
Chapter 7
An Example of Optimal Nodes for Interpolation
Revisited

Heinz-Joachim Rack

Abstract A famous unsolved problem in the theory of polynomial interpolation is
that of explicitly determining a set of nodes which is optimal in the sense that it leads
to minimal Lebesgue constants. In [11] a solution to this problem was presented
for the first non-trivial case of cubic interpolation. We add here that the quantities
that characterize optimal cubic interpolation (in particular: the minimal Lebesgue
constant) can be compactly expressed as real roots of certain cubic polynomials
with integral coefficients. This facilitates the presentation and impartation of the
subject matter and may guide extensions to optimal higher-degree interpolation.

7.1 Introduction

The Bernstein conjecture of 1931 and Kilgore’s theorem of 1977 [6] characterize, by
means of the equioscillation property of the Lebesgue function, the optimal nodes
which minimize the Lebesgue constant for n-th degree Lagrange polynomial inter-
polation. The Bernstein conjecture has been settled to the affirmative in 1978 [2, 7].

However, as put in [3]: In spite of this nice characterization, the optimal nodes
as well as the optimal Lebesgue constants are not known explicitly.
Although the knowledge of these quantities may be of little practical importance,
since they can be computed numerically for the first few values of n (see [1, 3,
9, 15]), and near-optimal nodes are explicitly known (see [3]), . . . the problem of
analytical description of the optimal matrix of nodes is considered by pure math-
ematicians as a great challenge [3]. In [8] (p. xlvii) it is put more dramatically:
The nature of the optimal set X* remains a mystery.

But at least the first non-trivial case of cubic interpolation has been demysti-
fied so that for n = 3 the desired analytical solution to the problem of explicitly
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determining the optimal nodes and the minimal Lebesgue constant is known [11].
To facilitate the presentation and impartation of this instructive example we add here
alternative expositions of the minimal cubic Lebesgue constant and of the (positive)
extremum point at which the local maximum of the optimal cubic Lebesgue func-
tion occurs: we identify them as roots of certain intrinsic cubic polynomials with
integral coefficients. The third determining quantity, the (positive) optimal node for
cubic interpolation, has already been described in this concise way [11].
Such a description is in the spirit of the open question raised in [4] (p. 21): Is there
a set of relatively simple functions fn such that the roots of fn are the optimal nodes
for Lagrange interpolation?

We will provide as simple functions f3 three cubic polynomials with integral
coefficients whose roots yield the solution to the optimal cubic interpolation prob-
lem.

7.2 Three Cubic Polynomials with Integral Coefficients
Whose Roots Yield the Solution to the Optimal Cubic
Interpolation Problem

The situation is as follows (n = 3): It suffices to consider (algebraic) Lagrange
interpolation on the zero-symmetric partition

− 1 = x0 < x1 =−x2 < x2 < x3 = 1 (7.1)

of the canonical interval [−1,1], so that only the placement of the positive node
x2 remains critical. The sampled values yi = f (xi),0 ≤ i ≤ 3, of some (continuous)
function f which is to be interpolated on (7.1) by a cubic polynomial, do not enter
into the discussion. We know from [11] that the following holds:
The square of the optimal node x2 = x∗2 is given as the unique real root of a cubic
polynomial with integral coefficients:

P3(z) =−1+ 2z+ 17z2+ 25z3. (7.2)

Proposition 7.1. We add here that the analytic expression for x∗2 as given in
([11],(22)) can alternatively be restated as
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(7.3)

Proof. The verification that the expression (7.3) equals the expression (22) given in
[11] is straightforward and is left to the reader. ��
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Proposition 7.2. L∗
3, the sought-for minimal value of the cubic Lebesgue constant

L3(x2) = max
|x|≤1

F3(x,x2) with F3(x,x2) =
3

∑
i=0

|li,3(x)| and li,3(x) =
3

∏
j=0, j �=i

x− x j

xi − x j
,

(7.4)
can likewise be identified with the unique real root of a cubic polynomial with inte-
gral coefficients:

Q3(z) =−11+ 53z− 93z2+ 43z3. (7.5)

The analytic expression for L∗
3 as deduced in ([11](23)) can alternatively be

restated as
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= 1.4229195732 . . . (7.6)

Proof. The verification that L∗
3 in its identical forms ([11], (23)) or (7.6) coincides

with the real root of Q3 is by straightforward insertion and is left to the reader. ��
Proposition 7.3. The square of the maximum point x = x ∈ [x∗2,1], at which the first
derivative of the optimal cubic Lebesgue function F3(x,x∗2) vanishes, can likewise be
identified with the unique real root of a cubic polynomial with integral coefficients:

R3(z) =−1+ 7z− 23z2+ 25z3. (7.7)

The analytic expression for x as given in ([11],(14)), after insertion of x2 = x∗2,
reads as
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(7.8)

Proof. The verification that the square of x, where x is given by (7.8), coincides with
the real root of R3 is again by straightforward insertion. ��

By symmetry, the first derivative of F3(x,x∗2) also vanishes at −x ∈ [−1,−x∗2]
and at x = 0 ∈ [−x∗2,x

∗
2] which gives the three equal local maxima F3(−x,x∗2) =

F3(0,x∗2) = F3(x,x∗2) of the optimal cubic Lebesgue function (equioscillation prop-
erty). These maxima are identical with the value min

0<x2<1
L3(x2) = L3(x∗2) = L∗

3.

The three polynomials P3, Q3, and R3, respectively their unique real roots, thus
completely describe the solution to the problem of optimal cubic interpolation on
[−1,1].
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7.3 Concluding Remarks

We point out that already in 1968 the polynomial P3 (in the variable z = t2) has
appeared as part of a posed problem in the not easily accessible source [14] (p. 89,
Problem 6.43).

However, no analytic expressions for x∗2 or L∗
3 or x are given there. At the time of

writing [11] the source [14], which we had learned from [7], was not available to us.
We believe that the polynomials Q3 and R3 appear here for the first time in

connection with optimal cubic polynomial interpolation and we hope that they may
guide, together with P3, the finding of extensions to optimal n-th degree polynomial
interpolation, n ≥ 4.

Additional recommended reading is [5, 9, 10] (especially Example 2.5.3),
[12, 13].
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