
Chapter 3

LINEAR MODELS FOR OUTLIER
DETECTION

“My nature is to be linear, and when I’m not, I
feel really proud of myself.” – Cynthia Weil

1. Introduction

The different dimensions in real data sets are highly correlated with
one another. This is because the different attributes are usually gen-
erated by the same underlying process in closely related ways. In the
classical statistics literature, this is referred to as regression modeling, a
parametric form of correlation analysis. Some forms of correlation anal-
ysis attempt to predict individual attribute values from others, whereas
other forms summarize the entire data in the form of latent variables.
An example of the latter is the method of principal component analysis.
Both forms of modeling can be very useful in different scenarios of out-
lier analysis. This chapter will discuss the different methods for using
linear correlation analysis for outlier detection.

The main assumption of this model is that the data is embedded in
a lower dimensional subspace. In the case of proximity-based methods,
which will be discussed in the next chapter, the goal is to determine spe-
cific regions of the space in which outlier points behave very differently
from other points. On the other hand, in linear methods, the goal is
to find lower dimensional subspaces, in which the outlier points behave
very differently from other points. This can be viewed as an orthogonal
point of view to clustering- or nearest-neighbor based methods, which
try to summarize the data horizontally (i.e. on the rows or data values),
rather than vertically (i.e. on the columns or dimensions). As will be
discussed in the chapter on high-dimensional outlier detection, it is in
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principle, possible to combine these methods for more general local sub-
space models, which can determine outliers on the basis of a combination
of horizontal and vertical criteria.

The assumption of approximately linear correlations is a critical one
for ensuring the effectiveness of the model. This may or may not be true
for a given data set. For example, consider the behavior of two data
sets from the UCI Machine Learning Repository [169]. In particular,
consider the behavior of the Autompg and Arrythmia data sets from this
repository. The first data set measures various characteristics of cars,
and relates them to the mileage (mpg) of the cars. The second data set
contains different kinds of features derived from ECG readings of human
patients.

In the first set of Figures 3.1(a) and (b), the dependence of the Miles
per Gallon attribute has been shown on each of the displacement and
horsepower attributes respectively for the Autompg data set. It is evi-
dent that a significant level of correlation exists between these attributes.
While a significant amount of noise exists in the data, the linear depen-
dence between the attributes is apparent. In fact, it can be shown for
this data set, that with increasing dimensionality (by picking more at-
tributes from the data set), the data can be aligned along much lower
dimensional planes. This is also evident in the 3-dimensional plot of
Figure 3.1(e). On the other hand, when various views along three of
the measured dimensions of the Arrythmia data set (Figures 3.1(c), (d)
and (f)) are examined, it is evident that the data separates out into two
clusters, one of which is slightly larger than the other. Furthermore, it is
rather hard to embed this kind of data distribution into a lower dimen-
sional subspace. This data set is much more suitable for proximity-based
analysis, which will be presented in Chapter 4. The reason for introduc-
ing this example is to revisit the point made in the first chapter about
the impact of the choices made during the crucial phase of picking the
correct data model. In general, the most difficult case is when different
views of the same data set may be suitable for different models. Such
data sets are best addressed with the use of subspace methods discussed
in Chapter 5, which can combine the power of row and column selection
for outlier analysis. However, in many cases, simplified models such as
linear models or proximity-based models are sufficient, without incurring
the complexity of subspace methods. From a model-selection perspec-
tive, exploratory and visual analysis of the data is rather critical in the
first phase of outlier detection in order to find out whether a particular
data model is suitable for a particular data set. This is particularly true
in the case of unsupervised data models.
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(a) View 1 (Autompg) (b) View 2 (Autompg)
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(c) View 1 (Arrythmia) (d) View 2 (Arrythmia)
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(e) 3-d View (Autompg) (f) 3-d View (Arrythmia)

Figure 3.1. Effectiveness of linear assumption is data set dependent
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In this chapter, two main classes of linear models will be studied.
The first class of models uses statistical regression modeling between de-
pendent and independent variables in order to determine specific kinds
of dependencies in the data. Such forms of modeling are more useful
when some of the attributes in an application should be monitored on
a prioritized basis (eg. the last value of a time-series, where the previ-
ous history of values are the independent variables used for modeling).
The second class of models uses principal component analysis in order
to treat all attributes in a homogeneous way, and determine the lower
dimensional subspaces of projection. At a technical and mathematical
level, both forms of modeling are quite similar, and use very similar
methods in order to derive the optimal lower dimensional representa-
tions. The main difference is in how the objective function of the two
models is formulated.

It should be emphasized that regression-analysis is used extensively
to detect anomalies in time-series data, and many of the basic tech-
niques discussed in this chapter are applicable to that scenario as well.
However, since the time-series aspect of the problem is also based on
dependencies of temporally adjacent data values, there are a number of
subtle differences in how anomalies are detected in those cases. There-
fore, in this chapter, the much simpler case of multidimensional outlier
analysis will be addressed. At the same time, the discussion will be
general enough, so that the fundamentals necessary for the discussion of
applying regression analysis in the time-series scenario (Chapter 8) are
introduced.

This chapter is organized as follows. In section 2, the basic linear
regression models for outlier analysis will be introduced. In section 3,
the principal component method for outlier analysis will be introduced.
This can be considered an important special case of linear regression
models, which is used frequently in outlier analysis. Therefore it is
given a dedicated treatment in its own section. Section 4 will study the
limitations of linear models for outlier analysis. Section 5 contains the
conclusions and summary.

2. Linear Regression Models

In linear regression, the observed values in the data are modeled using
a linear system of equations. Specifically, the different dimensions in the
data are related to one another using a set of linear coefficients. Since
the number of observed values are typically much larger than the di-
mensionality of the data, this system of equations is an over-determined
one, and cannot be solved exactly. Therefore, these models optimize
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the square error of the deviations of data points from values predicted
by the linear model. The exact choice of the error function determines
whether a particular variable is treated specially (i.e. error of predicted
variable value), or whether variables are treated homogeneously (i.e. er-
ror distance from estimated lower dimensional plane). These different
choices of the error function do not lead to the same model. In fact,
as the following discussion will show, the models can be very different
especially in the presence of outliers.

Regression analysis is generally considered an important application
of its own in statistics. In classical instantiations of this application, it is
desirable to learn a specific dependent variable from a set of independent
variables. This is a common scenario in time-series analysis, which will
be discussed in detail in Chapter 8. Thus, a specific variable is treated
specially from the other variables. Most applications on outlier analy-
sis do not treat any particular variable as special, and the definition of
outliers is generally based on the overall distribution of the underlying
data points. However, the special case of regression analysis with depen-
dent variables is also important in many applications. This is because in
many real-life domains such as temporal and spatial data, the attributes
are partitioned into contextual and behavioral attributes. In such cases,
a particular behavioral attribute value is predicted as a function of the
behavioral attributes in its contextual neighborhood in order to deter-
mine deviations from expected values. Therefore, the importance of the
dependent variable is paramount. In such cases, outliers are defined on
the basis of how other independent variables impact the dependent vari-
able, and anomalies within the relationships of independent variables
with each other are considered less important. The identification of out-
liers in such cases is also very useful for noise reduction in regression
modeling, which is an important problem in its own right. This prob-
lem is considered so important, that an entire book has been devoted to
this subject [387]. Therefore, the special case of regression analysis with
dependent variables will be studied first. Then, the general application
of regression methods to outlier analysis will be discussed. The focus in
this section is to discuss the impact of outliers on the linear modeling
process of a dependent variable on a set of explanatory variables. The
discussion of this case also sets the stage for a more detailed discus-
sion for the cases of time-series data in Chapter 8, and spatial data in
Chapter 10.

In a later subsection, the more general problem of utilizing regression
modeling for generic outlier analysis will be discussed. In that case, no
particular variable is considered special, and regression modeling is a tool
(rather than an application in its own right). Such a tool may be used
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either to remove noise for other applications, or to identify interesting
anomalies. This latter form of the problem is the focus of most of this
book, though dependent variable regression analysis is also important in
many applications such as time-series data.

2.1 Modeling with Dependent Variables

A variable Y can be modeled as a linear function of d dependent
variables as follows:

Y =

d∑
i=1

ai ·Xi + ad+1

The variable Y is the response variable or the dependent variable, and
the variables X1 . . . Xd are the independent or the explanatory variables.
The coefficients a1 . . . ad+1 need to be learned from the data. The data
may contain N different instances, which provide examples of how Y
may be related to the different values of Xi. The jth instances of the
data are denoted by (xj1 . . . xjd) and yj. The jth instance of the response
variable is related to the explanatory variables as follows:

yj =

d∑
i=1

ai · xji + ad+1 + εj

Here εj represents the error in modeling the jth instance. In least squares
regression, the goal is to determine the regression coefficients a1 . . . ad+1,

which minimize the error
∑N

j=1 ε
2
j . The N × (d + 1)-matrix whose j-th

row is (xj1 . . . xjd, 1) is denoted by U , and the N × 1 matrix of the
different values of Y is denoted by V . Thus, the first d dimensions of U
can be considered a d-dimensional data set containing the N instances
of the independent variables, and V is corresponding vector of response
variables. The (d + 1) × 1 column vector of coefficients a1 . . . ad+1 is
denoted by A. This creates an over-determined system of equations
denoted by:

V ≈ U · A (3.1)

The least-squares error of predicting the response variable is optimized
by minimizing ||V −U ·A|| over all values of the coefficient A. It will be
seen later, that more general ways of formulating the error function may
exist, rather than simply predicting the error of the response variable.
Clearly, the choice of the error function has an impact on the optimal
hyperplane found by the regression analysis process. It can be shown
through simple optimization methods via differential calculus, that the
optimal coefficients for this minimization problem is provided by the
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following equation:

A = (UT · U)−1 · (UT · V ) (3.2)

Note that UT ·U is a (d+1)×(d+1) matrix, which needs to be inverted in
order to solve this system of equations. The system of equations above
thus needs to be over-determined in order for the matrix UT ·U to have
full rank, and be invertible. The closed form solution to this problem
is particularly convenient, and is one of the cornerstones of regression
analysis in classical statistics. It is useful to examine the special case of
two dimensional data:

Y = a1 ·X1 + a2 (3.3)

In this case, the estimation of the coefficient a1 has a particularly simple
form, and it can be shown that the best estimate for a1 is as follows:

a1 =
Cov(X1, Y )

V ar(X1)

Here V ar(·) and Cov(·) correspond to the variance and covariance of the
underlying random variables. The value a2 can further be easily esti-
mated, by plugging in the means of X1 and Y into the linear dependence,
once a1 has been estimated. In general, if X1 is regressed on Y instead

of the other way around, one would have obtained a1 =
Cov(X1,Y )
V ar(Y ) . Note

that the regression dependencies would have been different for these
cases. This shows the impact of the error term on the final regression
plane which is found by the method.

The set of coefficients a1 . . . ad+1 define a lower dimensional hyper-
plane which fits the data as well as possible in order to optimize the
error in the dependent variable. This hyperplane may be different for
the same data set, depending upon which variable is chosen as the de-
pendent variable. In order to explain this point, let us examine the
behavior of two attributes from the Auto-Mpg data set of the UCI Ma-
chine Learning repository [169].

Specifically, the second and the third attributes of the Auto-Mpg data
set correspond to the Displacement and Horsepower attributes in a set of
records corresponding to cars. The scatter plot for this pair of attributes
is illustrated in Figure 3.2. Three regression planes have been shown in
this figure, which are as follows:

One regression plane is drawn for the case, when the Horsepower
(Y-axis) is dependent on the Displacement (X-axis). The residual
in this case is the error of prediction of the Horsepower attribute.
The sum of squares of this residual is optimized.
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Figure 3.2. Optimal regression plane depends upon the choice of residual which is
optimized

The second regression plane is drawn for the case, when the Dis-
placement (X-axis) is dependent on the Horsepower (Y-axis). The
residual in this case is the error in prediction of the Displacement
attribute.

In the last case, the goal is to optimize the mean square error
of the data points in terms of their absolute distance to the best
fitting hyperplane. Thus, the residual in this case is the distance
of each point to the hyperplane, in a direction which is normal to
the hyperplane. Thus, this hyperplane minimizes the mean square
distances between the data points, and their projection into the
hyperplane. So far, the determination of such a hyperplane has not
been discussed. This will be done in a later section on Principal
Component Analysis (PCA).

It is evident from Figure 3.2 that the optimal hyper-planes in these
different cases are quite different. While the optimization of the mean
square projection distance produces a hyperplane which is somewhat
similar to the case of Y -on-X regression, the two are not the same.
This is because these different cases correspond to different choices of
errors on the residuals which are optimized, and therefore correspond to
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Figure 3.3. Drastic effects of outliers on quality of regression analysis

different best fitting hyperplanes. It is also noteworthy that the three
projection planes are collinear and pass through the mean of the data
set.

When the data fits the linear assumption very well, all these hyper-
planes are likely to be very similar and not very different from one an-
other. However, the presence of noise and outliers can result in rather
drastic negative effects on the modeling process, when some of the out-
liers show significant deviations. In order to illustrate this point, a
variation of an example from [387] is used. In Figure 3.3, the differ-
ent regression planes for two sets of five data points have been presented
corresponding to different dependent variables. The two sets of five data
points in Figures 3.3(a) and (b) are different by only one point, in which
the Y -coordinate was assumed to be somehow perturbed during data
collection. As a result, this point does not fit the remaining data very
well.

The original data set in Figure 3.3(a) fits the linear assumption very
well. Therefore, all the three regression planes tend to be very similar
to one another. However, after the perturbation of a single data point,
the resulting projection planes are drastically perturbed. In particular,
the X on Y -regression plane is significantly perturbed so as to no longer
represent the real trends in the underlying data set. It is also noteworthy
that the optimal projection plane is closer to the more stable of the
two regression models. This is a general property of optimal projection
planes, since they optimize their orientation in a stable way so as to
globally fit the data well. The determination of such planes will be
discussed in the next section.
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Clearly, the removal of outliers is crucial in such applications, in order
to improve the quality of the regression analysis. Therefore, a useful
approach would be to examine the residuals εj , and remove those data
points which are detrimental for outlier analysis. The mean of these
residuals is expected to be 0, and the variance of these residuals can be
estimated directly from the data.

The most common assumption for outlier analysis is to assume that
the error term εi is a normal distribution, which is centered at zero.
Then, the t-value test discussed in Chapter 2 can be used directly on
the different residuals, and the outlying observations can be subsequently
removed. The normal assumption on the residuals implies that the vec-
tor of coefficients is also normally distributed with mean and variances,
as discussed earlier. When the outliers have drastic effects on the regres-
sion, such as in the case of the X-on-Y regression in Figure 3.3(b), the
removal of outliers is likely to result in the removal of the wrong observa-
tions, since the regression parameters are drastically incorrect. On the
other hand, in all cases, the projection based minimization seems to pro-
vide more robust results (as opposed to picking a particular dependent
variable) to the presence of outliers. Therefore, even for dependent vari-
able analysis, it may sometimes be helpful to use such projection-based
error minimization. This is the method of Principal Component Anal-
ysis (PCA). The formulation for this case will be discussed in the next
subsection, and a more detailed discussion of the solution and different
aspects of principal component analysis will be discussed in a dedicated
section of its own.

2.2 Regression Modeling for Mean Square
Projection Error

The previous section discussed the case, where a particular variable
is considered special, and the optimal plane is determined in order to
minimize the mean-square error of the residuals for this variable. In
the most general form of regression-modeling, all variables are treated
in a similar way, and the optimal regression plane is determined the
minimize the projection error of the data to the plane. This can be
considered an unsupervised form of outlier analysis, because the outliers
are determined without treating any particular variable specially.

The projection error of the data to the plane is the sum of the squares
of the distances of the points to their projection into the plane. The
projection of a point to the plane is performed by using the normal
direction to the plane which passes through the data point and the plane.
The point at which this normal intersects the plane is the projection
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point. Thus, in this case, let us assume that we have a set of variables
X1 . . . Xd, and the corresponding regression plane is as follows:

a1 ·X1 + . . .+ ad ·Xd + ad+1 = 0 (3.4)

Each variable is associated with a coefficient, and the “special” (depen-
dent) variable (without a coefficient) is missing in this case. For simpli-
fication of the subsequent discussion of computing distances of different
observations to this plane, a normalization constraint will be assumed.

d∑
i=1

a2i = 1 (3.5)

Note that the (d + 1)th term (constant coefficient) is not used in the
normalization. As before, let U be a N × (d + 1) matrix containing
the set of N observations corresponding to the variables X1 . . . Xd, 1.
The last column in the matrix U corresponds to the constant term, and
therefore only contains unit values. Let A be a column vector containing
a1 . . . ad+1. It can be shown that the N -dimensional column vector of
distances for the different data points to this regression plane is given by
U ·A. The L2-norm ||U ·A||2 of the column vector of distances is the ob-
jective function, which needs to be minimized over the different possible
values of the coefficients a1 . . . ad+1, under the normalization constraint.
It can be shown that a effective (and much more general) solution to the
problem can be obtained with Principal Component Analysis (PCA). Be-
cause of its importance to outlier analysis, this method will be discussed
in a dedicated section of its own, along with corresponding applications.

3. Principal Component Analysis

The least-squares formulation of the previous section simply tries to
find a single (d−1)-dimensional hyperplane which has an optimum fit to
the data values. The principal component analysis method can be used
to solve a generalized version of this problem. Specifically, it can find op-
timal representation hyperplanes of any dimensionality. Specifically, the
PCA method can determine the k-dimensional hyperplane (for any value
of k < d), which minimizes the squared projection error. In principal
component analysis, the d×d covariance matrix over d-dimensional data
is computed, where the (i, j)th entry is equal to the covariance between
the dimensions i and j for the set of N observations of the variables
X1 . . . Xd.

It is easier to think in terms of a multidimensional data set of di-
mensionality d and size N , rather than a set of d variables with N
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Figure 3.4. Eigenvectors correspond to directions of correlations in the data. A small
number of eigenvectors can capture most of the variance in the data.
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observations (as presented in the earlier portions of this chapter). Thus,
in the context of a multidimensional data set, the value of d represents
the dimensionality, and the value of N represents the number of records
(or rows). The i-th record is a row of the multidimensional data set,
and is denoted by Ri = [xi1 . . . xid], where xij is the ith observation for
the jth variable Xj . Let us denote the d × d covariance matrix of the
data set by Σ, in which the (i, j)th entry is the covariance between the
ith and jth dimensions. This matrix can be shown to be symmetric and
positive semi-definite. It can therefore be diagonalized as follows:

Σ = P ·D · P T

Here D is a diagonal matrix, and P is an orthonormal matrix, whose
columns correspond to the (orthonormal) eigenvectors of Σ. The cor-
responding entries in the diagonal matrix D provide the eigenvalues.
These orthonormal vectors provides the axes directions along which the
data should be projected. The key properties of principal component
analysis, which are relevant to outlier analysis, are as follows:

Property 3.1 (PCA Properties) Principal component analysis pro-
vides a set of eigenvectors satisfying the following properties:

If the top-k eigenvectors are picked (by largest eigenvalue), then
the k-dimensional hyperplane defined by these eigenvectors, and
passing through the mean of the data, is a plane for which the
mean square distance of all data points to it is as small as possible
among all hyperplanes of dimensionality k.

If the data is transformed to the axis-system corresponding to the
orthogonal eigenvectors, the variance of the transformed data along
each eigenvector dimension is equal to the corresponding eigen-
value. The covariances of the transformed data in this new repre-
sentation are 0.

Since the variances of the transformed data along the eigenvec-
tors with small eigenvalues are low, significant deviations of the
transformed data from the mean values along these directions may
represent outliers.

A formal proof of these properties may be found in [244]. Note that
this provides a muchmore general solution than the determination of the
optimal coefficients of Equation 3.4. Specifically, the optimal solution for
the coefficients of Equation 3.4 may be simply derived as the coefficients
of the top one eigenvector representing a1 . . . ad, and the constant term
ad+1 may be inferred by substituting the mean of the data in Equation



88 OUTLIER ANALYSIS

3.4. On the other hand, the PCA-solution provides a recursive solution
of any dimensionality by picking the top k eigenvectors.

The data can be transformed to this new axis system, with trans-
formed d-dimensional records denoted by Y1 . . . YN . This can be achieved
by using the product between the original vector representation Ri and
the orthonormal eigenvector matrix P containing the new axis-system:

Yi = [yi1 . . . yid] = Ri · P
In this new representation, the inter-attribute covariances of Yi are zero,
and most of the variances along the individual attributes correspond to
the coordinates along the eigenvectors with the largest eigenvalues. In
fact, the eigenvalues represent the variances of the transformed vectors Yi

along these directions in the new coordinate system. For example, if the
jth eigenvalue is very small, then the value of yij in this new transformed
representation does not vary much over the different values of i. The
beautiful part about PCA is that, in a single shot, it provides all the
key directions of global correlation, which retain most of the information
in the underlying data. These directions are also referred to as the
principal components in the data, since their second-order correlations
are zero, and most of the variance of the data is retained along these
directions. In many real scenarios involving very high-dimensional data
sets, a very large fraction of the eigenvalues often turn out to be very
close to zero. This essentially means that most of the data aligns along
a much lower dimensional subspace. This is very convenient from the
perspective of outlier analysis, because the observations which lie very far
away from these directions of projection can be assumed to be outliers.
For example, for an eigenvector j which has a small eigenvalue, a large
deviation of yij for the ith record from other values of ykj is indicative
of outlier behavior. This is because the values of ykj do not vary much,
when j is fixed and k is varied. Therefore, the value yij is unusual.

The effectiveness of principal component analysis in exposing outliers
from the underlying data set can be illustrated with an example. Con-
sider the scatterplot of the 3-dimensional data illustrated in Figure 3.4.
In this case, the corresponding eigenvectors have been ordered by de-
creasing eigenvalues (variances), though this is not immediately obvious
from the figure in this 2-d perspective. In this case, the standard de-
viation along the first eigenvector is three times that along the second
eigenvector and nine times that along the third eigenvector. Thus, most
of the variance would be captured in the lower-dimensional subspace
formed by the top two eigenvectors, though a significant amount of vari-
ance would also be captured by picking only the first eigenvector. If the
normal distances of the original data points to the 1-dimensional line
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corresponding to the first eigenvector (and passing through the mean of
the data) are computed, the data point ‘X’ in the figure would be im-
mediately exposed as an outlier. In the case of high-dimensional data,
most of the variance of the data can be captured along a much lower
k-dimensional subspace. The residuals for the data points can then be
computed by examining the projection distances to this k-dimensional
hyperplane passing through the mean of the data points. Data points
which have very large distances from this hyperplane can be discarded
as outliers. As before, it is possible to model these residuals as a normal
distribution, and perform a Z-value test for the corresponding statistical
significance.

A more accurate way of modeling the abnormality level without pick-
ing any particular set of k dimensions, would be to use the eigenvalue to
compute the normalized distance of the data point to the centroid along
the direction of each principal component. Let ej be the jth eigenvector
with a variance (eigenvalue) of λj along that direction. The overall nor-
malized outlier score of a data point X, to the centroid μ of the data is
given by the sum of squares of these values:

Score(X) =
d∑

j=1

|(X − μ) · ej |2
λj

(3.6)

It is important to note that most of the contribution to the outlier score is
provided by deviations along the principal component with small values
of λj, when a data point deviates significantly along such directions. The
sum of the squares of these values over all dimensions is a χ2-distribution
with d degrees of freedom. The value of the aggregate residual is com-
pared to the cumulative distribution for the χ2-distribution in order to
determine a probability value for the level of anomalousness. The afore-
mentioned approach was first used in [406].

While it may not be immediately apparent, the score computed above
is closely related to the multivariate extreme value analysis method dis-
cussed in section 3.4 of Chapter 2. Specifically, the Mahalanobis distance
value between X and μ computed in that section is exactly the same1 as
the score above, except that the eigenvector analysis above provides a
better understanding of how this score is decomposed along the different
directions of correlation. This decomposition also allows the ability to
use only the dimensions with the small eigenvalues in order to obtain
an outlier score, which ignores the long eigenvalues. It is possible to use
a score which is constructed with only the smallest δ < d eigenvalues.

1See Exercise 11 of this chapter for the systematic steps.
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However, it should also be noted that the approach already performs a
kind of soft pruning because of the inverse weighting by the eigenvalues
in the score. By explicitly pruning the score, the danger is that if a long
eigenvector is relevant to the outlier, then that outlier will be missed. It
is not uncommon for a rare value to also align along a long eigenvector.
An unusual deviation of a similarly correlated nature in two correlated
attributes will cause such a situation. In the event that a pruned score
is used, the score may be modeled as a χ2 distribution with δ degrees of
freedom. Therefore, the score may be converted into a probability. This
is quite desirable, because it provides a clear idea of the outlierness of
the underlying object.

Principal component analysis is much more stable to the presence of a
few outliers, than the dependent variable analysis methods. This is be-
cause principal component analysis computes the errors with respect to
the optimal hyperplane, rather than a particular variable. When more
outliers are added to the data, the optimal hyperplane usually does
not change drastically enough to impact the choice of data points which
should be considered outliers. Therefore, such an approach is more likely
to pick the correct outliers, because the regression model is more accu-
rate to begin with. If desired, this approach can be combined with a se-
quential ensemble methodology of Chapter 1 in order to determine the
outliers robustly. In each iteration, the obvious outliers are removed,
and a more refined PCA model is constructed. The final outliers are
deviation levels in the last iteration of the sequential ensemble.

3.1 Normalization Issues

The use of PCA can sometimes provide results which are not very in-
formative, when the scales of the different dimensions are very different.
For example, consider a demographic data set containing attributes such
as Age and Salary. The Salary attribute may range in the tens of thou-
sands, whereas the Age attribute is almost always less than a hundred.
The use of PCA would result in the principal components being domi-
nated by the high-variance attributes. For example, for a 2-dimensional
data set containing only Age and Salary, the largest eigenvector will be
almost parallel to the Salary axis, irrespective of very high correlations
between the Age and Salary attributes. This can reduce the effectiveness
of the outlier detection process. Therefore, a natural solution is to nor-
malize the data, so that the variance along each dimension is one unit.
This is achieved by dividing each dimension with its standard deviation.
This implicitly results in the use of a correlation matrix rather than the
covariance matrix during principal component analysis. Of course, this
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issue is not unique to linear modeling, and it is often advisable to use
such pre-processing for most outlier detection algorithms.

3.2 Applications to Noise Correction

Most of this book is devoted to either removal of outliers as noise, or
identification of outliers as anomalies. However, in many applications, it
is possible that even though parts of a data record may be erroneous, and
may show up as outliers, it may be useful to correct that data record, un-
der the assumption that it should show similarity to the broad patterns
in the data. Principal Component Analysis (PCA) provides an approach
for achieving this goal. In this case, the core idea of the approach is that
projection of the data point onto the k-dimensional hyperplane corre-
sponding to the largest eigenvalues (and passing through the data mean)
provides the optimal correction to the data values. Obviously such an
approach is likely to correct the outlier points significantly more than
most of the other normal data points. Some theoretical results (along
with experimental evidence) of why such an approach is likely to reduce
noise and improve data quality for a variety of applications is provided
in [18]. A similar approach to PCA (called Latent Semantic Indexing)
has also been used in the context of text data, in order to reduce the
noise, and significantly improve retrieval quality [133, 355]. In partic-
ular, it has been observed in [355] that the use of such dimensionality
reduction methods in text data significantly improves the effectiveness
of similarity computations, because of the reduction in the noise effects
of synonymy and polysemy. Text representations are inherently noisy
because the same word may mean multiple things (synonymy) or the
same concept can be represented with multiple words (polysemy). This
leads to numerous challenges in virtually all similarity-based applica-
tions. The technique of LSI [133] is essentially a variant of PCA, which
was originally developed for efficient indexing and retrieval. However, it
was eventually observed that the quality of similarity computations, in
terms of the underlying precision and recall, actually improves with the
use of LSI [355]. This observation was taken to its logical conclusion in
[18], where it was theoretically and experimentally shown that signifi-
cant noise reduction is likely to occur, with the proper use of PCA-based
techniques.

An even more effective approach for noise correction is to combine
outlier removal and re-insertion with the correction process. The first
step is to perform PCA, and remove the top outliers on the basis of a
t-test with respect to the optimal plane of representation. Subsequently,
PCA is performed again on this cleaner data set in order to generate
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Figure 3.5. Most of the Energy is Retained in a Small Number of Eigenvalues for
the Arrythmia data set

the projection subspaces more accurately. The projections can then
be performed on this corrected subspace. This process can actually be
repeated iteratively, if desired in order to provide further refinement. A
number of other approaches to perform regression analysis and outlier
removal in a robust way are presented in [387].

3.3 How Many Eigenvectors?

As discussed earlier, the eigenvectors with the largest variance provide
the most informative subspaces for data representation, and outlier anal-
ysis. In many applications such as noise correction, the data needs to be
projected into a subspace of lower dimensionality by picking a specific
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number of eigenvectors. Therefore, a natural question arises, as to how
the dimensionality k of the projection subspace should be determined.

One observation in most real data sets is that the vast number of
eigenvalues are relatively small, and most of the variance is concentrated
in a few eigenvectors. An example illustrated in Figure 3.5 shows the
behavior of the 279 eigenvectors of the Arrythmia data set of the UCI
Machine Learning Repository [169]. Figure 3.5(a) shows the absolute
magnitude of the eigenvalues in increasing order, whereas Figure 3.5(b)
shows the total amount of variance retained in the top-k eigenvalues. In
essence, Figure 3.5(b) is derived by using the cumulative sum over the
eigenvalues in Figure 3.5(a). While it was argued at the beginning of the
chapter that the Arrythmia data set is weakly correlated along many of
the dimensions, on a pairwise basis, it is interesting to note that that it
is still possible2 to find a small number of directions of global correlation
along which most of the variance is retained. In fact, it can be shown
that the first 215 eigenvalues (out of 279) cumulatively contain less than
1% of the variance in the data set.

In other words, most eigenvalues are very small. Therefore, it pays to
retain the eigenvectors corresponding to extremely large values, with re-
spect to the average behavior of the eigenvalues. How to determine, what
is “extremely large”? This is a classical case of extreme value analysis
methods, which were introduced in Chapter 2. Therefore, each eigen-
value is treated as a data sample, and the statistical modeling is used to
determine the large values with the use of hypothesis testing. A chal-
lenge in this case is that the sample sizes are small. Even for relatively
high dimensional data sets (eg. 50-dimensional data sets), the number
of samples (50 different eigenvalues) available for hypothesis testing is
relatively small. Therefore, this is a good candidate for the t-value test.
The t-value test can be used in conjunction with a particular level of
significance and appropriate degrees of freedom in order to determine
the number of eigenvectors which should be picked for analysis.

2Part of the reason for this is that the data set is relatively small with only 452 records. In
such cases, it is much easier to find a small number of directions of correlation. As an example,
the results of Figure 3.5(c) and (d) show that even for a uniformly distributed data set of the
same size, it is possible to find some skews in the eigenvalues. This is one of the limitations
of regression analysis, which will be discussed in a later section. Furthermore, the cumulative
effects of even weak correlations become magnified with increasing dimensionality, when it is
desired to find a much lower dimensional subspace contain the informative projections. This
is of course a strength of Principal Component Analysis.
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4. Limitations of Regression Analysis

Regression analysis has a few limitations as a tool for outlier detec-
tion. The most significant of these shortcomings was discussed at the
very beginning of this chapter, in which the data-specific nature of re-
gression analysis was explored. In particular, the data needs to be highly
correlated, and aligned along lower dimensional subspaces, in order for
regression analysis techniques to be effective. When the data is uncor-
related, but highly clustered in certain regions, such methods may not
work effectively. On the other hand, even when the data is weakly cor-
related on a pairwise basis between different dimensions, it is often the
case that subspaces of much lower dimensionality contain most of the
variance in the data, because of the cumulative effect of inter-attribute
correlations.

Another related issue is that the correlations in the data may not be
global in nature. A number of recent analytical observations [7] have
suggested that the subspace correlations are specific to particular local-
ities of the data. In such cases, the global subspaces found by PCA are
sub-optimal for outlier analysis. Therefore, it can sometimes be useful
to combine linear models with proximity-models (discussed in the next
chapter), in order to create more general local subspace models. This
will be the topic of high-dimensional and subspace outlier detection,
which is discussed in detail in Chapter 5.

As with any model-based approach, overfitting continues to be an is-
sue, when used with a small set of data records. In this context, the
relationship of the number of records to the data dimensionality is im-
portant. For example, if the number of data points are less than the
dimensionality, it is possible to find one or more directions along which
the variance is zero. Even for cases, where the data size is of greater (but
similar) magnitude as the data dimensionality, considerable skew in the
variances may be observed. This is evident from the results of Figure
3.5(c) and (d), where there is considerable skew in the eigenvalues for a
small set of uniformly distributed data. This skew reduces, as the data
size is increased. This is a classic case of overfitting, and it is important
to interpret the results of linear modeling carefully, when the data set
sizes are small.

The interpretability of regression-based methods is rather low. These
methods project the data into much lower dimensional subspaces, which
are expressed as a linear (positive or negative) combination of the origi-
nal feature space. This cannot be easily interpreted in terms of physical
significance in many real application. This also has the detrimental ef-
fect of reducing the intensional knowledge of the user for a particular
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application. This is undesirable, because it is usually interesting to be
able to explain why a data point is an outlier in terms of the features of
the original data space.

Finally, the computational complexity of the approach may be an
issue when the dimensionality of the data is large. When the data has
dimensionality of d, this results in an d × d covariance matrix, which
may be rather large. Furthermore, the diagonalization of this matrix
will slow down at least quadratically with increasing dimensionality. A
number of techniques have recently been proposed, which can perform
PCA in faster time than quadratic dimensionality [191]. With advances
in methods for matrix computation and the increasing power of computer
hardware, this issue has ceased to be as much of a problem in recent
years. Such dimensionality reduction techniques are now easily applied
to large text collections with a dimensionality of several hundreds of
thousands of words.

5. Conclusions and Summary

This chapter presents linear models outlier detection. Many data sets
show significant correlations among the different attributes. In such
cases, linear modeling may provide an effective tool for removing the
outliers from the underlying data. Since linear modeling is a tool in
of itself for other regression-based applications, the removal of outliers
can be very useful for improving the effectiveness of such applications.
In most cases, principal component analysis provides the most effective
methods for outlier removal, because it is more robust to the presence of
a few outliers in the data. A major limitation of linear modeling is that
it does not try to recognize that the correlation behavior of the data in
different localities may be different, and tries to fit the data into a single
global model. However, it provides a general framework, which can be
used for generalized local linear models, which are discussed in Chapter
5.

6. Bibliographic Survey

The relationships between the problems of regression and outlier de-
tection has been explored extensively in the literature [387]. Outlier
analysis is generally seen as an enormous challenge to robust regression
in terms of the noise effects, and this has motivated an entire book
on the subject. In many cases, the presence of outliers may lead to
unstable behavior of regression analysis methods. An example of this
was illustrated in in Figure 3.3(b) of this chapter, where a single outlier
completely changes the regression slope to one which does not reflect the
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true behavior of the data. It can be shown that under certain circum-
stances, a certain number of outliers can have an arbitrarily large effect
on the estimation of the regression coefficients. This is also referred to
as the breakdown point [202, 219] of regression analysis. Such circum-
stances are very undesirable in outlier analysis, because of the likelihood
of very misleading results. Subsequently, numerous estimators have been
proposed with higher breakdown points [387]. In such cases, a higher
level of contamination would need to be present in the data in order for
breakdown to occur.

The method of Principal Component Analysis is also used frequently
in the classical literature [244] for regression analysis and dimensionality
reduction. Its application for noise correction in the text domain was
first observed in [355], and then modeled theoretically in [18]. It was
shown that the projection of the data points onto the hyper-planes with
the greatest variance provides a data representation, with higher quality
of similarity computations, because of the effects of removing noise from
the data. In the context of text data [355], a variant of PCA, known as
Latent Semantic Indexing [133]. Initially, the approach was proposed as
a dimensionality reduction technique for retrieval, and was not designed
for noise reduction. However, over many years of experience with LSI,
it was observed that the quality of retrieval actually improved with LSI,
a point which was explicitly pointed out in [355], and later theoretically
modeled in [18] for relational data. It should be noted that PCA and
LSI are dimensionality reduction techniques which can summarize the
data by finding linear correlations among the dimensions. In principle,
any dimensionality reduction technique can be used for outlier analysis.
An example of an outlier analysis method which uses a different dimen-
sionality reduction technique such as matrix-factorization is discussed
in [476]. The core principle is that dimensionality reduction methods
provide an approximate representation of the data along with a corre-
sponding set of residuals. These residuals can be used as the outlier
scores.

PCA-based techniques have been used in order to detect outliers in
a wide variety of domains such as statistics [93], astronomy [147], eco-
logical data [231], network intrusion detection [280, 406, 448], and many
kinds of time-series data. Some of the aforementioned applications are
temporal, whereas others are not. Because of the relationship between
PCA and time series correlation analysis, much of the application of
such regression methods has been to the temporal domain. However,
it should be emphasized that regression-based methods can also be ap-
plied to many non-temporal scenarios. In particular, the use of PCA for
non-temporal and unsupervised outlier analysis seems to be relatively
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unexplored, and is worthy of further study. Regression based methods
will be re-visited in Chapter 8, where a number of methods for temporal
outlier analysis will be discussed. In the context of temporal data, the
outlier analysis problem is closely related to the problem of time series
forecasting, where deviations from forecasted values in a time series are
flagged as outliers. A variety of regression-based methods for noise re-
duction and anomaly detection in time-series sensor data streams are
also discussed in [19]. In addition, a number of methods which resemble
structural and temporal versions of PCA have been used for anomaly de-
tection in graphs [229, 429]. In such methods, an augmented form of the
adjacency matrix, or the similarity matrix may be used for eigenvector
analysis. Such methods are commonly referred to as spectral methods,
and are discussed in Chapter 11.

A more general model than global PCA is one in which the data
is modeled as a probabilistic mixture of PCAs [451]. This is referred
to as Probabilistic PCA (PPCA). Such methods are quite prone to
noise in the underlying data during the process of mixture modeling. A
method proposed in [132] increases the robustness of PCA by modeling
the underlying noise in the form of a student t-distribution. The effect of
outliers on PCA-based clustering algorithms are significant. The work
in [7] provides a methods for providing the outliers as a side product of
the output of the clustering algorithm. Furthermore, methods for using
local PCA in outlier analysis will be discussed in detail in Chapter 5 on
outlier analysis in high dimensional data.

7. Exercises

1. Consider the data set of the following observations: { (1, 1), (2,
0.99), (3, 2), (4, 0,98), (5, 0,97) }. Perform a regression with Y
as the dependent variable. Then perform a regression with X as
the dependent variable. Why are the regression lines so different?
Which point should be removed to make the regression lines more
similar to one another?

2. Perform Principal Component Analysis on the data set of Exercise
1. Determine the optimal 1-dimensional hyperplane to represent
the data. Which data point is furthest from this 1-dimensional
plane?

3. Remove the outlier point found in Exercise 2, and perform regres-
sion analysis on the remaining four points. Now project the outlier
point onto the optimal regression plane. What is the value of the
corrected point?
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4. Provide a formal derivation for the closed form of the estimates of
the regression coefficients in least squares regression. [Hint: Use
partial derivatives with respect to regression coefficients.]

5. Provide a formal derivation for the closed form of the optimal k-
dimensional subspace in Principal Component Analysis.

6. Download the KDD CUP 1999 data set from the UCI Machine
Learning Repository [169], and perform PCA on the quantitative
attributes. What is the dimensionality of the subspace required to
represent (i) 80% of the variance, (ii) 95% of the variance, and (iii)
99% of the variance.

7. Repeat Exercise 6 with the use of the Arrythmia data set from the
UCI Machine Learning Repository [169].

8. Generate 1000 data points randomly in 100-dimensional space,
where each dimension is generated from the uniform distribution
in (0, 1). Repeat Exercise 6 with this data set. What happens,
when you use 1,000,000 data points instead of 1000?

9. Consider a 2-dimensional data set with variables X and Y . Sup-
pose that V ar(X) << V ar(Y ). How does this impact the slope of
the X-on-Y regression line, as compared to the slope of the Y -on-
X regression lines. Does this provide you with any insights about
why one of the regression lines in Figure 3.3(b) shifts significantly
compared to that in Figure 3.3(a), because of the addition of an
outlier?

10. Scale each dimension of the Arrythmia data set, such that the
variance of each dimension is 1. Repeat Exercise 7 with the scaled
data set. Does the scaling process increase the number of required
dimensions, or reduce them? Why? Is there any general inference
that you can make about an arbitrary data set from this?

11. Let Σ be the covariance matrix of a data set. Let the Σ be diago-
nalized as follows:

Σ = P ·D · P T

Here D is a diagonal matrix containing the eigenvalues λi, andD−1

is also a diagonal matrix containing the inverse of the eigenvalues
(i.e. 1/λi)

Show that Σ−1 = P ·D−1 · P T

For a given data point X from a data set with mean μ, show
that the value of the Mahalanobis distance (X − μ) · Σ−1 ·
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(X − μ)T between X and the mean μ reduces to the same
expression as the score in Equation 3.6.
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