
Chapter 10

SPATIAL OUTLIER DETECTION

“Time and space are modes by which we think and not
conditions in which we live.” – Albert Einstein

1. Introduction

Spatial outliers are objects which have behavioral attribute values that
are distinct from those of their surrounding spatial neighbors. Thus, spa-
tial continuity plays an important role in the identification of anomalies.
This is an analogous principle to the concept of temporal continuity,
which was discussed in the chapters on time series outlier detection.
One of the most fundamental rules of spatial data is as follows [455]:
“ Everything is related to everything else, but nearby objects are more
related than distant objects.”

Spatial data does not contain only spatial attributes, just as temporal
data does not necessarily contain only temporal attributes. Instead,
spatial locations form the contextual points at which other behavioral
attributes of interest are measured. Thus, two kinds of attributes may
be available:

Behavioral Attributes: This is the attribute of interest which is
measured for each object. For example, this could correspond to
sea surface temperatures, wind speeds, car speeds, disease out-
break numbers, the color of an image pixel, etc. It is possible to
have more than one behavioral attribute at a spatial location in
given application.

Contextual Attributes (Spatial Location): This is the location of
interest at which the behavioral attribute is measured. Typically,
this would contain two or three dimensions, when the data is ex-
pressed in terms of coordinates. In some cases, the contextual
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attributes may be more complex, and may be expressed at the
granularity of a region of interest, such as a county, zip-code etc.
Alternatively, in an imaging application, the contextual attributes
may correspond to individual pixels.

Spatial data shares a number of similarities with time-series data, in
which one or more properties of interest (behavioral attributes) are mea-
sured at a given moment in time (contextual attribute). In fact, in spa-
tiotemporal data, the contextual attributes may also contain a temporal
component. This can be used to determine important spatiotemporal
anomalies (or events) based on the underlying dynamics. For example,
the dynamics of behavioral attributes such as humidity, wind speeds,
sea surface temperatures and pressure can be used in order to identify
and predict anomalous weather events. In such cases, both spatial and
temporal continuity can play an important role in the prediction. It
is also possible for the data to be purely spatiotemporal, in which no
other behavioral attributes are present, and the trajectories of objects
are measured over time. In such cases, no attribute needs to be treated
as behavioral, since a joint analysis of both components provides the
best insights in many applications. In some cases, it may be helpful
to treat the temporal component as the contextual attribute, and the
spatial components as the behaviorial attributes. For example, in a two-
dimensional real-time trajectory mining application, this can be modeled
as a bivariate time series, in which the evolving X-coordinate and Y -
coordinate values are individual time series. In the offline trajectory
shape analysis scenario, anomalies may correspond to unusual shapes,
irrespective of their temporal provenance. The latter case is mostly
a spatial analytics scenario, and the temporal aspects of the problem
are limited. Therefore, trajectory-based applications can be modeled in
multiple ways, depending upon the needs of the underlying application.

Spatial data is common in many real applications, such as the follow-
ing:

Meteorological Data: Numerous weather parameters are typically
measured at different geographical locations, which may be used
in order to predict anomalous weather patterns in the underlying
data [510].

Traffic Data: Moving objects may be associated with many param-
eters such as speed, direction etc. The location of an object is its
contextual attribute. In many cases, such data is also spatiotem-
poral, since it has a temporal component. Finding anomalous be-
havior of moving objects [83] can provide numerous insights.
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Earth Science Data: The land cover types at different spatial loca-
tions may be the behavioral attributes. Anomalies in such patterns
provide insights about anomalous trends in human activity such
as de-forestation or other anomalous vegetation trends [287].

Disease Outbreak Data: Data about disease outbreaks is often ag-
gregated by spatial locations such as zip-code and county. Anoma-
lous trends in such data [465] can provide information about the
causality of the outbreaks.

Medical Diagnostics: MRI and PET scans are spatial data in two
or three dimensions. The detection of unusual localized regions in
such data can help in detecting diseases such as brain tumors, the
onset of alzheimer disease, and multiple sclerosis lesions [374, 206,
466, 418].

Demographic Data: Demographic attributes such as age, sex, race,
and salary can be used in order to identify demographic anomalies.
Such information can be useful for target-marketing applications.

As in the case of temporal data, abrupt changes in the behavioral at-
tribute, which violate spatial continuity provide useful information about
the underlying contextual anomalies. For example, consider a meteoro-
logical application, in which sea surface temperatures and pressure are
measured. Unusually high sea surface temperature in a very small lo-
calized region is a hot-spot which may be the result of volcanic activity
under the surface. Similarly, unusually low or high pressure in a small
localized region may suggest the formation of hurricanes or cyclones.
In all these cases, spatial continuity is violated by the attribute of in-
terest. Such attributes are often tracked in meteorological applications
on a daily basis. In Figure 10.1, a color coded map of the sea surface
temperatures on October 1, 2012 from the NOAA Satellite and Infor-
mation Service is illustrated. Unusually high temperature anomalies
are illustrated in red, whereas unusually low temperature anomalies are
illustrated in blue.

In the context of spatiotemporal data, both spatial and temporal con-
tinuity is used for the purposes of outlier analysis. For example, a sudden
change in the velocity of a few cars in a small localized region may sug-
gest the occurrence of an accident or other anomalous event. Similarly,
evolving events such as hurricanes and disease outbreaks are spatiotem-
poral in nature. Spatio-temporal methods for outlier detection [113, 114]
are significantly more challenging because of the additional challenges of
modeling the temporal and spatial components jointly.
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Figure 10.1. Sea surface temperature anomalies. Source: NOAA Satellite and Infor-
mation Service

There are two main characteristics of spatial data, which are com-
monly used in outlier detection algorithms:

Spatial Autocorrelations: This corresponds to the fact that behav-
ioral attribute values in spatial neighborhoods are closely corre-
lated with one another. However, unlike temporal data, where
future values of the time-series are unknown, the values in all spa-
tial directions of a data point can be used.

Spatial Heteroscedasticity: This corresponds to the fact the vari-
ances of the behavioral attribute depend on spatial location [433].

While the first property is the primary criterion for outlier analysis, the
second has also proven to be useful in many scenarios. This is because
when certain regions are likely to have greater variance as a matter of
expectation, then abrupt changes in those regions are less likely to be
significant. Such insights have lead to local methods [433], which are
based on ideas derived from local density-based methods (LOF) [78].

Numerous methods have been proposed in the literature for detecting
spatial outliers. The primary ones among them use variations of the be-
havioral attribute within a neighborhood in order to define outliers. Such
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outliers use either multidimensional analysis methods or graph-based
methods. In addition, many of the temporal auto-correlation methods
discussed in the previous chapter can also be generalized to the spatial
domain, when the data is completely specified over the various dimen-
sions.

Most of the work on spatial outliers is about finding abrupt changes
which violate spatial auto-correlations. Such outliers are contextual out-
liers. While the standard statistical tests for deviation detection are
useful in this case, it is sometimes useful to intuitively visualize the key
outlier points. The spatial nature of the data also lends itself to more in-
tuitive visualization methodologies such as visualization. Two examples
of such methodologies are variogram clouds and pocket plots [203, 354].
The former will be described in detail in this chapter.

As in the case of time-series databases, it is also useful to find unusual
shapes of patterns implied by the distribution of the behavioral attribute
in a database of multiple spatial distributions. For example, the color
distribution in an image or MRI scan may correspond to an unusual
shape, when compared to other images in the database. Such an im-
age may be of interest for further analysis. Such outliers are collective
outliers in the context of spatial data.

Supervised methods are also very useful in the spatial domain, where
it is desirable to determine unusual shapes from multiple spatial pat-
terns. For example, while many conditions such as weather patterns of
interest, or brain tumors in MRI scans may be rare on a relative basis,
a significant amount of training data may be available on an absolute
basis for modeling purposes. In medical applications, large numbers of
pathological examples are sometimes available for modeling purposes.
Similarly, many examples of pathological patterns of unusual shapes
may be available in meteorological and earth science applications. In
such cases, it is useful to utilize supervision for the purposes of outlier
detection. Supervised methods are particularly useful in the context of
outlier detection in such cases, because of the unusually high complexity
of a database containing multiple spatial patterns. Such methods are
closely related to topics such as image classification. The topic of image
classification is a large area of interest in its own right. While this is
beyond the scope of this book, some discussion of related work will be
provided in this chapter.

A close relationship exists between temporal and spatial outlier detec-
tion, because both methods use concepts of behavioral attribute continu-
ity with respect to one or more contextual attributes. The main difference
lies in the fact that spatial contextual attributes are often multidimen-
sional, whereas time is a single attribute. Furthermore, time is uni-
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directional, where only values in the past are known, whereas spatial
attributes are known in the different directions of all axes. Neverthe-
less, in many applications, these differences are not significant enough
to invalidate the applicability of temporal methods. While recent work
has adapted temporal techniques to some spatial applications such as
anomalous image shape detection [469], many other temporal techniques
have the potential for use in the spatial domain. This chapter will point
out the different temporal techniques, which are also applicable to the
spatial domain. It should be noted that in some cases, these temporal
methods are indeed not applicable, especially when the spatial contex-
tual attribute cannot be expressed in terms of a comprehensive set of
coordinates in a multidimensional plane. For example, the spatial at-
tribute may be specified with a rough granularity, such as a county or
zip-code, or may be available only for a small subset of points in the
spatial plane.

This chapter is organized as follows. In the next section, neighborhood-
based algorithms for outlier analysis will be studied. Both multidimen-
sional and graph-based methods will be studied in this section. Auto-
regressive models for anomaly detection are presented in section 3. Vi-
sual methods for detecting spatial outliers with variogram clouds are
addressed in section 4. Unusual shape discovery in multidimensional
spatial data will be addressed in section 5. Methods for spatiotemporal
outlier detection are presented in section 6. The use of supervision for
anomaly detection in spatial data is studied in section 7. The conclusions
and summary are presented in section 8.

2. Neighborhood-based Algorithms

Neighborhood-based algorithms can be very useful in the context of
a wide variety of tasks. In these algorithms, abrupt changes in the spa-
tial neighborhood of a data point are used in order to diagnose outliers.
Such algorithms depend upon the exact way in which the spatial neigh-
borhood is defined, the function used to combine these neighborhood
values into an expected value, and the computation of the deviations
from the expected values. The neighborhood may be defined in many
different ways [3, 268, 317, 401–404], depending upon the nature of the
underlying data.

Multidimensional Neighborhoods: In this case, the neighborhoods
are defined on the basis of multidimensional distances between
data points.

Graph-based Neighborhoods: In this case, the neighborhoods are
defined by linkage relationships between spatial objects. Such
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neighborhoods may be more useful in cases, where the location
of the spatial objects may not correspond to exact coordinates
(eg. county or zip code), and graph-representations provide a more
general modeling tool.

This section will study method for neighborhood-based outlier detection
with the use of multidimensional and graph-based methods.

2.1 Multidimensional Methods

While traditional multidimensional methods can also be used to de-
tect outliers in spatial data, such methods do not distinguish between
the contextual attributes and the behavioral attribute. Therefore, such
methods are not optimized for outlier detection in spatial data, especially
in cases where the outliers are defined on the basis of the behavioral at-
tribute.

Numerous methods have been defined, which use the spatial neigh-
borhood of the data with the use of multidimensional distances on the
spatial (contextual) attributes. Thus, the contextual attributes are used
for determining the k nearest neighbors, and the deviations on the be-
havioral attribute values are used in order to predict outliers. A variety
of distance functions can be used on the multidimensional spatial data
for determination of proximity. The choice of the distance function is im-
portant, because it defines the choice of the neighborhood which is used
for comparison with the true value. For a given spatial object o, with
behavioral attribute value f(o), let o1 . . . ok be its k-nearest neighbors.
Then, a variety of methods may be used to compute the predicted value
g(o) of the object o. The most straightforward method is the mean:

g(o) =

k∑
i=1

f(oi)/k

Alternatively, g(o) may be computed as the median of the surrounding
values of f(oi), in order to reduce the impact of extreme values. Then,
for each data object o, the value of f(o) − g(o) represents a deviation
from predicted values. The extreme values among these deviations may
be computed using a variety of methods discussed in Chapter 2. These
are reported as outliers.

2.1.1 Local Outliers. An observation in [433] is that all lo-
cal deviations are not equally important from the perspective of outlier
analysis. For example, consider the case where the sea-surface tempera-
tures are being measured at different spatial locations. In some spatial
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regions, the changes in temperatures may naturally show larger varia-
tions than others. Therefore, the same variation cannot be treated with
equal importance in all regions. Specifically, the outlier scores in high
variance regions need to be suppressed. In such cases, it may be useful
to quantify the changes around a data point in a local way. For example,
instead of using the value of f(o)−g(o) as discussed above, it is possible

to use a normalized value of f(o)−g(o)
L(o) , where L(o) represents a spatially

local quantification of the deviations around o. For example, L(o) could
represent the standard deviations of the behavioral attribute values in
the spatial neighbors of o.

In practice, a variety of different methods could be used in order
to characterize the local deviations around the spatial object o. The
work in [433] has also defined a deviation measure SLOM which is based
on the LOF methods for defining local spatial outliers. This approach
is sensitive to the spatial heteroscedasticity of the data, in which the
behavior of the spatial locality is carefully accounted for in constructing
the outlier score.

2.2 Graph-based Methods

In graph-based methods, spatial proximity is modeled with the use
of links between nodes. Thus, nodes are associated with behavioral at-
tributes, and strong variations in the behavioral attribute across neigh-
boring nodes are recognized as outliers. Graph-based methods are par-
ticularly useful when the individual nodes are not associated with point-
specific coordinates, but may correspond to regions of arbitrary shape.
In such cases, the links between nodes can be modeled on the basis of
the neighborhood relationships between the different regions. Graph-
based methods define spatial relationships in a more general way, since
semantic relationships can also be used to define neighborhoods. For
example, two objects could be connected by an edge, if they are in the
same semantic location such as a building, restaurant, or office. In many
applications, the links may be weighted on the basis of the strength of
the proximity relationship. For example, consider a disease outbreak
application in which the spatial objects correspond to county regions.
In such a case, the strength of the links could correspond to the length
of the boundary between two regions.

Let S be the set of neighbors of a given node i. Then, the concept
of spatial continuity can be used in order to create a predicted value of
the behavioral attribute based on those of its neighbors. The strength
of the links between i and its neighbors can also be used in order to
compute the predicted values as either the weighted mean or median on
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the behavioral attribute of the k nearest spatial neighbors. For a given
spatial object o, with behavioral attribute value f(o), let o1 . . . ok be its
k linked neighbors based on the relationship graph. Let the weight of
the link (o, oi) be w(o, oi). Then, the linkage-based weighted mean may
be used to compute the predicted value g(o) of the object o.

g(o) =

∑k
i=1 w(o, oi) · f(oi)∑k

i=1 w(o, oi)

Alternatively, the weighted median of the neighbor values may be used
for predictive purposes. Since the true value of the behavioral attribute
is known, this can be used in order to model the deviations of the be-
havioral attributes from their predicted values. As in the previous case,
the value of f(o) − g(o) represents a deviation from the predicted val-
ues. Extreme value analysis can be used on these deviations in order
to determine the spatial outliers. This process is identical to what was
discussed before for the multidimensional case. As in all outlier analysis
algorithms, a variety of extreme-value analysis methods of Chapter 2
can be used on these deviations in order to determine the outliers. The
nodes with high values of the normalized deviation may be reported as
outliers.

2.3 Handling Multiple Behavioral Attributes

In many cases, multiple behavioral attributes may be associated with
the contextual attributes. For example, in a meteorological application,
both temperature and pressure values may be available with the spa-
tial attributes. In these cases, the deviations may be computed on each
behavioral-attribute, and then these values need to be combined into a
single deviation value, which provides the final outlier score. For this
purpose, any of the multivariate extreme value analysis methods in sec-
tion 3 of Chapter 2 may be used. In particular, the work in [112] has
proposed the use of the Mahalanobis distance-based method of Chapter
2 for extreme value analysis. However, it is also possible to use other
depth-based, or angle-based methods discussed in that chapter in order
to determine the underlying outliers.

3. Autoregressive Models

Spatial data shares a number of similarities with temporal data. Both
kinds of data measure a behavioral attribute (eg. temperature) with
respect to a contextual attribute (eg. space or time). In many scenarios,
spatial data is available in the form of coordinates, and the values of the
behavioral attribute may be available at each possible spatial reference
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point in the grid. Such data arises commonly in weather contour maps,
images, MRI scans etc. In cases, where the data is completely specified
at most points in the grid, it is possible to use auto-regressive models
in order to determine unusually large deviations in the data, in a way
which is completely analogous to the temporal scenario.

Let Xt1,t2 be the value of the behavioral attribute at the spatial lo-
cation (t1, t2). In the temporal auto-regressive model, the predicted
value of the behavioral attribute is based on a 1-dimensional window
of past history of length p (see section 2.1 of Chapter 8). In the 2-
dimensional spatial scenario, this can be generalized to a square window
of size (2 · p + 1) × (2 · p + 1), with p coordinates in either direction.
More generally, in the case of 3-dimensional spatial data, one can use a
cube of size (2 · p+ 1)× (2 · p+ 1)× (2 · p+ 1). As in the case of the 1-
dimensional auto-regression for temporal data in section 2.1 of Chapter
8, a 2-dimensional model can be defined as follows.

Xt1,t2 =

p∑
i=−p

p∑
j=−p

aij ·Xt1−i,t2−j + c+ εt1,t2

The value of a00 is always set to 0, and is missing from the above sum-
mation, since a spatial value cannot be used to predict itself. The values
of aij need to be learned from the underlying training data. Thus, such
an equation can be created for each value of (t1, t2). When the number
of spatial-coordinates available is much larger than (2 ·p+1)× (2 ·p+1),
this is an over-determined system of equations, and can be solved in a
similar way with least-squares regression, as discussed in the methods of
section 2.1 of Chapter 3. Thus, the process of determining the regression
coefficients is very similar to the case of temporal data.

In the above system of equations, the value of c is a constant, and the
value of εt1,t2 represents the noise, or the deviation from the expected
values. Large absolute values of this deviation represent the anomalies in
the underlying data. Therefore, the extreme value analysis techniques of
Chapter 2 can be used in order to determine those deviations which vary
significantly from the norm. These values are assumed to be independent
identically distributed random variables, which are drawn from a normal
distribution. Thus, the extreme value analysis methods of Chapter 2 can
be used in order to detect the anomalies.

The afore-mentioned discussion provides a generalization of Autore-
gressive (AR) models from temporal to spatial data for illustrative pur-
poses. In practice, it is possible to generalize all the regression models
(ARMA, ARIMA, PCA) to the spatial scenario, by using the appropri-
ate slice of values from the spatial data. As in the temporal case, it
is even possible to create multivariate spatial regression models, where
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multiple behavioral attributes are available. Typically such behavioral
attributes may be correlated with one another (eg. temperature and hu-
midity), and it is desirable to determine unusually large local deviations
with the help of multivariate correlations. Some of these generalizations
are presented as exercises for the reader at the end of this chapter.

While the autoregressive nature of spatial data is very widely rec-
ognized, such models have rarely been used for anomaly detection in
the spatial literature. This is partially a result of the high computa-
tional complexity of auto-regressive models with an increasing number
of coefficients. Such models also cannot easily handle spatial data which
is incompletely specified by spatial location, region-based locations or
semantic locations. Nevertheless, such models can be very useful in
many scenarios such as image analysis or weather patterns, where large
amounts of reasonably complete data are available for analysis. In such
cases, the statistical robustness of these methods is likely to be higher
than simpler neighborhood-based models.

4. Visualization with Variogram Clouds

A number of visualization techniques such as pocket plots and vari-
ogram clouds are used in order to visualize spatial outliers. The former
will be discussed here in detail, because of their relative popularity. Since
spatial outliers are based on disagreement in the continuity of the be-
havioral attribute in relation to the spatial attribute, a natural method
to visualize this would be to create a scatter plot between the pairwise
spatial distances and the pairwise behavioral attribute (square) devia-
tion. The spatial distance is simply the euclidian distance between a
pair of points. The behavioral attribute deviation is defined as the half
the square distance between the behavioral attribute values. A scatter
plot is created between the spatial distances on the X-axis, and the be-
havioral square deviations on the Y -axis, for every pair of points in the
data set. The idea is that smaller spatial distances will likely correspond
to smaller behavioral attribute variances and vice-versa. In particular,
large variations of the behavioral attribute for smaller spatial distances
should be considered deviants. Such points on the variogram cloud can
be traced back to the original data to determine pairs of points which
are spatially close, but behaviorally different.

In order to illustrate the impact of outliers on variogram clouds, an
example will be used. First, the data set for the variogram clouds of Fig-
ure 10.2 will be described. In this case, a grid of 100 points on the spatial
plane are used with coordinates drawn from X,Y,= 0.1, 0.2 . . . 1.0. The
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value of the behavioral attribute Z was generated as follows:

Z = X + Y + ε

Here ε is a small amount of noise, which was randomly generated from
the uniform distribution in [0, 0.2]. This spatial variation of the attribute
is quite smooth, since the noise is small relative to the global variation
in values of the behavioral attribute. The spatial profile of the generated
data is illustrated in Figure 10.2(a), and the corresponding variogram
cloud is illustrated in Figure 10.2(b). It is evident that low values of the
spatial distance always corresponding to low deviations of the behavioral
attribute. While it is possible for high spatial deviations to be related
to low behavioral deviations, the converse is not true.

Subsequently, a single outlier is added to the data by distorting the
behavioral attribute of one of the spatial values in the grid of Figure
10.2(a). The corresponding outlier is shown in Figure 10.2(c), and is
marked explicitly. Note that the spatial data sets in Figures 10.2(a) and
10.2(c) are virtually identical, with the only difference between them
being the outlier created by a distorted behavioral attribute value. The
corresponding variogram cloud is illustrated in Figure 10.2(d). It is
evident that in this case, a new set of points have been added to the
variogram cloud in which significant behavioral deviations exist even at
low spatial distances. Multiple such deviant points are created corre-
sponding to the different data points in the immediate spatial locality of
the added outlier. Such points can easily be isolated visually and linked
back to the original points in the data. Thus, this approach provides an
easy visual and intuitive way to isolate the spatial outliers in the data
set.

One challenge of creating a variogram cloud is the high computational
complexity. Note that a single point exists in the variogram cloud for
each pair of data points in the original data. Therefore, the number
of points in the variogram cloud scales quadratically with the number
of points in the spatial data. This can make the approach rather slow,
when the number of data points is large. In practice, it is difficult to
create a variogram plot for situations in which the data contains a few
hundred thousand spatial data points. This can be a significant problem,
since spatial data sets are often quite large in practice.

One observation about the variogram cloud is that it is not always nec-
essary to represent every pair of points on the plot. Data points which
are spatially very far away add little insights about the outlier behavior.
Therefore, each spatial dimension can be discretized into ranges, and
this creates a 2-dimensional grid in the data. The pairwise relationships
between all spatial points within this grid can be used in order to create
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the variogram cloud. This significantly reduces the computational com-
plexity of creating the variogram cloud. For example, consider the case,
where the original data set contains N points, which are discretized into
a t × t grid with approximately1 N/t2 data points in each. Then, the
computational complexity of creating a variogram cloud for each grid
is O(N2/t4). Of course, since there are a total of t2 grids, the aggre-
gate computational complexity is O(N2/t2) < O(N2). This provides a
speedup factor of O(t2). Of course, in this case an optimistic scenario
was assumed where the data points were uniformly distributed into the
grid structure. It can be shown theoretically that a speedup factor of at
least t can be obtained with this approach. This is because the speed up
achieved with a grid partitioning into t× t ranges will always be better
than the discretization along only one dimension into t ranges with an
equal number of data points. A significant speedup may be obtained
even for modest values of t, without significant reduction in the quality
of the visual discrimination between the outliers and the normal points.

5. Finding Abnormal Shapes in Spatial Data

The problem of finding unusual shapes in spatial data finds numer-
ous applications such as image analysis. For example, the detection of
unusual shapes from brain PET scans or MRI scans can help detect con-
ditions such as tumors, alzheimer and sclerosis [374, 466], or can help
identify anomalous conditions such as hurricanes from weather maps.
For example, consider the satellite image illustrated in Figure 10.3. The
anomalous shape in the image corresponds to hurricane Fran, which was
a large destructive hurricane, which hit Cape Fear in North Carolina
on September 1996. The hurricane can easily be identified by its char-
acteristic shape in the satellite image. However, such a shape may not
appear in other similar satellite images on normal days, and is therefore
an unusual event. Another example from the medical domain is illus-
trated in Figure 10.4, where the PET scans from a normal person and
an alzheimer patient are presented. The colored regions correspond to
the uptake of the radioactive tracer administered in a PET scan (behav-
ioral attribute). It is evident that this behavioral attribute shows very
different spatial behavior for normal and diseased individuals.

In their simplest form, shapes can be modeled by the contours (or
boundaries) of regions with particular ranges of behavioral attribute val-

1In practice, the different grid regions may contain a different number of data points because
of spatial correlations. However, in many applications such as image data, pixels may be
available for every spatial coordinate. Therefore, the division into grids will create a uniform
division of the data points.
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Figure 10.3. NASA Satellite Image of Hurricane Fran: The anomalous shape is
characteristic of a hurricane

Figure 10.4. PET Scans of brain for cognitively healthy person versus an alzheimer
patient: Image courtesy of the National Institute on Aging/National Institutes of
Health
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ues in the data. For example, in the case of Figure 10.3, the boundaries
of such regions can be extracted by direct analysis of sensor and satel-
lite readings such as pressure, cloud cover, temperature, wind speed,
and humidity or from the (already processed) color histogram of the
corresponding image.

A key simplification for shape analysis is that the contours of an ob-
ject can be represented as a synthetic time-series. One possible way to
achieve this is to use the distance from the centroid of the object to
the boundary of the object, and compute a sequence of real numbers
derived in a clockwise sweep of the boundary [504]. This yields a time
series of real numbers, and is referred to as the centroid distance signa-
ture. This transformation can be used to map the problem of mining
shapes to that of mining time-series, a domain which is much more eas-
ier to address from an analytical perspective. For example, consider the
elliptical shape illustrated in Figure 10.5(a) with centroid denoted by X.
Then, the time-series representing the distance from the centroid, by us-
ing 360 different equally spaced angular samples, is illustrated in Figure
10.5(b). In this case, the sample points are started at one of the major
axes of the ellipse. If the sample point starts at a different place, or if
the shape is rotated (with the same angular starting point), then this
causes a cyclic translation of the time-series. The resulting time-series
may be normalized in different ways depending upon the needs of the
application:

If no normalization is performed, then the outlier analysis approach
is sensitive to the absolute sizes of the underlying objects. This
may be the case in many medical images such as MRI scans, in
which all spatial objects are drawn to the same scale.

If all time series values are multiplicatively scaled down by the
same factor to unit mean, then such an approach will allow the
matching of shapes of different sizes, but will discriminate between
different levels of relative variations in the shapes. For example,
two ellipses with very different ratios of the major and minor axes
will be discriminated well.

If all time series are translated to zero mean and multiplicatively
scaled to unit variance (as is normally done for time-series analy-
sis), then such an approach will match shapes where relative local
variations in the shape are similar, but the overall shape may be
quite different. For example, such an approach will not discrim-
inate very well between two ellipses with very different ratios of
the major and minor axes, but will discriminate between two such
shapes with different relative local deviations in the boundaries.
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Figure 10.5. Conversion from shapes to time-series

The only exception is a circular shape, which appears as a straight
line. Furthermore, noise effects in the contour will be differen-
tially enhanced in shapes which are less elongated. For example,
for two ellipses with similar noisy deviations at the boundaries,
but different levels of elongation (major to minor axis ratio), the
overall shape of the time-series will be similar, but the local noisy
deviations in the extracted time series will be differentially sup-
pressed in the elongated shape. This can sometimes provide a
distorted picture from the perspective of shape analysis. A per-
fectly circular shape may show unstable and large noisy deviations
in the extracted time-series because of image rasterization effects.
The solution proposed in [469] is to treat circular shapes specially,
though the unintended effects of such normalization may have un-
usually complex effects across a broader spectrum of shapes.

In general, it may be advisable to pick the normalization method in an
application-specific way.

The problem of shape analysis is further complicated by the effect
that transformations such as rotations can have on the underlying data.
For example, consider the images illustrated in Figure 10.6. All images
correspond to the same object, but two of them are rotated with respect
to the original shape, and the last is a mirror image of the original shape.
It is clear that the rotation makes it much more difficult to match the two
images, if the time-series representation does not account for the rotation
or the mirror image effects of the representation. Errors in matching the
two shapes also lead to errors in outlier detection, especially when the
outlier detection process uses a proximity-based method. It is important
to note that all applications do not necessarily require the accounting of
rotations. For example, in an MRI scan, where the correct orientation of
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the scan is known, such rotational transformations may not be needed.
However, in the following, the most general case, which accounts for
rotations will be discussed.

An immediate observation is that a rotation of the shape leads to a
linear cyclic shifting of the time series generated by using the distances
of the centroid of the shape to the contours of the shape. For a time series
of length n denoted by a1a2 . . . an, a cyclic translation by i units leads
to the time series ai+1ai+2 . . . ana1a2 . . . ai. Then, the rotation invariant
euclidian distance RIDist(T1, T2) between two time series T1 = a1 . . . an
and T2 = b1 . . . bn is given by the minimum distance between T1 and
all possible rotational translations of T2 (or vice-versa). Therefore, the
following is true:

RIDist(T1, T2) = minni=1

n∑
j=1

(aj − b1+(j+i) mod n)
2

Note that the reversal of a time-series corresponds to the mirror-image
of the underlying shape. Therefore, mirror images can also be addressed
by using this approach.

The shape discords can then be determined by computing the series
whose kth nearest neighbor distance to its closest neighbor is as large as
possible. The top n such shapes need to be found. As in all distance-
based algorithms, a brute-force approach on a database with N shapes
would require O(N2) distance computations, unless pruning methods
are used.

The major difference between this problem and the unusual time-
series shape discovery problem discussed in section 3 of Chapter 8 is
that the rotational invariant distances are used instead of the euclidian
distances. Furthermore, the distances are computed on whole time-series
instead of on subsequences. While it may be possible in theory to use
the method of Chapter 8, by making some modifications to address ro-
tational invariance, longer lengths of whole sequences (compared to sub-
sequences), may cause greater challenges in pruning. For example, rota-
tional variations can be addressed by explicitly incorporating rotational
variations of the time-series into the database, just as subsequences of
a time-series are incorporated into the database for subsequence discord
discovery in section 3 of Chapter 8. Care needs to be taken in avoiding
self-similarity from the same shape during the distance computations,
just as self-similarity is avoided in time series discord discovery. There-
fore, the techniques in section 3 of Chapter 8 can be used in theory in
order to find discords. Of course, the addition of multiple rotational
variations of the shapes to the database is likely to slow down the dis-
covery process. It also leads to some redundancy in the representation,
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Figure 10.6. Rotation and mirror-image effects on shape matching for outlier analysis

because all rotational variations of the same object will have the same
outlier score.

The work in [469] uses a different pruning method based on LSH-
approximations [230] of the symbolic aggregate approximations of the
time-series. The overall organization of the approach is similar to the
algorithm discussed in section 3 of Chapter 8. Both methods first sort
the objects by approximate outlier tendency in order to perform the
outlier search in an ordered way, which optimizes the pruning behavior.
For each object, pruning is performed with approximate nearest neighbor
distances. However, the specific technique used for pruning is different
in the two scenarios.

A nested loop approach is used to implement the method. The algo-
rithm examines the candidate shapes iteratively in an outer loop, and
progressively improves the estimate of each candidate’s k-nearest neigh-
bor distance in an inner loop. The inner loop essentially computes the
distances of the other shapes to the candidate. At the end of the ex-
ecution of a candidate-specific inner loop, the approach then either in-
cludes the candidate in the current set of top-n outlier score estimates,
or discards the candidate at some point during the computation of its
k-nearest neighbor in the inner loop. This is referred to as early inner
loop termination. This inner loop can be terminated early, when the
currently approximated k-nearest neighbor distance for that candidate
shape is less than the score for the nth best outlier found so far. Clearly,
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such a shape cannot be an outlier. In order to obtain the best pruning
results, the candidate shapes in the outer loop need to be heuristically
ordered, so that the earliest shapes examined have the greatest tendency
to be outliers. The pruning performance is also best, when the points
are ordered in the inner loop, such that the k-nearest neighbors of the
candidate shape are found early. It remains to explain how the heuristic
orderings required for good pruning are achieved.

As in the case of time-series subsequences, each time series is mapped
onto an LSH word with the use of Symbolic Aggregate Approximation.
Assume that the resulting SAX words have length m. Locality sensitive
hashing [230] randomly samples r < m distinct positions in the SAX rep-
resentation. Therefore, two SAX words which are more similar are more
likely to map to the same string. This is also referred to as the locality
sensitivity property of the LSH-hashing approach, and the similarity can
be robustly quantified by examining the mapping behavior over multi-
ple hash functions. However, this does not account for the rotational
invariance of the matching process. In order to account for the possible
rotations, a rotational invariant LSH function is defined. This function
first picks r < m position indices randomly, and then samples these r
position indices from all possible m rotations of the SAX word. Clearly,
similar shapes will lead to LSH-based collisions, even in the presence
of rotations. The LSH-hashing process is repeated with multiple hash
functions in order to provide greater robustness to the collision-based
counts.

For each SAX word, a count is maintained of its number of LSH-based
collisions. This provides approximate information about its outlier score.
Shapes with smaller counts need to be processed first as candidates in
the outlier loop, since they have greater likelihood of being outliers.
Furthermore, shapes which collide with one another frequently in LSH-
based hashing are more likely to be nearest neighbors. Therefore, shapes
which have the largest number of collisions with the current outer loop
candidate are examined first in the inner loop for distance computations.
This provides the heuristic order of processing in the inner loop. The
reader is referred to [469] for a detailed description of the algorithm.

6. Spatio-temporal Outliers

Spatio-temporal data is very common in many real applications in
which behavioral attribute values are continuously tracked at different
spatial locations. For example, consider a chemical factory dumping
chemicals in a river. In such cases, the concentrations of chemicals in
the water cannot be described by using either only spatial or temporal
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contextual attributes. Thus, the contextual attributes need to contain
both spatial and temporal components. Spatiotemporal data is extremely
common in all forms of sensor data, in which behavioral attribute read-
ings are continuously transmitted by sensors at different spatial loca-
tions. An example is provided in [472], where precipitation data from
different spatial locations and times is aggregated. It is desirable to de-
termine localized spatial regions which are also close together in time,
whose precipitation values are significantly different from their “neigh-
boring” values. So how should neighboring values be defined in the case
of spatiotemporal data?

Virtually all the spatial methods discussed in earlier sections of this
chapter can be generalized to spatiotemporal data, as long as the concept
of neighborhood is properly defined in order to make it relevant for the
spatiotemporal scenario:

Spatial methods can be used on temporal snapshots of the data in
order to determine the relevant outliers at different instants. How-
ever, such an approach is incomplete, because it fails to identify
violations of temporal continuity.

Some algorithms have been proposed in order to separately iden-
tify spatial outliers and temporal outliers, and then combining the
results in order to provide the spatiotemporal outliers [71]. How-
ever, the decoupling of spatial and temporal aspects of the problem
at an earlier stage is obviously a sub-optimal solution.

Spatio-temporal neighborhoods of data points may be used in or-
der to determine predicted values. Thus, the only difference from
purely spatial methods, is that the expanded set of contextual at-
tributes are now used in order to define the neighborhoods for
analysis and prediction. As in the previous case, deviations from
the predicted values can be used in order to determine outliers. In
some techniques such as neighborhood methods, the challenge is to
combine the (contextual) distances along the spatial and temporal
dimensions in a meaningful way. One simple way of achieving this
would be to normalize the standard deviation across each of the
contextual attributes to one unit before computation of distances.
If desired, weights can be used in order to provide more importance
to one or more of the contextual attributes.

The last of the above methods is the most general, because it can detect
significant changes both across spatial and temporal attributes in an in-
tegrated and meaningful way. It is also important to note that spatial
and temporal continuity may not be equally important, depending upon
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the underlying application. For example, in an application where pre-
cipitation level is the behavioral attribute [472], spatial continuity may
be slightly more important than temporal continuity. In such cases, ap-
propriate scaling can be performed on the different dimensions, in order
to define neighborhoods in a way which provides greater importance to
one or more contextual attributes.

6.1 Spatiotemporal Data: Trajectories

A special case of spatiotemporal data is one in which no behavioral
attributes are present, and the data comprises a set of moving object
trajectories. Such data can be treated as a form of bivariate temporal
data, by treating the X-coordinates and Y -coordinates of each object
as the behavioral attributes, and time as the only contextual attribute.
This results in two related time series at the same instants. Thus, the
methods for temporal data analysis can be applied very effectively to
such cases. Such analysis, when applied to single time-series, can iden-
tify sudden changes in trajectory directions and velocity. This can be
very useful in detecting information about significant changes in cyclone
or hurricane trajectories [94]. In other cases, a database of multiple
trajectories may be available, and it is desirable to determine unusual
shapes of trajectories. The temporal component is less important in this
case, since the trajectories may have been created at different times. In
such cases, it is possible to use subsequence analysis on these time-series
in order to determine those trajectories which behave very differently
from the remaining series by determining time-series of unusual shapes
[304]. However, unlike the univariate scenario [304], spatial time-series
are at least bivariate, and it is much harder to find unusual shapes in
terms of the combination behavior of the two time series.

For the first case of real-time change analysis, the prediction-based
outlier detection methods discussed in section 2 of Chapter 9 can be
applied separately on each of the X-coordinate and Y -coordinate time
series. This results in a residual value along each of the two coordinates.
If each of these residuals is modeled as a normal distribution, then the
sum of the squares of the Z-values of these residuals is a χ2 distribution
with two degrees of freedom. This can provide an outlier score, along
with a corresponding probability value.

While real-time change analysis of such scenarios can be performed
more effectively by using temporal modeling, unusual shape detection of
trajectories can be best performed by abstracting out the temporal com-
ponent, and performing the spatial analysis directly on the trajectories.
In such cases, each spatial object has a shape, and the difference of this
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shape to its nearest neighbor trajectories are used in order to determine
outliers. Since such trajectories may contain a large number of time-
stamps, it may often be difficult to determine outliers on the entire sets
of trajectories. In such cases, unusual subsequences of the trajectories
may be used in order to identify outliers. This case is similar to that of
identifying unusual shapes in images, which is discussed in section 5 of
this chapter.

Some specific methods such as TROAD have also been proposed in the
literature [292] for unusual shape detection in trajectories. In particular,
the partition-and-detect framework [292] first partitions the trajectories
into a set of sub-trajectories. Note that this is somewhat analogous
to the concept of partitioning time series into subsequences (or finding
outliers in subspaces of numerical data), since outliers cannot easily be
determined on the full series (with high implicit dimensionality). The
sub-trajectories are created with a two-level partitioning which is allowed
to be coarse-grained at the higher levels, and fine-grained at the lower
level. Subsequently, those sub-trajectories, which are not similar to other
ones in the data are reported as the outliers. The similarity is measured
with the use of both distance-based and density-based methods. Note
that the choice of the distance function is critical, and can regulate the
nature of the outlier found. For example, a distance function which
is sensitive to the location of the trajectory is likely to find an outlier
based on location of the trajectories. On the other hand, a distance
function which is sensitive to the angle between trajectory segments is
likely to be sensitive to directions of movement. The precise definition
of the distance function is application dependent, though a variety of
such functions can be used in conjunction with the partitioned set of
sub-trajectories.

The work in [292] defines a t-partition as a line segment from the
trajectory. Intuitively, this can be considered analogous to comparison-
unit schemes discussed in Chapter 9, which are used in the context of
sequence data. A t-partition is said to be outlying using the variation2

of the k-nearest neighbor distance definition, first proposed in [261]. In-
tuitively, a t-partition is considered an outlier, if a sufficient number of
trajectories in the database are not close to it. The definition of close-
ness is based on measuring the portion of the trajectory, which is close to
the t-partition. As in comparison-unit schemes for discrete sequences,
the results from the different “units” (or partitions) are combined to-
gether to declare a trajectory as an outlier, if a sufficient number of its

2That variation fixes the nearest neighbor distance, and computes the required value of k
rather than the other way around.
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partitions are also outlying. Furthermore, the locality sensitive density-
based approach of [78] has also been generalized to this case, by creating
a density-sensitive outlier score for the trajectories.

6.2 Anomalous Shape Change Detection

In spatial data such as weather data, PET scans, and MRI scans,
unusual changes in the contours of the shapes may be used in order to
predict anomalous events. For example, the formation of a hurricane or
a tumor over multiple time stamps will show up as an unusual change
in the shapes of the corresponding image representations of the weather
data or the MRI scan. The determination of such changes is more com-
plex than those of detecting unusual point changes in the data. However,
the detection of unusual point changes can be a first step towards detect-
ing regions of anomalous change in the data, by clustering the change
points in the spatial data. Not all regions of change may necessarily cor-
respond to anomalies. For example, increasing age may create certain
characteristic change contours in an PET scan, which should be consid-
ered normal. In practice, this problem is not very different from finding
unusual shapes in the original data, with the main difference being that
the contours of the shapes are constructed on the basis of the changes in
the behavioral attributes between two snapshots. The normally occur-
ring changes in the data over time will usually be quite different from
the anomalous changes. Therefore, a differencing operation on two tem-
poral snapshots of the data may be required as a pre-processing step,
before applying outlier analysis algorithms. A detailed description of
many such change analysis methods may be found in [92].

7. Supervised Outlier Detection

In many applications, a significant amount of training data may be
available in order to determine anomalies. Such supervision could oc-
cur in either spatial data (with contextual attributes and behavioral
attributes), or spatiotemporal data such as trajectory data. In all cases,
supervision can be used in order to greatly enhance the effectiveness of
the outlier analysis process.

7.1 Supervised Shape Discovery

Spatial data is particularly common in many forms of image data
such as weather maps, PET scans or MRI scans. For example, consider
the case of MRI scans, where 3-dimensional images of the brain may
be available for analysis. The anomalies in the data such as tumors
and lesions may show up as characteristic regions in the data, which are
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rare but are nevertheless indicative of specific kinds of abnormalities.
In such cases, previous examples of anomalous and normal scans may
be available for the purposes of training. While unsupervised anomaly
detection can help outlier analysis up to a point, the use of supervi-
sion can increase the sophistication of the analysis by revealing specific
kinds of abnormalities. In most applications, at least semi-supervision
is used, where examples of normal spatial profiles are available for anal-
ysis. The collection of normal examples is typically not very difficult
in most application-specific scenarios, since copious examples of normal
instances are usually available.

For all forms of shape classification, the actual representation of the
shape is the most important step. For example, the centroid distance
signature discussed in this chapter [504] is one possible way of repre-
senting the shapes, but by no means the only one. A thorough review
of shape representation techniques may be found in [504]. The shape
to time-series transformation discussed in section 5 of this chapter can
be used in order to transform the shape classification problem to the
time-series classification problem. Any of a number of methods (such as
subsequence-based k-nearest neighbor methods) can be used for time-
series classification in this case. Numerous methods for time-series clas-
sification may be found in the literature [343, 490]. These methods typ-
ically try to determine discriminative shapes of the series (or shapelets)
which distinguish the normal and abnormal series. In the context of
spatial data, such abnormal series are typically derived from abnormal
shapes from a spatial perspective. In the semi-supervised case, the dis-
tances of the test series to examples of normal profiles can be used in
order to create outlier scores for the underlying series. The only dis-
tinction from the available methods for time-series analysis is that care
must be taken in order to account for different rotational variants of the
shape in particular application-specific scenarios.

The problem of supervised classification of unusual shapes is also
closely related to the problem of detecting and recognizing specific shapes
in images. This problem has been studied extensively in the field of com-
puter vision and image analysis. The problem of supervised shape recog-
nition is an important area of research in its own right, and is beyond the
scope of this book. The reader is referred to [54, 92, 316, 504] for a de-
tailed description of such methods for image classification, analysis and
change detection in the image domain. The major modification to these
methods is the incorporation of rare class detection and cost-sensitive
methods into these algorithms, using the methods of Chapter 6. Since
many of the algorithms discussed in Chapter 6 are meta-algorithms, they
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can be used in conjunction with any of the classification techniques in
the literature.

7.2 Supervised Trajectory Discovery

In many cases, supervision may be available in the form of labels
associated with trajectories. For example, consider a case where the
trajectories of a large number of ships are available, and it is desirable to
identify the suspicious ones based on their trajectory patterns. In some
cases, previous examples of anomalous trajectories may be available.
These can be used in order to detect significant anomalous patterns in
the underlying data. This is a homogeneous attribute scenario, since the
unusual shapes are based purely on the spatial and temporal attributes,
rather than on a behavioral attribute.

The ROAM method [300] uses a discrete symbolic approximation of
the trajectories, which converts the numerical coordinate sequence into
a symbolic sequence based on the directions of movement and significant
changes in this direction. For example, motifs could correspond to right-
turn, u-turn or loop. Every movement pattern can be described as a
sequence of these primitive movement patterns. The important motifs
can be mined directly from the data by using a clustering approach. If
desired, additional meta-attributes may be associated with the symbols
corresponding to characteristics of the movement such as the speed. This
is however different from the concept of behavioral attributes, since these
attributes do not play the behavioral role in the learning process.

Once the discrete representation has been created, the sequences to-
gether with their labels can be fed to any sequence-based classifier, which
identifies how different sequences are related to the class labels. While
the ROAM method was applied in the context of supervised models, it
is important to note that the feature transformation used in this work
can also be used in the context of unsupervised scenarios.

8. Conclusions and Summary

The problem of spatial outlier detection arises in many domains such
as demographic analysis, disease outbreaks, image analysis, and medical
diagnostics. Spatial outlier detection shares significant resemblance with
temporal outlier detection in terms of the effects of contextual attributes
on the continuity of the behavioral attributes. Therefore, a number of
methods in the temporal domain can be used for outlier detection in the
spatial domain. Spatio-temporal outlier detection is even more complex
and challenging, since it combines spatial and temporal characteristics
effectively for outlier analysis.



Spatial Outlier Detection 339

Spatial data can often be treated as an abstraction of image data,
when the spatial data is specified in a complete way. In such cases,
numerous methods for image analysis can be used for outlier detection.
In fact, in many applications such as MRI scans and weather maps, such
data are indeed expressed as images. The analysis of such data involves
the determination of unusual shapes from the distribution of the spatial
attributes. Such analysis can be performed both in the unsupervised
and supervised scenarios.

9. Bibliographic Survey

The problem of finding spatial outliers is different from that in mul-
tidimensional data because of the different kinds of attributes which are
present in spatial data. The most common kinds of methods for finding
spatial outliers use changes in the spatial proximity in order to determine
outliers [3, 268, 317, 401–404]. Spatial proximity can be defined either
with the use of multidimensional distances, or graph-based distances.
Spatial distances are more relevant when the contextual attributes are
expressed in terms of coordinates. On the other hand, when the ref-
erence attributes correspond to spatial regions or semantic locations,
graph-based methods are more relevant, since distances and proximity
can be expressed as general functions across links. A random walk ap-
proach to determine free form spatial scan windows is discussed in [234].
The application of outlier detection to heterogeneous neighborhoods is
discussed in [235]. The work in [473] introduces a spatial likelihood ra-
tio test in order to determine local grid regions in which the variation
of the behavioral attribute is different from the remaining data in a sta-
tistically significant way. Furthermore, such methods can also be used
in the context of multiple behavioral attributes [112]. Spatial data also
shows local heterogeneity because of different levels of variance in dif-
ferent parts of the data. Therefore, a local method for spatial outlier
detection was proposed in [433].

The standard auto-regressive models for temporal data [387] can be
extended to spatial data, when the behavioral attribute values are com-
pletely specified over all the different reference values. This is often the
case with many forms of image data. The problem of unusual shape
detection in images is an important one from the perspective of outlier
analysis. Some recent work [469] has been performed on finding unusual
shapes in images in an efficient way. Supervised methods for shape de-
tection and change analysis are also widely available in the literature
[54, 92, 316, 504]. The work in [206] uses Multivariate Gaussian Markov
Random Fields in order to find unusual shapes in medical image data.
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Spatial data is closely related to temporal data in the context of the
continuity shown by the behavioral attributes. Numerous methods for
auto-regressive modeling [387] can also be generalized to the case of
spatial data. A significant amount of data in spatial domains also has a
temporal component, when the attributes are tracked at multiple time-
stamps. This requires methods for spatiotemporal outlier detection [113,
114]. An application of spatiotemporal outlier detection to precipitation
data is discussed in [472]. A method for detecting flow anomalies in
the context of sensors which located upstream or downstream from one
another is discussed in [251]. When the differences in the values of
the sensors exceeds a given threshold, it is flagged as a spatiotemporal
anomaly. A method for explicitly quantifying the level of local change
in a spatiotemporal data stream is proposed in [16]. This method also
has the ability to perform online processing, and is discussed in detail
in Chapter 8. Methods for detecting anomalies in vegetation data with
the use of Principal Component Analysis (PCA) are discussed in [287].

The detection of outliers in trajectories can be modeled either spa-
tially or temporally. Therefore, both spatial and temporal methods are
relevant to this case. Significant changes in trajectory directions is use-
ful for many applications such as hurricane tracking [94]. In such cases,
the trajectory can be treated as bivariate temporal data, and change
analysis can be applied to this representation. For this purpose, the
prediction-based deviation detection techniques of the previous chapter
can be helpful. The works in [83, 181] determine anomalies in moving
object streams in real time, by examining patterns of evolution. On the
other hand, the detection of anomalous trajectory shapes is a very differ-
ent problem. The earliest methods for trajectory shape outlier detection
were proposed in [263]. However, this method transforms the trajectories
into point data by using a set of features describing meta-information
about the trajectories. Unsupervised methods for trajectory outlier de-
tection, which actually use the sequence information explicitly were first
investigated in [344, 292]. The work in [344] uses the fourier transform
in order to represent the trajectories in terms of the leading coefficients,
and find anomalies. In the second method [292], trajectories are divided
into different line segments and anomalous patterns are identified in or-
der to determine outliers. Supervised methods for anomaly detection in
trajectory data may be found in [300]. These methods transform the
data into discrete sequences, and a classifier is learned in order to relate
the trajectories to the class labels. Another method proposed in [302]
proposes methods for finding outliers in vehicle traffic data. However,
these methods are not designed for determining outliers on individual
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objects, but are designed for finding anomalous traffic regions (or road
segments) on the basis of aggregate spatial traffic characteristics.

10. Exercises

1. Construct the closed form solution to the AR regression model
proposed in this chapter. Use the methods proposed in Chapter 3
for this purpose.

2. Construct PCA models for relating multiple behavioral attributes
at the same spatial location. Use analogous models to those dis-
cussed in Chapter 8 for this purpose.

3. Construct PCA models for relating multiple behavioral attribute
values over spatially local slices of size p×p. Use analogous spatial
models to the time-series models proposed in Chapter 8 for this
purpose.

4. What is the time complexity of the methods proposed in Exercises
2 and 3.

5. Create a generalization of the time-series shape detection algo-
rithm discussed in section 3 of Chapter 8 [258] to the spatial shape
detection scenario. Refer to the details in [258] for specific details
of pruning based on Symbolic Aggregate Approximation.

6. Implement the algorithm developed in Exercise 6 using a C++
implementation. Test it over benchmark data sets discussed in
[469].

7. Implement the algorithm discussed in this chapter for unusual
shape detection. Refer to [469] for specific details of LSH-based
pruning. Test it over benchmark data sets discussed in [469]. How
does the speed compare to the algorithm developed in Exercise 7.
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