].

There is an inherent circularity in identifying the reference set with
the use of full dimensional k-nearest neighbor distances, especially
if the distances are not meaningfully defined in full dimensionality.
The choice of points in the reference set and the choice of the sub-
space clearly impact each other in a circular way. This is a classical
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“chicken and egg” problem in subspace analysis, which was first
pointed out in [5]. The analysis in such cases needs to be simul-
taneous rather than sequential. As is well known, the most robust
techniques for handling circularity in virtually all problem domains
(eg. the EM algorithm and many projected clustering methods)
use iterative methods, so that the point-specific and dimension-
specific aspects of the problem are able to interact with one an-
other. This is however, not the case in [274], where a sequential
analysis is used.

In particular, it may happen that many locally irrelevant features
may be used during the determination of the local reference set,
when full dimensional distances are used. This set could therefore
contain data points from multiple generating mechanisms, as il-
lustrated in Figure 5.5. When the number of irrelevant features is
unknown, a specific number of points in the reference set will not
be able to avoid this problem. The use of a smaller reference set
size can reduce the chance of this happening to some extent, but
can never guarantee it, especially when many irrelevant features
are used. On the other hand, reducing the reference set size can
also result in a correlation hyperplane, whose eigenvalue statistics
overfit an artificially small set of reference points.

An interesting question arises, as to whether it is necessary to select
a particular set of dimensions in a hard way, since the eigenvalues
in the denominator of Equation 5.1 already provide a soft weighting
to the importance (or relevance) of the different dimensions. For
example, if for a large value of λi, a data point shows even larger
deviations along that direction, such an outlier would either be
missed by dimension pre-selection, or would include other less rel-
evant dimensions. An example is the outlier B in Figure 5.5, which
is aligned along the longer eigenvector, and therefore the longest
eigenvector is the most informative about its outlier behavior. In
particular, the method of picking the δ smallest eigenvectors im-
plicitly assumes that the relevance of the attributes are ordered
by eigenvalue magnitude. While this may generally be true for
aggregation-based clustering algorithms, it is very often not true
in outlier analysis because of the unusual nature of outliers. The
possibility of outliers aligning along long eigenvectors is not uncom-
mon at all, since two highly correlated attributes may often show
highly deviant behavior of a similarly correlated nature. This ex-
ample also shows, how brittle the rare nature of outlier analysis
is to aggregation-based measures. This is because of the varying
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causes of rarity, which cannot be fully captured in aggregation
statistics. This is relevant to our discussion in the introduction
section, that straightforward generalizations of subspace selection
methods from clustering (based on aggregates), are often not ap-
propriate or optimized for (the rare nature of) outlier analysis.
One advantage of using all the dimensions is that it reduces to
a local Mahalanobis distance with the same dimensionality, and
allows better comparability in the scores across different outliers.
In such cases, intuitive probability values may be derived more
simply from the χ2(d) distribution.

The high dimensional case is an extremely difficult one, and it is un-
derstandable that no given method will be able to solve these problems
perfectly. It should also be pointed out that the iterative EM algorithm
discussed in Chapter 2 will be able to discover the local directions of
correlation along with outliers which have low fit value to the model.
These may sometimes include weak outliers, which are not always in-
teresting. Given that direct discovery of optimal subspaces in a given
locality is much more difficult in outlier analysis, a possible line of work
would be to use a two-phase approach of first finding the weak outliers,
and then determining the strong ones among them by more detailed
analysis. For example, it may be possible to use this pre-filtered set of
weak outliers for intensive ensemble-based subspace exploration. Com-
bining pre-filtered data points with pre-filtered high-contrast subspaces
may provide an interesting direction of future exploration. A significant
scope still exists for further improvement of the techniques designed in
this area.

6. Discussion of Subspace Analysis

While subspace outlier analysis seems to be the only meaningful method
for high dimensional outlier detection, the approach faces a number of
challenges, a lot of which are computational in nature. In the high-
dimensional case, a small number of deviant subspaces may remain hid-
den out of a large number of possibilities. This can create unprecedented
challenges for outlier analysis. The combinatorial nature of the problem
necessitates the design of more efficient algorithms which can perform
an ordered exploration of these spaces. In spite of the recent advances in
the literature, the design of efficient algorithms for the high dimensional
subspace exploration scenario remains a challenge. This is of course an
inherent property of high-dimensional data, in which the curse of di-
mensionality impacts the results both from a qualitative and efficiency
perspective.
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The second challenge arises from the fact that a subspace exploration
technique reports a number of different possibilities for the projections.
In such cases, it remains a challenge to combine the results from these
deviant subspaces, and rank the resulting outliers effectively. This is of
course an opportunity as well, since the results from multiple subspaces
may provide more robust outliers. Therefore, significant advancements
are required in ensemble analysis for outlier detection.

It has been claimed in [514] as an apparently new insight, that the
major reason for difficulty in high dimensional outlier analysis is not the
concentration of distances, but the masking effects of the locally noisy
and irrelevant nature of some of the dimensions, and that the literature
has failed to discuss the impact of locally relevant dimensions. This is
an incorrect assertion, since both the aspects of local feature selection
(relevance) and distance concentration have been studied extensively in
the literature. While it is true that noisy and irrelevant attributes mask
the outliers, the observation is certainly not new, and the two factors
of distance concentration and local feature relevance are closely related.
The original work in [4] (and virtually every other subsequent work [289,
256, 337] on this topic) provides a pictorial illustration and a fairly de-
tailed discussion of how (locally) irrelevant attributes mask outliers in
different feature-specific views of the data. As stated in [4]: “. . . by
using full dimensional distance measures it would be difficult to deter-
mine outliers effectively because of the averaging behavior of the noisy
and irrelevant dimensions. Furthermore, it is impossible to prune off
specific features a-priori, since different points may show different kinds
of abnormal patterns, each of which use different features or views.”
The ineffectiveness of global feature selection in high dimensional data
in fact forms the motivating reason for subspace analysis, which can be
considered a local feature selection method, or a local dimensionality re-
duction method [7, 95]. These connections of local subspace analysis to
the ineffectiveness of global feature selection in high dimensional data
were explicitly discussed in detail in the motivational discussion of one
of the earliest works on subspace analysis [5]. At this point, these results
are well known and established3 wisdom. While it is possible to reduce
the distance concentration effects by carefully calibrating the fraction
of informative dimensions, such cases are (usually) not interesting for
subspace analysis.

3Some of the earliest methods even refer to these classes of techniques as local dimensionality
reduction [95] in order to emphasize the enhanced and differential local feature selection
effect, which arises as a result of different generating mechanisms.
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Distance concentration and (too many) irrelevant attributes are closely
related. The interesting cases for subspace analysis (typically) show
some levels of both properties. Even limited levels of distance con-
centration impact the effectiveness of full dimensional distance-based
algorithms, and this impact is therefore important to examine in out-
lier analysis. It should be noted that noisy and irrelevant attributes
are more likely to lead to concentration of distances. For example, for
the case of uniformly distributed data, where all attributes are noisy,
the concentration effect is extreme, and an outlier deviating along a
relatively small number of dimensions will be hard to discover by full
dimensional methods. In such cases, from a full dimensional distance-
based or density-based perspective, all data points have almost equally
good outlier scores, and this can be equivalently understood in terms
of either locally irrelevant features or distance concentration effects. Of
course, real data sets are not uniformly distributed, but both irrelevant
features and concentration effects are present to varying degrees in dif-
ferent data sets. The general assumption for subspace analysis is that
the addition of more dimensions often does not add proportionally more
information for a particular outlier. The challenging outliers are often
defined by the behavior of a small number of dimensions, and when the
point-specific information does not increase substantially with data di-
mensionality, even modest concentration effects will have a negative im-
pact on full dimensional algorithms. The more the number of irrelevant
attributes, the more erroneous the computations for full-dimensional
distance-based methods. An extreme example at the other end of the
spectrum is where an outlier shows informative and deviant behavior
in every dimension, and therefore outlier characteristics grow stronger
with increasing dimensionality. However, in this rather uninteresting
case, since the outlier shows both many relevant features and also typi-
cally does not conform to the distance concentration behavior of the re-
maining data, a trivial full dimensional distance-based algorithm would
find it easily in most cases. In general, cases where the informative di-
mensions also increase significantly with data dimensionality, are not as
interesting for subspace analysis because the full dimensional masking
behavior becomes less prominent in this easier case. Subspace analysis
does not exclude the possibility that the more obvious deviants may also
be found by full dimensional analysis.

Outliers, by their very rare nature, may often be hidden in small
combinations of dimensions in a high dimensional data set. Subspace
analysis is interesting for such scenarios. On the other hand, when more
dimensions do add (significantly) more information, then this becomes
an easy case for analysis, which no longer remains interesting. In the
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former case, the vast majority of noisy dimensions make all data points
appear as outliers from a density-based or data sparsity perspective.

To summarize, subspace outlier analysis is one of the most challenging
problems because of the rare and unusual nature of outliers. In order to
design meaningful algorithms, the following principles need to be kept
in mind.

Aggregation-based methods for subspace analysis only provide very
weak hints for outlier analysis as compared to clustering algo-
rithms. A direct exploration of rare regions is possible, though it
is computationally challenging because of combinatorial explosion
[4]. As a result, it becomes necessary to use heuristic methods.

Aggregation-based methods may be usable, if caution is utilized
in recognizing the fact that a given subspace derived from such
methods may not always include the relevant dimensions. Exclu-
sion of relevant dimensions has more drastic effects than inclusion
of many irrelevant dimensions. Where possible, subspace ensem-
bles should be used in order to combine the weak hints derived from
the different subspaces, if aggregation-based measures are used.

The individual component of an ensemble should be designed with
efficiency considerations. This is because the ability to execute the
individual component more number of times within a fixed time
frame, eventually provides more robustness.

7. Conclusions and Summary

Subspace methods for outlier detection are used in cases, where the
outlier tendency of a data point is diluted by the noise effects of a large
number of locally non-informative dimensions. In such cases, the outlier
analysis process can be sharpened significantly by searching for sub-
spaces in which the data points deviate significantly from the normal
behavior. The earliest work on subspace outlier detection used evolu-
tionary search methods in order to determine abnormal lower dimen-
sional projections of the data. A number of subsequent methods have
also been designed for determining multiple relevant subspaces for a can-
didate outlier, and then combining the results from different subspaces
in order to create a more robust ensemble-based ranking. It is also pos-
sible to determine the outliers in arbitrarily oriented subspaces of the
data. Such methods are able to exploit the local correlations in the data
in order to determine relevant outliers.

Outlier analysis is the most difficult problem among all classes of sub-
space analysis problems. This difficulty arises out of the rare nature
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of outliers, which makes direct statistical analysis more difficult. Since
subspace analysis and local feature selection are related, it is noteworthy
that even for global feature selection, there are few known methods for
outlier analysis, as compared to clustering and classification algorithms.
The reason is simple: enough statistical evidence is often not available
for the analysis of rare characteristics. Robust statistics is all about more
data, and outliers are all about less data and statistical non-conformity
with most of the data! Regions and subspaces containing statistical
conformity tell us very little about the complementary regions of non-
conformity in the particular case of high-dimensional subspace analysis,
since the potential domain of the latter is much larger than the former.
In particular, a local subspace region of the greatest aggregate confor-
mity does not necessarily reveal anything about the rare point with the
greatest statistical non-conformity.

While it is doubtful that the more difficult variations of the problem
will ever be fully solved, or will work completely in all situations, it may
be possible to design methods which work in many important scenarios.
There are many merits in being able to design such methods, because
of the numerous insights they can provide in terms of identifying the
causes of abnormality. The main challenge is that outlier analysis is so
brittle, that it is often impossible to make confident assertions about
inferences drawn from aggregate data analysis. The issue of efficiency
seems to be closely related to that of effectiveness in high dimensional
outlier analysis. This is because the search process for outliers is likely
to require exploration of multiple local subspaces of the data in order
to ensure robustness. With increasing advances in the computational
power of modern computers, there is as yet hope that this area will
become increasingly tractable for analysis.

8. Bibliographic Survey

In the context of high-dimensional data, there are two distinct lines
of research, one of which investigates the efficiency of high dimensional
outlier detection [46, 185, 467], and the other investigates the more fun-
damental issue of the effectiveness of high dimensional outlier detection
[4, 273]. Unfortunately, the distinction between these two lines of work is
sometimes blurred in the literature, even though these are clearly differ-
ent lines of work with very different motivations. It should be noted that
the methods discussed in [46, 185, 467] are all full dimensional methods,
because outliers are defined on the basis of their full dimensional devi-
ation. While the method of [467] uses projections for indexing, this is
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used only as an approximation to improve the efficiency of the outlier
detection process.

In the high-dimensional case, the efficiency of (full dimensional) out-
lier detection also becomes a concern, because most outlier detection
methods require repeated similarity search in high dimensions in order
to determine the nearest neighbors. The efficiency of these methods de-
grades because of two factors: (i) the computations now use a larger
number of dimensions, and (ii) the effectiveness of pruning methods and
indexing methods degrades with increasing dimensionality. The solution
to these issues still remains unresolved in the vast similarity search liter-
ature. Therefore, it is unlikely that significantly more efficient similarity
computations could be achieved in the context of high dimensional out-
lier detection, though some success has been claimed for improving the
efficiency of high dimensional outlier detection in methods proposed in
[46, 185, 467]. On the whole, it is unclear how these methods would
compare to the vast array of techniques available in the similarity search
literature for indexing high dimensional data. This chapter does not
investigate the efficiency issue at all, because the efficiency of a full di-
mensional outlier detection technique is not important, if it does not
even provide meaningful outliers. Therefore, the focus of the chapter is
on methods which re-define the outlier detection problem in the context
of lower dimensional projections. It is also noted that an angle-based
outlier detection for high-dimensional data has been proposed in [269],
though this method has been discussed in the chapter on extreme value
analysis (Chapter 2), since this method is not a subspace exploration
technique. It is also designed to find specific kinds of outliers which
lie at the boundaries of the multivariate data, and is much closer in
principle to other multivariate extreme value analysis methods such as
depth-based and deviation-based methods.

The problem of subspace outlier detection was first proposed in [4]. In
this paper, an evolutionary algorithm was proposed to discover the lower
dimensional subspaces in which the outliers may exist. The method
for distance-based outlier detection with subspace outlier degree was
proposed in [273]. Another distance-based method for subspace outlier
detection was proposed in [346]. Some methods have also been proposed
for outlier analysis by randomly sampling subspaces and combining the
scores from different subspaces [289, 310]. In particular, the work in [289]
attempts to combine the results from these different subspaces in order
to provide a more robust evaluation of the outliers. These are essentially
ensemble-based methods, which attempt to improve detection robustness
by bagging the results from analyzing different sets of features. The
major challenge of these methods is that random sampling may not
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work very well, when the outliers are hidden in specific subspaces of the
data. The work in [256] can be considered a generalization of the broad
approach in [289], where only high contrast subspaces are selected for
the problem of outlier detection.

The reverse problem of finding outlying subspaces from specific points
was studied in [499–501]. In these methods, a variety of pruning and evo-
lutionary methods were proposed in order to speed up the search process
for outlying subspaces. The work in [47] also defines the exceptional
properties of outlying objects both with respect to the entire population
(global properties), and also with respect to particular sub-populations
to which it belongs (local properties). Both these methods provide dif-
ferent but meaningful insights about the underlying data. A genetic
algorithm for finding the outlying subspaces in high dimensional data is
provided in [500]. In order to speed up the fitness function evaluation,
methods are proposed to speed up the computation of the k-nearest
neighbor distance with the use of bounding strategies. A broader frame-
work for finding outlying subspaces in high dimensional data is provided
in [501]. A method which uses two-way search for finding outlying sub-
spaces is proposed in [482]. In this method, full dimensional methods
are first used to determine the outliers. Subsequently, the key outly-
ing subspaces from these outlier points are detected and reported. A
method for using rules in order to explain the context of outlier objects
is proposed in [340].

A number of ranking methods for subspace outlier exploration have
been proposed in [337–339]. In these methods, outliers are determined
in multiple subspaces of the data. Different subspaces may either pro-
vide information about different outliers, or about the same outliers.
Therefore, the goal is to combine the information from these different
subspaces in a robust way in order to report the final set of outliers.
The OUTRES algorithm proposed in [337] uses recursive subspace ex-
ploration in order to determine all the subspaces relevant to a particular
data point. The outlier scores from these different subspaces are com-
bined in order to provide a final value. A tool-kit for ranking subspace
outliers has been presented in [338]. A more recent method for using
multiple views of the data for subspace outlier detection is proposed in
[341]. Methods for subspace outlier detection in multimedia databases
were proposed in [51].

Most of the methods for subspace outlier detection perform the ex-
ploration in axis-parallel subspaces of the data. This is based on the
complementary assumption that the dense regions or clusters are hid-
den in axis-parallel subspaces of the data. However, it has been shown in
recent work that the dense regions may often be located in arbitrarily ori-
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ented subspaces of the data [7]. While it has been shown in earlier work
that the removal of noise (or weak outliers) improves the effectiveness of
generalized subspaces clustering algorithms [7], specific techniques are
also required in order to determine outliers in a way which is optimized
to the data correlations. Another work in [274] provides an arbitrar-
ily oriented solution for the generalized outlier analysis problem, which
extends the correlation-analysis approach proposed in [7] to a method
based on local reference sets rather than clusters.

Recently, the problem of outlier detection has also been studied in
the context of dynamic data and data streams. The SPOT method was
proposed in [498], which is able to determine projected outliers from
high dimensional data streams. Thus approach employs a window-based
time model and decaying cell summaries to capture statistics from the
data stream. A set of top sparse subspaces are obtained by a variety
of supervised and unsupervised learning processes. These are used in
order detect the projected outliers. A multi-objective genetic algorithm
is employed for finding outlying subspaces from training data.

The problem of high dimensional outlier detection has also been ex-
tended to other application-specific scenarios such as astronomical data
[213], uncertain data [23], transaction data [210] and supervised data
[513]. In the uncertain scenario, high dimensional data is especially chal-
lenging, because the noise in the uncertain scenario greatly increases the
sparsity of the underlying data. Furthermore, the level of uncertainty
in the different attributes is available. This helps decide the importance
of different attributes for outlier detection purposes. Subspace methods
for outlier detection in uncertain data are proposed in [23]. Supervised
methods for high-dimensional outlier detection are proposed in [513].
In this case, a small number of examples are presented to user of the
outliers. These are then used in order to learn the critical projections
which are relevant to the outlierness of an object. The learned informa-
tion is then leveraged in order to determine the relevant outliers in the
underlying data.

9. Exercises

1. Which of the following data points is an outlier in some well chosen
two-dimensional projection: { (1, 8, 7), (2, 8, 8), (5, 1, 2), (4, 1, 1),
(3, 1, 8) }

2. Download the Arrythmia data set from the UCI Machine Learn-
ing Repository [169]. Write a computer program to determine all
distance-based outliers in different 2-dimension projections. Are
the outliers the same in different projections?
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3. In the Arrythmia data set mentioned in the previous exercise, ex-
amine the Age, Height andWeight attributes of the Arrythmia data
set both independently and in combination. Draw a scatter plot of
each of the 1-dimensional distributions and different 2-dimensional
combinations. Can you visually see any outliers?

4. Write a computer program to determine the subspace outlier de-
gree of each data point in theArrythmia data set for all 1-dimensional
projections and 2-dimensional projections. Which data points are
declared outliers?

5. Write a computer program to perform subspace sampling of the
Arrythmia data set, using the approach of [289] by sampling 2-
dimensional projections. How many subspaces need to be sampled
in order to robustly identify the outliers found in Exercise 2 over
different executions of your computer program.

6. Consider a data set with d-dimensions, in which exactly 3 spe-
cific dimensions behave in an abnormal way with respect to an
observation. How many minimum number of random subspaces
of dimensionality (d/2) will be required in order to include all 3
dimensions in the subspace with probability at least 0.99? Plot
the number of required samples for different values of d > 6.
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