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Preface

Most of the earliest work on outlier detection was performed by the
statistics community. While statistical methods are mathematically
more precise, they suffer from several shortcomings, such as simplified as-
sumptions about data representations, poor algorithmic scalability, and
a low focus on interpretability. With the increasing advances in hard-
ware technology for data collection, and advances in software technology
(databases) for data organization, computer scientists have increasingly
been participating in the latest advancements of this field. Computer
scientists approach this field based on their practical experiences in man-
aging large amounts of data, and with far fewer assumptions— the data
can be of any type, structured or unstructured, and may be extremely
large. Furthermore, issues such as computational efficiency and intu-
itive analysis of the data are generally considered more important by
computer scientists than mathematical precision, though the latter is
important as well. This is the approach of professionals from the field of
data mining, an area of computer science, which was founded about 20
years ago. This has lead to the formation of multiple academic communi-
ties on the subject, which have remained separated, partially because of
differences in technical style and opinions about the importance of differ-
ent problems and approaches to the subject. At this point, data mining
professionals (with a computer science background) are much more ac-
tively involved in this area, as compared to statisticians. This seems to
be a major change in the research landscape. This book presents outlier
detection from an integrated perspective, though the focus is towards
computer science professionals. Special emphasis was placed on relating
the methods from different communities with one another.

The key advantage of writing the book at this point is that the vast
amount of work done by computer science professionals in the last two
decades has remained largely untouched by a formal book on the subject.
The classical books relevant to outlier analysis are as follows:

xiii
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P. Rousseeuw and A. Leroy. Robust Regression and Outlier De-
tection. Wiley, 2003.

V. Barnett and T. Lewis. Outliers in Statistical Data, Wiley, 1994.
D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.

We note that these books are quite outdated, and the most recent among
them is a decade old. Furthermore, this (most recent) book is really fo-
cussed on the relationship between regression and outlier analysis, rather
than the latter. Outlier analysis is a much broader area, in which re-
gression analysis is only a small part. The other books are even older,
and are between 15 and 25 years old. They are exclusively targeted
to the statistics community. This is not surprising, given that the first
mainstream computer science conference in data mining (KDD) was or-
ganized in 1995. Most of the work in the data mining community was
performed after the writing of these books. Therefore, many key topics of
interest to the broader data mining community are not covered in these
books. Given that outlier analysis has been explored by a much broader
community, including databases, data mining, statistics, and machine
learning, we feel that our book explores a much broader audience and
brings together different points of view.

The chapters of this book have been organized carefully, with a view of
covering the area extensively in an order which is natural. Emphasis was
placed on simplifying the content, so that students and practitioners can
also benefit from the book. While we did not originally intend to create
a textbook on the subject, it evolved during the writing process into a
work, which can also be used as a teaching aid. Furthermore, it can
also be used as a reference book, since each chapter contains extensive
bibliographic notes. Therefore, this book can serve a dual purpose, and
provide a comprehensive exposition of the topic of outlier detection from
multiple points of view.
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Chapter 1

AN INTRODUCTION TO OUTLIER
ANALYSIS

“Never take the comment that you are different as a condemnation,
it might be a compliment. It might mean that you possess unique
qualities that, like the most rarest of diamonds is ... one of a
kind.” — Eugene Nathaniel Butler

1. Introduction

An outlier is a data point which is significantly different from the
remaining data. Hawkins formally defined [205] the concept of an outlier
as follows:

“An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanism.”

Outliers are also referred to as abnormalities, discordants, deviants,
or anomalies in the data mining and statistics literature. In most appli-
cations, the data is created by one or more generating processes, which
could either reflect activity in the system or observations collected about
entities. When the generating process behaves in an unusual way, it re-
sults in the creation of outliers. Therefore, an outlier often contains
useful information about abnormal characteristics of the systems and
entities, which impact the data generation process. The recognition of
such unusual characteristics provides useful application-specific insights.
Some examples are as follows:

Intrusion Detection Systems: In many host-based or networked
computer systems, different kinds of data are collected about the
operating system calls, network traffic, or other activity in the sys-
tem. This data may show unusual behavior because of malicious

C.C. Aggarwal, Outlier Analysis, DOI 10.1007/978-1-4614-6396-2_1, 1
© Springer Science+Business Media New York 2013



2 OUTLIER ANALYSIS

activity. The detection of such activity is referred to as intrusion
detection.

Credit Card Fraud: Credit card fraud is quite prevalent, be-
cause of the ease with which sensitive information such as a credit
card number may be compromised. This typically leads to unau-
thorized use of the credit card. In many cases, unauthorized use
may show different patterns, such as a buying spree from geo-
graphically obscure locations. Such patterns can be used to detect
outliers in credit card transaction data.

Interesting Sensor Events: Sensors are often used to track var-
ious environmental and location parameters in many real applica-
tions. The sudden changes in the underlying patterns may rep-
resent events of interest. Event detection is one of the primary
motivating applications in the field of sensor networks.

Medical Diagnosis: In many medical applications the data is
collected from a variety of devices such as MRI scans, PET scans
or ECG time-series. Unusual patterns in such data typically reflect
disease conditions.

Law Enforcement: Outlier detection finds numerous applica-
tions to law enforcement, especially in cases, where unusual pat-
terns can only be discovered over time through multiple actions
of an entity. Determining fraud in financial transactions, trading
activity, or insurance claims typically requires the determination
of unusual patterns in the data generated by the actions of the
criminal entity.

Earth Science: A significant amount of spatiotemporal data
about weather patterns, climate changes, or land cover patterns
is collected through a variety of mechanisms such as satellites or
remote sensing. Anomalies in such data provide significant in-
sights about hidden human or environmental trends, which may
have caused such anomalies.

In all these applications, the data has a “normal” model, and anomalies
are recognized as deviations from this normal model. In many cases such
as intrusion or fraud detection, the outliers can only be discovered as a
sequence of multiple data points, rather than as an individual data point.
For example, a fraud event may often reflect the actions of an individual
in a particular sequence. The specificity of the sequence is relevant to
identifying the anomalous event. Such anomalies are also referred to as
collective anomalies, because they can only be inferred collectively from



An Introduction to Outlier Analysis
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a set or sequence of data points.

FEATURE Y
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2 4 6 8 10
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Figure 1.1. The difference between noise and anomalies

Such collective anomalies typically

represent unusual events, which need to be discovered from the data.
This book will address these different kinds of anomalies.

The output of an outlier detection algorithm can be one of two types:

Most outlier detection algorithm output a score about the level
of “outlierness” of a data point. This can be used in order to
determine a ranking of the data points in terms of their outlier
tendency. This is a very general form of output, which retains
all the information provided by a particular algorithm, but does
not provide a concise summary of the small number of data points
which should be considered outliers.

A second kind of output is a binary label indicating whether a data
point is an outlier or not. While some algorithms may directly
return binary labels, the outlier scores can also be converted into
binary labels. This is typically done by imposing thresholds on
outlier scores, based on their statistical distribution. A binary
labeling contains less information than a scoring mechanism, but
it is the final result which is often needed for decision making in
practical applications.

It is often a subjective judgement, as to what constitutes a “sufficient”

deviation for a point to be considered an outlier. In real applications, the
data may be embedded in a significant amount of noise, and such noise
may not be of any interest to the analyst. It is usually the significantly
interesting deviations which are of interest. In order to illustrate this
point, consider the examples illustrated in Figures 1.1(a) and (b). It is
evident that the main patterns (or clusters) in the data are identical in
both cases, though there are significant differences outside these main
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WEAK OR STRONG OUTLIERS

|

NORMAL DATA I NOISE ANOMALIES I

I |
> »
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Figure 1.2. The spectrum from normal data to outliers

clusters. In the case of Figure 1.1(a), a single data point (marked by
‘A’) seems to be very different from the remaining data, and is therefore
very obviously an anomaly. The situation in Figure 1.1(b) is much more
subjective. While the corresponding data point ‘A’ in Figure 1.1(b) is
also in a sparse region of the data, it is much harder to state confidently
that it represents a true deviation from the remaining data set. It is quite
likely that this data point represents randomly distributed noise in the
data. This is because the point ‘A’ seems to fit a pattern represented by
other randomly distributed points. Therefore, throughout this book the
term “outlier” refers to a data point, which could either be considered
an abnormality or noise, whereas an “anomaly” refers to a special kind
of outlier, which is of interest to an analyst.

In the unsupervised scenario, where previous examples of interesting
anomalies are not available, the noise represents the semantic boundary
between normal data and true anomalies— noise is often modeled as a
weak form of outliers, which does not always meet the strong criteria
necessary for a data point to be considered interesting or anomalous
enough. For example, data points at the boundaries of clusters may
often be considered noise. Typically, most outlier detection algorithms
use some quantified measure of the outlierness of a data point, such as
the sparsity of the underlying region, nearest neighbor based distance,
or the fit to the underlying data distribution. Every data point lies on a
continuous spectrum from normal data to noise, and finally to anomalies,
as illustrated in Figure 1.2. The separation of the different regions of this
spectrum is often not precisely defined, and is chosen on an ad-hoc basis
according to application-specific criteria. Furthermore, the separation
between noise and anomalies is not pure, and many data points created
by a noisy generative process may be deviant enough to be interpreted
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as anomalies on the basis of the outlier score. Thus, anomalies will
typically have a much higher outlier score than noise, but this is not a
distinguishing factor between the two as a matter of definition. Rather,
it is the interest of the analyst, which regulates the distinction between
noise and an anomaly.

Some authors use the terms weak outliers and strong outliers in order
to distinguish between noise and anomalies [4, 262]. The detection of
noise in the data has numerous applications of its own. For example, the
removal of noise creates a much cleaner data set, which can be utilized
for other data mining algorithms. While noise may not be interesting in
its own right, its removal and identification continues to be an impor-
tant problem for mining purposes. Therefore, both noise and anomaly
detection problems are important enough to be addressed in this book.
Throughout this book, methods specifically relevant to either anomaly
detection or noise removal will be identified. However, the bulk of the
outlier detection algorithms could be used for either problem, since the
difference between them is really one of semantics.

Since the semantic distinction between noise and anomalies is based
on analyst interest, the best way to find such anomalies and distinguish
them from noise is to use the feedback from previously known outlier
examples of interest. This is quite often the case in many applications,
such as credit-card fraud detection, where previous examples of interest-
ing anomalies may be available. These may be used in order to learn a
model which distinguishes the normal patterns from the abnormal data.
Supervised outlier detection techniques are typically much more effec-
tive in many application-specific scenarios, because the characteristics
of the previous examples can be used to sharpen the search process to-
wards more relevant outliers. This is important, because outliers can be
defined in numerous ways in a given data set, most of which may not
be interesting. For example, in Figures 1.1(a) and (b), previous exam-
ples may suggest that only records with unusually high values of both
attributes should be considered anomalies. In such a case, the point ‘A’
in both figures should be regarded as noise, and the point ‘B’ in Figure
1.1(b) should be considered an anomaly instead! The crucial point to
understand here is that anomalies need to be unusual in an interesting
way, and the supervision process re-defines what one might find inter-
esting. Generally, unsupervised methods can be used either for noise
removal or anomaly detection, and supervised methods are designed for
application-specific anomaly detection.

Several levels of supervision are possible in practical scenarios. In the
fully supervised scenario, examples of both normal and abnormal data
are available, and can be clearly distinguished. In some cases, examples
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of outliers are available, but the examples of “normal” data may also
contain outliers in some (unknown) proportion. This is referred to as
classification with positive and unlabeled data. In other semi-supervised
scenarios, only examples of normal data or only examples of anomalous
data may be available. Thus, the number of variations of the problem
are rather large, each of which requires a related but dedicated set of
techniques.

Finally, the data representation may vary widely across applications.
For example, the data may be purely multidimensional with no rela-
tionships among points, or the data may be sequential with temporal
ordering, or may be defined in the form of a network with arbitrary re-
lationships among data points. Furthermore, the attributes in the data
may be numerical, categorical or may be mixed. Clearly, the outlier de-
tection process needs to be sensitive to the nature of the attributes and
relationships in the underlying data. In fact, the relationships them-
selves may often provide a criterion for outlier detection, in the form of
connections between entities which do not usually occur together. Such
outliers are referred to as contextual outliers. A classical example of this
is the concept of linkage outliers in social network analysis [15]. In this
case, entities (nodes) in the graph, which are normally not connected
together may show anomalous connections with each other. Thus, the
impact of data types on the anomaly detection process is significant, and
will be carefully addressed in this book.

This chapter is organized as follows. In section 2, the importance of
data modeling in outlier analysis is discussed. In section 3, the basic
outlier models for outlier detection are introduced. Meta-algorithms
for outlier analysis are addressed in section 4. Section 5 discusses the
basic data types used for analysis. Section 6 introduces the concept of
supervised modeling of outliers for data analysis. Methods for evaluating
outlier detection algorithms are discussed in section 7. The conclusions
are presented in section 8.

2. The Data Model is Everything

Virtually all outlier detection algorithms create a model of the normal
patterns in the data, and then compute an outlier score of a given data
point on the basis of the deviations from these patterns. For example,
this data model may be a generative model such as a gaussian mixture
model, a regression-based model, or a proximity-based model. All these
models make different assumptions about the “normal” behavior of the
data. The outlier score of a data point is then computed by evaluating
the quality of the fit between the data point and the model. In many
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Figure 1.3. Applying Z-value test on the Normal and Zipf distributions

cases, the model may be algorithmically defined. For example, nearest
neighbor-based outlier detection algorithms model the outlier tendency
of a data point in terms of the distribution of its k-nearest neighbor
distance. Thus, in this case, the assumption is that outliers are located
at large distances from most of the data.

Clearly, the choice of the data model is crucial. An incorrect choice
of data model may lead to poor results. For example, a fully generative
model such as the gaussian mixture model may not work well, if the data
does not fit the generative assumptions of the model, or if a sufficient
number of data points are not available to learn the parameters of the
model. Similarly, a linear regression-based model may work poorly, if
the underlying data is clustered arbitrarily. In such cases, data points
may be incorrectly reported as outliers because of poor fit to the erro-
neous assumptions of the model. In practice, the choice of the model is
often dictated by the analyst’s understanding of the kinds of deviations
relevant to an application. For example, in a spatial application mea-
suring a behavioral attribute such as the location-specific temperature,
it would be reasonable to assume that unusual deviations of the temper-
ature attribute in a spatial locality is a indicator of abnormality. On the
other hand, for the case of high-dimensional data, even the definition of
data locality may be ill-defined because of data sparsity. Thus, an effec-
tive model for a particular data domain may only be constructed after
carefully evaluating the relevant modeling properties of that domain.

In order to understand the impact of the model, it is instructive to
examine the use of a simple model known as the Z-value test for outlier
analysis. Consider a set of 1-dimensional quantitative data observations,
denoted by X ... Xy, with mean p and standard deviation o. The Z-
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value for the data point X; is denoted by Z;, and is defined as follows:

_ | X — pl
g

Z; (1.1)
The Z-value test computes the number of standard deviations by which
the data varies from the mean. This provides a good proxy for the
outliers in the data. An implicit assumption is that the data is modeled
from a normal distribution. In cases where mean and standard deviation
of the distribution can be accurately estimated (or are available from
domain knowledge), a good “rule of thumb” is to use Z; > 3 as a proxy
for the anomaly. However, in many scenarios, where a smaller number of
samples are available, the mean and standard deviation of the underlying
distribution cannot be estimated accurately. In such cases, the results
from the Z-value test need to be interpreted more carefully. This issue
will be discussed in Chapter 2.

It is often forgotten by practitioners during outlier modeling, that
the test implicitly assumes an approximately normal distribution for the
underlying data. When this is not the case, the corresponding Z-values
need to be interpreted carefully. For example, consider the two data
frequency histograms drawn on values between 1 and 20 in Figure 1.3.
In the first case, the histogram is sampled from a normal distribution
with (u,0) = (10,2), and in the second case, it is sampled from a Zipf
distribution 1/i. It is evident that most of the data lies in the range
[10 — 2 % 3,10 + 2 * 3] for the normal distribution, and all data points
lying outside this range can be truly considered anomalies. Thus, the Z-
value test works very well in this case. In the second case with the Zipf
distribution, the anomalies are not quite as clear, though the data with
very high values (close to 20) can probably be considered anomalies. In
this case, the mean and standard deviation of the data are 5.24 and 5.56
respectively. As a result, the Z-value test does not declare any of the
data points as anomaly (for a threshold of 3), though it does come close.
In any case, the significance of the Z-value from the Zipf-distribution
is not very meaningful at least from the perspective of distribution of
probabilities. This suggests that if mistakes are made at the modeling
stage, it can result in an incorrect understanding of the data. While
such tests are often used as a heuristic to provide a rough idea of the
outlier scores even for data sets which are far from normally distributed,
it is important to interpret such scores carefully.

An example in which the Z-value test would not work even as a heuris-
tic, would be one in which it was applied to a data point, which was
an outlier only because of its relative position, rather than its extreme
position. For example, if the Z-value test is applied to an individual di-
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Figure 1.4. Linearly Correlated Data

mension in Figure 1.1(a), the test would fail miserably, because point A
would be considered the most centrally located and normal data point.
On the other hand, the test can still be reasonably applied to a set of
extracted 1-dimensional values corresponding to the k-nearest neighbor
distances of each point. Therefore, the effectiveness of a model depends
both on the choice of the test used, and how it is applied.

The best choice of a model is often data set specific. This requires
a good understanding of the data itself before choosing the model. For
example, a regression-based model would be most suitable for finding
the outliers in the data distributions of Figure 1.4, where most of the
data is distributed along linear correlation planes. On the other hand, a
clustering model would be more suitable for the cases illustrated in Fig-
ure 1.1. An attempt to use the wrong model for a given data set is likely
to provide poor results. Therefore, the core principle of discovering out-
liers is based on assumptions about the structure of the normal patterns
in a given data set. Clearly, the choice of the “normal” model depends
highly upon the analyst’s understanding of the natural data patterns in
that particular domain.

There is no way around this issue; a highly general model with too
many parameters will most likely overfit the data, and will also find a
way to fit the outliers. A simple model, which is constructed with a good
intuitive understanding of the data (and possibly also an understanding
of what the analyst is looking for), is likely to lead to much better results.
On the other hand, an oversimplified model, which fits the data poorly is
likely to declare normal patterns as outliers. The initial stage of selecting
the data model is perhaps the most crucial one in outlier analysis. The
theme about the impact of data models will be repeated throughout the
book, with specific examples.
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3. The Basic Outlier Models

This section will present the broad diversity of the models in the lit-
erature, and provide some idea of the impact of using different data
models. A detailed discussion of these methods are provided in later
chapters. Several factor influence the choice of an outlier model, includ-
ing the data type, data size, availability of relevant outlier examples,
and the need for interpretability in a model. The last of these criteria
deserves some further explanation.

The interpretability of an outlier detection model is extremely impor-
tant from the perspective of the analyst. It is often desirable to deter-
mine why a particular data point is an outlier in terms of its relative
behavior with respect to the remaining data. This provides the analyst
further hints about the diagnosis required in an application-specific sce-
nario. This is also referred to as the intensional knowledge about the
outliers [262]. Different models have different levels of interpretability.
Typically, models which work with the original attributes, and use fewer
transforms on the data such as principal component analysis have higher
interpretability. While data transformations can sometimes enhance the
contrast between the outliers and normal data points, such transforma-
tions do come at the expense of interpretability. Therefore, it is critical
to keep these factors in mind, while choosing a specific model for outlier
analysis.

3.1 Extreme Value Analysis

The most basic form of outlier detection is extreme value analysis of
1-dimensional data. These are very specific kinds of outliers, in which
it is assumed that the values which are either too large or too small
are outliers. Such special kinds of outliers are also important in many
application-specific scenarios.

The key is to determine the statistical tails of the underlying distribu-
tion. As illustrated earlier in Figure 1.3, the nature of the tails may vary
considerably depending upon the underlying data distribution. The nor-
mal distribution is the easiest to analyze, because most statistical tests
(such as the Z-value test) can be interpreted directly in terms of prob-
abilities of significance. Nevertheless, even for arbitrary distributions,
such tests provide a good heuristic idea of the outlier scores of data
points, even when they cannot be interpreted statistically. The prob-
lem of determining the tails of distributions has been widely studied in
the statistics literature. Details of such methods will be discussed in
Chapter 2.
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Extreme value statistics [364] is distinct from the traditional definition
of outliers. The traditional definition of outliers, as provided by Hawkins,
defines such objects by their generative probabilities rather than the ex-
tremity in their values. For example, in the data set {1, 2,2, 50,98, 98,99}
of 1-dimensional values, the values 1 and 99, could very mildly, be con-
sidered extreme values. On the other hand, the value 50 is the average
of the data set, and is most definitely not an extreme value. However,
most probabilistic and density-based models would classify the value 50
as the strongest outlier in the data, on the basis of Hawkins’ definition
of generative probabilities. Confusions between extreme value analysis
and outlier analysis are common, especially in the context of multivari-
ate data. This is quite often the case, since many extreme value models
also use probabilistic models in order to quantify the probability that a
data point is an extreme value.

While extreme value analysis is naturally designed for univariate (one-
dimensional) data, it is also possible to generalize it to multivariate data,
by determining the points at the multidimensional outskirts of the data.
It is important to understand that such outlier detection methods are
tailored to determining specific kinds of outliers even in the multivariate
case. For example, the point A in both Figures 1.1(a) and (b) will not
be declared as an extreme value by such methods, since it does not lie on
the outer boundary of the data, even though it is quite clearly an outlier
in Figure 1.1(a). On the other hand, the point B in Figure 1.1(b) can
be considered an extreme value, because it lies on the outskirts of the
multidimensional data.

Extreme value modeling plays an important role in most outlier de-
tection algorithms as a final step. This is because most outlier modeling
algorithms quantify the deviations of the data points from the normal
patterns in the form of a numerical score. Extreme value analysis is
usually required as a final step on these modeled deviations, since they
are now represented as univariate values in which extreme values corre-
spond to outliers. In many multi-criteria outlier detection algorithms, a
vector of outlier scores may be obtained (such as extreme values of tem-
perature and pressure in a meteorological application). In such cases,
multivariate extreme value methods can help unify these multiple out-
lier scores into a single value, and also generate a binary label output.
Therefore, even though the original data may not be in a form where ex-
treme value analysis is directly helpful, it remains an integral part of the
outlier detection process. Furthermore, many variables are often tracked
as statistical aggregates, in which extreme value analysis provides useful
insights about outliers.
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Extreme value analysis can also be extended to multivariate data with
the use of distance-, or depth-based methods [243, 288, 388]. However,
these methods are applicable only to certain kinds of specialized scenar-
ios, where outliers are known to be present at the boundaries of the data.
Many forms of post-processing on multi-criterion outlier scores may use
such methods. On the other hand, such methods have often not found
much utility in the literature for generic outlier analysis, because of their
inability to discover outlier in the sparse interior regions of a data set.

3.2 Probabilistic and Statistical Models

In probabilistic and statistical models, the data is modeled in the
form of a closed form probability distribution, and the parameters of
this model are learned. Thus, the key assumption here is about the
choice of the data distribution with which the modeling is performed.
For example, a gaussian mixture model is a generative model, which
characterizes the data in the form of a generative process containing a
mixture of gaussian clusters. The parameters of these gaussian distri-
butions are learned with the use of an Ezpectation-Mazimization (EM)
algorithm on the data set. A key output of this method is the member-
ship probability of the data points to the different clusters, as well as the
density-based fit to the modeled distribution. This provides a natural
way to model the outliers, because data points which have very low fit
values may be considered outliers. As discussed earlier, an extreme value
test may be applied to these probability values in order to determine the
outliers.

A major advantage of probabilistic models is that they can be eas-
ily applied to virtually any data type (or mixed data type), as long as
an appropriate generative model is available for each mixture compo-
nent. For example, if the data is categorical, then a discrete bernoulli
distribution may be used to model each component of the mixture. For
a mixture of different types of attributes, a product of the attribute-
specific generative components may be used. Since such models work
with probabilities, the issues of data normalization are already accounted
for by the generative assumptions. Thus, probabilistic models provide
a generic EM-based framework, which is relatively easy to apply to any
specific data type. This is not necessarily the case for many other kinds
of models.

A downside of probabilistic models is that they try to fit the data to a
particular kind of distribution, which may often not be appropriate for
the underlying data. Furthermore, as the number of model parameters
increases, over-fitting becomes more common. In such cases, the outliers
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may fit the underlying model of normal data. Many parametric models
are also harder to interpret in terms of intensional knowledge, especially
when the parameters of the model cannot be intuitively presented to an
analyst in terms of underlying attributes. This can defeat one of the
important purposes of anomaly detection, which is to provide diagnostic
understanding of the abnormal data generative process. A detailed dis-
cussion of probabilistic methods, including the EM algorithm is provided
in Chapter 2.

3.3 Linear Models

These methods model the data into lower dimensional embedded sub-
spaces with the use of linear correlations [387]. For example, in the
case of Figure 1.4, the data is aligned along a 1-dimensional line in a 2-
dimensional space. The optimal line which passes through these points is
determined with the use of regression analysis. Typically, a least squares
fit is used to determine the optimal lower dimensional subspace. The
distances of the data points from this plane are determined. Extreme
values analysis can be applied on these deviations in order to determine
the outliers. For example, in the 2-dimensional example of Figure 1.4,
a linear model of the data points {(z;,v;),i € {1... N} in terms of two
coefficients a and b may be created as follows:

yi=a-x;+b+e¢ VYie{l...N} (1.2)

Here ¢; represents the residual, which is essentially the error of the mod-
eling. The coefficients a and b need to be learned from the data in order
to minimize the least squares error denoted by Zf\il €2. This is a convex
non-linear programming problem, whose solution can be obtained either
in closed form through either matrix operations (principal component
analysis), or by gradient descent. The derived residuals can then be
used in conjunction with extreme value analysis in order to determine
the underlying outliers.

The concept of dimensionality reduction and principal component
analysis (PCA) is quite similar [244], except that it uses a non-parametric
approach in order to model the data correlations. PCA can be derived
through multivariate regression analysis, by determining the plane which
optimizes the least squares error of representation in terms of the nor-
mal distance to the plane. In other words, it provides the subspaces,
such that by projecting the data into these subspaces, the aggregate
least square errors of the residuals are minimized. The absolute sizes of
these residuals can be analyzed in order to determine the outliers. Data
points, which have large residuals, are more likely to be outliers, because
their behavior does not conform to the natural subspace patterns in the
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data. In addition, Principal Component Analysis techniques can be used
for noise correction [18], where the attributes of data points are modified
in order to reduce the noise in the data. Clearly, outlier data points are
likely to be corrected more significantly than other data points.

Dimensionality reduction and regression modeling are particularly
hard to interpret in terms of original attributes, when the underlying
data dimensionality is high. This is because the subspace embedding
is defined as a linear combination of attributes with positive or nega-
tive coefficients. This cannot easily be intuitively interpreted in terms
specific properties of the data attributes. Dimensionality reduction and
regression analysis methods for outlier detection are discussed in Chap-
ter 3.

3.3.1 Spectral Models. Many of the matrix decomposition
methods such as PCA are also used in the context of graphs and net-
works. The main difference is in how the matrix is created for decom-
position. Such methods are also referred to as spectral models, when
applied to certain kinds of data such as graphs and networks. Spectral
methods are used commonly for clustering graph data sets, and are also
used in order to identify anomalous changes in temporal sequences of
graphs [229]. Such spectral models will be discussed in Chapter 11.

3.4 Proximity-based Models

The idea in proximity-based methods is to model outliers as points
which are isolated from the remaining data. This modeling may be per-
formed in one of three ways. Specifically, the three methods are cluster
analysis, density-based analysis or nearest neighbor analysis. In cluster-
ing and other density-based methods, the dense regions in the data are
found directly, and outliers are defined as those points, which do not
lie in these dense regions. The main difference between clustering and
density-based methods is that clustering methods segment the points,
whereas the density-based methods segment the space.

In nearest neighbor methods [261, 381], the distance of each data
point to its kth nearest neighbor is determined. By picking a value of
k > 1, small groups of points, which are close together, but far away
from the remaining data set are also treated as outliers. It is reasonable
to treat such sets of data points as outliers, because small related sets
of points can often be generated by an anomalous process. For example,
consider the case illustrated in Figure 1.5, which contains a large cluster
containing 4000 data points, and a small set of isolated but three closely
spaced and related anomalies. Such situations are quite common, be-
cause anomalies which are caused by the same (rare) process, may result
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Figure 1.5. Small groups of anomalies can be a challenge to density-based methods

in small sets of data points which are similar to one another. In this case,
the points within an anomaly set are close to one another, and cannot
be distinguished on the basis of the 1-nearest neighbor distance. Such
anomalies are often hard to distinguish from noise by using certain kinds
of clustering and density-based algorithms, which are not sensitive to the
global behavior of the data. On the other hand, the k-nearest neighbor
approach can sometimes be effective. In the case of Figure 1.5, such sets
of related anomalies may be identified by using k > 3. The kth nearest
neighbor score provides an outlier score of the data set. This method
can typically be computationally expensive, because it is required to de-
termine the kth nearest neighbor of every point in the data set. Unless
efficient indexing methods are available, this can require O(N?) time for
a data set containing N points.

In the case of clustering methods, the first step is to use a clustering
algorithm in order to determine the dense regions of the data set. In the
second step, some measure of the fit of the data points to the different
clusters is used in order to compute an outlier score for the data point.
For example, in the case of a k-means clustering algorithm, the distance
of the data point to the nearest centroid may be used as a measure of
its anomalous behavior. One challenge with the use of many clustering
algorithms is that they implicitly assume specific kinds of cluster shapes
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depending upon the specific algorithm or distance function used within
the clustering algorithm. Therefore, methods which divide the data into
small regions in which the density can be estimated are very useful for
scoring the sparsity of different regions in the data.

Density-based methods provide a high level of interpretability, when
the sparse regions in the data can be presented in terms of combinations
of the original attributes. For example, combinations of constraints on
the original attributes can be presented as the specific criteria for partic-
ular data points being interpreted as outliers. Proximity-based methods
for outlier detection are discussed in Chapter 4.

3.5 Information Theoretic Models

Many of the aforementioned models for outlier analysis use some form
of data summarization method in terms of either generative probabilistic
model parameters, clusters, or lower dimensional hyper-planes of projec-
tions. This provides a small summary of the data, the deviations from
which are flagged as outliers. Information theoretic measures are broadly
based on this principle. The idea is that outliers increase the minimum
code length required to describe a data set. For example, consider the
following two strings:

ABABABABABABABABABABABABABABABABAB
ABABACABABABABABABABABABABABABABAB

The second string is of the same length as the first, and is different at
only a single position containing the unique symbol C. The first string
can be described concisely as “AB 17 times”. However, the second string
has a single position corresponding to the alphabet “C”. Therefore, the
second string can no longer be described as concisely. In other words, the
presence of the symbol C somewhere in the string increases its minimum
description length. It is also easy to see that this symbol corresponds to
an outlier. Information theoretic models are closely related to conven-
tional models, because both use a concise representation of the data set
as a baseline for comparison. For example, in the case of multidimen-
sional data sets, both kinds of models use the following different kinds
of concise descriptions.

A probabilistic model describes a data set in terms of generative
model parameters, such as a mixture of gaussian distributions or
a mixture of exponential power distributions [74].

A clustering or density-based summarization model describes a
data set in terms of cluster descriptions, histograms or other sum-
marized representations, along with maximum error tolerances [233].
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A PCA model or spectral model describes the data in terms of
lower dimensional subspaces of projection of multi-dimensional
data or a condensed representation of a network [429].

A frequent pattern mining method describes the data in terms of
an underlying code book of frequent patterns. These are among
the most common methods used for information-theoretic anomaly
detection [34, 123, 410].

All these models represent the data approximately in terms of individual
condensed components representing aggregate trends. In general, out-
liers increase the length of the description in terms of these condensed
components to achieve the same level of approximation. For example, a
data set with outliers will require a larger number of mixture parame-
ters, clusters, PCA-based subspace dimensionality, or frequent patterns
in order to achieve the same level of approzimation. Correspondingly, in
information theoretic methods, the key idea is to construct a code book
in which to represent the data, and outliers are defined as points which
removal results in the largest decrease in description length [123], or the
most accurate summary representation in the same description length
after removal [233]. The term “code book” is rather loosely defined in
outlier analysis and refers to the condensed aggregate components of the
data in terms of which the data is described. The actual construction of
the coding is often heuristic, and an effective choice is key to the success
of the approach. In general, the determination of the minimum length
coding is a computationally intractable problem for a given data set, and
therefore a variety of heuristic models (or code books) may be used for
representation purposes [34, 123, 233, 410]. In many cases, these tech-
niques can be related to conventional data summarization models for
outlier analysis. In some cases, the coding is not explicitly constructed,
but measures such as the entropy or Kolmogorov complexity are used
as a surrogate in order to estimate the level of unevenness of a specific
segment of the data [297, 259]. Segments with greater unevenness may
be selectively explored to determine the outliers.

Conventional models look at this problem in a complementary way,
by defining outliers as points which are expressed in the least precise way
by (or deviations from) from a fized model with a particular length. On
the other hand, information theoretic models examine the differential
impact of removing an outlier point from the data set on the tradeoff
between coding length and representation accuracy. The two are clearly
closely related. Since information theoretic methods largely differ from
conventional models in terms of how the measure is defined, they often
use similar methods as conventional techniques (eg. frequent pattern
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mining [34, 410], histograms [233] or spectral methods [429]) in order
to create the coding representation. Therefore, information theoretic
methods will be discussed at various places in this book along with
the chapter containing similar techniques or data types. Information
theoretic methods can also be used for change detection in temporal
data [96], by examining specific temporal segments of the data, and
measuring the description length of these segments. The segments with
the greatest change will typically have a larger description length.

3.6 High-Dimensional Outlier Detection

The high-dimensional case is particularly challenging for outlier detec-
tion. This is because, in high dimensionality, the data becomes sparse,
and all pairs of data points become almost equidistant from one another
[22, 215]. From a density perspective, all regions become almost equally
sparse in full dimensionality. Therefore, it is no longer meaningful to talk
in terms of extreme value deviations based on the distances in full di-
mensionality. The reason for this behavior is that many dimensions may
be very noisy, and they may show similar pairwise behavior in terms of
the addition of the dimension-specific distances. The sparsity behavior
in high dimensionality makes all points look very similar to one another.

A salient observation is that the true outliers may only be discovered
by examining the distribution of the data in a lower dimensional local
subspace [4]. In such cases, outliers are often hidden in the unusual lo-
cal behavior of lower dimensional subspaces, and this deviant behavior is
masked by full dimensional analysis. Therefore, it may often be fruitful
to explicitly search for the appropriate subspaces, where the outliers may
be found. This approach is a generalization of both (full-dimensional)
clustering and (full data) regression analysis. It combines local data
pattern analysis with subspace analysis in order to mine the significant
outliers. This can be a huge challenge, because the simultaneous discov-
ery of relevant data localities and subspaces in high dimensionality can
be computationally very difficult. Typically evolutionary heuristics such
as genetic algorithms can be very useful in exploring the large number
of underlying subspaces [4].

High-dimensional methods provide an interesting direction for inten-
sional understanding of outlier analysis, when the subspaces are de-
scribed in terms of the original attributes. In such cases, the output
of the algorithms provide specific combinations of attributes along with
data locality, which resulted in such data points being declared as out-
liers. This kind of interpretability is very useful, when a small number of
interesting attributes need to be selected from a large number of possibil-
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ities for outlier analysis. Methods for high dimensional outlier detection
are discussed in Chapter 5.

4. Meta-Algorithms for Outlier Analysis

In many data mining problems such as clustering and classification, a
variety of meta-algorithms are used in order to improve the robustness
of the underlying solutions. For example, in the case of the classification
problem, a variety of ensemble methods such as bagging, boosting and
stacking are used in order to improve the robustness of the classification
[146]. Similarly, in the case of clustering, ensemble methods are often
used in order to improve the quality of the clustering [20]. Therefore, it
is natural to ask whether such meta-algorithms also exist for the outlier
detection problem. The answer is in the affirmative, though the work
on meta-algorithms for outlier detection is often quite scattered in the
literature, and in comparison to other problems such as classification,
not as well formalized. In some cases such as sequential ensembles,
the corresponding techniques are often repeatedly used in the context
of specific techniques, though are not formally recognized as general
purpose meta-algorithms which can be used in order to improve outlier
detection algorithms. The different meta-algorithms for outlier detection
will be discussed in the following subsections.

There are two primary kinds of ensembles, which can be used in order
to improve the quality of outlier detection algorithms:

In sequential ensembles, a given algorithm or set of algorithms are
applied sequentially, so that future applications of the algorithms
are impacted by previous applications, in terms of either modifica-
tions of the base data for analysis or in terms of the specific choices
of the algorithms. The final result is either a weighted combination
of, or the final result of the last application of an outlier analysis
algorithm. For example, in the context of the classification prob-
lem, boosting methods may be considered examples of sequential
ensembles.

In independent ensembles, different algorithms, or different instan-
tiations of the same algorithm are applied to either the complete
data or portions of the data. The choices made about the data
and algorithms applied are independent of the results obtained
from these different algorithmic executions. The results from the
different algorithm executions are combined together in order to
obtain more robust outliers.
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Algorithm SequentialEnsemble(Data Set: D
Base Algorithms: A; ... A,)
begin
J=1
repeat
Pick an algorithm A; based on results from
past executions;
Create a new data set f;(D) from D based
on results from past executions;
Apply A; to Dy;
J=J+1
until(termination);
report outliers based on combinations of results
from previous executions;
end

Figure 1.6. Sequential Ensemble Framework

4.1 Sequential Ensembles

In sequential-ensembles, one or more outlier detection algorithms are
applied sequentially to either all or portions of the data. The core prin-
ciple of the approach is that each application of the algorithms provides
a better understanding of the data, so as to enable a more refined ex-
ecution with either a modified algorithm or data set. Thus, depending
upon the approach, either the data set or the algorithm may be changed
in sequential executions. If desired, this approach can either be applied
for a fixed number of times, or be used in order to converge to a more ro-
bust solution. The broad framework of a sequential-ensemble algorithm
is provided in Figure 1.6.

In each iteration, a successively refined algorithm may be used on a
refined data, based on the results from previous executions. The func-
tion f;(-) is used to create a refinement of the data, which could cor-
respond to data subset selection, attribute-subset selection, or generic
data transformation methods. The description above is provided in a
very general form, and many special cases can be possibly instantiated
from this general framework. For example, in practice, only a single
algorithm may be used on successive modifications of the data, as data
is refined over time. Furthermore, the sequential ensemble may be ap-
plied in only a small number of constant passes, rather than a generic
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convergence-based approach, as presented above. The broad principle of
sequential ensembles is that a greater knowledge of data with successive
algorithmic execution helps focus on techniques and portions of the data
which can provide fresh insights.

Sequential ensembles have not been sufficiently explored in the outlier
analysis literature as general purpose meta-algorithms. However, many
specific techniques in the outlier literature use methods, which can be
recognized as special cases of sequential ensembles. A classic example
of this is the use of two-phase algorithms for building a model of the
normal data. In the first-phase, an outlier detection algorithm is used
in order to remove the obvious outliers. In the second phase, a more ro-
bust normal model is constructed after removing these obvious outliers.
Thus, the outlier analysis in the second stage is much more refined and
accurate. Such approaches are commonly used for cluster-based outlier
analysis (for constructing more robust clusters in later stages) [55], or for
more robust histogram construction and density estimation (see Chapter
4). However, most of these methods are presented in the outlier anal-
ysis literature as specific optimizations of particular algorithms, rather
than as general meta-algorithms which can improve the effectiveness of
an arbitrary outlier detection algorithm. There is significant scope for
further research in the outlier analysis literature, by recognizing these
methods as general-purpose ensembles, and using them to improve the
effectiveness of outlier detection.

4.2 Independent Ensembles

In independent ensembles, different instantiations of the algorithm or
different portions of the data are used for outlier analysis. Alternatively,
the same algorithm may be applied, but with either a different initial-
ization, parameter set or even random seed in the case of a randomized
algorithms. The results from these different algorithm executions can
be combined in order to obtain a more robust outlier score. A general
purpose description of independent ensemble algorithms is provided in
the pseudo-code description of Figure 1.7.

The broad principle of independent ensembles is that different ways of
looking at the same problem provides more robust results which are not
dependent on specific artifacts of a particular algorithm or data set. In-
dependent ensembles have been explored much more widely and formally
in the outlier analysis literature, as compared to sequential ensembles.
Independent ensembles are particularly popular for outlier analysis in
high-dimensional data sets, because they enable the exploration of dif-
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Algorithm IndependentEnsemble(Data Set: D
Base Algorithms: A; ... A,)
begin
J=1
repeat
Pick an algorithm A;;
Create a new data set f;(D) from D;
Apply A;j to f;(D);
J=J+1
until(termination);
report outliers based on combinations of results
from previous executions;
end

Figure 1.7. Independent Ensemble Framework

ferent subspaces of the data in which different kinds of deviants may be
found. These methods will be discussed in detail in Chapter 5.

Examples exist of both picking different algorithms and data sets, in
order to combine the results from different executions. For example,
the methods in [289, 310] sample subspaces from the underlying data in
order to determine outliers from each of these executions independently.
Then, the results from these different executions are combined in order
to determine the outliers. The idea in these methods is that results from
different subsets of sampled features may be bagged in order to provide
more robust results. Some of the recent methods for subspace outlier
ranking and outlier evaluation can be considered independent ensembles
which combine the outliers discovered in different subspaces in order to
provide more robust insights. These methods will be discussed in detail
in Chapter 5.

5. The Basic Data Types for Analysis

Most of our aforementioned discussion in the previous sections was
focussed on multidimensional numerical data. Furthermore, it was as-
sumed that the data records are independent of one another. However,
in practice, the underlying data may be much more complex, both in
terms of the kinds of attributes, and the relationships between different
data records. Some examples of the different kinds of data, which may
be encountered in real applications are discussed in this section.
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5.1 Categorical, Text and Mixed Attributes

Many data sets in real applications may contain categorical attributes,
which take on discrete unordered values. For example, demographic
data may contain attributes such as race, gender, or the zip-code. Such
attribute values are not ordered, and therefore require different data
analysis techniques. Furthermore, the different kinds of attributes (nu-
merical and categorical) may be mixed with one another. Many of the
techniques for nearest neighbor and density-based classification can be
extended to the case of such attributes, because the concept of proximity
can be extended to such cases. The major challenge is to construct a
distance function, which remains semantically meaningful for the case
of discrete data.

Regression-based models can also be used in a limited way over dis-
crete attribute values, when the number of possible values of an attribute
is not too large. The typical methodology is to convert the discrete data
to binary data by creating one attribute for each categorical value. Re-
gression models such as principal component analysis may then be ap-
plied to this binary data set. Such methods can be more easily extended
to text, where there is an inherent ordering among the frequencies of
the words. In such cases, the correlations among occurrence of text
words can be used in order to create linear-regression based models. In
fact, some of the most successful models for text de-noising are based
on latent semantic indexing (LSI), which is a form of linear regression
analysis [133]. Other common methods for text and categorical data in-
clude clustering [26], proximity-based methods [515], probabilistic mod-
els [478], and methods based on frequent pattern mining [34, 208, 410].
Methods for outlier detection in categorical and mixed attribute data
sets are discussed in Chapter 7.

5.2 When the Data Values have Dependencies

Most of the aforementioned discussion in this chapter is about the
common multidimensional scenario, where it is assumed that the data
records can be treated independently of one another. In practice, the
different data values may be related to each other temporally, spatially,
or through explicit network relationship links between the data items.
The presence of such dependencies greatly changes the anomaly detec-
tion problem, because the nature of the dependencies plays a critical
role in the anomaly detection process. In such cases, the expected val-
ues of data items are influenced by their contextual dependencies, and
therefore outliers are defined on the basis of such contextually modeled
deviations. When a single data item (eg. value from a time series) is
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declared as an anomaly because of its relationship to its related data
items, it is referred to as a contextual outlier or anomaly. Such outliers
are also sometimes referred to as conditional anomalies [416]. For exam-
ple, a sudden spike in a time series is a contextual anomaly, because it is
very different from its expected value based on the values of its adjacent
items. When a set of data items are declared anomalous as a group of
points, it is referred to as a collective anomaly or outlier. For example,
an unusual and rapid oscillation over time for a stock ticker value may
be considered a collective anomaly, and it includes all the data items
in the oscillation. Virtually, all anomalies in dependency-oriented data
are contexrtual or collective anomalies, because they compute expected
values based on relationships with adjacent data points in order to de-
termine unexpected patterns. Furthermore, in such data sets, there are
usually multiple ways to model anomalies, depending upon what an an-
alyst might be looking for. Some examples of such data domains are
presented in this section.

5.2.1 Times Series Data and Data Streams. Time-series
contains a set of values which are typically generated by continuous mea-
surement over time. Therefore, the values in consecutive time-stamps
do not change very significantly, or change in a smooth way. In such
cases, sudden changes in the underlying data records, can be considered
anomalous events. Therefore the discovery of anomalous points in time
series, is usually closely related to the problem of anomalous event detec-
tion, in the form of either contextual or collective anomalies over related
time stamps [9, 16, 260]. Typically such events are created by a sudden
change in the underlying system, and may be of considerable interest
to an analyst. For example, let us consider the following time-series of
values, along with the corresponding time-stamps implicitly defined by
the index of the data point.

3, 2,3, 2,3, 87, 86, 8 87, 89, 86, 3, 84, 91, 86, 91, 88

The time-series is illustrated in Figure 1.8. It is evident that there is
a sudden change in the data value at time-stamp 6 from 3 to 87. This
corresponds to an outlier. Subsequently, the data stabilizes at this value,
and this becomes the new normal. At time-stamp 12, the data value again
dips to 3. Even though this data value was encountered before, it is still
considered an outlier because of the sudden change in the consecutive
data values. Thus, it is critical to understand that in this case, treating
the data values independent of one another is not helpful for anomaly
detection, because the data values are highly influenced by the adjacent
values of the data points. Thus, the problem of outlier detection in time
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Figure 1.8. Example of Time Series

series data is highly related to the problem of change detection, because
the normal models of data values are highly governed by adjacency in
temporal ordering. When completely new data values are encountered,
they are referred to as nowvelties [328, 329, 325], though outlier detection
is relevant to any form of abrupt change, rather than only novelties,
which are a specific kind of outliers.

It should be emphasized that change analysis and outlier detection
(in temporal data) are very closely related areas, but not necessarily
identical. The change in a temporal data set could happen in one of two
possible ways:

The values and trends in the data stream change slowly over time, a
phenomenon which is referred to as concept drift [327, 10]. In such
cases, the concept drift can only be detected by detailed analysis
over a long period of time, and is not immediately obvious in many
circumstances.

The values and trends in the data stream change abruptly, so as to
immediately arouse suspicion that the underlying data generation
mechanism has somehow changed fundamentally.

The first scenario does not necessarily correspond to outliers, though the
second scenario is more relevant to outlier detection. It is easy to see
the parallels between the second scenario and the definition of outliers
due to Hawkins [205], which was introduced at the very beginning of
this chapter.

A common challenge in such scenarios is to perform the outlier detec-
tion in real time, as new data values are encountered. Many scenarios of
change analysis and anomaly detection in temporal data are too tightly
integrated to be treated separately. In such cases, solutions for one can
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be used for the other, and vice-versa. On the other hand, the formula-
tions of anomaly detection in temporal data are very diverse, not all of
which are directly related to change detection. Usually online analysis
is suited to change detection, whereas offline analysis may explore other
unusual aspects of the data. Some examples are as follows:

When the data is in the form of a time-series (eg, sensor data)
large changes in trends may correspond to anomalies. These can
be discovered as deviations from forecasted values using window-
based analysis. In some cases, it may be desired to determine time-
series subsequences of unusual shapes rather than change points
in the data.

For multidimensional data streams, changes in the aggregate dis-
tribution of the streaming data may correspond to unusual events.
For example, network intrusion events may cause aggregate change
points in a network stream. On the other hand, individual point
novelties may or may not correspond to aggregate change points.
The latter case is similar to multidimensional anomaly detection
with an efficiency constraint for the streaming scenario.

Methods for anomaly detection in time series data and multidimensional
data streams are discussed in detail in Chapter 8.

5.2.2 Discrete Sequences. Many discrete sequence-based
applications such as intrusion-detection and fraud-detection are clearly
temporal in nature. This scenario can be considered a categorical or dis-
crete analogue of time series data. Discrete sequences may not necessar-
ily be temporal in nature, but may be based on their relative placement
with respect to one another. An example is the case of biological data,
where the sequences are defined on the basis of their relative placement.

As in the case of autoregressive models of continuous data, it is possi-
ble to use (typically markovian) prediction-based techniques in order to
forecast the value of a single position in the sequence. Deviations from
forecasted values correspond to contextual outliers. It is often desirable
to perform the prediction in real time. In other cases, anomalous events
can be identified only by variations from the normal patterns exhibited
by the subsequences over multiple time stamps. This is analogous to the
problem of unusual shape detection in time series data, and it represents
a set of collective outliers.

Therefore, discrete sequences are analogous to continuous sequences,
except that the different data representation typically requires different
similarity functions, representation data structures, and more complex
predictive techniques such as markovian models as opposed to autore-



An Introduction to Outlier Analysis 27

gressive forecasting techniques. The problem formulations for the two
cases are also similar at the high level. On the other hand, the spe-
cific techniques used for the two cases are very different. This is quite
simply because numerical time series values are ordered, and therefore
the values can be meaningfully compared across a continuous spectrum.
However, two different discrete values cannot be meaningfully compared
in a similar way. Value-continuity is lost in discrete data. Therefore, in
order to maintain a coherent presentation, the case of discrete sequences
has been addressed in a different chapter.

Discrete data is common in many real applications. Most biological
sequences are discrete in nature, where each value in the sequence is
drawn from a discrete set of possibilities. Similarly, host-based intrusion
applications typically lead to discrete data, because numerous diagnostic
events are drawn from a discrete set of instances [108]. Methods for
anomaly detection in discrete sequences are discussed in Chapter 9.

5.2.3 Spatial Data. In spatial data, many non-spatial at-
tributes (eg. temperature, pressure, image pixel color intensity) are
measured at spatial locations. Unusual local changes in such values are
reported as outliers. It should be pointed out that outlier detection in
temporal data shares some resemblance to that in spatial data [433].
Both typically require the attribute of interest to exhibit a certain level
of continuity. For example, consider the measurement of the tempera-
ture, where the measurement could be associated with a time-stamp and
spatial coordinates. Just as it is expected that temperatures at consec-
utive time-stamps do not vary too much (temporal continuity), it is also
expected that temperatures at spatially close locations do not vary too
much (spatial continuity). In fact, such unusual spatial variations in sea
surface temperatures and pressures [433] are used in order to identify
significant and anomalous spatiotemporal events in the underlying data
(eg. formation of cyclones). Spatiotemporal data is a generalization of
both spatial and temporal data, and the methods used in either domain
can often be generalized to such scenarios. Methods for finding outliers
in spatial data are discussed in Chapter 10.

5.2.4 Network and Graph Data. In network or graph data,
the data values may correspond to nodes in the network, whereas the
relationships among the data values may correspond to the edges in
the network. In such cases, outliers may be modeled in different ways
depending upon the irregularity of either the nodes in terms of their
relationships to other nodes, or the edges themselves. For example, a
node which shows irregularity in its structure within its locality may be
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(a) Node Outlier (b) Edge Outlier

Figure 1.9. Examples of Node and Edge Outliers

considered an outlier [33]. Similarly, an edge which connects disparate
communities of nodes may be considered a relationship or community
outlier [15, 180]. In Figure 1.9, two examples of outliers in networks
are illustrated. The left example in Figure 1.9(a) contains an example
of a node outlier, because the node 6 has an unusual locality structure
which is significantly different from the other nodes. On the other hand,
the edge (2, 5) in Figure 1.9(b) may be considered a relationship outlier
or community outlier, because it connects two communities which are
usually not connected to one another. Thus, in graph data, there is
significantly more complexity and flexibility in terms of how outliers
may be defined or modeled. In general, the more complex the data,
the more the analyst has to make prior inferences of what is considered
normal for modeling purposes.

It is also possible to combine different kinds of dependencies in a given
data set. For example, graphs may be temporal in nature. In such a
case, the data may have both structural and temporal dependencies,
which change and also influence each other over time [15]. Therefore,
outliers may be defined in terms of significant changes in the underlying
network community or distance structure. Such models combine network
analysis and change detection in order to detect structural and temporal
outliers from the underlying data. A detailed discussion of methods for
temporal and non-temporal outlier detection in graphs is provided in
Chapter 11.

6. Supervised Outlier Detection

In many scenarios, previous examples of outliers may be available. A
subset of the data may be labeled as anomalies, whereas the remain-
ing data may be considered normal. The corresponding methods are
referred to as supervised outlier detection, because the labels are used in
order to train a model which can determine specific kinds of anomalies.
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Supervised methods are generally designed for anomaly detection, rather
than noise removal, because they are based on the assumption that the
labels represent what an analyst might specifically be looking for, rather
than examples of what one might want to remove for data cleaning.
Supervised models may often provide very different results from the un-
supervised case, because they reflect an understanding of the underlying
data. For example, let us consider the following time-series data:

3,2,3,2,3,87, 2,2, 3, 3, 3, 84, 91, 86, 91, 81

In this case, sudden changes in the data values (at 87 and 84) may
be considered anomalies in the unsupervised scenario. However, in an
application such as credit-card transaction levels, previous labeled exam-
ples of time-series may suggest that high consecutive values of the data
should be considered anomalous. In such cases, the first occurrence of 87
should not be considered anomalous, whereas the occurrence of 84 along
with its following values should be considered (collectively) anomalous.
Supervised anomaly detection finds numerous applications in fraud
detection, intrusion detection, fault and disease diagnosis. In all these
cases, the class of interest is very rare. It is this rarity that makes these
instances outliers. Furthermore, it is usually much more important to
correctly identify all the outliers, rather than the normal instances.
Supervised outlier detection is a (difficult) special case of the classi-
fication problem. The main characteristic of this problem is that the
labels are extremely unbalanced in terms of relative presence [102]. The
normal data is usually easy to collect and is therefore copiously avail-
able. On the other hand, outlier examples are very sparsely available
in the data. In the classical machine learning literature, this problem
is also referred to as the rare class detection problem. The imbalance
in the class labels may often make the problem rather difficult to solve,
because very few instances of the rare class may be available for model-
ing purposes. This may also make standard classification models prone
to over-training, since the actual data distinguishing the rare class from
the normal data is quite small. Furthermore, several variations of the
classification problem also correspond to different levels of supervision:

A limited number of instances of the positive (outlier) class may
be available, whereas the “normal” examples may contain an un-
known proportion of outliers [152]. This is referred to as the
Positive-Unlabeled Classification (PUC) problem in machine learn-
ing. This variation is still quite similar to the fully supervised
rare-class scenario, except that the classification model needs to
be more cognizant of the contaminants in the negative (unlabeled)
class. In cases, where the unlabeled training instances do not ac-
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curately reflect the test instances, it may be desirable to discard
the training instances for the unlabeled class, and treat it as a
one-class problem, where only positive instances are available.

Only instances of a subset of the normal and anomalous classes
may be available, but some of the anomalous classes may be miss-
ing from the training data [325, 326, 445]. Such outliers are also
referred to as semi-supervised novelties. This is distinct from unsu-
pervised novelties, which tracks the formation of new clusters and
trends in the data [26, 503, 515]. For example, in a bio-terrorist
attack modeling scenario, no examples of the attack may be avail-
able, whereas copious examples of normal behavior and other kinds
of more common anomalies may be available. This variation is also
a semi-supervised scenario for learning, though it is quite similar to
the unsupervised version of the problem. A more interesting case
is one in which labeled examples of all normal and some anomalous
classes are available, though the labels for the anomalous classes
are not exhaustive. Such situations are quite common in scenarios
such as intrusion detection, where some intrusions may be known,
but other intrusions are continually created over time.

Supervised outlier detection is closely related to active learning,
in which human feedback is utilized in order to identify relevant
outlier examples. This is because such methods do create models
distinguishing between positive and negative examples of outliers,
even when the example identification process is executed in parallel
with the classification [360]. This process is also referred to as
Active Learning.

All these different variants require careful design of the underlying clas-
sification algorithms. For example, cost-sensitive variations of standard
machine learning algorithms can be used in order to make accurate pre-
dictions of anomalies in the data [151]. In such variations, the classifier
is tuned, so that errors in classification of the anomalous class are penal-
ized more heavily than the errors in classification of the majority class.
The idea is that it is better to predict a negative class as an anomaly
(false positive), rather than miss a true outlier (false negative). The
different choices on costs may lead to different tradeoffs between false
positives and false negatives. This tradeoff is characterized by either
a Precision-Recall (PR) curve, or a Receiver Operating Characteristics
(ROC) curve. These two kinds of curves are intimately related to one
another. The issue of outlier evaluation will be discussed in the next sec-
tion. Supervised methods for anomaly detection are discussed in greater
detail in Chapter 6.
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Figure 1.10. Precision-Recall Curves
Algorithm Rank of Ground-truth Outliers
Algorithm A 1, 5, 8, 15, 20
Algorithm B 3,7, 11,13, 15
Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1,2,3,4,5

Table 1.1. Rank of ground-truth outliers can be used to construct Precision-Recall
curves

7. Outlier Evaluation Techniques

A key question arises as to how the effectiveness of an outlier de-
tection algorithm should be evaluated. Unfortunately, this is often a
difficult task, because outliers, by definition, are rare. This means that
the ground-truth about which data points are outliers, is often not avail-
able. This is especially true for unsupervised algorithms, because if the
ground-truth were indeed available, it could have been used to create a
more effective supervised algorithm. In the unsupervised scenario (with-
out ground-truth), it is often the case, that no realistic quantitative
methods can be used in order to judge the effectiveness of the under-
lying algorithms in a rigorous way. Therefore, much of the research
literature uses case studies in order to provide an intuitive and qualita-
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Figure 1.11. Receiver Operating Characteristic Curves

tive evaluation of the underlying outliers in unsupervised scenarios. In
some cases, the data sets may be adapted from imbalanced classification
problems, and the rare labels may be used as surrogates for the ground
truth outliers.

Nevertheless, many scenarios do exist, in which ground-truth is avail-
able. In most supervised algorithms, ground-truth is available, a part
of which can be used in order to perform the supervision, and the re-
maining can be used for evaluation. Even in unsupervised scenarios,
the ground-truth often becomes available after a period of time, even
though it may not have been available at the time of outlier analysis.
Therefore, a natural question arises as to how the ground-truth can be
used to evaluate effectiveness. Most outlier detection algorithms output
an outlier score, and a threshold on this score is used in order to declare
data points as outliers. If the threshold is picked too restrictively in
order to minimize the number of declared outliers, then the algorithm
will miss true outlier points (false negatives). On the other hand, if the
algorithm declares too many data points as outliers, then it will lead to
too many false positives. This tradeoff can be measured in terms of pre-
cision and recall, which is commonly used for measuring the effectiveness
of set-based retrieval.
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For any given threshold ¢ on the outlier score, the declared outlier
set is denoted by S(t). As t changes, the size of S(t) changes as well.
G represent the true set (ground-truth set) of outliers in the data set.
Then, for any given threshold ¢, the precision is defined as the percentage
of reported outliers, which truly turn out to be outliers.

1S(t) NG

Precision(t) = 100
[S(®)]

The value of Precision(t) is not necessarily monotonic in ¢, because
both the numerator and denominator may change with ¢ differently.
The recall is correspondingly defined as the percentage of ground-truth
outliers, which have been reported as outliers at threshold .

St NG

Recall(t) = 100
|G

By varying the parameter ¢, it is possible to plot a curve between the
precision and the recall. This is referred to as the Precision-Recall curve.
This curve is not necessarily monotonic. On the other hand, for more
effective algorithms, high values of precision may often correspond to
low values of recall and vice-versa. The precision-recall (PR) curve can
also be generated by using thresholds on the rank of the data points,
when sorted by outlier score. In the absence of ties in the outlier scores,
a rank-based and score-based PR curve would be identical.

A Receiver Operating Characteristics Curve (ROC) is closely related
to a Precision-Recall curve, but is sometimes visually more intuitive. In
this case, the True Positive Rate is graphed against the Fulse Positive
Rate. The true positive rate TPR(t) is defined in the same way as the
recall. The false positive rate FPR(t) is the percentage of the falsely
reported positives out of the ground-truth negatives. Therefore, for a
data set D with ground truth positives GG, these definitions are as follows:

TPR(t) = Recall(t)

15(t) — G
D -G

Note that the end points of the ROC curve are always at (0,0) and
(100,100), and a random method is expected to exhibit performance
along the diagonal line connecting these points. The lift obtained above
this diagonal line provides an idea of the accuracy of the approach. The
ROC curve is simply a different way to characterize the tradeoffs than the
precision-recall curve, though the two can be derived from one another.
The ROC curve has the advantage of being monotonic, and more easily

FPR(t) = 100 x
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interpretable in terms of its lift characteristics. On the other hand, the
tradeoffs are sometimes more clearly understood at a detailed level with
the use of a PR curve.

In order to illustrate the insights gained from these different graphical
representations, consider an example of a data set with 100 points, from
which five points are outliers. Two algorithms A and B are applied to
this data set, which rank all data points from 1 to 100, with lower rank
representing greater propensity to be an outlier. Thus, the precision and
recall values can be generated by determining the ranks of the 5 ground
truth outlier points. In Table 1.1, some hypothetical ranks for the 5
ground truth outliers have been illustrated for the different algorithms.
In addition, the ground truth ranks for a random algorithm have been
indicated. The random algorithm which outputs a random score for
outlier detection of a given data point. Similarly, the ranks for a “perfect
oracle” algorithm which ranks the correct top 5 points as outlier have
also been illustrated in the table. The corresponding PR curve for this
hypothetical output of outlier scores are illustrated in Figure 1.10. Other
than the oracle algorithm, all the tradeoff curves are non-monotonic.
This is because the discovery of a new outlier at any particular relaxation
in rank threshold results in a spike in the precision, which becomes less
pronounced at higher values of the recall. The corresponding ROC curve
is illustrated in Figure 1.11. Unlike the PR curve, this curve is clearly
monotonic.

What do these curves really tell us? For cases in which one curve
strictly dominates another, it is clear that the algorithm for the former
curve is superior. For example, it is immediately evident that the oracle
algorithm is superior to all algorithms, and the random algorithm is
inferior to all the other algorithms. On the other hand, the algorithms
A and B show domination at different parts of the ROC curve. In such
cases, it is hard to say that one algorithm is strictly superior. From
Table 1.1, it is clear that Algorithm A, ranks three of the correct ground
truth outliers very highly, but but the remaining two outliers are ranked
poorly. In the case of Algorithm B, the highest ranked outliers are not
as well ranked as the case of Algorithm A, though all five outliers are
determined much earlier in terms of rank threshold. Correspondingly,
Algorithm A dominates on the earlier part of the PR curve, whereas
Algorithm B dominates on the later part. Some practitioners use the
area under the ROC curve as a proxy for the overall effectiveness of the
algorithm, though such a measure should be used very carefully, because
all parts of the ROC curve may not be equally important for different
applications.
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8. Conclusions and Summary

The problem of outlier detection finds applications in numerous do-
mains, where it is desirable to determine interesting and unusual events
in the activity which generates such data. The core of all outlier de-
tection methods is the creation of a probabilistic, statistical or algorith-
mic model which characterizes the normal behavior of the data. The
deviations from this model are used to determine the outliers. A good
domain-specific knowledge of the underlying data is often crucial in order
to design simple and accurate models which do not overfit the underlying
data. The problem of outlier detection becomes especially challenging,
when significant relationships exist among the different data points. This
is the case for time-series and network data in which the patterns in the
relationships among the data points (whether temporal or structural)
play the key role in defining the outliers. Outlier analysis has tremen-
dous scope for research, especially in the area of structural and temporal
analysis.

9. Bibliographic Survey

A number of books and surveys have been written on the problem
of outlier analysis. The classic books [58, 205, 387] in this area have
mostly been written from the perspective of the statistics community.
Most of these books were written before the wider adoption of database
technology, and are therefore not written from a computational perspec-
tive. More recently, this problem has been studied quite extensively by
the computer science community. These works consider practical as-
pects of outlier detection, corresponding to the cases, where the data
may be very large, or may have very high dimensionality. Numerous
surveys have also been written, which discuss the concept of outliers
from different points of view, methodologies or data types [30, 62, 107,
108, 325, 326]. Among these, the survey by Chandola et al [107], is the
most recent, and arguably the most comprehensive. It is an excellent
review, which covers the work on outlier detection quite broadly from
the perspective of multiple communities.

The issue of distinguishing between spurious abnormalities (or noise)
and true outliers has also been discussed in [9], where the challenges
of finding true anomalies in time series have been discussed. The Z-
value test discussed in section 2 is used commonly in the statistical
literature, and many variants for limited sample sizes such as the Grubb’s
test [188] and t-value test are also available. While this test makes the
normal distribution assumption for large data sets, it has been used
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fairly extensively as a good heuristic even for data distributions which
do not satisfy the normal distribution assumption.

The basic models discussed in this chapter have also been researched
extensively, and have been studied widely in the literature. Details of
these methods (along with the corresponding bibliographic notes) will
be provided in later chapters. Here only the most important works in
each area are covered. The key statistical techniques on regression-based
modeling are covered in [387]. The basic EM-algorithm for unsupervised
modeling of data sets was first proposed in [135]. The non-parametric
technique of principal component analysis (PCA) discussed in section
2 is described well in [244]. The core technique of PCA was extended
to text (with some minor variations) as Latent Semantic Indexing [133].
A variety of distance-based methods for outlier detection are proposed
in [261, 381, 441], and density-based methods for outlier detection were
proposed in [78]. Methods for interpreting distance-based outliers were
first proposed in [262]. A variety of information theoretic methods for
outlier detection are discussed in [34, 45, 74, 96, 123, 211, 212, 297, 410].

The issues of poor behavior of high dimensional applications such
as clustering and nearest neighbor search have been observed in sev-
eral prior works in the literature [5, 7, 8, 22, 215]. The problem of
high-dimensional outlier detection was first proposed in [4]. Subspace
approaches for outlier detection were proposed in this paper, and a num-
ber of other recent methods have followed a similar line of work [256,
273, 337-339, 341, 498-501, 513].

Outliers have been studied extensively in the context of different data
domains. While numeric data is the most commonly studied case, nu-
merous methods have also been proposed for categorical and mixed data
[30, 478]. Methods for unsupervised outlier detection in text corpora are
proposed in [197]. The problem of detecting outliers with dependencies
has also been studied extensively in the literature. Methods for detect-
ing outliers and changes in time series and streams were proposed in [9,
15, 16, 26, 257-260]. Novelty detection [325] is an area which is closely
related to outlier analysis, and it is often studied in the context of su-
pervised models, where novel classes from a data stream are detected in
real time [328, 329], with the use of learning methods. However, novelty
detection is also studied often in the unsupervised scenario, particularly
in the context of first story detection in topic detection and tracking in
text streams [515]. Spatial outliers [3, 268, 317, 401-404] are closely
related to the problem of finding outliers in temporal data, since such
data also shows spatial continuity, just as temporal data shows temporal
continuity. Some forms of spatial data also have a temporal component
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to them, which requires the determination of spatiotemporal outliers
[113, 114].

Outlier detection in discrete sequences is related to the problem of
temporal outlier detection in continuous sequences. For discrete se-
quences, an excellent survey may be found in [108]. Methods for find-
ing node outliers with unusual neighborhood behavior in graphs were
proposed in [33], and techniques for finding relationship outliers, sub-
graph outliers and community outliers were proposed in [15, 180, 349,
378]. The primary ideas in all these methods is that outlier regions
in a network are caused by unusual relationships in the form of edges,
subgraphs, and communities. The temporal analysis of graph streams
in the context of significant community evolution was studied in [17,
192, 429]. The problem of discovering significant structural change in
temporal networks in the form of distance changes was studied in [193].

Recently, some meta-algorithms for outlier detection have been de-
signed. The core-idea of this approach is that multiple methods for
outlier detection will provide different results, and these results can be
combined in order to provide more robust results. This approach lies
at the core of ensemble-based methods [289, 310, 271]. In the case of
sequential ensembles, most of the currently available techniques are ad-
hoc, and apply to specific algorithms. These techniques are often not
recognized as general-purpose meta-algorithms, which can be used in
order to improve the effectiveness of any arbitrary outlier detection al-
gorithm, though the interests in this area have increased recently. Inde-
pendent ensemble algorithms are based on the idea that multiple ways
of solving the same problem are likely to lead to more robust results.
For example, if two different methods find the same data point as an
outlier, this is a more robust indicate of outlierness, since it does not
result from a particular overfitting of the specific algorithm. The work
in [289] designs methods for using different subsets of features in outlier
detection methods, and combining them in order to provide more effec-
tive results. The work in [337-339] shows how to combine the scores
from different subspaces found by outlier detection algorithms in order
to provide a unified and more robust result. The work in [271] also
shows how outlier scores of different algorithms can be best interpreted
and unified into more robust outputs.

The supervised version of the outlier detection problem has been stud-
ied extensively in the form of rare class detection. For the supervised
case, readers are referred to a general book on classification [146], since
this problem is essentially a cost-sensitive variation [102, 151] on the
standard classification problem, in which the class distributions are very
imbalanced. In particular, the readers are referred to [102, 151] for a
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thorough discussion on the foundations of cost-sensitive learning from
imbalanced data sets. A number of methods for classification from posi-
tive and unlabeled data are discussed in [152], and a good review of the
previous work in this area may also be found from the references in this
paper. The work in [360, 512, 513] first showed how human supervision
could be used to significantly improve the effectiveness of outlier detec-
tion. Finally, the semi-supervised scenario of novelty detection has been
discussed extensively in [325, 326, 445].

Evaluation methods for outlier analysis are essentially identical to
the techniques used in information retrieval for understanding precision-
recall tradeoffs, or in classification for ROC curve analysis. A detailed
discussion of the proper construction of such curves may be found in
[159]. While the ROC and PR curves are the traditional methods for
outlier evaluation, it has recently been noted [337] that these methods
may not necessarily provide all the insights needed for different kinds
of analysis. Therefore, the work in [337] has proposed a coefficient,
which was based on the Spearman correlation between the best possible
ranking and the ranking determined by the algorithm. The work in [395]
provides further ways of examining the ranks of outlier scores, which also
provides insights into the effectiveness of outlier ensembles. Other visual
methods of evaluating outliers include the LOCI plot [356] (discussed in
Chapter 4), and the ELKI [2] software, which shows the contrasts in
outlier scores in the form of histograms and bubble plots.

10. Exercises
1. Which of the following points from each of the following sets of
points below is an outlier? Why?
1-dimensional) { 1, 3,2, 1,3,2,75,1,3,2,2,1,2,3,2, 1}
1-dimensional) { 1, 2, 3, 4, 2, 19, 9, 21, 20, 22 }
2-dimensional) { (1, 9), (2, 9), (3, 9), (10, 10), (10, 3), (9,
), (10, 2) }

2. Use MATLAB or any other mathematical software to create a
histogram of the data distribution along each of the dimensions in
the different cases of Exercise 1. Can you see the outliers visually?
Which ones? In which case are the outliers not clear and why?

(
(
(
1

3. For the 2-dimensional case of Exercise 1, plot the data points on
a 2-dimensional plane. Can you see the outliers visually? Which
ones?
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4. Apply the Z-value test to each of the cases in Exercise 1. For

10.

11.

the 2-dimensional case, apply the Z-value test to the individual
dimensions. Do you discover the correct outliers?

. For the 2-dimensional case in Exercise 1, construct the function

f(x1,29) = |1 — x2|. Apply the Z-value test to f(x1,x2) over
each of the data points. Do you obtain the correct outliers, as
suggested by your visual analysis in Exercise 37 Why?

. Determine the nearest neighbor of each data point for the cases in

Exercise 1. Which data points have the largest value of the nearest
neighbor distance? Are they the correct outliers?

Apply a k-means clustering algorithm to each of the cases in Ex-
ercise 1, while setting £ = 2. Which data points lie furthest from
the two means thus found? Are these the correct outliers?

Consider the following time-series:

1,2,3,3,2 1,73, 1,2, 3,5

1,2,3,4,3,21,3,73,72, 74, 73,74, 1, 2, 3, 4, 2

1,2, 3,5, 6,19, 11, 15, 17, 2, 17, 19 , 17, 18
Which data points would you consider outliers? How does the tem-
poral component influence your choice of outliers? Now examine

the points at which the time series changes significantly? How do
these points relate to the outliers?

. Consider the undirected network G = (NN, A) of 8 nodes in N

indexed from 1 through 8. Let the edge set A be { (1, 2), (1, 3),
(1, 4), (1, 5), (1, 6), (1, 7), (1, 8) }. Draw the network on paper
to visualize it. Is there any node, which you would consider an
outlier? Why?

Now delete the edge (1,7). Does this change the set of nodes
you would consider outliers? Why?

Consider the undirected network G = (N, A) of 8 nodes in N
indexed from 1 through 8. Let the edge set A be { (1, 2), (1, 3),
(1, 4), (2, 3), (2, 4), (5, 7), (4, 7), (5, 6), (6, 8), (5, 8), (6, 7)
}. Draw the network on paper to visualize it. Is there any edge,
which you would consider an outlier? Why?

Consider three algorithms A, B and C, which are run on a data
set with 100 points and 5 outliers. The rank of the outliers by
score for the three algorithms are as follows:
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A:1,3,5,8, 11
B:2,56,7,9
C:2,4,6,10, 13

Draw the PR curves for each of the algorithms. Would you consider

any of the algorithms strictly superior to any of the others? Why?

)



Chapter 2

PROBABILISTIC AND STATISTICAL
MODELS FOR OUTLIER
DETECTION

“With four parameters, I can fit an elephant, and with five,
I can make him wiggle his trunk.” — John von Neumann

1. Introduction

The oldest methods for outlier detection are rooted in probabilistic
and statistical models, and date back to the nineteenth century [149].
The earliest methods were proposed well before the advent and popu-
larization of computer technology. Therefore, these methods were de-
signed without much focus on practical issues such as data representation
or computational efficiency. Nevertheless, the underlying mathematical
models are extremely useful, and have eventually been adapted to a
variety of computational scenarios.

A popular form of statistical modeling in outlier analysis is that of
detecting extreme univariate values. In such cases, it is desirable to
determine data values at the tails of a univariate distribution, along
with a corresponding level of statistical significance. This would seem
a rather restrictive case, since most multidimensional outliers do not
correspond to extremes in data values. Rather, outliers are typically
defined by the relative positions of the data values with respect to each
other. While extreme univariate values correspond to a very specific
kind of outliers, they have numerous applications beyond the univariate
case. This is because virtually all outlier detection algorithms perform
some kind of numerical scoring, in order to measure the anomalousness
of data points. In some cases, the scores may come with a confidence
value or probability, though this capability is often not directly built
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into outlier analysis algorithms. Therefore, the final step in all these
algorithms is to determine the extreme values from these scores. The
determination of statistically extreme values helps in the conversion of
outlier scores into binary labels.

Some examples of outlier scoring mechanisms, which are returned by
different classes of algorithms, are as follows:

In probabilistic modeling, the likelihood fit of a data point to the
model is the outlier score.

In proximity-based modeling, the k-nearest neighbor distance, dis-
tance to closest cluster centroids, or local density value is the out-
lier score.

In linear modeling, the residual distance of a data point to a lower-
dimensional representation of the data is the outlier score.

In temporal modeling, a function of the distance from previous
data points (or the deviation from a forecasted value) is used to
create the outlier score.

Thus, even when extreme value modeling cannot be performed on the
original data, the ability to determine the extreme values effectively
from a set of outlier scores forms the cornerstone of all outlier detection
algorithms as a final step. Some recent work has been devoted exclusively
to the problem of determining such extreme values [179] from outlier
scores, by converting these scores into probabilities. Therefore, the issue
of extreme value modeling will be studied extensively in this chapter.
Extreme value modeling can also be easily extended to multivariate data,
and will be discussed in this chapter.

It is also possible to use probabilistic modeling for finding general out-
liers beyond extreme values. Mixture models can be considered proba-
bilistic versions of clustering algorithms, and can therefore be used for
outlier analysis. A significant advantage of these methods is that they are
fairly easy to generalize to different data formats, or even heterogenous
data attributes, once a generative model for the data has been defined.
Most probabilistic models assume a particular form to the underlying
distribution, according to which the data is modeled. Subsequently,
the parameters of this model are learned, typically with a maximum-
likelihood estimation technique [135]. This model then becomes a gen-
erative model for the data, and the probability of a particular data point
being generated can be computed from this model. Data points which
have an unusually low probability of being generated from the model are
returned as outliers.
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This chapter is organized as follows. The next section discusses sta-
tistical models for extreme value analysis. Methods for extreme-value
analysis in multivariate data are discussed in section 3. Section 4 dis-
cusses methods for probabilistic modeling of outliers. Section 5 discusses
the limitations of probabilistic models for outlier analysis. Section 6
presents the conclusions and summary.

2. Statistical Methods for Extreme Value
Analysis

In this section, we will present probabilistic and statistical methods
for extreme value analysis in univariate data distributions. The extreme
values in a probability distribution are collectively referred to as the
distribution tail. Statistical methods for extreme value analysis quan-
tify the probabilities in the tails of distributions. Clearly, a very low
probability value of a tail indicates that a data value inside it should
be considered anomalous. A number of tail inequalities bound these
probabilities.

2.1 Probabilistic Tail Inequalities

Tail inequalities can be used in order to bound the probability that
a value in the tail of a probability distribution should be considered
anomalous. The most fundamental tail inequality is the Markov inequal-
ity, which is defined for distributions, which take on only non-negative
values. Let X be a random variable, with probability distribution fx(x),
a mean of F[X], and a variance of Var[X].

THEOREM 2.1 (MARKOV INEQUALITY) Let X be a random wvariable,
which takes on only non-negative random values. Then, for any con-
stant « satisfying E[X] < «, the following is true:

P(X >a) < E[X|/a (2.1)

Proof: Let fx(z) represent the density function for the random variable
X. Then, we have:

EX|= [ = fx(z)- dx
= fogxgax'fX(x) dr+ [ 2 fx(x)-de
> Jpsa® fx(z) - do

> Jpsa @ fx(x) - dz

The first inequality follows from the non-negativity of z, and the second
follows from the fact that the integral is only defined over the cases
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where z > «. Now, the term on the right-hand side of the last line is
exactly equal to o - P(X > «). Therefore, the following is true:

EX]|>a-P(X > a) (2.2)

The above inequality can be re-arranged in order to obtain the final
result.

The Markov inequality is defined only for probability distributions of
non-negative values, and provides a bound only on the upper tail. In
practice, it is often desired to bound both tails of arbitrary distributions.
Consider the case where X is an arbitrary random variable, which is not
necessarily non-negative. Tail bounds may be derived in a symmetric
way with the Chebychev inequality. The Chebychev inequality is a direct
application of the Markov inequality to a non-negative derivative (square
deviation-based) distribution of X.

THEOREM 2.2 (CHEBYCHEV INEQUALITY) Let X be an arbitrary ran-
dom wvariable. Then, for any constant «, the following is true:

P(|X — E[X]| > a) < Var[X|/a? (2.3)

Proof: The inequality |X — E[X]| > « is true if and only if (X —
E[X])? > o?. By defining Y = (X — E[X])? as a (non-negative) deriva-
tive random variable from X, it is easy to see that E[Y] = Var[X].
Then, the expression on the left hand side of the theorem statement is
the same as determining the probability P(Y > a?). By applying the
Markov inequality to the random variable Y, one can obtain the desired
result.

The main trick used in the aforementioned proof was to apply the
Markov inequality to a non-negative function of the random variable.
This technique can generally be very useful for proving other kinds of
bounds, when the distribution of X has a specific form (such as the sum
of bernoulli random variables). In such cases, a parameterized function
of the random variable can be used in order to obtain a parameter-
ized bound. The underlying parameters can then be optimized for the
tightest possible bound. Several well known bounds such as the Cher-
noff bound and the Hoeffding inequality are derived with the use of this
approach.

The Markov and Chebychev inequalities are relatively weak inequali-
ties, and often do not provide tight enough bounds to be useful in many
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practical scenarios. This is because these inequalities do not assume any
specific shape of the probability distribution, or any specific form of the
random variable X. Many practical scenarios can however be captured
with the use of specific forms of the random variable. In such cases,
much tighter bounds on tail distributions are possible. A particular case
is one in which a random variable X may be expressed as a sum of other
independent bounded random variables.

2.1.1 Sum of Bounded Random Variables. Many practical
observations, which are defined in the form of aggregates can be expressed
as a sum of bounded random variables. Some examples of practical
scenarios in which such data could arise are as follows:

EXAMPLE 2.3 (SPORTS STATISTICS) The NBA draft teams have access
to college basketball statistics for the different candidate players. For
each player and each game, a set of quantitative values describe their var-
1ous scoring statistics over different games. For example, these quanti-
tative values could correspond to the number of dunks, assists, rebounds,
etc. For a particular statistic, the aggregate performance of any player
can be expressed as the sum of their statistics over N different games:

N
X = ZXZ-
=1

All values of X; lie in the range [l,u]. The performances of a player
over different games are assumed to be independent of one another. The
long-term global mean of the statistic represented by X; over all players
1s known to be . The NBA draft teams would like to determine the
anomalous players on the basis of each statistic.

In this example, the aggregate statistic is represented as a sum of bounded
random variables. The corresponding tail bounds can be quantified with
the use of the Hoeffding Inequality.

In many cases, the individual random variable components in the
aggregation are not only bounded, but also binary. Thus, the aggregate
statistic can be expressed as a sum of Bernoulli random variables.

EXAMPLE 2.4 (GROCERY SHOPPING) A grocery store keeps track of the
number of customers (from its frequent purchaser program), which have
frequented the store on a particular day. The long term probability of
any customer i attending the store on a given day is known to be p;.
The behavior of the different customers is also known to be independent
of one another. For a given day, determine the probability that the store
receives more than n (frequent purchase program) customers.
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In the second example, the number of customers can be expressed as
a sum of independent Bernoulli random variables. The corresponding
tail distributions can be expressed in terms of the Chernoff bound. Fi-
nally, we provide a very common application of anomaly detection from
aggregates, which is that of fault diagnosis in manufacturing.

EXAMPLE 2.5 (MANUFACTURING QUALITY CONTROL) A company uses
a manufacturing assembly line to produce a product, which may have
faults in it with a pre-defined (low) probability p. The quality control
process periodically samples N products from the assembly line, and ex-
amines them closely to count the number of products with defects. For a
given count of faulty products, determine the probability that the assem-
bly line is behaving anomalously.

In the last example, the sample size N is typically relatively large. In
such cases, it is possible to use the Central Limit Theorem to approx-
imate the sample distribution as a normal distribution. This provides
the tightest possible bound. The different kinds of bounds and approx-
imations will be addressed in this section.

The Chernoff bounds and the Hoeffding inequality will be discussed
first. Since the expressions for the lower tail and upper tails are slightly
different, they will be addressed separately. The lower tail Chernoff
bound is introduced below.

THEOREM 2.6 (LOWER TAIL CHERNOFF BOUND) Let X be random vari-
able, which can be expressed as the sum of Nindependent binary (Bernoulli)
random variables, each of which takes on the value of 1 with probability

bi-

Then, for any § € (0,1), we can show the following:
P(X < (1—=6)-E[X]) < e PIXI0*/2 (2.4)
where e is the base of the natural logarithm.
Proof: The first step is to show the following inequality:
o0 E[X]
P(X <(1-9¢)-FE[X]) < <(1 B 6)(1—5)) (2.5)

The unknown parameter ¢t > 0 is introduced in order to create a parame-
terized bound. The lower tail inequality of X is converted into an upper
tail inequality on e~**. This can be bounded by the Markov inequality,
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and it provides a bound which is a function of ¢t. This function of ¢ can
be optimized, in order to obtain the tightest possible bound. By using
the Markov Inequality on the exponentiated form, the following can be
derived:
E[e—t‘X]
P(X<(1-9) -FX]) < o—t-(1-6)-E[X]

By expanding X = Zfil X, in the exponent, the following can be ob-
tained:

}%X<(L—®aﬂXD<ILEk%Xﬂ

= o—t-(1-5)-E[X] (2.6)

The aforementioned simplification uses the fact that the expectation
of the product of independent variables is equal to the product of the
expectations. Since each X; is Bernoulli, the following can be shown:

E[e—t.Xi] =14+ E[Xz] . (e—t _ 1) < eE[Xi]‘(e*t_l)
The second inequality follows from polynomial expansion of e (Xil-(e7" 1),
By substituting this inequality back into Equation 2.6, and using E[X] =
>; E[X;], the following may be obtained:

BlX] (e 1)
P(X <(1=0)-BX)< 4y
The expression on the right is true for any value of ¢ > 0. It is desired to
pick a value t which provides the tightest possible bound. Such a value of
t may be obtained by using the standard optimization process of using
the derivative of the expression with respect to t. It can be shown by
working out the details of this optimization process that the optimum
value of t = t* is as follows:

# =1In(1/(1 - 0)) (2.7)

By using this value of t* in the inequality above, it can be shown to be
equivalent to Equation 2.5. This completes the first part of the proof.

The first two terms of the Taylor expansion of the logarithmic term in
(1 —46)-In(1—6) can be expanded to show that (1 —§)1=%) > e=01+0%/2,
By substituting this inequality in the denominator of Equation 2.5, the
desired result is obtained.

A similar result for the upper-tail Chernoff bound may be obtained,
which has a slightly different form.
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THEOREM 2.7 (UpPPER TAIL CHERNOFF BOUND) Let X be random vari-
able, which can be expressed as the sum of N independent binary (Bernoulli)
random variables, each of which takes on the value of 1 with probability

Di-
N
X = ZXZ-
=1

Then, for any § € (0,2 -e — 1), the following is true:
P(X > (146)- E[X]) < ¢ BXI9°/4 (2.8)
where e is the base of the natural logarithm.

Proof Sketch: The first step is to show the following inequality:

)

. E[X]
P(X > (1+46)- E[X]) < <(1 . 5)(%) (2.9)

As before, this can be done by introducing the unknown parameter ¢ > 0,
and converting the upper tail inequality on X, into that on e*X. This
can be bounded by the Markov Inequality, and it provides a bound which
is a function of ¢. This function of ¢ can be optimized, in order to obtain
the tightest possible bound.

It can be further shown by algebraic simplification that the inequality
in Equation 2.9 provides the desired result, when § € (0,2-e — 1).

Next, the Hoeffding inequality will be introduced. The Hoeffding in-
equality is a more general tail inequality than the Chernoff bound, since
it does not require the underlying data values to be Bernoulli. In this
case, the ith data value needs to be drawn from the bounded interval
[l;,u;]. The corresponding probability bound is expressed in terms of
the parameters [; and u;. Thus, the scenario for the Chernoff bound is a
special case of that for the Hoeffding’s inequality. We state the Hoeffd-
ing inequality below, for which both the upper and lower tail inequalities
are identical.

THEOREM 2.8 (HOEFFDING INEQUALITY) Let X be random variable,
which can be expressed as the sum of N independent random variables,
each of which is bounded in the range [l;,u;].

N
X = ZXZ-
=1
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Then, for any 0 > 0, the following can be shown:

_ 2.02

P(X —E[X]>0) <e ZLii-t)? (2.10)
- 2.62

PEX]— X >0) <e Tiliit)? (2.11)

Proof Sketch: The proof for the upper tail will be briefly described
here. The proof of the lower tail inequality is identical. For an unknown
parameter t, the following is true:

P(X — E[X] > 0) = P(etX—EIXD > ¢t0) (2.12)

The Markov inequality can be used to show that the right hand proba-
bility is at most E[eX~FIXD].e=#0 The expression within E[e(X~FXD]
can be expanded in terms of the individual components X;. Since, the
expectation of the product is equal to the product of the expectations
of independent random variables, the following can be shown:

P(X - E[X] > 0) < e " ] Ele" X PIX) (2.13)

7

The key is to show that the the value of E[et(Xi=EXi)] is at most equal
to e!”"(wi=1)*/8_ This can be shown with the use of an argument that
uses the convexity of the exponential function e*(Xi=£Xil) in conjunction
with Taylor’s theorem (see Exercise 12).

Therefore, the following is true:

P(X — B[X] > 0) < 0 [ e (e t/5 (2.14)

This inequality holds for any non-negative value of t. Therefore, in order
to find the tightest bound, the value of ¢, which minimizes the RHS of
the above equation needs to be determined. The optimal value of ¢ = t*
can be shown to be:
o 4-0

i (i — 13)?
By substituting the value of t = t*, the desired result may be obtained.
The lower tail bound may be derived by applying the aforementioned
steps to P(E[X]| — X > 0) rather than P(X — E[X] > 0).

(2.15)

Thus, the different inequalities may apply to scenarios of different gen-
erality, and may also have different levels of strength. These different
scenarios are presented in Table 2.1.
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Result Scenario Strength
Chebychev Any Random Variable Weak
Markov Non-negative Random Variable Weak
Hoeffding Sum of Indep. Bounded Random Variables. Strong (Exp.)
Chernoff Sum of Independent Bernoulli Variables Strong (Exp.)
CLT Sum of many iid variables Almost Exact

Gen. CLT  Sum of many independent bounded variables ~ Almost Exact

Table 2.1. Comparison of different methods used to bound tail probabilities

An interesting observation is that the Hoeffding tail bounds decay
exponentially with 2, which is exactly how the normal distribution be-
haves. This is not very surprising, because the sum of a large number of
independent bounded random variables converges to the normal distri-
bution according to the Central Limit Theorem (CLT). Such a conver-
gence is useful, because the bounds provided by an exact distribution (or
a close approximation) are much tighter than any of the aforementioned
tail inequalities.

THEOREM 2.9 (CENTRAL LiMIT THEOREM) The sum of a large num-
ber N of independent and identically distributed random variables with
mean p and standard deviation o converges to a normal distribution with
mean p- N and standard deviation o - V/N.

A more generalized form of the CLT can also be applied to sums of
independent variables (not necessarily identical), in which the variables
are sufficiently bounded in terms of underlying moment measures. An
example of such a generalization of the CLT is the Lyapunov CLT. A
discussion of this generalized version is omitted, since it is beyond the
scope of this book. Interested readers are referred to [70]. In this case, if
the mean and variance of the ¢th variable is u; and al-z, then the mean and
variance of the corresponding normal distribution are the sums of these
values. In the next section, the common use of the normal distribution
assumption for confidence testing will be discussed.

2.2 Statistical Tail Confidence Tests

The most basic statistical tests assume a normal distribution for the
underlying data values. Normal distributions are very common in mea-
surements in many real domains. This is true not just for variables which
are expressed as sums of samples (as discussed in the last section), but
many variables which are generated by a variety of different processes.
The density function fx(z) for the normal distribution with mean p and
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standard deviation o is defined as follows:

1 —(a—p)?
— . 2.02

fxl@) = Joom© (2.16)
A standard normal distribution is one in which the mean is 0, and the
standard deviation o is 1. In some cases, it is appropriate to assume
that the mean g and standard deviation o of the normal distribution
are known. This is the case, when a very large number of samples of the
data are available, or specific domain knowledge is available about the
generating process. In that case, the Z-number z; of an observed value
x; can be computed as follows:

zi=(x;i—p)/o (2.17)

Since the normal distribution can be directly expressed as a function of
Z-number (and no other parameters), it follows that the tail probability
of point x; can also be expressed as a function of z;. In fact, the Z-
number corresponds to a scaled and translated normal random variable,
which is also known as the standard normal distribution with mean 0
and variance 1. Therefore, the cumulative standard normal distribution
can be used directly in order to determine the exact value of the tail
probability at that value of z;. From a practical perspective, since this
distribution is not available in closed form, normal distribution tables are
used in order to map the different values of z; to probabilities. This pro-
vides a statistical level of significance, which can be interpreted directly
as a probability of the data point being an outlier (from the hypothesis
that it was generated by the corresponding normal distribution).

2.2.1 t-value test. The aforementioned discussion was based
on the assumption that the mean and standard deviation of the distribu-
tion are either known, because of domain knowledge, or can be estimated
very accurately from a large number of samples. However, in practice,
little domain knowledge of the data may be available, and the available
data sets may be small. For example, for a sample with 20 data points, it
is much harder to model the mean and standard deviations accurately on
the basis of sample statistics. How do we accurately perform statistical
significance tests in such cases?

The student’s t-distribution provides an effective way to model anoma-
lies in such scenarios. This distribution is defined by a parameter known
as the number of degrees of freedom v, which is closely defined by the
available sample size. The t-distribution approximates the normal dis-
tribution extremely well for larger degrees of freedom (> 1000), and
converges to the normal distribution in the limit where it goes to oo.
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Figure 2.1. The t-distributions for different numbers of degrees of freedom (corre-
sponding to different sample sizes)

For fewer degrees of freedom (or sample size), the t-distribution has a
similar bell-shaped curve as the normal distribution, except that it has
heavier tails. This is quite intuitive, because the heavier tail accounts
for the loss in statistical significance from the inability to accurately es-
timate the parameters of the underlying normal distribution from fewer
samples.

The t-distribution is expressed as a function of several independent
identically-distributed standard normal distributions. It has a single pa-
rameter v, which corresponds to the number of degrees of freedom. This
regulates the number of such normal distributions, in terms of which it
is expressed. The parameter v is set to N — 1, where N is the total
number of available samples. Let Uy...U, be v + 1, independent and
identically distributed normal distributions with mean 0 and a standard
deviation of 1. Then, the t-distribution is defined as follows:

W=, ° (2.18)
NOEET

The intuition for using the ¢-distribution is that the denominator now
explicitly models the randomness of estimating the standard deviation of
the underlying normal distribution with the use of only a small number
of independent samples. The term »_7 ; U? in the denominator is a x?
distribution with parameter v, and the entire (scaled) denominator con-
verges to 1, when v = oo. Therefore, in the limiting case, when a large
number of samples are available, the randomness contributed by the de-
nominator disappears, and the t-distribution converges to the normal
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distribution. For smaller values of v (or sample sizes), this distribution
has a heavier tail, and may be used in order to provide the corresponding
tail probability. Examples of the ¢-distribution for different values of v
are provided in Figure 2.1. It is easy to see, that t-distributions with
fewer degrees of freedom have heavier tails.

The process of extreme value detection with a small number of samples
x1...xN proceeds as follows. First, the mean and standard deviation of
the sample are estimated. This is then used to compute the t-value of
each data point directly from the sample. The t-value is computed in
an identical way as the Z-value. The tail probability of each data point
is computed from the cumulative density function of the t-distribution
with (N — 1)-degrees of freedom. As in the case of the normal dis-
tribution, standardized tables are available for this purpose. From a
practical perspective, if more than 1000 samples are available, then the
t-distribution (with at least 1000 degrees of freedom) is so close to the
normal distribution, that it is possible to use the normal distribution as
a very good approximation.

2.2.2 Sum of Squares of Deviations. A common situation
which is encountered in the context of multidimensional data is the case,
where the deviations along a set of independent orthogonal directions are
aggregated together. Each of these deviations are typically modeled as a
Z-value from an independent and identically distributed standard nor-
mal distribution. The aggregate deviation measure is then computed as
the sum of the squares of these values. For a d-dimensional data set, this
is a y2-distribution with d degrees of freedom. A y2-distribution with
d degrees of freedom is defined as sum of the squares of d independent
standard normal random variables. In other words, consider the variable
V', which is expressed as the square sum of independent and identically
distributed standard normal random variables Z; ~ N(0,1):

d
V=> 7
=1

Then, V is a random variable drawn from a x? distribution with d de-
grees of freedom.

V ~x3(d)

While a detailed discussion of the characteristics of the y?-distribution
is skipped here, its cumulative distribution is not available in closed
form, but it needs to computationally evaluated. From a practical stand-
point, cumulative probability tables are typically available for modeling
purposes. The cumulative probability tables of the y2-distribution can
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then be used in order to determine the probabilistic level of significance
for that aggregate deviation value. This approach is particularly use-
ful when the deviations are modeled to be statistically independent of
one another. As we will see in Chapter 3, such situations could arise in
models such as principal component analysis, where the errors along the
different components are often modeled as independent normal random
variables.

3. Extreme Value Analysis in Multivariate Data

Extreme value analysis can also be applied to multivariate data in
a variety of ways. Some of these definitions try to model the under-
lying distribution explicitly, whereas others are based on more general
statistical analysis, which does not assume any particular statistical dis-
tribution of the underlying data. In this section, we will discuss four
different classes of methods which are designed to find data points at
the boundaries of multivariate data. The first of these classes of meth-
ods (depth-based) is not a statistical or probabilistic approach. Rather,
it is based on convex hull analysis of the point geometry. However, we
have included it in this chapter, because it naturally fits with the other
multivariate extreme value methods in terms of the kinds of outliers it
finds.

While the methods discussed in this section are effective in finding
outliers at the outer boundaries of a data space, they are not good at
finding outliers within the inner regions of the data space. Such methods
can effectively find outliers for the case illustrated in Figure 2.5, but not
the outlier A illustrated in Figure 2.7. Nevertheless, the determination
of such outliers can be useful in many specialized scenarios. For ex-
ample, in cases where multiple deviation values may be associated with
records, multivariate extreme value analysis may be useful. Consider
a weather application in which multiple attributes such as temperature
and pressure are measured at different spatial locations, and the local
spatial deviations from the expected values are computed as an interme-
diate step. These deviations from expected values on different attributes
may need to be transformed into a single meaningful outlier score. An
example is illustrated in section 2.3 of Chapter 10, where deviations are
computed on the different measured values of spatial data. In general,
such methods are useful as a post-processing approach on a multidimen-
sional vector of outlier scores, where each outlier score is derived using a
different and possibly independent criterion. As discussed in Chapter 1,
it is particularly common to confuse methods for extreme value analy-
sis with general outlier analysis methods, which are defined in terms of
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Algorithm FindDepthOutliers(Data Set: D
Score Threshold: 7);
begin
k=1;
repeat
Find set S of corners of convex hull of D;
Assign depth k to points in S}
D=D-5,
k=k+1;
until(D is empty);
Report points with depth at most r as outliers;
end

Figure 2.2. Pseudocode for finding depth-based outliers

generative probabilities. However, it is important to distinguish between
the two, since the application-specific scenarios in which the two kinds
of methods are used are quite different.

3.1 Depth-based Methods

In depth-based methods, convex hull analysis is used in order to find
outliers. The idea is that the points in the outer boundaries of the data
lie at the corners of the convex hull. Such points are more likely to be
outliers. A depth-based algorithm proceeds in an iterative fashion. In
the k-th iteration, all points at the corners of the convex hull of the
data set are removed from the data set. These points are assigned a
depth of k. These steps are repeated until the data set is empty. All
points with depth at most r are reported as the outliers. The steps of
the depth-based approach are illustrated in Figure 2.2.

The algorithm is also pictorially illustrated on a sample data set in
Figure 2.3. A number of efficient methods for finding depth-based out-
liers have been discussed in [243, 388]. The computational complexity of
convex-hull methods increases exponentially with dimensionality. Fur-
thermore, with increasing dimensionality, a larger proportion of data
points lie at the corners of a convex hull. This is because a convex
hull in d-dimensional space contains at least 2¢ points. Therefore, such
methods are not only computationally impractical, but also increasingly
ineffectual in higher dimensionality. Depth-based methods are gener-
ally quite different from most of the probabilistic and statistical models
discussed in this chapter. In fact, they cannot really be considered prob-
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Figure 2.3. Depth-based outlier detection

abilistic or statistical methods. However, they are presented here, be-
cause all multivariate extreme value methods are presented at one place.
Such methods share many characteristics in common, in spite of being
methodologically different. For example, they work well only in scenar-
ios where outliers lie at the boundaries of data space, rather than as
isolated points in the interior of the data.

3.2 Deviation-based Methods

Deviation-based methods measure the impact of outliers on the data
variance. For example, the method proposed in [49] tries to measure how
much the variance in the underlying data is reduced, when a particular
data point is removed. Since the basic assumption is that the outliers
lie at the boundary of the data, it is expected that the removal of such
data points will significantly reduce the variance. This is essentially an
information-theoretic method, since it examines the reduction in com-
plexity, when a data point is removed. Correspondingly, the smoothing
factor for a set of data points R is defined as follows:

DEFINITION 2.10 The smoothing factor SF(R) for a set R is the reduc-
tion in the data set variance, when the set of points in R are removed
from the data.

Outliers are defined as exception sets E such that their removal causes
the maximum reduction in variance of the data. In other words, for any
subset of data points R, it must be the case that:

SF(E) > SF(R)
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Figure 2.4. Angle-based outlier detection

If more than one set have the same reduction in variance, then the
smaller set is preferred. This follows the standard information theoretic
principle of finding the sets which increase the description length of the
data as much as possible, in as little space. The determination of the
optimal set E is a very difficult problem, because 2V possibilities exist
for a data set containing N points. The work in [49] uses a number
of heuristics such as best-first search and random sampling. One good
aspect of this approach is that it is distribution-independent, and can
be applied to any kind of data set, as long as an appropriate definition
of the smoothing factor can be constructed. In the original work in [49],
this approach has been applied to the case of sequence data.

3.3 Angle-based Outlier Detection

This method was originally proposed as a general outlier analysis
method, though this book has reclassified it to an extreme multivariate
analysis method. The idea in angle-based methods is that data points
at the boundaries of the data are likely to enclose the entire data within
a smaller angle, whereas points in the interior are likely to have data
points around them at different angles. For example, consider the two
data points A and B in Figure 2.4, in which point A is an outlier, and
point B lies in the interior of the data. It is clear that all data points
lie within a limited angle centered at A. On the other hand, this is not
the case for data point B, which lies within the interior of the data. In
this case, the angles between different pairs of points can vary widely.
In fact, the more isolated a data point is from the remaining points, the
smaller the underlying angle. Thus, data points with a smaller angle
spectrum are outliers, whereas those with a larger angle spectrum are
not outliers.
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Consider three data points X, Y, and Z. Then, the angle between
the vectors Y — X and the Z — X, will not vary much for different values
of Y and Z, when X is an outlier. Furthermore, the angle is inverse
weighted by the distance between the points. The corresponding angle
(weighted cosine) is defined as follows:

<(Y-X),(Z-X)>

WCos(Y — X, 7 — X) =
os{ )= Y = X132 - X2

Here || - ||2 represents the Lo-norm, and < - > represents the scalar
product. Note that this is a weighted cosine, since the denominator
contains the squares of the Ls-norms. The inverse weighting by the
distance further reduces the weighted angles for outlier points, which
also has an impact on the spectrum of angles. Then, the variance in
the spectrum of this angle is measured by varying the data points Y and
7, while keeping the value of X fixed. Correspondingly, the angle-based
outlier factor (ABOF) of the data point X € D is defined as follows:

ABOF(X) = Varyy,zepyWCos(Y — X, Z — X)

Data points which are outliers will have a smaller spectrum of angles,
and will therefore have lower values of the angle-based outlier factor
ABOF(X).

The angle-based outlier factor of the different data points may be com-
puted in a number of ways. The naive approach is to pick all possible
triples of data points and compute the O(N?3) angles between the differ-
ent vectors. The ABOF values can be explicitly computed from these
values. However, such an approach can be impractical for very large
data sets. A number of efficiency-based optimizations have therefore
been proposed.

In order to speed up the approach, a natural possibility is to use
sampling in order to approximate this value of the angle-based outlier
factor. A sample of k data points can be used in order to approximate
the ABOF of a data point X. One possibility is to use an unbiased
sample. However, since the angle-based outlier factor is inverse weighted
by distances, it follows that the nearest neighbors of a data point have
the largest contribution to the angle-based outlier factor. Therefore the
k-nearest neighbors of X can be used to approximate the outlier factor
much more effectively than a unbiased sample of the all the data points.
It has also been shown in [269] that many data points can be filtered
out on the basis of approximate computation, since their approximate
values of the ABOF are too high, and they cannot possibly be outliers.
The exact values of the ABOF are computed only for a small set of
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points, and the points with the lowest values of the ABOF are reported
as outliers. We refer the reader to [269] for the details of these efficiency
optimizations. An approximation algorithm [363] for the problem has
also been proposed in later work.

Because of the inverse weighting by distances, angle-based outlier
analysis methods can be considered a hybrid between distance-based
and angle-based methods. As discussed earlier with the use of the il-
lustrative example, the latter factor is primarily optimized to finding
multivariate extreme values in the data. The precise impact of each of
these factors' does not seem to be easily quantifiable in a statistically
robust way. In most data sets such as in Figure 2.7, outliers lie not
just on the boundaries of the data, but also in the interior of the data.
Unlike extreme values, outliers are defined by generative probabilities.
While the distance factor can provide some impact for the outliers in
the interior, the work is primarily focussed on the advantage of angular
measures, and it is stated in [269] that the degree of impact of distance
factors is minor compared to the angular factors. This implies that out-
liers on the boundaries of the data will be highly favored in terms of the
overall score, because of the lower spectrum of angles. Therefore, the
angle-based method treats outliers with similar generative probabilities
in the interior and the boundaries of the data in a differential way, which
is not statistically desirable for general outlier analysis. Specifically, the
outliers at the boundaries of the data are more likely to be favored in
terms of the outlier score. Such methods can effectively find outliers for
the case illustrated in Figure 2.5, but the outlier A illustrated in Figure
2.7 will be favored less. Therefore, while this approach was originally
presented as a general outlier analysis method, it has been classified in
the section on multivariate extreme value analysis methods in this book.

It has been claimed in [269] that the approach is more suitable for
high dimensional data because of its use of angles, as opposed to dis-
tances. However, it has been shown in earlier work [380], that angle-
based measures are not immune to the dimensionality curse, because of
concentration effects in the cosine measure. Such concentration effects
would also impact the spectrum of the angles, even when they are com-
bined with distances. The variation in the angle spectrum in Figure 2.4
is easy to show visually in 2-dimensional data, but the sparsity effects
will also impact the spectrum of angles in higher dimensions. Therefore,
the use of the spectrum of angles simply pushes the challenges of high
dimensions to a different part of the analysis. A clear explanation of

IWhen a random variable is scaled by a factor of a, its variance is scaled by a factor of a?.
However, the scaling here is not by a constant factor.
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why the spectrum of angles should be more robust to high dimension-
ality than distances has not? been provided in [269]. More importantly,
such methods do not address the issue of locally irrelevant attributes [4],
which are the primary impediment to effective outlier analysis methods
with increasing dimensionality. Another important point to note is that
multivariate extreme value analysis is much simpler than general out-
lier analysis in high dimensionality, because the parts of the data to
explore are approximately known, and therefore the analysis is global
rather than local. The evidence over different dimensions can be ac-
cumulated with the use of a very simple classical distance-distribution
method [288, 406]. The approach, discussed in the next section, is also
suitable for high-dimensional extreme value analysis, because it implic-
itly weights globally relevant and irrelevant directions in the data in a
different way, and is statistically sound, in terms of probabilistic inter-
pretability of the extreme values.

3.4 Distance Distribution-based Methods

A distribution-dependent approach is to model the entire data set to
be normally distributed about its mean in the form of a multivariate
Gaussian distribution. Let p be the d-dimensional mean vector of a
d-dimensional data set, and X be its d x d co-variance matrix. In this
case, the (7, 7)th entry of the covariance matrix is equal to the covariance
between the dimensions i and j. Then, the probability distribution f(X)
for a d-dimensional data point X can be defined as follows:

1 1 -1 T
J(X) = VIS]- @)@ exp(—, (X —p) BT (X = p)7)
The value of |X| denotes the determinant of the covariance matrix. We
note that the term in the exponent is (half) the Mahalanobis distance
between the data point X and the mean p of the data. The computa-
tion of the Mahalanobis distance requires the inversion of the covariance
matrix . The value in the exponent of the normal distribution above
is used as the outlier score.

The Mahalanobis distance is similar to the euclidian distance, except
that it normalizes the data on the basis of the inter-attribute correla-
tions. For example, if the axis system of the data were to be rotated to

2The use of the cosine function in some high-dimensional domains such as text has been cited
as an example in a later work [270]. In domains with small and varying non-zero attributes,
the cosine is preferred because of important normalization properties, and not because of
greater dimensionality resistance. The cosine function is not immune to the dimensionality
curse even for the unique structure of text [380]. An increasing fraction of non-zero attributes,
towards more general distributions, directly impacts the data hubness.
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Figure 2.5. Extreme value analysis in multivariate data with Mahalanobis distance

the principal directions (shown in Figure 2.5), then the data would have
no inter-attribute correlations. As we will see in section 3 of Chapter 3,
it is actually possible to determine such directions of correlations gen-
erally in d-dimensional data sets. The Mahalanobis distance is simply
equal to the Euclidean distance in such a transformed (axes-rotated)
data set after dividing each of the transformed coordinate values by the
standard-deviation of that direction. While principal component anal-
ysis can also be used in order to compute the value in the exponent of
the normal distribution above, a simpler way to do it is by evaluating
the term in the exponent of the modeled normal distribution. More will
be discussed about this issue in Chapter 3.

This approach recognizes the fact that the different directions of cor-
relation have different variance, and the data should be treated in a
statistically normalized way along these directions. For example, in the
case of Figure 2.5, the data point A can be more reasonably considered
an outlier than data point B, on the basis of the natural correlations in
the data. On the other hand, the data point A is closer to the centroid
of the data (than data point B) on the basis of euclidian distance, but
not on the basis of the Mahalanobis distance. Interestingly, data point
A also seems to have a much higher spectrum of angles than data point
B, at least from an average sampling perspective. This implies that,
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at least on the basis of the primary criterion of angles, the angle-based
method would likely favor data point B. This is because it is unable
to account for the relative relevance of the different directions, an is-
sue which becomes more prominent with increasing dimensionality. The
Mahalanobis method is robust to increasing dimensionality, because it
uses the covariance matrix in order to summarize the high dimensional
deviations in a statistically effective way.

We further note that each of the distances along the principal corre-
lation directions can be modeled as a one-dimensional standard normal
distribution, which is approximately independent from the other orthog-
onal directions of correlation. As discussed earlier in this chapter, the
sum of the squares of d variables drawn independently from a standard
normal distributions, will result in a variable drawn from a y? distribu-
tion with d degrees of freedom. Therefore, the cumulative probability
distribution tables of the y? distribution can be used in order to deter-
mine the outliers with the appropriate level of significance.

This simple approach is effective for the example of Figure 2.5, because
the entire data set is distributed in one large cluster about the mean. For
cases in which the data may have many different clusters with different
orientations, such an extreme value approach may not be effective. An
example of such a data set is illustrated in Figure 2.7. For such cases,
more general distribution-based modeling algorithms are needed. This
will be the subject of the discussion in the next section.

4. Probabilistic Mixture Modeling for Outlier
Analysis

The previous section was focussed on the problem of extreme value
analysis for outlier modeling. However, in practice, most outliers are
defined on the basis of their relative values in multidimensional space,
rather than simply being in the outer boundaries of the data. In such
cases, the key idea is to use probabilistic mixture modeling of the data
points. Such models are typically generative models, where for each data
point, we can estimate the generative probability (or the fit probability)
to the model. First, we assume a specific form of the generative model
(eg. mixture of gaussians), and then estimate the parameters of this
model with the use of the EM algorithm. The available data set is
used in order to estimate the parameters in such as way, that they have
a maximum likelihood fit to the generative model. Given this model,
we then estimate the generative probabilities (or fit probabilities) of
the underlying data points. Data points which fit the distribution well
will have high fit probabilities, whereas anomalies will have very low fit
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Figure 2.6. Relating Fit Probabilities to the Anomalous Behavior

probabilities. Some examples of how different kinds of data points would
relate to the fit probability in such a model are illustrated in Figure 2.6.

The broad principle of a mixture based generative model is to assume
that the data was generated from a mixture of & distributions with the
probability distributions Gy ... Gy with the use of the following process:

Pick a data distribution with probability «;, where i € {1...k},
in order to pick one of the k distributions. Let us assume that the
rth one is picked.

Generate a data point from G,.

We denote this generative model by M. We note that the different
values of «;, and the parameters of the different distributions G, are not
known in advance. In some simplified settings, the values of the prior
probabilities a; may be fixed to 1/k, though this value also needs to
be learned from the data in the most general case. Typical forms for
the distribution G, include the Gaussian distribution. These need to be
estimated from the data, so that the data has the maximum likelihood
fit of being generated. Therefore, we first need to define the concept of
the fit of the data set to a particular component of the mixture. Let us
assume that the density function of G; is given by f(-). The probability



64 OUTLIER ANALYSIS

(density function) of the data point X; being generated by the model is
given by:

fpomt X ‘M Zal fz (2.19)

Then, for a data set D containing N records denoted by Xj... Xy,
the probability of the data set being generated by the model M is the
product of the corresponding individual point probabilities.

fdata D‘M H fpoznt X ‘M)
7j=1

The log-likelihood fit £(D|M) of the data set D with respect to M is
the logarithm of the above expression and can be (more conveniently)
represented as a sum of values over the different data points.

N
£(DIM) = log([ 7 (x;1M)) Zlog e FG) (220
=1 i=1

This log-likelihood fit needs to be optlmlzed to determine the model
parameters, and therefore maximize the fit of the data points to the
generative model. It is noteworthy that it is much easier to deter-
mine the optimal model parameters separately for each component of
the mixture, if we knew (at least probabilistically), which data point
was generated by which component of the mixture. At the same time,
the probability of generation of these different data points from different
components is dependent upon these optimal model parameters. This
circularity in dependence naturally suggests an iterative EM-algorithm,
in which the model parameters and probabilistic data point assignments
to components are iteratively refined and estimated from one another.
Let © be a vector, representing the entire set of parameters describing
all components of the mixture model. For example, in the case of the
Gaussian mixture model, © would contain all the component mixture
means, variances, co-variances, and the parameters «; ... a,. Then, the
EM-algorithm starts off with an initial set of values of © (possibly corre-
sponding to random assignments of data points to mixture components),
and proceeds as follows:

(E-Step) Given current value of the parameters in ©, determine
the probability P(X; € G;|©). This is the probability that the
data point X; was generated by component i.

(M-Step) Given current probabilities of assignments of data points
to clusters, use maximum likelihood approach to determine the
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value of all the parameters ©, which maximizes the log-likelihood
fit on the basis of current assignments.

It now remains to explain the details of the E-Step and the M-Steps.
The E-Step simply computes the probability density of the data point X
being generated by each component of the mixture, and then computes
the fractional value for each component. This provides the Bayes proba-
bility that the data point X; was generated by component i (with model
parameters fixed to the current set of the parameters ). Therefore, we
have:

o f l’e(Xj )
S an frO(X))

With some abuse of notation, a superscript © has been added to the
probability density functions in order to denote the fact that they are
evaluated for model parameters ©.

The M-step is slightly more involved. In order to optimize the fit,
we need to compute the partial derivative of the log-likelihood fit with
respect to corresponding model parameters, and set them to 0 in order
to determine the optimal value. The values of «; are easy to estimate
and simply equal to the expected fraction of the points assigned to each
cluster, based on the current values of P(X; € G;|®©). In practice, in
order to obtain more robust results for smaller data sets, the expected
number of data points belonging to each cluster in the numerator is
augmented by 1, and the total number of points in the denominator is
N + k. Therefore, the estimated value is (1 + Z;V:1 P(X; €Gi|©))/(k+
N). This approach is also referred to as Laplacian smoothing.

In order to determine the other parameters specific to a particular
component 7 of the mixture, we simply treat each value of P(X; € G,|0)
as a weight of that data point in that component, and then perform
maximum likelihood estimation of the parameters of that component.
This is generally a much simpler process than having to deal with all
components of the mixture at one time. For example, for a Gaussian
mixture model in d dimensions, we have:

P(Xj € gz|@) = (2.21)

1

L -1
:\/|Er|-(2-7r)(d/2)‘eXp(_ ‘(Xj_ﬂr)‘zr '(Xj_,U«r)T)

FO(X5) 5
Here p, is the d-dimensional mean vector and 3, is the d x d co-variance
matrix of the generalized Gaussian distribution of the rth component.
The value of |¥,| denotes the determinant of the covariance matrix. In
practice, in order to minimize the number of estimated parameters, the
non-diagonal entries are often set to 0. In such cases, the determinant
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Figure 2.7. EM-Algorithm can determine clusters with arbitrary correlations

of X, simplifies to the product of the variances along the individual
dimensions.

It can be shown that the maximum-likelihood estimation of u, and
[X,]i; are equal to the (probabilistically weighted) means and co-variances
of the data points in that component. Recall that these probabilistic
weights were derived from the assignment probabilities in the E-step.
Thus, the E-step and the M-step depend on each other and can be prob-
abilistically executed to convergence in order to determine the optimum
parameter values ©.

At the end of the process, we have a probabilistic model, which de-
scribes the entire data set in terms of a generative model. This model
also provides a probabilistic fit value for each data point in the form of
Equation 2.19. Thus, we can use this fit in order to rank all the data
points, and determine the most anomalous ones. The idea is that points
which are far away from the dense regions in the data (such as the one
shown in the upper region of Figure 2.6) will have very low fit values.
These points are the anomalies in the data. If desired, statistical hy-
pothesis testing can be applied to the fit values in order to determine
the data points whose fit values are extremely low.

The EM-algorithm can determine arbitrarily oriented clusters in the
data, when the clusters have elongated shapes in different directions
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of correlation. We note that the term in the exponent of the normal
distribution is the Mahalanobis distance from the centroid of the cluster,
which was introduced earlier in this chapter. As discussed earlier, this
distance normalizes for the distances along the different directions of
correlation in the data. The fit value is normalized along the different
directions of correlation. For example, in the case of Figure 2.7, the fit
of point A would be lower than that for point B, even though point B
is closer to a cluster on the basis of absolute distances. This is quite
appropriate, since data point A is more obviously an outlier.

The fit value of Equation 2.19 is a probability density value, and
cannot be interpreted as a numerical probability. The ability to char-
acterize an outlier in terms of numerical probabilities is a very useful
step for intuition and interpretability. This issue is not specific to EM
algorithms, but virtually all outlier detection algorithms, which output
an outlier score with little physical interpretability. Interestingly, EM
algorithms can also be used as a final step after many such outlier detec-
tion algorithms (including a first application of the EM method itself)
for converting the scores into probabilities [179]. The idea is that the
distribution of the outlier scores can be treated as univariate data set,
which can then be fit to a probabilistic generative model. An example of
such a generative model would be a mixture of exponential and gaussian
functions, along with a special component for the mixture, known as the
outlier class. These can be used in order to convert the outlier scores
into probabilities with the use of the Bayes rule, since it is now possi-
ble to compute the probability that the data point belongs to the outlier
component. We note that the assignment of a component of the mixture
to the outlier class is critical in being able to estimate the probability
that a data point is an outlier. A second approach would be to apply the
EM-modeling on the original data set differently, and explicitly model
an outlier class (rather than interpreting low fit values to the normal
classes as outliers). However, such an approach, when applied directly
to the original data set, is generally more useful for noise removal [88],
and often does not work well for determining anomalies. The univariate
case of outlier scores is much more easily addressed with such an ap-
proach because of the ability to model normal and outlier classes with
more realistic (and different) distributions.

Probabilistic mixture modeling is a stochastic version of clustering
methods, which can also be used for outlier detection. This is also
closely related to outliers derived from generalized projected clustering
[7], and those derived from generalized subspace analysis. However, in
the parametric versions of the methods presented here, the large num-
ber of parameters required for the clustering process may sometimes
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make the estimation process difficult. Methods for outlier detection in
generalized subspaces will be presented in section 5 of Chapter 5.

5. Limitations of Probabilistic Modeling

Parametric methods are very susceptible to noise and overfitting in the
underlying data. Mixture models always assume a specific distribution
of the data, and then try to learn the parameters of this distribution.
A natural tradeoff exists between the generality of this distribution and
the number of parameters which need to be learned. If this tradeoff is
not calibrated carefully, then one of the following two scenarios could
occur:

When the particular assumptions of the model are too restrictive
(eg. Gaussian distribution, specific number of clusters etc.), the
data is unlikely to fit the model well. As a result, a lot of spurious
data points may be reported as outliers.

When the model is too general, the number of parameters to de-
scribe the model increases. This may overfit the data, and miss the
true outliers. This case is more common in parametric modeling,
especially when the data sizes are small.

The ability of such methods to distinguish between noise and abnormal-
ities is limited because of several simplifying assumptions, which ensure
that most of the commonly used models are not a very good match
for real distributions. For example, the clusters in the data may be of
arbitrary shape, and may not fit the Gaussian assumption well. Fur-
thermore, a common assumption is that the data values along different
dimensions are independent of one another. This corresponds to a ma-
trix 3, which is diagonal, in the Gaussian case. This is because it is
much harder to learn O(d?) parameters in a d-dimensional data, than to
learn d parameters.

In real data sets, significant correlations may exist among the differ-
ent dimensions. Therefore, such assumptions could result in poor fitting
of the model to the data. We further note that the overall distribution
is usually assumed to be a product of several 1-dimensional Gaussians.
This is also referred to as the naive independence assumption. The
use of such an independence assumption implies that it is much harder
to interpret the point membership probabilities as true probabilities of
membership of data points in a cluster. This reduces the attractiveness
of probabilistic methods, where the primary claim is to be able to explic-
itly model probabilities. The number of parameters also increases with
the dimensionality of the data, and this further reduces the effectiveness
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of the method with increasing dimensionality. In practice, parametric
methods require a large number of data points in order to work well.

Parametric methods are usually not very efficient for large data sets.
This is because these methods use the iterative EM algorithm, which
needs to scan the entire data step in each iteration of the E- and M-
steps. This can be rather slow, when a large number of iterations are
required. A significant amount of work has been performed in the data
mining community in order to extend outlier analysis methods to non-
parametric scenarios. For example, non-parametric variations of clus-
tering and distance-based techniques are much more effective for outlier
analysis. Many of these methods have also been scaled to large data sets,
and generally do not overfit the data quite as much. These methods will
be discussed in later chapters of this book.

Finally, the issue of interpretability remains a concern for many para-
metric methods. For example, consider the generalized Gaussian model,
which tries to learn clusters with non-zero co-variances. In such a case,
it is difficult to intuitively interpret the clusters with the use of these
parameters. Correspondingly, it is also difficult to define simple and in-
tuitive rules, which provide critical ideas about the underlying outliers.
We note that this issue may not necessarily be a problem for all para-
metric methods. If the parameters are chosen carefully enough, then the
final model can be described simply and intuitively. For example, simpli-
fied versions of the Gaussian model without co-variances may sometimes
be described simply and intuitively in terms of the original features of
the data. On the other hand, such simplifications may not provide very
good results in terms of quality. Such tradeoffs remain a major challenge
for parametric methods.

6. Conclusions and Summary

In this chapter, a number of fundamental probabilistic and statistical
methods for outlier analysis were introduced. Such techniques are very
useful for confidence testing and extreme-value analysis. A number of
tail inequalities for extreme value analysis were also introduced. These
methods can also be generalized to the multivariate scenario. Extreme
value analysis has immense utility as a final step in converting the scores
from many outlier analysis algorithms into binary labels. The EM ap-
proach for probabilistic mixture modeling of outliers was introduced in
this chapter. Probabilistic modeling provides a formal framework for
quantification of numerous algorithms and methods, which will be dis-
cussed later in this book.
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7. Bibliographic Survey

The classical inequalities such as the Markov, Chebychev, Chernoff
and Hoeffding are widely used in probability and statistics for bounding
the accuracy of aggregation-based statistics. A detailed discussion of
these different methods may be found in [342]. A generalization of the
Hoeffding’s inequality is the McDiarmid’s inequality [330], which can be
applied to a more general function of the different values of X; (beyond
a linearly separable sum). The main restriction on this function is that
if the ith argument of the function (i.e. the value of X;) is changed to
any other value, the function cannot change by more than ¢;.

The central limit theorem has been studied extensively in probability
and statistics [70]. Originally, the theorem was proposed for the case of
sums of independent and identically distributed variables. Subsequently,
it was extended by Aleksandr Lyapunov to cases where the variables
are not necessarily identically distributed [70], but they do need to be
independent. A weak condition is imposed on these distributions, which
ensures that the sum is not dominated by a few of the components. In
such a case, the sum of the variables converges to the normal distribution
as well. Thus, this is a generalized version of the Central Limit Theorem.

Statistical hypothesis testing has been used widely in the literature
in order to determine statistical levels of significance for the tails of
distributions [58]. A significant literature exists on hypothesis testing,
where the anomalous properties of not just individual data points, but
also the collective behavior of groups of data points can be tested. Such
techniques are also used in online analytical processing scenarios where
the data is organized in the form of data cubes. It is often useful to
determine outliers in different portions of a data cube with the use of
hypothesis testing [392].

The statistical method for deviation detection with variance reduc-
tion was first proposed in [49]. Angle-based methods for extreme value
analysis in multivariate data were proposed in [269]. A more efficient
approximation algorithm, which is based on this model was recently
proposed in [363]. The multivariate method for extreme value analysis
with the use of the Mahalanobis distance was proposed in [288]. This
technique does not work well, when the outliers lie in sparse regions be-
tween clusters. A number of depth-based methods have been proposed
in [243, 388]. These methods compute the convex hull of a set of data
points, and progressively peel off the points at the corners of this hull.
The depth of a data point is defined as the order of convex hull which is
peeled. These techniques have not found much popularity because they
suffer the same drawback as the method of [288] for finding internally
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located outliers. Furthermore, convex hull computation is extremely
expensive with increasing dimensionality. Furthermore, with increasing
dimensionality, an increasing proportion of the points will lie on the out-
ermost convex hull. Therefore, such methods can only be applied to 2-
or 3-dimensional data sets in practice.

It should be noted that the use of probabilistic methods for outlier de-
tection is distinct from the problem of outlier detection in probabilistic
or uncertain data [23, 238, 459]. In the former case, the data is un-
certain, but the methods are probabilistic. In the latter case, the data
itself is probabilistic. The seminal discussion on the EM-algorithm is
provided in [135]. This algorithm has a particularly simple form, when
the components of the mixture are drawn from the exponential family of
distributions. The work in [478] proposed an online mixture learning al-
gorithm, which can handle both categorical and numerical variables. An
interesting variation of the EM-algorithm treats one component of the
mixture model specially as an anomaly component [154]. Correspond-
ingly, this component is drawn from a uniform distribution [154], and
is also assigned a low a-priori probability. Therefore, instead of deter-
mining the anomalous points which do not fit any mixture component
well, this approach tries to determine the points which fit this special
component of the mixture. Such an approach would generally be more
effective at modeling noise rather than anomalies, because the special
component in the mixture model is likely to model the noise patterns.
Finally, a Gaussian Mixture Model has also been used recently in order
to create a global probabilistic model for outlier detection [483].

The EM-algorithm has also been used for clutter removal from data
sets [88]. In this case, noise is removed from the data set, by modeling
the derived data as a mixture of Poisson distributions. We note that the
approach in [88] is designed for noise detection, rather than determining
true anomalies. It was shown in [88] that the improvement in data qual-
ity after removal of the clutter (noise) was significant enough to greatly
ease the identification of relevant features in the data. The approach of
using a special component of the mixture in order to convert the distri-
bution of outlier scores into probabilities has been used in [179], which
is discussed in some detail below.

Extreme value analysis has always been an important problem in out-
lier analysis because of its utilization as a final step in most outlier
detection algorithms. Some recent work has been done [179] on the is-
sue of probabilistic modeling of outlier scores in order to determine the
extreme values from these scores. Two methods are proposed in this
work. Both of these techniques use parametric modeling methods. The
first method assumes that the posterior probabilities follow a logistic
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sigmoid function. The underlying parameters are then learned from the
EM framework from the distribution of outlier scores. The first approach
assumes that the posterior probabilities follow a logistic sigmoid func-
tion and learns the parameters of the function from the distribution of
outlier scores. The second approach recognizes the fact that the outlier
scores of data points in the outlier component of the mixture is likely to
show a different distribution (Gaussian distribution), than the scores of
data points in the normal class (Exponential distribution). Therefore,
this approach models the score distributions as a mixture of exponen-
tial and Gaussian probability functions. As before, the parameters are
learned with the use of the EM-framework. The posterior probabilities
are calculated with the use of the Bayes rule. Finally, a method was
proposed in [271] to improve the effectiveness of converting the scores
into probabilities. Methods for converting outlier scores into probability
in the supervised scenario have been discussed in [495].

8. Exercises

1. [Upper Tail Chernoff Bound] The chapter provides a proof
sketch of the upper-tail Chernoff bound, but not the full proof.
Work out the full proof of bound on the upper tail, using the lower
tail proof as a guide. Where do you use the fact that 6 < 2-e—17

2. Suppose you flip an “unbiased” coin 100 times. You would like
to investigate whether the coin is showing anomalous behavior (in
terms of not being "unbiased” as claimed). Determine the mean
and standard deviation of the random variable representing the
number of “tails”, under the assumption of an unbiased coin. Pro-
vide a bound on the probability that you obtain more than 90 tails
with the use of the (i) Markov Inequality (ii) Chebychev Inequality
(iii) Chernoff Upper Tail Bound, (iv) Chernoff Lower Tail Bound
and (v) Hoeffding Inequality. [Hint: Either the upper tail or lower
tail Chernoff bound can be used, depending upon which random
variable you look at.]

3. Repeat exercise 2, when you know that the coin is rigged to show
“tails” every eight out of nine flips. Do you get meaningful bounds
with the Markov and Chebychev inequalities? What does this tell
you?

4. Use the central limit theorem to approximate the number of tails
by a normal distribution. Use the cumulative normal distribution
to approximate the probability that the number of “tails” should
be more than 90 for both the cases of exercises 2 and 3.
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5.

10.

A manufacturing process produces widgets, each of which is 100
feet long, and has a standard deviation of 1 foot. Under normal
operation, these lengths are independent of one another.

Use the normal distribution assumption to compute the prob-
ability that something anomalous is going on in the manufac-
turing process, if a sampled widget is 101.2 feet long?

How would your answer change, if the sampled widget was
96.3 feet long?

. In the example above, consider the case where 10,000 widgets from

the assembly line were sampled, and found to have an average
length of 100.05. What is the probability that something anoma-
lous is going on in the manufacturing process?

Use MATLAB or any other mathematical software to plot the t¢-
distribution with 100 degrees of freedom. Superimpose a standard
normal distribution on this plot. Can you visually see the differ-
ence? What does this tell you?

. Work out the steps of the EM-algorithm, when all non-diagonal

elements of the covariance matrix ¥ are set to zero, and each di-
agonal element in a given component has the same value. Now
perform the following modifications:

Change the E-step, so that each data point is deterministi-
cally assigned to the cluster with the highest probability (hard
assignment), rather than a soft probabilistic assignment. Un-
der what distance-based conditions does a data point get as-
signed to a cluster?

How does this algorithm relate to the k-means algorithm?

How would your answers change, if all components were con-
strained to have the same cluster variance?

. Using the insights gained from Exercise 8, work out how the EM-

algorithm with a Gaussian mixture model with a complete set
of covariance matrices X, and a fixed set of priors, relates to a
generalized k-means algorithm. [Hint: Consider the concept of
Mahalanobis distance computations for assignments in k-means.
How should the prior probabilities be defined?]

Download the KDD Cup 1999 data set from the UCI Machine
Learning Repository [169]. Extract the quantitative attributes
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from the data set. Apply the EM-algorithm with 20 mixture com-
ponents, when non-diagonal elements are set to 0.

Determine the fit of each data point to the learned distribu-
tion. Determine the top 10 points with the least fit. Do these
data points correspond to intrusion attacks or normal data?

Repeat the process while allowing non-zero non-diagonal ele-
ments. How does your answer change?

Randomly sample 990 points from the data set, and then add
the 10 points found in the first case above. Repeat the proce-
dure on this smaller data set. Do you find significant anoma-
lies in terms of fit probabilities? Do the lowest fit probabilities
correspond to the same data points as in the first case above?

Repeat the same procedure with the second case above.

11. Repeat the first two portions of Exercise 9 on the Ionosphere data
set from the UCI Machine Learning Repository. Note that the
Ionosphere data set has much higher dimensionality (of quantita-
tive attributes) and smaller number of records. Do you determine
the same top-10 anomalies in the two cases? What are the abso-
lute fit probabilities? What does this tell you about applying such
algorithms to small and high dimensional data sets?

12. Let Z be a random variable satisfying E[Z] = 0, and Z € [a, b].

Show that E[etZ] < et*(0-a)*/8,

Use the aforementioned result to complete the proof of the
Hoeffding inequality.



Chapter 3

LINEAR MODELS FOR OUTLIER
DETECTION

“My nature is to be linear, and when I'm not, 1
feel really proud of myself.” — Cynthia Weil

1. Introduction

The different dimensions in real data sets are highly correlated with
one another. This is because the different attributes are usually gen-
erated by the same underlying process in closely related ways. In the
classical statistics literature, this is referred to as regression modeling, a
parametric form of correlation analysis. Some forms of correlation anal-
ysis attempt to predict individual attribute values from others, whereas
other forms summarize the entire data in the form of latent variables.
An example of the latter is the method of principal component analysis.
Both forms of modeling can be very useful in different scenarios of out-
lier analysis. This chapter will discuss the different methods for using
linear correlation analysis for outlier detection.

The main assumption of this model is that the data is embedded in
a lower dimensional subspace. In the case of proximity-based methods,
which will be discussed in the next chapter, the goal is to determine spe-
cific regions of the space in which outlier points behave very differently
from other points. On the other hand, in linear methods, the goal is
to find lower dimensional subspaces, in which the outlier points behave
very differently from other points. This can be viewed as an orthogonal
point of view to clustering- or nearest-neighbor based methods, which
try to summarize the data horizontally (i.e. on the rows or data values),
rather than vertically (i.e. on the columns or dimensions). As will be
discussed in the chapter on high-dimensional outlier detection, it is in
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principle, possible to combine these methods for more general local sub-
space models, which can determine outliers on the basis of a combination
of horizontal and vertical criteria.

The assumption of approximately linear correlations is a critical one
for ensuring the effectiveness of the model. This may or may not be true
for a given data set. For example, consider the behavior of two data
sets from the UCI Machine Learning Repository [169]. In particular,
consider the behavior of the Autompg and Arrythmia data sets from this
repository. The first data set measures various characteristics of cars,
and relates them to the mileage (mpg) of the cars. The second data set
contains different kinds of features derived from ECG readings of human
patients.

In the first set of Figures 3.1(a) and (b), the dependence of the Miles
per Gallon attribute has been shown on each of the displacement and
horsepower attributes respectively for the Autompg data set. It is evi-
dent that a significant level of correlation exists between these attributes.
While a significant amount of noise exists in the data, the linear depen-
dence between the attributes is apparent. In fact, it can be shown for
this data set, that with increasing dimensionality (by picking more at-
tributes from the data set), the data can be aligned along much lower
dimensional planes. This is also evident in the 3-dimensional plot of
Figure 3.1(e). On the other hand, when various views along three of
the measured dimensions of the Arrythmia data set (Figures 3.1(c), (d)
and (f)) are examined, it is evident that the data separates out into two
clusters, one of which is slightly larger than the other. Furthermore, it is
rather hard to embed this kind of data distribution into a lower dimen-
sional subspace. This data set is much more suitable for proximity-based
analysis, which will be presented in Chapter 4. The reason for introduc-
ing this example is to revisit the point made in the first chapter about
the impact of the choices made during the crucial phase of picking the
correct data model. In general, the most difficult case is when different
views of the same data set may be suitable for different models. Such
data sets are best addressed with the use of subspace methods discussed
in Chapter 5, which can combine the power of row and column selection
for outlier analysis. However, in many cases, simplified models such as
linear models or proximity-based models are sufficient, without incurring
the complexity of subspace methods. From a model-selection perspec-
tive, exploratory and visual analysis of the data is rather critical in the
first phase of outlier detection in order to find out whether a particular
data model is suitable for a particular data set. This is particularly true
in the case of unsupervised data models.
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(e) 3-d View (Autompg)
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Effectiveness of linear assumption is data set dependent
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In this chapter, two main classes of linear models will be studied.
The first class of models uses statistical regression modeling between de-
pendent and independent variables in order to determine specific kinds
of dependencies in the data. Such forms of modeling are more useful
when some of the attributes in an application should be monitored on
a prioritized basis (eg. the last value of a time-series, where the previ-
ous history of values are the independent variables used for modeling).
The second class of models uses principal component analysis in order
to treat all attributes in a homogeneous way, and determine the lower
dimensional subspaces of projection. At a technical and mathematical
level, both forms of modeling are quite similar, and use very similar
methods in order to derive the optimal lower dimensional representa-
tions. The main difference is in how the objective function of the two
models is formulated.

It should be emphasized that regression-analysis is used extensively
to detect anomalies in time-series data, and many of the basic tech-
niques discussed in this chapter are applicable to that scenario as well.
However, since the time-series aspect of the problem is also based on
dependencies of temporally adjacent data values, there are a number of
subtle differences in how anomalies are detected in those cases. There-
fore, in this chapter, the much simpler case of multidimensional outlier
analysis will be addressed. At the same time, the discussion will be
general enough, so that the fundamentals necessary for the discussion of
applying regression analysis in the time-series scenario (Chapter 8) are
introduced.

This chapter is organized as follows. In section 2, the basic linear
regression models for outlier analysis will be introduced. In section 3,
the principal component method for outlier analysis will be introduced.
This can be considered an important special case of linear regression
models, which is used frequently in outlier analysis. Therefore it is
given a dedicated treatment in its own section. Section 4 will study the
limitations of linear models for outlier analysis. Section 5 contains the
conclusions and summary.

2. Linear Regression Models

In linear regression, the observed values in the data are modeled using
a linear system of equations. Specifically, the different dimensions in the
data are related to one another using a set of linear coefficients. Since
the number of observed values are typically much larger than the di-
mensionality of the data, this system of equations is an over-determined
one, and cannot be solved exactly. Therefore, these models optimize
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the square error of the deviations of data points from values predicted
by the linear model. The exact choice of the error function determines
whether a particular variable is treated specially (i.e. error of predicted
variable value), or whether variables are treated homogeneously (i.e. er-
ror distance from estimated lower dimensional plane). These different
choices of the error function do not lead to the same model. In fact,
as the following discussion will show, the models can be very different
especially in the presence of outliers.

Regression analysis is generally considered an important application
of its own in statistics. In classical instantiations of this application, it is
desirable to learn a specific dependent variable from a set of independent
variables. This is a common scenario in time-series analysis, which will
be discussed in detail in Chapter 8. Thus, a specific variable is treated
specially from the other variables. Most applications on outlier analy-
sis do not treat any particular variable as special, and the definition of
outliers is generally based on the overall distribution of the underlying
data points. However, the special case of regression analysis with depen-
dent variables is also important in many applications. This is because in
many real-life domains such as temporal and spatial data, the attributes
are partitioned into contextual and behavioral attributes. In such cases,
a particular behavioral attribute value is predicted as a function of the
behavioral attributes in its contertual neighborhood in order to deter-
mine deviations from expected values. Therefore, the importance of the
dependent variable is paramount. In such cases, outliers are defined on
the basis of how other independent variables impact the dependent vari-
able, and anomalies within the relationships of independent variables
with each other are considered less important. The identification of out-
liers in such cases is also very useful for noise reduction in regression
modeling, which is an important problem in its own right. This prob-
lem is considered so important, that an entire book has been devoted to
this subject [387]. Therefore, the special case of regression analysis with
dependent variables will be studied first. Then, the general application
of regression methods to outlier analysis will be discussed. The focus in
this section is to discuss the impact of outliers on the linear modeling
process of a dependent variable on a set of explanatory variables. The
discussion of this case also sets the stage for a more detailed discus-
sion for the cases of time-series data in Chapter 8, and spatial data in
Chapter 10.

In a later subsection, the more general problem of utilizing regression
modeling for generic outlier analysis will be discussed. In that case, no
particular variable is considered special, and regression modeling is a tool
(rather than an application in its own right). Such a tool may be used
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either to remove noise for other applications, or to identify interesting
anomalies. This latter form of the problem is the focus of most of this
book, though dependent variable regression analysis is also important in
many applications such as time-series data.

2.1 Modeling with Dependent Variables

A variable Y can be modeled as a linear function of d dependent
variables as follows:

d
Y = Zai -XZ' +ad+1
i=1
The variable Y is the response variable or the dependent variable, and
the variables X ... X are the independent or the explanatory variables.
The coefficients a1 ...ag11 need to be learned from the data. The data
may contain N different instances, which provide examples of how Y
may be related to the different values of X;. The jth instances of the
data are denoted by (z;1 ...x;4) and y;. The jth instance of the response
variable is related to the explanatory variables as follows:

d
Yj = Zaz"fﬂji+ad+1 +¢€j
i=1

Here €; represents the error in modeling the jth instance. In least squares
regression, the goal is to determine the regression coefficients a; . .. agqy1,
which minimize the error Zj\f: 1 ejz. The N X (d 4 1)-matrix whose j-th
row is (xj1...xjq,1) is denoted by U, and the N x 1 matrix of the
different values of Y is denoted by V. Thus, the first d dimensions of U
can be considered a d-dimensional data set containing the N instances
of the independent variables, and V is corresponding vector of response
variables. The (d 4+ 1) x 1 column vector of coefficients aj ...agy1 is
denoted by A. This creates an over-determined system of equations
denoted by:

VaU-A (3.1)

The least-squares error of predicting the response variable is optimized
by minimizing ||V — U - A|| over all values of the coefficient A. It will be
seen later, that more general ways of formulating the error function may
exist, rather than simply predicting the error of the response variable.
Clearly, the choice of the error function has an impact on the optimal
hyperplane found by the regression analysis process. It can be shown
through simple optimization methods via differential calculus, that the
optimal coefficients for this minimization problem is provided by the
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following equation:
A=UT.-o) L. wt.v) (3.2)

Note that U”-U is a (d+41) x (d+1) matrix, which needs to be inverted in
order to solve this system of equations. The system of equations above
thus needs to be over-determined in order for the matrix U” - U to have
full rank, and be invertible. The closed form solution to this problem
is particularly convenient, and is one of the cornerstones of regression
analysis in classical statistics. It is useful to examine the special case of
two dimensional data:

Y:al-X1+a2 (33)

In this case, the estimation of the coefficient a; has a particularly simple
form, and it can be shown that the best estimate for a; is as follows:
COU(Xl, Y)

V(M‘(Xl)

al =

Here Var(-) and Cov(-) correspond to the variance and covariance of the
underlying random variables. The value as can further be easily esti-
mated, by plugging in the means of X and Y into the linear dependence,
once a; has been estimated. In general, if X is regressed on Y instead
of the other way around, one would have obtained a; = C?}g%,;/) . Note
that the regression dependencies would have been different for these
cases. This shows the impact of the error term on the final regression
plane which is found by the method.

The set of coefficients a; ...aq11 define a lower dimensional hyper-
plane which fits the data as well as possible in order to optimize the
error in the dependent variable. This hyperplane may be different for
the same data set, depending upon which variable is chosen as the de-
pendent variable. In order to explain this point, let us examine the
behavior of two attributes from the Auto-Mpg data set of the UCI Ma-
chine Learning repository [169].

Specifically, the second and the third attributes of the Auto-Mpg data
set correspond to the Displacement and Horsepower attributes in a set of
records corresponding to cars. The scatter plot for this pair of attributes
is illustrated in Figure 3.2. Three regression planes have been shown in
this figure, which are as follows:

One regression plane is drawn for the case, when the Horsepower
(Y-azis) is dependent on the Displacement (X-axis). The residual
in this case is the error of prediction of the Horsepower attribute.
The sum of squares of this residual is optimized.
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Figure 3.2. Optimal regression plane depends upon the choice of residual which is
optimized

The second regression plane is drawn for the case, when the Dis-
placement (X-azis) is dependent on the Horsepower (Y-awxis). The
residual in this case is the error in prediction of the Displacement
attribute.

In the last case, the goal is to optimize the mean square error
of the data points in terms of their absolute distance to the best
fitting hyperplane. Thus, the residual in this case is the distance
of each point to the hyperplane, in a direction which is normal to
the hyperplane. Thus, this hyperplane minimizes the mean square
distances between the data points, and their projection into the
hyperplane. So far, the determination of such a hyperplane has not
been discussed. This will be done in a later section on Principal
Component Analysis (PCA).

It is evident from Figure 3.2 that the optimal hyper-planes in these
different cases are quite different. While the optimization of the mean
square projection distance produces a hyperplane which is somewhat
similar to the case of Y-on-X regression, the two are not the same.
This is because these different cases correspond to different choices of
errors on the residuals which are optimized, and therefore correspond to
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Figure 3.3. Drastic effects of outliers on quality of regression analysis

different best fitting hyperplanes. It is also noteworthy that the three
projection planes are collinear and pass through the mean of the data
set.

When the data fits the linear assumption very well, all these hyper-
planes are likely to be very similar and not very different from one an-
other. However, the presence of noise and outliers can result in rather
drastic negative effects on the modeling process, when some of the out-
liers show significant deviations. In order to illustrate this point, a
variation of an example from [387] is used. In Figure 3.3, the differ-
ent regression planes for two sets of five data points have been presented
corresponding to different dependent variables. The two sets of five data
points in Figures 3.3(a) and (b) are different by only one point, in which
the Y-coordinate was assumed to be somehow perturbed during data
collection. As a result, this point does not fit the remaining data very
well.

The original data set in Figure 3.3(a) fits the linear assumption very
well. Therefore, all the three regression planes tend to be very similar
to one another. However, after the perturbation of a single data point,
the resulting projection planes are drastically perturbed. In particular,
the X on Y-regression plane is significantly perturbed so as to no longer
represent the real trends in the underlying data set. It is also noteworthy
that the optimal projection plane is closer to the more stable of the
two regression models. This is a general property of optimal projection
planes, since they optimize their orientation in a stable way so as to
globally fit the data well. The determination of such planes will be
discussed in the next section.
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Clearly, the removal of outliers is crucial in such applications, in order
to improve the quality of the regression analysis. Therefore, a useful
approach would be to examine the residuals €;, and remove those data
points which are detrimental for outlier analysis. The mean of these
residuals is expected to be 0, and the variance of these residuals can be
estimated directly from the data.

The most common assumption for outlier analysis is to assume that
the error term ¢; is a normal distribution, which is centered at zero.
Then, the t-value test discussed in Chapter 2 can be used directly on
the different residuals, and the outlying observations can be subsequently
removed. The normal assumption on the residuals implies that the vec-
tor of coeflicients is also normally distributed with mean and variances,
as discussed earlier. When the outliers have drastic effects on the regres-
sion, such as in the case of the X-on-Y regression in Figure 3.3(b), the
removal of outliers is likely to result in the removal of the wrong observa-
tions, since the regression parameters are drastically incorrect. On the
other hand, in all cases, the projection based minimization seems to pro-
vide more robust results (as opposed to picking a particular dependent
variable) to the presence of outliers. Therefore, even for dependent vari-
able analysis, it may sometimes be helpful to use such projection-based
error minimization. This is the method of Principal Component Anal-
ysis (PCA). The formulation for this case will be discussed in the next
subsection, and a more detailed discussion of the solution and different
aspects of principal component analysis will be discussed in a dedicated
section of its own.

2.2 Regression Modeling for Mean Square
Projection Error

The previous section discussed the case, where a particular variable
is considered special, and the optimal plane is determined in order to
minimize the mean-square error of the residuals for this variable. In
the most general form of regression-modeling, all variables are treated
in a similar way, and the optimal regression plane is determined the
minimize the projection error of the data to the plane. This can be
considered an unsupervised form of outlier analysis, because the outliers
are determined without treating any particular variable specially.

The projection error of the data to the plane is the sum of the squares
of the distances of the points to their projection into the plane. The
projection of a point to the plane is performed by using the normal
direction to the plane which passes through the data point and the plane.
The point at which this normal intersects the plane is the projection
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point. Thus, in this case, let us assume that we have a set of variables
Xy ...X4, and the corresponding regression plane is as follows:

a1 - X1+...+aq- Xg+ag11 =0 (34)

Each variable is associated with a coefficient, and the “special” (depen-
dent) variable (without a coefficient) is missing in this case. For simpli-
fication of the subsequent discussion of computing distances of different
observations to this plane, a normalization constraint will be assumed.

D al=1 (3.5)

Note that the (d + 1)th term (constant coefficient) is not used in the
normalization. As before, let U be a N x (d + 1) matrix containing
the set of N observations corresponding to the variables Xi... Xy, 1.
The last column in the matrix U corresponds to the constant term, and
therefore only contains unit values. Let A be a column vector containing
ai...aq+1- It can be shown that the N-dimensional column vector of
distances for the different data points to this regression plane is given by
U-A. The Lo-norm ||U - A||2 of the column vector of distances is the ob-
jective function, which needs to be minimized over the different possible
values of the coefficients a; ... ag441, under the normalization constraint.
It can be shown that a effective (and much more general) solution to the
problem can be obtained with Principal Component Analysis (PCA). Be-
cause of its importance to outlier analysis, this method will be discussed
in a dedicated section of its own, along with corresponding applications.

3. Principal Component Analysis

The least-squares formulation of the previous section simply tries to
find a single (d— 1)-dimensional hyperplane which has an optimum fit to
the data values. The principal component analysis method can be used
to solve a generalized version of this problem. Specifically, it can find op-
timal representation hyperplanes of any dimensionality. Specifically, the
PCA method can determine the k-dimensional hyperplane (for any value
of k < d), which minimizes the squared projection error. In principal
component analysis, the d X d covariance matrix over d-dimensional data
is computed, where the (7, j)th entry is equal to the covariance between
the dimensions ¢ and j for the set of N observations of the variables
Xi... Xd.

It is easier to think in terms of a multidimensional data set of di-
mensionality d and size N, rather than a set of d variables with N
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Figure 3.4. Eigenvectors correspond to directions of correlations in the data. A small
number of eigenvectors can capture most of the variance in the data.



Linear Models for Outlier Detection 87

observations (as presented in the earlier portions of this chapter). Thus,
in the context of a multidimensional data set, the value of d represents
the dimensionality, and the value of NV represents the number of records
(or rows). The i-th record is a row of the multidimensional data set,
and is denoted by R; = [z;1 ...x;q], where x;; is the ith observation for
the jth variable X;. Let us denote the d x d covariance matrix of the
data set by 3, in which the (7, 7)th entry is the covariance between the
1th and jth dimensions. This matrix can be shown to be symmetric and
positive semi-definite. It can therefore be diagonalized as follows:

©»=P.D.PT

Here D is a diagonal matrix, and P is an orthonormal matrix, whose
columns correspond to the (orthonormal) eigenvectors of 3. The cor-
responding entries in the diagonal matrix D provide the eigenvalues.
These orthonormal vectors provides the axes directions along which the
data should be projected. The key properties of principal component
analysis, which are relevant to outlier analysis, are as follows:

PROPERTY 3.1 (PCA PROPERTIES) Principal component analysis pro-
vides a set of eigenvectors satisfying the following properties:

If the top-k eigenvectors are picked (by largest eigenvalue), then
the k-dimensional hyperplane defined by these eigenvectors, and
passing through the mean of the data, is a plane for which the
mean square distance of all data points to it is as small as possible
among all hyperplanes of dimensionality k.

If the data is transformed to the axis-system corresponding to the
orthogonal eigenvectors, the variance of the transformed data along
each eigenvector dimension is equal to the corresponding eigen-
value. The covariances of the transformed data in this new repre-
sentation are 0.

Since the variances of the transformed data along the eigenvec-
tors with small eigenvalues are low, significant deviations of the
transformed data from the mean values along these directions may
represent outliers.

A formal proof of these properties may be found in [244]. Note that
this provides a much more general solution than the determination of the
optimal coefficients of Equation 3.4. Specifically, the optimal solution for
the coefficients of Equation 3.4 may be simply derived as the coefficients
of the top one eigenvector representing a; ...aq, and the constant term
aq+1 may be inferred by substituting the mean of the data in Equation
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3.4. On the other hand, the PCA-solution provides a recursive solution
of any dimensionality by picking the top k eigenvectors.

The data can be transformed to this new axis system, with trans-
formed d-dimensional records denoted by Y7 ... Yxy. This can be achieved
by using the product between the original vector representation R; and
the orthonormal eigenvector matrix P containing the new axis-system:

Yi=[yir-. Yia) = Ri - P

In this new representation, the inter-attribute covariances of Y; are zero,
and most of the variances along the individual attributes correspond to
the coordinates along the eigenvectors with the largest eigenvalues. In
fact, the eigenvalues represent the variances of the transformed vectors Y;
along these directions in the new coordinate system. For example, if the
Jjth eigenvalue is very small, then the value of y;; in this new transformed
representation does not vary much over the different values of 7. The
beautiful part about PCA is that, in a single shot, it provides all the
key directions of global correlation, which retain most of the information
in the underlying data. These directions are also referred to as the
principal components in the data, since their second-order correlations
are zero, and most of the variance of the data is retained along these
directions. In many real scenarios involving very high-dimensional data
sets, a very large fraction of the eigenvalues often turn out to be very
close to zero. This essentially means that most of the data aligns along
a much lower dimensional subspace. This is very convenient from the
perspective of outlier analysis, because the observations which lie very far
away from these directions of projection can be assumed to be outliers.
For example, for an eigenvector j which has a small eigenvalue, a large
deviation of y;; for the ith record from other values of y;; is indicative
of outlier behavior. This is because the values of y;; do not vary much,
when j is fixed and k is varied. Therefore, the value y;; is unusual.
The effectiveness of principal component analysis in exposing outliers
from the underlying data set can be illustrated with an example. Con-
sider the scatterplot of the 3-dimensional data illustrated in Figure 3.4.
In this case, the corresponding eigenvectors have been ordered by de-
creasing eigenvalues (variances), though this is not immediately obvious
from the figure in this 2-d perspective. In this case, the standard de-
viation along the first eigenvector is three times that along the second
eigenvector and nine times that along the third eigenvector. Thus, most
of the variance would be captured in the lower-dimensional subspace
formed by the top two eigenvectors, though a significant amount of vari-
ance would also be captured by picking only the first eigenvector. If the
normal distances of the original data points to the 1-dimensional line
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corresponding to the first eigenvector (and passing through the mean of
the data) are computed, the data point ‘X’ in the figure would be im-
mediately exposed as an outlier. In the case of high-dimensional data,
most of the variance of the data can be captured along a much lower
k-dimensional subspace. The residuals for the data points can then be
computed by examining the projection distances to this k-dimensional
hyperplane passing through the mean of the data points. Data points
which have very large distances from this hyperplane can be discarded
as outliers. As before, it is possible to model these residuals as a normal
distribution, and perform a Z-value test for the corresponding statistical
significance.

A more accurate way of modeling the abnormality level without pick-
ing any particular set of £ dimensions, would be to use the eigenvalue to
compute the normalized distance of the data point to the centroid along
the direction of each principal component. Let e; be the jth eigenvector
with a variance (eigenvalue) of \; along that direction. The overall nor-
malized outlier score of a data point X, to the centroid u of the data is
given by the sum of squares of these values:

(X = p) -
Score(X) = Z " (3.6)

d
—

J

It is important to note that most of the contribution to the outlier score is
provided by deviations along the principal component with small values
of A\j, when a data point deviates significantly along such directions. The
sum of the squares of these values over all dimensions is a y?-distribution
with d degrees of freedom. The value of the aggregate residual is com-
pared to the cumulative distribution for the y2-distribution in order to
determine a probability value for the level of anomalousness. The afore-
mentioned approach was first used in [406].

While it may not be immediately apparent, the score computed above
is closely related to the multivariate extreme value analysis method dis-
cussed in section 3.4 of Chapter 2. Specifically, the Mahalanobis distance
value between X and p computed in that section is ezactly the same' as
the score above, except that the eigenvector analysis above provides a
better understanding of how this score is decomposed along the different
directions of correlation. This decomposition also allows the ability to
use only the dimensions with the small eigenvalues in order to obtain
an outlier score, which ignores the long eigenvalues. It is possible to use
a score which is constructed with only the smallest 6 < d eigenvalues.

1See Exercise 11 of this chapter for the systematic steps.
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However, it should also be noted that the approach already performs a
kind of soft pruning because of the inverse weighting by the eigenvalues
in the score. By explicitly pruning the score, the danger is that if a long
eigenvector is relevant to the outlier, then that outlier will be missed. It
is not uncommon for a rare value to also align along a long eigenvector.
An unusual deviation of a similarly correlated nature in two correlated
attributes will cause such a situation. In the event that a pruned score
is used, the score may be modeled as a y? distribution with § degrees of
freedom. Therefore, the score may be converted into a probability. This
is quite desirable, because it provides a clear idea of the outlierness of
the underlying object.

Principal component analysis is much more stable to the presence of a
few outliers, than the dependent variable analysis methods. This is be-
cause principal component analysis computes the errors with respect to
the optimal hyperplane, rather than a particular variable. When more
outliers are added to the data, the optimal hyperplane usually does
not change drastically enough to impact the choice of data points which
should be considered outliers. Therefore, such an approach is more likely
to pick the correct outliers, because the regression model is more accu-
rate to begin with. If desired, this approach can be combined with a se-
quential ensemble methodology of Chapter 1 in order to determine the
outliers robustly. In each iteration, the obvious outliers are removed,
and a more refined PCA model is constructed. The final outliers are
deviation levels in the last iteration of the sequential ensemble.

3.1 Normalization Issues

The use of PCA can sometimes provide results which are not very in-
formative, when the scales of the different dimensions are very different.
For example, consider a demographic data set containing attributes such
as Age and Salary. The Salary attribute may range in the tens of thou-
sands, whereas the Age attribute is almost always less than a hundred.
The use of PCA would result in the principal components being domi-
nated by the high-variance attributes. For example, for a 2-dimensional
data set containing only Age and Salary, the largest eigenvector will be
almost parallel to the Salary axis, irrespective of very high correlations
between the Age and Salary attributes. This can reduce the effectiveness
of the outlier detection process. Therefore, a natural solution is to nor-
malize the data, so that the variance along each dimension is one unit.
This is achieved by dividing each dimension with its standard deviation.
This implicitly results in the use of a correlation matriz rather than the
covariance matriz during principal component analysis. Of course, this
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issue is not unique to linear modeling, and it is often advisable to use
such pre-processing for most outlier detection algorithms.

3.2 Applications to Noise Correction

Most of this book is devoted to either removal of outliers as noise, or
identification of outliers as anomalies. However, in many applications, it
is possible that even though parts of a data record may be erroneous, and
may show up as outliers, it may be useful to correct that data record, un-
der the assumption that it should show similarity to the broad patterns
in the data. Principal Component Analysis (PCA) provides an approach
for achieving this goal. In this case, the core idea of the approach is that
projection of the data point onto the k-dimensional hyperplane corre-
sponding to the largest eigenvalues (and passing through the data mean)
provides the optimal correction to the data values. Obviously such an
approach is likely to correct the outlier points significantly more than
most of the other normal data points. Some theoretical results (along
with experimental evidence) of why such an approach is likely to reduce
noise and improve data quality for a variety of applications is provided
in [18]. A similar approach to PCA (called Latent Semantic Indexing)
has also been used in the context of text data, in order to reduce the
noise, and significantly improve retrieval quality [133, 355]. In partic-
ular, it has been observed in [355] that the use of such dimensionality
reduction methods in text data significantly improves the effectiveness
of similarity computations, because of the reduction in the noise effects
of synonymy and polysemy. Text representations are inherently noisy
because the same word may mean multiple things (synonymy) or the
same concept can be represented with multiple words (polysemy). This
leads to numerous challenges in virtually all similarity-based applica-
tions. The technique of LSI [133] is essentially a variant of PCA, which
was originally developed for efficient indexing and retrieval. However, it
was eventually observed that the quality of similarity computations, in
terms of the underlying precision and recall, actually improves with the
use of LST [355]. This observation was taken to its logical conclusion in
[18], where it was theoretically and experimentally shown that signifi-
cant noise reduction is likely to occur, with the proper use of PCA-based
techniques.

An even more effective approach for noise correction is to combine
outlier removal and re-insertion with the correction process. The first
step is to perform PCA, and remove the top outliers on the basis of a
t-test with respect to the optimal plane of representation. Subsequently,
PCA is performed again on this cleaner data set in order to generate
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Figure 3.5. Most of the Energy is Retained in a Small Number of Eigenvalues for
the Arrythmia data set

the projection subspaces more accurately. The projections can then
be performed on this corrected subspace. This process can actually be
repeated iteratively, if desired in order to provide further refinement. A
number of other approaches to perform regression analysis and outlier
removal in a robust way are presented in [387].

3.3 How Many Eigenvectors?

As discussed earlier, the eigenvectors with the largest variance provide
the most informative subspaces for data representation, and outlier anal-
ysis. In many applications such as noise correction, the data needs to be
projected into a subspace of lower dimensionality by picking a specific
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number of eigenvectors. Therefore, a natural question arises, as to how
the dimensionality & of the projection subspace should be determined.

One observation in most real data sets is that the vast number of
eigenvalues are relatively small, and most of the variance is concentrated
in a few eigenvectors. An example illustrated in Figure 3.5 shows the
behavior of the 279 eigenvectors of the Arrythmia data set of the UCI
Machine Learning Repository [169]. Figure 3.5(a) shows the absolute
magnitude of the eigenvalues in increasing order, whereas Figure 3.5(b)
shows the total amount of variance retained in the top-k eigenvalues. In
essence, Figure 3.5(b) is derived by using the cumulative sum over the
eigenvalues in Figure 3.5(a). While it was argued at the beginning of the
chapter that the Arrythmia data set is weakly correlated along many of
the dimensions, on a pairwise basis, it is interesting to note that that it
is still possible? to find a small number of directions of global correlation
along which most of the variance is retained. In fact, it can be shown
that the first 215 eigenvalues (out of 279) cumulatively contain less than
1% of the variance in the data set.

In other words, most eigenvalues are very small. Therefore, it pays to
retain the eigenvectors corresponding to extremely large values, with re-
spect to the average behavior of the eigenvalues. How to determine, what
is “extremely large”? This is a classical case of extreme value analysis
methods, which were introduced in Chapter 2. Therefore, each eigen-
value is treated as a data sample, and the statistical modeling is used to
determine the large values with the use of hypothesis testing. A chal-
lenge in this case is that the sample sizes are small. Even for relatively
high dimensional data sets (eg. 50-dimensional data sets), the number
of samples (50 different eigenvalues) available for hypothesis testing is
relatively small. Therefore, this is a good candidate for the t-value test.
The t-value test can be used in conjunction with a particular level of
significance and appropriate degrees of freedom in order to determine
the number of eigenvectors which should be picked for analysis.

2Part of the reason for this is that the data set is relatively small with only 452 records. In
such cases, it is much easier to find a small number of directions of correlation. As an example,
the results of Figure 3.5(c) and (d) show that even for a uniformly distributed data set of the
same size, it is possible to find some skews in the eigenvalues. This is one of the limitations
of regression analysis, which will be discussed in a later section. Furthermore, the cumulative
effects of even weak correlations become magnified with increasing dimensionality, when it is
desired to find a much lower dimensional subspace contain the informative projections. This
is of course a strength of Principal Component Analysis.
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4. Limitations of Regression Analysis

Regression analysis has a few limitations as a tool for outlier detec-
tion. The most significant of these shortcomings was discussed at the
very beginning of this chapter, in which the data-specific nature of re-
gression analysis was explored. In particular, the data needs to be highly
correlated, and aligned along lower dimensional subspaces, in order for
regression analysis techniques to be effective. When the data is uncor-
related, but highly clustered in certain regions, such methods may not
work effectively. On the other hand, even when the data is weakly cor-
related on a pairwise basis between different dimensions, it is often the
case that subspaces of much lower dimensionality contain most of the
variance in the data, because of the cumulative effect of inter-attribute
correlations.

Another related issue is that the correlations in the data may not be
global in nature. A number of recent analytical observations [7] have
suggested that the subspace correlations are specific to particular local-
ities of the data. In such cases, the global subspaces found by PCA are
sub-optimal for outlier analysis. Therefore, it can sometimes be useful
to combine linear models with proximity-models (discussed in the next
chapter), in order to create more general local subspace models. This
will be the topic of high-dimensional and subspace outlier detection,
which is discussed in detail in Chapter 5.

As with any model-based approach, overfitting continues to be an is-
sue, when used with a small set of data records. In this context, the
relationship of the number of records to the data dimensionality is im-
portant. For example, if the number of data points are less than the
dimensionality, it is possible to find one or more directions along which
the variance is zero. Even for cases, where the data size is of greater (but
similar) magnitude as the data dimensionality, considerable skew in the
variances may be observed. This is evident from the results of Figure
3.5(c) and (d), where there is considerable skew in the eigenvalues for a
small set of uniformly distributed data. This skew reduces, as the data
size is increased. This is a classic case of overfitting, and it is important
to interpret the results of linear modeling carefully, when the data set
sizes are small.

The interpretability of regression-based methods is rather low. These
methods project the data into much lower dimensional subspaces, which
are expressed as a linear (positive or negative) combination of the origi-
nal feature space. This cannot be easily interpreted in terms of physical
significance in many real application. This also has the detrimental ef-
fect of reducing the intensional knowledge of the user for a particular
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application. This is undesirable, because it is usually interesting to be
able to explain why a data point is an outlier in terms of the features of
the original data space.

Finally, the computational complexity of the approach may be an
issue when the dimensionality of the data is large. When the data has
dimensionality of d, this results in an d X d covariance matrix, which
may be rather large. Furthermore, the diagonalization of this matrix
will slow down at least quadratically with increasing dimensionality. A
number of techniques have recently been proposed, which can perform
PCA in faster time than quadratic dimensionality [191]. With advances
in methods for matrix computation and the increasing power of computer
hardware, this issue has ceased to be as much of a problem in recent
years. Such dimensionality reduction techniques are now easily applied
to large text collections with a dimensionality of several hundreds of
thousands of words.

5. Conclusions and Summary

This chapter presents linear models outlier detection. Many data sets
show significant correlations among the different attributes. In such
cases, linear modeling may provide an effective tool for removing the
outliers from the underlying data. Since linear modeling is a tool in
of itself for other regression-based applications, the removal of outliers
can be very useful for improving the effectiveness of such applications.
In most cases, principal component analysis provides the most effective
methods for outlier removal, because it is more robust to the presence of
a few outliers in the data. A major limitation of linear modeling is that
it does not try to recognize that the correlation behavior of the data in
different localities may be different, and tries to fit the data into a single
global model. However, it provides a general framework, which can be
used for generalized local linear models, which are discussed in Chapter
5.

6. Bibliographic Survey

The relationships between the problems of regression and outlier de-
tection has been explored extensively in the literature [387]. Outlier
analysis is generally seen as an enormous challenge to robust regression
in terms of the noise effects, and this has motivated an entire book
on the subject. In many cases, the presence of outliers may lead to
unstable behavior of regression analysis methods. An example of this
was illustrated in in Figure 3.3(b) of this chapter, where a single outlier
completely changes the regression slope to one which does not reflect the
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true behavior of the data. It can be shown that under certain circum-
stances, a certain number of outliers can have an arbitrarily large effect
on the estimation of the regression coefficients. This is also referred to
as the breakdown point [202, 219] of regression analysis. Such circum-
stances are very undesirable in outlier analysis, because of the likelihood
of very misleading results. Subsequently, numerous estimators have been
proposed with higher breakdown points [387]. In such cases, a higher
level of contamination would need to be present in the data in order for
breakdown to occur.

The method of Principal Component Analysis is also used frequently
in the classical literature [244] for regression analysis and dimensionality
reduction. Its application for noise correction in the text domain was
first observed in [355], and then modeled theoretically in [18]. It was
shown that the projection of the data points onto the hyper-planes with
the greatest variance provides a data representation, with higher quality
of similarity computations, because of the effects of removing noise from
the data. In the context of text data [355], a variant of PCA, known as
Latent Semantic Indexing [133]. Initially, the approach was proposed as
a dimensionality reduction technique for retrieval, and was not designed
for noise reduction. However, over many years of experience with LSI,
it was observed that the quality of retrieval actually improved with LSI,
a point which was explicitly pointed out in [355], and later theoretically
modeled in [18] for relational data. It should be noted that PCA and
LSI are dimensionality reduction techniques which can summarize the
data by finding linear correlations among the dimensions. In principle,
any dimensionality reduction technique can be used for outlier analysis.
An example of an outlier analysis method which uses a different dimen-
sionality reduction technique such as matrix-factorization is discussed
in [476]. The core principle is that dimensionality reduction methods
provide an approximate representation of the data along with a corre-
sponding set of residuals. These residuals can be used as the outlier
scores.

PCA-based techniques have been used in order to detect outliers in
a wide variety of domains such as statistics [93], astronomy [147], eco-
logical data [231], network intrusion detection [280, 406, 448], and many
kinds of time-series data. Some of the aforementioned applications are
temporal, whereas others are not. Because of the relationship between
PCA and time series correlation analysis, much of the application of
such regression methods has been to the temporal domain. However,
it should be emphasized that regression-based methods can also be ap-
plied to many non-temporal scenarios. In particular, the use of PCA for
non-temporal and unsupervised outlier analysis seems to be relatively
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unexplored, and is worthy of further study. Regression based methods
will be re-visited in Chapter 8, where a number of methods for temporal
outlier analysis will be discussed. In the context of temporal data, the
outlier analysis problem is closely related to the problem of time series
forecasting, where deviations from forecasted values in a time series are
flagged as outliers. A variety of regression-based methods for noise re-
duction and anomaly detection in time-series sensor data streams are
also discussed in [19]. In addition, a number of methods which resemble
structural and temporal versions of PCA have been used for anomaly de-
tection in graphs [229, 429]. In such methods, an augmented form of the
adjacency matrix, or the similarity matrix may be used for eigenvector
analysis. Such methods are commonly referred to as spectral methods,
and are discussed in Chapter 11.

A more general model than global PCA is one in which the data
is modeled as a probabilistic mixture of PCAs [451]. This is referred
to as  Probabilistic PCA (PPCA). Such methods are quite prone to
noise in the underlying data during the process of mixture modeling. A
method proposed in [132] increases the robustness of PCA by modeling
the underlying noise in the form of a student ¢-distribution. The effect of
outliers on PCA-based clustering algorithms are significant. The work
in [7] provides a methods for providing the outliers as a side product of
the output of the clustering algorithm. Furthermore, methods for using
local PCA in outlier analysis will be discussed in detail in Chapter 5 on
outlier analysis in high dimensional data.

7. Exercises

1. Consider the data set of the following observations: { (1, 1), (2,
0.99), (3, 2), (4, 0,98), (5, 0,97) }. Perform a regression with Y
as the dependent variable. Then perform a regression with X as
the dependent variable. Why are the regression lines so different?
Which point should be removed to make the regression lines more
similar to one another?

2. Perform Principal Component Analysis on the data set of Exercise
1. Determine the optimal 1-dimensional hyperplane to represent
the data. Which data point is furthest from this 1-dimensional
plane?

3. Remove the outlier point found in Exercise 2, and perform regres-
sion analysis on the remaining four points. Now project the outlier
point onto the optimal regression plane. What is the value of the
corrected point?
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10.

11.
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. Provide a formal derivation for the closed form of the estimates of

the regression coefficients in least squares regression. [Hint: Use
partial derivatives with respect to regression coefficients.|

. Provide a formal derivation for the closed form of the optimal k-

dimensional subspace in Principal Component Analysis.

. Download the KDD CUP 1999 data set from the UCI Machine

Learning Repository [169], and perform PCA on the quantitative
attributes. What is the dimensionality of the subspace required to
represent (i) 80% of the variance, (ii) 95% of the variance, and (iii)
99% of the variance.

. Repeat Exercise 6 with the use of the Arrythmia data set from the

UCI Machine Learning Repository [169].

Generate 1000 data points randomly in 100-dimensional space,
where each dimension is generated from the uniform distribution
in (0,1). Repeat Exercise 6 with this data set. What happens,
when you use 1,000,000 data points instead of 10007

Consider a 2-dimensional data set with variables X and Y. Sup-
pose that Var(X) << Var(Y). How does this impact the slope of
the X-on-Y regression line, as compared to the slope of the Y-on-
X regression lines. Does this provide you with any insights about
why one of the regression lines in Figure 3.3(b) shifts significantly
compared to that in Figure 3.3(a), because of the addition of an
outlier?

Scale each dimension of the Arrythmia data set, such that the
variance of each dimension is 1. Repeat Exercise 7 with the scaled
data set. Does the scaling process increase the number of required
dimensions, or reduce them? Why? Is there any general inference
that you can make about an arbitrary data set from this?

Let 3 be the covariance matrix of a data set. Let the X be diago-

nalized as follows:
»=P.-D-PT

Here D is a diagonal matrix containing the eigenvalues \;, and D~}
is also a diagonal matrix containing the inverse of the eigenvalues

(ie. 1/N)
Show that X~1=pP.-D- L. pT

For a given data point X from a data set with mean u, show
that the value of the Mahalanobis distance (X — p) - L1 -
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(X — )T between X and the mean u reduces to the same
expression as the score in Equation 3.6.



Chapter 4

PROXIMITY-BASED OUTLIER
DETECTION

“To lead the orchestra, you have to turn
your back to the crowd.” — Max Lucado

1. Introduction

Proximity-based techniques define a data point as an outlier, if its
locality (or prozimity) is sparsely populated. The proximity of a data
point may be defined in a variety of ways, which are subtly different
from one another, but are similar enough to merit a unified treatment
within a single chapter. The most common ways of defining proximity
for outlier analysis are as follows:

Cluster-based: The non-membership of a data point in any clus-
ter, its distance from other clusters, and the size of the closest
cluster, are used as criteria in order to compute the outlier score.
The clustering problem has a complementary relationship to the
outlier detection problem, in which points either belong to clusters
or outliers.

Distance-based: The distance of a data point to its k-nearest
neighbor (or other variant) is used in order to define proximity.
Data points with large k-nearest neighbor distances are defined as
outliers. Distance-based algorithms typically perform the analysis
at a much more detailed granularity than the other two methods.
On the other hand, this greater granularity often comes at a sig-
nificant computational cost.

Density-based: The number of other points within a specified
local region (grid region or distance-based region) of a data point,

C.C. Aggarwal, Outlier Analysis, DOI 10.1007/978-1-4614-6396-2_4, 101
© Springer Science+Business Media New York 2013
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is used in order to define local density. These local density values
may be converted into outlier scores. Other kernel-based methods
or statistical methods for density estimation may also be used. The
major difference between clustering and density-based methods is
that clustering methods partition the data points, whereas density-
based methods partition the data space.

Clearly, all these techniques are closely related, because they are based
on some notion of proximity (or similarity). The major difference is at
the detailed level of how this proximity is defined. These different ways
of defining outliers may have different advantages and disadvantages,
and this chapter will try to address these issues in a unified way. Fur-
thermore, most of these methods generally work well when the data is
highly clustered, and the outliers can be clearly distinguished from dense
regions of the data. In many cases, the distinctions between these differ-
ent classes of methods become blurred, when the definition of sparsity
combines! more than one of these concepts.

One major difference between distance-based and the other two classes
of methods is the level of granularity at which the analysis is per-
formed. In both clustering- and density-based methods, the data is
pre-aggregated before outlier analysis by either partitioning the points
or the space. The data points are compared to the distributions in this
pre-aggregated data for analysis. On the other hand, in distance-based
methods, the k-nearest neighbor distance to the original data points (or
a similar variant) is computed as the outlier score. Thus, the analy-
sis in nearest neighbor methods is performed at a much more detailed
level of granularity. Correspondingly, these methods provide different
tradeoffs between effectiveness and efficiency for data sets of different
sizes. Nearest neighbor methods may require O(N?) time to compute
all k-nearest neighbor distances for a data set with N records, unless
indexing techniques are used to speed up the computations. Even in
those cases, nearest neighbor methods can sometimes be slow, if the un-
derlying data patterns do not support efficient pruning. On the other
hand, nearest neighbors can often provide more detailed and accurate
analysis, especially for smaller data sets, which may not support robust
clustering or density analysis. Thus, the particular choice of the model
should depend on the nature of the data and its size. Different methods
may be more effective in different scenarios. This relates directly to the

Tt will be discussed later in this chapter, that the well-known LOF method [78] can be
interpreted either as a distance-based or density-based method, depending upon how it is
presented.
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theme repeated throughout the book about the crucial importance of
picking the correct data model early in the outlier analysis process.

Proximity-based methods are naturally designed to detect both noise
and anomalies, though different methods are suited to these different
kinds of outliers. For example, weak definitions of proximal sparsity, such
as the non-membership of data points in clusters are naturally designed
to detect weak outliers (or noise), whereas large levels of deviation or
sparsity in terms of density- or distance-based definitions can also detect
strong outliers (or anomalies).

Proximity-based outlier detection methods are extremely popular be-
cause of their intuitive simplicity, and their high levels of interpretability.
In fact, a number of methods for intuitive exploration and explanation
of outliers [262] are based on proximity-centered definitions. Because of
the simplicity of the underlying measures, it is possible to design many
intuitive variations of these schemes (eg. enhanced local analysis), which
provide superior results. Furthermore, as will be evident from the discus-
sion in later chapters, proximity based methods have been generalized
to almost all kinds of data such as time-series data, sequence data, or
graph data.

This chapter is organized as follows. Section 2 discusses methods
for using clusters in outlier analysis. Section 3 discusses distance-based
methods for outlier detection. Density-based methods are discussed in
Section 4. The limitations of proximity-based outlier detection are dis-
cussed in Section 5. Section 6 presents the conclusions and summary.

2. Clusters and Outliers: The Complementary
Relationship

Clustering and outlier detection share a well known complementary
relationship. A simplistic view would be that every data point, is either
a member of a cluster or an outlier. In clustering, the goal is to partition
the points into dense subsets, whereas in outlier detection, the goal is
to determine points which do not seem to fit naturally in these dense
subsets. In fact, most clustering algorithms report outliers as a side-
product of their analysis.

However, it is important to understand that outliers which picked
purely on the basis of their complementary relationship to clusters are
typically weak outliers, or noise. This is not necessarily indicative of a
true anomaly in the data. This is because non-membership of data points
in clusters is a rather blunt hammer to measure the level of deviation of
a data point from the normal patterns. For example, a data point which
is located at the fringes of a large cluster is very different from a point
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Figure 4.1. The example of Figure 2.7 revisited: Proper distance computations can
detect better outliers

which is completely isolated from all the other clusters. Furthermore,
all data points in very small clusters may sometimes also be considered
outliers. Therefore, a much more nuanced measure is often required in
order to quantify the outlier score of data points in terms of the clusters
in their proximity.

A simple definition for the outlier score may be constructed by us-
ing the distances of data points to cluster centroids. Specifically, the
distance of a data point to its closest cluster centroid may be used as
a proxy for the outlier score of a data point. Since clusters may be of
different shapes and orientations, an excellent distance measure to use
is the Mahalanobis distance, which scales the distance values by local
cluster variances along the directions of correlation. Consider a data
set containing k clusters. Assume that the rth cluster in d-dimensional
space has a corresponding d-dimensional mean vector pu,, and a d x d
co-variance matrix ,. Note that the (i,7)th entry of this matrix is
the covariance between the dimensions ¢ and j in that cluster. Then,
the Mahalanobis distance MB(X, i1,) between a data point X and the
cluster centroid u, is defined as follows:

MB(X, ) = (X = i) 570 (X = piy)T

r
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Intuitively, this metric scales the square distances by the cluster vari-
ances along the different directions of correlation. If the data were to
be rotated into a new axis system, which is oriented along the principal
components of the cluster, the value of ¥, would be a diagonal matrix
containing the variances along the principal components. Therefore, the
individual square distances along the principal components are scaled by
the inverse of the variances. This distance scaling process provides much
more accurate results. The intuition in using the Mahalanobis distance
is really about effective statistical normalization, based on the character-
istics of a particular data locality. Even small distances along directions
in which cluster variance are small may be statistically significant within
that data locality. Similarly, large distances along directions in which
cluster variances are large may not be statistically significant within that
data locality. The Mahalanobis distance uses these normalizations in or-
der to effectively add the contributions of the different dimensions. Note
that the normalization is different for different clusters, and it is possible
for a data point which is closer to one of the clusters to have a much
larger Mahalanobis distance than a data point which is further away
on the basis of Euclidean distance. This is evident from the example
illustrated in Figure 4.1, in which the data point A is more obviously an
outlier than data point B. However, this cannot be detected with the
use of the Euclidean distance, according to which the data point A is
closest to the nearest cluster centroid.

The Mahalanobis distance can also be used for many distance-based
clustering algorithms such as the k-means algorithm, in order to provide
more effective results. This is because such a distance computation is
sensitive to the different shapes and orientations of the underlying clus-
ters (as in Figure 4.1). In fact, the EM algorithm discussed in Chapter 2
can be considered a soft version of a k-means algorithm [20], when used
with the Mahalanobis distance and fixed priors of equal weight. Note
that the term in the exponent of the Gaussian distribution for each mix-
ture component of the probabilistic model in Chapter 2 is essentially the
Mahalanobis distance. Furthermore, the fit value computed by the EM
algorithm, is generally dominated by the exponentiated Mahalanobis
distance to the cluster nearest centroid, though other clusters may also
have some contributions to the fit value because of the use of soft assign-
ments. The k-means algorithm simply truncates the soft probabilities
into a hard assignment. Thus, cluster-based outlier analysis methods
are very closely related to the probabilistic mixture models introduced
in Chapter 2. Such methods are also closely related to generalized pro-
jected clustering methods [7].
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Figure 4.2. The example of Figure 1.5 revisited: Proper combination of global and
local analysis in proximity-based methods can identify such outliers

As discussed above, the local Mahalanobis distance of the data point
to its closest cluster centroid may be used in order to report the outlier
score. Any form of extreme value analysis can be applied to these out-
lier scores in order to convert the scores to binary labels. It should be
mentioned that the effectiveness of the outlier analysis method is usu-
ally dependent on that of the clustering method used, because of the
complementary relationship between these two problems.

One advantage of clustering methods is that they are based on global
analysis of the data, they can determine small closely related groups of
data points, and which do not naturally fit with the major patterns in
the data. This can be achieved by using a minimum threshold on the
number of data points in a cluster. An example is illustrated in Figure
4.2, where the three isolated data points can be identified by any clus-
tering method which has a minimum threshold of four on the number of
data points in a cluster. As will be discussed later, some density-based
methods which are based purely on local analysis may find it difficult
to identify such outliers. Such outliers are common in real applications,
because the same (rare) process may generate these outliers multiple
times, albeit a small number of times. On the other hand, because clus-
tering methods also ignore the noise in data for calculating deviations
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with respect to large cluster centroids, they have a harder time in dis-
tinguishing between anomalies and noise. A number of methods can be
used in order to improve the effectiveness of cluster-based methods for
distinguishing between anomalies and noise.

The distances of candidate outlier points to cluster centroids should
be used, rather than the membership of these points in clusters.

The distances should be normalized as discussed above with the
use of the Mahalanobis method. The local covariance matrix X
may be constructed from the data points in the corresponding
cluster to which the distances are being computed. Of course, it is
assumed that such a cluster contains a sufficient number of points
(at least (d + 1) linearly independent points in dimensionality d)
in order to create an invertible covariance matrix.

The cardinality of the closest clusters should be factored into the
outlier score.

Clusters should have a minimum threshold on their cardinality in
order to be considered true clusters, rather than a closely related
group of outliers.

These factors can be combined in a wide variety of ways, in order to
define different kinds of outlier scores. The bibliographic survey sec-
tion of this chapter points out some methods used in the literature for
combining these different factors.

Cluster-based methods are used often in sparse data domains, in
which most attributes take on zero values. In such cases, distance-
computations between individual data points are not robust. Therefore,
better results are achieved with aggregate cluster representatives in or-
der to perform similarity or distance computations. For example, in
the text and market-basket domains, similarity computations between
individual text documents may sometimes be quite noisy. Therefore,
clustering methods are often used in order to defines outliers and novel-
ties in text and binary market basket data [26, 504, 515]. These methods
are discussed in detail in Chapter 7.

On the other hand, in many data domains, cluster analysis may not
provide insights at the level of required detail. This is particularly true,
when the size of the data set is small. In order to better distinguish
between anomalies and noise, it is sometimes necessary to increase the
granularity of outlier analysis methods. This can be achieved by using
distance computations directly with respect to the original data points,
rather than with respect to aggregated representatives such as cluster
centroids.
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Figure 4.3. The example of Figure 1.1 re-visited: Nearest neighbor algorithms may
be more effective than clustering-based algorithms in noisy scenarios because of better
granularity of analysis

3. Distance-based Outlier Analysis

Distance-based methods are a popular class of outlier-detection algo-
rithms across a wide variety of data domains, and define outlier scores
on the basis of nearest neighbor distances. While this chapter focusses on
multidimensional numerical data, such methods have been generalized
to a wide variety of other domains such as categorical data, text data,
time-series data and sequence data. The later chapters of this book will
present distance-based methods for those cases.

Distance-based outlier analysis methods work with the assumption
that the k-nearest neighbor distances of outlier data points are much
larger than normal data points. Different variations of this definition
specify k as an absolute number [381], or as a fraction of the database size
[261]. A major difference between clustering and distance-based methods
is the granularity of the outlier analysis. This can enable a better ability
to distinguish between weak and strong outliers in noisy data sets. For
example, in the case of Figure 4.3, a clustering-based algorithm will
not be able to distinguish between noise and anomalies easily. This is
because the distance to the nearest cluster centroid for the data point
A will remain the same in Figures 4.3(a) and (b). On the other hand,
a k-nearest neighbor algorithm will distinguish between these situations
much better because the noisy data points will be included among the
distance evaluations, rather than the cluster centroids. Of course, it
is also possible to modify cluster-based methods to include the effects
of noise. In those cases, the two approaches converge to very similar
schemes. One advantage of distance-based methods is that their higher
level of granularity in analysis allows effective handling of most tricky



Proximity-based Outlier Detection 109

situations. For example, the isolated set of closely related outliers can
also be identified by distance-based methods in which an appropriate
value of k is used for the k-nearest neighbor analysis. While this can
also be identified by clustering methods by setting a threshold on the
number of points in each cluster, such points may sometimes bias other
cluster representatives.

One of the earliest studies on distance-based outliers was due to Knorr
and Ng [261], in which an outlier was defined as follows:

“An object O in a data set T is a DB(p, D) outlier, if at least fraction
p of the objects in T lies greater than distance D from O.”

This definition is almost? identical to the k-nearest neighbor definition,
by choosing the value of f to be (N —k)/N for a data set containing N
points. Since k is typically much less than N, the value of f needs to
be very close to unity in order to obtain more reasonable results. Most
distance-based algorithms therefore work with the parameter k, because
it is simpler, and more intuitive to understand. Therefore, the discussion
in this section will also use the parameter k rather than the fraction f,
in order to maintain uniformity of presentation throughout the chapter.
The afore-mentioned definition incorporates a distance threshold within
the definition itself, and therefore returns a binary label, rather than an
outlier score.

The simplest approach to the problem uses a nested loop approach.
In the nested loop approach, two arrays are maintained— the first ar-
ray contains the candidates for outlier data points, and the other array
contains the points to which these candidates are compared in distance-
based processing. Once more than k data points have been identified
to lie within a distance of D from a point in the first array, that point
is automatically marked as a non-outlier. Subsequently, no more time
is spent on distance computations involving that data point. Such an
approach may require O(N?) distance computations in the worst case.
Since each distance computation may require O(d) time, it follows that
the overall running time is O(N? - d). Therefore, pruning methods are
required in order to speed up the distance computations.

3.1 Cell-based Methods

A second approach which is exponential in the dimensionality but
linear in the data points uses a cell-based technique. In the cell-based
technique, the data space is divided into cells, the width of which is a

2This definition returns a binary label, whereas most k-nearest neighbor definitions return
an outlier score.



110 OUTLIER ANALYSIS

L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 | L2 L2 L2

L2 L2 1| | |2 |2

L2 | L2 | o1 |#x | L1 | 2] 2

L2 L2 | |o |2 | L2

L2 L2 L2 L2 L2 L2 L2

2| 2| 2|2 |22 | L2

Figure 4.4. Cell-based Partitions of Data Space

function of the threshold D, and the data dimensionality. Specifically,

each dimension is divided into cells of width at most (2.’?/ 0 The pres-

ence of data points in a given cell, as well as in adjacent cells satisfies
certain properties, which is exploited for more efficient processing. The
approach is best explained in the two-dimensional case. Consider the
2-dimensional case, in which successive grid-points are at a distance of
at most D/(2-+/2). An important point to be kept in mind is that the
number of grid-cells is based on a partitioning of the data space, and is
independent of the number of data points. This is an important factor
in the efficiency of the approach for low dimensional data, in which the
number of grid-cells is likely to be modest. On the other hand, this
approach is not suited to data of higher dimensionality.

For a given cell, its L1 neighbors are defined to be the set of cells which
are reachable from that cell by crossing at most 1 cell-to-cell boundary.
Note that two cells touching at a corner are also L; neighbors. The Lo
neighbors are those cells which are obtained by crossing either 2 or 3
boundaries. A particular cell marked X, along with its set of L and Lo
neighbors are illustrated in Figure 4.4. It is evident that an interior cell
has 8 L1 neighbors and 40 Lso-neighbors. Then, the following properties
can be immediately observed.

1. The distance between a pair of points in a cell is at most D /2.
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2. The distance between a point, and between a point in its L; neigh-
bor is at most D.

3. The distance between a point, and a point in its L, neighbor (where
r > 2) is at least D.

The only cells for which immediate conclusions cannot be drawn, are
those in Lo. This represents the region of uncertainty for the data points
in a particular cell. For those cases, the distance computations need to
be performed explicitly. At the same time, a number of rules can be
defined in order to immediately declare some fraction of the data points
as outliers or non-outliers. These are as follows:

1. If more than k£ data points are contained in a cell together with its
L1 neighbors, then none of these data points are outliers.

2. If less than k data points are contained in a cell A, and its L1 and
Lo neighbors, then all points in cell A are outliers.

The first step in this process is to directly label data points as non-
outliers, if their cells containing more than & points because of the first
rule. Furthermore, all neighbor cells of such cells exclusively contain
non-outliers. In order to obtain the full pruning power of the first rule,
the sum of the points in each cell and its L1 neighbors are determined.
If the total number is greater than k, then all these points are labeled
as non-outliers as well.

Next, the pruning power of the second rule is leveraged. For each cell
A containing at least one data point, the sum of the number of points in
it, and its Ly and Lo neighbors is computed. If this number is no more
than &, then all points in cell A are labeled as outliers. At this point,
many cells may been labeled as outliers or non-outliers. This provides
major pruning gains.

The data points in cells which have not been labeled as either outlier
or non-outlier need to have their k-nearest neighbor distance computed
explicitly. Even for such data points, the computation of the k-nearest
neighbor distances can be made faster with the use of the cell structure.
Consider a cell A which has not been labeled as a pure outlier or pure
non-outlier cell so far. Such cells may possibly contain a mixture of
outliers and non-outliers. The main region of uncertainty for the data
points in cell A are the set of points in the Lo neighbors of this cell
A. It cannot be known whether the points in the Lo neighbors of A
are within the threshold distance of D for the points in cell A. Explicit
distance computations are required in order to determine the number of
points within the threshold D for the data points in cell A. Those data
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points for which no more than k points in L1 and L9 have distance less
than D are declared outliers. Note that distance computations need to
be explicitly performed only from points in cell A to the points in the
Lo neighbors of cell A. This is because all points in L neighbors are
already known to be at a distance less than D from any point in A4, and
all points in L, for r > 2 are already known to be at least a distance
of D from any point in A. Therefore, an additional level of savings is
achieved in the distance computations.

The aforementioned description is for the 2-dimensional case. The ap-
proach can also be extended to higher dimensions. The main difference
for the d-dimensional case is in terms of the width of a cell (which is now
D/(2-+/d)), and the definition of Ls. In the case of 2-dimensional data,
Lo was defined as the set of cells which were at most 3 cells away, but
not an immediate neighbor. In the general case of higher dimensions,
Ly is defined as the set of cells which are at most [2-1/d] cells away, but
not immediate neighbors. All other steps of the algorithm remain iden-
tical. However, for the high-dimensional case, this approach becomes
increasingly expensive, because the number of cells increases exponen-
tially with data dimensionality. Thus, this approach is generally suited
to low-dimensional data.

In many cases, the data sets may not be available in main memory,
but may be stored on disk. The data access efficiency therefore becomes
a concern. It has been shown in [261] how this approach can be applied
to disk-resident data sets with the use of clustered page reads. This
algorithm requires at most three passes over the data. More details are
available in [261].

3.2 Index-based Methods

The key issue in most distance-based schemes is the potentially large
time which is required by the pairwise computations between data points.
The cell-based scheme is a special kind of index which provides effective
pruning of the distance computations in low dimensionality, with the
use of grid-based localization. Indexing and clustering are two other
common forms of data localization and access. Therefore, it is natural
to explore, whether some of the traditional clustering methods or index
structures can be used in order to improve the complexity of distance-
based computations.

The work in [381] provides a first approach along this line of methods.
The definition of outliers in this work is very similar to that proposed
in [261]. The main difference is that instead of defining an absolute
threshold D on the k-nearest neighbor distance, the points are ranked
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in decreasing order of the k-nearest neighbor distance. The top n such
data points are reported as outliers. Therefore, the threshold is on the
distance rank rather than the distance value. The two definitions are
almost equivalent, and are different only in terms of the parameter choice
presented to the user. Many variations of this definition are used in
the literature in order to report the outlier score. For example, the
absolute distance to the k-nearest neighbor may be used as the outlier
score (rather than the rank), or the average distance to all the k nearest
neighbors may be used.

Let 6*(X) be the k-nearest neighbor distance of the d-dimensional
data point X = (z1...x4). Therefore, it is desired to determine the top
n data points with the largest value of 6*(X). A key technique used
in this approach is to approximate sets of points is by their minimum
bounding rectangles. This can be used in order to provide upper and
lower bounds on the value of 6*(X). Let R be a minimum bounding
rectangle, where the lower and upper bounds along the ith dimension
are denoted by [ri,rg]. Then, the minimum distance min; of x; along
the 7th dimension to any point in the minimum bounding rectangle R
is potentially 0, if z; € [r;,r]]. Otherwise, the minimum distance is
min{|xz; — |, |x; — }|}. Therefore, by computing this minimum value
along each dimension, it is possible to estimate the total minimum bound
to the entire rectangle R by Zle mznf Similarly, the maximum dis-
tance max; of X along the ith dimension to the bounding rectangle R
is given by max{|z; — ri|,|z; — r{|}. The corresponding total maximum
value can be estimated as Zle max?. The afore-mentioned bounds can
be used in conjunction with index structures such as the R*-Tree [63] for
estimating the k-nearest neighbor distance of data points. This is be-
cause such index structures use minimum bounding rectangles in order
to represent the data at the nodes. In order to determine the outliers
in the data set, the points are processed one by one in order to deter-
mine their k-nearest neighbor distances. The highest n such distances
are maintained dynamically over the course of the algorithm. A branch-
and-bound pruning technique is used on the index structure in order to
determine the value of §¥(X) efficiently. When the minimum distance
estimate to a bounding rectangle is larger than the value of 6*(X), then
the bounding rectangle obviously does not contain any points which
would be useful for updating the value of 6*(X). Such subtrees of the
R*-Tree can be completely pruned from consideration.

Aside from the index-based pruning, individual data points can also
be discarded from consideration early. A current estimate Dmin on
the minimum value of 6*(X) among the best n outliers found so far is
maintained. The estimate of 6*(X) for a data point X is monotonically
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decreasing with algorithm progression, as better nearest neighbors are
found. When this estimate falls below Dmin, the point X can be dis-
carded from consideration, and its k-nearest neighbor distance no longer
needs to be estimated more accurately.

Many variations of this broad technique have been proposed in the
literature for different data domains. Typically, such algorithms work
with a nested loop structure, where the outlier scores of data points
are computed one by one in a heuristically ordered outer loop which
approximates a decreasing level of outlier score. For each point, the
nearest neighbors are computed in the inner loop in a heuristic ordering
which approximates increasing distance to the point. The inner loop
can be abandoned, when its currently approximated nearest neighbor
distance is less than the nth best outlier found so far (6*(X) < Dmin).

A good heuristic ordering in the outer and inner loops can ensure
that the data point can be discarded from consideration early. The
method for finding the heuristic ordering in the outer loop uses the
complementarity of the clustering and outlier detection problem, and
orders the data points on the basis of the cardinality of the clusters
they are contained in. Data points in clusters containing very few (or
one) point(s) are examined first. Typically, a very simple and efficient
clustering process is used to create the outer loop ordering. The method
for finding the heuristic ordering in the inner loop typically requires a
fast approximation of the k-nearest neighbor ordering, and is dependent
upon the specific data domain or application. An example of such an
approach is that of proximity-based outlier detection in time-series [258].
This approach will be discussed in detail in Chapter 8.

3.2.1 Partition-based Speedup. The approach discussed
above may require the reasonably accurate computation of §*(X) for a
large number of points, if the bound estimation process discussed above
is not sufficiently robust. This can still be expensive in spite of pruning.
In practice, the value of n is quite small, and many data points X can be
excluded from consideration without estimating 6*(X) explicitly. This
is achieved by using clustering [381] in order to perform partitioning of
the data space, and then analyzing the data at this level of granular-
ity. A partition-based approach is used to prune away those data points
which could not possibly be outliers in a computationally efficient way.
This is because the partitioning represents a less granular representa-
tion of the data, which can be processed at lower computational costs.
For each partition, a lower bound and an upper bound on the k-nearest
neighbor distances of all included data points is computed. If the upper
bound on the k-nearest neighbor distance estimate is less than a current
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value of Dmin, then the entire partition can be pruned from consider-
ation. The partition-based method also provides a more efficient way
for approximating Dmin. First, the partitions are sorted by decreasing
lower bound. The first [ partitions containing at least n points are deter-
mined. The lower bound on the [-th partition provides an approximation
for Dmin. The upper and lower bound for each partition is computed
using the Minimum Bounding Rectangle of the index structure contain-
ing the points. More savings may be obtained by using the fact that the
distances from each (unpruned) candidate data point X does not need
to be computed to data points in partitions which are guaranteed to be
further away than the current upper bound on the k-nearest neighbor
distance of the point X (or its containing partition).

Thus, this analysis is performed at a less detailed level of granularity.
This makes its efficiency closer to that of clustering-based methods. In
fact, the partitions are themselves generated with the use of a cluster-
ing algorithm such as BIRCH [505]. Thus, this approach prunes many
data points, and then works with a much smaller set of candidate par-
titions on which the analysis is performed. This greatly improves the
efficiency of the approach. The exact details of computing the bounds
on the partitions use the afore-mentioned estimations on the minimum
and maximum distances to the bounding rectangles of different parti-
tions, and are discussed in detail in [381]. Because of the close rela-
tionship between distance-based and clustering methods, it is natural
to use clustering methods in order to improve the approximations on
the k-nearest neighbor distance. A number of other techniques in the
literature use clustering in order to achieve better pruning and speedups
in distance-based algorithms [46, 185, 441].

3.3 Reverse Nearest Neighbor Approach

Most of the distance-based methods directly use the k-nearest neigh-
bor distribution in order to define outliers. A different approach is to
use the number of reverse k-nearest neighbors in order to define out-
liers [204]. Therefore, the concept of a reverse k-nearest neighbor is first
defined.

DEFINITION 4.1 A data point p is a reverse k-nearest neighbor of q, if
and only if q is a k-nearest neighbor of p.

Data points which have large k-nearest neighbor distances, will also
have few reverse neighbors, because they will lie among the k-nearest
neighbors of very few data points. Thus, an outlier is defined as a point
for which the number of reverse k-nearest neighbors is less than a pre-
defined user-threshold.
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Player Short-  Power- Game- Game- Games
Name Handed Play Winning Tying Played
Goals Goals Goals Goals
Mario Lemieux 31 8 8 0 70
Jaromir Jagr 20 1 12 1 82
John Leclair 19 0 10 2 82
R. Brind’Amor 4 4 5 4 82

Table 4.1. Example of Outliers in NHL Player Statistics [262]

The reverse nearest neighbor approach can also be easily understood
in terms of the underlying k-nearest neighbor graph. Consider a graph
in which the nodes correspond to the data points. A directed edge (p, q)
is added to the graph if and only if g is among the k-nearest neighbors of
p. Thus, every node has an outdegree of k in this graph. However, the
in-degree of the nodes may vary, and is equal to the number of reverse
k-nearest neighbors. The nodes with few reverse k-nearest neighbors
are declared outliers. This approach also requires the determination of
all the k-nearest neighbors of each node. Furthermore, distance-based
pruning is no longer possible since the nearest neighbors of each node
need to be determined explicitly. Thus, the approach may potentially
require O(N?) time for construction of the k-nearest neighbor graph.

3.4 Intensional Knowledge of Distance-based
Outliers

An important issue in outlier analysis is to retain a high level of in-
terpretability for providing intuitive explanations and insights. This is
very important in many application-driven scenarios. The concept of
intensional knowledge of distance-based outliers was first proposed in
[262]. The idea is to explain the outlier behavior of objects in terms of
subsets of attributes. Thus, in this case, a minimal bounding box on
the subsets of attributes is presented in order the explain the outlier be-
havior of the data points. For example, consider the case of NHL player
statistics, which was first presented in [262]. An example set of statistics
is illustrated in Table 4.1. The sample output from [262], which explains
these outliers is as follows:
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Mario Lemieux An outlier in the 1-d space
of power play goals
An outlier in the 2-d space of
short-handed goals and
game-winning goals
R. Brind’Amor An outlier in the 1-d space
of game-tying goals.

Several notions are defined in [262] in order to understand the impor-
tance of an outlier:

1 Is a particular set of attributes the minimal set of attributes in
which an outlier exists?

2 Is an outlier dominated by other outliers in the data?

The intensional knowledge can be directly characterized in terms of
cells, which are the bounding rectangles along different attributes. The
work in [262] proposes a number of roll-up and drill-down methods in
order to define the interesting combinations of attributes for intensional
knowledge. The concept of strong and weak outliers is also defined.
Outliers which are defined by minimal combinations of attributes are
generally considered stronger from an intensional perspective. It should
be emphasized that this definition of strong and weak outliers is specific
to an intensional knowledge-based approach, and is different from the
more general form in which this book uses these terms (as the outlier
tendency of an object).

3.5 Discussion of Distance-based Methods

Distance-based methods have a number of qualitative advantages over
clustering-based techniques because of the more detailed granularity of
the analysis. For example, distance-based algorithms can distinguish be-
tween noise and anomalies much better than cluster-based techniques.
Furthermore, distance-based methods can also find isolated groups of
outliers just like clustering methods. On the other hand, clustering
methods have the advantage that they can provide insights about the
local distributions of data points for defining distances. For example, in
the case of Figure 4.1, the local cluster structure can be used in order
to define a locally sensitive Mahalanobis distance, which is much more
effective at identifying outliers, than a blind application of the euclidian
metric. Surprisingly, virtually all the algorithms in the literature use un-
normalized euclidian distances, which can lead to results which are not
very insightful. While the density-based methods explained later in this
chapter do incorporate some notions of locality, they are still unable to
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Figure 4.5. Impact of local density on outliers

provide the detailed level of local insights that an effective combination
of a clustering- and distance-based approach can provide. In this con-
text, some recent research has incorporated local clustering insights into
distance-based methods. Furthermore, the efficiency advantages of clus-
tering methods should be incorporated into generalized distance-based
methods in order to obtain the best results.

4. Density-based Outliers

The sensitivity of distance-based outliers to data locality was first
noticed in [78]. While the Figure 4.1 illustrates the general effect of
data locality on both data density and cluster orientation, the work in
[78, 79] specifically addresses the issue of varying local density. In or-
der to understand this specific issue, consider the specific example of
a data set with varying density in Figure 4.5. The figure contains two
outliers labeled A and B. Furthermore, the figure contains two clus-
ters, one of which is much sparser than the other. It is evident that
the outlier A cannot be discovered by a distance-based algorithm unless
a smaller distance-threshold is used by the algorithm. However, if a
smaller distance threshold is used, then many data points in the sparser
cluster may be incorrectly declared as outliers. This also means that the
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ranking returned by a distance-based algorithm is incorrect when there
1s significant heterogeneity in the local distributions of the data. This
observation was also noted more generally on the basis of the example
in Figure 4.1, where it was shown that the outliers are sensitive to both
the local cluster density and the orientation. However, much of the work
in density-based clustering has generally focussed on issues of varying
data density, rather than the varying shape and orientation of clusters.
It should also be noted that the reverse-nearest neighbor approach dis-
cussed earlier in this chapter can also adjust well to local variations
in the underlying data density. However, the issue was first raised ex-
plicitly in [78], and subsequently, the local outlier factor approach was
proposed. This section contains a discussion of some of the more popular
algorithms on density-based outlier analysis.

4.1 LOF: Local Outlier Factor

The Local Outlier Factor (LOF)is a quantification of the outlierness of
the data points, which is able to adjust for the variations in the different
densities. For a given data point X, let D*(X) be its distance to the
k-nearest neighbor of X, and let Li(X) be the set of points within the
k-nearest neighbor distance of X. Note that L (X) will typically contain
k points, but may sometimes contain more than k& points because of ties
in the k-nearest neighbor distance.

Then, the reachability distance Ry (X,Y") of object X with respect to
Y is defined as the maximum of the distance dist(X,Y’), between the
pair (X,Y) and the k-nearest neighbor distance of Y.

Ri(X,Y) = max{dist(X,Y), D*(Y)}

The reachability distance is not symmetric between X and Y. Intu-
itively, when Y is in a dense region and the distance between X and
Y is large, the reachability distance of X with respect to it is equal to
the true distance dist(X,Y). On the other hand, when the distances
between X and Y are small, then the reachability distance is smoothed
out by the k-nearest neighbor distance of Y. The larger the value of k,
the greater the smoothing. Correspondingly, the reachability distances
with respect to different points will also become more similar.

Then, the average reachability distance ARy (X) of data point X with
respect to its neighborhood Ly (X) is defined as the average of its reach-
ability distances to all objects in its neighborhood.

ARy(X) = MEANy ;) Re(X,Y)

Here the MEAN function simply represents the mean value over the en-
tire set Lg(X). The work in [78] also defines the reachability density
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as the inverse of this value, though this particular presentation omits
this step, since the LOF values can be expressed more simply and intu-
itively in terms of the average reachability distance ARy (X). The Local
Outlier Factor is then simply equal to the mean ratio of ARy (X) to the
corresponding values of all points in the k-neighborhood of X.

AR (X)
AR(Y)

The use of distance ratios in the definition ensures that the local distance
behavior is well accounted for in this definition. As a result, the LOF
values for the objects in a cluster are often close to 1, when the data
points in the cluster are homogeneously distributed. For example, in
the case of Figure 4.5, the LOF values of data points in both clusters
will be quite close to 1, even though the densities of the two clusters are
different. On the other hand, the LOF values of both the outlying points
will be much higher since they will be computed in terms of the ratios to
the average neighbor reachability distances. In practice, the maximum
value of LOFy(X) over a range of different values of k is used as the
outlier score in order to rank the different objects [78].

One observation about the LOF method is that while it is popularly
understood in the literature as a density-based approach, it can be more
simply understood as a relative distance-based approach with smoothing.
The relative distances are computed on the basis of the local distribution
of reachability distances. The LOF method was originally presented
in [78] as a density-based approach because of its ability to adjust to
regions of varying density. The density is loosely defined as the inverse
of the average of the smoothed reachability distances in a neighborhood
according to [78]. This is of course not a precise definition of density,
which is traditionally defined in terms of the number of data points
within a specified area or volume. The presentation in this chapter
omits this intermediate density variable, both for simplicity, and for a
definition of LOF directly in terms of reachability distances. The real
connection of LOF to data density lies in its insightful ability to adjust to
varying data density with the use of relative distances. While this book
has also classified this method as a density-based approach, it can be
equivalently understood in terms of either a relaxed definition of density
or distances.

LOF(X) = MEANy ;v

4.2 LOCI: Local Correlation Integral

An interesting method proposed in [356] uses a local density-based
method for outlier analysis. The LOCI method is truly a density-based
method, since it defines the density M (X, ¢€) of a data point X in terms
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of the number of data points within a pre-specified radius e around
a point. This is referred to as the counting neighborhood of the data
point X. Correspondingly, the average density AM(X,e,d) in the o-
neighborhood of X is defined as the mean value of M (X, ¢) for all data
points at a distance at most d from X. The value of ¢§ is also referred
to as the sampling neighborhood of X, and is always larger than e.
Furthermore, the value of € is always chosen as a constant fraction of ¢,
no matter what value of § is used. The value of § is a critical parameter
in the analysis, and multiple values of this parameter are used in order to
provide analytical insights at different levels of granularity. The average
density is formally defined as follows:

AM(X, 6, 5) - MEAN(YdZSt(X,Y)S(S)M(Y7 6)

Correspondingly, the multi-granularity deviation factor MDEF (X €,0)
at level ¢ is expressed in terms of the ratio of the densities at a point,
and its neighborhood.

M(Xe)

MDEF(X,e,6) =1 —
AM (X ,€,0)

(4.1)

Note the similarity to LOF in terms of using the local ratios while defin-
ing the outlier score of a data point. The larger the value of the MDEF,
the greater the outlier score. In order to convert the MDEF score into a
binary label, the deviation o(X,¢,d) of the different values of M (X, e¢)
within the sampling neighborhood of X is computed.

STD\y giss(x vy<syM (Y, €)

X,€,0) =
o(X,€.9) AM(X, ¢, )

Here the term ST"'D corresponds to the standard-deviation function com-
puted over the entire sampling neighborhood. The term in the denom-
inator of the standard deviation accounts for the fact that the MDEF
value of Equation 4.1 is scaled by the same value in the denominator.
The value of € is always chosen to be half that of § in order to enable
fast approximate computation. Therefore, throughout this presentation,
it is assumed that the value of € is automatically decided by the choice of
6. Multiple values of § are used in order to provide a multi-granularity
approach for outlier analysis. These methods vary the sampling radius
from a minimum radius containing at least 20 points to a maximum
radius which spans most of the data. A data point is an outlier if its
MDEF value is unusually large among any of the values computed at
different granularity levels. Specifically, the value of the MDEF needs
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to be at least k- (X, ¢€,0), where k is chosen to be 3. This choice of k
is common in statistical analysis with the use of the normal distribution
assumption.

The algorithm can be made much faster in practice with the use of
several observations:

Only a limited set of sampling neighborhoods need to be consid-
ered. In particular, if the sampling or counting neighborhoods do
not change for small changes in §, then those neighborhoods do
not need to be considered.

Fast ways to approximate the neighbor counts are also provided
in [356]. This provides good approximations to MDEF, which are
usually acceptable in practice. It has been shown in [356], that
a box count of a grid-based division of the data provides a fast
approximation, when L., distances are used. This approximation
is also referred to as the alLOCI algorithm.

4.2.1 LOCI Plot. The LOCI plot compresses the information
about a data point in a two dimensional representation, where the out-
lier behavior is visually interpretable from a multi-granular perspective.
Since the value of MDEF(X,e¢,0) is constructed by examining the rel-
ative behavior of M (X, e) and AM (X e, ) over different values of ¢, it
makes sense to visualize each of these quantities by separately plotting
them against the sampling neighborhood §. Therefore, the LOCI plot
shows the value of § on the X-axis, against each of the following two
count-based quantities on the Y-axis:

The value of M (X,e) = M(X,d/2) is plotted on the Y-axis. This
shows the actual density behavior of the data point X at different
granularity levels.

The values of AM (X, €,0)£S5T Dy gi51(x vy<5yM (Y, €) are plotted
on the Y-axis. This shows the density behavior of the neighbor-
hood of X (along with statistical ranges) for different granularity
levels.

The LOCI plot provides a wvisual understanding of how the deviations
of the data point relate to extreme values of the deviation at different
granularity levels, and it explains why a particular data point may have a
high MDEF value. The use of different granularity levels is certainly an
advantage, because it can detect outliers in a very general way, which is
data independent. For example, in the case of Figure 4.2, any distance-
based or the LOF method would need to pick the value of k (for k-nearest
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neighbor) very carefully in order to identify these data points as outliers.
However, the LOCI method would always be able to find some level of
granularity at which these data points are declared outliers. This would
also show up in the LOCI plot at the corresponding granularity level.

4.3 Histogram-based Techniques

Histograms are a simple and intuitive construct, which are particularly
suitable for density-based summarization of univariate data. In this
case, the data is discretized into bins, and the frequency of each bin is
estimated. Data points which lie in bins with very low frequency are
reported as outliers. In the context of multivariate data, the approach
can be generalized in two different ways:

The outlier scores are computed separately for each dimension,
and then the scores can be aggregated.

The discretization along each dimension can be generated at the
same time, and a grid structure can be constructed. The distri-
bution of the points in the grid structure can be used in order to
create a model of the sparse regions. The data points in these
sparse regions are the outliers.

Let f1...fr be the frequencies of the k univariate or multivariate bins
which are constructed. Then, the mean and standard-deviation of these
frequencies can be estimated. A student ¢t-distribution or normal distri-
bution can be used in order to model the bin frequencies. This model
can be used to determine those bins which have unusually low frequency.
The data points in the bins with unusually low frequency are declared
outliers. If desired, the frequency of a bin is reduced by 1, in order to
model the anomalousness of a data point, without including it in the
count. This is because the inclusion of the data point itself in the count
can magk its outlier score. The quality of the histogram profiles can
be further improved by using a sequential ensemble method in which
obvious outliers are moved from the data in a first step, and then the
histograms are built on the pruned data containing fewer outliers. This
model is more robust, since it discounts the impact of outliers on the
model at least to a partial degree.

The major challenge with histogram-based techniques is that it is
often hard to determine optimal histogram width well. Histograms which
are too wide or too narrow will not model the frequency distribution at
the level of granularity needed to optimally detect outliers. When the
bins are too narrow, the normal data points falling in these bins will
be declared outliers. On the other hand, when the bins are too wide,



124 OUTLIER ANALYSIS

anomalous data points may fall in high frequency bins, and will therefore
not be declared outliers.

A second challenge with the use of histogram techniques is that they
are too local in nature, and often do not take the global characteris-
tics of the data into account. For example, for the case of Figure 4.2,
a multivariate grid-based approach may not be able to classify an iso-
lated group of data points as outliers, unless the resolution of the grid
structure is calibrated carefully. This is because the density of the grid
only depends on the data points inside it, and an isolated group of
points may create an artificially dense grid cell, when the granularity
of representation is high. Histogram methods do not work very well in
higher dimensionality because of the sparsity of the grid structure with
increasing dimensionality, unless the outlier score is computed with re-
spect to carefully chosen lower dimensional projections. For example,
a d-dimensional space will contain at least 2¢ grid-cells, and therefore,
the number of data points expected to populate each cell reduces expo-
nentially with increasing dimensionality. Nevertheless, histogram-based
techniques find wide applicability in intrusion-detection techniques, be-
cause such applications are naturally suited to modeling the normal data
with the use of histogram-based profiles.

4.4 Kernel Density Estimation

Kernel-density estimation methods are similar to histogram techniques
in terms of building density profiles, though the major differences is that
a smoother version of the density profile is constructed. In kernel den-
sity estimation [409], a continuous estimate of the density is generated
at a given point. The value of the density at a given point is estimated
as the sum of the smoothed values of kernel functions Kj (-) associated
with each point in the data set. Each kernel function is associated with
a kernel width A which determines the level of smoothing created by the
function. The kernel estimation f(z) based on N data points and kernel
function Kj (-) is defined as follows:

N

f@) = (1/N) -3 Kj (@ — X)) (4.2)

=1

Thus, each discrete point X; in the data set is replaced by a continuous
function K (-) which peaks at X; and has a variance which is determined
by the smoothing parameter h. An example of such a distribution would
be a gaussian kernel with width h.

K (x — X;) = (1/\/27'r -h) - o~ (@—Xi)%/(2h?)
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The estimation error is defined by the kernel width h which is chosen
in a data driven manner. It has been shown [409] that for most smooth
functions Kj(-), when the number of data points goes to infinity, the
estimator f(z) asymptotically converges to the true density function
f(x), provided that the width h is chosen appropriately. For the d-
dimensional case, the kernel function is chosen to be the product of d
identical kernels K;(-), each with its own smoothing parameter h;.

As before, the mean and standard deviations of the data density at
each of the points can be constructed. The data points with unusually
low density are declared outliers with the use of a t-distribution or nor-
mal distribution assumption. If desired, the density-contribution of the
data point itself can be excluded in order to determine its outlier score.
As in the case of histogram-based methods, sequential ensembles can be
used in order to improve the robustness of the model.

Density-based methods have similar challenges as histogram-techniques.
In particular, the use of a global bandwidth in order to estimate density
may not work very well in cases where there are wide variations in local
density such as Figures 4.2 and 4.5. Furthermore, these methods are
not very effective for higher dimensionality, because the accuracy of the
density estimation process degrades with increasing dimensionality.

5. Limitations of Proximity-based Detection

Most proximity-based methods use distances in order to define outliers
at varying levels of granularity. Typically, higher levels of granularity are
required for greater accuracy. In particular, methods which abstract the
data by various forms of summarization do not distinguish well between
true anomalies and noisy regions of low density. Furthermore, these
methods need to combine global and local analysis carefully in order
to find the true outliers in the data. A fully global analysis may miss
important outliers as indicated in Figures 4.1 and 4.5, whereas a fully
local analysis may miss small clustered groups of outliers as illustrated
in Figure 4.2. At the same time, increasing the granularity of analysis
can make the algorithms inefficient. In the worst-case, a distance-based
algorithm with full granularity can require O(NN?) distance computations
in a data set containing N records. While indexing methods can be used
in order to incorporate pruning into the outlier search, the effectiveness
of pruning methods reduces with increasing dimensionality because of
data sparsity.

An even more fundamental limitation in the context of high dimen-
sional data is not one of efficiency, but that of the quality of the outliers
found. In the high-dimensional case, all points become almost equidis-
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tant from one another, and therefore the contrast in the distances is
lost [22, 215]. This is also referred to as the curse of dimensionality,
which arises from data sparsity, and it negatively impacts many high
dimensional applications [8]. With increasing dimensionality, most of
the features are not informative for outlier detection, and the noise ef-
fects of these dimensions will impact proximity-based methods in a very
negative way. In such cases, the outliers can be masked by the noise
in the features, unless the relevant dimensions can be explicitly discov-
ered by an outlier detection method. Since proximity-based methods
are naturally designed to use all the features in the data, their quality
will naturally degrade with increasing dimensionality. Some methods do
exist for improving the effectiveness of such methods in increasing di-
mensionality with subspace methods. These methods will be discussed
in Chapter 5.

6. Conclusions and Summary

This chapter provides an overview of the key proximity-based tech-
niques for outlier analysis. All these methods determine the outliers in
the data with the use of proximity information between data points.
These methods are closely related to clustering techniques in a com-
plementary sense; while the former finds outlier points in sparse data
localities, the latter tries to determine dense data localities. Therefore,
clustering is itself a common method used in proximity-based outlier
analysis.

Proximity-based methods enjoy wide popularity in the literature be-
cause of ease of implementation and interpretability. A major challenge
in using such methods is that they are typically computationally in-
tensive, and most of the high-quality methods require O(N?) distance
computations in the worst-case. Furthermore, these methods may not
work very effectively, when all the dimensions are used for the analysis.
This is because the anomalies in the data are often lost in the noise
of full dimensional analysis. Methods for finding such outliers will be
discussed in detail in the next chapter.

7. Bibliographic Survey

The traditional definition of multivariate outliers was often under-
stood in the context of side-products of clustering algorithms. Outliers
were therefore defined as data points which do not naturally fit into any
cluster. However, the non-membership of a data point in a cluster is not
able to distinguish between noise and anomalies. A detailed discussion
of different clustering algorithms, and their use for outlier analysis may
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be found in [232, 255]. Many of the clustering algorithms explicitly la-
bel points which do not fit within clusters as outliers [492]. However,
in some sparse high-dimensional domains such as transactional data,
(subspace)-clustering may be the only approach which can be used for
determining outliers [209]. This method is discussed in detail in the
chapter on categorical data.

In order to improve the accuracy of a clustering approach further,
one can use the distance of data points to cluster centroids, rather than
using only the membership of data points in clusters. The work in [412]
investigates a number of deterministic and probabilistic methods for
clustering in order to detect anomalies. These techniques were designed
in the context of intrusion detection. One challenge in such methods is
to prevent the clustering methods from quality-degradation by noise and
anomalies, which are already present in the data. This is because if the
clusters which are found are already biased by noise and anomalies, it
will also prevent outliers from being found effectively. Such techniques
have been used often in the context of intrusion-detection applications
[55, 412]. The work in [55] uses a first phase in which the normal data
is identified, by using data points matching frequent patterns in the
data. Subsequently this normal data is used in order to perform robust
clustering. The outliers are then determined as points which lie at a
significant distance to these clusters. These methods can be considered
a kind of sequential ensemble approach.

A number of outlier detection methods have also been proposed for
cases where the anomalies may lie in small clusters [155, 371, 372, 351,
208, 239]. Many of these techniques work by using distance-thresholding
in order to regulate the creation of new clusters. When a data point does
not lie within a specified threshold of the nearest cluster centroid, a new
cluster is created containing a single instance. This results in clusters
of varying size, since some of the newly created clusters do not get a
sufficient number of points added to them. Then, the outlierness of a
data point may be decided both by the number of points in its cluster,
and the distance of its cluster to the other clusters. A number of indexing
techniques have also been proposed in order to speed to the partitioning
of the data points into clusters [98, 428]. Biased sampling [265] has also
been shown to be an effective and efficient method for clustering-based
outlier detection.

Distance-based methods have been extremely popular in the litera-
ture because of their ability to perform the analysis at a higher level
of granularity than clustering methods. Furthermore, such methods are
intuitive and extremely easy to understand and implement. The first
distance-based method was proposed in [261]. The ideas in this work
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were extended to finding intensional knowledge in [262]. Subsequently,
indexing methods were designed to improve the efficiency of this method
in [381]. Subsequently, a significant number of distance-based algorithms
have been developed for different scenarios. The work in [46] uses lin-
earization in which the multidimensional space is populated with Hilbert
space-filling curves. This 1-d representation has the advantage that the
k-nearest neighbors can be determined very fast by examining the pre-
decessors and successors of a data point on the space-filling curve. The
sum of the k-nearest neighbor distances on the linearized representation
is used in order to generate the outlier score of a data object. While
the use of the sum of the k-nearest neighbor distances has some ad-
vantages over the k-nearest neighbor distance in differentiating between
sparsely populated data and clustered data, it has the disadvantage of
(sometimes) not being able to detect groups of isolated anomalies as il-
lustrated in Figure 4.2. One challenge with the use of space filling curves
is that since they map the data into a hypercube in d-dimensions, the
number of corners of this hypercube increase exponentially with dimen-
sionality. In such cases, the sparsity of the data in high-dimensions may
result in a degradation of the locality behavior of the space-filling curve
with increasing dimensionality. In order to address this issue, the work
in [46] uses data shifting techniques in order to improve locality. An
iterative technique was designed, which requires d + 1 scans of the data
set.

The work in [60] designs a simple pruning technique in order to im-
prove the efficiency of a k-nearest neighbor based outlier detection tech-
nique. The core idea is similar to the pruning rule used in [381]. The idea
is that if the outlier score for an object is less than the k-nearest neighbor
distance of the n-th outlier, then that data point cannot possibly be an
outlier and is pruned from further consideration. This simple pruning
rule has been shown in [60] to work well with randomized data. The
randomization itself can be done in linear time by using a disk-based
shuffling technique. The work in [471] performs the nearest neighbor
computations on a smaller sample of the data set in order to improve
the efficiency. Theoretical guarantees are provided in order to bound the
loss in accuracy resulting from the sampling process.

The effectiveness of pruning methods is clearly dependent on the abil-
ity to generate a good bound on the k-nearest neighbor distances in an
efficient way. Therefore, the work in [185] partitions the data into small
clusters. The k-nearest neighbor distance of a data point within a cluster
is used in order to generate an upper bound on the k-nearest neighbor
distance of that point. If this upper bound is less than the scores of the
set of outliers already found, then the point can be pruned from consid-
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eration. The work in [381] also uses clustering techniques for pruning,
though the method in [185] uses recursive hierarchical partitioning in
order to ensure that each cluster is assigned a similar number of data
points. The ordering of the data points along the principal component
of largest variance is used in order to provide a quick estimate of the
k-nearest neighbor distance.

A resolution-based method was proposed in [157]. According to this
method, whether a point belongs to a cluster or whether it is an outlier
depends on the distance threshold. At the highest resolution level, all
points are in individual clusters of their own and are therefore outliers.
As the resolution is slowly reduced, more and more data points join
clusters. In each step each point changes from being an outlier to a
cluster. Based on this, a Resolution Outlier Factor (ROF) value was
defined in [157]. This was shown to provide effective results for outlier
analysis.

Most of the distance-based algorithms are designed with the use of
euclidian distances. In practice, the euclidian function may not be opti-
mal for finding the outliers. In fact, for many other domains of data, the
distance functions are often defined in a fairly complex way, and many of
the pruning techniques designed for euclidian spaces will not work well
in arbitrary spaces. In this context, an efficient algorithm was designed
for outlier detection in arbitrary metric spaces [441], which requires at
most three passes over the data.

A method to improve the efficiency of distance-based algorithms with
the use of reference points was proposed in [359]. The core idea in this
work is to rank the data points on the basis of their relative degree of
density with respect to a fixed set of R reference points. Each data point
is transformed to a 1-dimensional space in R possible ways on the basis
of their distance to a reference point. For each of these R 1-dimensional
data sets, the relative degree of density of each data point with respect
to the corresponding reference point is computed. The overall relative
degree of density of a data point is defined as the minimum relative
degree of density over all the reference points. This relative degree of
density provides a way to rank the different data points. Distributed
algorithms for speeding up outlier detection are proposed in [66].

Scalability is a significant issue in the context of the data streams.
Typically, in the case of data streams, a past window of history is used
in order to determine outliers. Data points whose k-nearest neighbor
values are large in a specific sliding window history are declared outliers
[48, 266]. Stream clustering methods such as those in [25] can also be
used in order to speed up the outlier analysis process. Such an approach
has been discussed in [266].
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The issue of local density in the context of outlier analysis was first ad-
dressed in [78, 79]. We note that the reverse nearest neighbor approach
[81, 204] presented in this chapter shares some similarities to LOF in
terms of adjusting to local densities with the use of a reverse nearest-
neighbor approach. The variations in the local density may result in
poor ranking of outliers by global distance-based methods. Therefore,
the concept of Local Qutlier Factor (LOF') was proposed in [78]. These
methods adjust the outlier score of an object on the basis of the local
density. It should be mentioned that the concept of density is really
loosely defined in LOF as an inverse of averaged distances. A true def-
inition of density should really count the number of data points in a
specific volume. Data points in local regions of high density are given
a higher outlier score, even if they are slightly isolated from the other
points in their locality. Many different variants of the broad LOF ap-
proach were subsequently proposed. For example, the work in [241] pro-
posed the concept of top-n local outliers, where the top-n outliers were
determined on the basis of the density. Pruning techniques were used to
improve the running time. This was achieved by partitioning the data
into clusters, and computing bounds on the LOF values of the points in
each cluster. Thus, entire clusters can be pruned if they are guaranteed
to contain only points, which have lower LOF values than the weakest
of the current top-n outliers. Other methods for improving the effective-
ness of top-n local outlier detection with the use of cluster-pruning were
proposed in [117].

One issue with LOF techniques is that they can sometimes be in-
effective, when regions of different density are not clearly separated.
Therefore, the INFLO technique of [242] takes the symmetric neighbor
relationship into account while defining the local outliers. The con-
cept of connectivity-based outlier factor (COF) was proposed in [442],
which is also able to find outliers in low density or arbitrarily shaped
regions effectively. The main difference from LOF is the way in which
the neighborhood of a data point is defined. Specifically, the neighbor-
hood is defined incrementally by adding the closest point to the current
neighborhood set. This can define neighborhoods effectively when the
points are distributed on arbitrary lower dimensional manifolds of the
data. The LOF approach has also been combined with other clustering
techniques. For example, the work in [208, 210] defines a score called
Cluster-Based Local Outlier Factor (CBLOF) in which anomalies are de-
fined as a combination of local distances to nearby clusters and the size
of the clusters to which the data point belongs. Data points in small
clusters, which are at a large distance to nearby clusters are flagged as
outliers.



Prozimity-based Outlier Detection 131

The LOF scheme has also been extended to the case of spatial data
with non-spatial attributes [433]. For example, sea surface temperatures
can be considered as a kind of non-spatial attribute in the context of spa-
tial location. Such data are known to exhibit spatial auto-correlations,
in which the value of an element is affected by its immediate neighbors
(eg. spatial temperature locality). Furthermore, the data shows spatial
heteroscedasticity, in which the variance of a data point is based on its lo-
cation. For example, “normal” temperature variations are clearly based
on geographical location. We note that spatial data shares some similar-
ities with temporal data from the perspective of spatial continuity, which
is analogous to temporal continuity. Correspondingly, the work in [433]
defines a local outlier measure, known as the Spatial Local Outlier Mea-
sure (SLOM), which is specially suited to spatial outlier detection. The
generalization of the LOF method to the streaming scenario is discussed
in [369)].

The LOCI method [356] is also a locally sensitive method, which uses
the number of points in a circular neighborhood around a point, rather
than the inverse of the k-nearest neighbor distances for local density
computation. Thus, it is truly a density based method from an intuitive
perspective. Furthermore, the approach is tested over different levels
of granularity in order to reduce the parameter choices, and remove
the need for some of the input parameters during the outlier detection
process. An approximate version of the algorithm can be implemented
in almost linear time. An interesting contribution of this work is the
introduction of LOCI plots, which provide an intuitive understanding of
the outliers in the data with a visual plot. The LOCI plot provides an
understanding of how different sizes of neighborhoods may correspond
to the outlier score of a data point.

The traditional methods for density-based outlier analysis involve
the use of discretization, grid-based methods, and kernel-density based
methods. The first two belong in the general category of histogram-
based methods [236]. The main challenge in histogram-based methods
is that the bucket-size along each dimension can sometimes be hard to
pick correctly. Ideally, histograms should be built only with normal data
(without anomalies), in order to obtain the best results. However, they
can also be used with a mixture of normal and anomalous instances. In
such cases, a given point should be removed from contention while eval-
uating the statistical frequency of the histogram bin that it belongs to.
These methods are also hard to use in the high dimensional case, because
the grids can become increasingly sparse with increasing dimensionality.
A closely related method is that of kernel-density estimation [409]. Ker-
nel density-estimation is a continuous variation of grid-based methods, in
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which a smooth kernel function is used for the estimation process. Such
methods also become increasingly susceptible in greater dimensionality,
because density estimation cannot be robustly performed as the dimen-
sionality of the data increases. This is consistent with the behavior of
all proximity-based methods, because the concept of proximity is poorly
defined with increasing dimensionality [215].

8. Exercises

1. Consider a data set with the following observations: { (1, 3), (1.01,
3.01), (0.99, 3.01), (0.99, 3), (0.99, 2.99), (3, 1) }.

What are the results of linear modeling on this data set onto
1-dimensions (PCA), for finding outliers?

How well does a 1-NN technique work for finding outliers in
this case? How do the absolute values of the outlier scores
compare in the two cases?

2. Consider a data set containing a single cluster with the points {
(1, 1), (0, 0), (2, 2.1), (3, 3.1), (4, 4), (5.1, 5) }.

Consider the two points (6.5,6.5), and (1,2.1). Draw the
points on a piece of paper. Which of the two data points
seems more like an outlier?

Which point does a 1-NN algorithm set as the highest outlier
score with the euclidian metric?

Which point does a 1-NN algorithm set as the lowest outlier
score with the euclidian metric?

Which data point does a PCA-based algorithm set at the
highest outlier rank, when the residuals are the outlier scores?

Would you recommend changing the distance function from
the euclidian metric? How?

3. Download the Ionosphere data set from the UCI machine learning
repository [169].

Rank the data points based on their residual scores in a PCA
approach, when only the top 3 eigenvectors are used.

Rank the data points based on their k-nearest neighbor scores,
for values of k ranging from 1 through 5.

Normalize the data, so that the variance along each dimension
is 1. Rank the data points based on their k-nearest neighbor
scores, for values of k£ ranging from 1 through 5.
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How many data points are common among the top 5 ranked
outliers using different methods?

Now use a voting scheme, which adds up the ranks of the
outliers in different schemes. Which are the top 5 outliers
now?

Does this ensemble approach provide more robust outliers?

4. Repeat Exercise 3 with the network intrusion data set from the
UCI machine learning repository.

5. A manufacturing company produces 2-dimensional square widgets,
which are normally distributed with a length of 1 meter on each
side, and a standard deviation of 0.01 meters.

Generate a data set with 100,000 widgets from this distribu-
tion.

The company produced 5 anomalous widgets, due a defect in
the manufacturing process. Each such widget had a square
length of 0.1 meters, and standard deviation of 0.001 meters.
Generate these 5 anomalous points using the normal distri-
bution assumption.

Does a 1-NN approach find the anomalous widgets?
Does a 10-NN approach find the anomalous widgets?

6. Apply a k-means clustering approach to the data set in Exercise
5, where 5 cluster centroids are used. As a post-processing step,
remove any clusters with 10 or less data points. Score the data
points by their distance to their closest cluster centroids. Which
data points have the highest outlier scores?

7. Apply the reverse 1-NN algorithm to the case of Exercise 5. Which
data points have the highest outlier scores? Which data points
have the highest outlier scores with the reverse 10-NN algorithm?
With the reverse 100-NN algorithm?

8. Repeat Exercises 3 and 4 with the use of the LOF method and
determine the ranking of the outliers. Are the outliers same in
this case as those found in Exercises 3 and 47

9. Repeat Exercise 8 with the use of the LOCI method. Are the
outliers found to be the same?



Chapter 5

HIGH-DIMENSIONAL OUTLIER
DETECTION: THE SUBSPACE
METHOD

“In view of all that we have said in the foregoing sections,
the many obstacles we appear to have surmounted, what
casts the pall over our victory celebration? It is the curse
of dimensionality, a malediction that has plagued the
scientist from the earliest days.”— Richard Bellman

1. Introduction

Many real data sets are very high dimensional. In some scenarios,
real data sets may contain hundreds or thousands of dimensions. With
increasing dimensionality, many of the conventional outlier detection
methods do not work very effectively. This is an artifact of the well
known curse of dimensionality. In high-dimensional space, the data
becomes sparse, and the true outliers become masked by the noise effects
of multiple dimensions, when analyzed in full dimensionality.

A main cause of the dimensionality curse is the difficulty in defining
locality for the high dimensional case. For example, proximity-based
methods define locality with the use of distance functions. On the other
hand, it has been shown in [65, 215], that all pairs of points are almost
equidistant in high-dimensional space. This is referred to as data spar-
sity. Since outliers are defined as data points in sparse regions, this
results in a poorly discriminative situation where all data points are sit-
uated in an almost equally sparse regions in full dimensionality. The
challenges arising from the dimensionality curse are not specific to out-
lier detection. It is well known that many problems such as clustering
and similarity search experience qualitative challenges with increasing
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dimensionality [5, 7, 95, 215]. In fact, it has been suggested that al-
most any algorithm which is based on the notion of proximity would
degrade qualitatively in higher dimensional space, and would therefore
need to re-defined in a more meaningful way [8]. The impact of the
dimensionality curse on the outlier detection problem was first noted in
[4].

In order to further explain the causes of the ineffectiveness of full
dimensional outlier analysis algorithms, a motivating example will be
presented. In Figure 5.1, four different 2-dimensional views of a hypo-
thetical data set have been illustrated. Each of these views corresponds
to a disjoint set of dimensions. It is evident that point A is exposed
as an outlier in the first view of the data set, whereas point B is ex-
posed as an outlier in the fourth view of the data set. However, neither
of the data points A and B are exposed as outliers in the second and
third views of the data set. These views are therefore noisy from the
perspective of measuring the outlierness of A and B. In this case, three
of the four views are quite non-informative and noisy for exposing any
particular outlier A or B. In such cases, the outliers are lost in the ran-
dom distributions within these views, when the distance measurements
are performed in full dimensionality. This situation is often naturally
magnified with increasing dimensionality. For data sets of very high di-
mensionality, it is possible that only a very small fraction of the views
may be informative for the outlier analysis process.

What does the aforementioned pictorial illustration tell us about the
issue of locally relevant dimensions? The physical interpretation of this
situation is quite intuitive in practical scenarios. An object may have
several measured quantities, and significantly abnormal behavior of this
object may be reflected only in a small subset of these quantities. For
example, in an airplane mechanical fault detection scenario, the results
of thousands of different airframe tests on the same plane may mostly
be normal, with some noisy variations, which are not significant. On the
other hand, some deviations in a small subset of tests may be significant
enough to be indicative of anomalous behavior. When the data from the
tests are represented in full dimensionality, the anomalous data points
will not appear significant in virtually all views of the data, except for
a very small fraction of the dimensions. Therefore, aggregate proximity
measures are unlikely to expose the outliers, since the noisy variations
of the vast number of normal tests will mask the outliers. Furthermore,
when different objects (instances of different airframes) are tested, then
different tests (subsets of dimensions) may be relevant to finding the
outliers, which emphasizes the local nature of the relevance.
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What does this mean for full-dimensional analysis in such scenarios?
When full-dimensional distances are used in order to measure deviations,
the dilution effects of the vast number of “normally noisy” dimensions
will make the detection of outliers difficult. In most cases, this will show
up as concentration effects in the distances, from the noise in the other
dimensions. This may make the computations more erroneous. Fur-
thermore, the additive effects of the noise present in the large number
of different dimensions will interfere with the detection of actual devia-
tions. Simply speaking, outliers are lost in low-dimensional subspaces,
when full-dimensional analysis is used, because of the masking and dilu-
tion effects of the noise in full dimensional computations [4].

Similar effects are also experienced for other distance-based methods
such as clustering and similarity search. For these problems, it has
been shown [5, 7, 215] that by examining the behavior of the data in
subspaces, it is possible to design more meaningful clusters which are
specific to the particular subspace in question. This broad observation
is generally true of the outlier detection problem as well. Since the
outliers may only be discovered in low dimensional subspaces of the data,
it makes sense to explore the lower dimensional subspaces for deviations
of interest. Such an approach filters out the additive noise effects of the
large number of dimensions, and results in more robust outliers.

Such a problem is very challenging to address effectively. This is be-
cause the number of possible projections of high dimensional data is
exponentially related to the dimensionality of the data. The problem
of outlier detection is like finding a needle in a haystack, even when we
know the relevant dimensions of interest. Being forced to determine the
relevant subsets of dimensions in addition to this challenge is equivalent
to suggesting that even the haystack of interest is hidden in an exponen-
tial number of possible haystacks. An important observation is that sub-
space analysis in the context of the outlier detection problem is generally
more difficult than in the case for problems such as clustering, which are
based on aggregate behavior. This is because outliers, by definition, are
rare, and therefore statistical aggregates on individual dimensions in a
given locality often provide very weak hints for the subspace exploration
process as compared to aggregation-based methods such as clustering.
When such weak hints result in the omission of relevant dimensions,
the effects can be much more drastic than the inclusion of irrelevant di-
mensions, especially in the interesting cases when the number of locally
relevant dimensions is a small fraction of the full data dimensionality.
A common mistake is to assume that the complementarity relationship
between clustering and outlier analysis can be extended to the problem
of local subspace selection. In particular, blind adaptations of dimension
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selection methods from earlier subspace clustering methods, which are
unaware of the nuances of subspace analysis principles across different
problems, may sometimes miss important outliers. In this context, it is
also crucial to recognize the difficulty in identifying relevant subspaces
for outlier analysis, and use robust methods which combine the results
from different subspaces.

An effective outlier detection method would need to search the data
points and dimensions in an integrated way, so as to reveal the most
relevant outliers. This is because different subsets of dimensions may be
relevant to different outliers, as is evident from the example in Figure
5.1. The integration of point and subspace exploration leads to a further
expansion in the number of possibilities which need to be examined
for outlier analysis. This chapter will focus on subspace exploration
methods, which attempt to find the relevant outliers by sifting through
different subsets of dimensions in the data in an ordered way. This
is accomplished simultaneously with a data-specific evaluation process,
so that relevant data points are reported as outliers without having to
explore all the subspaces in an exhaustive way. The idea is to determine
the relevant subsets of dimensions in which the most important outliers
are revealed as quickly as possible. This model is referred to as projected
outlier detection [4]. Correspondingly, this chapter will present a number
of algorithms, which achieve this goal.

Several classes of methods are commonly used in order to discover the
relevant subspaces:

Rarity-based: These methods attempt to discover the subspaces
based on rarity of the underlying distribution. The major challenge
here is computational, since the number of rare subspaces is far
larger than the number of dense subspaces in high dimensionality.

Unbiased: In these methods, the subspaces are sampled in an
unbiased way, and scores are combined across different subspaces.

Aggregation-based: In these methods, aggregate statistics such
as cluster statistics, variance statistics, or non-uniformity statistics
of local or global subsets of the data are used in order to determine
the relevance of subspaces. Note that the difference from rarity-
based statistics, is that instead of trying to determine the number
of data points in a pre-specified local subspace, these methods typ-
ically analyze the statistical distributions of pre-specified local or
global reference sets of points. Since such methods use statistics
over local or global subsets of the data, it provides some hints
for relevant subspaces for exploration. However, since such hints



140 OUTLIER ANALYSIS

are weak, and are not guaranteed to be the correct ones, multiple
subspace sampling is crucial.

This chapter is organized as follows. Evolutionary algorithms for out-
lier detection are discussed in section 2. These algorithms are based on
a grid-based approach for defining outliers. Distance-based methods for
subspace outlier detection are studied in section 3. Methods for using
and combining multiple subspaces in order to determine relevant outliers
are discussed in section 4. The problem of determining outliers in gen-
eralized subspaces is discussed in section 5. The limitations of subspace
analysis are discussed in section 6. The conclusions and summary are
presented in section 7.

2. Projected Outliers with Grids

A first approach to projected outlier detection was presented in [4].
Projected outliers are determined by finding localized regions of the data
in low dimensional space, which have abnormally low density. Thus,
the first step is to identify and mine those localized patterns which con-
tain data points, but have abnormally low density. Thus, the goal is
to determine interesting anomalies, rather than the noise in the data.
Once such localized regions have been identified, then the outliers are
defined as those records which have such patterns present in them. An
interesting observation is that such lower dimensional projections can
be determined even in data sets with missing attribute values. This is
quite useful for many real applications, in which feature extraction is
a difficult process and full feature descriptions often do not exist. For
example, in the airframe fault detection scenario introduced earlier in
this chapter, it is possible that only a subset of tests may have been
applied, and therefore the values in only a subset of the dimensions may
be available for outlier analysis.

2.1 Defining Abnormal Lower Dimensional
Projections

In order to find such abnormal lower dimensional projections, it is
important to provide a proper statistical definition of an abnormal lower
dimensional projection. An abnormal lower dimensional projection is
one in which the density of the data is exceptionally lower than average.
In this context, the methods for extreme value analysis introduced in
Chapter 2 are useful.

A grid-based approach is used in order to determine projections of
interest. The first step is to perform a grid discretization of the data.
Each attribute of the data is divided into ¢ ranges. These ranges are



High-Dimensional Outlier Detection: The Subspace Method 141

created on an equi-depth basis. Thus, each range contains a fraction f =
1/¢ of the records. The reason for using equi-depth ranges as opposed
to equi-width ranges is that different localities of the data have different
densities. Therefore, such an approach partially adjusts for the local
variations in data density during the initial phase. These ranges form
the units of locality which are used in order to define low dimensional
projections which have unreasonably sparse regions.

Consider a k-dimensional cube which is created by picking grid ranges
from k different dimensions. The expected fraction of the records in that
region is equal to f¥. if the attributes were statistically independent. Of
course, the data is far from statistically independent and therefore the
actual distribution of points in a cube would differ significantly from
average behavior. Many of the local regions may contain very few data
points, if any. It is precisely these abnormally sparse regions, which are
useful for the purpose of outlier detection.

It is assumed that the total number of points in the database is de-
noted by N. Under the afore-mentioned independence assumption, the
presence or absence of any point in a k-dimensional cube is a bernoulli
random variable with probability f¥. Then, the expected fraction and
standard deviation of the points in a a k-dimensional cube is given by
N-f¥and \/N - fk- (1 — fF). Furthermore, if the number of data points
N is large, then the central limit theorem can be used to approrimate
the number of points in a cube by a normal distribution. Let n(D) be
the number of points in a k-dimensional cube D. The sparsity coefficient
S(D) of the data set D can be computed as follows:

_ n(D) — N - f*
VN (L= )

Only sparsity coefficients which are negative are indicative of local pro-
jected regions, in which the presence of the points is significantly lower
than expected. Since n(D) is assumed to fit a normal distribution, the
normal distribution tables can be used to quantify the probabilistic level
of significance of its deviation. Of course, while the independence as-
sumption is almost never completely true, it provides a good heuristic
for determining the level of abnormality of the underlying data points
in practice.

S(D)

2.2 Evolutionary Algorithms for Outlier
Detection

It is evident from the discussion in the introduction, that an exhaus-
tive search of all the subspaces in the data for outliers is unlikely to be
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fruitful, because of high computational complexity. Therefore, an or-
dered search method is required, which prunes off most of the subspaces
automatically during the exploration process. Since the search space is
noisy and unstructured in this case, this is a natural candidate for the
use of evolutionary algorithms.

The nature of this problem is such that there are no upward or
downward-closed properties on the grid-based subspaces satisfying the
sparsity condition.! Unlike problems such as frequent pattern mining
[28] where one is looking for large aggregate patterns, the problem of
finding subsets of dimensions which are sparsely populated has the fla-
vor of finding a needle in haystack. Furthermore, it may often be the
case that even though particular regions may be well populated on cer-
tain sets of dimensions, they may be very sparsely populated when such
dimensions are combined together. For example, in a given data set,
there may be a large number of individuals clustered at the age of 20
(low local variance), and a modest number of individuals with varying
levels of diabetes (modest local variance). However, very rare individu-
als would satisfy both criteria, because the disease does not affect young
individuals. From the perspective of outlier detection, a 20-year old
with diabetes is a very interesting record. However, the interestingness
of the pattern is not even hinted at by its lower dimensional projections,
or the relative variances in these individual projections. Therefore, the
best projections are often created by an unknown combination of dimen-
sions, whose lower dimensional projections may contain very few hints
for proper subspace exploration. One solution is to change the measure
in order to force better closure or pruning properties; however this can
worsen the quality of the solution substantially by forcing the choice of
the measure to be driven by algorithmic considerations. In general, it
is not possible to predict the behavior of the data when two sets of di-
mensions are combined. Therefore, a natural option is to develop search
methods which can identify such hidden combinations of dimensions.
In order to search the exponentially increasing space of possible projec-
tions, the work in [4] borrows ideas from a class of evolutionary search
methods in order to reduce the size of the search space.

Evolutionary Algorithms [223] are methods which imitate the process
of organic evolution [125] in order to solve parameter optimization prob-
lems. In evolutionary methods, every solution to an optimization prob-
lem can be disguised as an individual in an evolutionary system. The

L An upward closed pattern is one in which all supersets of the pattern are also valid patterns.
A downward closed set of patterns is one in which all subsets of the pattern are also members
of the set.
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measure of fitness of this “individual” is equal to the objective func-
tion value of the corresponding solution, and the other species which
this individual has to compete with are a group of other solutions to
the problems. Appropriate operations are defined in order to imitate
the recombination and mutation processes as well, and the simulation is
complete. Each feasible solution is encoded in the form of a string and is
the chromosome representation of the solution. The process of conver-
sion of feasible solutions of the problem into strings which the algorithm
can use is referred to as its encoding. The measure of fitness of a string
is evaluated by the fitness function. This is equivalent to the objective
function value of the solution. The better the objective function value,
the better the fitness value. As the process of evolution progresses, all
the individuals in the population typically improve in fitness and also
become more similar to each other. Dejong [134] defined convergence
of a particular position in the string, as the the stage at which 95% of
the population had the same value for that gene. The population is said
to have converged when all positions in the string representation have
converged.

The relevant localized subspace patterns can be easily represented
as strings. Let us assume that the grid range for the ith dimension
is denoted by m;. Then, the value of m; can take on any of the val-
ues 1 through ¢, or it can take on the value *, which denotes a “don’t
care”. Thus, there are a total of ¢+ 1 values that the dimension m; can
take on. Thus, consider a 4-dimensional problem with ¢ = 10. Then,
one possible example of a solution to the problem is given by *3*9. In
this case, the ranges for the second and fourth dimension are identified,
whereas the first and third are left as “don’t cares”. The evolutionary
algorithm uses the dimensionality of the projection k£ as an input pa-
rameter. Therefore, for a d-dimensional data set, the string of length
d will contain k specified position and (d — k) “don’t care” positions.
The fitness for the corresponding solution may be computed using the
sparsity coefficient discussed earlier. The evolutionary search technique
starts with a population of p random solutions and iteratively used the
processes of selection, crossover and mutation in order to perform a
combination of hill climbing, solution recombination and random search
over the space of possible projections. The process is continued until
the population converges to a global optimum according to the Dejong
convergence criterion[134]. At each stage of the algorithm, the m best
projection solutions (most negative sparsity coefficients) are kept track
of. At the end of the algorithm, these solutions are reported as the best
projections in the data. The following operators are defined for selection,
crossover and mutation:
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Selection: The copies of a solution are replicated by ordering
them by rank and biasing them in the population in the favor of
higher ranked solutions. This is referred to as rank selection.

Crossover: The crossover technique is key to the success of the
algorithm, since it implicitly defines the subspace exploration pro-
cess. One solution is to use a uniform two-point crossover in order
to create the recombinant children strings. The two-point crossover
mechanism works by determining a point in the string at ran-
dom called the crossover point, and exchanging the segments to
the right of this point. However, such a blind recombination pro-
cess may create poor solutions too often. Therefore, an optimized
crossover mechanism is defined. In this case, it is guaranteed that
both children solutions correspond to a k-dimensional projection
as the parents, and the children typically have high fitness values.
This is achieved by examining a subset of the different possibilities
for recombination and picking the best among them.

Mutation: In this case, random positions in the string are flipped
with a predefined mutation probability. Care must be taken to
ensure that the dimensionality of the projection does not change
after the flipping process.

At termination, the algorithm is followed by a postprocessing phase.
In the postprocessing phase, all data points containing the abnormal
projections are reported by the algorithm as the outliers. The approach
also provides the relevant projections which provide the causality (or in-
tensional knowledge) for the outlier behavior of a data point. Thus, this
approach also has a high degree of interpretability in terms of providing
the reasoning for why a data point should be considered an outlier.

3. Distance-based Subspace Outlier Detection

In these methods, distance-based models are used in lower dimensional
subspaces of the data in order to determine the relevant outliers. There
are two major variations to the common task.

In one class of models, the outliers are determined by exploring
relevant subspaces.

In another class of methods, the relevant outlying subspaces for a
given data point are determined. This is more useful for providing
intensional knowledge, for illustrating why a specific data point is
an outlier.
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The second class of methods shares similarities with the approach used
in [262] for finding intensional knowledge from distance-based outliers.
Both classes of methods will be discussed in subsequent sections.

3.1 Subspace Outlier Degree

A distance-based method for finding outliers in lower dimensional pro-
jections of the data is proposed in [273]. In this approach, instead of
trying to find local subspaces of abnormally low density over the whole
data, a local analysis is provided specific to each data point. For each
data point X, a set of reference points S(X) are determined, which
represent the proximity of the current data point being examined.

Once this reference set S(X) has been determined, the relevant sub-
space for S(X) is determined as the set Q(X) of dimensions in which
the variance is small. The specific threshold is picked as a user-specified
fraction of the average dimension-specific variance of the data points in
S(X). Thus, this approach analyzes the statistics of individual dimen-
sions independently of one another during the crucial step of subspace
selection, though this may sometimes not be helpful for picking the best
subspace projections. The approach of analyzing the distance behavior
of individual dimensions for picking the subspace set Q(X) is a rather
naive generalization derived from subspace clustering methods. Unlike
data clustering, the effectiveness of subspace outlier methods is almost
entirely dependent upon the identification of dimensions containing rare
points rather than dimensions with specific kinds of aggregate statis-
tics. In outlier analysis, aggregate data measures such as the dimension-
specific variance tell us very little about the subspace behavior of the
rare points, and which choices of subspaces are likely to be most rele-
vant for identification of these very unusual points. In some cases such
as the example of the young diabetes patient discussed earlier, the un-
usual behavior is manifested in combinations of dimensions rather than
the variances of the individual dimensions. If the absolute variance of
a particular dimension such as the diabetes level is not deemed to be
sufficiently low, it will not selected in the projection.

In the interesting cases, where the number of relevant dimensions is
limited, the negative effects of removing a single relevant dimension can
be even more drastic than keeping many irrelevant dimensions. The par-
ticularly problematic factor here is that if a mistake is made in subspace
selection, there is virtually no chance of recovering from the mistake,
when a single subspace is picked for analysis. As we will discuss later,
other more insightful techniques in [256, 337] mitigate these impacts by
using multiple subspaces for outlier analysis.
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The euclidian distance of X is computed to the mean of the reference
set S(X) in the subspace defined by Q(X). This is denoted by G(X).
The value of G(X) is affected by the number of dimensions in Q(X). The
subspace outlier degree SOD(X) of a data point is defined by normalizing
this distance G(X) by the number of dimensions in Q(X).

G(X)
QX))

It remains to explain how the reference set S(X) is generated with the
use of distances. This may sometimes turn out to be a challenge, since
the concept of proximity is itself hard to define in full dimensional space.
Therefore, there is a circularity in using full dimensional distances to
pick the reference set. The work [273] uses a shared nearest neighbor
approach in order to compute this locality.

This work tries to find the outliers in a single subspace of the data, on
the basis of local analysis. In practice, the deviations may be hidden in
unusual subspaces which are not evident from the 1-d variance statistics
of the reference set. Therefore, if the wrong subspace is selected by
aggregate analysis, it is quite likely that many outliers may be missed.
Furthermore, since the different dimensions in the data may combine
to provide unusual results, it is sometimes more helpful to evaluate the
locality of a data point in a subspace by examining the data distribution
in the entire subspace, rather than examining the different dimensions
independently from one another.

SOD(X) =

3.2 Finding Distance-based Outlying Subspaces

Most of the methods for outlier detection attempt to search for rele-
vant subspaces in order to find outliers. However, some recent methods
[499-501] are designed for finding the outlying subspaces for a given data
point. Thus, the causality in this case is the other way around, where
subspaces are determined from points.

A system called HOS-Miner was presented in [499]. According to this
work, the definition of the outlying subspace for a given data point X is
as follows:

DEFINITION 5.1 For a given data point X, determine the set of sub-
spaces such that the sum of its k-nearest neighbor distances in that sub-
space is at least §.

This approach does not normalize the distances with the number of
dimensions. Therefore, a subspace becomes more likely to be outly-
ing with increasing dimensionality. This definition also exhibits closure
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properties in which any subspace of a non-outlying subspace is also not
outlying. Similarly, every superset of an outlying subspace is also outly-
ing. Clearly, only minimal subspaces which are outliers are interesting.
The method in [499] uses both downward- and upward-closure properties
to prune off subspaces which are either not relevant or not interesting.
An X-Tree is used in order to perform the indexing for performing the
k-nearest neighbor queries in different subspaces efficiently. It should
be noted that while the closure properties result in better efficiency and
algorithmic convenience, they do not necessarily imply greater effective-
ness. As the earlier example with the young diabetes patient illustrated,
true outliers are often hidden in subspaces of the data, which cannot be
inferred from their lower or higher dimensional projections.

In order to further improve the efficiency of the learning process, the
work in [499] uses a random sample of the data in order to learn about
the subspaces before starting the subspace exploration process. This is
achieved by estimating a quantity called the Total Savings Factor (TSF)
of the outlying subspaces. These are used to regulate the search process
for specific query points and prune the different subspaces in an ordered
way. Furthermore, the TSF values of different subspaces are dynamically
updated as the search proceeds. It has been shown in [499] that such
an approach can be used in order to determine the outlying subspaces
of specific data points efficiently. Numerous methods for using different
kinds of pruning properties and genetic algorithms for finding outlying
subspaces are presented in [500, 501].

4. Combining Outliers from Multiple Subspaces

One of the major challenges of subspace analysis is that a given data
point may show very different behavior in terms of its outlier degree in
different subspaces. This also corresponds to the fact that the outlier
scores from different subspaces may all be very different. These need
to be combined into a unified outlier score. This principle is generally
related to that of ensemble-analysis, which was discussed in Chapter 1. A
variety of methods have been proposed for examining different subspaces
for outlier ranking.

4.1 Random Subspace Sampling

The simplest method for combining outliers from multiple subspaces
is the use of random subspace sampling. In the work in [289], an ap-
proach called feature bagging is used, which is analogous to the ensemble
technique often used in data classification. This approach also falls in
the class of independent ensembles introduced in Chapter 1.



148 OUTLIER ANALYSIS

The broad approach is to repeatedly apply the following two steps:

Randomly select between (d/2) and d features from the underlying
data set in iteration t in order to create a data set D; in the tth
iteration.

Apply the outlier detection algorithm O; on the data set D; in
order to create score vectors S;.

In principle, the outlier detection algorithm O, used for the tth iteration
could be different. However, the work in [289] uses the LOF algorithm
for all the iterations.

At the end of the process, the outlier scores from the different algo-
rithms need to be combined. There are two distinct methods which are
used in order to combine the different subspaces:

Breadth-first Approach: In this approach, the ranking of the al-
gorithms is used for combination purposes. The top-ranked out-
liers over all the different executions are ranked first, followed by
the second-ranked outliers (with repetitions removed), and so on.
Minor variations could exist because of tie-breaking between the
outliers within a particular rank.

Cumulative Sum Approach: The outlier scores over the different
algorithm executions are summed up. The top ranked outliers are
reported on this basis.

It was shown in [289] by synthetic data analysis, that combining meth-
ods are important when some of the features are noisy. In such cases,
full-dimensional algorithms are unable to distinguish the true outliers
from the normal data, because of the additional noise. Improvements
over the base LOF-approach were also observed with the use of real-data
analysis. At first sight, it would seem that random subspace sampling
[289] does not attempt to optimize the discovery of subspaces to finding
rare instances at all. Nevertheless, it does have the paradoxical merit
that it is relatively efficient to sample subspaces, and therefore a large
number of subspaces can be sampled in order to improve robustness.
The robustness resulting from multiple subspace sampling is clearly a
very desirable quality, as long as the combination function at the end
recognizes the differential behavior of different subspace samples for a
given data point. In a sense, this approach implicitly recognizes the dif-
ficulty of detecting relevant and rare subspaces for the outlier detection
problem, and therefore approaches the problem by sampling as many
subspaces as possible in order to reveal the rare behavior. From a con-
ceptual perspective, this approach is similar to that of harnessing the
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power of many weak learners to create a single strong learner in clas-
sification problems. The approach has been shown to show consistent
performance improvement over full dimensional methods for many real
data sets in [289]. This approach may also be referred to as the feature
bagging method or random subspace ensemble method. This approach is
likely to have significant potential for improving subspace analysis, by
experimenting with different choices of combination functions.

The work in [310] designs the concept of isolation forest, which de-
rives its motivation from another ensemble technique known as random
forests, which are commonly used in classification. In this case, the data
is recursively partitioned by axis-parallel cuts along randomly selected
attributes, so as to isolate different kinds of instances from one another.
In such cases, the tree branches containing outliers are noticeably less
deep, because these data points are quite different from the normal data.
Thus, data points which have noticeably shorter paths in the branches
of different trees are more likely to be outliers. The different branches
correspond to different local subspace regions of the data, depending on
how the attributes are selected for splitting purposes. The smaller path
methods correspond to lower dimensionality of the subspaces in which
the outliers have been isolated. The final combination step is performed
by using the path lengths of the data points in the different samples.
One major challenge of using such an approach is that when the di-
mensionality of the data increases, an incorrect choice of attribute for
splitting at the higher levels of the tree is more likely to mislead the
detection approach. Nevertheless, the approach is efficient in determin-
ing each subspace sample, and the use of multiple subspace samples is a
desirable quality of the approach.

4.2 Selecting High Contrast Subspaces

The subspace ensemble method [289] discussed in the last section
randomly samples subspaces. If many dimensions are noisy, at least a
few of them are likely to be included in each subspace sample. This
implies that a larger number of subspace samples will be required in
order to obtain more robust results. Therefore, it is natural to ask
whether it is possible to perform a pre-processing in which a smaller
number of high-contrast subspaces are selected.

In the work proposed in [256], the outliers are found only in these
high-contrast subspaces, and the corresponding scores are combined to-
gether. Thus, this approach decouples the subspace search as a a gener-
alized pre-processing approach from the outlier ranking of the individual
data points. The approach discussed in [256] is quite interesting because
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of its pre-processing approach to finding relevant subspaces in order to
reduce the irrelevant subspace exploration. While the high contrast sub-
spaces are obtained using aggregation-based methods, the aggregation
behavior is only used as hints in order to identify multiple subspaces
for greater robustness. The assumption here is that rare events are
statistically more likely to occur in subspaces where there is significant
non-uniformity and contrast. The final outlier score combines the results
over different subspaces. The insight in the work of [256] is to combine
subspace selection and multiple subspaces analysis in order to determine
the relevant outlier scores. Therefore, the risk of not picking the correct
subspace is reduced. This approach has been shown to work well in [256]
over the random subspace sampling method.

The conditional probability for an an attribute value along any par-
ticular dimension P(zq|xs...xz4) is the same as its unconditional prob-
ability P(z1) for the case of uncorrelated data. High-contrast subspaces
are likely to violate this assumption because of non-uniformity in data
distribution. In our earlier example of the young diabetes patients, this
corresponds to the unexpected rarity of the combination of youth and the
disease. The idea is that subspaces with such unexpected non-uniformity
are more [ikely to contain outliers, though it is treated only as a weak
hint for pre-selection of one of multiple subspaces.

A variety of tests based on the student’s t-distribution can be used in
order to measure the deviation of this sample from the basic hypothesis
of independence. This provides a measure of the non-uniformity of the
subspace, and therefore provides a way to measure the quality of the
subspaces in terms of their propensity to contain outliers. A bottom-
up Apriori style [29] approach was proposed in order to determine the
relevant projections. In this approach the subspaces are continuously
extended to higher dimensions for testing. Details of the approach are
available in [256].

4.3 Local Selection of Subspace Projections

The work in [337] uses local statistical selection of relevant subspace
projections in order to determine outliers. In other words, the selec-
tion of the subspace projections is optimized to specific data points, and
therefore the locality of a given data point matters in the selection pro-
cess. For each data point X, a set of subspaces is identified, which are
considered high contrast subspaces from the perspective of outlier detec-
tion. However, this exploration process uses the high contrast behavior
as statistical hints in order to explore multiple subspaces for robustness,
since a single subspace may often miss the true projection.
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Algorithm OUTRES(Data Point: X
Subspace: S);
begin
for each attribute ¢ not in S
if S; = S U {i} passes non-uniformity test then
begin
Compute OS(S;, X);
O(X)=05(5;,X)-O(X);
OUTRES(X, S;);
end
end

Figure 5.2. The OUTRES Algorithm

The OUTRES method [337] examines the density of lower dimensional
subspaces in order to identify relevant projections. The basic hypothesis,
is that for a given data point X it is desirable to determine subspaces
in which the data is sufficiently non-uniformly distributed in its locality.
In order to characterize the distribution of the locality of a data point,
the work in [337] computes the density of the locality of data point X
in subspaces S as follows:

den(S, X) = [N(X, S)| = {Y : dist(X,Y < ¢}

This is the simplest possible definition of the density, though other more
sophisticated methods such as kernel density estimation [409] are used
in OUTRES in order to obtain more refined results. Kernel density es-
timation is also discussed in Chapter 4. A major challenge here is in
comparing the subspaces of varying dimensionality. This is because the
density of the underlying subspaces reduces with increasing dimension-
ality. It has been shown in [337], that it is possible to obtain comparable
density estimates across different subspaces of different dimensionalities,
by selecting the bandwidth of the density estimation process according
to the dimensionality of the subspace.

Furthermore, the work in [337] uses statistical techniques in order to
meaningfully compare different subspaces. For example, if the data is
uniformly distributed, then the number of data points lying within a dis-
tance € of the data point should be regulated by the fractional volume
of the data in that subspace. Specifically, the fractional parameter de-
fines a binomial distribution characterizing the number of points in that
volume, if that data were to be uniformly distributed. Of course, one
is really interested in subspaces which deviate significantly from this
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behavior. The (local) relevance of the subspace for a particular data
point X is computed using statistical testing. The two hypothesis are
as follows:

Hypothesis Hy: The local subspace neighborhood NV (X, S) is uni-
formly distributed.

Hypothesis Hyi: The local subspace neighborhood N (X, .S) is not
uniformly distributed.

The Kolmogorov-Smirnoff goodness of fit test [424] is used to determine
which of the afore-mentioned hypothesis are true. It is important to note
that this process provides an idea of the usefulness of a subspace, and
is used in order to enable a filtering condition for removing irrelevant
subspaces from the process of computing the outlier score of a specific
data point. A subspace is defined as relevant, if it passes the hypoth-
esis condition Hj. In other words, outlier scores are computed using a
combination of subspaces which must satisfy this relevance criterion.

In order to combine the scores which are obtained from multiple rel-
evant subspaces, the work in [337] uses the product of the outlier scores
obtained from different subspaces. Thus, if S7 ... Sy be the different ab-
normal subspaces found for data point X, and if O(S;, X) be the outlier
score from subspace S;, then the overall outlier score OS(X) is defined
as follows:

0S(X) = [Jo(s:, X)

It is evident that low scores represent a greater tendency to be an outlier.
The advantage of using the product over the sum, is that the latter
is dominated by the high scores, as a result of which a few subspaces
containing normal behavior will dominate the sum. On the other hand,
in the case of the product, the outlier behavior in a small number of
subspaces will be greatly magnified. This is particularly appropriate for
the problem of outlier detection. So far, it has not been discussed, how
the actual subspaces 57 ... Sy are determined. This will be achieved with
a careful subspace exploration.

In order to actually define the outlier score, subspaces are consid-
ered significant for particular objects only if their density is at least two
standard deviations less than the mean value. This is essentially a filter
condition for that subspace to be considered deviant. Thus, the devi-
ation dev(X,S;) of the data point X in subspace S; is defined as the
ratio of the deviation of the density of the object from the mean density,
divided by two standard deviations.

dev(S;, X) = #= d,;n(Si,X)
o
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The outlier score of a data point in a subspace is the ratio of the density
of the point in the space to its deviation, if it satisfies the filter condi-
tion of the density being at least two standard deviations less than the
mean. Otherwise the outlier score is considered to be 1, and it does not
affect the overall outlier score in the product function defined earlier for
combining different subspaces. Thus, for the points satisfying the filter
condition, the outlier score OS(S;, X) is defined as follows:

_ den(S;, X)
 dev(S;, X)

An observation in [337] is that subspaces which are either very low
dimensional (eg. 1-d subspaces) or very high dimensional are not very
informative from an outlier detection perspective. A recursive explo-
ration of the subspaces is performed, where an additional attribute is
included in the subspace for statistical testing. Therefore, the work in
[337] uses recursive processing in which the subspaces are built in re-
cursive fashion. When an attribute is added to the current subspace
S;, the non-uniformity test is utilized to determine whether or not that
subspace should be used. Otherwise, this subspace is discarded.

The overall algorithm uses a recursive subspace exploration procedure
in order to measure the outlierness of any particular object. Note that
the entire recursive algorithm uses the data point X as input, and there-
fore the procedure needs to be applied separately for each data point.
For any given subspace, an attribute is incrementally added. Then,
the non-uniformity test is applied to determine if it is relevant. If it is
not relevant, then the subspace is discarded. Otherwise, the outlier score
O(S;, X) in that subspace is computed for the data point, it is multiplied
with the current value of OS(X). Since the outlier scores of subspaces,
which do not meet the filter condition are set to 1, they do not affect
the density computation in this multiplicative approach. The procedure
is then recursively called in order to explore the next subspace. Thus,
such a procedure potentially explores an exponential number of sub-
spaces, though the real number is likely to be much smaller in practice.
This is because of the non-uniformity test, which prunes off large parts
of the recursion tree during the exploration. The overall algorithm for
subspace exploration for a given data point X is illustrated in Figure
5.2.

0(S;, X)

5. Generalized Subspaces

A significant amount of success has been achieved for finding outliers
in axis-parallel subspaces in recent work. While these methods are effec-
tive for finding outliers in cases where the outliers naturally deviate in
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Figure 5.3. 'The example of Figure 3.4 re-visited: Global PCA can discover outliers
in cases, where the entire data is aligned along lower dimensional manifolds.
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Figure 5.4. The example of Figure 2.7 revisited: Outliers are best discovered by
determining deviations from local PCA-based clusters. Neither axis-parallel subspace
outliers nor global-PCA can capture such clusters.
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specific subspaces from the clusters, they are not very useful for finding
clusters in cases where the points are aligned along lower-dimensional
manifolds of the data. For example, in the case of Figure 5.4, no 1-
dimensional subspace analysis from the 2-dimensional data can find the
outliers. On the other hand, it is possible to find localized 1-dimensional
correlated subspaces so that most of the data aligns along these localized
1-dimensional subspaces, and the remaining deviants can be classified as
outliers.

These algorithms are generalizations of the following two classes of
algorithms:

The PCA-based linear models discussed in Chapter 3 find the global
regions of correlation in the data. For example, in the case of Fig-
ure 5.3, the outliers can be effectively identified by determining
these global directions of correlation. However, no such global di-
rections of correlation exist in the case of Figure 5.4.

The axis-parallel subspace outliers discussed earlier in this chapter
can find deviants, when the data is naturally aligned along low
dimensional axis-parallel subspace clusters. However, this is not
the case in Figure 5.4, where the data is aligned along arbitrary
directions of correlation.

This problem can be partially addressed with the use of generalized
projected clustering methods, where the clusters are determined in arbi-
trarily aligned subspaces of the data [7]. The method discussed in [7] has
a built-in mechanism in order to determine the outliers in addition to
the clusters. Such outliers are naturally data points which do not align
with the clusters. However, the approach is not particularly optimized
for finding the outliers, because the primary purpose of the method is
to determine the clusters. The outliers are discovered as a side-product
of the clustering algorithm, rather than as the primary goal. There-
fore, the approach may discover the weaker outliers, which correspond
to the noise in the data. Similarly, the approach in [132] is focussed
on determining the noise in the data for improving mixture modeling of
probabilistic PCA algorithms. In order to determine the outliers which
are optimized to the locality of a particular data point, it is critical
to determine localized subspaces which are optimized to the data point
X, which is being evaluated for its outlier score. The determination of
such subspaces is non-trivial, since it often cannot be inferred from lo-
cally aggregate properties of the data, for detecting the behavior of rare
instances.

Another method was recently proposed in [274] for finding outliers in
generalized subspaces of the data. The main difference from earlier gen-
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eralized subspace clustering methods is that local reference sets are used
for local correlation analysis. For a given data point X, this method
finds the full-dimensional k-nearest neighbors of X. This provides a ref-
erence set S with mean vector . The PCA approach of Chapter 3 is
applied to the covariance matrix 3(S) of the local reference set S in order
to determine the key eigenvectors ej ...eq, in increasing order of vari-
ance, with corresponding eigenvalues A\; < Ay... < A\;. The discussion
in section 3 of Chapter 3 performs these same steps [406] except that
they are performed on a global basis, rather than on a local reference
set S. Even if all d dimensions are included, it is possible to create a
normalized outlier score of a data point X, to the centroid p of the data
with the use of local eigenvalue scaling, as discussed in Chapter 3:

d — ) el
Score(X) = Z X )5) il (5.1)
j=1

As discussed in section 2.2.2 of Chapter 2, this can be approximately
modeled as a x? distribution with d degrees of freedom for each data
point, and the outlier scores of the different data points can be reason-
ably compared to one another. Such an approach is used in [406] in
the context of global data analysis. The survey paper of Chandola et
al. [107] provides a simpler exposition. The work in [274] uses a similar
approach with the use of a local reference set, selected with the use of
full dimensional k-nearest neighbor distances.

Eigenvectors with large values of A\; will usually not contribute much
to the score, though as discussed below, this may not always be the
case. Such directions are pruned from the score. The § eigenvectors?
with the smallest eigenvalues are picked for the computations above.
Correspondingly, the pruned score is defined on the basis of the first
6 < d eigenvectors only with the smallest eigenvalues.

(X = p) - e

Score(X, ) = Z N
J

Jj=1

(5.2)

How should the value of 4 be determined for a particular data point
X? The score is a y?-distribution with d-degrees of freedom. It was
observed in [274] that the value of § can be parameterized, by treating
the x? distribution as a special case of the I" distribution.

Score(X,9) ~T'(6/2,2)

2The work in [274] uses & as the number of longest eigenvectors, which is only a notational
difference, but is noted here to avoid confusion.
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Figure 5.5. Local reference set may sometimes contain points from multiple gener-
ating mechanisms

The optimal value of ¢ is picked specifically for each data point, by pick-
ing the value of § in order to determine the maximal unlikely deviation
based on this model. This is done by using the cumulative density func-
tion of the aforementioned distribution. While this value can be directly
used as an outlier score, it was also shown in [274], how this score may
be converted into a more intuitive probability value.

This approach has several issues:

A single subspace has been used by this approach for finding the
outliers with the use of the local reference set S. If the local refer-
ence set S is not accurately determined, then this will not provide
the proper directions of local correlation. The use of a single sub-
space is risky, especially with the use of weak aggregation-based
hints, because it is often possible to unintentionally remove rele-
vant subspaces. This can have drastic effects. The use of multiple
subspaces may be much more relevant in such scenarios, such as
the methods proposed in [289, 256, 337, 341].

There is an inherent circularity in identifying the reference set with
the use of full dimensional k-nearest neighbor distances, especially
if the distances are not meaningfully defined in full dimensionality.
The choice of points in the reference set and the choice of the sub-
space clearly impact each other in a circular way. This is a classical
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“chicken and egg” problem in subspace analysis, which was first
pointed out in [5]. The analysis in such cases needs to be simul-
taneous rather than sequential. As is well known, the most robust
techniques for handling circularity in virtually all problem domains
(eg. the EM algorithm and many projected clustering methods)
use iterative methods, so that the point-specific and dimension-
specific aspects of the problem are able to interact with one an-
other. This is however, not the case in [274], where a sequential
analysis is used.

In particular, it may happen that many locally irrelevant features
may be used during the determination of the local reference set,
when full dimensional distances are used. This set could therefore
contain data points from multiple generating mechanisms, as il-
lustrated in Figure 5.5. When the number of irrelevant features is
unknown, a specific number of points in the reference set will not
be able to avoid this problem. The use of a smaller reference set
size can reduce the chance of this happening to some extent, but
can never guarantee it, especially when many irrelevant features
are used. On the other hand, reducing the reference set size can
also result in a correlation hyperplane, whose eigenvalue statistics
overfit an artificially small set of reference points.

An interesting question arises, as to whether it is necessary to select
a particular set of dimensions in a hard way, since the eigenvalues
in the denominator of Equation 5.1 already provide a soft weighting
to the importance (or relevance) of the different dimensions. For
example, if for a large value of \;, a data point shows even larger
deviations along that direction, such an outlier would either be
missed by dimension pre-selection, or would include other less rel-
evant dimensions. An example is the outlier B in Figure 5.5, which
is aligned along the longer eigenvector, and therefore the longest
eigenvector is the most informative about its outlier behavior. In
particular, the method of picking the § smallest eigenvectors im-
plicitly assumes that the relevance of the attributes are ordered
by eigenvalue magnitude. While this may generally be true for
aggregation-based clustering algorithms, it is very often not true
in outlier analysis because of the unusual nature of outliers. The
possibility of outliers aligning along long eigenvectors is not uncom-
mon at all, since two highly correlated attributes may often show
highly deviant behavior of a similarly correlated nature. This ex-
ample also shows, how brittle the rare nature of outlier analysis
is to aggregation-based measures. This is because of the varying
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causes of rarity, which cannot be fully captured in aggregation
statistics. This is relevant to our discussion in the introduction
section, that straightforward generalizations of subspace selection
methods from clustering (based on aggregates), are often not ap-
propriate or optimized for (the rare nature of) outlier analysis.
One advantage of using all the dimensions is that it reduces to
a local Mahalanobis distance with the same dimensionality, and
allows better comparability in the scores across different outliers.
In such cases, intuitive probability values may be derived more
simply from the x?(d) distribution.

The high dimensional case is an extremely difficult one, and it is un-
derstandable that no given method will be able to solve these problems
perfectly. It should also be pointed out that the iterative EM algorithm
discussed in Chapter 2 will be able to discover the local directions of
correlation along with outliers which have low fit value to the model.
These may sometimes include weak outliers, which are not always in-
teresting. Given that direct discovery of optimal subspaces in a given
locality is much more difficult in outlier analysis, a possible line of work
would be to use a two-phase approach of first finding the weak outliers,
and then determining the strong ones among them by more detailed
analysis. For example, it may be possible to use this pre-filtered set of
weak outliers for intensive ensemble-based subspace exploration. Com-
bining pre-filtered data points with pre-filtered high-contrast subspaces
may provide an interesting direction of future exploration. A significant
scope still exists for further improvement of the techniques designed in
this area.

6. Discussion of Subspace Analysis

While subspace outlier analysis seems to be the only meaningful method
for high dimensional outlier detection, the approach faces a number of
challenges, a lot of which are computational in nature. In the high-
dimensional case, a small number of deviant subspaces may remain hid-
den out of a large number of possibilities. This can create unprecedented
challenges for outlier analysis. The combinatorial nature of the problem
necessitates the design of more efficient algorithms which can perform
an ordered exploration of these spaces. In spite of the recent advances in
the literature, the design of efficient algorithms for the high dimensional
subspace exploration scenario remains a challenge. This is of course an
inherent property of high-dimensional data, in which the curse of di-
mensionality impacts the results both from a qualitative and efficiency
perspective.
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The second challenge arises from the fact that a subspace exploration
technique reports a number of different possibilities for the projections.
In such cases, it remains a challenge to combine the results from these
deviant subspaces, and rank the resulting outliers effectively. This is of
course an opportunity as well, since the results from multiple subspaces
may provide more robust outliers. Therefore, significant advancements
are required in ensemble analysis for outlier detection.

It has been claimed in [514] as an apparently new insight, that the
major reason for difficulty in high dimensional outlier analysis is not the
concentration of distances, but the masking effects of the locally noisy
and irrelevant nature of some of the dimensions, and that the literature
has failed to discuss the impact of locally relevant dimensions. This is
an incorrect assertion, since both the aspects of local feature selection
(relevance) and distance concentration have been studied extensively in
the literature. While it is true that noisy and irrelevant attributes mask
the outliers, the observation is certainly not new, and the two factors
of distance concentration and local feature relevance are closely related.
The original work in [4] (and virtually every other subsequent work [289,
256, 337] on this topic) provides a pictorial illustration and a fairly de-
tailed discussion of how (locally) irrelevant attributes mask outliers in
different feature-specific views of the data. As stated in [4]: “... by
using full dimensional distance measures it would be difficult to deter-
mine outliers effectively because of the averaging behavior of the noisy
and irrelevant dimensions. Furthermore, it is impossible to prune off
specific features a-priori, since different points may show different kinds
of abnormal patterns, each of which use different features or views.”
The ineffectiveness of global feature selection in high dimensional data
in fact forms the motivating reason for subspace analysis, which can be
considered a local feature selection method, or a local dimensionality re-
duction method [7, 95]. These connections of local subspace anal