
Springer Proceedings in Mathematics & Statistics

Advances in 
Applied Mathematics 
and Approximation 
Theory

George A. Anastassiou
Oktay Duman Editors

Contributions from AMAT 2012



Springer Proceedings in Mathematics & Statistics

Volume 41

For further volumes:
http://www.springer.com/series/10533

http://www.springer.com/series/10533


Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of select contributions from workshops
and conferences in all areas of current research in mathematics and statistics,
including OR and optimization. In addition to an overall evaluation of the interest,
scientific quality, and timeliness of each proposal at the hands of the publisher,
individual contributions are all refereed to the high quality standards of lead-
ing journals in the field. Thus, this series provides the research community with
well-edited, authoritative reports on developments in the most exciting areas of
mathematical and statistical research today.



George A. Anastassiou • Oktay Duman
Editors

Advances in Applied
Mathematics and
Approximation Theory

Contributions from AMAT 2012

123



Editors
George A. Anastassiou
Department of Mathematical

Sciences
The University of Memphis
Memphis, Tennessee, USA

Oktay Duman
Department of Mathematics
TOBB Economics and Technology

University
Ankara, Turkey

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-1-4614-6392-4 ISBN 978-1-4614-6393-1 (eBook)
DOI 10.1007/978-1-4614-6393-1
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013934277

Mathematics Subject Classification (2010): 34-XX, 35-XX, 39-XX, 40-XX, 41-XX, 65-XX, 26-XX

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Dedicated to World Peace!



AMAT 2012 Conference, TOBB University of Economics and Technology,
Ankara, Turkey, May 17–20, 2012

George A. Anastassiou and Oktay Duman
Ankara, Turkey, May 18, 2012



Preface

This volume was prepared in connection with the proceedings of AMAT 2012—
International Conference on Applied Mathematics and Approximation Theory—
which was held during May 17–20, 2012 in Ankara, Turkey, at TOBB University of
Economics and Technology.

AMAT 2012 conference brought together researchers from all areas of applied
mathematics and approximation theory. Previous conferences which had a similar
approach were held at the University of Memphis (1991, 1997, 2008), UC Santa
Barbara (1993) and the University of Central Florida at Orlando (2002).

Around 200 scientists coming from 30 different countries (Algeria, Azerbaijan,
China, Cyprus, Egypt, Georgia, Germany, Greece, Hungary, India, Indonesia, Iran,
Iraq, Jordan, Kazakhstan, Korea, Kuwait, Libya, Lithuania, Malaysia, Morocco,
Nigeria, Poland, Russia, Saudi Arabia, Taiwan, Thailand, Turkey, UAE, USA) par-
ticipated in the conference. They presented 110 papers in three parallel sessions.

We are particularly indebted to the organizing committee, the scientific com-
mittee and our plenary speakers: George A. Anastassiou (University of Memphis,
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of Coefficients, Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 An Example of Optimal Nodes for Interpolation Revisited . . . . . . . . . 117
Heinz-Joachim Rack
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Three Cubic Polynomials with Integral Coefficients Whose

Roots Yield the Solution to the Optimal Cubic Interpolation
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Theory of Differential Approximations of Radiative Transfer
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Weimin Han, Joseph A. Eichholz and Qiwei Sheng
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Differential Approximation of the Integral Operator . . . . . . . . . . . . 124
8.3 Analysis of the RT/DA Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4 An Iteration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.5 Error Analysis of a Hybrid Analytic/Finite

Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Contents xi

9 Inverse Spectral Problems for Complex Jacobi Matrices . . . . . . . . . . . 149
Gusein Sh. Guseinov
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Inverse Problem for Eigenvalues and Normalizing

Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3 Inverse Problem for Two Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.4 Solving of the Toda Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10 To Approximate Solution of Ordinary Differential Equations, I . . . . . 165
Tamaz S. Vashakmadze
10.1 Introduction: Nonlinear ODE of 2nd Order

with Dirichlet Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.2 Linear 2nd Order ODE of Self-adjoint Type . . . . . . . . . . . . . . . . . . . 169
10.3 Nonlinear ODE of 2nd Order with Newton’s Conditions . . . . . . . . . 174
10.4 The BVPs of Normal Type System of ODEs . . . . . . . . . . . . . . . . . . . 178
10.5 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11 A Hybrid Method for Inverse Scattering Problem for a Dielectric . . . 183
Ahmet Altundag
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.2 The Direct Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.3 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.4 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

11.4.1 The Inverse Problem for Shape Reconstruction . . . . . . . . . 190
11.4.2 The Inverse Problem for the Interior Wave Number kd

Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

11.5.1 Numerical Examples of Shape Reconstruction . . . . . . . . . 196
11.5.2 Numerical Example of Interior Wave Number kd

Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

12 Solving Second-Order Discrete Sturm–Liouville BVP Using
Matrix Pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Michael K. Wilson and Aihua Li
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

12.1.1 History of Sturm–Liouville Problems . . . . . . . . . . . . . . . . . 202
12.1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

12.2 The Matrix Form of DSLBVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
12.3 Matrix Pencils from DSLBVP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
12.4 Solving the DSLBVP as a Standard Eigenvalue Problem . . . . . . . . 207
12.5 Reality of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.6 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



xii Contents

13 Approximation Formulas for the Ergodic Moments of Gaussian
Random Walk with a Reflecting Barrier . . . . . . . . . . . . . . . . . . . . . . . . 215
Tahir Khaniyev, Basak Gever and Zulfiyya Mammadova
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
13.2 Mathematical Construction of the Process X(t) . . . . . . . . . . . . . . . . 216
13.3 The Ergodicity of the Process X(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
13.4 The Exact Expressions for the Ergodic Moments of the

Process X(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
13.5 Asymptotic Expansions for the Moments of Boundary

Functional SN1(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
13.6 The Asymptotic Expansions for the Moments of the

Process X(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
13.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

14 A Generalization of Some Orthogonal Polynomials . . . . . . . . . . . . . . . 229
Boussayoud Ali, Kerada Mohamed and Abdelhamid Abderrezzak
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
14.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

14.2.1 Definition of Symmetric Functions in Several
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

14.2.2 Symmetric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
14.2.3 Divided Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

14.3 The Major Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
14.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

15 Numerical Study of the High-Contrast Stokes Equation
and Its Robust Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Burak Aksoylu and Zuhal Unlu
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

15.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
15.2 Solver Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

15.2.1 The Preconditioned Uzawa Solver . . . . . . . . . . . . . . . . . . . 243
15.2.2 The Preconditioned Minres Solver . . . . . . . . . . . . . . . . . . . 244

15.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
15.3.1 The Preconditioned Uzawa Solver . . . . . . . . . . . . . . . . . . . 246
15.3.2 The Preconditioned Minres Solver . . . . . . . . . . . . . . . . . . . 246

15.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

16 Extension of Karmarkar’s Algorithm
for Solving an Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
El Amir Djeffal, Lakhdar Djeffal and Djamel Benterki
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
16.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264



Contents xiii

16.2.1 Preparation of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 265
16.2.2 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 267

16.3 Convergence of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
16.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
16.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

17 State-Dependent Sweeping Process with Perturbation . . . . . . . . . . . . . 273
Tahar Haddad and Touma Haddad
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
17.2 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
17.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
17.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

18 Boundary Value Problems for Impulsive Fractional Differential
Equations with Nonlocal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
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Department of Mathematics, Gazi University, Ankara, Turkey,
e-mail: bayramcekim@gazi.edu.tr

Margareta Heilmann
University of Wuppertal, Wuppertal, Germany,
e-mail: heilmann@math.uni-wuppertal.de

Heinz-Joachim Rack
Hagen, Germany,
e-mail: heinz-joachim.rack@drrack.com

Weimin Han
Department of Mathematics & Program in Applied Mathematical and Computa-
tional Sciences, University of Iowa, Iowa City, USA,
e-mail: weimin-han@uiowa.edu

xvii

ganastss@memphis.edu
oduman@etu.edu.tr
eduman@gazi.edu.tr
cturan@etu.edu.tr
bayramcekim@gazi.edu.tr
heilmann@math.uni-wuppertal.de
heinz-joachim.rack@drrack.com
weimin-han@uiowa.edu


xviii Contributors

Gusein Sh. Guseinov
Department of Mathematics, Atilim University, Ankara, Turkey,
e-mail: guseinov@atilim.edu.tr

Tamaz S.Vashakmadze
I.Vekua Institute of Applied Mathematics, Iv. Javakhishvili Tbilisi State University,
Tbilisi, Georgia,
e-mail: tamazvashakmadze@gmail.com

Ahmet Altundag
Institut für Numerische Angewandte Mathematik, Universität Göttingen,
Göttingen, Germany,
e-mail: a.altundag@math.uni-goettingen.de

Aihua Li
Montclair State University, Montclair, USA,
e-mail: lia@mail.montclair.edu

Tahir Khaniyev
TOBB University of Economics and Technology, Ankara, Turkey,
e-mail: tahirkhaniyev@etu.edu.tr

Basak Gever
TOBB University of Economics and Technology, Ankara, Turkey,
e-mail: bgever@etu.edu.tr

Boussayoud Ali
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Chapter 1
Approximation by Neural Networks Iterates

George A. Anastassiou

Abstract Here we study the multivariate quantitative approximation of real valued
continuous multivariate functions on a box or R

N , N ∈ N, by the multivariate
quasi-interpolation sigmoidal and hyperbolic tangent iterated neural network op-
erators. This approximation is derived by establishing multidimensional Jackson
type inequalities involving the multivariate modulus of continuity of the engaged
function or its high order partial derivatives. Our multivariate iterated operators are
defined by using the multidimensional density functions induced by the logarithmic
sigmoidal and the hyperbolic tangent functions. The approximations are pointwise
and uniform. The related feed-forward neural networks are with one hidden layer.

1.1 Introduction

The author in [1–3], see Chaps. 2–5, was the first to establish neural network ap-
proximations to continuous functions with rates by very specifically defined neural
network operators of Cardaliaguet–Euvrard and “Squashing” Types, by employing
the modulus of continuity of the engaged function or its high-order derivative and
producing very tight Jackson-type inequalities. He treats both the univariate and
multivariate cases. Defining these operators “bell-shaped” and “squashing” func-
tions are assumed to be of compact support. Also in [3] he gives the Nth-order
asymptotic expansion for the error of weak approximation of these two operators to
a special natural class of smooth functions; see Chaps. 4–5 there.

This article is a continuation of [4–8].

George A. Anastassiou (�)
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA,
e-mail: ganastss@memphis.edu

G.A. Anastassiou and O. Duman (eds.), Advances in Applied Mathematics
and Approximation Theory, Springer Proceedings in Mathematics & Statistics 41,
DOI 10.1007/978-1-4614-6393-1 1, © Springer Science+Business Media New York 2013
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2 George A. Anastassiou

The author here performs multivariate sigmoidal and hyperbolic tangent iter-
ated neural network approximations to continuous functions over boxes or over the
whole RN , N ∈N.

All convergences are with rates expressed via the multivariate modulus of
continuity of the involved function or its high-order partial derivatives and given by
very tight multidimensional Jackson-type inequalities.

Many times for accuracy computer processes repeat themselves. We prove that
the speed of the convergence of the iterated approximation remains the same, as the
original, even if we increase the number of neurons per cycle.

Feed-forward neural networks (FNNs) with one hidden layer, the only type of
networks we deal with in this article, are mathematically expressed as

Nn (x) =
n

∑
j=0

c jσ
(〈

a j · x
〉
+ b j

)
, x ∈ R

s, s ∈ N,

where for 0≤ j ≤ n, b j ∈ R are the thresholds, a j ∈ R
s are the connection weights,

c j ∈R are the coefficients,
〈
a j · x

〉
is the inner product of a j and x, and σ is the acti-

vation function of the network. In many fundamental network models, the activation
functions are the hyperbolic tangent and the sigmoidal. About neural networks see
[9–12].

1.2 Basics

(I) Here all come from [7, 8].
We consider the sigmoidal function of logarithmic type

si (xi) =
1

1+ e−xi
, xi ∈ R, i = 1, . . . ,N; x := (x1, . . . ,xN) ∈R

N ,

each has the properties lim
xi→+∞

si (xi) = 1 and lim
xi→−∞

si (xi) = 0, i = 1, . . . ,N.

These functions play the role of activation functions in the hidden layer of neural
networks.

As in [9], we consider

Φi (xi) :=
1
2
(si (xi + 1)− si (xi− 1)) , xi ∈ R, i = 1, . . . ,N.

We notice the following properties:

(i) Φi (xi)> 0, ∀ xi ∈R

(ii) ∑∞
ki=−∞Φi (xi− ki) = 1, ∀ xi ∈R

(iii) ∑∞
ki=−∞Φi (nxi− ki) = 1, ∀ xi ∈ R; n ∈N

(iv)
∫ ∞
−∞Φi (xi)dxi = 1

(v) Φi is a density function
(vi) Φi is even: Φi (−xi) =Φi (xi), xi ≥ 0, for i = 1, . . . ,N
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We see that [9]

Φi (xi) =

(
e2− 1

2e2

)
1

(1+ exi−1)(1+ e−xi−1)
, i = 1, . . . ,N.

(vii) Φi is decreasing on R+ and increasing on R−, i = 1, . . . ,N

Notice that maxΦi (xi) =Φi (0) = 0.231.
Let 0 < β < 1, n ∈ N. Then as in [8] we get

(viii)

∞

∑⎧
⎨

⎩
ki =−∞

: |nxi− ki|> n1−β

Φi (nxi− ki)≤ 3.1992e−n(1−β) , i = 1, . . . ,N

Denote by �·� the ceiling of a number and by 	·
 the integral part of a number.
Consider here x ∈ (∏N

i=1 [ai,bi]
)⊂R

N , N ∈N such that �nai� ≤ 	nbi
, i = 1, . . . ,N;
a := (a1, . . . ,aN), b := (b1, . . . ,bN).

As in [8] we obtain

(ix)

0 <
1

∑	nbi

ki=�nai�Φi (nxi− ki)

<
1

Φi (1)
= 5.250312578,

∀ xi ∈ [ai,bi], i = 1, . . . ,N
(x) As in [8], we see that

lim
n→∞

	nbi

∑

ki=�nai�
Φi (nxi− ki) �= 1,

for at least some xi ∈ [ai,bi], i = 1, . . . ,N

We will use here

Φ (x1, . . . ,xN) :=Φ (x) :=
N

∏
i=1

Φi (xi) , x ∈ R
N (1.1)

It has the properties:

(i)′ Φ (x)> 0, ∀ x ∈ R
N

(ii)′

∞

∑
k=−∞

Φ (x− k) :=
∞

∑
k1=−∞

∞

∑
k2=−∞

. . .
∞

∑
kN=−∞

Φ (x1− k1, . . . ,xN− kN) = 1 (1.2)

k := (k1, . . . ,kN), ∀ x ∈R
N
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(iii)′
∞

∑
k=−∞

Φ (nx− k) :=

∞

∑
k1=−∞

∞

∑
k2=−∞

. . .
∞

∑
kN=−∞

Φ (nx1− k1, . . . ,nxN− kN) = 1, (1.3)

∀ x ∈ R
N ; n ∈ N

(iv)′ ∫

RN
Φ (x)dx = 1,

that is, Φ is a multivariate density function

Here ‖x‖∞ := max{|x1| , . . . , |xN |}, x ∈ R
N , also set ∞ := (∞, . . . ,∞), −∞ :=

(−∞, . . . ,−∞) upon the multivariate context, and

�na� : = (�na1� , . . . ,�naN�)
	nb
 : = (	nb1
 , . . . ,	nbN
)

In general ‖·‖∞ stands for the supremum norm.
We also have

(v)′
	nb

∑⎧

⎨

⎩

k = �na�∥
∥ k

n − x
∥
∥
∞ > 1

nβ

Φ (nx− k)≤ 3.1992e−n(1−β)

0 < β < 1, n ∈ N, x ∈ (∏N
i=1 [ai,bi]

)

(vi)′

0 <
1

∑	nb

k=�na�Φ (nx− k)

< (5.250312578)N

∀ x ∈ (∏N
i=1 [ai,bi]

)
, n ∈N

(vii)′
∞

∑⎧
⎨

⎩

k =−∞∥
∥ k

n − x
∥
∥
∞ > 1

nβ

Φ (nx− k)≤ 3.1992e−n(1−β)

0 < β < 1, n ∈ N, x ∈ R
N

(viii)′

lim
n→∞

	nb

∑

k=�na�
Φ (nx− k) �= 1

for at least some x ∈ (∏N
i=1 [ai,bi]

)

Let f ∈C
(
∏N

i=1 [ai,bi]
)

and n ∈ N such that �nai� ≤ 	nbi
, i = 1, . . . ,N.
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We introduce and define the multivariate positive linear neural network operator
(x := (x1, . . . ,xN) ∈

(
∏N

i=1 [ai,bi]
)
)

Gn ( f ,x1, . . . ,xN) := Gn ( f ,x) :=
∑	nb


k=�na� f
(

k
n

)
Φ (nx− k)

∑	nb

k=�na�Φ (nx− k)

(1.4)

:=
∑	nb1


k1=�na1�∑
	nb2

k2=�na2� . . .∑

	nbN

kN=�naN� f

(
k1
n , . . . ,

kN
n

)(
∏N

i=1Φi (nxi− ki)
)

∏N
i=1

(
∑	nbi


ki=�nai�Φi (nxi− ki)
) .

For large enough n we always obtain �nai� ≤ 	nbi
, i = 1, . . . ,N. Also ai ≤ ki
n ≤ bi,

iff �nai� ≤ ki ≤ 	nbi
, i = 1, . . . ,N.
We need, for f ∈C

(
∏N

i=1 [ai,bi]
)
, the first multivariate modulus of continuity

ω1 ( f ,h) := sup
x,y ∈ (∏N

i=1 [ai,bi]
)

‖x− y‖∞ ≤ h

| f (x)− f (y)| , h > 0. (1.5)

Similarly it is defined for f ∈CB
(
R

N
)

(continuous and bounded functions on R
N).

We have that lim
h→0

ω1 ( f ,h) = 0, when f is uniformly continuous.

When f ∈CB
(
R

N
)

we define

Gn ( f ,x) := Gn ( f ,x1, . . . ,xN) :=
∞

∑
k=−∞

f

(
k
n

)
Φ (nx− k) (1.6)

:=
∞

∑
k1=−∞

∞

∑
k2=−∞

. . .
∞

∑
kN=−∞

f

(
k1

n
,

k2

n
, . . . ,

kN

n

)(
N

∏
i=1

Φi (nxi− ki)

)

,

n∈N, ∀ x∈RN , N ≥ 1, the multivariate quasi-interpolation neural network operator.
We mention from [7]:

Theorem 1.1. Let f ∈ C
(
∏N

i=1 [ai,bi]
)
, 0 < β < 1, x ∈ (

∏N
i=1 [ai,bi]

)
, n, N ∈ N.

Then

i)
|Gn ( f ,x)− f (x)| ≤ (5.250312578)N

{
ω1

(
f ,

1

nβ

)
+(6.3984)‖ f‖∞ e−n(1−β)

}
=: λ1 (1.7)

ii)
‖Gn ( f )− f‖∞ ≤ λ1 (1.8)
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Theorem 1.2. Let f ∈CB
(
R

N
)
, 0 < β < 1, x ∈ R

N, n, N ∈ N. Then

i)
∣
∣Gn ( f ,x)− f (x)

∣
∣≤ ω1

(
f ,

1

nβ

)
+(6.3984)‖ f‖∞ e−n(1−β) =: λ2 (1.9)

ii) ∥
∥Gn ( f )− f

∥
∥
∞ ≤ λ2 (1.10)

(II) Here we follow [5, 6].
We also consider the hyperbolic tangent function tanhx, x ∈ R :

tanhx :=
ex− e−x

ex + e−x .

It has the properties tanh0 = 0,−1 < tanhx < 1, ∀ x ∈R, and tanh(−x) =− tanhx.
Furthermore tanhx→ 1 as x→ ∞, and tanhx→−1, as x→−∞, and it is strictly
increasing on R.

This function plays the role of an activation function in the hidden layer of neural
networks.

We further consider

Ψ (x) :=
1
4
(tanh(x+ 1)− tanh(x− 1))> 0, ∀ x ∈ R.

We easily see that Ψ (−x) =Ψ (x), that is, Ψ is even on R. ObviouslyΨ is differ-
entiable, thus continuous.

Proposition 1.3. ([5])Ψ (x) for x≥ 0 is strictly decreasing.

ObviouslyΨ (x) is strictly increasing for x ≤ 0. Also it holds lim
x→−∞Ψ (x) = 0 =

lim
x→∞

Ψ (x).

Infact Ψ has the bell shape with horizontal asymptote the x-axis. So the maxi-
mum ofΨ is zero,Ψ (0) = 0.3809297.

Theorem 1.4. ([5]) We have that ∑∞
i=−∞Ψ (x− i) = 1, ∀ x ∈ R.

Thus
∞

∑
i=−∞

Ψ (nx− i) = 1, ∀ n ∈ N, ∀ x ∈ R.

Also it holds
∞

∑
i=−∞

Ψ (x+ i) = 1, ∀x ∈ R.

Theorem 1.5. ([5]) It holds
∫ ∞
−∞Ψ (x)dx = 1.

SoΨ (x) is a density function on R.
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Theorem 1.6. ([5]) Let 0 < α < 1 and n ∈ N. It holds

∞

∑
{

k =−∞
: |nx− k| ≥ n1−α

Ψ (nx− k)≤ e4 · e−2n(1−α) .

Theorem 1.7. ([5]) Let x ∈ [a,b]⊂ R and n ∈ N so that �na� ≤ 	nb
. It holds

1

∑	nb

k=�na�Ψ (nx− k)

<
1

Ψ (1)
= 4.1488766.

Also by [5] we get that

lim
n→∞

	nb

∑

k=�na�
Ψ (nx− k) �= 1,

for at least some x ∈ [a,b].
In this article we will use

Θ (x1, . . . ,xN) :=Θ (x) :=
N

∏
i=1

Ψ (xi) , x = (x1, . . . ,xN) ∈ R
N , N ∈ N. (1.11)

It has the properties:

(i) Θ (x)> 0, ∀ x ∈R
N

(ii)

∞

∑
k=−∞

Θ (x− k) :=
∞

∑
k1=−∞

∞

∑
k2=−∞

. . .
∞

∑
kN=−∞

Θ (x1− k1, . . . ,xN− kN) = 1 (1.12)

where k := (k1, . . . ,kN), ∀ x ∈R
N

(iii)
∞

∑
k=−∞

Θ (nx− k) :=

∞

∑
k1=−∞

∞

∑
k2=−∞

. . .
∞

∑
kN=−∞

Θ (nx1− k1, . . . ,nxN− kN) = 1 (1.13)

∀ x ∈ R
N ; n ∈ N.

(iv) ∫

RN
Θ (x)dx = 1

that is, Θ is a multivariate density function.
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(v)
	nb

∑⎧

⎨

⎩

k = �na�∥
∥ k

n − x
∥
∥
∞ > 1

nβ

Θ (nx− k)≤ e4 · e−2n(1−β)

0 < β < 1, n ∈N, x ∈ (∏N
i=1 [ai,bi]

)
.

(vi)

0 <
1

∑	nb

k=�na�Θ (nx− k)

<
1

(Ψ (1))N = (4.1488766)N

∀ x ∈ (∏N
i=1 [ai,bi]

)
, n ∈ N

(vii)
∞

∑⎧
⎨

⎩
k =−∞∥

∥ k
n − x

∥
∥
∞ > 1

nβ

Θ (nx− k)≤ e4 · e−2n(1−β)

0 < β < 1, n ∈N, x ∈ R
N

Also we get that

lim
n→∞

	nb

∑

k=�na�
Θ (nx− k) �= 1,

for at least some x ∈ (∏N
i=1 [ai,bi]

)
.

Let f ∈C
(
∏N

i=1 [ai,bi]
)

and n ∈ N such that �nai� ≤ 	nbi
, i = 1, . . . ,N.
We introduce and define the multivariate positive linear neural network operator

(x := (x1, . . . ,xN) ∈
(
∏N

i=1 [ai,bi]
)
)

Fn ( f ,x1, . . . ,xN) := Fn ( f ,x) :=
∑	nb


k=�na� f
(

k
n

)
Θ (nx− k)

∑	nb

k=�na�Θ (nx− k)

(1.14)

:=
∑	nb1


k1=�na1�∑
	nb2

k2=�na2� . . .∑

	nbN

kN=�naN� f

(
k1
n , . . . ,

kN
n

)(
∏N

i=1Ψ (nxi− ki)
)

∏N
i=1

(
∑	nbi


ki=�nai�Ψ (nxi− ki)
) .

When f ∈CB
(
R

N
)

we define

Fn ( f ,x) := Fn ( f ,x1, . . . ,xN) :=
∞

∑
k=−∞

f

(
k
n

)
Θ (nx− k) := (1.15)

∞

∑
k1=−∞

∞

∑
k2=−∞

. . .
∞

∑
kN=−∞

f

(
k1

n
,

k2

n
, . . . ,

kN

n

)(
N

∏
i=1

Ψ (nxi− ki)

)

,

n∈N, ∀ x∈RN , N ≥ 1, the multivariate quasi-interpolation neural network operator.
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We mention from [6]:

Theorem 1.8. Let f ∈ C
(
∏N

i=1 [ai,bi]
)
, 0 < β < 1, x ∈ (

∏N
i=1 [ai,bi]

)
, n, N ∈ N.

Then

i)
|Fn ( f ,x)− f (x)| ≤ (4.1488766)N

{
ω1

(
f ,

1

nβ

)
+ 2e4‖ f‖∞ e−2n(1−β)

}
=: λ1 (1.16)

ii)
‖Fn ( f )− f‖∞ ≤ λ1 (1.17)

Theorem 1.9. Let f ∈CB
(
R

N
)
, 0 < β < 1, x ∈ R

N, n, N ∈ N. Then

i)
∣
∣Fn ( f ,x)− f (x)

∣
∣≤ ω1

(
f ,

1

nβ

)
+ 2e4‖ f‖∞ e−2n(1−β) =: λ2 (1.18)

ii) ∥
∥Fn ( f )− f

∥
∥
∞ ≤ λ2 (1.19)

Let r ∈N, in this article, we study the uniform convergence with rates to the unit
operator I of the iterates Gr

n, G
r
n, Fr

n , and F
r
n.

1.3 Preparatory Results

We need

Theorem 1.10. Let f ∈CB
(
R

N
)
, N ≥ 1. Then Gn ( f ) ∈CB

(
R

N
)
.

Proof. We have that

∣
∣Gn ( f ,x)

∣
∣≤

∞

∑
k=−∞

∣∣
∣
∣ f

(
k
n

)∣∣
∣
∣Φ (nx− k)

≤ ‖ f‖∞
(

∞

∑
k=−∞

Φ (nx− k)

)
(1.3)
= ‖ f‖∞ , ∀ x ∈ R

N .

So that Gn ( f ) is bounded.
Next we prove the continuity of Gn ( f ). We will use the Weierstrass M-test: If

a sequence of positive constants M1,M2,M3, . . . can be found such that in some
interval

(a) |un (x)| ≤Mn, n = 1,2,3, . . .
(b) ∑Mn converges,

then ∑un (x) is uniformly and absolutely convergent in the interval.
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Also we will use:
If {un (x)}, n = 1,2,3, . . . are continuous in [a,b], and if ∑un (x) converges uni-

formly to the sum S (x) in [a,b], then S (x) is continuous in [a,b], that is, a uniformly
convergent series of continuous functions is a continuous function. First we prove
claim for N = 1.

We will prove that ∑∞
k=−∞ f

(
k
n

)
Φ (nx− k) is continuous in x ∈ R.

There always exists λ ∈ N such that nx ∈ [−λ ,λ ].
Since nx≤ λ , then −nx≥−λ and k− nx≥ k−λ ≥ 0, when k ≥ λ . Therefore

∞

∑
k=λ

Φ (nx− k) =
∞

∑
k=λ

Φ (k− nx)≤
∞

∑
k=λ

Φ (k−λ ) =
∞

∑
k′=0

Φ
(
k′
)≤ 1.

So for k ≥ λ we get
∣
∣∣
∣ f

(
k
n

)∣∣∣
∣Φ (nx− k)≤ ‖ f‖∞Φ (k−λ )

and

‖ f‖∞
∞

∑
k=λ

Φ (k−λ )≤ ‖ f‖∞ .

Hence by Weierstrass M-test we obtain that ∑∞
k=λ f

(
k
n

)
Φ (nx− k) is uniformly and

absolutely convergent on
[
− λ

n ,
λ
n

]
.

Since f
(

k
n

)
Φ (nx− k) is continuous in x, then ∑∞

k=λ f
(

k
n

)
Φ (nx− k) is continu-

ous on
[
− λ

n ,
λ
n

]
.

Because nx≥−λ , then −nx≤ λ , and k−nx≤ k+λ ≤ 0, when k≤−λ . There-
fore

−λ
∑

k=−∞
Φ (nx− k) =

−λ
∑

k=−∞
Φ (k− nx)≤

−λ
∑

k=−∞
Φ (k+λ ) =

0

∑
k′=−∞

Φ
(
k′
)≤ 1.

So for k ≤−λ we get
∣
∣
∣
∣ f

(
k
n

)∣∣
∣
∣Φ (nx− k)≤ ‖ f‖∞Φ (k+λ )

and

‖ f‖∞
−λ
∑

k=−∞
Φ (k+λ )≤ ‖ f‖∞ .

Hence by Weierstrass M-test we obtain that ∑−λk=−∞ f
(

k
n

)
Φ (nx− k) is uniformly

and absolutely convergent on
[
− λ

n ,
λ
n

]
.

Since f
(

k
n

)
Φ (nx− k) is continuous in x, then ∑−λk=−∞ f

(
k
n

)
Φ (nx− k) is contin-

uous on
[
− λ

n ,
λ
n

]
.
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So we proved that ∑∞
k=λ f

(
k
n

)
Φ (nx− k) and ∑−λk=−∞ f

(
k
n

)
Φ (nx− k) are contin-

uous on R. Since ∑λ−1
k=−λ+1 f

(
k
n

)
Φ (nx− k) is a finite sum of continuous functions

on R, it is also a continuous function on R.
Writing

∞

∑
k=−∞

f

(
k
n

)
Φ (nx− k) =

−λ
∑

k=−∞
f

(
k
n

)
Φ (nx− k)+

λ−1

∑
k=−λ+1

f

(
k
n

)
Φ (nx− k)+

∞

∑
k=λ

f

(
k
n

)
Φ (nx− k)

we have it as a continuous function on R. Therefore Gn ( f ), when N = 1, is a con-
tinuous function on R.

When N = 2 we have

Gn ( f ,x1,x2) =
∞

∑
k1=−∞

∞

∑
k2=−∞

f

(
k1

n
,

k2

n

)
Φ1 (nx1− k1)Φ (nx2− k2) =

∞

∑
k1=−∞

Φ1 (nx1− k1)

(
∞

∑
k2=−∞

f

(
k1

n
,

k2

n

)
Φ2 (nx2− k2)

)

(there always exist λ1,λ2 ∈N such that nx1 ∈ [−λ1,λ1] and nx2 ∈ [−λ2,λ2])

=
∞

∑
k1=−∞

Φ1 (nx1− k1)

[ −λ2

∑
k2=−∞

f

(
k1

n
,

k2

n

)
Φ2 (nx2− k2)+

λ2−1

∑
k2=−λ2+1

f

(
k1

n
,

k2

n

)
Φ2 (nx2− k2)+

∞

∑
k2=λ2

f

(
k1

n
,

k2

n

)
Φ2 (nx2− k2)

]

=

=
∞

∑
k1=−∞

−λ2

∑
k2=−∞

f

(
k1

n
,

k2

n

)
Φ1 (nx1− k1)Φ2 (nx2− k2)+

∞

∑
k1=−∞

λ2−1

∑
k2=−λ2+1

f

(
k1

n
,

k2

n

)
Φ1 (nx1− k1)Φ2 (nx2− k2)+

∞

∑
k1=−∞

∞

∑
k2=λ2

f

(
k1

n
,

k2

n

)
Φ1 (nx1− k1)Φ2 (nx2− k2) .

(for convenience call

F (k1,k2,x1,x2) := f

(
k1

n
,

k2

n

)
Φ1 (nx1− k1)Φ2 (nx2− k2) )
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=
−λ1

∑
k1=−∞

−λ2

∑
k2=−∞

F (k1,k2,x1,x2)+
λ1−1

∑
k1=−λ1+1

−λ2

∑
k2=−∞

F (k1,k2,x1,x2)+

∞

∑
k1=λ1

−λ2

∑
k2=−∞

F (k1,k2,x1,x2)+
−λ1

∑
k1=−∞

λ2−1

∑
k2=−λ2+1

F (k1,k2,x1,x2)+

λ1−1

∑
k1=−λ1+1

λ2−1

∑
k2=−λ2+1

F (k1,k2,x1,x2)+
∞

∑
k1=λ1

λ2−1

∑
k2=−λ2+1

F (k1,k2,x1,x2)+

−λ1

∑
k1=−∞

∞

∑
k2=λ2

F (k1,k2,x1,x2)+
λ1−1

∑
k1=−λ1+1

∞

∑
k2=λ2

F (k1,k2,x1,x2)+

∞

∑
k1=λ1

∞

∑
k2=λ2

F (k1,k2,x1,x2) .

Notice that the finite sum of continuous functions F (k1,k2,x1,x2),

∑λ1−1
k1=−λ1+1∑

λ2−1
k2=−λ2+1 F (k1,k2,x1,x2) is a continuous function.

The rest of the summands of Gn ( f ,x1,x2) are treated all the same way and simi-
larly to the case of N = 1. The method is demonstrated as follows.

We will prove that ∑∞
k1=λ1

∑−λ2
k2=−∞ f

(
k1
n ,

k2
n

)
Φ1 (nx1− k1)Φ2 (nx2− k2) is con-

tinuous in (x1,x2) ∈ R
2.

The continuous function
∣
∣
∣
∣ f

(
k1

n
,

k2

n

)∣∣
∣
∣Φ1 (nx1− k1)Φ2 (nx2− k2)≤ ‖ f‖∞Φ1 (k1−λ1)Φ2 (k2 +λ2) ,

and

‖ f‖∞
∞

∑
k1=λ1

−λ2

∑
k2=−∞

Φ1 (k1−λ1)Φ2 (k2 +λ2) =

‖ f‖∞
(

∞

∑
k1=λ1

Φ1 (k1−λ1)

)( −λ2

∑
k2=−∞

Φ2 (k2 +λ2)

)

≤

‖ f‖∞

⎛

⎝
∞

∑
k
′
1=0

Φ1
(
k′1
)
⎞

⎠

⎛

⎝
0

∑
k
′
2=−∞

Φ2
(
k′2
)
⎞

⎠≤ ‖ f‖∞ .

So by the Weierstrass M-test we get that

∑∞
k1=λ1

∑−λ2
k2=−∞ f

(
k1
n ,

k2
n

)
Φ1 (nx1− k1)Φ2 (nx2− k2) is uniformly and

absolutely convergent. Therefore it is continuous on R
2.

Next we prove continuity on R
2 of

∑λ1−1
k1=−λ1+1∑

−λ2
k2=−∞ f

(
k1
n ,

k2
n

)
Φ1 (nx1− k1)Φ2 (nx2− k2).
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Notice here that
∣
∣∣
∣ f

(
k1

n
,

k2

n

)∣∣∣
∣Φ1 (nx1− k1)Φ2 (nx2− k2)≤ ‖ f‖∞Φ1 (nx1− k1)Φ2 (k2 +λ2)

≤ ‖ f‖∞Φ1 (0)Φ2 (k2 +λ2) = (0.231)‖ f‖∞Φ2 (k2 +λ2) ,

and

(0.231)‖ f‖∞
(

λ1−1

∑
k1=−λ1+1

1

)( −λ2

∑
k2=−∞

Φ2 (k2 +λ2)

)

=

(0.231)‖ f‖∞ (2λ1− 1)

⎛

⎝
0

∑
k′2=−∞

Φ2
(
k′2
)
⎞

⎠≤ (0.231)(2λ1− 1)‖ f‖∞ .

So the double series under consideration is uniformly convergent and continuous.
Clearly Gn ( f ,x1,x2) is proved to be continuous on R

2.
Similarly reasoning one can prove easily now, but with more tedious work, that

Gn ( f ,x1, . . . ,xN) is continuous on R
N , for any N ≥ 1. We choose to omit this similar

extra work. ��
Theorem 1.11. Let f ∈CB

(
R

N
)
, N ≥ 1. Then Fn ( f ) ∈CB

(
R

N
)
.

Proof. We notice that

∣
∣Fn ( f ,x)

∣
∣≤

∞

∑
k=−∞

∣
∣
∣
∣ f

(
k
n

)∣∣
∣
∣θ (nx− k)≤ ‖ f‖∞

(
∞

∑
k=−∞

θ (nx− k)

)
(1.13)
= ‖ f‖∞ ,

∀ x ∈ R
N , so that Fn ( f ) is bounded. The continuity is proved as in Theorem 1.10.

��
Theorem 1.12. Let f ∈C

(
∏N

i=1 [ai,bi]
)
, then ‖Gn ( f )‖∞ ≤ ‖ f‖∞ and

‖Fn ( f )‖∞ ≤ ‖ f‖∞, also Gn ( f ), Fn ( f ) ∈C
(
∏N

i=1 [ai,bi]
)
.

Proof. By (1.4) we get

|Gn ( f ,x)|=

∣
∣∣∑	nb


k=�na� f
(

k
n

)
Φ (nx− k)

∣
∣∣

∑	nb

k=�na�Φ (nx− k)

≤

∑	nb

k=�na�

∣
∣ f
(

k
n

)∣∣Φ (nx− k)

∑	nb

k=�na�Φ (nx− k)

≤ ‖ f‖∞ , ∀ x ∈R
N ,

so that Gn ( f ) is bounded.
Similarly we act for the boundedness of Fn; see (1.14). Continuity of both is

obvious. ��
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We make

Remark 1.13. Notice that
∥∥G2

n ( f )
∥∥
∞ = ‖Gn (Gn ( f ))‖∞ ≤ ‖Gn ( f )‖∞ ≤ ‖ f‖∞ , etc.

Therefore we get
∥
∥
∥Gk

n ( f )
∥
∥
∥
∞
≤ ‖ f‖∞ , ∀ k ∈ N, (1.20)

the contraction property.
Similarly we obtain

∥
∥∥Fk

n ( f )
∥
∥∥
∞
≤ ‖ f‖∞ , ∀ k ∈ N, (1.21)

Similarly by Theorems 1.10 and 1.11 we obtain
∥
∥∥G

k
n ( f )

∥
∥∥
∞
≤ ‖ f‖∞ , (1.22)

and ∥
∥
∥F

k
n ( f )

∥
∥
∥
∞
≤ ‖ f‖∞ , ∀ k ∈ N, (1.23)

Infact here we have
∥
∥
∥Gk

n ( f )
∥
∥
∥
∞
≤
∥
∥
∥Gk−1

n ( f )
∥
∥
∥
∞
≤ . . .≤ ‖Gn ( f )‖∞ ≤ ‖ f‖∞ , (1.24)

∥
∥
∥Fk

n ( f )
∥
∥
∥
∞
≤
∥
∥
∥Fk−1

n ( f )
∥
∥
∥
∞
≤ . . .≤ ‖Fn ( f )‖∞ ≤ ‖ f‖∞ , (1.25)

∥
∥
∥G

k
n ( f )

∥
∥
∥
∞
≤
∥
∥
∥G

k−1
n ( f )

∥
∥
∥
∞
≤ . . .≤ ∥

∥Gn ( f )
∥
∥
∞ ≤ ‖ f‖∞ , (1.26)

and ∥
∥
∥F

k
n ( f )

∥
∥
∥
∞
≤
∥
∥
∥F

k−1
n ( f )

∥
∥
∥
∞
≤ . . .≤ ∥

∥Fn ( f )
∥
∥
∞ ≤ ‖ f‖∞ . (1.27)

We need

Notation 1.14. Call Ln = Gn, Gn, Fn, Fn. Denote by

cN =

⎧
⎪⎨

⎪⎩

(5.250312578)N , if Ln = Gn,

(4.1488766)N , if Ln = Fn,

1, if Ln = Gn, Fn,

(1.28)

μ =

{
6.3984, if Ln = Gn, Gn,

2e4, if Ln = Fn,Fn,
(1.29)
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and

γ =
{

1, when Ln = Gn, Gn,
2 when Ln = Fn,Fn.

(1.30)

Based on the above notations Theorems 1.1, 1.2, 1.8, and 1.9 can be put in a unified
way as follows:

Theorem 1.15. Let f ∈C
(
∏N

i=1 [ai,bi]
)

or f ∈CB
(
R

N
)
; n, N ∈ N, 0 < β < 1, x ∈(

∏N
i=1 [ai,bi]

)
or x ∈R

N. Then

(i)

|Ln ( f ,x)− f (x)| ≤ cN

{
ω1

(
f ,

1

nβ

)
+ μ ‖ f‖∞ e−γn(1−β)

}
=: ρn (1.31)

(ii)
‖Ln ( f )− f‖∞ ≤ ρn (1.32)

Remark 1.16. We have
∥∥
∥Lk

n f
∥∥
∥
∞
≤ ‖ f‖∞ , ∀ k ∈N, (1.33)

the contraction property.
Also it holds

Ln1 = 1, (1.34)

and
Lk

n1 = 1, ∀ k ∈ N. (1.35)

Here Lk
n are positive linear operators.

1.4 Main Results

We present

Theorem 1.17. Let f ∈ C
(
∏N

i=1 [ai,bi]
)

or f ∈ CB
(
R

N
)
; r, n, N ∈ N, 0 < β < 1,

x ∈ (∏N
i=1 [ai,bi]

)
or x ∈ R

N. Then

|Lr
n ( f ,x)− f (x)| ≤ ‖Lr

n f − f‖∞ ≤ r‖Ln f − f‖∞

≤ rcN

{
ω1

(
f ,

1

nβ

)
+ μ ‖ f‖∞ e−γn(1−β)

}
. (1.36)

Proof. We observe that

Lr
n f − f =

(
Lr

n f −Lr−1
n f

)
+
(
Lr−1

n f −Lr−2
n f

)
+

(
Lr−2

n f −Lr−3
n f

)
+ . . .+

(
L2

n f −Ln f
)
+(Ln f − f ) .
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Then

‖Lr
n f − f‖∞ ≤

∥
∥Lr

n f −Lr−1
n f

∥
∥
∞+

∥
∥Lr−1

n f −Lr−2
n f

∥
∥
∞+

∥
∥Lr−2

n f −Lr−3
n f

∥
∥
∞+ . . .+

∥
∥L2

n f −Ln f
∥
∥
∞+ ‖Ln f − f‖∞ =

∥
∥Lr−1

n (Ln f − f )
∥
∥
∞+

∥
∥Lr−2

n (Ln f − f )
∥
∥
∞+

∥
∥Lr−3

n (Ln f − f )
∥
∥
∞

+ . . .+ ‖Ln (Ln f − f )‖∞+ ‖Ln f − f‖∞
(1.33)
≤

r‖Ln f − f‖∞
(1.32)
≤ rρn,

proving the claim. ��
More generally we have

Theorem 1.18. Let f ∈C
(
∏N

i=1 [ai,bi]
)

or f ∈CB
(
R

N
)
; n, N, m1, . . . ,mr ∈N : m1≤

m2 ≤ . . .≤ mr, 0 < β < 1, x ∈ (∏N
i=1 [ai,bi]

)
or x ∈ R

N. Then
∣
∣Lmr

(
Lmr−1 (. . .Lm2 (Lm1 f ))

)
(x)− f (x)

∣
∣≤ (1.37)

∥
∥Lmr

(
Lmr−1 (. . .Lm2 (Lm1 f ))

)− f
∥
∥
∞ ≤

r

∑
i=1

‖Lmi f − f‖∞ ≤

cN

r

∑
i=1

{

ω1

(

f ,
1

mβ
i

)

+ μ ‖ f‖∞ e−γm
(1−β)
i

}

≤

rcN

{

ω1

(

f ,
1

mβ
1

)

+ μ ‖ f‖∞ e−γm(1−β)
1

}

.

Clearly, we notice that the speed of convergence of the multiply iterated operator
equals to the speed of Lm1 .

Proof. We write

Lmr

(
Lmr−1 (. . .Lm2 (Lm1 f ))

)− f =

Lmr

(
Lmr−1 (. . .Lm2 (Lm1 f ))

)−Lmr

(
Lmr−1 (. . .Lm2 f )

)
+

Lmr

(
Lmr−1 (. . .Lm2 f )

)−Lmr

(
Lmr−1

(
. . .Lm3 f

))
+

Lmr

(
Lmr−1

(
. . .Lm3 f

))−Lmr

(
Lmr−1 (. . .Lm4 f )

)
+ . . .+

Lmr

(
Lmr−1 f

)−Lmr f +Lmr f − f =

Lmr

(
Lmr−1 (. . .Lm2)

)
(Lm1 f − f )+Lmr

(
Lmr−1

(
. . .Lm3

))
(Lm2 f − f )+

Lmr

(
Lmr−1 (. . .Lm4)

)(
Lm3 f − f

)
+ . . .+Lmr

(
Lmr−1 f − f

)
+Lmr f − f .

Hence by the triangle inequality property of ‖·‖∞ we get
∥
∥Lmr

(
Lmr−1 (. . .Lm2 (Lm1 f ))

)− f
∥
∥
∞ ≤
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∥
∥Lmr

(
Lmr−1 (. . .Lm2)

)
(Lm1 f − f )

∥
∥
∞+

∥
∥Lmr

(
Lmr−1

(
. . .Lm3

))
(Lm2 f − f )

∥
∥
∞+

∥
∥Lmr

(
Lmr−1 (. . .Lm4)

)(
Lm3 f − f

)∥∥
∞+ . . .+

∥∥Lmr

(
Lmr−1 f − f

)∥∥
∞+ ‖Lmr f − f‖∞

(repeatedly applying (1.33))

≤ ‖Lm1 f − f‖∞+ ‖Lm2 f − f‖∞+
∥
∥Lm3 f − f

∥
∥
∞+ . . .+

∥
∥Lmr−1 f − f

∥
∥
∞+ ‖Lmr f − f‖∞ =

r

∑
i=1

‖Lmi f − f‖∞
(1.32)
≤

cN

r

∑
i=1

{

ω1

(

f ,
1

mβ
i

)

+ μ ‖ f‖∞ e−γm
(1−β)
i

}

=: (∗) .

We have
1

mr
≤ 1

mr−1
≤ . . .≤ 1

m2
≤ 1

m1
,

and
1

mβ
r

≤ 1

mβ
r−1

≤ . . .≤ 1

mβ
2

≤ 1

mβ
1

.

Therefore

ω1

(

f ,
1

mβ
r

)

≤ ω1

(

f ,
1

mβ
r−1

)

≤ . . .≤ ω1

(

f ,
1

mβ
2

)

≤ ω1

(

f ,
1

mβ
1

)

.

Also it holds
γm(1−β )

1 ≤ γm(1−β )
2 ≤ . . .≤ γm(1−β )

r

and
eγm(1−β)

1 ≤ eγm(1−β)
2 ≤ . . .≤ eγm(1−β)

r ,

so that
e−γm(1−β)

r ≤ e−γm(1−β)
r−1 ≤ . . .≤ e−γm(1−β)

2 ≤ e−γm1(1−β ).

Therefore

(∗)≤ rcN

{

ω1

(

f ,
1

mβ
1

)

+ μ ‖ f‖∞ e−γm
(1−β)
1

}

,

proving the claim. ��
Next we give a partial global smoothness preservation result of operators Lr

n.

Theorem 1.19. Same assumptions as in Theorem 1.17, δ > 0. Then

ω1 (L
r
n f ,δ ) ≤ 2rcN

{
ω1

(
f ,

1

nβ

)
+ μ ‖ f‖∞ e−γn(1−β)

}
+ω1 ( f ,δ ) . (1.38)
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In particular for δ = 1
nβ

, we obtain

ω1

(
Lr

n f ,
1

nβ

)
≤ (2rcN + 1)ω1

(
f ,

1

nβ

)
+ 2rcNμ ‖ f‖∞ e−γn(1−β) . (1.39)

Proof. We write

Lr
n f (x)−Lr

n f (y) = Lr
n f (x)−Lr

n f (y)+ f (x)− f (x)+ f (y)− f (y) =

(Lr
n f (x)− f (x))+ ( f (y)−Lr

n f (y))+ ( f (x)− f (y)) .

Hence

|Lr
n f (x)−Lr

n f (y)| ≤ |Lr
n f (x)− f (x)|+ |Lr

n f (y)− f (y)|+ | f (x)− f (y)|

≤ 2‖Lr
n f − f‖∞+ | f (x)− f (y)| .

Let x,y ∈ (∏N
i=1 [ai,bi]

)
or x,y ∈ R

N : |x− y| ≤ δ , δ > 0. Then

ω1 (L
r
n f ,δ ) ≤ 2‖Lr

n f − f‖∞+ω1 ( f ,δ ) .

That is

ω1 (L
r
n f ,δ )

(1.36)
≤ 2r‖Ln f − f‖∞+ω1 ( f ,δ ) ,

proving the claim. ��
Notation 1.20. Let f ∈ Cm

(
∏N

i=1 [ai,bi]
)
, m,N ∈ N. Here fα denotes a partial

derivative of f , α := (α1, . . . ,αN), αi ∈ Z
+, i = 1, . . . ,N, and |α| := ∑N

i=1αi = l,

where l = 0,1, . . . ,m. We write also fα := ∂α f
∂xα and we say it is of order l. We denote

ωmax
1,m ( fα ,h) := max

α :|α |=m
ω1 ( fα ,h) . (1.40)

Call also
‖ fα‖max

∞,m := max
|α |=m

{‖ fα‖∞} . (1.41)

We discuss higher-order approximation next.
We mention from [7] the following result.

Theorem 1.21. Let f ∈Cm
(
∏N

i=1 [ai,bi]
)
, 0 < β < 1, n,m,N ∈N. Then

‖Gn ( f )− f‖∞ ≤ (5.250312578)N · (1.42)

{
N

∑
j=1

(

∑
|α |= j

( ‖ fα‖∞
∏N

i=1αi!

)[
1

nβ j
+

(
N

∏
i=1

(bi− ai)
αi

)

(3.1992)e−n(1−β)
])

+

Nm

m!nmβ ω
max
1,m

(
fα ,

1

nβ

)
+

(
(6.3984)‖b− a‖m∞ ‖ fα‖max

∞,m Nm

m!

)

e−n(1−β)
}

=: Mn.
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Using Theorem 1.17 we derive

Theorem 1.22. Let f ∈ Cm
(
∏N

i=1 [ai,bi]
)
, 0<β<1, r,n,m,N∈N, x∈(∏N

i=1 [ai,bi]
)
.

Then

|Gr
n ( f ,x)− f (x)| ≤ ‖Gr

n ( f )− f‖∞ ≤ r‖Gn ( f )− f‖∞ ≤ rMn. (1.43)

One can have a similar result for the operator Fn but we omit it.
Next we specialize on Lipschitz classes of functions. We apply Theorem 1.18 to

obtain

Theorem 1.23. Let f ∈C
(
∏N

i=1 [ai,bi]
)

or f ∈CB
(
R

N
)
; n, N, m1, . . . ,mr ∈N : m1≤

m2 ≤ . . . ≤ mr, 0 < β < 1. We further assume that | f (x)− f (y)| ≤ M‖x− y‖α∞, ∀
x,y ∈ (∏N

i=1 [ai,bi]
)

or x,y ∈ R
N (respectively), 0 < α ≤ 1, M > 0. Then

∥
∥Lmr

(
Lmr−1 (. . .Lm2 (Lm1 f ))

)− f
∥
∥
∞ ≤ (1.44)

r

∑
i=1
‖Lmi f − f‖∞ ≤

cN

r

∑
i=1

{
M

mαβ
i

+ μ ‖ f‖∞ e−γm(1−β)
i

}

.

Example 1.24. Let f (x1, . . . ,xN) = ∑N
i=1 cosxi, (x1, . . . ,xN) ∈ R

N , N ∈ N. Denote
x = (x1, . . . ,xN), y = (y1, . . . ,yN) and observe that

∣
∣
∣
∣∣

N

∑
i=1

cosxi−
N

∑
i=1

cosyi

∣
∣
∣
∣∣
≤

N

∑
i=1

|cosxi− cosyi|

≤
N

∑
i=1

|xi− yi| ≤ N ‖x− y‖∞ .

That is

| f (x)− f (y)| ≤ N ‖x− y‖∞ .

Consequently by (1.5) we get that

ω1 ( f ,h) ≤ Nh, h > 0.

Therefore by (1.9) we derive
∥
∥
∥∥
∥

Gn

(
N

∑
i=1

cosxi

)

−
(

N

∑
i=1

cosxi

)∥∥
∥∥
∥
∞

≤ N

(
1

nβ
+(6.3984)e−n(1−β)

)
, (1.45)

where 0 < β < 1 and n ∈ N.
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Let now m1, . . . ,mr ∈ N : m1 ≤ m2 ≤ . . .≤ mr. Then by (1.44) we get
∥
∥
∥∥
∥

Gmr

(

Gmr−1

(

. . .

(

Gm2

(

Gm1

(
N

∑
i=1

cosxi

)))))

−
(

N

∑
i=1

cosxi

)∥∥
∥∥
∥
∞

≤ (1.46)

r

∑
i=1

∥
∥
∥
∥
∥

Gmi

(
N

∑
i=1

cosxi

)

−
(

N

∑
i=1

cosxi

)∥
∥
∥
∥
∥
∞

(by (1.45))
≤

N
r

∑
i=1

(
1

mβ
i

+(6.3984)e−m
(1−β)
i

)

≤ rN

(
1

mβ
1

+(6.3984)e−m
(1−β)
1

)

. (1.47)

One can give easily many other interesting applications.
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Chapter 2
Univariate Hardy-Type Fractional Inequalities

George A. Anastassiou

Abstract Here we present integral inequalities for convex and increasing functions
applied to products of functions. As applications we derive a wide range of frac-
tional inequalities of Hardy type. They involve the left and right Riemann-Liouville
fractional integrals and their generalizations, in particular the Hadamard fractional
integrals. Also inequalities for left and right Riemann-Liouville, Caputo, Canavati
and their generalizations fractional derivatives. These application inequalities are of
Lp type, p≥ 1, and exponential type, as well as their mixture.

2.1 Introduction

We start with some facts about fractional derivatives needed in the sequel; for more
details, see, for instance, [1, 9].

Let a < b, a,b ∈ R. By CN ([a,b]), we denote the space of all functions on [a,b]
which have continuous derivatives up to order N, and AC ([a,b]) is the space of
all absolutely continuous functions on [a,b]. By ACN ([a,b]), we denote the space
of all functions g with g(N−1) ∈ AC ([a,b]). For any α ∈ R, we denote by [α] the
integral part of α (the integer k satisfying k≤ α < k+1), and �α� is the ceiling of α
(min{n∈N, n≥α}). By L1 (a,b), we denote the space of all functions integrable on
the interval (a,b), and by L∞ (a,b) the set of all functions measurable and essentially
bounded on (a,b). Clearly, L∞ (a,b)⊂ L1 (a,b).

We start with the definition of the Riemann–Liouville fractional integrals;
see [12]. Let [a,b], (−∞ < a < b < ∞) be a finite interval on the real axis R.
The Riemann–Liouville fractional integrals Iαa+ f and Iαb− f of order α > 0 are
defined by

George A. Anastassiou (�)
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(
Iαa+ f

)
(x) =

1
Γ (α)

∫ x

a
f (t)(x− t)α−1 dt, (x > a), (2.1)

(
Iαb− f

)
(x) =

1
Γ (α)

∫ b

x
f (t)(t− x)α−1 dt, (x < b), (2.2)

respectively. Here Γ (α) is the Gamma function. These integrals are called the left-
sided and the right-sided fractional integrals. We mention some properties of the
operators Iαa+ f and Iαb− f of order α > 0; see also [13]. The first result yields that
the fractional integral operators Iαa+ f and Iαb− f are bounded in Lp (a,b), 1≤ p ≤ ∞,
that is,

∥
∥Iαa+ f

∥
∥

p ≤ K ‖ f‖p ,
∥
∥Iαb− f

∥
∥

p ≤ K ‖ f‖p , (2.3)

where

K =
(b− a)α

αΓ (α)
. (2.4)

Inequality (2.3), which is the result involving the left-sided fractional integral, was
proved by H.G. Hardy in one of his first papers; see [10]. He did not write down the
constant, but the calculation of the constant was hidden inside his proof.

Next we follow [11].
Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ -finite mea-

sures, and let k : Ω1×Ω2→ R be a nonnegative measurable function, k (x, ·) mea-
surable on Ω2 and

K (x) =
∫

Ω2

k (x,y)dμ2 (y) , x ∈Ω1. (2.5)

We suppose that K (x)> 0 a.e. on Ω1, and by a weight function (shortly: a weight),
we mean a nonnegative measurable function on the actual set. Let the measurable
functions g : Ω1→ R with the representation

g(x) =
∫

Ω2

k (x,y) f (y)dμ2 (y) , (2.6)

where f : Ω2→ R is a measurable function.

Theorem 2.1 ([11]). Let u be a weight function on Ω1, k a nonnegative measurable
function on Ω1×Ω2, and K be defined on Ω1 by (2.5). Assume that the function
x �→ u(x) k(x,y)

K(x) is integrable on Ω1 for each fixed y ∈Ω2. Define ν on Ω2 by

ν (y) :=
∫

Ω1

u(x)
k (x,y)
K (x)

dμ1 (x)< ∞. (2.7)

If Φ : [0,∞)→ R is convex and increasing function, then the inequality

∫

Ω1

u(x)Φ
(∣∣
∣
∣

g(x)
K (x)

∣
∣
∣
∣

)
dμ1 (x)≤

∫

Ω2

ν (y)Φ (| f (y)|)dμ2 (y) (2.8)
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holds for all measurable functions f : Ω2→ R such that:

(i) f ,Φ (| f |) are both k (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.
(ii) ν (y)Φ (| f |) is μ2-integrable, and for all corresponding functions g given by

(2.6).

Important assumptions (i) and (ii) are missing from Theorem 2.1 of [11].
In this article we generalize Theorem 2.1 for products of several functions and

we give wide applications to fractional calculus.

2.2 Main Results

Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ -finite measures,
and let ki : Ω1×Ω2→ R be nonnegative measurable functions, ki (x, ·) measurable
on Ω2, and

Ki (x) =
∫

Ω2

ki (x,y)dμ2 (y) , for any x ∈Ω1, (2.9)

i = 1, . . . ,m. We assume that Ki (x) > 0 a.e. on Ω1 and the weight functions are
nonnegative measurable functions on the related set.

We consider measurable functions gi : Ω1→ R with the representation

gi (x) =
∫

Ω2

ki (x,y) fi (y)dμ2 (y) , (2.10)

where fi : Ω2→ R are measurable functions, i = 1, . . . ,m.
Here u stands for a weight function on Ω1.
The first introductory result is proved for m = 2.

Theorem 2.2. Assume that the function x �→
(

u(x)k1(x,y)k2(x,y)
K1(x)K2(x)

)
is integrable on Ω1,

for each y ∈Ω2. Define λ2 on Ω2 by

λ2 (y) :=
∫

Ω1

u(x)k1 (x,y)k2 (x,y)
K1 (x)K2 (x)

dμ1 (x)< ∞. (2.11)

Here Φi : R+→ R+, i = 1,2, are convex and increasing functions.
Then

∫

Ω1

u(x)Φ1

(∣∣
∣
∣

g1 (x)
K1 (x)

∣
∣
∣
∣

)
Φ2

(∣∣
∣
∣

g2 (x)
K2 (x)

∣
∣
∣
∣

)
dμ1 (x)≤

(∫

Ω2

Φ2 (| f2 (y)|)dμ2 (y)

)(∫

Ω2

Φ1 (| f1 (y)|)λ2 (y)dμ2 (y)

)
, (2.12)

true for all measurable functions, i = 1,2, fi : Ω2→ R such that:

(i) fi, Φi (| fi|), are both ki (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.
(ii) λ2Φ1 (| f1|), Φ2 (| f2|), are both μ2 -integrable,

and for all corresponding functions gi given by (2.10).
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Proof. Notice here that Φ1,Φ2 are continuous functions. Here we use Jensen’s in-
equality and Fubini’s theorem and that Φi are increasing. We have

∫

Ω1

u(x)Φ1

(∣∣
∣
∣

g1 (x)
K1 (x)

∣∣
∣
∣

)
Φ2

(∣∣
∣
∣

g2 (x)
K2 (x)

∣∣
∣
∣

)
dμ1 (x) =

∫

Ω1

u(x)Φ1

(∣∣
∣
∣

1
K1 (x)

∫

Ω2

k1 (x,y) f1 (y)dμ2 (y)

∣
∣
∣
∣

)
· (2.13)

Φ2

(∣∣
∣
∣

1
K2 (x)

∫

Ω2

k2 (x,y) f2 (y)dμ2 (y)

∣
∣
∣
∣

)
dμ1 (x)≤

∫

Ω1

u(x)Φ1

(
1

K1 (x)

∫

Ω2

k1 (x,y) | f1 (y)|dμ2 (y)

)
·

Φ2

(
1

K2 (x)

∫

Ω2

k2 (x,y) | f2 (y)|dμ2 (y)

)
dμ1 (x)≤

∫

Ω1

u(x)
1

K1 (x)

(∫

Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y)

)
·

1
K2 (x)

(∫

Ω2

k2 (x,y)Φ2 (| f2 (y)|)dμ2 (y)

)
dμ1 (x) =

(calling γ1 (x) :=
∫
Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y))

∫

Ω1

∫

Ω2

u(x)γ1 (x)
K1 (x)K2 (x)

k2 (x,y)Φ2 (| f2 (y)|)dμ2 (y)dμ1 (x) =

∫

Ω2

∫

Ω1

u(x)γ1 (x)
K1 (x)K2 (x)

k2 (x,y)Φ2 (| f2 (y)|)dμ1 (x)dμ2 (y) = (2.14)

∫

Ω2

Φ2 (| f2 (y)|)
(∫

Ω1

u(x)γ1 (x)
K1 (x)K2 (x)

k2 (x,y)dμ1 (x)

)
dμ2 (y) =

∫

Ω2

Φ2 (| f2 (y)|) ·
(∫

Ω1

u(x)k2 (x,y)
K1 (x)K2 (x)

(∫

Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y)

)
dμ1 (x)

)
dμ2 (y) =

∫

Ω2

Φ2 (| f2 (y)|) ·
[∫

Ω1

(∫

Ω2

u(x)k1 (x,y)k2 (x,y)
K1 (x)K2 (x)

Φ1 (| f1 (y)|)dμ2 (y)

)
dμ1 (x)

]
dμ2 (y) = (2.15)

(∫

Ω2

Φ2 (| f2 (y)|)dμ2 (y)

)
·
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[∫

Ω1

(∫

Ω2

u(x)k1 (x,y)k2 (x,y)
K1 (x)K2 (x)

Φ1 (| f1 (y)|)dμ2 (y)

)
dμ1 (x)

]
=

(∫

Ω2

Φ2 (| f2 (y)|)dμ2 (y)

)
·

[∫

Ω2

(∫

Ω1

u(x)k1 (x,y)k2 (x,y)
K1 (x)K2 (x)

Φ1 (| f1 (y)|)dμ1 (x)

)
dμ2 (y)

]
=

(∫

Ω2

Φ2 (| f2 (y)|)dμ2 (y)

)
·

[∫

Ω2

Φ1 (| f1 (y)|)
(∫

Ω1

u(x)k1 (x,y)k2 (x,y)
K1 (x)K2 (x)

dμ1 (x)

)
dμ2 (y)

]
= (2.16)

(∫

Ω2

Φ2 (| f2 (y)|)dμ2 (y)

)[∫

Ω2

Φ1 (| f1 (y)|)λ2 (y)dμ2 (y)

]
,

proving the claim. ��
When m = 3, the corresponding result follows.

Theorem 2.3. Assume that the function x �→
(

u(x)k1(x,y)k2(x,y)k3(x,y)
K1(x)K2(x)K3(x)

)
is integrable on

Ω1, for each y ∈Ω2. Define λ3 on Ω2 by

λ3 (y) :=
∫

Ω1

u(x)k1 (x,y)k2 (x,y)k3 (x,y)
K1 (x)K2 (x)K3 (x)

dμ1 (x)< ∞. (2.17)

Here Φi : R+→ R+, i = 1,2,3, are convex and increasing functions.
Then ∫

Ω1

u(x)
3

∏
i=1

Φi

(∣∣
∣
∣

gi (x)
Ki (x)

∣∣
∣
∣

)
dμ1 (x)≤ (2.18)

(
3

∏
i=2

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

)(∫

Ω2

Φ1 (| f1 (y)|)λ3 (y)dμ2 (y)

)
,

true for all measurable functions, i = 1,2,3, fi : Ω2→ R such that:

(i) fi, Φi (| fi|), are both ki (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.
(ii) λ3Φ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|), are all μ2 -integrable,

and for all corresponding functions gi given by (2.10).

Proof. Here we use Jensen’s inequality, Fubini’s theorem, and that Φi are increas-
ing. We have

∫

Ω1

u(x)
3

∏
i=1

Φi

(∣∣∣
∣

gi (x)
Ki (x)

∣
∣∣
∣

)
dμ1 (x) =

∫

Ω1

u(x)
3

∏
i=1

Φi

(∣∣
∣
∣

1
Ki (x)

∫

Ω2

ki (x,y) fi (y)dμ2 (y)

∣∣
∣
∣

)
dμ1 (x)≤ (2.19)
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∫

Ω1

u(x)
3

∏
i=1

Φi

(
1

Ki (x)

∫

Ω2

ki (x,y) | fi (y)|dμ2 (y)

)
dμ1 (x)≤

∫

Ω1

u(x)
3

∏
i=1

(
1

Ki (x)

∫

Ω2

ki (x,y)Φi (| fi (y)|)dμ2 (y)

)
dμ1 (x) =

∫

Ω1

⎛

⎜⎜
⎝

u(x)
3
∏
i=1

Ki (x)

⎞

⎟⎟
⎠

(
3

∏
i=1

∫

Ω2

ki (x,y)Φi (| fi (y)|)dμ2 (y)

)

dμ1 (x) =

(calling θ (x) := u(x)
3
∏

i=1
Ki(x)

)

∫

Ω1

θ (x)

(
3

∏
i=1

∫

Ω2

ki (x,y)Φi (| fi (y)|)dμ2 (y)

)

dμ1 (x) = (2.20)

∫

Ω1

θ (x)

[∫

Ω2

(
2

∏
i=1

∫

Ω2

ki (x,y)Φi (| fi (y)|)dμ2 (y)

)

k3 (x,y)Φ3 (| f3 (y)|)dμ2 (y)

]

dμ1 (x) =

∫

Ω1

(∫

Ω2

θ (x)

(
2

∏
i=1

∫

Ω2

ki (x,y)Φi (| fi (y)|)dμ2 (y)

)

k3 (x,y)Φ3 (| f3 (y)|)dμ2 (y)

)

dμ1 (x) =

∫

Ω2

(∫

Ω1

θ (x)

(
2

∏
i=1

∫

Ω2

ki (x,y)Φi (| fi (y)|)dμ2 (y)

)

k3 (x,y)Φ3 (| f3 (y)|)dμ1 (x)

)

dμ2 (y) =

∫

Ω2

Φ3 (| f3 (y)|)
(∫

Ω1

θ (x)k3 (x,y)

(
2

∏
i=1

∫

Ω2

ki (x,y)Φi (| fi (y)|)dμ2 (y)

)

(2.21)

dμ1 (x)

)

dμ2 (y) =

∫

Ω2

Φ3 (| f3 (y)|)
[∫

Ω1

θ (x)k3 (x,y)

(∫

Ω2

{∫

Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y)

}
·
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k2 (x,y)Φ2 (| f2 (y)|)dμ2 (y)

)

dμ1 (x)

]

dμ2 (y) =

∫

Ω2

Φ3 (| f3 (y)|)
[∫

Ω1

(∫

Ω2

θ (x)k2 (x,y)k3 (x,y)Φ2 (| f2 (y)|) · (2.22)

{∫

Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y)

}
dμ2 (y)

)
dμ1 (x)

]
dμ2 (y) =

(∫

Ω2

Φ3 (| f3 (y)|)dμ2 (y)

)[∫

Ω1

(∫

Ω2

θ (x)k2 (x,y)k3 (x,y)Φ2 (| f2 (y)|) ·
{∫

Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y)

}
dμ2 (y)

)
dμ1 (x)

]
=

(∫

Ω2

Φ3 (| f3 (y)|)dμ2 (y)

)[∫

Ω2

(∫

Ω1

θ (x)k2 (x,y)k3 (x,y)Φ2 (| f2 (y)|) ·
{∫

Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y)

}
dμ1 (x)

)
dμ2 (y)

]
= (2.23)

(∫

Ω2

Φ3 (| f3 (y)|)dμ2 (y)

)[∫

Ω2

Φ2 (| f2 (y)|)
(∫

Ω1

θ (x)k2 (x,y)k3 (x,y) ·
(∫

Ω2

k1 (x,y)Φ1 (| f1 (y)|)dμ2 (y)

)
dμ1 (x)

)
dμ2 (y)

]
=

(∫

Ω2

Φ3 (| f3 (y)|)dμ2 (y)

)[∫

Ω2

Φ2 (| f2 (y)|)
{∫

Ω1

(∫

Ω2

θ (x)
3

∏
i=1

ki (x,y) ·

Φ1 (| f1 (y)|)dμ2 (y)

)

dμ1 (x)

}

dμ2 (y)

]

=

(∫

Ω2

Φ3 (| f3 (y)|)dμ2 (y)

)(∫

Ω2

Φ2 (| f2 (y)|)dμ2 (y)

)
·

(∫

Ω1

(∫

Ω2

θ (x)
3

∏
i=1

ki (x,y)Φ1 (| f1 (y)|)dμ2 (y)

)

dμ1 (x)

)

= (2.24)

(
3

∏
i=2

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

)

·
(∫

Ω2

(∫

Ω1

θ (x)
3

∏
i=1

ki (x,y)Φ1 (| f1 (y)|)dμ1 (x)

)

dμ2 (y)

)

=

(
3

∏
i=2

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

)

·
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(∫

Ω2

Φ1 (| f1 (y)|)
(∫

Ω1

θ (x)
3

∏
i=1

ki (x,y)dμ1 (x)

)

dμ2 (y)

)

=

(
3

∏
i=2

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

)(∫

Ω2

Φ1 (| f1 (y)|)λ3 (y)dμ2 (y)

)
, (2.25)

proving the claim. ��
For general m ∈N, the following result is valid.

Theorem 2.4. Assume that the function x �→
⎛

⎝
u(x)

m
∏

i=1
ki(x,y)

m
∏

i=1
Ki(x)

⎞

⎠ is integrable on Ω1,

for each y ∈Ω2. Define λm on Ω2 by

λm (y) :=
∫

Ω1

⎛

⎜
⎜
⎝

u(x)
m
∏
i=1

ki (x,y)

m
∏
i=1

Ki (x)

⎞

⎟
⎟
⎠dμ1 (x)< ∞. (2.26)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions.
Then

∫

Ω1

u(x)
m

∏
i=1

Φi

(∣∣
∣∣

gi (x)
Ki (x)

∣
∣
∣∣

)
dμ1 (x)≤ (2.27)

(
m

∏
i=2

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

)(∫

Ω2

Φ1 (| f1 (y)|)λm (y)dμ2 (y)

)
,

true for all measurable functions, i = 1, . . . ,m, fi : Ω2→R such that:

(i) fi, Φi (| fi|), are both ki (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.
(ii) λmΦ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . ,Φm (| fm|), are all μ2 -integrable,

and for all corresponding functions gi given by (2.10).

When k (x,y) = k1 (x,y) = k2 (x,y) = . . . = km (x,y), then K (x) := K1 (x) =
K2 (x) = . . .= Km (x). Then from Theorem 2.4 we get:

Corollary 2.5. Assume that the function x �→
(

u(x)km(x,y)
Km(x)

)
is integrable on Ω1, for

each y ∈Ω2. Define Um on Ω2 by

Um (y) :=
∫

Ω1

(
u(x)km (x,y)

Km (x)

)
dμ1 (x)< ∞. (2.28)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions.
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Then ∫

Ω1

u(x)
m

∏
i=1

Φi

(∣∣∣
∣
gi (x)
K (x)

∣
∣∣
∣

)
dμ1 (x)≤ (2.29)

(
m

∏
i=2

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

)(∫

Ω2

Φ1 (| f1 (y)|)Um (y)dμ2 (y)

)
,

true for all measurable functions, i = 1, . . . ,m, fi : Ω2→R such that:

(i) fi, Φi (| fi|), are both k (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.
(ii) UmΦ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . ,Φm (| fm|), are all μ2 -integrable,

and for all corresponding functions gi given by (2.10).

When m = 2 from Corollary 2.5, we obtain

Corollary 2.6. Assume that the function x �→
(

u(x)k2(x,y)
K2(x)

)
is integrable on Ω1, for

each y ∈Ω2. Define U2 on Ω2 by

U2 (y) :=
∫

Ω1

(
u(x)k2 (x,y)

K2 (x)

)
dμ1 (x)< ∞. (2.30)

Here Φ1,Φ2 : R+→ R+, are convex and increasing functions.
Then

∫

Ω1

u(x)Φ1

(∣∣
∣
∣
g1 (x)
K (x)

∣∣
∣
∣

)
Φ2

(∣∣
∣
∣
g2 (x)
K (x)

∣∣
∣
∣

)
dμ1 (x)≤ (2.31)

(∫

Ω2

Φ2 (| f2 (y)|)dμ2 (y)

)(∫

Ω2

Φ1 (| f1 (y)|)U2 (y)dμ2 (y)

)
,

true for all measurable functions, f1, f2 : Ω2→R such that:

(i) f1, f2, Φ1 (| f1|), Φ2 (| f2|) are all k (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.
(ii) U2Φ1 (| f1|) ,Φ2 (| f2|), are both μ2 -integrable,

and for all corresponding functions g1,g2 given by (2.10).

For m ∈N, the following more general result is also valid.

Theorem 2.7. Let j ∈ {1, . . . ,m} be fixed. Assume that the function x �→⎛

⎝
u(x)

m
∏

i=1
ki(x,y)

m
∏

i=1
Ki(x)

⎞

⎠ is integrable on Ω1, for each y ∈Ω2. Define λm on Ω2 by

λm (y) :=
∫

Ω1

⎛

⎜
⎜
⎝

u(x)
m
∏
i=1

ki (x,y)

m
∏
i=1

Ki (x)

⎞

⎟
⎟
⎠dμ1 (x)< ∞. (2.32)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions.
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Then

I :=
∫

Ω1

u(x)
m

∏
i=1

Φi

(∣∣∣
∣

gi (x)
Ki (x)

∣
∣∣
∣

)
dμ1 (x)≤ (2.33)

⎛

⎜
⎝

m

∏
i=1
i�= j

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

⎞

⎟
⎠

(∫

Ω2

Φ j
(∣∣ f j (y)

∣
∣)λm (y)dμ2 (y)

)
:= I j,

true for all measurable functions, i = 1, . . . ,m, fi : Ω2→R such that:

(i) fi, Φi (| fi|), are both ki (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.

(ii) λmΦ j
(∣∣ f j

∣
∣) ;Φ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|), are all

μ2 -integrable,

and for all corresponding functions gi given by (2.10). Above ̂Φ j
(∣∣ f j

∣
∣) means

missing item.

We make

Remark 2.8. In the notations and assumptions of Theorem 2.7, replace assumption
(ii) by the assumption,

(iii) Φ1 (| f1|) , . . . ,Φm (| fm|) ;λmΦ1 (| f1|) , . . . ,λmΦm (| fm|), are all μ2 -integrable
functions.

Then, clearly it holds,

I ≤

m
∑
j=1

I j

m
. (2.34)

An application of Theorem 2.7 follows.

Theorem 2.9. Let j ∈ {1, . . . ,m} be fixed. Assume that the function x �→⎛

⎝
u(x)

m
∏

i=1
ki(x,y)

m
∏

i=1
Ki(x)

⎞

⎠ is integrable on Ω1, for each y ∈Ω2. Define λm on Ω2 by

λm (y) :=
∫

Ω1

⎛

⎜
⎜
⎝

u(x)
m
∏
i=1

ki (x,y)

m
∏
i=1

Ki (x)

⎞

⎟
⎟
⎠dμ1 (x)< ∞. (2.35)

Then
∫

Ω1

u(x)e

m
∑

i=1

∣∣
∣

gi(x)
Ki(x)

∣∣
∣
dμ1 (x)≤ (2.36)

⎛

⎜
⎝

m

∏
i=1
i�= j

∫

Ω2

e| fi(y)|dμ2 (y)

⎞

⎟
⎠
(∫

Ω2

e| f j(y)|λm (y)dμ2 (y)

)
,

true for all measurable functions, i = 1, . . . ,m, fi : Ω2→R such that:
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(i) fi, e| fi|, are both ki (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.

(ii) λme| f j|;e| f1|,e| f2|,e| f3|, . . . ,
̂
e| f j|, . . . ,e| fm|, are all μ2 -integrable,

and for all corresponding functions gi given by (2.10). Above
̂
e| f j| means absent

item.

Another application of Theorem 2.7 follows.

Theorem 2.10. Let j ∈ {1, . . . ,m} be fixed, α ≥ 1. Assume that the function x �→⎛

⎝
u(x)

m
∏

i=1
ki(x,y)

m
∏

i=1
Ki(x)

⎞

⎠ is integrable on Ω1, for each y ∈Ω2. Define λm on Ω2 by

λm (y) :=
∫

Ω1

⎛

⎜
⎜
⎝

u(x)
m
∏
i=1

ki (x,y)

m
∏
i=1

Ki (x)

⎞

⎟
⎟
⎠dμ1 (x)< ∞. (2.37)

Then
∫

Ω1

u(x)

(
m

∏
i=1

∣
∣
∣
∣

gi (x)
Ki (x)

∣
∣
∣
∣

α
)

dμ1 (x)≤ (2.38)

⎛

⎜
⎝

m

∏
i=1
i�= j

∫

Ω2

| fi (y)|α dμ2 (y)

⎞

⎟
⎠
(∫

Ω2

∣
∣ f j (y)

∣
∣α λm (y)dμ2 (y)

)
,

true for all measurable functions, i = 1, . . . ,m, fi : Ω2→R such that:

(i) | fi|α is ki (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1.

(ii) λm
∣
∣ f j

∣
∣α ; | f1|α , | f2|α , | f3|α , . . . ,

∣̂
∣ f j

∣
∣α , . . . , | fm|α , are all μ2 -integrable,

and for all corresponding functions gi given by (2.10). Above
∣̂∣ f j

∣∣α means absent
item.

We make

Remark 2.11. Let fi be Lebesgue measurable functions from (a,b) into R, such that(
Iαi
a+ (| fi|)

)
(x) ∈R, ∀ x ∈ (a,b), αi > 0, i = 1, . . . ,m, e.g., when fi ∈ L∞ (a,b).

Consider
gi (x) =

(
Iαi
a+ fi

)
(x) , x ∈ (a,b) , i = 1, . . . ,m, (2.39)

we remind
(
Iαi
a+ fi

)
(x) =

1
Γ (αi)

∫ x

a
(x− t)αi−1 fi (t)dt.

Notice that gi (x) ∈ R and it is Lebesgue measurable.



32 George A. Anastassiou

We pick Ω1 =Ω2 = (a,b), dμ1 (x) = dx, dμ2 (y) = dy, the Lebesgue measure.
We see that

(
Iαi
a+ f

)
(x) =

∫ b

a

χ(a,x] (t)(x− t)αi−1

Γ (αi)
fi (t)dt, (2.40)

where χ stands for the characteristic function.
So, we pick here

ki (x, t) :=
χ(a,x] (t)(x− t)αi−1

Γ (αi)
, i = 1, . . . ,m. (2.41)

In fact

ki (x,y) =

{
(x−y)αi−1

Γ (αi)
, a < y≤ x,

0, x < y < b.
(2.42)

Clearly it holds

Ki (x) =
∫

(a,b)

χ(a,x] (y)(x− y)αi−1

Γ (αi)
dy =

(x− a)αi

Γ (αi + 1)
, (2.43)

a < x < b, i = 1, . . . ,m.
Notice that

m

∏
i=1

ki (x,y)
Ki (x)

=
m

∏
i=1

(
χ(a,x] (y) (x− y)αi−1

Γ (αi)
· Γ (αi + 1)

(x− a)αi

)

=

m

∏
i=1

(
χ(a,x] (y)(x− y)αi−1αi

(x− a)αi

)

=

χ(a,x] (y) (x− y)

(
m
∑

i=1
αi−m

)(
m
∏
i=1

αi

)

(x− a)

(
m
∑

i=1
αi

) . (2.44)

Calling

α :=
m

∑
i=1

αi > 0, γ :=
m

∏
i=1

αi > 0, (2.45)

we have that
m

∏
i=1

ki (x,y)
Ki (x)

=
χ(a,x] (y)(x− y)α−m γ

(x− a)α
. (2.46)

Therefore, for (2.32), we get for appropriate weight u that

λm (y) = γ
∫ b

y
u(x)

(x− y)α−m

(x− a)α
dx < ∞, (2.47)

for all a < y < b.
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Let Φi : R+ → R+, i = 1, . . . ,m, be convex and increasing functions. Then by
(2.33) we obtain

∫ b

a
u(x)

m

∏
i=1

Φi

(∣
∣
∣
∣
∣

(
Iαi
a+ fi

)
(x)

(x− a)αi

∣
∣
∣
∣
∣
Γ (αi + 1)

)

dx≤

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠
(∫ b

a
Φ j

(∣∣ f j (x)
∣
∣)λm (x)dx

)
, (2.48)

with j ∈ {1, . . . ,m}, true for measurable fi with Iαi
a+ (| fi|) finite (i = 1, . . . ,m) and

with the properties:

(i) Φi (| fi|) is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).

(ii) λmΦ j
(∣∣ f j

∣
∣) ;Φ1 (| f1|) ,Φ2 (| f2|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|) are all Lebesgue

integrable functions,

where ̂Φ j
(∣∣ f j

∣
∣) means absent item.

Let now
u(x) = (x− a)α , x ∈ (a,b) . (2.49)

Then

λm (y) = γ
∫ b

y
(x− y)α−m dx =

γ (b− y)α−m+1

α−m+ 1
, (2.50)

y ∈ (a,b), where α > m− 1.
Hence (2.48) becomes

∫ b

a
(x− a)α

m

∏
i=1

Φi

(∣
∣
∣∣
∣

(
Iαi
a+ fi

)
(x)

(x− a)αi

∣
∣
∣∣
∣
Γ (αi + 1)

)

dx≤

(
γ

α−m+ 1

)
⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠

(∫ b

a
(b− x)α−m+1Φ j

(∣∣ f j (x)
∣
∣)dx

)
≤

(2.51)(
γ (b− a)α−m+1

α−m+ 1

)(
m

∏
i=1

∫ b

a
Φi (| fi (x)|)dx

)

,

where α > m−1, fi with Iαi
a+ (| fi|) finite, i = 1, . . . ,m, under the assumptions (i), (ii)

following (2.48).
If Φi = id, then (2.51) turns to

∫ b

a

m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣dx≤
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⎛

⎜
⎜
⎝

γ
(

m
∏
i=1

Γ (αi + 1)

)
(α−m+ 1)

⎞

⎟
⎟
⎠

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
| fi (x)|dx

⎞

⎟
⎠ ·

(∫ b

a
(b− x)α−m+1 ∣∣ f j (x)

∣
∣dx

)
≤

⎛

⎜
⎜
⎝

γ (b− a)α−m+1

(
m
∏
i=1

Γ (αi + 1)

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|dx

)

, (2.52)

where α > m− 1, fi with Iαi
a+ (| fi|) finite and fi Lebesgue integrable, i = 1, . . . ,m.

Next let pi > 1, and Φi (x) = xpi , x ∈ R+. These Φi are convex, increasing, and
continuous on R+.

Then, by (2.48), we get

I1 :=
∫ b

a
(x− a)α

m

∏
i=1

∣
∣∣
∣
∣

(
Iαi
a+ fi

)
(x)

(x− a)αi

∣
∣∣
∣
∣

pi

dx≤

⎛

⎜
⎜
⎝

γ
(

m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
| fi (x)|pi dx

⎞

⎟
⎠ ·

(∫ b

a
(b− x)α−m+1 ∣∣ f j (x)

∣
∣p j dx

)
≤

⎛

⎜
⎜
⎝

γ (b− a)α−m+1

(
m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

. (2.53)

Notice that
m
∑

i=1
αi pi > α; thus, β := α− m

∑
i=1

αi pi < 0. Since 0 < x− a < b− a (x ∈
(a,b)), then (x− a)β > (b− a)β .

Therefore

I1 :=
∫ b

a
(x− a)β

m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣pi dx≥

(b− a)β
∫ b

a

m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣pi dx. (2.54)

Consequently, by (2.53) and (2.54), it holds
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∫ b

a

m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣pi dx≤ (2.55)

⎛

⎜⎜
⎝

γ (b− a)

((
m
∑

i=1
αi pi

)
−m+1

)

(
m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

where pi > 1, i = 1, ..,m, α > m− 1, true for measurable fi with Iαi
a+ (| fi|) finite,

with the properties (i = 1, . . . ,m):

(i) | fi|pi is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) | fi|pi is Lebesgue integrable on (a,b).

If p = p1 = p2 = . . .= pm > 1, then by (2.55), we get
∥
∥
∥
∥∥

m

∏
i=1

(
Iαi
a+ fi

)
∥
∥
∥
∥∥

p,(a,b)

≤ (2.56)

⎛

⎜
⎜
⎝

γ
1
p (b− a)

(
α−m

p +
1
p

)

(
m
∏
i=1

(Γ (αi + 1))

)
(α−m+ 1)

1
p

⎞

⎟
⎟
⎠

(
m

∏
i=1
‖ fi‖p,(a,b)

)

,

α > m− 1, true for measurable fi with Iαi
a+ (| fi|) finite, and such that (i = 1, . . . ,m):

(i) | fi|p is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) | fi|p is Lebesgue integrable on (a,b).

Using (ii) and if αi >
1
p , by Hölder’s inequality we derive that Iαi

a+ (| fi|) is finite
on (a,b). If we set p = 1 to (2.56) we get (2.52).

If Φi (x) = ex, x ∈ R+, then from (2.51) we get

∫ b

a
(x− a)α e

m
∑

i=1

(∣
∣
∣
∣
∣
(I
αi
a+ fi)(x)
(x−a)αi

∣
∣
∣
∣
∣
Γ (αi+1)

)

dx≤
(
γ (b− a)α−m+1

α−m+ 1

)(
m

∏
i=1

(∫ b

a
e| fi(x)|dx

))

, (2.57)

where α > m− 1, fi with Iαi
a+ (| fi|) finite, i = 1, . . . ,m, under the assumptions:

(i) e| fi| is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) e| fi| is Lebesgue integrable on (a,b).

We continue with

Remark 2.12. Let fi be Lebesgue measurable functions : (a,b) → R, such that
Iαi
b− (| fi|) (x)< ∞, ∀ x ∈ (a,b), αi > 0, i = 1, . . . ,m, e.g., when fi ∈ L∞ (a,b).
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Consider

gi (x) =
(
Iαi
b− fi

)
(x) , x ∈ (a,b) , i = 1, . . . ,m, (2.58)

we remind
(
Iαi
b− fi

)
(x) =

1
Γ (αi)

∫ b

x
fi (t)(t− x)αi−1 dt, (2.59)

(x < b).
Notice that gi (x) ∈ R and it is Lebesgue measurable.
We pick Ω1 =Ω2 = (a,b), dμ1 (x) = dx, dμ2 (y) = dy, the Lebesgue measure.
We see that

(
Iαi
b− fi

)
(x) =

∫ b

a
χ[x,b) (t)

(t− x)αi−1

Γ (αi)
fi (t)dt. (2.60)

So, we pick here

ki (x, t) := χ[x,b) (t)
(t− x)αi−1

Γ (αi)
, i = 1, . . . ,m. (2.61)

In fact

ki (x,y) =

{
(y−x)αi−1

Γ (αi)
, x≤ y < b,

0, a < y < x.
(2.62)

Clearly it holds

Ki (x) =
∫

(a,b)
χ[x,b) (y)

(y− x)αi−1

Γ (αi)
dy =

(b− x)αi

Γ (αi + 1)
, (2.63)

a < x < b, i = 1, . . . ,m.
Notice that

m

∏
i=1

ki (x,y)
Ki (x)

=
m

∏
i=1

(

χ[x,b) (y)
(y− x)αi−1

Γ (αi)
· Γ (αi + 1)

(b− x)αi

)

=

m

∏
i=1

(

χ[x,b) (y)
(y− x)αi−1αi

(b− x)αi

)

= χ[x,b) (y)
(y− x)

(
m
∑

i=1
αi−m

)(
m
∏
i=1

αi

)

(b− x)

(
m
∑

i=1
αi

) . (2.64)

Calling

α :=
m

∑
i=1

αi > 0, γ :=
m

∏
i=1

αi > 0, (2.65)

we have that
m

∏
i=1

ki (x,y)
Ki (x)

=
χ[x,b) (y)(y− x)α−m γ

(b− x)α
. (2.66)
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Therefore, for (2.32), we get for appropriate weight u that

λm (y) = γ
∫ y

a
u(x)

(y− x)α−m

(b− x)α
dx < ∞, (2.67)

for all a < y < b.
Let Φi : R+ → R+, i = 1, . . . ,m, be convex and increasing functions. Then by

(2.33) we obtain

∫ b

a
u(x)

m

∏
i=1

Φi

(∣
∣
∣
∣
∣

(
Iαi
b− fi

)
(x)

(b− x)αi

∣
∣
∣
∣
∣
Γ (αi + 1)

)

dx≤

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠
(∫ b

a
Φ j

(∣∣ f j (x)
∣
∣)λm (x)dx

)
, (2.68)

with j ∈ {1, . . . ,m},
true for measurable fi with Iαi

b− (| fi|) finite (i = 1, . . . ,m) and with the properties:

(i) Φi (| fi|) is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).

(ii) λmΦ j
(∣∣ f j

∣
∣) ;Φ1 (| f1|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|) are all Lebesgue integrable

functions,

where ̂Φ j
(∣∣ f j

∣∣) means absent item.
Let now

u(x) = (b− x)α , x ∈ (a,b) . (2.69)

Then

λm (y) = γ
∫ y

a
(y− x)α−m dx =

γ (y− a)α−m+1

α−m+ 1
, (2.70)

y ∈ (a,b), where α > m− 1.
Hence (2.68) becomes

∫ b

a
(b− x)α

m

∏
i=1

Φi

(∣
∣(Iαi

b− fi
)
(x)

∣
∣

(b− x)αi
Γ (αi + 1)

)

dx≤

(
γ

α−m+ 1

)
⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠

(∫ b

a
(x− a)α−m+1Φ j

(∣∣ f j (x)
∣
∣)dx

)
≤

(
γ (b− a)α−m+1

α−m+ 1

)(
m

∏
i=1

∫ b

a
Φi (| fi (x)|)dx

)

, (2.71)

where α > m−1, fi with Iαi
b− (| fi|) finite, i = 1, . . . ,m, under the assumptions (i), (ii)

following (2.68).
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If Φi = id, then (2.71) turns to

∫ b

a

m

∏
i=1

∣
∣(Iαi

b− fi
)
(x)

∣
∣dx≤

⎛

⎜⎜
⎝

γ
(

m
∏
i=1

Γ (αi + 1)

)
(α−m+ 1)

⎞

⎟⎟
⎠

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
| fi (x)|dx

⎞

⎟
⎠ ·

(∫ b

a
(x− a)α−m+1 ∣∣ f j (x)

∣
∣dx

)
≤

⎛

⎜
⎜
⎝

γ (b− a)α−m+1

(
m
∏
i=1

Γ (αi + 1)

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|dx

)

, (2.72)

where α > m− 1, fi with Iαi
b− (| fi|) finite and fi Lebesgue integrable, i = 1, . . . ,m.

Next let pi > 1, and Φi (x) = xpi , x ∈R+.
Then, by (2.68), we get

I2 :=
∫ b

a
(b− x)α

(
m
∏
i=1

∣∣(Iαi
b− fi

)
(x)

∣∣pi

)

(b− x)

m
∑

i=1
αi pi

dx≤

⎛

⎜⎜
⎝

γ
(

m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟⎟
⎠

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
| fi (x)|pi dx

⎞

⎟
⎠ ·

(∫ b

a
(x− a)α−m+1 ∣∣ f j (x)

∣
∣p j dx

)
≤

⎛

⎜
⎜
⎝

γ (b− a)α−m+1

(
m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

. (2.73)

Notice here that β := α −
m
∑

i=1
αi pi < 0. Since 0 < b− x < b− a (x ∈ (a,b)), then

(b− x)β > (b− a)β .
Therefore

I2 :=
∫ b

a
(b− x)β

(
m

∏
i=1

∣
∣(Iαi

b− fi
)
(x)

∣
∣pi

)

dx≥



2 Univariate Hardy-Type Fractional Inequalities 39

(b− a)β
∫ b

a

(
m

∏
i=1

∣
∣(Iαi

b− fi
)
(x)

∣
∣pi

)

dx. (2.74)

Consequently, by (2.73) and (2.74), it holds

∫ b

a

m

∏
i=1

∣∣(Iαi
b− fi

)
(x)

∣∣pi dx≤ (2.75)

⎛

⎜
⎜
⎝

γ (b− a)

((
m
∑

i=1
αi pi

)
−m+1

)

(
m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

where pi > 1, i = 1, ..,m, α > m− 1,
true for measurable fi with Iαi

b− (| fi|) finite, with the properties (i = 1, . . . ,m):

(i) | fi|pi is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) | fi|pi is Lebesgue integrable on (a,b).

If p := p1 = p2 = . . .= pm > 1, then by (2.75), we get
∥
∥∥
∥
∥

m

∏
i=1

(
Iαi
b− fi

)
∥
∥∥
∥
∥

p,(a,b)

≤ (2.76)

⎛

⎜
⎜
⎝

γ
1
p (b− a)

(
α−m

p +
1
p

)

(
m
∏
i=1

(Γ (αi + 1))

)
(α−m+ 1)

1
p

⎞

⎟
⎟
⎠

(
m

∏
i=1

‖ fi‖p,(a,b)

)

,

α > m− 1, true for measurable fi with Iαi
b− (| fi|) finite, and such that (i = 1, . . . ,m):

(i) | fi|p is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) | fi|p is Lebesgue integrable on (a,b).

Using (ii) and if αi >
1
p , by Hölder’s inequality, we derive that Iαi

b− (| fi|) is finite
on (a,b).

If we set p = 1 to (2.76) we obtain (2.72).
If Φi (x) = ex, x ∈ R+, then from (2.71), we obtain

∫ b

a
(b− x)α e

m
∑

i=1

(∣∣
∣
∣
∣
(I
αi
b− fi)(x)
(b−x)αi

∣∣
∣
∣
∣
Γ (αi+1)

)

dx≤
(
γ (b− a)α−m+1

α−m+ 1

)(
m

∏
i=1

(∫ b

a
e| fi(x)|dx

))

, (2.77)

where α > m− 1, fi with Iαi
b− (| fi|) finite, i = 1, . . . ,m, under the assumptions:

(i) e| fi| is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) e| fi| is Lebesgue integrable on (a,b).
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We mention

Definition 2.13 ([1], p. 448). The left generalized Riemann–Liouville fractional
derivative of f of order β > 0 is given by

Dβ
a f (x) =

1
Γ (n−β )

(
d
dx

)n ∫ x

a
(x− y)n−β−1 f (y)dy, (2.78)

where n = [β ]+ 1, x ∈ [a,b].

For a,b∈R, we say that f ∈ L1 (a,b) has an L∞ fractional derivative Dβ
a f (β > 0)

in [a,b], if and only if:

(1) Dβ−k
a f ∈C ([a,b]), k = 2, . . . ,n = [β ]+ 1

(2) Dβ−1
a f ∈ AC ([a,b])

(3) Dβ
a f ∈ L∞ (a,b)

Above we define D0
a f := f and D−δa f := Iδa+ f , if 0 < δ ≤ 1.

From [1, p. 449] and [9] we mention and use

Lemma 2.14. Let β > α ≥ 0 and let f ∈ L1 (a,b) have an L∞ fractional derivative

Dβ
a f in [a,b] and let Dβ−k

a f (a) = 0, k = 1, . . . , [β ]+ 1, then

Dα
a f (x) =

1
Γ (β −α)

∫ x

a
(x− y)β−α−1 Dβ

a f (y)dy, (2.79)

for all a≤ x≤ b.
Here Dα

a f ∈ AC ([a,b]) for β −α ≥ 1, and Dα
a f ∈C ([a,b]) for β −α ∈ (0,1).

Notice here that

Dα
a f (x) =

(
Iβ−αa+

(
Dβ

a f
))

(x) , a≤ x≤ b. (2.80)

We give

Theorem 2.15. Let fi ∈ L1 (a,b), αi,βi : βi > αi ≥ 0, i = 1, . . . ,m. Here ( fi,αi,βi)
fulfill terminology and assumptions of Definition 2.13 and Lemma 2.14. Let α :=
m
∑

i=1
(βi−αi), γ :=

m
∏
i=1

(βi−αi), assume α > m− 1, and p ≥ 1. Then

∥
∥
∥
∥∥

m

∏
i=1

(Dαi
a fi)

∥
∥
∥
∥∥

p,(a,b)

≤ (2.81)

⎛

⎜
⎜
⎝

γ
1
p (b− a)

(
α−m

p +
1
p

)

(
m
∏
i=1

(Γ (βi−αi + 1))

)
(α−m+ 1)

1
p

⎞

⎟
⎟
⎠

(
m

∏
i=1

∥
∥
∥Dβi

a fi

∥
∥
∥

p,(a,b)

)

.

Proof. By (2.52) and (2.56). ��
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We continue with

Theorem 2.16. All here as in Theorem 2.15. Then

∫ b

a
(x− a)α e

m
∑

i=1

(∣∣
∣∣
∣
(D

αi
a fi)(x)

(x−a)(βi−αi)

∣
∣
∣∣
∣
Γ (βi−αi+1)

)

dx≤
(
γ (b− a)α−m+1

α−m+ 1

)(
m

∏
i=1

(∫ b

a
e

∣
∣
∣
(

D
βi
a fi

)
(x)

∣
∣
∣
dx

))

. (2.82)

Proof. By (2.57), assumptions there (i) and (ii) are easily fulfilled. ��
We need

Definition 2.17 ([6], p. 50, [1], p. 449). Let ν ≥ 0, n := �ν�, f ∈ ACn ([a,b]). Then
the left Caputo fractional derivative is given by

Dν
∗a f (x) =

1
Γ (n−ν)

∫ x

a
(x− t)n−ν−1 f (n) (t)dt

=
(

In−ν
a+ f (n)

)
(x) , (2.83)

and it exists almost everywhere for x ∈ [a,b], in fact Dν∗a f ∈ L1 (a,b), ([1], p. 394).
We have Dn∗a f = f (n), n ∈ Z+.

We also need

Theorem 2.18 ([4]). Let ν ≥ ρ + 1, ρ > 0, ν,ρ /∈ N. Call n := �ν�, m∗ := �ρ�.
Assume f ∈ACn ([a,b]), such that f (k) (a) = 0, k =m∗,m∗+1, . . . ,n−1, and Dν∗a f ∈
L∞ (a,b). Then Dρ

∗a f ∈ AC ([a,b]) (where Dρ
∗a f =

(
Im∗−ρ
a+ f (m

∗)
)
(x)), and

Dρ
∗a f (x) =

1
Γ (ν−ρ)

∫ x

a
(x− t)ν−ρ−1 Dν

∗a f (t)dt

=
(

Iν−ρa+ (Dν
∗a f )

)
(x) , (2.84)

∀ x ∈ [a,b].

We give

Theorem 2.19. Let ( fi,νi,ρi), i = 1, . . . ,m, m ≥ 2, as in the assumptions of The-

orem 2.18. Set α :=
m
∑

i=1
(νi−ρi), γ :=

m
∏
i=1

(νi−ρi), and let p ≥ 1. Here a,b ∈ R,

a < b. Then ∥
∥
∥
∥∥

m

∏
i=1

(
Dρi∗a fi

)
∥
∥
∥
∥∥

p,(a,b)

≤ (2.85)
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⎛

⎜
⎜
⎝

γ
1
p (b− a)

(
α−m

p +
1
p

)

(
m
∏
i=1

(Γ (νi−ρi + 1))

)
(α−m+ 1)

1
p

⎞

⎟
⎟
⎠

(
m

∏
i=1

‖Dνi∗a fi‖p,(a,b)

)

.

Proof. By (2.52) and (2.56), see here α ≥ m > m− 1. ��
We also give

Theorem 2.20. Here all as in Theorem 2.19, let pi ≥ 1, i = 1, . . . , l; l < m. Then

∫ b

a
(x− a)

(
α−

l
∑

i=1
pi(νi−ρi)

)(
l

∏
i=1

∣
∣Dρi∗a fi (x)

∣
∣pi

)

·

e

(
m
∑

i=l+1

∣
∣
∣D

ρi∗a fi(x)
∣
∣
∣

(
Γ (νi−ρi+1)

(x−a)(νi−ρi)

))

dx≤
⎛

⎜
⎜
⎝

γ (b− a)α−m+1

(
l
∏
i=1

(Γ (νi−ρi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
l

∏
i=1

∫ b

a
|Dνi∗a fi (x)|pi dx

)

· (2.86)

(
m

∏
i=l+1

∫ b

a
e

∣
∣∣D

νi∗a fi(x)
∣
∣∣
dx

)

.

Proof. By (2.51). ��
We need

Definition 2.21 ([2, 7, 8]). Let α ≥ 0, n := �α�, f ∈ ACn ([a,b]). We define the right
Caputo fractional derivative of order α ≥ 0, by

D
α
b− f (x) := (−1)n In−α

b− f (n) (x) , (2.87)

we set D
0
− f := f , i.e.,

D
α
b− f (x) =

(−1)n

Γ (n−α)
∫ b

x
(J− x)n−α−1 f (n) (J)dJ. (2.88)

Notice that D
n
b− f = (−1)n f (n), n ∈ N.

In [3] we introduced a balanced fractional derivative combining both right and
left fractional Caputo derivatives.

We need

Theorem 2.22 ([4]). Let f ∈ ACn ([a,b]), α > 0, n∈N, n := �α�, α ≥ ρ+1, ρ > 0,
r = �ρ�, α,ρ /∈N. Assume f (k) (b)= 0, k = r,r+1, . . . ,n−1, and D

α
b− f ∈ L∞ ([a,b]).

Then
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D
ρ
b− f (x) =

(
Iα−ρb−

(
D
α
b− f

))
(x) ∈ AC ([a,b]) , (2.89)

that is,

D
ρ
b− f (x) =

1
Γ (α−ρ)

∫ b

x
(t− x)α−ρ−1

(
D
α
b− f

)
(t)dt, (2.90)

∀ x ∈ [a,b].

We give

Theorem 2.23. Let ( fi,αi,ρi), i = 1, . . . ,m, m ≥ 2, as in the assumptions of The-

orem 2.22. Set α :=
m
∑

i=1
(αi−ρi), γ :=

m
∏
i=1

(αi−ρi), and let p ≥ 1. Here a,b ∈ R,

a < b. Then ∥∥
∥
∥
∥

m

∏
i=1

(
D
ρi
b− fi

)
∥∥
∥
∥
∥

p,(a,b)

≤ (2.91)

⎛

⎜⎜
⎝

γ
1
p (b− a)

(
α−m

p +
1
p

)

(
m
∏
i=1

(Γ (αi−ρi+ 1))

)
(α−m+ 1)

1
p

⎞

⎟⎟
⎠

(
m

∏
i=1

∥∥
∥D

νi
b− fi

∥∥
∥

p,(a,b)

)

.

Proof. By (2.72) and (2.76), see here α ≥ m > m− 1. ��
We make

Remark 2.24. Let r1,r2 ∈ N; A j > 0, j = 1, . . . ,r1; B j > 0, j = 1, . . . ,r2; x ≥ 0,

p ≥ 1. Clearly eA jxp
,eB jxp ≥ 1, and

r1

∑
j=1

eA jxp ≥ r1,
r2

∑
j=1

eB jxp ≥ r2. Hence, ϕ1 (x) :=

ln

(
r1

∑
j=1

eA jx
p

)

, ϕ2 (x) := ln

(
r2

∑
j=1

eB jx
p

)

≥ 0. Clearly here ϕ1,ϕ2 : R+ → R+ are

increasing, convex, and continuous.

We give

Theorem 2.25. Let ( fi,αi,ρi), i = 1,2, as in the assumptions of Theorem 2.22.

Set α :=
2
∑

i=1
(αi−ρi), γ :=

2
∏
i=1

(αi−ρi). Here a,b ∈ R, a < b, and ϕ1,ϕ2 as in

Remark 2.24. Then

∫ b

a
(b− x)α

2

∏
i=1

ϕi

⎛

⎝

∣
∣
∣D

ρi
b− fi (x)

∣
∣
∣

(b− x)(αi−ρi)
Γ (αi−ρi + 1)

⎞

⎠dx≤ (2.92)

(
γ (b− a)α−1

α− 1

)(
2

∏
i=1

∫ b

a
ϕi

(∣∣
∣D

αi
b− fi (x)

∣∣
∣
)

dx

)

,

under the assumptions (i = 1,2):
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(i) ϕi

(∣∣
∣D

αi
b− fi (t)

∣
∣
∣
)

is
(
χ[x,b) (t)

(t−x)αi−ρi−1

Γ (αi−ρi)
dt
)

-integrable, a.e. in x ∈ (a,b).

(ii) ϕi

(∣∣
∣D

αi
b− fi

∣
∣
∣
)

is Lebesgue integrable on (a,b).

We make

Remark 2.26. (i) Let now f ∈ Cn ([a,b]), n = �ν�, ν > 0. Clearly Cn ([a,b]) ⊂
ACn ([a,b]). Assume f (k) (a) = 0, k = 0,1, . . . ,n−1. Given that Dν∗a f exists, then
there exists the left generalized Riemann–Liouville fractional derivative Dν

a f
(see (2.78)) and Dν∗a f = Dν

a f (see also [6], p. 53). In fact here Dν∗a f ∈C ([a,b]),
see [6], p. 56.
So Theorems 2.19 and 2.20 can be true for left generalized Riemann–Liouville
fractional derivatives.

(ii) Let also α > 0, n := �α�, and f ∈ Cn ([a,b]) ⊂ ACn ([a,b]). From [2] we de-
rive that D

α
b− f ∈ C ([a,b]). By [2], we obtain that the right Riemann–Liouville

fractional derivative Dα
b− f exists on [a,b]. Furthermore if f (k) (b) = 0, k =

0,1, . . . ,n− 1, we get that D
α
b− f (x) = Dα

b− f (x), ∀ x ∈ [a,b]; hence Dα
b− f ∈

C ([a,b]).
So Theorems 2.23 and 2.25 can be valid for right Riemann–Liouville fractional

derivatives. To keep this article short we avoid details.

We give

Definition 2.27. Let ν > 0, n := [ν], α := ν−n (0≤α < 1). Let a,b∈R, a≤ x≤ b,
f ∈ C ([a,b]). We consider Cν

a ([a,b]) := { f ∈ Cn ([a,b]) : I1−α
a+ f (n) ∈ C1 ([a,b])}.

For f ∈ Cν
a ([a,b]), we define the left generalized ν-fractional derivative of f over

[a,b] as

Δν
a f :=

(
I1−α
a+ f (n)

)′
; (2.93)

see [1], p. 24, and Canavati derivative in [5].
Notice here Δν

a f ∈C ([a,b]).
So that

(Δν
a f ) (x) =

1
Γ (1−α)

d
dx

∫ x

a
(x− t)−α f (n) (t)dt, (2.94)

∀ x ∈ [a,b].
Notice here that

Δn
a f = f (n), n ∈ Z+. (2.95)

We need

Theorem 2.28 ([4]). Let f ∈ Cν
a ([a,b]), n = [ν], such that f (i) (a) = 0, i = r,r +

1, . . . ,n− 1, where r := [ρ ], with 0 < ρ < ν . Then

(Δρ
a f ) (x) =

1
Γ (ν−ρ)

∫ x

a
(x− t)ν−ρ−1 (Δν

a f ) (t)dt, (2.96)
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i.e.,

(Δρ
a f ) = Iν−ρa+ (Δν

a f ) ∈C ([a,b]) . (2.97)

Thus f ∈Cρ
a ([a,b]).

We present

Theorem 2.29. Let ( fi,νi,ρi), i = 1, . . . ,m, as in Theorem 2.28 and fractional

derivatives as in Definition 2.27. Let α :=
m
∑

i=1
(νi−ρi), γ :=

m
∏
i=1

(νi−ρi), pi ≥ 1,

i = 1, . . . ,m, assume α > m− 1. Then

∫ b

a

m

∏
i=1
|Δρi

a fi (x)|pi dx≤ (2.98)

⎛

⎜
⎜
⎝

γ (b− a)

((
m
∑

i=1
(νi−ρi)pi

)
−m+1

)

(
m
∏
i=1

(Γ (νi−ρi+ 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
|Δνi

a fi (x)|pi dx

)

.

Proof. By (2.52) and (2.55). ��
We continue with

Theorem 2.30. Let all here as in Theorem 2.29. Consider λi, i = 1, . . . ,m, distinct
prime numbers. Then

∫ b

a
(x− a)α

m

∏
i=1

λ

(∣
∣∣Δρi

a fi(x)
∣
∣∣
Γ(νi−ρi+1)

(x−a)(νi−ρi)

)

i dx≤

(
γ (b− a)α−m+1

α−m+ 1

)(
m

∏
i=1

∫ b

a
λ

∣
∣
∣Δνi

a fi(x)
∣
∣
∣

i dx

)

. (2.99)

Proof. By (2.51). ��
We need

Definition 2.31 ([2]). Let ν > 0, n := [ν], α = ν − n, 0 < α < 1, f ∈ C ([a,b]).
Consider

Cν
b− ([a,b]) := { f ∈Cn ([a,b]) : I1−α

b− f (n) ∈C1 ([a,b])}. (2.100)

Define the right generalized ν-fractional derivative of f over [a,b], by

Δν
b− f := (−1)n−1

(
I1−α
b− f (n)

)′
. (2.101)

We set Δ0
b− f = f . Notice that



46 George A. Anastassiou

(
Δν

b− f
)
(x) =

(−1)n−1

Γ (1−α)
d
dx

∫ b

x
(J− x)−α f (n) (J)dJ, (2.102)

and Δν
b− f ∈C ([a,b]).

We also need

Theorem 2.32 ([4]). Let f ∈Cν
b− ([a,b]), 0 < ρ < ν . Assume f (i) (b) = 0, i = r,r+

1, . . . ,n− 1, where r := [ρ ], n := [ν]. Then

Δρ
b− f (x) =

1
Γ (ν−ρ)

∫ b

x
(J− x)ν−ρ−1 (Δν

b− f
)
(J)dJ, (2.103)

∀ x ∈ [a,b], i.e.,
Δρ

b− f = Iν−ρb−
(
Δν

b− f
) ∈C ([a,b]) , (2.104)

and f ∈Cρ
b− ([a,b]).

We give

Theorem 2.33. Let ( fi,νi,ρi), i = 1, . . . ,m, and fractional derivatives as in

Theorem 2.32 and Definition 2.31. Let α :=
m
∑

i=1
(νi−ρi), γ :=

m
∏
i=1

(νi−ρi), pi ≥ 1,

i = 1, . . . ,m, and assume α > m− 1. Then

∫ b

a

m

∏
i=1

∣
∣Δρi

b− fi (x)
∣
∣pi dx≤ (2.105)

⎛

⎜
⎜
⎝

γ (b− a)

((
m
∑

i=1
(νi−ρi)pi

)
−m+1

)

(
m
∏
i=1

(Γ (νi−ρi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a

∣
∣Δνi

b− fi (x)
∣
∣pi dx

)

.

Proof. By (2.72) and (2.75). ��
We continue with

Theorem 2.34. Let all here as in Theorem 2.33. Consider λi, i = 1, . . . ,m, distinct
prime numbers. Then

∫ b

a
(b− x)α

m

∏
i=1

λ

(∣
∣∣Δρi

b− fi(x)
∣
∣∣
Γ (νi−ρi+1)

(b−x)(νi−ρi)

)

i dx≤

(
γ (b− a)α−m+1

α−m+ 1

)(
m

∏
i=1

∫ b

a
λ

∣
∣
∣Δνi

b− fi(x)
∣
∣
∣

i dx

)

. (2.106)

Proof. By (2.71). ��
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We make

Definition 2.35. [12, p. 99] The fractional integrals of a function f with respect to
given function g are defined as follows:

Let a,b ∈ R, a < b, α > 0. Here g is an increasing function on [a,b] and g ∈
C1 ([a,b]). The left- and right-sided fractional integrals of a function f with respect
to another function g in [a,b] are given by

(
Iαa+;g f

)
(x) =

1
Γ (α)

∫ x

a

g′ (t) f (t)dt

(g(x)− g(t))1−α , x > a, (2.107)

(
Iαb−;g f

)
(x) =

1
Γ (α)

∫ b

x

g′ (t) f (t)dt

(g(t)− g(x))1−α , x < b, (2.108)

respectively.

We make

Remark 2.36. Let fi be Lebesgue measurable functions from (a,b) into R, such that(
Iαi
a+;g (| fi|)

)
(x) ∈R, ∀ x ∈ (a,b), αi > 0, i = 1, . . . ,m.

Consider
gi (x) :=

(
Iαi
a+;g fi

)
(x) , x ∈ (a,b) , i = 1, . . . ,m, (2.109)

where
(
Iαi
a+;g fi

)
(x) =

1
Γ (αi)

∫ x

a

g′ (t) fi (t)dt

(g(x)− g(t))1−αi
, x > a. (2.110)

Notice that gi (x) ∈ R and it is Lebesgue measurable.
We pick Ω1 =Ω2 = (a,b), dμ1 (x) = dx, dμ2 (y) = dy, the Lebesgue measure.
We see that

(
Iαi
a+;g fi

)
(x) =

∫ b

a

χ(a,x] (t)g′ (t) fi (t)

Γ (αi) (g(x)− g(t))1−αi
dt, (2.111)

where χ is the characteristic function.
So, we pick here

ki (x, t) :=
χ(a,x] (t)g′ (t)

Γ (αi) (g(x)− g(t))1−αi
, i = 1, . . . ,m. (2.112)

In fact

ki (x,y) =

{
g′(y)

Γ (αi)(g(x)−g(y))1−αi
, a < y≤ x,

0, x < y < b.
(2.113)

Clearly it holds

Ki (x) =
∫ b

a

χ(a,x] (y)g′ (y)

Γ (αi) (g(x)− g(y))1−αi
dy =
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∫ x

a

g′ (y)
Γ (αi) (g(x)− g(y))1−αi

dy =
1

Γ (αi)

∫ x

a
(g(x)− g(y))αi−1 dg(y) = (2.114)

1
Γ (αi)

∫ g(x)

g(a)
(g(x)− z)αi−1 dz =

(g(x)− g(a))αi

Γ (αi + 1)
.

So for a < x < b, i = 1, . . . ,m, we get

Ki (x) =
(g(x)− g(a))αi

Γ (αi + 1)
. (2.115)

Notice that

m

∏
i=1

ki (x,y)
Ki (x)

=
m

∏
i=1

(
χ(a,x] (y)g′ (y)

Γ (αi) (g(x)− g(y))1−αi
· Γ (αi + 1)

(g(x)− g(a))αi

)

=

χ(a,x] (y)(g(x)− g(y))

(
m
∑

i=1
αi−m

)

(g′ (y))m
(

m
∏
i=1

αi

)

(g(x)− g(a))

(
m
∑

i=1
αi

) . (2.116)

Calling

α :=
m

∑
i=1

αi > 0, γ :=
m

∏
i=1

αi > 0, (2.117)

we have that

m

∏
i=1

ki (x,y)
Ki (x)

=
χ(a,x] (y)(g(x)− g(y))α−m (g′ (y))m γ

(g(x)− g(a))α
. (2.118)

Therefore, for (2.32), we get for appropriate weight u that (denote λm by λ g
m)

λ g
m (y) = γ

(
g′ (y)

)m
∫ b

y
u(x)

(g(x)− g(y))α−m

(g(x)− g(a))α
dx < ∞, (2.119)

for all a < y < b.
Let Φi : R+ → R+, i = 1, . . . ,m, be convex and increasing functions. Then by

(2.33) we obtain

∫ b

a
u(x)

m

∏
i=1

Φi

(∣∣
∣
∣
∣

(
Iαi
a+;g fi

)
(x)

(g(x)− g(a))αi

∣∣
∣
∣
∣
Γ (αi + 1)

)

dx≤

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠
(∫ b

a
Φ j

(∣∣ f j (x)
∣
∣)λ g

m (x)dx

)
, (2.120)

with j ∈ {1, . . . ,m},
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true for measurable fi with Iαi
a+;g (| fi|) finite, i = 1, . . . ,m, and with the properties:

(i) Φi (| fi|) is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).

(ii) λ g
mΦ j

(∣∣ f j
∣
∣) ;Φ1 (| f1|) ,Φ2 (| f2|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|) are all Lebesgue

integrable functions, where ̂Φ j
(∣∣ f j

∣
∣) means absent item.

Let now

u(x) = (g(x)− g(a))α g′ (x) , x ∈ (a,b) . (2.121)

Then

λ g
m (y) = γ

(
g′ (y)

)m
∫ b

y
(g(x)− g(y))α−m g′ (x)dx =

γ
(
g′ (y)

)m
∫ g(b)

g(y)
(z− g(y))α−m dz = (2.122)

γ
(
g′ (y)

)m (g(b)− g(y))α−m+1

α−m+ 1
,

with α > m− 1. That is,

λ g
m (y) = γ

(
g′ (y)

)m (g(b)− g(y))α−m+1

α−m+ 1
, (2.123)

α > m− 1, y ∈ (a,b).
Hence (2.120) becomes

∫ b

a
g′ (x)(g(x)− g(a))α

m

∏
i=1

Φi

(∣∣∣
∣
∣

(
Iαi
a+;g fi

)
(x)

(g(x)− g(a))αi

∣
∣∣
∣
∣
Γ (αi + 1)

)

dx≤

(
γ

α−m+ 1

)
⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠ ·

(∫ b

a

(
g′ (x)

)m
(g(b)− g(x))α−m+1Φ j

(∣∣ f j (x)
∣
∣)dx

)
≤ (2.124)

(
γ (g(b)− g(a))α−m+1 ‖g′‖m

∞
α−m+ 1

)(
m

∏
i=1

∫ b

a
Φi (| fi (x)|)dx

)

,

where α > m− 1, fi with Iαi
a+;g (| fi|) finite, i = 1, . . . ,m, under the assumptions:

(i) Φi (| fi|) is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) Φi (| fi|) is Lebesgue integrable on (a,b).

If Φi (x) = xpi , pi ≥ 1, x ∈ R+, then by (2.124), we have

∫ b

a
g′ (x) (g(x)− g(a))

(
α−

m
∑

i=1
piαi

)
m

∏
i=1

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣pi dx≤ (2.125)
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⎛

⎜
⎜
⎝

γ (g(b)− g(a))α−m+1 ‖g′‖m
∞(

m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

but we see that

∫ b

a
g′ (x)(g(x)− g(a))

(
α−

m
∑

i=1
piαi

)
m

∏
i=1

∣∣(Iαi
a+;g fi

)
(x)

∣∣pi dx≥

(g(b)− g(a))

(
α−

m
∑

i=1
piαi

)
∫ b

a
g′ (x)

m

∏
i=1

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣pi dx. (2.126)

By (2.125) and (2.126) we get

∫ b

a
g′ (x)

m

∏
i=1

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣pi dx≤ (2.127)

⎛

⎜
⎜
⎝
γ (g(b)− g(a))

(
m
∑

i=1
piαi−m+1

)

‖g′‖m
∞(

m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

α > m− 1, fi with Iαi
a+;g (| fi|) finite, i = 1, . . . ,m, under the assumptions:

(i) | fi|pi is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) | fi|pi is Lebesgue integrable on (a,b).

We need

Definition 2.37 ([11]). Let 0 < a < b < ∞, α > 0. The left- and right-sided
Hadamard fractional integrals of order α are given by

(
Jαa+ f

)
(x) =

1
Γ (α)

∫ x

a

(
ln

x
y

)α−1 f (y)
y

dy, x > a, (2.128)

and
(
Jαb− f

)
(x) =

1
Γ (α)

∫ b

x

(
ln

y
x

)α−1 f (y)
y

dy, x < b, (2.129)

respectively.

Notice that the Hadamard fractional integrals of order α are special cases of left-
and right-sided fractional integrals of a function f with respect to another function,
here g(x) = lnx on [a,b], 0 < a < b < ∞.

Above f is a Lebesgue measurable function from (a,b) into R, such that(
Jαa+ (| f |))(x) and/or

(
Jαb− (| f |)

)
(x) ∈ R, ∀ x ∈ (a,b).

We give



2 Univariate Hardy-Type Fractional Inequalities 51

Theorem 2.38. Let ( fi,αi), i = 1, . . . ,m; Jαi
a+ fi as in Definition 2.37. Set α :=

m
∑

i=1
αi,

γ :=
m
∏
i=1

αi; pi ≥ 1, i = 1, . . . ,m, assume α > m− 1. Then

∫ b

a

m

∏
i=1

∣
∣(Jαi

a+ fi
)
(x)

∣
∣pi dx≤ (2.130)

⎛

⎜
⎜
⎝

bγ
(
ln
(

b
a

))
(

m
∑

i=1
piαi−m+1

)

am (α−m+ 1)

(
m
∏
i=1

(Γ (αi + 1))pi

)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

where Jαi
a+ (| fi|) is finite, i = 1, . . . ,m, under the assumptions:

(i) | fi (y)|pi is

(
χ(a,x](y)dy

Γ (αi)y
(

ln
(

x
y

))1−αi

)

-integrable, a.e. in x ∈ (a,b).

(ii) | fi|pi is Lebesgue integrable on (a,b).

We also present

Theorem 2.39. Let all as in Theorem 2.38. Consider p := p1 = p2 = . . .= pm ≥ 1.
Then ∥

∥
∥
∥
∥

m

∏
i=1

(
Jαi

a+ fi
)
∥
∥
∥
∥
∥

p,(a,b)

≤ (2.131)

⎛

⎜
⎜
⎝

(bγ)
1
p
(
ln
(

b
a

))
(
α−m

p +
1
p

)

a
m
p (α−m+ 1)

1
p

(
m
∏
i=1

(Γ (αi + 1))

)

⎞

⎟
⎟
⎠

(
m

∏
i=1
‖ fi‖p,(a,b)

)

,

where Jαi
a+ (| fi|) is finite, i = 1, . . . ,m, under the assumptions:

(i) | fi (y)|p is

(
χ(a,x](y)dy

Γ (αi)y
(

ln
(

x
y

))1−αi

)

-integrable, a.e. in x ∈ (a,b).

(ii) | fi|p is Lebesgue integrable on (a,b).

We make

Remark 2.40. Let fi be Lebesgue measurable functions from (a,b) into R, such that(
Iαi
b−;g (| fi|)

)
(x) ∈R, ∀ x ∈ (a,b), αi > 0, i = 1, . . . ,m.

Consider
gi (x) :=

(
Iαi
b−;g fi

)
(x) , x ∈ (a,b) , i = 1, . . . ,m, (2.132)

where (
Iαi
b−;g fi

)
(x) =

1
Γ (αi)

∫ b

x

g′ (t) f (t)dt

(g(t)− g(x))1−αi
, x < b. (2.133)

Notice that gi (x) ∈ R and it is Lebesgue measurable.



52 George A. Anastassiou

We pick Ω1 =Ω2 = (a,b), dμ1 (x) = dx, dμ2 (y) = dy, the Lebesgue measure.
We see that

(
Iαi
b−;g fi

)
(x) =

∫ b

a

χ[x,b) (t)g′ (t) f (t)dt

Γ (αi)(g(t)− g(x))1−αi
, (2.134)

where χ is the characteristic function.
So, we pick here

ki (x,y) :=
χ[x,b) (y)g′ (y)

Γ (αi) (g(y)− g(x))1−αi
, i = 1, . . . ,m. (2.135)

In fact

ki (x,y) =

{
g′(y)

Γ (αi)(g(y)−g(x))1−αi
, x≤ y < b,

0, a < y < x.
(2.136)

Clearly it holds

Ki (x) =
∫ b

a

χ[x,b) (y)g′ (y)dy

Γ (αi)(g(y)− g(x))1−αi
=

1
Γ (αi)

∫ b

x
g′ (y)(g(y)− g(x))αi−1 dy = (2.137)

1
Γ (αi)

∫ g(b)

g(x)
(z− g(x))αi−1 dg(y) =

(g(b)− g(x))αi

Γ (αi + 1)
.

So for a < x < b, i = 1, . . . ,m, we get

Ki (x) =
(g(b)− g(x))αi

Γ (αi + 1)
. (2.138)

Notice that

m

∏
i=1

ki (x,y)
Ki (x)

=
m

∏
i=1

(
χ[x,b) (y)g′ (y)

Γ (αi) (g(y)− g(x))1−αi
· Γ (αi + 1)

(g(b)− g(x))αi

)

=

χ[x,b) (y) (g′ (y))
m (g(y)− g(x))

(
m
∑

i=1
αi−m

)
m
∏
i=1

αi

(g(b)− g(x))

m
∑

i=1
αi

. (2.139)

Calling

α :=
m

∑
i=1

αi > 0, γ :=
m

∏
i=1

αi > 0, (2.140)
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we have that

m

∏
i=1

ki (x,y)
Ki (x)

=
χ[x,b) (y)(g′ (y))

m (g(y)− g(x))α−m γ
(g(b)− g(x))α

. (2.141)

Therefore, for (2.32), we get for appropriate weight u that (denote λm by λ g
m)

λ g
m (y) = γ

(
g′ (y)

)m
∫ y

a
u(x)

(g(y)− g(x))α−m

(g(b)− g(x))α
dx < ∞, (2.142)

for all a < y < b.
Let Φi : R+ → R+, i = 1, . . . ,m, be convex and increasing functions. Then by

(2.33) we obtain

∫ b

a
u(x)

m

∏
i=1

Φi

⎛

⎝

∣∣
∣
∣
∣
∣

(
Iαi
b−;g fi

)
(x)

(g(b)− g(x))αi

∣∣
∣
∣
∣
∣
Γ (αi + 1)

⎞

⎠dx≤

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠
(∫ b

a
Φ j

(∣∣ f j (x)
∣
∣)λ g

m (x)dx

)
, (2.143)

with j ∈ {1, . . . ,m},
true for measurable fi with Iαi

b−;g (| fi|) finite, i = 1, . . . ,m, and with the properties:

(i) Φi (| fi|) is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).

(ii) λ g
mΦ j

(∣∣ f j
∣
∣) ;Φ1 (| f1|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|) are all Lebesgue integrable

functions, where ̂Φ j
(∣∣ f j

∣
∣) means absent item.

Let now
u(x) = (g(b)− g(x))α g′ (x) , x ∈ (a,b) . (2.144)

Then

λ g
m (y) = γ

(
g′ (y)

)m
∫ y

a
g′ (x)(g(y)− g(x))α−m dx =

γ
(
g′ (y)

)m
∫ y

a
(g(y)− g(x))α−m dg(x) = γ

(
g′ (y)

)m
∫ g(y)

g(a)
(g(y)− z)α−m dz =

(2.145)

γ
(
g′ (y)

)m (g(y)− g(a))α−m+1

α−m+ 1
,

with α > m− 1. That is,

λ g
m (y) = γ

(
g′ (y)

)m (g(y)− g(a))α−m+1

α−m+ 1
, (2.146)

α > m− 1, y ∈ (a,b).
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Hence (2.143) becomes

∫ b

a
g′ (x)(g(b)− g(x))α

m

∏
i=1

Φi

⎛

⎝

∣
∣
∣∣
∣
∣

(
Iαi
b−;g fi

)
(x)

(g(b)− g(x))αi

∣
∣
∣∣
∣
∣
Γ (αi + 1)

⎞

⎠dx≤

(
γ

α−m+ 1

)
⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (x)|)dx

⎞

⎟
⎠ ·

(∫ b

a
Φ j

(∣∣ f j (x)
∣
∣)(g′ (x)

)m
(g(x)− g(a))α−m+1 dx

)
≤ (2.147)

(
γ (g(b)− g(a))α−m+1 ‖g′‖m

∞
α−m+ 1

)(
m

∏
i=1

∫ b

a
Φi (| fi (x)|)dx

)

,

where α > m− 1, fi with Iαi
b−;g (| fi|) finite, i = 1, . . . ,m, under the assumptions:

(i) Φi (| fi|) is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) Φi (| fi|) is Lebesgue integrable on (a,b).

If Φi (x) = xpi , pi ≥ 1, x ∈ R+, then by (2.147), we have

∫ b

a
g′ (x)(g(b)− g(x))

(
α−

m
∑

i=1
αi pi

)
m

∏
i=1

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣

pi
dx≤ (2.148)

⎛

⎜
⎜
⎝
γ (g(b)− g(a))α−m+1 (‖g′‖∞)m

(α−m+ 1)
m
∏
i=1

(Γ (αi + 1))pi

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

but we see that

∫ b

a
g′ (x) (g(b)− g(x))

(
α−

m
∑

i=1
αi pi

)
m

∏
i=1

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣

pi
dx≥

(g(b)− g(a))

(
α−

m
∑

i=1
αi pi

)
∫ b

a
g′ (x)

m

∏
i=1

∣∣
∣
(

Iαi
b−;g fi

)
(x)

∣∣
∣

pi
dx. (2.149)

Hence by (2.148) and (2.149) we derive

∫ b

a
g′ (x)

m

∏
i=1

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣

pi
dx≤ (2.150)

⎛

⎜
⎜
⎝
γ (g(b)− g(a))

(
m
∑

i=1
piαi−m+1

)

‖g′‖m
∞(

m
∏
i=1

(Γ (αi + 1))pi

)
(α−m+ 1)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

α > m− 1, fi with Iαi
b−;g (| fi|) finite, i = 1, . . . ,m, under the assumptions:



2 Univariate Hardy-Type Fractional Inequalities 55

(i) | fi|pi is ki (x,y)dy -integrable, a.e. in x ∈ (a,b).
(ii) | fi|pi is Lebesgue integrable on (a,b).

We give

Theorem 2.41. Let ( fi,αi), i = 1, . . . ,m; Jαi
b− fi as in Definition 2.37. Set α :=

m
∑

i=1
αi,

γ :=
m
∏
i=1

αi; pi ≥ 1, i = 1, . . . ,m, assume α > m− 1. Then

∫ b

a

m

∏
i=1

∣
∣(Jαi

b− fi
)
(x)

∣
∣pi dx≤ (2.151)

⎛

⎜
⎜
⎝

bγ
(
ln
(

b
a

))
(

m
∑

i=1
piαi−m+1

)

am (α−m+ 1)

(
m
∏
i=1

(Γ (αi + 1))pi

)

⎞

⎟
⎟
⎠

(
m

∏
i=1

∫ b

a
| fi (x)|pi dx

)

,

where Jαi
b− (| fi|) is finite, i = 1, . . . ,m, under the assumptions:

(i) | fi (y)|pi is

(
χ[x,b)(y)dy

Γ (αi)y(ln( y
x ))

1−αi

)
-integrable, a.e. in x ∈ (a,b).

(ii) | fi|pi is Lebesgue integrable on (a,b).

We finish with

Theorem 2.42. Let all as in Theorem 2.41. Take p := p1 = p2 = . . .= pm ≥ 1. Then
∥
∥
∥∥
∥

m

∏
i=1

(
Jαi

b− fi
)
∥
∥
∥∥
∥

p,(a,b)

≤ (2.152)

⎛

⎜
⎜
⎝

(bγ)
1
p
(
ln
(

b
a

))
(
α−m

p +
1
p

)

a
m
p (α−m+ 1)

1
p

(
m
∏
i=1

(Γ (αi + 1))

)

⎞

⎟
⎟
⎠

(
m

∏
i=1
‖ fi‖p,(a,b)

)

,

where Jαi
b− (| fi|) is finite, i = 1, . . . ,m, under the properties:

(i) | fi (y)|p is

(
χ[x,b)(y)dy

Γ (αi)y(ln( y
x ))

1−αi

)
-integrable, a.e. in x ∈ (a,b).

(ii) | fi|p is Lebesgue integrable on (a,b).



56 George A. Anastassiou

References

1. G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, Springer,
New York, 2009.

2. G.A. Anastassiou, On Right Fractional Calculus, Chaos, Solitons and Fractals, 42(2009),
365–376.

3. G.A. Anastassiou, Balanced fractional Opial inequalities, Chaos, Solitons and Fractals,
42(2009), no. 3, 1523–1528.

4. G.A. Anastassiou, Fractional Representation formulae and right fractional inequalities, Math-
ematical and Computer Modelling, 54(11–12) (2011), 3098–3115.

5. J.A. Canavati, The Riemann-Liouville Integral, Nieuw Archief Voor Wiskunde, 5(1) (1987),
53–75.

6. Kai Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathemat-
ics, Vol 2004, 1st edition, Springer, New York, Heidelberg, 2010.

7. A.M.A. El-Sayed and M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic
Journal of Theoretical Physics, Vol. 3, No. 12 (2006), 81–95.

8. R. Gorenflo and F. Mainardi, Essentials of Fractional Calculus, 2000, Maphysto Center, http://
www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps.
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Chapter 3
Statistical Convergence on Timescales
and Its Characterizations

Ceylan Turan and Oktay Duman

Abstract In this paper, we introduce the concept of statistical convergence of delta
measurable real-valued functions defined on time scales. The classical cases of our
definition include many well-known convergence methods and also suggest many
new ones. We obtain various characterizations on statistical convergence.

3.1 Introduction

The main features of the timescales calculus which was first introduced by Hilger
[14] are to unify the discrete and continuous cases and to extend them in order
to obtain some new methods. This method of calculus is also effective in model-
ing some real-life problems. For example, in modeling insect populations, one may
need both discrete and continuous time variables. There are also many applications
of timescales on dynamic equations (see, for instance, [6]). However, so far, there is
no any usage of timescale in the summability theory. The aim of this paper is to fill
this gap in the literature and to generate a new research area. More precisely, in this
paper, we study the concept of statistical convergence of functions defined on appro-
priate timescales. Recall that the statistical convergence of number sequences (i.e.,
the case of a discrete timescale) introduced by Fast [10] is the well-known topic in
the summability theory and also its continuous version was studied by Móricz [15].

It is well known from the classical analysis that if a number sequence is con-
vergent, then almost all terms of the sequence have to belong to arbitrarily small
neighborhood of the limit. The main idea of statistical convergence (of a number
sequence) is to weaken this condition and to demand validity of the convergence
condition only for a majority of elements. Note that the classical limit implies
the statistical convergence, but the converse does not hold true. This method of
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convergence has been investigated in many areas of mathematics, such as measure
theory, approximation theory, fuzzy logic theory, and summability theory. These
studies demonstrate that the concept of statistical convergence provides an impor-
tant contribution to improvement of the classical analysis.

Firstly we recall some basic concepts and notations from the theory of timescales.
A timescale T is any nonempty closed subset of R, the set of real numbers.
The forward and backward jump operators from T into itself are defined by σ(t) =
inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}. A closed interval in a timescale T

is given by [a,b]T := {t ∈ T : a ≤ t ≤ b}. Open intervals or half-open intervals are
defined accordingly.

Now let T1 denote the family of all left closed and right open intervals of T of the
form [a,b)T. Let m1 : T1 → [0,∞] be a set function on T1 such that m1([a,b)T) =
b− a. Then, it is known that m1 is a countably additive measure on T1. Now, the
Carathéodory extension of the set function m1 associated with family T1 is said to
be the Lebesgue Δ -measure on T and is denoted by μΔ (see [3, 13] for details). In
this case, we know from [13] that:

• If a ∈ T\{maxT}, then the single-point set {a} is Δ -measurable and μΔ (a) =
σ(a)− a.

• If a,b ∈ T and a≤ b, then μΔ ([a,b)T) = b− a and μΔ ((a,b)T) = b−σ(a).
• If a,b ∈ T\{maxT} and a ≤ b, μΔ ((a,b]T) = σ(b)−σ(a) and μΔ ([a,b]T) =

σ(b)− a.

3.2 Density and Statistical Convergence on Timescales

In this section, we focus on constructing a concept of statistical convergence on
timescales. To see that we first need a definition of density function on timescales.
So, we mainly use the Lebesgue Δ -measure μΔ introduced by Guseinov [13].

We should note that throughout the paper, we assume that T is a timescale satis-
fying infT= t0 > 0 and supT= ∞.

Definition 3.1. Let Ω be a Δ -measurable subset of T. Then, for t ∈ T, we define the
set Ω (t) by

Ω (t) := {s ∈ [t0, t]T : s ∈Ω} .
In this case, we define the density of Ω on T, denoted by δT (Ω), as follows:

δT (Ω) := lim
t→∞

μΔ (Ω (t))
μΔ ([t0, t]T)

provided that the above limit exists.

We should note that the discrete case of Definition 3.1, i.e., the case of T =
N, reduces to the concept of asymptotic density (see, for instance, [16]); also, the
continuous case of this definition, i.e., the case of T = [0,∞), turns out to be the
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concept of approximate density which was first considered by Denjoy [9] (see also
[15]). So, by choosing suitable timescales, our definition fulfills the gap between the
discrete and continuous cases.

It follows from Definition 3.1 that:

• δT (T) = 1
• 0≤ δT (Ω)≤ 1 for any Δ -measurable subset Ω of T

Assume now that A and B are Δ -measurable subsets of T and that δT (A), δT (B)
exist. Then, it is easy to check the following properties of the density:

• δT (A∪B)� δT (A)+ δT (B)
• If A∩B =∅, then δT (A∪B) = δT (A)+ δT (B)
• δT (T\A) = 1− δT (A)
• If A⊂ B, then δT (A)� δT (B)
• If A is bounded, then δT (A) = 0

Furthermore, we get the next lemma.

Lemma 3.2. Assume that A and B are Δ -measurable subsets of T for which
δT (A) = δT (B) = 1 hold. Then, we have

δT (A∪B) = δT (A∩B) = 1.

Proof. Since A ⊂ A ∪ B, it follows from the above properties that δT (A) �
δT (A∪B), which implies δT (A∪B) = 1. On the other hand, since A ∪ B =
(A\B)∪(B\A)∪(A∩B), we see that δT (A∪B)= δT (A\B)+δT (B\A)+δT (A∩B).
Also, using the fact that A\B ⊂ T\B, we obtain δT (A\B) ≤ δT (T\B) = 0, which
gives δT (A\B) = 0. Similarly, one can show that δT (B\A) = 0. Then, combining
them, we see that δT (A∩B) = 1, which completes the proof. ��

Now we are ready to give the definition of statistical convergence of real-valued
function f defined on a timescale T satisfying infT= t0 and supT= ∞.

Definition 3.3. Let f : T→R be a Δ -measurable function. We say that f is statisti-
cally convergent on T to a number L if, for every ε > 0,

δT ({t ∈ T : | f (t)−L|� ε}) = 0 (3.1)

holds. Then, we denote this statistical limit as follows:

stT− lim
t→∞

f (t) = L.

It is not hard to see that (3.1) can be written as follows:

lim
t→∞

μΔ ({s ∈ [t0, t]T : | f (s)−L|� ε})
μΔ ([t0, t]T)

= 0.

Definition 3.4. Let f : T→R be a Δ -measurable function. We say that the function
f is statistical Cauchy on T if, for every ε > 0, there exists a number t1 > t0 such that

lim
t→∞

μΔ ({s ∈ [t0, t]T : | f (s)− f (t1)|� ε})
μΔ ([t0, t]T)

= 0.
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A few obvious properties of Definition 3.3 are as follows:
Let f ,g: T→ R be Δ -measurable functions and α ∈ R. Then, we have:

• If stT− lim
t→∞

f (t) = L1 and stT− lim
t→∞

f (t) = L2, then L1 = L2

• If stT− lim
t→∞

f (t) = L, then stT− lim
t→∞

(α f (t)) = αL

• If stT− lim
t→∞

f (t) = L and stT− lim
t→∞

g(t) = M, then stT− lim
t→∞

f (t) .g(t) = LM

We should note that after searching the website, arxiv.org, we discovered that
Definitions 3.1–3.4 were also obtained in a non-published article by Seyyidoglu and
Tan [19]. They only proved the next result (see Theorem 3.5). However, in this paper,
we obtain many new characterizations and applications of statistical convergence on
timescales.

Theorem 3.5. (see also [19]) Let f : T→R be a Δ -measurable function. Then the
following statements are equivalent:

(i) f is statistical convergent on T.
(ii) f is statistical Cauchy on T.
(iii) f can be represented as the sum of two Δ -measurable functions g and h such

that lim
t→∞

g(t) = stT− lim
t→∞

f (t) and δT ({t ∈ T : h(t) �= 0}) = 0. Moreover, if f

is bounded, then both g and h are also bounded.

It is not hard to see that the discrete version of Theorem 3.5 reduces to Theorem 1
introduced by Fridy [12] and also the continuous one turns out to be Theorem 1
proved by Móricz [15]. The above results can be easily obtained by using the same
proof techniques in [12, 15].

Now we display some applications of Definition 3.3. We will see that many well-
known convergence methods can be obtained from Definition 3.3. Some of them are
as follows:

Example 3.6. Let T= N in Definition 3.3. In this case, replacing t with n and using
the fact that t0 = 1, we get

μΔ ([1,n]N) = μΔ ({1,2,3, . . . ,n}) = σ (n)− 1 = (n+ 1)− 1= n.

Also, we see that

μΔ ({k ∈ [1,n]N : | f (k)−L|� ε}) = μΔ ({1 � k � n : | f (k)−L|� ε})
= #{1 � k � n : | f (k)−L|� ε} ,

where #B denotes the cardinality of the set B. Then, we can write, for T= N, that

stN− lim
n→∞

f (n) = L

is equivalent to

lim
n→∞

#{1 � k � n : | f (k)−L|� ε}
n

= 0, (3.2)
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which is the classical statistical convergence of the sequence (xk) := ( f (k)) to L (see
[10]). Note that the statistical convergence in (3.2) is denoted by

st− lim
k→∞

xk = L

in the literature.

Example 3.7. If we chooseT= [a,∞) (a> 0) in Definition 3.3, then we immediately
obtain the convergence method introduced by Móricz [15]. Indeed, since t0 = a,
observe that

μΔ
(
[a, t]

[a,∞)

)
= μΔ ([a, t]) = σ(t)− a = t− a,

and also since T= [a,∞),

μΔ
(
s ∈ [a, t][a,∞) : | f (s)−L|� ε

)
= μΔ ({a � s � t : | f (s)−L|� ε})
= m({a � s � t : | f (s)−L|� ε}) ,

where m(B) denotes the classical Lebesgue measure of the set B. Hence, we obtain
that

st[a,∞)− lim
t→∞

f (t) = L

is equivalent to

lim
t→∞

m({a � s � t : | f (s)−L|� ε})
t− a

= 0,

which was first introduced by Móricz [15].

Example 3.8. Now let T = qN (q > 1) in Definition 3.3. Then, using t0 = q and
replacing t with qn, we observe that

μΔ
(
[q,qn]qN

)
= μΔ

({
q,q2, . . . ,qn})= σ (qn)− q = q(qn− 1),

and letting K(ε) :=
{

qk ∈ [q,qn]
qN

:
∣∣ f (qk)−L

∣∣� ε
}

we get

μΔ (K(ε)) =
n

∑
k=1

(
σ(qk)− qk

)
χK(ε)(q

k)

= (q− 1)
n

∑
k=1

qkχK(ε)(q
k).

Hence, we deduce that

stqN − lim
k→∞

f (qk) = L

is equivalent to

lim
n→∞

(q− 1)∑n
k=1 qkχK(ε)(q

k)

q(qn− 1)
= lim

n→∞

∑n
k=1 qk−1χK(ε)(q

k)

[n]q
= 0, (3.3)
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where [n]q denotes the q-integer given by

[n]q := 1+ q+ q2+ . . .+ qn−1 =
qn− 1
q− 1

. (3.4)

The limit in (3.3) can be represented via matrix summability method as follows:

lim
n→∞

∑n
k=1 qk−1χK(ε)(q

k)

[n]q
= lim

n→∞
C1(q)χK(ε)(q

n),

where C1(q) := [cn,k(q)], k,n ∈ N denotes the q-Cesáro matrix of order one
defined by

cn,k(q) =

⎧
⎨

⎩

qk−1

[n]q
, if 1≤ k≤ n

0, otherwise.
(3.5)

Recall that the q-Cesáro matrix in (3.5) was first introduced by Aktuğlu and Bekar
[2]. So, it follows from (3.3) to (3.5) that

stqN− lim
k→∞

f (qk) = L⇔ lim
n→∞

C1(q)χK(ε)(q
n) = 0. (3.6)

In [2], the last convergence method was called as q-statistical convergence of the
function f to L.

Before closing this section, we should note that it is also possible to derive many
new convergence methods from our Definitions 3.1 and 3.3 by choosing appropriate
timescales.

3.3 Some Characterizations of Statistical Convergence

In this section we obtain many characterizations of the statistical convergence in
Definition 3.3.

In the next result, we generalize Šalát’s theorem in [17].

Theorem 3.9. Let f be a Δ -measurable function. Then, stT − lim
t→∞

f (t) = L if

and only if there exists a Δ -measurable set Ω ⊂ T such that δT (Ω) = 1 and
lim

t→∞ (t∈Ω)
f (t) = L.

Proof. Necessity. Setting

Ω j =

{
t ∈ T : | f (t)−L|< 1

j

}
, j = 1,2, . . . ,

we may write from hypothesis that δT (Ω j) = 1 for every j ∈ N. Also, we see that
(Ω j) is decreasing. Now, for j = 1, choose t1 ∈Ω1. Since δT (Ω1) = 1, there exists
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a number t2 ∈Ω2 with t2 > t1 such that
μΔ (Ω2(t))

μΔ
(
[t0, t]

T

) >
1
2

holds for each t ≥ t2 with

t ∈ T. Also, since again δT (Ω2) = 1, there exists a number t3 ∈ Ω3 with t3 > t2

such that
μΔ (Ω3(t))

μΔ
(
[t0, t]

T

) >
2
3

holds for each t ≥ t3 with t ∈ T. By repeating the same

process, one can construct an increasing sequence (t j) such that, for each t ≥ t j with

t ∈ T,
μΔ (Ω j (t))

μΔ
(
[t0, t]

T

) >
j− 1

j
, where Ω j (t) := {s ∈ [t0, t]T : s ∈Ω j}, j ∈N. With the

help of the sets Ω j, we can construct a set Ω as in the following way:

• If t ∈ [t0, t1]T, then t ∈Ω .
• If t ∈Ω j ∩

[
t j, t j+1

]
T

for j = 1,2, . . ., then t ∈Ω , i.e.,

Hence, we get

Ω :=
{

t ∈ T : t ∈ [t0, t1]T or t ∈Ω j ∩
[
t j, t j+1

]
T
, j = 1,2, . . .

}

Then, we may write that

μΔ (Ω (t))

μΔ
(
[t0, t]

T

) ≥ μΔ (Ω j (t))

μΔ
(
[t0, t]

T

) >
j− 1

j

holds for each t ∈ [t j, t j+1)T ( j = 1,2, . . .). The last inequality implies that δT (Ω) =
1. Now we show that lim

t→∞ (t∈Ω)
f (t) = L. To see this, for a given ε > 0, choose a

number j such that
1
j
< ε . Also, let t � t j with t ∈ Ω . Then there exists a number

n ≥ j such that t ∈ [tn, tn+1)T. It follows from the definition of Ω that t ∈ Ωn, and
hence

| f (t)−L|< 1
n
� 1

j
< ε.

Therefore, we see that | f (t)−L| < ε for each t ∈ Ω with t ≥ t j, which gives the
result lim

t→∞ (t∈Ω)
f (t) = L.

Sufficiency. By the hypothesis, for a given ε > 0, there exists a number t∗ ∈ T

such that for every t ≥ t∗ with t ∈ Ω , one can obtain that | f (t)−L| < ε . Hence, if
we put A(ε) := {t ∈ T : | f (t)−L| ≥ ε} and B :=Ω ∩ [t∗,∞)T, then it is easy to see
that A(ε)⊂ T \ B. Furthermore, using the facts that

Ω = (Ω ∩ [t0, t∗)T)∪B and δT (Ω) = 1,

and also observing δT (Ω ∩ [t0, t∗)T) = 0 due to boundedness, Lemma 3.2 immedi-
ately yields that δT (B) = 1, and therefore we get δT (A(ε)) = 0, which completes
the proof. ��

Note that the discrete version of Theorem 3.9 was proved by Šalát [17].
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In order to get a new characterization for statistical convergence on timescales,
we first need the following two lemmas:

Lemma 3.10. Let f : T→ R be a Δ -measurable function. If stT− lim
t→∞

f (t) = L and

f is bounded above by M, then we have

lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

f (s)Δs = L,

where we use the Lebesgue Δ -integral on timescales introduced by Cabada and
Vivero [7].

Proof. Without loss of generality, we may assume that L = 0. Now let ε > 0 and
Ω(t) := {s ∈ [t0, t]T : | f (s)| ≥ ε}. Since stT− lim

t→∞
f (t) = L, we get

lim
t→∞

μΔ (Ω(t))
μΔ ([t0, t]T)

= 0,

which means that
μΔ (Ω(t))
μΔ ([t0, t]T)

<
ε
M

for sufficiently large t. Now, we may write that

∣
∣∣
∣
∣
∣
∣

1
μΔ ([t0, t]T)

∫

[t0,t]T

f (s)Δs

∣
∣∣
∣
∣
∣
∣

≤ 1
μΔ ([t0, t]T)

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω(t)

| f (s)|Δs+
∫

[t0,t]
T

\ Ω(t)

| f (s)|Δs

⎫
⎪⎪⎬

⎪⎪⎭

� 1
μΔ ([t0, t]T)

⎧
⎪⎪⎨

⎪⎪⎩
M

∫

Ω(t)

Δs+ ε
∫

[t0,t]
T

Δs

⎫
⎪⎪⎬

⎪⎪⎭
.

We know from [7] that
∫

AΔs = μΔ (A) for any measurable subset A⊂T. Hence, the
last inequality implies that

∣∣
∣
∣
∣
∣∣

1
μΔ ([t0, t]T)

∫

[t0,t]T

f (s)Δs

∣∣
∣
∣
∣
∣∣
≤ MμΔ (Ω(t))+ εμΔ ([t0, t]T)

μΔ ([t0, t]T)
≤ 2ε.

Since ε > 0 is arbitrary, the proof is completed. ��
Lemma 3.11. Let f : T→ R be a Δ -measurable function and stT− lim

t→∞
f (t) = L. If

g : R→R is a continuous function at L, then we have
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stT− lim
t→∞

g( f (t)) = g(L)

Proof. By the continuity of g at L, for every ε > 0, there exists a δ > 0 such
that |g(y)− g(L)| < ε whenever |y−L| < δ . But then |g(y)− g(L)| � ε implies
|y−L| ≥ δ , and hence

|g( f (t))− g(L)| ≥ ε implies | f (t)−L|� δ .

So, we get

{t ∈ T : |g( f (t))− g(L)|� ε} ⊂ {t ∈ T : | f (t)−L| ≥ δ} ,

which yields that

δT ({t ∈ T : |g( f (t))− g(L)|� ε})� δT ({t ∈ T : | f (t)−L| ≥ δ}) = 0,

whence the result. ��
Now we are ready to give our new characterization.

Theorem 3.12. Let f : T→ R be a Δ -measurable function. Then,

stT− lim
t→∞

f (t) = L

if and only if, for every α ∈ R,

lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

eiα f (s)Δs = eiαL. (3.7)

Proof. Necessity. Assume that stT− limt→∞ f (t) = L holds. It is easy to see that eiαt

is a continuous function for any fixed α ∈ R. Thus, by Lemma 3.11, we can write
that

stT− lim
t→∞

eiα f (t) = eiαL

Also, since eiα f (t) is a bounded function, it follows from Lemma 3.10 that

lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

eiα f (s)Δs = eiαL.

Sufficiency. Assume now that (3.7) holds for any α ∈ R. As in [18], define the
following continuous function:

M (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x < 1
1+ x, if − 1 � x < 0
1− x, if 0 � x < 1
0, if x � 1.
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Then, we know from [18] (see also [11]) that M (x) has the following integral
representation:

M (x) =
1

2π

∞∫

−∞

(
sin(α/2)
α/2

)2

eixαdα for x ∈ R.

Without loss of generality, we can assume that L = 0 in (3.7). So, we get

lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

eiα f (s)Δs = 1 for every α ∈ R. (3.8)

Now let Ω := {t ∈ T : | f (t)|� ε} for a given ε > 0. Then, to complete the proof,
we need to show δT (Ω) = 0. To see this, firstly, we write that

M

(
f (s)
ε

)
=

1
2π

∞∫

−∞

(
sin(α/2)
α/2

)2

eiα f (s)/εdα

After making an appropriate change of variables, we obtain that

M

(
f (s)
ε

)
=

ε
2π

∫

R

(
sin(αε/2)
αε/2

)2

ei f (s)αdα, (3.9)

and hence

1
μΔ ([t0, t]T)

∫

[t0,t]T

M

(
f (s)
ε

)
Δs

=
ε

2π
1

μΔ ([t0, t]T)

∫

[t0,t]T

⎧
⎨

⎩

∫

R

(
sin(αε/2)
αε/2

)2

ei f (s)αdα

⎫
⎬

⎭
Δs.

Observe that the integral in (3.9) is an absolutely convergent. Now, by the Fubini
theorem on timescales (see [1, 4, 5]), we have

1
μΔ ([t0, t]T)

∫

[t0,t]T

M

(
f (s)
ε

)
Δs

=
ε

2π

∫

R

(
sin (αε/2)
αε/2

)2

⎧
⎪⎨

⎪⎩

1
μΔ ([t0, t]T)

∫

[t0,t]T

ei f (s)αΔs

⎫
⎪⎬

⎪⎭
dα.

Moreover, for all α ∈ R and t ∈ T,
∣
∣∣
∣
∣
∣
∣

1
μΔ ([t0, t]T)

∫

[t0,t]T

ei f (s)αΔs

∣
∣∣
∣
∣
∣
∣
� 1.
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Hence, if we consider (3.8) and also use the Lebesgue dominated convergence
theorem we obtain that

lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

M

(
f (s)
ε

)
Δs

=
ε

2π

∫

R

(
sin (αε/2)
αε/2

)2

⎧
⎪⎨

⎪⎩
lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

ei f (s)αΔs

⎫
⎪⎬

⎪⎭
dα

=
ε

2π

∫

R

(
sin (αε/2)
αε/2

)2

dα .

Now, the definition of the function M implies that

lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

M

(
f (s)
ε

)
Δs = M (0) = 1. (3.10)

Observe now that for any s ∈Ω(t),
f (s)
ε

� 1, where Ω(t) := {s ∈ [t0, t]T : s ∈Ω}
as stated before. Then, we get

∫

Ω(t)

M

(
f (s)
ε

)
Δs = 0.

Furthermore, since

∫

[t0,t]T

M

(
f (s)
ε

)
Δs =

∫

[t0,t]T\ Ω(t)

M

(
f (s)
ε

)
Δs+

∫

Ω(t)

M

(
f (s)
ε

)
Δs

�
∫

[t0,t]T\ Ω(t)

Δs

= μΔ ([t0, t]T)− μΔ (Ω(t)) ,

we have
μΔ (Ω(t))
μΔ ([t0, t]T)

� 1− 1
μΔ ([t0, t]T)

∫

[t0,t]T

M

(
f (s)
ε

)
Δs.

Now taking limit as t → ∞ on both sides of the last equality and also using (3.10),
we see that

δT (Ω) = 0,

which completes the proof. ��
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Note that if take T= N in Theorem 3.12, then we immediately get Schoenberg’s
result in [18]; also if T= [a,∞), a > 0, then Theorem 3.12 reduces to the univariate
version of Theorem 1 in [11]. The next result indicates the special case T = qN

(q > 1) of Theorem 3.12.

Corollary 3.13. Let f : qN→ R (q > 1) be a Δ -measurable function. Then,

stqN − lim
t→∞

f (t) = L

if and only if, for every α ∈ R,

lim
n→∞

1
[n]q

n

∑
k=1

eiα f (qk)qk−1 = eiαL,

where [n]q is the same as in (3.4).

Now to obtain a new characterization we consider the next definition.

Definition 3.14. Let f : T→ R be a Δ -measurable function and 0 < p < ∞. We say
that f is strongly p-Cesáro summable on the timescale T if there exists some L ∈ R

such that

lim
t→∞

1

μΔ
(
[t0,t]T

)
∫

[t0,t]T

| f (s)−L|pΔs = 0.

Observe that our Definition 3.14 covers the well-known concepts on strongly p-
Cesáro summability for discrete and continuous cases. Furthermore, for example,
one can deduce from Definition 3.14 that f is strongly p-Cesáro summable on the
timescale qN (q > 1) if there exists a real number L such that

lim
n→∞

1
[n]q

n

∑
k=1

qk−1
∣
∣
∣ f
(

qk
)
−L

∣
∣
∣

p
= 0,

which is a new concept on summability theory.
We first need the next lemma which gives Markov’s inequality on timescales.

Lemma 3.15. Let f : T→R be a Δ -measurable function and let Ω(t) := {s ∈
[t0, t]T : | f (s)−L| ≥ ε} for ε > 0. In this case, we have

μΔ (Ω(t))� 1
ε

∫

Ω(t)

| f (s)−L|Δs≤ 1
ε

∫

[t0,t]T

| f (s)−L|Δs.

Proof. For all s ∈ [t0, t]T and ε > 0, we can write that

0 � εχΩ(t) (s)� | f (s)−L|χΩ(t) (s)� | f (s)−L| ,
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which implies that

ε
∫

Ω(t)

Δs≤
∫

Ω(t)

| f (s)−L|Δs≤
∫

[t0,t]T

| f (s)−L|Δs.

Therefore, we obtain that

εμΔ (Ω(t))≤
∫

Ω(t)

| f (s)−L|Δs≤
∫

[t0,t]T

| f (s)−L|Δs,

which proves the lemma. ��
Then, we get the following result.

Theorem 3.16. Let f : T→R be a Δ -measurable function, L ∈ R and 0 < p < ∞.
Then, we get:

(i) If f is strongly p-Cesáro summable to L, then stT− lim
t→∞

f (t) = L.

(ii) If stT− lim
t→∞

f (t) = L and f is a bounded function, then f is strongly p-Cesáro

summable to L.

Proof. (i) Let f be strongly p-Cesáro summable to L. For a given ε > 0, on
timescale, let Ω(t) := {s ∈ [t0, t]T : | f (s)−L|� ε}. Then, it follows from
Lemma 3.15 that

ε pμΔ (Ω(t))�
∫

[t0,t]T

| f (s)−L|pΔs.

Dividing both sides of the last equality by μΔ ([t0, t]T) and taking limit as t→∞,
we obtain that

lim
t→∞

μΔ (Ω(t))
μΔ ([t0, t]T)

� 1
ε p lim

t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

| f (s)−L|pΔs = 0,

which yields that stT− lim
t→∞

f (t) = L.

(ii) Let f be bounded and statistically convergent to L on T. Then, there exists a
positive number M such that | f (s)|� M for all s ∈ T, and also

lim
t→∞

μΔ (Ω(t))
μΔ ([t0, t]T)

= 0, (3.11)
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where Ω(t) := {s ∈ [t0, t]T : | f (s)−L|� ε} as stated before. Since
∫

[t0,t]T

| f (s)−L|pΔs =
∫

Ω(t)

| f (s)−L|pΔs+
∫

[t0,t]T\Ω(t)

| f (s)−L|pΔs

� (M+ |L|)p
∫

Ω(t)

Δs+ ε p
∫

[t0,t]T

Δs

= (M+ |L|)p μΔ (Ω(t))+ ε pμΔ ([t0, t]T) ,

we obtain that

lim
t→∞

1
μΔ ([t0, t]T)

∫

[t0,t]T

| f (s)−L|pΔs � (M+ |L|)p lim
t→∞

μΔ (A)
μΔ ([t0, t]T)

+ ε p. (3.12)

Since ε is arbitrary, the proof follows from (3.11) and (3.12). ��
Observe that the discrete and continuous cases of Theorem 3.16 were pre-

sented in [8] and [15], respectively. Furthermore, it is not hard to see that, for
T= qN (q > 1), Theorem 3.16 implies the following result.

Corollary 3.17. Let f : qN→ R (q > 1) be a Δ -measurable and bounded function
on T. Then, we get

stqN− lim
n→∞

f (qn) = L⇔ lim
n→∞

1
[n]q

n

∑
k=1

qk−1
∣∣
∣ f
(

qk
)
−L

∣∣
∣

p
= 0.
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Chapter 4
On the g-Jacobi Matrix Functions

Bayram Çekim and Esra Erkuş-Duman

Abstract In this paper, we introduce a matrix version of the generalized Jacobi
(g-Jacobi) function, which is a solution of fractional Jacobi differential equation,
and study its fundamental properties. We also present the fractional hypergeometric
matrix function as a solution of the matrix generalization of the fractional Gauss
differential equation. Some special cases are discussed.

4.1 Introduction

The theory of fractional calculus has recently been applied in many areas of pure
and applied mathematics and engineerings, such as biology, physics, electrochem-
istry, economics, probability theory, and statistics [7, 9]. In the present paper, we
mainly use the fractional calculus in the theory of special functions. More precisely,
we study on a matrix version of the Jacobi function which gives via the Riemann–
Liouville (fractional) operator. Furthermore we define the matrix version of the frac-
tional hypergeometric function which is a solution of the fractional analogue of the
Gauss matrix differential equation.

Throughout the paper, we consider the Riemann–Liouville fractional derivative
of a function f with order μ , which is defined by

Dμ f (t) := Dm[Jm−μ f (t)],

where m ∈ N, m− 1≤ μ < m and

Jm−μ f (t) :=
1

Γ (m− μ)

t∫

0

(t− τ)m−μ−1 f (τ)dτ
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is the Riemann–Liouville fractional integral of f with order m− μ . Here Γ denotes
the classical gamma function. It is easy to see that the fractional derivative of the
power function f (t) = tα is given by

Dμtα =
Γ (α+ 1)

Γ (α− μ+ 1)
tα−μ

where α ≥−1, μ ≥ 0, t > 0. We know from [10] that if f is a continuous function
in [0, t] and ϕ has n+1 continuous derivatives in [0, t], then the fractional derivative
of the product ϕ f , that is, the Leibniz rule, is given as follows:

Dμ [ϕ (t) f (t)] =
∞

∑
k=0

(
μ
k

)
ϕ(k) (t)Dμ−k f (t) . (4.1)

It is well known that the classical Gauss differential equation is given as follows:

x(1− x)y′′+[c− (a+ b+ 1)x]y′ − aby = 0. (4.2)

As usual, (4.2) has a solution of the hypergeometric function defined by

F (a,b;c;x) =
∞

∑
k=0

(a)k (b)k

(c)k k!
xk, (4.3)

where (λ )k is the Pochhammer symbol

(λ )k = λ (λ + 1) . . . (λ + k− 1), (λ )0 = 1.

Jacobi polynomials P(α ,β )
n are defined by the Rodrigues formula

P(α ,β )
n (x) =

(1− x)−α (1+ x)−β

(−2)nn!
Dn

x

[
(1− x)α+n (1+ x)β+n

]
, (4.4)

where α,β > −1 [3]. In [8], Mirevski et al. gave the fractional generalizations of
(4.2)–(4.4).

On the other hand, it is well known that special matrix functions appear in lots of
studies [1, 2, 4]. The aim of this paper is to study the matrix versions of the results in
[8]. And also some properties of Jacobi matrix functions and some special cases are
obtained. To see that we consider the following terminology on the matrix theory of
special functions.

If A is a matrix in C
r×r, then by σ(A) we denote the set of all the eigenvalues of

A. It follows from [5] that if f (z),g(z) are holomorphic functions in an open set Ω
of the complex plane and if σ(A) ⊂ C, we denote by f (A), g(A), respectively, the
image by the Riesz–Dunford functional calculus of the functions f (z),g(z), respec-
tively, acting on the matrix A, and

f (A)g(A) = g(A) f (A).

Let ‖A‖ denote the two norms of A defined by
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‖A‖= sup
x�=0

‖Ax‖2

‖x‖2
,

where ‖y‖2 =
(
yT y

)1/2
for a vector y ∈ C

r is the Euclidean norm of y. It is easy to
check that

‖A+B‖ ≤ ‖A‖+ ‖B‖
‖AB‖ ≤ ‖A‖ .‖B‖ (4.5)

for all A,B ∈ C
r×r. The reciprocal scalar Gamma function, Γ−1(z) = 1/Γ (z), is

an entire function of the complex variable z. Thus, for any C ∈ C
r×r, the Riesz–

Dunford functional calculus [5] shows that Γ−1(C) is well defined and is, indeed,
the inverse of Γ (C). Hence, if C ∈ C

r×r is such that C+ nI is invertible for every
integer n≥ 0, then

Γ−1(C) =C(C+ I)(C+ 2I) . . .(C+ kI)Γ−1(C+(k+ 1)I).

The hypergeometric matrix function F(A,B;C;z) is given in [6] as follows:

F(A,B;C;z) =
∞

∑
n=0

(A)n(B)n

n!
[(C)n]

−1 zn, (4.6)

where |z| < 1 and A,B,C ∈ C
r×r such that C+ nI is invertible for all integer n ≥ 0

and also (A)n denotes the Pochhammer symbol:

(A)n = A(A+ I) . . .(A+(n− 1)I), n≥ 1 , (A)0 = I . (4.7)

4.2 Fractional Hypergeometric Matrix Function

In this section, we give the matrix version of (4.3) by solving the matrix version of
the linear homogeneous hypergeometric differential equation (4.2).

Definition 4.1. We define fractional hypergeometric matrix differential equation as
follows:

tμ(1− tμ)D2μY (t)− tμADμ [Y (t)]+Dμ [Y (t)] (C− tμ(B+ I))−AY(t)B = 0,

(4.8)

where 0 < μ ≤ 1 and C+ kI is invertible for every integer k ≥ 0.

Definition 4.2. The fractional hypergeometric matrix function is defined as

μ
2 F1(A,B;C;t) = Y0tθ +

∞

∑
k=1

[
k−1

∏
j=0

G j(θ )

]

Y0

[
k−1

∏
j=0

F−1
j+1(θ )

]

tθ+kμI , (4.9)

where 0 < μ ≤ 1 and
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Fk(θ ) = Γ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I+θ )
+CΓ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I +θ ) (4.10)

Gk(θ ) = Γ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I+θ )+AB

+(A+B+ I)Γ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I+θ ) (4.11)

and also Re(ρ)>−1 for ∀ρ ∈ σ(θ ) (θ ∈ C
r×r) yields the following properties:

F0(θ ) = Γ (I+θ )Γ−1((1− 2μ)I+θ )
+CΓ (I +θ )Γ−1((1− μ)I+θ ) = 0 (4.12)

where θA = Aθ , θB = Bθ , AB = BA, θY0 = θY0, BY0 =Y0B and (1−2μ)I+θ and
(1− μ)I+θ are invertible for 0 < μ ≤ 1.

If we take μ = 1 and A= a, B = b,C = c in (4.9) for r = 1, we obtain the classical
hypergeometric function.

Theorem 4.3. The fractional hypergeometric matrix function is a solution of (4.8).

Proof. We find a solution of (4.8) in the form

Y (t) =
∞

∑
k=0

Yktθ+kμI ,

where θ ,Yk ∈ C
r×rand also Re(ρ) > −1 for all ρ ∈ σ(θ ). If we make fractional

derivatives of Y (t) with orders μ and 2μ , then left-hand side of (4.8) gives that

LHS o f (4.8)

=
∞

∑
k=0

YkΓ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I+θ )tθ+(k−1)μI

−
∞

∑
k=0

YkΓ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I +θ )tθ+kμI

−A
∞

∑
k=0

YkΓ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I +θ )tθ+kμI

+
∞

∑
k=0

YkΓ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I +θ )tθ+(k−1)μIC

−
∞

∑
k=0

YkΓ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I +θ )tθ+kμI(B+ I)

−A
∞

∑
k=0

Yktθ+kμIB

= 0,
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where θC =Cθ , θA = Aθ , θB = Bθ , AB = BA, θYk = Ykθ and BYk = YkB, (k =
0,1, . . .). Thus we obtain that

LHS o f (4.8)

=
∞

∑
k=0

Yk
{
Γ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I+θ )

+CΓ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I+θ )
}

tθ+(k−1)μI

−
∞

∑
k=0

{
Γ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I +θ )

+ (A+B+ I)Γ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I+θ )+AB
}

Yktθ+kμI

= Y0F0(θ )tθ−μI +
∞

∑
k=0

[Yk+1Fk+1(θ )−Gk(θ )Yk] t
θ+kμI

= 0.

Assuming Y0 �= 0, we have to choose F0(θ ) = 0. θ has to be chosen such that (4.12)
holds. Thus, from

Yk+1Fk+1(θ )−Gk(θ )Yk = 0,

then we have

Yk =

[
k−1

∏
j=0

G j(θ )

]

Y0

[
k−1

∏
j=0

F−1
j+1(θ )

]

.

We understand from (4.12) that it doesn’t need to hold the equality θC = Cθ .
Furthermore, from θYk = Ykθ and BYk = YkB, (k = 0,1, . . .), it is sufficient that
θY0 = Y0θ and BY0 = Y0B. So, the proof is completed. ��

It is clear that the case θ = 0, μ = 1, Y0 = I in (4.9) is reduced 1
2F1(A,B;C; t) =

2F1(A,B;C; t).

4.3 g-Jacobi Matrix Functions

In this section, we define the g-Jacobi matrix functions and obtain their some sig-
nificant properties.

Definition 4.4. Assume that all eigenvalues z of the matrices A and B satisfy the
conditions

Re(z) > −1 for ∀z ∈ σ (A)

Re(z) > −1 for ∀z ∈ σ (B)

AB = BA. (4.13)
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The g-Jacobi matrix functions are defined to be as the following Rodrigues formula:

P(A,B)
υ (x) = (−2)−υ Γ−1(υ+ 1)(1−x)−A (1+x)−B Dυ

x

[
(1−x)A+υI (1+ x)B+υI

]
,

(4.14)

where υ > 0.

Theorem 4.5. The explicit form of the g-Jacobi matrix functions is given by

P(A,B)
υ (x) = 2−υΓ (A+(υ+ 1)I)Γ (B+(υ+ 1)I)

×
∞

∑
k=0

Γ−1(A+(k+ 1)I)Γ−1(B+(υ− k+ 1)I)
Γ (υ− k+ 1)k!

(x− 1)k(x+ 1)υ−k

(4.15)

where z1 /∈ N for ∀z1 ∈ σ (A+υI) and z2 /∈ N for ∀z2 ∈ σ (B+υI).

Proof. If we use the Leibniz rule (4.1) in (4.14), then we have

P(A,B)
υ (x) = (−2)−υ Γ−1(υ+ 1)(1− x)−A (1+ x)−B×

∞

∑
k=0

(
υ
k

){
Dk

x

[
(1+ x)B+υI

]}{
Dυ−k

x

[
(1− x)A+υI

]}
. (4.16)

It follows from the definition of fractional derivative that

Dυ−k
x

[
(1− x)A+υI

]

=
∞

∑
r=0

Γ (A+(υ+ 1)I)Γ−1(A+(υ− r+ 1)I)
r!

(−1)A+(υ−r)IDυ−k
x

[
xA+(υ−r)I

]

=
∞

∑
r=0

{
Γ (A+(υ+ 1)I)Γ−1(A+(υ− r+ 1)I)

r!

× (−1)A+(υ−r)IΓ (A+(υ− r+ 1)I)Γ−1(A+(k− r+ 1)I)xA+(k−r)I
}
. (4.17)

From (4.17) and (4.16), we get that

P(A,B)
υ (x) = (−2)−υ Γ−1(υ+ 1)(1− x)−A (1+ x)−B×

∞

∑
k=0

(
υ
k

)
Γ (B+(υ+ 1)I)Γ−1(B+(υ− k+ 1)I)(x+ 1)B+(υ−k)I×

∞

∑
r=0

{
Γ (A+(υ+ 1)I)Γ−1(A+(υ− r+ 1)I)

r!

× (−1)A+(υ−r)IΓ (A+(υ− r+ 1)I)Γ−1(A+(k− r+ 1)I)xA+(k−r)I
}
.
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By the following property

∞

∑
r=0

Γ (A+(k+ 1)I)Γ−1(A+(k− r+ 1)I)
r!

(−1)rxA+(k−r)I = (x− 1)A+kI

the proof is completed. ��
Theorem 4.6. The g-Jacobi matrix functions have the following representation:

P(A,B)
υ (x) =

Γ (A+(υ+ 1)I)Γ−1(A+ I)
Γ (υ+ 1)

F

(
−υI,A+B+(υ+ 1)I;A+I;

1− x
2

)
,

(4.18)

where F is a hypergeometric matrix function defined in (4.6).

Proof. Writing (x−1)+2 instead of (x+ 1) in (4.15) and using binomial expansion,
we obtain

P(A,B)
υ (x)

= 2−υ
∞

∑
k=0

Γ (A+(υ+ 1)I)Γ−1(A+(k+ 1)I)Γ (B+(υ+ 1)I)
Γ (υ− k+ 1)k!

×Γ−1(B+(υ− k+ 1)I)(x− 1)k((x− 1)+ 2)υ−k

= 2−υ
∞

∑
k=0

Γ (A+(υ+ 1)I)Γ−1(A+(k+ 1)I)Γ (B+(υ+ 1)I)
Γ (υ− k+ 1)k!

×Γ−1(B+(υ− k+ 1)I)(x− 1)k
∞

∑
r=0

(
υ− k

r

)
(x− 1)r2υ−k−r

= 2−υ
∞

∑
r=0

r

∑
k=0

Γ (A+(υ+ 1)I)Γ−1(A+(k+ 1)I)Γ (B+(υ+ 1)I)
Γ (υ− k+ 1)k!

×Γ−1(B+(υ− k+ 1)I)(x− 1)k
(
υ− k
r− k

)
(x− 1)r−k2υ−r

=
∞

∑
r=0

(
x− 1

2

)r r

∑
k=0

Γ (A+(υ+ 1)I)Γ−1(A+(k+ 1)I)Γ (B+(υ+ 1)I)
Γ (υ− r+ 1)Γ (r− k+ 1)k!

×Γ−1(B+(υ− k+ 1)I)Γ (A+(r+ 1)I)Γ−1(A+(r+ 1)I). (4.19)

For AB = BA, using the following identity

(1− x)B+υI(1− x)A+rI = (1− x)B+A+(υ+r)I,

we have

Γ (B+A+(r+υ+ 1)I)Γ−1(B+A+(υ+ 1)I)
r!

=
r
∑

k=0

Γ (B+(υ+ 1)I)Γ−1(B+(υ− k+ 1)I)
(r− k)!

×Γ (A+(r+ 1)I)Γ−1(A+(k+ 1)I)
k!

.

(4.20)
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Substituting (4.20) in (4.19), we get

P(A,B)
υ (x)

=
1

Γ (υ+ 1)

∞

∑
r=0

Γ (υ+ 1)
r!Γ (υ− r+ 1)

Γ (B+A+(r+υ+ 1)I)Γ−1(B+A+(υ+ 1)I)

×Γ (A+(υ+ 1)I)Γ−1(A+ I)Γ (A+ I)Γ−1(A+(r+ 1)I)

(
1− x

2

)r

(−1)r

=
Γ (A+(υ+ 1)I)Γ−1(A+ I)

Γ (υ+ 1)
F

(
−υI,A+B+(υ+ 1)I;A+ I;

1− x
2

)

which is the desired result. ��
Corollary 4.7. The g-Jacobi matrix functions P(A,B)

υ (x) can be presented as

P(A,B)
υ (x) = (−1)υ

Γ (B+(υ+1)I)Γ−1(B+ I)
Γ (υ+1)

F

(
−υI,A+B+(υ +1)I;B+ I;

1+x
2

)
.

Theorem 4.8. The g-Jacobi matrix functions P(A,B)
υ (x) satisfy the matrix differential

equation of second order
(
1− x2)Y ′′ (x)− 2Y ′ (x)A+(A+B− x(A+B+ 2I))Y ′ (x)

+υ (A+B+(υ+ 1)I)Y (x) = 0 (4.21)

or

d
dx

[

(1− x)(1+ x)A+B+I Y ′ (x)
(

1− x
1+ x

)A
]

+υ (A+B+(υ+ 1)I)(1+ x)A+BY (x)

(
1− x
1+ x

)A

= 0 . (4.22)

Proof. Note that hypergeometric matrix function Y = F (A,B;C; t) satisfies hyperge-
ometric matrix differential equation

t (1− t)F ′′ − tAF ′+F ′ (C− t (B+ I))−AFB = 0 , 0≤ | t |< 1

Also hypergeometric matrix function F (υI+A+B+ I,−υI;A+ I; t) satisfies

t (1−t)F ′′−t(υI+A+B+I)F ′+F ′ (A+I−t (−υI+I))+υ (A+B+(υ+1) I)F = 0

where 0≤ | t |< 1. Writing 1−x
2 instead of t in this equation, we get

(
1− x2

)
F ′′ (x)− 2F ′ (x)A+(A+B− x(A+B+ 2I))F ′ (x)

+υ (A+B+(υ+ 1)I)F = 0 .
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P(A,B)
υ (x) having hypergeometric matrix function (4.18) satisfies the above matrix

differential equation. Premultiplying (4.21) by (1+ x)A+B and postmultiplying it by
(

1− x
1+ x

)A

and rearranging, we have the second matrix differential equation. ��

Theorem 4.9. The g-Jacobi matrix functions satisfy the following properties:

(i) lim
υ→n

P(A,B)
υ (x) = P(A,B)

n (x)

(ii) P(A,B)
υ (−x) = (−1)υP(B,A)

υ (x)

(iii) P(A,B)
υ (1) =

Γ (A+(υ+ 1)I)Γ−1(A+ I)
Γ (υ+ 1)

(iv) P(A,B)
υ (−1) =

Γ (B+(υ+ 1)I)Γ−1(B+ I)
Γ (υ+ 1)

(v)
d
dx

P(A,B)
υ (x) =

1
2
(A+B+(υ+ 1)I)P(A+I,B+I)

υ−1 (x) .

Proof. (i) From (4.18), we have

lim
υ→n

P(A,B)
υ (x) = lim

υ→n

Γ (A+(υ+1)I)Γ−1(A+ I)
Γ (υ+1)

F

(
−υ,A+B+(υ+1)I;A+I;

1−x
2

)

=
Γ (A+(n+1)I)Γ −1(A+ I)

Γ (n+1)
F

(
−n,A+B+(n+1)I;A+ I;

1−x
2

)

= P(A,B)
n (x) .

(ii) From (4.15), we have P(A,B)
υ (−x)

= 2−υ
∞

∑
k=0

Γ (A+(υ+1)I)Γ−1(A+(k+1)I)Γ (B+(υ+1)I)Γ−1(B+(υ− k+1)I)
Γ (υ− k+1)k!

×(−x−1)k(−x+1)υ−k

= (−1)υP(B,A)
υ (x) .

(iii) The proof is enough for x = 1 in (4.15).
(iv) Using (ii) and (iii), we obtain the desired result.
(v) Using (4.18) and differentiating with respect to x, the result follows. ��



82 B. Çekim and E. Erkuş-Duman

4.4 Generalized g-Jacobi Matrix Function

In this section, we define fractional g-Jacobi matrix differential equation and its
solution which is generalized g-Jacobi matrix function.

Definition 4.10. Fractional g-Jacobi matrix differential equation is defined as

tμ(1− tμ)D2μY (t)− tμ(A+B+(υ+1)I)Dμ [Y (t)]+Dμ [Y (t)] (A+ I+(υ−1)Itμ)

+υ(A+B+(υ+ 1)I)Y(t) = 0 (4.23)

where 0 < μ ≤ 1.

Definition 4.11. Generalized g-Jacobi matrix functions are defined as

μ
2 F1(A+B+(υ+1)I,−υI;A+ I; t) = Y0tθ +

∞

∑
k=1

[
k−1

∏
j=0

G j(θ)

]

Y0

[
k−1

∏
j=0

F−1
j+1(θ)

]

tθ+kμI

where 0 < μ ≤ 1, θY0 = Y0θ , θB = Bθ , and

Fk(θ ) = Γ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I+θ )
+(A+ I)Γ ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I+θ )

Gk(θ ) = Γ ((kμ+ 1)I+θ )Γ−1([(k− 2)μ+ 1]I+θ )−υ(A+B+(υ+ 1)I)

+(A+B+ 2I)Γ((kμ+ 1)I+θ )Γ−1([(k− 1)μ+ 1]I +θ )

and Re(ρ)>−1 for all ρ ∈ σ(θ ) satisfies the equation

F0(θ ) = Γ (I +θ )Γ−1((1− 2μ)I+θ )
+(A+ I)Γ (I +θ )Γ−1((1− μ)I+θ ) = 0

where (1− 2μ)I+θ and (1− μ)I+θ are invertible for 0 < μ ≤ 1.

Theorem 4.12. Generalized g-Jacobi matrix function is a solution of (4.23).

4.5 Special Cases

Case 1. If we take matrix C− I instead of A and −C instead of B in P(A,B)
υ (x), we

define Chebyshev matrix functions Tυ(x,C) as follows:

P(C−I,−C)
υ (x)

=
(−2)−υ

Γ (υ+ 1)
(1− x)I−C (1+ x)C Dυ

x

[
(1− x)C+(υ−1)I (1+ x)−C+υI

]

=
Γ−1(C)Γ (C+υI)

Γ (υ+ 1)
Tυ(x,C)
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where C is a matrix in C
r×r satisfying the condition 0 < Re(z) < 1 for ∀z ∈ σ (C).

Chebyshev matrix functions have the following properties:

(a) Rodrigues formula:

Tυ(x,C) = (−2)−υ (1− x)I−C (1+ x)CΓ (C)Γ−1(C+υI)Dυ
x

×
[
(1− x)C+(υ−1)I (1+ x)−C+υI

]
.

(b) Hypergeometric matrix representations:

Tυ(x,C) = F

(
−υI,υI ; C ;

1− x
2

)
,

Tυ(x,C) =

(
x+ 1

2

)υ
F

(
−υI,C−υI ; C ;

x− 1
x+ 1

)
.

(c) Matrix differential equation:

(1− x2)Y
′′
+Y

′
(−2C+(1− x)I)+υ2Y = 0.

(d) Limit relation:

lim
υ→n

Tυ(x,C) = Tn(x,C),

where Tn(x,C) is the Chebyshev matrix polynomial.

Case 2. If we take matrix A− I
2 instead of A and A− I

2 instead of B in P(A,B)
υ (x), we

define Gegenbauer matrix functions CA
υ (x) as follows:

P
(A− I

2 , A− I
2 )

υ (x)

= (−2)−2υ Γ (2A+ 2υI)Γ−1(2A+υI)Γ−1(A+υI)Γ (A)CA
υ (x),

where A is a matrix inCr×r satisfying the condition Re(z)> 0 for ∀z∈σ (A). Gegen-
bauer matrix functions have the following properties:

(a) Rodrigues formula:

CA
υ (x) =

(−2)υ

Γ (υ+ 1)
Γ−1(2A+ 2υI)Γ (2A+υI)

×Γ (A+υI)Γ−1(A)
(
1− x2) I

2−A
Dυ

x

[
(
1− x2)A+(υ− 1

2 )I
]
.

(b) Hypergeometric matrix representations:

CA
υ(x) =

Γ (2A+υI)Γ−1(2A)
Γ (υ+ 1)

F

(
−υI,2A+υI ; A+

I
2

;
1− x

2

)
,

CA
υ(x) =

Γ (2A+υI)Γ−1(2A)
Γ (υ+ 1)

(
x+ 1

2

)υ

F

(
−υI,−A+

(
−υ+

1
2

)
I ; A+

I
2

;
x− 1
x+ 1

)
.
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(c) Matrix differential equation:

(1− x2)Y
′′ − xY

′
(2A+ I)+υ(2A+υI)Y = 0.

(d) Limit relation:

lim
υ→n

CA
υ (x) =CA

n (x),

where CA
n (x) is the Gegenbauer matrix polynomial.
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Chapter 5
Linear Combinations of Genuine
Szász–Mirakjan–Durrmeyer Operators

Margareta Heilmann and Gancho Tachev

Abstract We study approximation properties of linear combinations of the genuine
Szász–Mirakjan–Durrmeyer operators which are also known as Phillips operators.
We prove a full quantitative Voronovskaja-type theorem generalizing and improving
earlier results by Agrawal, Gupta, and May. A Voronovskaja-type result for simulta-
neous approximation is also established. Furthermore global direct theorems for the
approximation and weighted simultaneous approximation in terms of the Ditzian–
Totik modulus of smoothness are proved.

5.1 Introduction

We consider linear combinations of a variant of Szász–Mirakjan operators which
are known as Phillips operators or genuine Szász–Mirakjan–Durrmeyer operators,
which for n ∈ R, n > 0, are given by

S̃n( f ,x) = n
∞

∑
k=1

sn,k(x)

∞∫

0

sn,k−1(t) f (t)dt + e−nx f (0), (5.1)

where

sn,k(x) =
(nx)k

k!
e−nx, k ∈ N0, x ∈ [0,∞),
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for every function f , for which the right-hand side of (5.1) makes sense. For n > α
this is the case for real-valued continuous functions on [0,∞) satisfying an exponen-
tial growth condition, i.e.,

f ∈Cα [0,∞) = { f ∈C[0,∞) : | f (t)| ≤Meαt , t ∈ [0,∞)}
for a constant M > 0 and an α > 0 and for α = 0 for bounded continuous func-
tions, i.e.,

f ∈CB[0,∞) = { f ∈C[0,∞) : | f (t)| ≤M, t ∈ [0,∞)}.
We also will consider Lp-integrable functions f possessing a finite limit at 0+, i.e.,

f ∈ Lp,0[0,∞) = { f ∈ Lp[0,∞) : lim
x→0+

f (x) = f0 ∈ R},

1≤ p≤ ∞ and define f (0) := f0.
The operators S̃n were first considered in a paper by Phillips [20] in the context

of semi-groups of linear operators and therefore often are called Phillips operators.
A strong converse result of type B in the terminology of Ditzian and Ivanov [6]

can be found in a paper by Finta and Gupta [8] and also in a more general set-
ting in another paper by Finta [9]. Recently the authors proved a strong converse
result of type A improving the former results by Finta and Gupta. Up to our cur-
rent knowledge linear combinations of these operators were first considered by May
[17]. There are two other papers by Agrawal and Gupta [2, 3] dealing with a gener-
alization of May’s linear combinations and iterative combinations.

The operators S̃n are closely related to the Szász–Mirakjan operators (see [22])
defined by

Sn( f ,x) =
∞

∑
k=0

sn,k(x) f

(
k
n

)
,

to its Kantorovich variants

Ŝn( f ,x) = n
∞

∑
k=0

sn,k(x)

k+1
n∫

k
n

f (t)dt

and the Durrmeyer version

Sn( f ,x) = n
∞

∑
k=0

sn,k(x)

∞∫

0

sn,k(t) f (t)dt

first considered by Mazhar and Totik in [18].
All these operators are positive linear operators. Comparing the different variants

of Szász–Mirakjan operators, we see that all preserve constants, but the classical
Szász–Mirakjan operators Sn and the genuine Szász–Mirakjan–Durrmeyer operators
S̃n also preserve all linear functions and interpolate at the point 0. In [16, (19)] the
authors proved that S̃n and Sn are connected in the same way as Sn and Ŝn, i.e.,

(S̃n f )′ = Sn f ′, (5.2)
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for sufficiently smooth f . In [16, Sect. 3] it is also proved that the operators S̃n

commute and that they commute with the differential operators D̃2l :=Dl−1ϕ2lDl+1,
l ∈ N, where ϕ(x) :=

√
x and D denotes the ordinary differentiation of a func-

tion with respect to its variable. So the operators S̃n combine nice properties of
the classical Szász–Mirakjan operators and their Durrmeyer variant.

The term “genuine” is by now often used in the context of Bernstein–Durrmeyer
operators and the corresponding variants, which also preserve linear functions and
interpolate at the endpoints of the interval. They commute and also commute with
certain differential operators and they can be considered as the limit case for
Jacobi-weighted Bernstein–Durrmeyer operators. As analogous properties are ful-
filled by appropriate variants of Baskakov and Szász–Mirakjan operators, we call
them also “genuine”.

We would like to mention that the iterates of the operators Sn and S̃n can be
expressed by the operators itself, i.e.,

S
l
n =S n

l
, S̃l

n = S̃ n
l
. (5.3)

These representations are special for Durrmeyer-type modifications of the Szász–

Mirakjan operators. For S
l
n the result was proved by Abel and Ivan in [1], for S̃l

n by
the authors in [16, Theorem 3,1, Corollary 3.1].

In this paper, we consider linear combinations S̃n,r of order r of the operators
S̃ni , i.e.,

S̃n,r =
r

∑
i=0

αi(n)S̃ni , (5.4)

where ni, i = 0, . . . ,r, denote different positive numbers. In general the coefficients
αi(n) may depend on n.

In [17] May considered the case

ni = 2in, αi =
r

∏
k=0,k �=i

2i

2i− 2k

which was generalized in [2] to

ni = din, αi =
r

∏
k=0,k �=i

di

di− dk

with different positive numbers di, i = 0, . . . ,r, independent of n. In [3, 4] also the
iterative combinations

I− (I− S̃n)
r+1

are considered.
We will show that all these above-mentioned combinations suit into the following

general approach. We determine the coefficients αi(n) in (5.4) such that all polyno-
mials of degree at most r+ 1 are reproduced, i.e.,

S̃n,r p = p for all p ∈Pr+1.
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This seems to be natural as the operators S̃n preserve the linear functions. For the
monomials eν(t) = tν , ν ∈ N0, we have proved in [16, Lemma 2.1] that

S̃n(e0,x) = 1, S̃n(eν ,x) =
ν

∑
j=1

(
ν− 1
j− 1

)
ν!
j!

n j−νx j, ν ∈ N.

Thus the requirement that each polynomial of degree at most r+1 should be repro-
duced leads to a system of linear equations, i.e.,

r

∑
i=0

αi(n) = 1,
r

∑
i=0

n−l
i αi(n) = 0 , 1≤ l ≤ r,

which has the unique solution

αi(n) =
r

∏
k=0,k �=i

ni

ni− nk
. (5.5)

Note that S̃n,0 = S̃n.
Obviously the choice ni = din is a special case of the general construction. Now

we look at a special case of this special choice. For ni = din with di =
1

i+1 we get

αi(n) =
r

∏
k=0,k �=i

1
i+1

1
i+1 − 1

k+1

=
r

∏
k=0,k �=i

k+ 1
k− i

= (−1)i
(

r+ 1
i+ 1

)
.

Thus for the corresponding linear combinations we get by using the representation
(5.3) for the iterates

S̃n,r =
r

∑
i=0

(−1)i
(

r+ 1
i+ 1

)
S̃ n

i+1

=
r

∑
i=0

(−1)i
(

r+ 1
i+ 1

)
S̃i+1

n = I− (I− S̃n)
r+1.

So it turns out that the iterative combinations of the operators S̃n are a special case
of linear combinations. Note that the same arguments hold true for the linear com-
binations of the Szász–Mirakjan–Durrmeyer operators considered, e.g., in [13].

Now we state some useful properties for the coefficients of the linear combina-
tions.

Lemma 5.1. For l ∈ N the coefficients in (5.5) have the properties

r

∑
i=0

n−(r+l)
i αi(n) = (−1)rτl−1

(
1
n0

, . . . ,
1
nr

) r

∏
k=0

1
nk

, (5.6)

r

∑
i=0

nl
iαi(n) = τl(n0, . . . ,nr). (5.7)

where τ j(x0, . . . ,xm) denotes the complete symmetric function which is the sum of
all products of x0, . . . ,xm of total degree j for j ∈ N and τ0(x0, . . . ,xm) := 1.
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Proof.
(5.6): Let ti = 1

ni
, 0≤ i≤ r. Then the left-hand side of (5.6) is equal to

r

∑
i=0

tl
i

r

∏
k=0,k �=i

titk
tk− ti

= (−1)r
r

∏
k=0

tk
r

∑
i=0

tl+r−1
i

r

∏
k=0,k �=i

1
ti− tk

= (−1)r
r

∏
k=0

tk
r

∑
i=0

f (ti)
ω ′(ti)

,

where f (t) = tl+r−1 and ω(t) =∏r
k=0(t− tk). We apply the well-known identity for

divided differences
r

∑
i=0

f (ti)
ω ′(ti)

= f [t0, t1, . . . , tr].

For f (t) = tl+r−1 it is valid that

f [t0, t1, . . . , tr] = τl−1(t0, . . . , tr)

(see [19, Theorem 1.2.1]). Thus we have proved (5.6).
(5.7):The left-hand side of (5.7) is equal to

r

∑
i=0

nl
in

r
i

r

∏
k=0,k �=i

1
ni− nk

=
r

∑
i=0

f (ni)

ω ′(ni)
= f [n0,n1, . . . ,nr] = τl(n0, . . . ,nr)

with f (t) = tl+r and application of the same identity for the divided differences as
above. ��

For the proofs of our theorems we need two additional assumptions for the coef-
ficients. The first condition is

an≤ n0 < n1 < · · ·< nr ≤ An, (5.8)

where a, A denote positive constants independent of n. With (5.6) it is clear that this
guarantees that

r

∑
i=0

n−l
i αi(n) = O

(
n−l

)
, l ≥ r+ 1.

Secondly we assume that
r

∑
i=0
|αi(n)| ≤C (5.9)

with a constant C independent of n. This condition is due to the fact that the linear
combinations are no longer positive operators. Especially for the considerations of
remainder terms of Taylor expansions in our proofs this assumption is important.
These assumptions are fulfilled for all the special cases mentioned above.

The paper is organized as follows. In Sect. 5.2 we define an auxiliary operator
useful in the context of simultaneous approximation and list some basic results,
such as the moments, estimates for the moments, and some identities which will be
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used throughout the paper. Section 5.3 is devoted to the Voronovskaja-type results
and Sect. 5.4 to the global direct theorems for the approximation and weighted
simultaneous approximation. For the latter we will need some technical definitions
and results which are given in Sect. 5.5. Note that throughout this paper C always
denotes a positive constant not necessarily the same at each occurrence.

5.2 Auxiliary Results

For the proofs of our results concerning simultaneous approximation we will make
use of the auxiliary operators

mS̃n = n
∞

∑
k=0

sn,k(x)

∞∫

0

sn,k+m−1(t) f (t)dt, m ∈N.

For m = 1 we have mS̃n = Sn. Due to the relation (5.2) between S̃n and Sn the oper-
ators mS̃n coincide with the auxiliary operators m−1Sn which were used in [11, 13].
Thus, for sufficiently smooth f , we have

(S̃n f )(m) =m S̃n f (m) = (Sn f ′(m−1) =m−1 Sn f (m). (5.10)

The corresponding linear combinations of order r are given by

mS̃n,r =
r

∑
i=0

αi(n)mS̃ni =
r

∑
i=0

αi(n)m−1Sni =m−1 Sn,r

with the same coefficients αi(n) given in (5.5) and the additional assumptions (5.8)
and (5.9).

From the moments of S̃n in [16, Lemma 2.1], Lemma 5.1 and the moments for
the auxiliary operators in [11, Lemma 4.7] we derive the following result.

Lemma 5.2. For μ ∈ N0 let fμ,x = (t− x)μ . Then

(S̃n,r f0,x)(x) = 1, (S̃n,r fμ,x)(x) = 0,1≤ μ ≤ r+ 1,

(S̃n,r fμ,x)(x) = (−1)r
r

∏
k=0

1
nk

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ−(r+1)

∑
j=1

(
μ− j− 1

j− 1

)
μ!
j!

x jτμ− j−r−1

(
1
n0

, . . . ,
1
nr

)
, r+ 2≤ μ ≤ 2r+ 2,

[ μ2 ]

∑
j=1

(
μ− j− 1

j− 1

)
μ!
j!

x jτμ− j−r−1

(
1
n0

, . . . ,
1
nr

)
, μ ≥ 2r+ 2,

(mS̃n,r f0,x)(x) = 1, (mS̃n,r fμ,x)(x) = 0,1≤ μ ≤ r,
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(mS̃n,r fμ,x)(x) = (−1)r
r

∏
k=0

1
nk

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ−(r+1)

∑
j=0

(
μ− j+m− 1

j+m− 1

)
μ!
j!

x jτμ− j−r−1

(
1
n0

, . . . ,
1
nr

)
, r+ 1≤ μ ≤ 2r+ 2,

[ μ2 ]

∑
j=0

(
μ− j+m− 1

j+m− 1

)
μ!
j!

x jτμ− j−r−1

(
1
n0

, . . . ,
1
nr

)
, μ ≥ 2r+ 2.

From these representations of the moments we obtain some needed estimates.

Corollary 5.3. For μ ≥ r+ 2 we have

|S̃n,r( fμ,x,x)| ≤C

⎧
⎪⎨

⎪⎩

n−μ , x ∈ [0, 1
n

]
,

n−(r+1)xμ−r−1, x ∈ [ 1
n ,∞

)
, r+ 2≤ μ ≤ 2r+ 2,

n
−
[
μ+1

2

]

x[
μ
2 ], x ∈ [ 1

n ,∞
)
, 2r+ 2≤ μ ,

and for μ ≥ r+ 1

|mS̃n,r( fμ,x,x)| ≤C

⎧
⎪⎨

⎪⎩

n−μ , x ∈ [0, 1
n

]
,

n−(r+1)xμ−r−1, x ∈ [ 1
n ,∞

)
, r+ 1≤ μ ≤ 2r+ 2,

n
−
[
μ+1

2

]

x[
μ
2 ], x ∈ [ 1

n ,∞
)
, 2r+ 2≤ μ .

Now we list some basic identities for the basis functions sn,k which follow
directly from their definition. For simplicity we set sn,k = 0 for k < 0.

∞

∑
k=0

sn,k = 1, (5.11)

n

∞∫

0

tνsn,k(t)dt =
1
nν
· (k+ν)!

k!
, ν ∈ N0, (5.12)

s′n,k(x) = n(sn,k−1(x)− sn,k(x)), (5.13)

ϕ(x)2msn,k(x)sn,k+2m−1(t) = β (k,m)sn,k+m(x)ϕ(t)2msn,k+m−1(t), m ∈N, (5.14)

with (m−1)!
(2m−1)! ≤ β (k,m) := (k+m)!(k+m−1)!

k!(k+2m−1)! ≤ 1. Proofs can be found, for example, in
[14, 18, 22].

5.3 Voronovskaja-Type Theorems

In this section we present a Voronovskaja-type theorem for the linear combinations
of the genuine Szász–Mirakjan–Durrmeyer operators. Similar results were stated
earlier in [17, Lemma 2.5], [2, Theorem 1], and [3, Theorem 1]. Our Theorem 5.4
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now improves and generalizes these results. Furthermore, in Theorem 5.5 we prove
a Voronovskaja-type result for simultaneous approximation by linear combinations.
In both theorems explicit formulas for the limits are given.

Theorem 5.4. Let f ∈ CB[0,∞) be (2r + 2)-times differentiable at a fixed point x.
Then with D̃2(r+1) = Drϕ2(r+1)Dr+2 we have

lim
n→∞

{
r

∏
k=0

nk

}
(

S̃n,r f − f
)
(x) =

(−1)r

(r+ 1)!

(
D̃2(r+1) f

)
(x).

Proof. For the function f we use the Taylor expansion

f (t) =
2(r+1)

∑
μ=0

(t− x)μ

μ!
f (μ)(x)+ (t− x)2(r+1)R(t,x)

:= f̃ (t)+ (t− x)2(r+1)R(t,x),

where

|R(t,x)| ≤C for every t ∈ [0,∞) and lim
t→x

R(t,x) = 0.

From Lemma 5.2 we get

S̃n,r( f̃ ,x)− f (x) =
2(r+1)

∑
μ=r+2

f (μ)(x)
μ!

S̃n( fμ,x,x)

= (−1)r
r

∏
k=0

1
nk

2(r+1)

∑
μ=r+2

f (μ)(x)

×
μ−(r+1)

∑
j=1

(
μ− j− 1

j− 1

)
1
j!

x jτμ− j−(r+1)

(
1
n0

, . . . ,
1
nr

)

= (−1)r
r

∏
k=0

1
nk

2r+1

∑
j=r+1

τ j−(r+1)

(
1
n0

, . . . ,
1
nr

)

×
2(r+1)

∑
μ= j+1

f (μ)(x)

(
j− 1

μ− j− 1

)
1

(μ− j)!
xμ− j.

From (5.6) and the additional assumption (5.8) for the numbers ni it is clear that
we only have to consider the summand with j = r+ 1 for the following limit. Thus
we get

lim
n→∞

{
r

∏
k=0

nk

}
(

S̃n,r f̃ − f
)
(x)

= (−1)r
2(r+1)

∑
μ=r+2

f (μ)(x)

(
r

μ− r− 2

)
1

(μ− r− 1)!
xμ−r−1
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=
(−1)r

(r+ 1)!
Dr{xr+1Dr+2 f (x)}

=
(−1)r

(r+ 1)!
D̃2(r+1) f (x),

where we used Leibniz’s rule.
For the remainder term we have to show that

lim
n→∞

{
r

∏
k=0

nk

}
[
S̃n,r((t− x)2(r+1)R(t,x),x)

]
= 0. (5.15)

For ε > 0 let δ > 0 be a positive number, such that

|R(t,x)|< ε for |t− x|< δ .

Thus for every t ∈ [0,∞) we have

|R(t,x)|< ε+C
(t− x)2

δ 2 .

Therefore, due to the assumptions (5.8) and (5.9), we have
∣∣
∣S̃n,r((t− x)2(r+1)R(t,x),x)

∣∣
∣

≤ CS̃n((t− x)2(r+1)|R(t,x)|,x)
≤ C

(
ε S̃n((t− x)2(r+1),x)+

M
δ 2 S̃n((t− x)2(r+2),x)

)
.

From the estimates for the moments in Corollary 5.3 we get (5.15). ��
Next we show a Voronovskaja-type result for simultaneous approximation.

Theorem 5.5. Let f ∈ CB[0,∞) be (m + 2r + 2)-times differentiable at a fixed
point x. Then with D̃2(r+1) = Drϕ2(r+1)Dr+2 we have

lim
n→∞

{
r

∏
k=0

nk

}(
S̃n,r f − f

)(m)
(x) =

(−1)r

(r+ 1)!

(
DmD̃2(r+1) f

)
(x).

Proof. We use the Taylor expansion of f (m)

f (m)(t) =
2(r+1)

∑
μ=0

(t− x)μ

μ!
f (μ+m)(x)+ (t− x)2(r+1)R(t,x)

:= f̃ (m)(t)+ (t− x)2(r+1)R(t,x),

with the same properties for |R(x, t)| as in the proof of Theorem 5.4. With the
relation (5.10) we get
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(S̃n,r( f̃ ,x)− f (x))(m) = mS̃n,r( f̃ (m),x)− f (m)(x)

=
2(r+1)

∑
μ=r+1

f (μ+m)(x)
μ! mS̃n( fμ,x,x)

= (−1)r
r

∏
k=0

1
nk

2(r+1)

∑
μ=r+1

f (μ+m)(x)

×
μ−(r+1)

∑
j=0

(
μ− j+m− 1

j+m− 1

)
1
j!

x jτμ− j−(r+1)

(
1
n0

, . . . ,
1
nr

)

= (−1)r
r

∏
k=0

1
nk

2r+1

∑
j=r+1

τ j−(r+1)

(
1
n0

, . . . ,
1
nr

)

×
2(r+1)

∑
μ= j

f (μ+m)(x)

(
j+m− 1

μ− j+m− 1

)
1

(μ− j)!
xμ− j

The rest follows analogously to the proof of Theorem 5.4 ��

5.4 Global Direct Results

In this section we prove some global direct results for the approximation and
weighted simultaneous approximation by the linear combinations S̃n. The estimates
are formulated in terms of weighted and nonweighted Ditzian–Totik moduli of
smoothness (see [7]). We choose the step-weight ϕ(x) =

√
x and assume t > 0 suf-

ficiently small to define

ωr
ϕ ( f , t)p = sup

0<h≤t
‖Δ r

hϕ f‖p,

ωr
ϕ ( f , t)ϕm,p = sup

0<h≤t
‖ ϕmΔ r

hϕ f‖[t∗,∞)p + sup
0<h≤t∗

‖ ϕm−→Δ r
h f‖[0,12t∗]

p ,

where t∗ = r2t2. The symmetric and forward differences are given by

Δ r
hϕ(x) f (x) =

r

∑
k=0

(−1)k
(

r
k

)
f
(

x+
( r

2
− k

)
hϕ(x)

)
,

−→
Δ r

h f (x) =
r

∑
k=0

(−1)k
(

r
k

)
f (x+(r− k)h) ,

whenever the arguments of the function f are contained in the corresponding
interval. Otherwise, they are defined to be zero. In [7, Chaps. 2, 3, 6.1] Ditzian and
Totik proved that these moduli are equivalent to the K-functionals
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Kr
ϕ( f , tr)p = inf{‖ f − g‖p+ tr‖ϕrg(r)‖p;g,ϕrg(r) ∈ Lp[0,∞)},

K
r
ϕ( f , tr)p = inf

{
‖ f − g‖p+ tr‖ϕrg(r)‖p + t2r‖g(r)‖p;

g,g(r),ϕrg(r) ∈ Lp[0,∞)
}
,

Kr
ϕ ( f , tr)ϕm,p = inf{‖ϕm( f − g)‖p+ tr‖ϕm+rg(r)‖p;ϕmg,ϕm+rg(r) ∈ Lp[0,∞)}

for the nonweighted and weighted case, respectively.
For the proof of Theorem 5.8 we will use the equivalence of the weighted mod-

ulus to the modified weighted K-functional (see [15])

K
r
ϕ( f , tr)ϕm,p = inf

{
‖ϕm( f − g)‖p+ tr‖ϕm+rg(r)‖p + t2r‖ϕmg(r)‖p;

ϕmg,ϕmg(r),ϕm+rg(r) ∈ Lp[0,∞)
}
.

For the proofs of the main theorems we need the Hardy inequality (see [21,
Chap. V, Lemma 3.14])

⎧
⎨

⎩

∞∫

0

⎛

⎝
∞∫

x

h(y)dy

⎞

⎠

p

xs−1dx

⎫
⎬

⎭

1/p

≤ p
s

⎧
⎨

⎩

∞∫

0

(yh(y))p ys−1dy

⎫
⎬

⎭

1/p

(5.16)

where h≥ 0, p ≥ 1 and s > 0.

Theorem 5.6. Let ϕ(x) =
√

x, f ∈ Lp,0[0,∞), 1≤ p < ∞. Then

‖S̃n,r f − f‖p ≤Cω2(r+1)
ϕ

(
f ,

1√
n

)

p
,

where C denotes a constant independent of n.

Proof. For every g ∈ Lp[0,∞) with g(0) := f (0), g(2(r+1)),ϕ2(r+1)g(2(r+1)) ∈
Lp[0,∞) we get

‖S̃n,r f − f‖p ≤C‖ f − g‖p+ ‖S̃n,rg− g‖p. (5.17)

We look at the second term on the right-hand side of (5.17) and prove that

‖S̃n,rg− g‖p≤C
(

n−(r+1)‖ϕ2(r+1)g(2(r+1))‖p + n−2(r+1)‖g(2(r+1))‖p

)
. (5.18)

To do so, we consider the Taylor expansion of g and define

g(t) =
r+1

∑
μ=0

(t− x)μ

μ!
g(μ)(x)+

2(r+1)

∑
μ=r+2

(t− x)μ

μ!
g(μ)(x)+R(t,x)

:= g1(t)+ g2(t)+R(t,x),
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with the remainder

R(t,x) =
1

(2r+ 1)!

t∫

x

(t− u)2r+1g(2(r+1))(u)du.

As all polynomials of degree at most r+ 1 are reproduced, it is enough to show the
estimates

‖S̃n,rg2‖p ≤C
(

n−(r+1)‖ϕ2(r+1)g(2(r+1))‖p + n−2(r+1)‖g(2(r+1))‖p

)
(5.19)

and

‖S̃n,rR(t, ·)‖p ≤C
(

n−(r+1)‖ϕ2(r+1)g(2(r+1))‖p + n−2(r+1)‖g(2(r+1))‖p

)
. (5.20)

We first prove (5.19) separately for the intervals
[
0, 1

n

]
and

[
1
n ,∞

)
.

For x ∈ [0, 1
n

]
we get with Corollary 5.3

‖S̃n,rg2‖[0,1/n]
p ≤C

2(r+1)

∑
μ=r+2

n−μ‖g(μ)‖p. (5.21)

Similar as in the proof of [13, Theorem 6] we apply Hardy’s inequality (5.16)
2(r+1)−μ times with s=(l−1)p+1, h=|g(μ+l)| in the l-th step, l=1, . . . ,2(r+1)−μ .
This leads to

‖g(μ)‖p ≤C‖ϕ2(2r+2−μ)g(2r+2)‖p.

So, together with (5.21), x2(r+1)−μ ≤ n−2(r+1)+μ for x ∈ [0,1/n] and xr+1−μ ≤
n−(r+1)+μ for x ∈ [ 1

n ,∞
)
, it follows

‖S̃n,rg2‖[0,1/n]
p (5.22)

≤ C
2(r+1)

∑
μ=r+2

n−μ
{
‖ϕ2(2r+2−μ)g(2(r+1))‖[0,1/n]

p + ‖ϕ2(2r+2−μ)g(2(r+1))‖[1/n,∞)
p

}

≤ C
{

n−(r+1)‖ϕ2(r+1)g(2(r+1))‖p + n−2(r+1)‖g(2(r+1))‖p

}
.

For x ∈ [ 1
n ,∞

)
we derive from Corollary 5.3

‖S̃n,rg2‖[1/n,∞)
p ≤Cn−(r+1)

2(r+1)

∑
μ=r+2

‖ϕ2(μ−r−1)g(μ)‖p. (5.23)

Again applying Hardy’s inequality (5.16) 2(r+1)−μ times now with s = (μ− r−
2+ l)p+ 1, h = |g(μ+l)| in the l-th step, l = 1, . . . ,2(r+ 1)− μ , leads to

‖ϕ2(μ−r−1)g(μ)‖p ≤C‖ϕ2(r+1)g(2(r+1))‖p.
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Together with (5.23), this implies

‖S̃n,rg2‖[1/n,∞)
p ≤Cn−(r+1)‖ϕ2(r+1)g(2(r+1))‖p. (5.24)

With (5.22) and (5.24) we have proved (5.19).
Next we prove the estimate (5.20) explicitly for p = 1 and p = ∞. The cases 1 <

p < ∞ then follow by the Riesz–Thorin interpolation theorem [5, Theorem 1.1.1].
Due to the assumptions (5.8) and (5.9) for the coefficients of the linear combinations
it is enough to prove

‖S̃nR(t, ·)‖p ≤C
(

n−(r+1)‖ϕ2(r+1)g(2(r+1))‖p + n−2(r+1)‖g(2(r+1))‖p

)
. (5.25)

p = ∞: Note that

|R(t,x)| ≤ 1
(2r+ 1)!

‖g(2r+2)‖∞(t− x)2r+2,

|R(t,x)| ≤ 1
(2r+ 1)!

‖ϕ2r+2g(2r+2)‖∞ (t− x)2r+2

xr+1 ,

as |t−u|2r+1

ur+1 ≤ |t−x|2r+1

xr+1 . Thus, with Corollary 5.3 we derive

S̃n(|R(t,x)|,x) ≤ Cn−2(r+1)‖g(2r+2)‖∞ for x ∈
[

0,
1
n

]
,

S̃n(|R(t,x)|,x) ≤ Cn−(r+1)‖ϕ2r+2g(2r+2)‖∞ for x ∈
[

1
n
,∞

)
,

i.e., we have proved (5.25) for p = ∞.
p = 1: By applying Fubini’s theorem twice we first obtain

‖S̃n(R(t, ·)‖1

≤ Cn

⎧
⎨

⎩

∞∫

0

∞

∑
k=1

sn,k(x)

x∫

0

sn,k−1(t)

x∫

t

(u− t)2r+1
∣
∣
∣g(2r+2)(u)

∣
∣
∣dudtdx

+

∞∫

0

∞

∑
k=1

sn,k(x)

∞∫

x

sn,k−1(t)

t∫

x

(t− u)2r+1
∣
∣∣g(2r+2)(u)

∣
∣∣dudtdx

+

∞∫

0

sn,0(x)

x∫

0

u2r+1
∣∣
∣g(2r+2)(u)

∣∣
∣dudx

⎫
⎬

⎭

=C

∞∫

0

∣
∣∣g(2r+2)(u)

∣
∣∣
[

1
n

u2r+1e−nu
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+

⎧
⎨

⎩

∞∫

u

u∫

0

−
u∫

0

∞∫

u

⎫
⎬

⎭
(u− t)2r+1n

∞

∑
k=1

sn,k(x)sn,k−1(t)dtdx

]

du

= C

∞∫

0

∣∣
∣g(2r+2)(u)

∣∣
∣Hn,2r+2(u)du.

From this estimate (5.25) now follows for the case p = 1 by using Corollary 5.11.
��

For the proof of the next theorem we need the following result:

Lemma 5.7. Let h ∈ Lp[0,∞) such that ϕ2mh ∈ Lp[0,∞), m ∈ N, 1≤ p ≤ ∞. Then

‖ϕ2m
2mS̃nh‖p ≤ ‖ϕ2mh‖p.

Proof. By using (5.14) we first get that

ϕ(x)2m
2mS̃n(h,x) = n

∞

∑
k=0

β (k,m)sn,k+m(x)

∞∫

0

sn,k+m−1(t)ϕ(t)2mh(t)dt.

Thus

‖ϕ2m
2mS̃nh‖p ≤ ‖S̃n(ϕ2mh)‖p ≤ ‖ϕ2mh‖p.

��
In our next theorem we prove a global direct theorem for simultaneous approxi-

mation.

Theorem 5.8. Let f ∈ Lp[0,∞), 1 ≤ p < ∞, m ∈ N such that ϕ2m f (2m) ∈ Lp[0,∞).
Then

‖ϕ2m(S̃n,r f − f )(2m)‖p ≤Cω2(r+1)
ϕ

(
f (2m),

1√
n

)

ϕ2m,p
.

Proof. For every function g with ϕ2mg, ϕ2mg(2(r+1)) , ϕ2m+2(r+1)g(2(r+1)) ∈Lp[0,∞)
we derive by using (5.10) and Lemma 5.7

‖ϕ2m(S̃n,r f − f )(2m)‖p

= ‖ϕ2m(2mS̃n,r f (2m)− f (2m))‖p

≤ C‖ϕ2m( f (2m)− g)‖p+ ‖ϕ2m(2mS̃n,rg− g)‖p. (5.26)

Similar to the proof of Theorem 5.6 we use the Taylor expansion

g(t) =
r

∑
μ=0

(t− x)μ

μ!
g(μ)(x)+

2(r+1)

∑
μ=r+1

(t− x)μ

μ!
g(μ)(x)+R(t,x)

:= g1(t)+ g2(t)+R(t,x),
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2mS̃n,r(g1,x) = 0 and

‖ϕ2m
2mS̃n,rg2‖p

≤ C
(

n−(r+1)‖ϕ2(m+r+1)g(2(r+1))‖p + n−2(r+1)‖ϕ2mg(2(r+1))‖p

)
.

Thus in view of (5.8) and (5.9) it remains to prove

‖ϕ2m
2mS̃nR(t, ·)‖p

≤ C
(

n−(r+1)‖ϕ2(m+2r+1)g(2(r+1))‖p + n−2(r+1)‖ϕ2mg(2(r+1))‖p

)
. (5.27)

Again we look at the cases p = 1 and p = ∞ separately and use the Riesz–Thorin
interpolation theorem for 1 < p < ∞.
p = ∞: First we observe that by using (5.14) we have

|ϕ(x)2m
2mS̃n(R(t,x),x)|

≤ n
(2r+ 1)!

⎧
⎨

⎩

∞

∑
k=0

sn,k+s(x)

x∫

0

ϕ(t)2msn,k+m−1(t)

x∫

t

(u− t)2r+1|g(2(r+1))(u)|dudt

+ ϕ(x)2m
∞

∑
k=0

sn,k(x)

∞∫

x

sn,k+2m−1(t)

t∫

x

(t− u)2r+1|g(2(r+1))(u)|dudt

⎫
⎬

⎭
.

Thus with ϕ(t)2m ≤ ϕ(u)2m in the first and ϕ(x)2m ≤ ϕ(u)2m in the second term on

the right-hand side we get as |u− t| ≤ |x− t| and |t−u|2r+1

ur+1 ≤ |t−x|2r+1

xr+1

for x ∈ [0, 1
n

]

|ϕ(x)2m
2mS̃n(R(t,x),x)|

≤ C‖ϕ2mg(2(r+1))‖∞
{

S̃n( f2(r+1),x,x)+2m S̃n( f2(r+1),x,x)
}

≤ Cn−2(r+1)‖ϕ2mg(2(r+1))‖∞
and for x ∈ [ 1

n ,∞
)

|ϕ(x)2m
2mS̃n(R(t,x),x)|

≤ C‖ϕ2(m+r+1)g(2(r+1))‖∞x−r−1
{

S̃n( f2(r+1),x,x)+ 2mS̃n( f2(r+1),x,x)
}

≤ Cn−r−1‖ϕ2(m+r+1)g(2(r+1))‖∞,
where we again used the estimates in Corollary 5.3.

p = 1: Similar as in the proof of Theorem 5.6 we apply first Fubini’s theorem twice,
then split the second term into a sum of two integrals for the variable x over the
interval

[
0, 1

n

]
and

[
1
n ,∞

)
and afterwards use (5.14) in the first and last integral

to derive
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‖ϕ2m
2mS̃n(R(t, ·)‖1

≤ C

⎧
⎨

⎩

∞∫

0

∣
∣
∣g(2(r+1))(u)

∣
∣
∣

∞∫

u

u∫

0

ϕ(t)2m(u− t)2r+1n
∞

∑
k=0

sn,k+m(x)sn,k+m−1(t)dtdxdu

+

1
n∫

0

∣∣
∣g(2(r+1))(u)

∣∣
∣

u∫

0

∞∫

u

(t− u)2r+1n
∞

∑
k=0

ϕ(x)2msn,k(x)sn,k+2m−1(t)dtdxdu

+

∞∫

1
n

∣
∣
∣g(2(r+1))(u)

∣
∣
∣

u∫

0

∞∫

u

ϕ(t)2m(t− u)2r+1n
∞

∑
k=0

sn,k+m(x)sn,k+m−1(t)dtdxdu

⎫
⎪⎬

⎪⎭
.

Now we apply ϕ(t)2m ≤ ϕ(u)2m in the first and ϕ(x)2m ≤ ϕ(u)2m in the second
integral on the right-hand side to get

‖ϕ2m
2mS̃n(R(t, ·)‖1

≤ C

⎧
⎨

⎩

∞∫

0

∣
∣
∣ϕ(u)2mg(2(r+1))(u)

∣
∣
∣

∞∫

u

u∫

0

(u− t)2r+1n
∞

∑
k=1

sn,k(x)sn,k−1(t)dtdxdu

+

1
n∫

0

∣∣
∣ϕ(u)2mg(2(r+1))(u)

∣∣
∣

u∫

0

∞∫

u

(t− u)2r+1n
∞

∑
k=0

sn,k(x)sn,k+2m−1(t)dtdxdu

+

∞∫

1
n

∣
∣
∣g(2(r+1))(u)

∣
∣
∣

u∫

0

∞∫

u

ϕ(t)2m(t− u)2r+1n
∞

∑
k=1

sn,k(x)sn,k−1(t)dtdxdu

⎫
⎪⎬

⎪⎭

= C

⎧
⎨

⎩

∞∫

0

∣
∣
∣ϕ(u)2mg(2(r+1))(u)

∣
∣
∣Hn,2(r+1)(u)du

+

1
n∫

0

∣
∣∣ϕ(u)2mg(2(r+1))(u)

∣
∣∣ H̃n,2(r+1),2m(u)du+

∞∫

1
n

∣
∣∣g(2(r+1)(u)

∣
∣∣Hn,2(r+1),m(u)du

⎫
⎪⎬

⎪⎭
.

From this estimate we derive (5.27) for p = 1 by using Corollarys 5.11, 5.15
and 5.13. ��

In [13, Theorem 6] the first author proved for the linear combinations Sn,r =

∑r
i=0αi(n)Sni with the αi(n) given in (5.5) the direct result for simultaneous approx-

imation for derivatives of even order

‖ϕ2m(Sn,rh− h)(2m)‖p ≤Cω2(r+1)
ϕ

(
h(2m),

1√
n

)

ϕ2m,p
(5.28)
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for h ∈ Lp[0,∞), 1 ≤ p < ∞, m ∈ N such that ϕ2mh(2m) ∈ Lp[0,∞). With this result
we can now prove a theorem for weighted simultaneous approximation by the linear
combinations S̃n,r also for odd derivatives.

Theorem 5.9. Let f ∈ Lp[0,∞), 1≤ p <∞, m∈N such that ϕ2m f (2m+1) ∈ Lp[0,∞).
Then

‖ϕ2m(S̃n,r f − f )(2m+1)‖p ≤Cω2(r+1)
ϕ

(
f (2m+1),

1√
n

)

ϕ2m,p
.

Proof. With (5.2) and (5.28) we get immediately

‖ϕ2m(S̃n,r f − f )(2m+1)‖p = ‖ϕ2m(Sn,r f ′ − f ′)(2m)‖p

≤ Cω2(r+1)
ϕ

(
f (2m+1),

1√
n

)

ϕ2m,p
.

��

5.5 Technical Lemmas

In this section we show some technical lemmas and corresponding corollaries used
in the estimates of the remainder terms in the proofs of the global direct results in
Sect. 5.4. For l,m ∈ N we define

Hn,l(u) =
l
n

ul−1e−nu + l

⎧
⎨

⎩

∞∫

u

u∫

0

−
u∫

0

∞∫

u

⎫
⎬

⎭
(u− t)l−1n

∞

∑
k=1

sn,k(x)sn,k−1(t)dtdx,

Hn,l,m(u) = l

⎧
⎨

⎩

∞∫

u

u∫

0

−
u∫

0

∞∫

u

⎫
⎬

⎭
ϕ(t)2m(u− t)l−1n

∞

∑
k=1

sn,k(x)sn,k−1(t)dtdx,

H̃n,l,m(u) = l

⎧
⎨

⎩

∞∫

u

u∫

0

−
u∫

0

∞∫

u

⎫
⎬

⎭
(u− t)l−1n

∞

∑
k=0

sn,k(x)sn,k+m−1(t)dtdx.

Lemma 5.10.

Hn,2(u) =
2
n

u, Hn,3(u) = 0,

Hn,l(u) = (−1)l
[ l

2 ]

∑
j=2

(
l− j− 2

j− 2

)
l!
j!

n j−lu j, l ≥ 4.
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Proof.

Hn,l(u) =
l
n

ul−1e−nu + l

⎧
⎨

⎩

∞∫

0

u∫

0

−
u∫

0

∞∫

0

⎫
⎬

⎭
(u− t)l−1n

∞

∑
k=1

sn,k(x)sn,k−1(t)dtdx

=:
l
n

ul−1e−nu + I1− I2. (5.29)

With (5.11) and (5.12)

I1 = l

u∫

0

⎧
⎨

⎩
(u− t)l−1

∞

∑
k=1

sn,k−1(t)

⎡

⎣n

∞∫

0

sn,k(x)dx

⎤

⎦

⎫
⎬

⎭
dt

= l

u∫

0

(u− t)l−1dt = ul. (5.30)

By partial integration and then using (5.13) twice

I2

= uln

u∫

0

sn,1(x)dx+ n
∞

∑
k=1

⎧
⎨

⎩

u∫

0

sn,k(x)dx

⎫
⎬

⎭

⎧
⎨

⎩

∞∫

0

(u− t)ls′n,k−1(t)dt

⎫
⎬

⎭

= ul(1− e−nu− nue−nu)− n
∞

∑
k=1

⎧
⎨

⎩

u∫

0

s′n,k+1(x)dx

⎫
⎬

⎭

⎧
⎨

⎩

∞∫

0

(u− t)lsn,k−1(t)dt

⎫
⎬

⎭

= ul(1− e−nu− nue−nu)−
l

∑
ν=0

(
l
ν

)
ul−ν(−1)ν

∞

∑
k=1

sn,k+1(u)n

∞∫

0

tνsn,k−1(t)dt

= ul(1− e−nu− nue−nu)−
l

∑
ν=0

(
l
ν

)
ul−ν(−1)νn−ν

∞

∑
k=2

sn,k(u)
(k+ν− 2)!
(k− 2)!

,

(5.31)

where we used (5.12) for the last equation.
Inner sum of the last term on the right-hand side Sν := ∑∞

k=2 sn,k(u)
(k+ν−2)!
(k−2)! .

Direct calculation gives

S0 = 1− e−nu− nue−nu,

S1 = −1+ e−nu+ nu,

S2 = n2u2.

For ν ≥ 3 we use that

ν−2

∏
l=1

(k+ 2+ l) =
ν−2

∑
j=0

(
ν− 2

j

)
ν!

( j+ 2)!

j−1

∏
l=0

(k− l),
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where empty products are defined to be 1. This formula can be derived by evaluating
the Newton form of the interpolation polynomial of ∏ν−2

l=1 (x+ 2+ l) to the knots
xi = i, i = 0, . . . ,ν− 2, at x = k. Thus with (5.11)

Sν = (nu)2
ν−2

∑
j=0

(
ν− 2

j

)
ν!

( j+ 2)!
(nu) j

∞

∑
k= j

sn,k− j(u)

=
ν

∑
j=2

(
ν− 2
j− 2

)
ν!
j!
(nu) j.

Putting the terms for Sν into (5.31), we get

I2 = ul(1− e−nu− nue−nu)− ul(1− e−nu− nue−nu)

+lul−1n−1(−1+ e−nu+ nu)

−
l

∑
ν=2

(
l
ν

)
ul−ν(−1)νn−ν

ν

∑
j=2

(
ν− 2
j− 2

)
ν!
j!
(nu) j. (5.32)

Next we calculate Tl := ∑l
ν=2

( l
ν
)
ul−ν(−1)νn−ν ∑ν

j=2

(ν−2
j−2

) ν!
j! (nu) j. For l = 2 and

l = 3 we have

T1 = u2, T3 = 2u3− 3
n

u2.

For l ≥ 4 we get

Tl =
l

∑
ν=2

(
l
ν

)
ul−ν(−1)νn−ν

ν

∑
j=2

(
ν− 2
j− 2

)
ν!
j!
(nu) j

=
l

∑
ν=2

(
l
ν

)
ul−ν(−1)ν

l

∑
j=l−ν+2

(
ν− 2
l− j

)
ν!

( j− l+ν)!
n j−lu j

= ul
l

∑
ν=2

(−1)ν
(

l
ν

)
+ n−1ul−1

l

∑
ν=3

(−1)ν
(

l
ν

)
(ν− 2)ν

+
l−2

∑
j=2

n j−lu j
j−2

∑
ν=0

(−1)ν− j+l
(

l
j− 2−ν

)(
ν− j+ l

ν

)
(ν− j+ l+ 2)!

(ν+ 2)!

= (l− 1)ul− ln−1ul−1

+
l−2

∑
j=2

n j−lu j(−1)l− j l!
(l− j)(l− j− 1)( j− 2)!

j−2

∑
ν=0

(−1)ν
(

j− 2
ν

)(
ν− j+ l
ν+ 2

)

= (l− 1)ul− ln−1ul−1 +(−1)l
[ l

2 ]

∑
j=2

(
l− j− 2

j− 2

)
l!
j!

n j−lu j,

where the last equation follows from [10, (3.48)]. Together with the definition of
Hn,l(u), (5.30) and inserting Tl into (5.32) now prove our proposition. ��
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Corollary 5.11. For l ∈ N we have

Hn,2l(u) ≤
{

n−2l , u ∈ [0, 1
n

]
,

n−lul , u ∈ [ 1
n ,∞

)
.

Lemma 5.12.

Hn,l,m(u) =
m

∑
ν=0

(
m
ν

)
(−1)νum−ν l

l +ν

{
Hn,l+ν(u)− l +ν

n
ul+ν−1e−nu

}
.

Proof. The result follows immediately by rewriting ϕ(t)2m into

ϕ(t)2m =
m

∑
ν=0

(
m
ν

)
(−1)νum−ν(u− t)ν .

��
Corollary 5.13. For u ∈ [ 1

n ,∞
)

we have

Hn,2l,m(u)≤Cum+ln−l.

Proof. As

1
n

m

∑
ν=0

u2l+ν−1e−nu ≤Cul+mule−nu ≤Cul+mn−l

for u ∈ [ 1
n ,∞

)
we derive the proposition by using the same arguments as in [11,

Korollar 6.9]. ��
For m = 1 we have that H̃n,l,1 coincide with the functions in [12, Lemma 4.10]

for the case c = 0 and beside a factor (−1)l are the moments of the genuine Szász–
Mirakjan–Durrmeyer operators (see also [16, below (10)]. For m ≥ 2 H̃n,l,m coin-
cides with the functions considered in [11, (6.3)] for c = 0 with m = 2s+ 1. Thus,
rewriting [11, Lemma 6.10, Korollar 6.11], we get the following results.

Lemma 5.14. For l ∈ N we have

H̃n,l,1(u) = (−1)l S̃n( fl,u,u),

and with m≥ 2

H̃n,l,m(u)

= −l
m−2

∑
k=0

u∫

0

(u− t)l−1sn,k(t)dt

+l
l−1

∑
ν=1

ul−νn−ν
l−1

∑
j=ν

(
l− 1

j

)(
j
ν

)
( j+m− 1)!

( j−ν+m− 1)!
· 1

j−ν+ 1
(−1) j+1.
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Corollary 5.15. For u ∈ [0, 1
n

]
we have

H̃n,2l,2m(u)≤Cn−2l.
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Chapter 6
Extensions of Schur’s Inequality for the Leading
Coefficient of Bounded Polynomials with Two
Prescribed Zeros

Heinz-Joachim Rack

Abstract We extend Schur’s Chebyshev-type inequality([18], p. 285) for the leading
coefficient of polynomials that are uniformly bounded on the interval [−1,1] and
vanish at its endpoints. Our extension is threefold: We obtain sharp V.A. Markov-
type estimates for all single coefficients as well as sharp Szegö-type estimates for
consecutive pairs of coefficients of such polynomials, and both these estimates im-
ply Schur’s inequality for the leading coefficient. Thirdly, we consider a larger class
of admissible polynomials by replacing uniform with pointwise boundedness on
[−1,1].

6.1 The Inequalities of Chebyshev and Schur for the Leading
Coefficient of Bounded Polynomials

Issai Schur (1875–1941) was an eminent mathematician who has made fundamen-
tal contributions to many areas of mathematics, see [19, 21]. His investigations in
algebraic properties of Chebyshev polynomials have influenced the second edition
of Rivlin’s book [15]. We focus here on Schur’s classical paper [18] which has been
a source of inspiration for many authors, for example, [5, 8, 13]. In particular, we
turn to Theorem IV* of [18]. To make the coefficient estimate stated there compa-
rable to related coefficient estimates by other authors, we normalize the occurring
quantities as follows: M = 1,z0 = −1,z1 = 1 and consider the linear space ΦΦΦnnn of

real algebraic (univariate) polynomials Pn of degree ≤ n given by Pn(x) =
n
∑

k=0
akxk

(note that, contrary to [18], we are indexing both the coefficients and the monomials
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in ascending order). Let Bn denote the unit ball in ΦΦΦnnn with respect to the interval
I = [−1,1]⊂ R and with respect to the uniform norm ||Pn||I,∞ = sup

x∈I
|Pn(x)|, i.e.,

Bn = {Pn ∈ΦΦΦnnn : ||Pn||I,∞ ≤ 1}. (6.1)

The n-th Chebyshev polynomial of the first kind with respect to I, Tn with Tn(x) =
n
∑

k=0
tn,kxk, can be defined on I as ([15], p. 2)

Tn(x) = cos(narccos(x)). (6.2)

Tn hence belongs to Bn and is an even resp. odd polynomial, depending on the parity
of n, so that tn,k = 0, if n−k is odd, whereas, if n−k is even, the coefficients tn,k are
nonzero integers given by

tn,k = tn,n−2q =
(−1)q

n− q
n2n−2q−1

(
n− q

q

)
,0≤ q≤ 	n/2
. (6.3)

Let Bn,±1 denote the subset of Bn consisting of polynomials which vanish at both
endpoints of I, i.e.,

Bn,±1 = {Pn ∈ Bn : Pn(±1) = 0}. (6.4)

It is well known that Tn is an extremizer for various linear functionals defined on Bn.
In particular, Chebyshev’s celebrated inequality of 1854 [2] for the leading coeffi-
cient of uniformly bounded polynomials (on I) holds (see also [9], p. 385 or [14],
p. 672 or [15], p. 68):

Theorem 6.1. For all Pn ∈ Bn with Pn(x) =
n
∑

k=0
akxk there holds the coefficient esti-

mate

|an| ≤ tn,n = 2n−1, with equality if Pn =±Tn ∈ Bn. (6.5)

In 1919 Schur added ([18], Theorem IV*) that within the restricted class Bn,±1
of polynomials from Bn with two prescribed zeros, at −1 and at 1, the polynomial
Sn defined by

Sn(x) = Tn

(
cos

π
2n

x
)
=

n

∑
k=0

tn,k
(

cos
π
2n

)k
xk (6.6)

is extremal for the leading coefficient:

Theorem 6.2. For all Pn ∈ Bn,±1 with Pn(x) =
n
∑

k=0
akxk there holds the coefficient

estimate

|an| ≤ 2n−1
(

cos
π
2n

)n
, with equality if Pn =±Sn ∈ Bn,±1. (6.7)

Note that ||Tn||I,∞ = 1 = |Tn(±1)|, whereas ||Sn||I,∞ = 1 �= |Sn(±1)|= 0,n≥ 2.
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Example 6.3. The first few polynomials Tn resp. Sn read as follows:

T2(x) =−1+ 2x2 resp. S2(x) =−1+ x2

T3(x) =−3x+ 4x3 resp. S3(x) =
3
2

√
3(−x+ x3)

T4(x) = 1− 8x2+ 8x4 resp. S4(x) = 1− (4+ 2
√

2)x2 +(3+ 2
√

2)x4

T5(x) = 5x− 20x3+ 16x5 resp.

S5(x) =
5
4

√
(10+ 2

√
5)(x− 5+

√
5

2
x3 +

3+
√

5
2

x5).

(6.8)

In this paper we are going to extend Schur’s theorem 6.2 which covers,
analogously to Chebyshev’s coefficient inequality (Theorem 6.1), only the lead-
ing coefficient. Our goal is, guided by classical coefficient inequalities of V.A.
Markov and Szegö valid for Pn ∈ Bn, to provide sharp estimates for each coef-
ficient |ak| (0 ≤ k ≤ n) and for each pair of consecutive coefficients |ak−1|+ |ak|
(if n− k even) of Pn ∈Bn,±1 and, even more, of Pn ∈Dn,±1, where the encompassing
set Dn,±1 of pointwise bounded polynomials (on I) is defined below. In particular,
we reveal new extremal properties of the polynomial Sn deployed by Schur and
hence of Tn.

6.2 A Schur-Type Analog to V.A. Markov’s Estimates
for Arbitrary Coefficients, Part 1

Once the sharp upper bound (6.5) for the leading coefficient of Pn ∈ Bn was estab-
lished, it was natural to ask for the sharp upper bounds for all n+ 1 coefficients of
Pn ∈ Bn. This question was explicitly raised in 1887 (for the case n = 2) by the fa-
mous chemist Mendeleev, see [11] for details. The definitive answer was provided
by Markov [7] (see also [1], p. 248 or [9], p. 423 or [17], p. 167):

Theorem 6.4. For all Pn ∈ Bn with Pn(x) =
n
∑

k=0
akxk there hold the coefficient esti-

mates

|ak| ≤ |tn,k|=
n2k−1( n+k

2 − 1)!

k!( n−k
2 )!

, if n− k is even (equality if Pn =±Tn ∈ Bn), (6.9)

|ak| ≤ |tn−1,k|, if n− k is odd (equality if Pn =±Tn−1 ∈ Bn). (6.10)

It is well known that the sharp upper bounds in (6.9) and (6.10) are reciprocal
to the best approximations to xk by means of linear combinations of the remaining
monomials 1,x,x2, . . . ,xk−1,xk+1, . . . ,xn, see [7] or [17], Satz 1.2. We analogously
ask for the sharp upper bounds for all n+ 1 coefficients of Pn ∈ Bn,±1. The answer
is contained in the next theorem, the proof of which we postpone to Sect. 6.6 below:
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Theorem 6.5. For all Pn ∈ Bn,±1 with Pn(x) =
n
∑

k=0
akxk there hold the coefficient

estimates

|ak| ≤ |tn,k|
(

cos
π
2n

)k
, if n− k is even (equality if Pn =±Sn ∈ Bn,±1). (6.11)

|ak| ≤ |tn−1,k|
(

cos
π

2n− 2

)k

, if n− k is odd (equality if Pn =±Sn−1 ∈ Bn,±1).

(6.12)

Thus Theorem 6.5 is a complete analog within Bn,±1 to V.A. Markov’s theo-
rem 6.4 which is valid for Pn ∈ Bn. The special case k = n in (6.11) takes us back to
Schur’s inequality (6.7).

6.3 A Schur-Type Analog to Szegö’s Estimates for Pairs
of Coefficients, Part 1

Although Theorem 6.4 gives the sharp upper bounds for each coefficient of Pn ∈Bn,
the first part of Theorem 6.4 still leaves room for refinement. The following striking
extension of (6.9) to pairs of consecutive coefficients was communicated orally by
Szegö to Erdös who published it (without proof) in 1947 [6]. A concise proof is to
be found in [14], Theorem 16.3.3, see also [11]:

Theorem 6.6. For all Pn ∈ Bn with Pn(x) =
n
∑

k=0
akxk there hold the coefficient esti-

mates

|ak−1|+ |ak| ≤ |tn,k|, if n− k is even (equality if Pn =±Tn ∈ Bn; set a−1 = 0).

(6.13)

Obviously, (6.13) implies (6.9). We analogously ask for sharp upper bounds for
the corresponding pairs of coefficients of Pn ∈ Bn,±1. The answer is contained in the
next theorem, the proof of which we postpone to Sect. 6.6:

Theorem 6.7. For all Pn ∈ Bn,±1 with Pn(x) =
n
∑

k=0
akxk there hold the coefficient

estimates

|ak−1|+ |ak| ≤ |tn,k|
(

cos
π
2n

)k
, if n− k is even (6.14)

(equality if Pn =±Sn ∈ Bn,±1; set a−1 = 0).

This theorem is thus a complete analog within Bn,±1 to Szegö’s Theorem 6.6
which is valid for Pn ∈ Bn. The special case k = n in (6.14) yields |an−1|+ |an| ≤
2n−1

(
cos

π
2n

)n
, and this refined inequality implies Schur’s inequality (6.7).
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6.4 A Schur-Type Analog to V.A. Markov’s Estimates
for Arbitrary Coefficients, Part 2

The goal of this section is to improve on Theorem 6.5 by enlarging the set of
admissible polynomials. Consider the first part of V.A. Markov’s two-staged
inequality in Theorem 6.4. An alternative refinement of (6.9) is due to Shohat [20].
In 1929 he observed that (6.9) will hold true even if Pn satisfies the relaxed condition

|Pn(x∗n,i)| ≤ 1 (pointwise boundedness), where the x∗n,i = cos
(n− i)π

n
,0≤ i≤ n, are

the extremal points of Tn on I with Tn(x∗n,i) = (−1)n−i. We note in passing that
Duffin and Schaeffer [4] succeeded to refine V.A. Markov’s celebrated inequality
for the k-th derivatives of Pn ∈Bn under this relaxed condition, see also [15], p. 136.

As simple examples show, the second part of V.A. Markov’s inequality, (6.10),
does not hold true (i.e., Tn−1 is not extremal) if the condition Pn ∈ Bn is relaxed to
|Pn(x∗n,i)| ≤ 1. To the best of our knowledge, it was Rogosinski [16] in 1955 who first
constructed the extremal polynomials which satisfy |Pn(x∗n,i)| ≤ 1 and maximize |ak|,
if n− k is odd. Building on the ideas of Shohat and Rogosinski we are now going to
relax the condition Pn ∈ Bn,±1 (uniform boundedness) to pointwise boundedness on
I in order to get Schur-type analogs of the two-staged coefficient inequality of V.A.

Markov. It follows from the definition of Sn that the points xn,i =
x∗n,i

cos
π
2n

,1 ≤ i ≤

n− 1, are the extremal points of Sn on I with Sn(xn,i) = (−1)n−i. Consider now, in
place of Bn,±1, the set Dn,±1 given by

Dn,±1 = {Pn ∈ΦΦΦnnn : |Pn(xn,i)| ≤ 1 for 1≤ i≤ n− 1 and Pn(±1) = 0}. (6.15)

Note that Sn ∈Dn,±1 and Bn,±1 ⊂ Dn,±1,n≥ 3.

Example 6.8. The polynomial P4 given by

P4(x) = 1− 1
2
(2+
√

2)
3
2 x− (2+

1√
2
)x2 +

1
2
(2+
√

2)
3
2 x3 +(1+

1√
2
)x4 (6.16)

belongs to D4,±1 since we have P4(−1) = S4(−1) = 0, P4(x4,1) = −S4(x4,1) =
1, P4(x4,2) = S4(x4,2) = 1, P4(x4,3) = S4(x4,3) =−1, P4(1) = S4(1) = 0, but P4 does
not belong to B4,±1 because P4(− 1

2)> 1.

We can now state a second, more general analog to (6.9), compare with (6.11):

Theorem 6.9. For all Pn ∈ Dn,±1 with Pn(x) =
n
∑

k=0
akxk there hold the coefficient

estimates

|ak| ≤ |tn,k|(cos
π
2n

)k, if n− k is even (equality if Pn =±Sn ∈ Dn,±1). (6.17)

The proof of this theorem is postponed to Sect. 6.6.
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We next proceed to find out how a second, more general analog to (6.10) may
look like. To this end, we define, following [16], a polynomialΠn−1 by interpolatory
constraints which will turn out as extremal within Dn,±1 for |ak|, if n− k is odd: Set

Πn−1(±1) = 0 (6.18)

Πn−1(xn,i) = (−1)i, if 1≤ i≤ n− 1
2

, when n is odd (6.19)

Πn−1(xn,i) = (−1)i+1, if
n+ 1

2
≤ i≤ n− 1, when n is odd (6.20)

Πn−1(xn,i) = (−1)i+1, if 1≤ i≤ n
2
− 1, when n is even (6.21)

Πn−1(xn,i) = 0, if i =
n
2
, when n is even (6.22)

Πn−1(xn,i) = (−1)i, if
n
2
+ 1≤ i≤ n− 1, when n is even. (6.23)

Example 6.10. For n = 4 the polynomial Π3 ∈ D4,±1 is given by

Π3(x) =

√

1+
1√
2
(1+
√

2)(−x+ x3), (6.24)

and for n = 3 the polynomial Π2 ∈ D3,±1 is given by

Π2(x) =
3
2
(−1+ x2). (6.25)

We are now in a position to state the second analog to (6.10), compare with
(6.12):

Theorem 6.11. Let Πn−1 ∈Dn,±1 with Πn−1(x) =
n−1
∑

k=0
An−1,kxk and n≥ 3 be defined

as in (6.18)–(6.23). For all Pn ∈Dn,±1 with Pn(x) =
n
∑

k=0
akxk there hold the coefficient

estimates

|ak| ≤ |An−1,k|, if n− k is odd (equality if Pn =±Πn−1). (6.26)

The proof of this theorem is postponed to Sect. 6.6.

Example 6.12. For n = 4 and P4(x) =
4
∑

k=0
akxk we deduce from the above theorems

and examples the following sharp coefficient estimates:
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If P4 ∈ B4, then If P4 ∈ B4,±1, then If P4 ∈ D4,±1, then
|a0| ≤ 1.000 |a0| ≤ 1.000 |a0| ≤ 1.000

|a1| ≤ 3.000 |a1| ≤ 3
2

√
3 = 2.598 . . . |a1| ≤

√
1+ 1√

2
(1+
√

2) = 3.154 . . .

|a2| ≤ 8.000 |a2| ≤ 4+ 2
√

2 = 6.828 . . . |a2| ≤ 4+ 2
√

2 = 6.828 . . .

|a3| ≤ 4.000 |a3| ≤ 3
2

√
3 = 2.598 . . . |a3| ≤

√
1+ 1√

2
(1+
√

2) = 3.154 . . .

|a4| ≤ 8.000 |a4| ≤ 3+ 2
√

2 = 5.828 . . . |a4| ≤ 3+ 2
√

2 = 5.828 . . .

6.5 A Schur-Type Analog to Szegö’s Estimates for Pairs
of Coefficients, Part 2

The goal of this section is to improve on Theorem 6.7 by enlarging the set of ad-
missible polynomials. As in the previous section we replace Bn,±1 by its superset
Dn,±1:

Theorem 6.13. For all Pn ∈ Dn,±1 with Pn(x) =
n
∑

k=0
akxk there hold the coefficient

estimates

|ak−1|+ |ak| ≤ |tn,k|
(

cos
π
2n

)k
, if n− k is even (6.27)

(equality if Pn =±Sn ∈ Dn,±1; set a−1 = 0).

This theorem is thus a complete analog within Dn,±1 to Szegö’s Theorem 6.6
and to our first extension of it, Theorem 6.7. The proof of Theorem 6.13 builds on a
result from [3] and is postponed to the next section. The special case k = n in (6.27)
yields |an−1|+ |an| ≤ 2n−1

(
cos π

2n

)n
for Pn ∈ Dn,±1 and hence for Pn ∈ Bn,±1, and

this inequality for the pair of leading coefficients of Pn in particular implies Schur’s
inequality (6.7).

Example 6.14. For n = 4 and P4(x) =
4
∑

k=0
akxk we deduce from the above theorems

and examples the following sharp estimates for consecutive pairs of coefficients:

If P4 ∈ B4, then If P4 ∈ B4,±1 or P4 ∈ D4,±1, then
|a0| ≤ 1.000 |a0| ≤ 1.000
|a1|+ |a2| ≤ 8.000 |a1|+ |a2| ≤ 4+ 2

√
2 = 6.828 . . .

|a3|+ |a4| ≤ 8.000 |a3|+ |a4| ≤ 3+ 2
√

2 = 5.828 . . .

6.6 Proofs

We now provide proofs to our Theorems 6.5, 6.7, 6.9, 6.11, and 6.13. The Theo-
rems 6.1, 6.2, 6.4, and 6.6 reflect historical results.
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Proof. (of Theorem 6.5) Since Sn ∈Bn,±1 ⊂Dn,±1, the estimates (6.11) follow from
(6.17). To prove (6.12), consider the polynomial Pn−1 defined by Pn−1(x) = (Pn(x)+

(−1)n−1Pn(−x))/2 =
n−1
∑

k=0
dkxk, where Pn ∈ Bn,±1. We deduce that |Pn−1(x)| ≤

|Pn(x)|/2 + |Pn(−x)|/2 ≤ 1
2 + 1

2 = 1 for x ∈ I, i.e., Pn−1 ∈ Bn, and obviously
Pn−1(±1) = 0 holds, so that in fact Pn−1 ∈ Bn,±1. The coefficients dk of Pn−1 with
(n−1)−k even coincide with the coefficients ak of Pn with n−k odd. Applying the
estimates (6.11) to Pn−1 with n− 1 in place of n eventually gives (6.12). ��
Proof. (of Theorem 6.7) Since Sn ∈Bn,±1 ⊂Dn,±1, the estimates (6.14) follow from
(6.27). ��
Proof. (of Theorem 6.9) We will make use of the following general assumption,
denoted by (A ): Let there be given non-negative real numbers, Mi, 0 ≤ i≤ n, sat-

isfying
n
∑

i=0
Mi > 0 and Mi = Mn−i. Let there be given a zero-symmetric partition of

I, −1 = zn,0 < zn,1 < · · ·< zn,n−1 < zn,n = 1, satisfying zn,i+ zn,n−i = 0. Let Qn with

Qn(x) =
n
∑

k=0
bkxk be a polynomial satisfying |Qn(zn,i)| ≤Mi, 0≤ i≤ n.

Furthermore, let Rn with Rn(x) =
n
∑

k=0
Bkxk denote the polynomial which satisfies the

oscillating interpolatory condition Rn(zn,i) = (−1)n−iMi for 0 ≤ i ≤ n. A result of
Rogosinski [16], Theorem III, states that under these assumptions the V.A. Markov-
type coefficient estimate |bk| ≤ |Bk| holds true (equality if Qn = ±Rn), provided
n− k is even. To deduce (6.17) from this result we set equal M0 = Mn = 0 and
Mi = 1, 1 ≤ i ≤ n− 1; zn,0 = −zn,n = −1 and zn,i = xn,i, 1 ≤ i ≤ n− 1; Qn = Pn

and Rn = Sn. ��
Proof. (of Theorem 6.11) Under the assumption (A ), let Wn−1 with Wn−1(x) =
n−1
∑

k=0
Ckxk denote the polynomial which satisfies the interpolatory conditions (depend-

ing on the parity of n)

(i) Wn−1(zn,i) = (−1)iMi for 0≤ i≤ n−1
2 , when n is odd

(ii) Wn−1(zn,i) = (−1)i+1Mi for n+1
2 ≤ i≤ n, when n is odd

(iii) Wn−1(zn,i) = (−1)i+1Mi for 0≤ i≤ n
2 − 1, when n is even

(iv) Wn−1(zn,i) = 0 for i = n
2 , when n is even

(v) Wn−1(zn,i) = (−1)iMi for n
2 + 1≤ i≤ n, when n is even.

A result of Rogosinski [16], Theorem IV, states that then the V.A. Markov-type
coefficient estimate |bk| ≤ |Ck| holds true (equality if Qn =±Wn−1), provided n− k
is odd. To deduce (6.26) from this result we set equal M0 = Mn = 0 and Mi = 1, 1≤
i≤ n−1; zn,0 =−zn,n =−1 and zn,i = xn,i, 1≤ i≤ n−1; Qn =Pn and Wn−1 =Πn−1.
��
Proof. (of Theorem 6.13) Under the assumption (A ), let Rn with Rn(x) =

n
∑

k=0
Bkxk

denote the polynomial which satisfies the oscillating interpolatory condition
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Rn(zn,i) = (−1)n−iMi for 0 ≤ i ≤ n. A result of Dryanov et al. [3], Theorem 3
(restated in [10], Theorem F), for which we have provided an alternative proof and
a bivariate extension ([12], Theorems 2.4.1 and 3.2), states that then the Szegö-type
coefficient estimate |bk−1|+ |bk| ≤ |Bk| holds true (equality if Qn =±Rn), provided
n− k is even. To deduce (6.27) from this result we set equal M0 = Mn = 0 and
Mi = 1,1 ≤ i ≤ n− 1; zn,0 = −zn,n = −1 and zn,i = xn,i, 1 ≤ i ≤ n− 1; Qn = Pn

and Rn = Sn. ��
Remark 6.15. Schur [18], Theorem III*, also obtained an inequality for the leading
coefficient of a polynomial from Bn which additionally has one prescribed zero on I,
either at −1 or at 1 (asymmetric case). Our deployed method of proof relies on the
symmetries stated in the assumption (A ) and hence cannot be applied to obtain
extensions of this asymmetric case. It requires a different approach that we intend
to expose in a separate manuscript.
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wenig von Null abweichen, Math. Ann. 77, 213–258 (1916); Russian original of 1892 available
at http://www.math.technion.ac.il/hat/fpapers/vmar.pdf

8. L. Milev and G. Nikolov, On the inequality of I. Schur, J. Math. Anal. Appl. 216, 421–437
(1997)
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Chapter 7
An Example of Optimal Nodes for Interpolation
Revisited

Heinz-Joachim Rack

Abstract A famous unsolved problem in the theory of polynomial interpolation is
that of explicitly determining a set of nodes which is optimal in the sense that it leads
to minimal Lebesgue constants. In [11] a solution to this problem was presented
for the first non-trivial case of cubic interpolation. We add here that the quantities
that characterize optimal cubic interpolation (in particular: the minimal Lebesgue
constant) can be compactly expressed as real roots of certain cubic polynomials
with integral coefficients. This facilitates the presentation and impartation of the
subject matter and may guide extensions to optimal higher-degree interpolation.

7.1 Introduction

The Bernstein conjecture of 1931 and Kilgore’s theorem of 1977 [6] characterize, by
means of the equioscillation property of the Lebesgue function, the optimal nodes
which minimize the Lebesgue constant for n-th degree Lagrange polynomial inter-
polation. The Bernstein conjecture has been settled to the affirmative in 1978 [2, 7].

However, as put in [3]: In spite of this nice characterization, the optimal nodes
as well as the optimal Lebesgue constants are not known explicitly.
Although the knowledge of these quantities may be of little practical importance,
since they can be computed numerically for the first few values of n (see [1, 3,
9, 15]), and near-optimal nodes are explicitly known (see [3]), . . . the problem of
analytical description of the optimal matrix of nodes is considered by pure math-
ematicians as a great challenge [3]. In [8] (p. xlvii) it is put more dramatically:
The nature of the optimal set X* remains a mystery.

But at least the first non-trivial case of cubic interpolation has been demysti-
fied so that for n = 3 the desired analytical solution to the problem of explicitly
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determining the optimal nodes and the minimal Lebesgue constant is known [11].
To facilitate the presentation and impartation of this instructive example we add here
alternative expositions of the minimal cubic Lebesgue constant and of the (positive)
extremum point at which the local maximum of the optimal cubic Lebesgue func-
tion occurs: we identify them as roots of certain intrinsic cubic polynomials with
integral coefficients. The third determining quantity, the (positive) optimal node for
cubic interpolation, has already been described in this concise way [11].
Such a description is in the spirit of the open question raised in [4] (p. 21): Is there
a set of relatively simple functions fn such that the roots of fn are the optimal nodes
for Lagrange interpolation?

We will provide as simple functions f3 three cubic polynomials with integral
coefficients whose roots yield the solution to the optimal cubic interpolation prob-
lem.

7.2 Three Cubic Polynomials with Integral Coefficients
Whose Roots Yield the Solution to the Optimal Cubic
Interpolation Problem

The situation is as follows (n = 3): It suffices to consider (algebraic) Lagrange
interpolation on the zero-symmetric partition

− 1 = x0 < x1 =−x2 < x2 < x3 = 1 (7.1)

of the canonical interval [−1,1], so that only the placement of the positive node
x2 remains critical. The sampled values yi = f (xi),0 ≤ i≤ 3, of some (continuous)
function f which is to be interpolated on (7.1) by a cubic polynomial, do not enter
into the discussion. We know from [11] that the following holds:
The square of the optimal node x2 = x∗2 is given as the unique real root of a cubic
polynomial with integral coefficients:

P3(z) =−1+ 2z+ 17z2+ 25z3. (7.2)

Proposition 7.1. We add here that the analytic expression for x∗2 as given in
([11],(22)) can alternatively be restated as

x∗2 =
1

5
√

3

√√
√
√−17+

(
14699+ 1725

√
69

2

) 1
3

+

(
14699− 1725

√
69

2

) 1
3

= 0.4177913013 . . .

(7.3)

Proof. The verification that the expression (7.3) equals the expression (22) given in
[11] is straightforward and is left to the reader. ��
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Proposition 7.2. L∗3, the sought-for minimal value of the cubic Lebesgue constant

L3(x2) = max
|x|≤1

F3(x,x2) with F3(x,x2) =
3

∑
i=0

|li,3(x)| and li,3(x) =
3

∏
j=0, j �=i

x− x j

xi− x j
,

(7.4)
can likewise be identified with the unique real root of a cubic polynomial with inte-
gral coefficients:

Q3(z) =−11+ 53z− 93z2+ 43z3. (7.5)

The analytic expression for L∗3 as deduced in ([11](23)) can alternatively be
restated as

L∗3 =
1

129

(
93+

(
125172+ 11868

√
69
) 1

3
+
(

125172− 11868
√

69
) 1

3
)

= 1.4229195732 . . . (7.6)

Proof. The verification that L∗3 in its identical forms ([11], (23)) or (7.6) coincides
with the real root of Q3 is by straightforward insertion and is left to the reader. ��
Proposition 7.3. The square of the maximum point x = x ∈ [x∗2,1], at which the first
derivative of the optimal cubic Lebesgue function F3(x,x∗2) vanishes, can likewise be
identified with the unique real root of a cubic polynomial with integral coefficients:

R3(z) =−1+ 7z− 23z2+ 25z3. (7.7)

The analytic expression for x as given in ([11],(14)), after insertion of x2 = x∗2,
reads as

x =
1

5
√

3

√√
√√23+ 2

(
623+ 75

√
69

2

) 1
3

+ 2

(
623− 75

√
69

2

) 1
3

= 0.7331726239 . . .

(7.8)

Proof. The verification that the square of x, where x is given by (7.8), coincides with
the real root of R3 is again by straightforward insertion. ��

By symmetry, the first derivative of F3(x,x∗2) also vanishes at −x ∈ [−1,−x∗2]
and at x = 0 ∈ [−x∗2,x

∗
2] which gives the three equal local maxima F3(−x,x∗2) =

F3(0,x∗2) = F3(x,x∗2) of the optimal cubic Lebesgue function (equioscillation prop-
erty). These maxima are identical with the value min

0<x2<1
L3(x2) = L3(x∗2) = L∗3.

The three polynomials P3, Q3, and R3, respectively their unique real roots, thus
completely describe the solution to the problem of optimal cubic interpolation on
[−1,1].
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7.3 Concluding Remarks

We point out that already in 1968 the polynomial P3 (in the variable z = t2) has
appeared as part of a posed problem in the not easily accessible source [14] (p. 89,
Problem 6.43).

However, no analytic expressions for x∗2 or L∗3 or x are given there. At the time of
writing [11] the source [14], which we had learned from [7], was not available to us.

We believe that the polynomials Q3 and R3 appear here for the first time in
connection with optimal cubic polynomial interpolation and we hope that they may
guide, together with P3, the finding of extensions to optimal n-th degree polynomial
interpolation, n≥ 4.

Additional recommended reading is [5, 9, 10] (especially Example 2.5.3),
[12, 13].
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Chapter 8
Theory of Differential Approximations
of Radiative Transfer Equation

Weimin Han, Joseph A. Eichholz and Qiwei Sheng

Abstract The radiative transfer equation (RTE) arises in a variety of applications.
The equation is challenging to solve numerically for a couple of reasons: high di-
mensionality, integro-differential form, highly forward-peaked scattering in appli-
cation. In the literature, various approximations of RTE have been proposed in the
literature. In an earlier publication, we explored a family of differential approxi-
mations to RTE, to be called RT/DA equations. In this paper, we study the RT/DA
equations and investigate numerically the closeness of solutions of the RT/DA equa-
tions to that of the RTE.

8.1 Introduction

The radiative transfer equation (RTE) arises in a variety of applications, such as
neutron transport, heat transfer, stellar atmospheres, optical molecular imaging, in-
frared and visible light in space and the atmosphere, and so on. We refer the reader
to [1, 14, 15, 19, 20]. Recently, there is much interest in analysis and numerical
simulation of the RTE and its related inverse problems, motivated by applications in
biomedical optics [4, 7, 8].

We proceed to give a brief description of RTE as follows. Let X be a domain in
R

3 with a Lipschitz boundary ∂X . The unit outward normal n(x) exists a.e. on ∂X .
Denote by Ω the unit sphere in R

3. For each fixed directionω ∈Ω , introduce a new
Cartesian coordinate system (z1,z2,s) by the relations
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x = z+ sω , z = z1ω1 + z2ω2,

where (ω1,ω2,ω) is an orthonormal basis of R3, z1, z2, s ∈ R. With respect to this
new coordinate system, we denote by Xω the projection of X on the plane s = 0 in
R

3 and by Xω,z (z ∈ Xω ) the intersection of the straight line {z+ sω | s ∈ R} with
X . We assume that the domain X is such that for any (ω ,z) with z ∈ Xω , Xω,z is the
union of a finite number of line segments:

Xω,z = ∪N(ω,z)
i=1 {z+ sω | s ∈ (si,−,si,+)}.

Here si,± = si,±(ω ,z) depend on ω and z, and xi,± := z+ si,±ω are the intersection
points of the line {z+ sω | s ∈ R} with ∂X . We further assume supω,z N(ω ,z)< ∞,
known as a generalized convexity condition. As an example, for a convex domain
X , supω,z N(ω ,z) = 1. We then introduce the following subsets of ∂X :

∂Xω,− = {z+ si,−ω | 1≤ i≤ N(ω ,z), z ∈ Xω},
∂Xω,+ = {z+ si,+ω | 1≤ i≤ N(ω ,z), z ∈ Xω}.

It can be shown that for a.e. z ∈ Xω , n(z+ si,−ω)·ω ≤ 0; if x ∈ ∂X and n(x)·ω <
0, then x ∈ ∂Xω,−. Likewise, for a.e. z ∈ Xω , n(z+ si,+ω)·ω ≥ 0; if x ∈ ∂X and
n(x)·ω > 0, then x∈ ∂Xω,+. Then the incoming boundaryΓ− and outgoing boundary
Γ+ are

Γ− = {(x,ω) | x ∈ ∂Xω,−, ω ∈Ω}, Γ+ = {(x,ω) | x ∈ ∂Xω,+, ω ∈Ω}.
Denote by dσ(ω) the infinitesimal area element on the unit sphere Ω . For the

spherical coordinate system

ω = (sinθ cosψ , sinθ sinψ , cosθ )T , 0≤ θ ≤ π , 0≤ ψ ≤ 2π , (8.1)

dσ(ω) = sinθ dθ dψ . We will need an integral operator S defined by

(Su)(x,ω) =
∫

Ω
k(ω ·ω̂)u(x, ω̂)dσ(ω̂) (8.2)

with k a nonnegative normalized phase function:
∫

Ω
k(ω ·ω̂)dσ(ω̂) = 1 ∀ω ∈Ω . (8.3)

One well-known example is the Henyey–Greenstein phase function (cf. [10])

k(t) =
1− g2

4π(1+ g2− 2gt)3/2
, t ∈ [−1,1], (8.4)

where the parameter g ∈ (−1,1) is the anisotropy factor of the scattering medium.
Note that g = 0 for isotropic scattering, g > 0 for forward scattering, and g < 0 for
backward scattering.
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With the above notation, a boundary value problem of the RTE reads (cf. [1, 13])

ω ·∇u(x,ω)+σt(x)u(x,ω) = σs(x)(Su)(x,ω)+ f (x,ω), (x,ω) ∈ X×Ω , (8.5)

u(x,ω) = uin(x,ω), (x,ω) ∈ Γ−. (8.6)

Here σt = σa +σs, σa is the macroscopic absorption cross section, σs is the macro-
scopic scattering cross section, and f and uin are source functions in X and on Γ−,
respectively. We assume that these given functions satisfy

σt ,σs ∈ L∞(X), σs ≥ 0 and σt −σs ≥ c0 in X for some constant c0 > 0, (8.7)

f ∈ L2(X×Ω), uin ∈ L2(Γ−). (8.8)

These assumptions are naturally valid in applications; the last part of (8.7) means
that the absorption effect is not negligible. For a vacuum setting around X , the in-
coming flux boundary condition uin(x,ω) = 0 on Γ−.

It can be shown [1] that the problem (8.5)–(8.6) has a unique solution u ∈
H1

2 (X×Ω), where

H1
2 (X ×Ω) := {v ∈ L2(X ×Ω) | ω ·∇v ∈ L2(X ×Ω)}

with ω ·∇v denoting the generalized directional derivative of v in the direction ω .
It is challenging to solve the RTE problem numerically for a couple of reasons.

First, it is a high-dimensional problem. The spatial domain is three dimensional and
the region for the angular variable is two dimensional. Second, when the RTE is
discretized by the popular discrete-ordinate method, the integral term Su(x,ω) on
the right side of the equation is approximated by a summation that involves all the
numerical integration points on the unit sphere. Consequently, for the resulting dis-
crete system, the desired locality property is not valid, and many of the solution tech-
niques for solving sparse systems from discretization of partial differential equations
cannot be applied efficiently to solve the discrete systems of RTE. Moreover, in
applications involving highly forward-peaked media, which are typical in biomedi-
cal imaging, the phase function tends to be numerically singular. Take the Henyey–
Greenstein phase function (8.4) as an example: k(1) = (1+ g)/[4π(1− g)2] blows
up as g→ 1−. In such applications, it is even more difficult to solve RTE since accu-
rate numerical solutions require a high resolution of the direction variable, leading to
prohibitively large amount of computations. For these reasons, various approxima-
tions of RTE have been proposed in the literature, e.g., the delta-Eddington approx-
imation [11], the Fokker–Planck approximation [16, 17], the Boltzmann–Fokker–
Planck approximation [5, 18], the generalized Fokker–Planck approximation [12],
the Fokker–Planck–Eddington approximation, and the generalized Fokker–Planck–
Eddington approximation [6]. In [9], we provided a preliminary study of a fam-
ily of differential approximations of the RTE. For convenience, we will call these
approximation equations as RT/DA (radiative transfer/differential approximation)
equations. An RT/DA equation with j terms for the approximation of the integral
operator will be called an RT/DA j equation.



124 W. Han, J.A. Eichholz and Q. Sheng

This paper is devoted to a mathematical study of the RT/DA equations, as well
as numerical experiments on how accurate are the RT/DA equations as approxima-
tions of the RTE. We prove the well posedness of the RT/DA equations and provide
numerical examples to show the increased improvement in solution accuracy when
the number of terms, j, increases in RT/DA j equations.

8.2 Differential Approximation of the Integral Operator

The idea of the derivation of the RT/DA equations is based on the approximation
of the integral operator S by a sequence of linear combinations of the inverse of
linear elliptic differential operators on the unit sphere [9]. The point of departure of
the approach is the knowledge of eigenvalues and eigenfunctions of the operator S.
Specifically, for a spherical harmonic of order n, Yn(ω) (cf. [3] for an introduction
and spherical harmonics),

(SYn)(ω) = knYn(ω), (8.9)

kn = 2π
∫ 1

−1
k(s)Pn(s)ds, Pn : Legendre polynomial of deg. n. (8.10)

In other words, kn is an eigenvalue of S with spherical harmonics of order n as
corresponding eigenfunctions. The eigenvalues have the property that

{kn} is bounded and kn→ 0 as n→ ∞. (8.11)

Denote by Δ∗ the Laplace–Beltrami operator on the unit sphere Ω . Then,

−(Δ∗Yn)(ω) = n(n+ 1)Yn(ω).

Let {Yn,m | −n≤m≤ n, n≥ 0} be an orthonormalized basis in L2(Ω). We have the
expansion

u(ω) =
∞

∑
n=0

n

∑
m=−n

un,mYn,m(ω) in L2(Ω), un,m =

∫

Ω
u(ω)Yn,m(ω)dσ(ω).

With such an expansion of u ∈ L2(Ω), we have an expansion for Su:

Su(ω) =
∞

∑
n=0

kn

n

∑
m=−n

un,mYn,m(ω) in L2(Ω).

Suppose there are real numbers {λi,αi}i≥1 such that

∞

∑
i=1

λi

1+ n(n+ 1)αi
= kn, n = 0,1, · · · . (8.12)
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Then formally,

S =
∞

∑
i=1

λi(I−αiΔ∗)−1. (8.13)

The formal equality (8.13) motivates us to consider approximating S by

S j =
j

∑
i=1

λ j,i(I−α j,iΔ∗)−1, j = 1,2, · · · . (8.14)

The eigenvalues of S j are ∑ j
i=1λ j,i (1+ n(n+ 1)α j,i)

−1 with associated
eigenfunctions the spherical harmonics of order n:

(S jYn)(ω) =

[
j

∑
i=1

λ j,i

1+ n(n+ 1)α j,i

]

Yn(ω).

Note that for a fixed j,

j

∑
i=1

λ j,i

1+ n(n+ 1)α j,i
→ 0 as n→ ∞.

Thus, the eigenvalue sequence of S j has a unique accumulation point 0, a property
for the operator S [cf. (8.11)]. Hence, we choose the parameters {λ j,i,α j,i} j

i=1 so
that for some integer n j depending on j,

j

∑
i=1

λ j,i

1+ n(n+ 1)α j,i
= kn, n = 0,1, · · · ,n j− 1. (8.15)

We require n j→ ∞ as j→ ∞.
The following results are shown in [9]:

Theorem 8.1. Under the assumption (8.15) and

sup
n≥n j

∣
∣
∣
∣
∣

j

∑
i=1

λ j,i (1+ n(n+ 1)α j,i)
−1

∣
∣
∣
∣
∣
→ 0 as j→ ∞, (8.16)

we have the convergence ‖S j− S‖L (L2(Ω),L2(Ω))→ 0 as j→ ∞.

A sufficient condition for (8.16) is that all λ j,i and α j,i are positive.

Theorem 8.2. Assume (8.15) and λ j,i > 0 and α j,i > 0 for i = 1, · · · , j. Then (8.16)
holds.

Notice that α j,i > 0 is needed to ensure ellipticity of the differential operator
(I−α j,iΔ∗). When we discretize the operator S j, the positivity of {λ j,i} j

i=1 is desir-
able for numerical stability in computing approximations of S j.

Consider an operator S j of the form (8.14) to approximate S. From now on, we
drop the letter j in the subscripts for λ j,i and α j,i. As noted after Theorem 8.2, to
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maintain ellipticity of the differential operator (I−αiΔ∗) and for stable numerical
approximation of the operator S j, we require

αi > 0, λi > 0, 1≤ i≤ j. (8.17)

Recall the property (8.11); for the numbers {kn} defined in (8.10), we assume k0 ≥
k1 ≥ ·· · . This assumption is quite reasonable and is valid for phase functions in
practical use.

To get some idea about the operators S j, we consider the special cases j = 1 and
2 next. For j = 1, we have

S1Yn(ω) = k1,nYn(ω), k1,n =
λ1

1+α1n(n+ 1)
. (8.18)

Equating the first two eigenvalues of S and S1, we can find

λ1 = k0, α1 =
1
2

(
k0

k1
− 1

)
. (8.19)

Observe that (8.17) is satisfied.
For j = 2, S2 = λ1(I−α1Δ∗)−1+λ2(I−α2Δ∗)−1 with the parameters satisfying

λ1 > 0, λ2 > 0, α1 > 0, α2 > 0, and α1 �= α2. We have

S2Yn(ω) = k2,nYn(ω), k2,n =
λ1

1+α1n(n+ 1)
+

λ2

1+α2n(n+ 1)
. (8.20)

Require the parameters to match the first three eigenvalues k2,i = ki, i = 0,1,2, i.e.,

λ1 +λ2 = k0, (8.21)

λ1

1+ 2α1
+

λ2

1+ 2α2
= k1, (8.22)

λ1

1+ 6α1
+

λ2

1+ 6α2
= k2. (8.23)

Consider the system (8.21)–(8.23) for a general form solution. Use α1 as the
parameter for the solution. It is shown in [9] that

α2 =
1
6
· (3k1− 2k0− k2)+ 6(k1− k2)α1

(k2− k1)+ 2(3k2− k1)α1
, (8.24)

λ2 =
2 [(k1− k0)+ 2k1α1] [(k2− k0)+ 6k2α1]

(2k0 + k2− 3k1)+ 12(k2− k1)α1 + 12(3k2− k1)α2
1

, (8.25)

λ1 = 1−λ2. (8.26)

The issue of positivity of the solution (α1,α2,λ1,λ2) is also discussed in [9].
Next, we take the Henyey–Greenstein phase function as an example; in this case,

kn = gn, n = 0,1, · · · .
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For the one-term approximation S1 = λ1(I−α1Δ∗)−1, from (8.19), we have

λ1 = 1, α1 =
1− g
2g

. (8.27)

For the two-term approximation S2 = λ1(I−α1Δ∗)−1+λ2(I−α2Δ∗)−1, we have

α2 =
1− g

6g
· g− 2+ 6gα1

g− 1+ 2(3g− 1)α1
, (8.28)

λ2 =
2(g− 1+ 2gα1)

(
g2− 1+ 6g2α1

)

(1− g)(2− g)+ 12g(g− 1)α1 + 12g(3g− 1)α2
1

, (8.29)

λ1 =
g(1− g)(2g− 1)

(
1+ 8α1+ 12α2

1

)

(1− g)(2− g)+ 12g(g− 1)α1 + 12g(3g− 1)α2
1

. (8.30)

On the issue of positivity of the one parameter solution (α1,α2,λ1,λ2) given by the
formulas (8.28)–(8.30), with α1 > 0, it is shown in [9] that under the assumption
g > 1/2, valid in applications with highly forward-peaked scattering, the condition
for a positive solution (α1,α2,λ1,λ2) is

α1 >
2− g

6g
. (8.31)

Since α1 = 1/2 satisfies (8.31), one solution is

α1 =
1
2
, α2 =

1− g
6g

, λ1 =
4g(1− g)

4g− 1
, λ2 =

4g2− 1
4g− 1

. (8.32)

Now consider the case j = 3:

S3 = λ1(I−α1Δ∗)−1 +λ2(I−α2Δ∗)−1 +λ3(I−α3Δ∗)−1 (8.33)

with the parameters α1, α2, and α3 pairwise distinct. We want to match the first four
eigenvalues

k3,0 = k0, k3,1 = k1, k3,2 = k2, k3,3 = k3,

i.e., for the special case of the Henyey–Greenstein phase function,

λ1 +λ2 +λ3 = 1, (8.34)

λ1

1+ 2α1
+

λ2

1+ 2α2
+

λ3

1+ 2α3
= g, (8.35)

λ1

1+ 6α1
+

λ2

1+ 6α2
+

λ3

1+ 6α3
= g2, (8.36)

λ1

1+ 12α1
+

λ2

1+ 12α2
+

λ3

1+ 12α3
= g3. (8.37)
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We choose α1 and α2, positive and distinct, as the parameters and express the
other quantities in terms of them. There are many positive solution sets to the sys-
tem (8.34)–(8.37) with positive parameters α1 and α2. For the numerical examples
in Sect. 8.6, we use parameter sets so that overall the eigenvalues of S3 are close to
those of S. In particular, for g = 0.9, we choose

α1 = 0.00957621, α2 = 0.08, α3 = 0.712,

λ1 = 0.660947, λ2 = 0.248262, λ3 = 0.0907913;

for g = 0.95, we choose

α1 = 0.00325598, α2 = 0.06, α3 = 0.701,

λ1 = 0.78042, λ2 = 0.174622, λ3 = 0.0449584;

and for g = 0.99, we choose

α1 = 0.000306188, α2 = 0.05, α3 = 0.95,

λ1 = 0.940247, λ2 = 0.0526772, λ3 = 0.00707558.

For g = 0.9, we compare the eigenvalues of S j for j = 1,2,3 with those of S in
Figs. 8.1, 8.2, and 8.3, respectively. From these figures, we can tell that the approxi-
mation of S3 should be more accurate than that of S2, which should be in turn more
accurate than S1. This observation is valid for other values of g below.

For g = 0.95, the eigenvalues of S1, S2, and S3 are shown in Figs. 8.4–8.6.
For g= 0.99, the eigenvalues of S, S1, S2, and S3 are shown in Fig. 8.7. Evidently,

because of the strong singular nature of the phase function for g = 0.99, a higher
value j will be needed for S j to be a good approximation of S.

8.3 Analysis of the RT/DA Problems

We use S j of (8.14) for the approximation of the integral operator S. In the following,
we drop the subscript j in the parameters λ j,i and α j,i for S j and write

S ju(x,ω) =
j

∑
i=1

λi(I−αiΔ∗)−1u(x,ω).

Then the RT/DA j problem is

ω ·∇u(x,ω)+σt(x)u(x,ω) = σs(x)S ju(x,ω)+ f (x,ω), (x,ω) ∈ X×Ω , (8.38)

u(x,ω) = uin(x,ω), (x,ω) ∈ Γ−. (8.39)
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Let us consider the well posedness of (8.38)–(8.39). Introduce

wi(x,ω) = (I−αiΔ∗)−1u(x,ω), 1≤ i≤ j, (8.40)

w(x,ω) =
j

∑
i=1

λiwi(x,ω). (8.41)

Then (8.38) can be rewritten as

ω ·∇u(x,ω)+σt(x)u(x,ω) = σs(x)w(x,ω)+ f (x,ω), (x,ω) ∈ X×Ω . (8.42)

For simplicity we limit the analysis to the case where X is a convex domain in R
3.

The argument can be extended to a domain X satisfying the generalized convexity
condition without problem [1]. Then for each ω ∈ Ω and each z ∈ Xω , Xω,z is the
line segment

Xω,z = {z+ sω | s ∈ (s−,s+)},
where s± = s±(ω ,z) depend on ω and z and x± := z+ s±ω are the intersection
points of the line {z+ sω | s ∈ R} with ∂X .

In the following, we write s± instead of s±(ω ,z) wherever there is no danger for
confusion. We write (8.42) as

∂
∂ s

u(z+sω ,ω)+σt (z+sω)u(z+sω ,ω) = σs(z+sω)w(z+sω ,ω)+ f (z+sω ,ω)

and multiply it by exp(
∫ s

s− σt(z+ sω)ds) to obtain

∂
∂ s

(
e
∫ s

s− σt (z+sω)dsu(z+ sω ,ω)
)

= e
∫ s

s− σt (z+sω)ds
(σs(z+ sω)w(z+ sω ,ω)+ f (z+ sω ,ω)).

Integrate this equation from s− to s:

e
∫ s

s− σt (z+sω)dsu(z+ sω ,ω)− uin(z+ s−ω ,ω)

=
∫ s

s−
e
∫ t

s− σt (z+sω)ds
(σs(z+ tω)w(z+ tω ,ω)+ f (z+ tω ,ω))dt.

Thus, (8.38) and (8.39) is converted to a fixed-point problem

u = Au+F, (8.43)

where

Au(z+ sω ,ω) =
∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω)w(z+ tω ,ω)dt,

F(z+ sω ,ω) = e−
∫ s

s− σt (z+sω)dsuin(z+ s−ω ,ω)

+

∫ s

s−
e−

∫ s
t σt (z+sω)ds f (z+ tω ,ω)dt.
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We will show that A is a contractive mapping in a weighted L2(X ×Ω) space.
Denote κ = sup{σs(x)/σt(x) | x ∈ X}. By (8.7), we know that κ < 1. Consider

∫ s+

s−
σt(z+ sω) |Au(z+ sω ,ω)|2 ds

=

∫ s+

s−
σt(z+ sω)

∣
∣∣
∣

∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω)w(z+ tω ,ω)dt

∣
∣∣
∣

2

ds

≤
∫ s+

s−
σt(z+ sω)

(∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω)dt

)

·
(∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω) |w(z+ tω ,ω)|2 dt

)
ds.

Since
∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω)dt ≤ κ

∫ s

s−
e−

∫ s
t σt (z+sω)dsσt(z+ tω)dt

= κ
(

1− e−
∫ s
s− σt (z+sω)ds

)
< κ ,

we have
∫ s+

s−
σt(z+ sω) |Au(z+ sω ,ω)|2 ds

≤ κ
∫ s+

s−
σt(z+ sω)

∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω) |w(z+ tω ,ω)|2 dt ds

= κ
∫ s+

s−
σs(z+ tω) |w(z+ tω ,ω)|2

(∫ s+

t
e−

∫ s
t σt (z+sω)dsσt(z+ sω)ds

)
dt.

Now ∫ s+

t
e−

∫ s
t σt (z+sω)dsσt(z+ sω)ds = 1− e−

∫ s+
t σt (z+sω)ds < 1,

we obtain
∫ s+

s−
σt(z+ sω) |Au(z+ sω ,ω)|2 ds≤ κ

∫ s+

s−
σs(z+ tω) |w(z+ tω ,ω)|2 dt

≤ κ2
∫ s+

s−
σt(z+ tω) |w(z+ tω ,ω)|2 dt.

Thus, we have proved the inequality

‖σ1/2
t Au‖L2(X×Ω) ≤ κ ‖σ1/2

t w‖L2(X×Ω). (8.44)

Returning to the definition (8.40), we have, equivalently,

(I−αiΔ∗)wi = u in X×Ω .
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For a.e. x ∈ X , wi(x, ·) ∈ H1(Ω) and
∫

Ω
(wiv+αi∇∗wi ·∇∗v)dσ(ω) =

∫

Ω
uvdσ(ω) ∀v ∈ H1(Ω). (8.45)

Since αi > 0, this problem has a unique solution by the Lax–Milgram Lemma. Take
v(ω) = wi(x,ω) in (8.45):

∫

Ω

(|wi|2 +αi|∇∗wi|2
)

dσ(ω) =
∫

Ω
uwi dσ(ω).

Thus, ∫

Ω

(|wi|2 + 2αi|∇∗wi|2
)

dσ(ω)≤
∫

Ω
|u|2dσ(ω). (8.46)

In particular, ∫

Ω
|wi|2dσ(ω)≤

∫

Ω
|u|2dσ(ω).

Therefore,
‖σ1/2

t wi‖L2(X×Ω) ≤ ‖σ1/2
t u‖L2(X×Ω). (8.47)

Since λi > 0 and ∑ j
i=1λi = 1, from the definitions (8.41) and (8.47), we get

‖σ1/2
t w‖L2(X×Ω) ≤ ‖σ1/2

t u‖L2(X×Ω). (8.48)

Combining (8.44) and (8.48), we see that the operator A : L2(X×Ω)→ L2(X ×
Ω) is contractive with respect to the weighted norm ‖σ1/2

t v‖L2(X×Ω):

‖σ1/2
t Au‖L2(X×Ω) ≤ κ ‖σ1/2

t u‖L2(X×Ω). (8.49)

By an application of the Banach fixed-point theorem, we conclude that (8.43) has a
unique solution u ∈ L2(X×Ω). By (8.42), we also have ω ·∇u(x,ω) ∈ L2(X×Ω).
Therefore, the solution u ∈ H1

2 (X ×Ω).
In summary, we have shown the following existence and uniqueness result:

Theorem 8.3. Under the assumptions (8.7), (8.8), (8.15), and (8.17), the problem
(8.38) and (8.39) has a unique solution u ∈ H1

2 (X×Ω).

Next we show a positivity property required for the model (8.38) and (8.39) to
be physically meaningful.

Theorem 8.4. Under the assumptions of Theorem 8.3,

f ≥ 0 in X×Ω , uin ≥ 0 on Γ− =⇒ u≥ 0 in X×Ω . (8.50)

Proof. From (8.43),

u = (I−A)−1F =
∞

∑
j=0

A jF.
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By the given condition, F ≥ 0. So the proof is done if we can show that u≥ 0 implies
Au≥ 0. This property follows from the implication u≥ 0 =⇒ wi≥ 0 for the solution
wi of the problem (8.45). In (8.45), take v = w−i = min(wi,0) to obtain

∫

Ω
(|w−i |2 +αi|∇∗w−i |2)dσ(ω) =

∫

Ω
uw−i dσ(ω)≤ 0.

Hence, w−i = 0, i.e., wi ≥ 0. ��

We now derive an error estimate for the approximation (8.38)–(8.39) of the RTE
problem (8.5)–(8.6). Denote the solution of the problem (8.38)–(8.39) by u j and
consider the error e := u− u j. From (8.38)–(8.39) and (8.5)–(8.6), we obtain the
following problem for the error:

ω ·∇e+σte = σse0 +σs

j

∑
i=1

λi(I−αiΔ∗)−1e in X×Ω , (8.51)

e = 0 in Γ−, (8.52)

where

e0 = Su−
j

∑
i=1

λi(I−αiΔ∗)−1u. (8.53)

Since λi > 0 and ∑ j
i=1λi = 1, we obtain from (8.51) to (8.52) that, as in (8.43),

e = Ae+E

with

E(z+ sω ,ω) =

∫ s

s−
e−

∫ s
t σt (z+sω)ds(σse0)(z+ tω ,ω)dt.

Thus,

‖σ1/2
t e‖L2(X×Ω) ≤ ‖σ1/2

t Ae‖L2(X×Ω) + ‖σ1/2
t E‖L2(X×Ω)

≤ κ ‖σ1/2
t e‖L2(X×Ω) + ‖σ1/2

t E‖L2(X×Ω).

Therefore,

‖σ1/2
t e‖L2(X×Ω) ≤

1
1−κ ‖σ

1/2
t E‖L2(X×Ω) ≤ c‖e0‖L2(X×Ω). (8.54)

By expanding functions in terms of the spherical harmonics, we have

‖e0‖L2(X×Ω) ≤ c j‖u‖L2(X×Ω), c j = max
n

∣
∣∣
∣
∣
kn−

j

∑
i=1

λi

1+αin(n+ 1)

∣
∣∣
∣
∣
. (8.55)

Hence, from (8.54), we get the error bound
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‖σ1/2
t (u− u j)‖L2(X×Ω) ≤ cc j‖u‖L2(X×Ω). (8.56)

Theorem 8.5. Under the assumptions of Theorem 8.3, we have the error bound
(8.56) with c j given in (8.55).

8.4 An Iteration Method

We now consider the convergence of an iteration method for solving the problem
defined by (8.42) and (8.39)–(8.41). Let w(0) be an initial guess, e.g., we may take
w(0) = 0. Then, for n = 1,2, · · · , define u(n) and w(n) as follows:

ω ·∇u(n) +σtu
(n) = σsw

(n−1) + f in X×Ω , (8.57)

u(n) = uin on Γ−, (8.58)

w(n)
i = (I−αiΔ∗)−1u(n), 1≤ i≤ j, (8.59)

w(n) =
j

∑
i=1

λiw
(n)
i . (8.60)

Denote the iteration errors e(n)u := u− u(n), e(n)w = w−w(n). Then we have the error
relations

ω ·∇e(n)u +σte
(n)
u = σse

(n−1)
w in X×Ω ,

e(n)u = 0 on Γ−,

e(n)wi = (I−αiΔ∗)−1e(n)u , 1≤ i≤ j,

e(n)w =
j

∑
i=1

λie
(n)
wi .

Similar to (8.44) and (8.48), we have

‖σ1/2
t e(n)u ‖L2(X×Ω) ≤ κ ‖σ1/2

t e(n−1)
w ‖L2(X×Ω),

‖σ1/2
t e(n−1)

w ‖L2(X×Ω) ≤ ‖σ1/2
t e(n−1)

u ‖L2(X×Ω).

Thus,

‖σ1/2
t e(n)u ‖L2(X×Ω) ≤ κ ‖σ1/2

t e(n−1)
u ‖L2(X×Ω),

and so we have

‖σ1/2
t e(n)u ‖L2(X×Ω) ≤ κn‖σ1/2

t e(0)u ‖L2(X×Ω)→ 0 as n→ ∞.

Moreover, we also have the convergence of the sequence {w(n)}:

‖σ1/2
t e(n)w ‖L2(X×Ω) ≤ ‖σ1/2

t e(n)u ‖L2(X×Ω)→ 0 as n→ ∞.
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8.5 Error Analysis of a Hybrid Analytic/Finite
Element Method

To focus on the main idea, in this section, we perform the analysis for the case
of solving an RT/DA1 equation with uin = 0. The same argument can be extended
straightforward to an RT/DA j equation for an arbitrary j ≥ 1. Thus, consider the
problem

ω ·∇u(x,ω)+σt(x)u(x,ω) = σs(x)w(x,ω)+ f (x,ω), (x,ω) ∈ X×Ω , (8.61)

u(x,ω) = 0, (x,ω) ∈ Γ−, (8.62)

(I−αΔ∗)w(x,ω) = u(x,ω), (x,ω) ∈ X×Ω . (8.63)

A weak formulation of (8.63) is w(x, ·) ∈ H1(Ω) and
∫

Ω
(wv+α∇∗w ·∇∗v)dσ(ω) =

∫

Ω
uvdσ(ω) ∀v ∈H1(Ω) (8.64)

for a.e. x ∈ X , where ∇∗ is the first-order Beltrami operator. Let V h
ω be a finite ele-

ment subspace of H1(Ω). Then a finite element approximation of (8.64) is to find
wh(x, ·) ∈V h

ω such that
∫

Ω
(whvh +α∇∗wh ·∇∗vh)dσ(ω) =

∫

Ω
uhvhdσ(ω) ∀vh ∈V h

ω , (8.65)

where the numerical solution uh is defined by (8.61) with w replaced with wh and
(8.62). We have, similar to (8.43),

uh(z+ sω ,ω) =

∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω)wh(z+ tω ,ω)dt

+

∫ s

s−
e−

∫ s
t σt (z+sω)ds f (z+ tω ,ω)dt. (8.66)

Denote the error functions

eu,h(x,ω) = u(x,ω)− uh(x,ω), ew,h(x,ω) = w(x,ω)−wh(x,ω). (8.67)

Subtract (8.66) from (8.43):

eu,h(z+ sω ,ω) =
∫ s

s−
e−

∫ s
t σt (z+sω)dsσs(z+ tω)ew,h(z+ tω ,ω)dt. (8.68)

Similar to derivation of (8.44), we then deduce from (8.68) that
∫ s+

s−
σt(z+ sω)

∣
∣eu,h(z+ sω ,ω)

∣
∣2 ds≤ κ2

∫ s+

s−
σt(z+ sω)

∣
∣ew,h(z+ sω ,ω)

∣
∣2 ds.

(8.69)
To bound the error ew,h, we subtract (8.65) from (8.64) with v = vh:

∫

Ω
(ew,hvh +α∇∗ew,h ·∇∗vh)dσ(ω) =

∫

Ω
eu,hvhdσ(ω) ∀vh ∈V h

ω . (8.70)
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Thus,
∫

Ω

(|ew,h|2+α|∇∗ew,h|2
)

dσ(ω) =
∫

Ω

[
ew,h(w−vh)+α∇∗ew,h ·∇∗(w−vh)

]
dσ(ω)

+

∫

Ω
eu,h(vh−w+ ew,h)dσ(ω).

For any ε > 0, we have positive constants C1(ε) and C2(ε) such that
∫

Ω
ew,h(w− vh)dσ(ω)≤ ε

∫

Ω
|ew,h|2dσ(ω)+C1(ε)

∫

Ω
|w− vh|2dσ(ω),

∫

Ω
eu,h(vh−w+ ew,h)dσ(ω)≤ 1

2

∫

Ω
|eu,h|2dσ(ω)+

1+ ε
2

∫

Ω
|ew,h|2dσ(ω)

+C2(ε)
∫

Ω
|w− vh|2dσ(ω).

Moreover,
∫

Ω
∇∗ew,h ·∇∗(w−vh)dσ(ω)≤ 1

2

∫

Ω
|∇∗ew,h|2dσ(ω)+

1
2

∫

Ω
|∇∗(w−vh)|2dσ(ω).

Then,
∫

Ω

(|ew,h|2+α|∇∗ew,h|2
)

dσ(ω)≤(1+ε)
∫

Ω
|eu,h|2dσ(ω)+C3(ε)

∫

Ω
|w−vh|2dσ(ω)

+α
∫

Ω
|∇∗(w− vh)|2dσ(ω)

≤ (1+ ε)
∫

Ω
|eu,h|2dσ(ω)+C(ε)‖w− vh‖2

H1(Ω).

Since vh ∈V h
ω is arbitrary, we have

∫

Ω

(|ew,h|2+α|∇∗ew,h|2
)

dσ(ω)≤(1+ε)
∫

Ω
|eu,h|2dσ(ω)+C(ε) inf

vh∈V h
ω

‖w−vh‖2
H1(Ω).

(8.71)
We now integrate (8.69) and apply (8.71):

‖σ1/2
t eu,h‖2

L2(X×Ω) ≤ κ2‖σ1/2
t ew,h‖2

L2(X×Ω)

= κ2
∫

X
σt(x)dx

∫

Ω
|ew,h(x,ω)|2dσ(ω)

≤ (1+ε)κ2‖σ1/2
t eu,h‖2

L2(X×Ω)+C(ε)
∫

X

[

inf
vh∈V h

ω

‖w−vh‖2
H1(Ω)

]

dx.

Choose ε > 0 small enough to obtain

‖σ1/2
t eu,h‖2

L2(X×Ω) ≤C
∫

X

[

inf
vh∈V h

ω

‖w− vh‖2
H1(Ω)

]

dx. (8.72)
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In a typical error estimate, if w ∈ L2(X ,Hk+1(Ω)) and piecewise polynomials of
degree less than or equal to k are used for the finite element space V h

ω , then

∫

X

[

inf
vh∈V h

ω

‖w− vh‖2
H1(Ω)

]

dx≤ ch2k‖w‖2
L2(X ,Hk+1(Ω))

. (8.73)

From (8.72), we then have the error bound

‖eu,h‖L2(X×Ω) ≤ chk‖w‖L2(X ,Hk+1(Ω)). (8.74)

8.6 Numerical Experiments

Here we report some numerical results on the differences between numerical solu-
tions of RTE and those of RT/DA equations. For definiteness, we use the Henyey–
Greenstein phase function and consider the approximations S j, 1≤ j ≤ 3, specified
in Sect. 8.2.

For the discretization of the unit sphere Ω for the direction variable ω , we use
the finite element method described in [2]. The angular discretizations used all have
nφ = 8 and have various values of nθ . For reference, the total number of angular
nodes in each discretization is listed in Table 8.1.

Table 8.1: Number of angular nodes

nθ Nodes

4 26
8 98
16 386
32 1538
64 6146
128 24578

Experiment 8.6.1. We first make sure that the numerical methods behave as
expected. Let us comment on the discretization of S used in approximating the
RTE. For ease, we compare the numerical solution of the RTE with the numerical
solutions to the RT/DA1 equation calculated on the same mesh. This leaves us
with a choice of weights when solving the RTE. Initially, the choice was made
that wi =

4π
N where N is the number of angular nodes. However, this is not a good

quadrature rule, as the nodes are not quite evenly spaced on the sphere. This point
is illustrated in Table 8.2. In this table, we numerically integrate

∫

Ω
Y1(ω ′)k.5(ω0 ·ω ′)dσ(ω ′)
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using both uniform weights and the weights introduced below. Here k.5 is the HG
phase function with anisotropy factor g = 0.5, ω0 is rather arbitrarily chosen to be

1√
3
(1,1,1)T , and Y1(ω) is the order 1 spherical harmonic:

Y1(ω) =
1
2

√
3
π

cos(θ ).

The true value of this integral is .5Y1(ω0)≈ 0.14105.
When solving the approximation to the RT/DA1 equation, a matrix A is formed

with the property that

f T Ag =

∫

Ω
f (ω)g(ω)dσ(ω)

if f is a vector containing function values of f at the nodes ωi and f , g are elements
of the finite element space associated with the angular mesh. We choose the weight
vector w to be w = Ae, where e is the vector with all components 1. This quadrature
rule will be exact for all functions in the finite element space associated with the
angular mesh. Since this rule will correctly integrate any piecewise linear function
in the finite element space, it may be thought of as an analogue of the trapezoidal
rule for the sphere. Quick investigation shows that for the example integral above,
this method is order 2 in terms of nθ , which makes it order 1 in terms of the number
of nodes. It seems likely that this is true in general.

Table 8.2: Comparison of trapezoidal weights vs. uniform weights in evaluating∫
Ω Y1(ω ′)k.5(ω0 ·ω ′)dσ (ω ′) for specific choice of ω0

nθ Trapezoidal rule Trapezoidal error Uniform rule Uniform error

4 1.51038e-01 9.99030e-03 1.29518e-01 1.15298e-02
8 1.42538e-01 1.49073e-03 1.28156e-01 1.28914e-02

16 1.41424e-01 3.76434e-04 1.28242e-01 1.28050e-02
32 1.41141e-01 9.39943e-05 1.28244e-01 1.28030e-02
64 1.41071e-01 2.34917e-05 1.28244e-01 1.28035e-02

We take μt(x) = 2, μs(x) = 1, g = 0.9, and f = (μt − gμs)Y1(ω). Under these
choices and with appropriate choice of boundary conditions, the solution to both the
RTE and RT/DA1 equation is Y1. We report the errors

eS :=

{

∑
i

wi

∫

X
(uS(x,ωi)−Y1(ωi))

2dx

}1/2

(8.75)

eS1 :=

{

∑
i

wi

∫

X
(uS1(x,ωi)−Y1(ωi))

2dx

}1/2

(8.76)



138 W. Han, J.A. Eichholz and Q. Sheng

in Tables 8.3 and 8.4. We see that both methods converge in the above norm. We
report the maximum difference between uS and uS1 in Table 8.5. Unless specified
otherwise, all meshes have 96 space elements. A “–” in the tables reflects the fact
that the iteration algorithm used to solve the discrete systems does not converge
within a fixed (large) number of iterations.

Table 8.3: Experiment 8.6.1: error between uS, uS1 , and Y1

nθ eS eS1

4 – 0.301621
8 – 0.236104

16 0.227244 0.172195
32 0.129529 0.123071
64 0.088994 0.087421

Table 8.4: Experiment 8.6.1: different errors

nθ max |uS−Y1| Mean|uS−Y1| max |uS1 −Y1| Mean|uS1 −Y1|
4 – – 6.070e-03 8.433e-04
8 – – 3.363e-03 1.668e-04

16 1.077e-01 1.275e-02 1.306e-03 3.851e-05
32 1.558e-02 3.707e-04 4.410e-04 9.002e-06
64 4.315e-03 4.332e-05 1.381e-04 2.212e-06

Table 8.5: Experiment 8.6.1: maximum error at the nodes of the mesh between uS and uS1

nθ max |uS−uS1 |
16 0.127953
32 0.019912
64 0.007467

To investigate the relative error, we introduce new notation. Define the set of all
nodes as

N = {(x,ω) | x is a node of the spatial mesh, ω is a node of the angular mesh}.

For a given relative error level e, define

Ne = {(x,ω) ∈N | |uS(x,ω)− uS1(x,ω)|/|uS(x,ω)|< e}.

Finally, define f (e) = |Ne|/|N | for the fraction of nodes at which the solution to
the RT/DA1 equation agrees with the RTE within relative error e. Here we use the
convention that | · | applied to a set denotes cardinality.
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We plot f (e) in Fig. 8.8. Note that there is no logical upper bound on the
domain e. However, we will only plot 0 < e < 1, as it makes the graphs more
readable. �
Experiment 8.6.2. The spatial domain is X = [0,1]3. We choose μt = 2, μs = 1, and
the Henyey–Greenstein phase function with several different choices of scattering
parameter g. The source function f is taken to be

f (x,ω) =

{
1 if x ∈ R

0 otherwise

where R is approximately a sphere of radius 1/4 centered at (0.5,0.5,0.5). To do
the numerical simulations the domain X is partitioned into 324 tetrahedrons and we
use various angular discretizations to investigate the effect of angular discretization.

Again let N be the set of all nodes of the mesh. Let uh
S be the numerical solution

to the RTE and let uh
S j

be the numerical solution to the RT/DA j equation. For a given
relative error level, e, define the set of all nodes on which the numerical solution to
the RT/DA j equation agrees with the RTE within relative error e. That is,

Ne, j = {(x,ω) ∈N | |uh
S(x,ω)− uh

S j
(x,ω)|< e|uh

S(x,ω)|}.

Define f j(e) = |Ne, j |/|N |, giving the fraction of nodes at which the solution to the
RT/DA j equation agrees with the RTE within relative error e. Obviously, we would
like f (e) ≈ 1 for as small e as possible.

Plots of f j(e) are shown with scattering parameter η = 0.9, 0.95, and 0.99 for the
RT/DA j ( j = 1,2,3) equations in Figs. 8.9–8.16. We observe that (1) as j increases,
the RT/DA j equation with properly chosen parameter values provides increasingly
accurate solution to the RTE, and (2) as g gets close to 1−, higher value of j will be
needed for the RT/DA j equation to be a good approximation of the RTE. �
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Fig. 8.1: Eigenvalues of S (solid line) and S1 (broken line)
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Fig. 8.2: Eigenvalues of S (solid line) and S2 with the choice (8.32) (broken line)
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Fig. 8.3: Eigenvalues of S (solid line) and S3 (broken line)
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Fig. 8.4: Eigenvalues of S (solid line) and S1 (broken line)
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Fig. 8.5: Eigenvalues of S (solid line) and S2 (broken line)
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Fig. 8.6: Eigenvalues of S (solid line) and S3 (broken line)
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Fig. 8.7: Eigenvalues of S, S1, S2, and S3
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Fig. 8.8: f vs e for Experiment 8.6.1
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Fig. 8.9: Experiment 8.6.2: f vs. e for g = 0.9 using one-term approximation S1
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Fig. 8.10: Experiment 8.6.2: f vs. e for g = 0.9 using two-term approximation S2



146 W. Han, J.A. Eichholz and Q. Sheng

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative error

%
 o

f n
od

es

g=0.9 3 terms

ntheta= 16
ntheta= 32
ntheta= 64
ntheta= 128

Fig. 8.11: Experiment 8.6.2: f vs. e for g = 0.9 using three term approximation S3
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Fig. 8.12: Experiment 8.6.2: f vs. e for g = 0.95 using one-term approximation S1
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Fig. 8.13: Experiment 8.6.2: f vs. e for g = 0.95 using two-term approximation S2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative error

%
 o

f n
od

es

g=0.95 3 terms

 

 

ntheta= 16
ntheta= 32
ntheta= 64
ntheta= 128

Fig. 8.14: Experiment 8.6.2: f vs. e for g = 0.95 using three term approximation S3
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Fig. 8.15: Experiment 8.6.2: f vs. e for g = 0.99 using one-term approximation S1
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Fig. 8.16: Experiment 8.6.2: f vs. e for g = 0.99 using two-term approximation S2



Chapter 9
Inverse Spectral Problems for Complex
Jacobi Matrices

Gusein Sh. Guseinov

Abstract The paper deals with two versions of the inverse spectral problem for finite
complex Jacobi matrices. The first is to reconstruct the matrix using the eigenvalues
and normalizing numbers (spectral data) of the matrix. The second is to reconstruct
the matrix using two sets of eigenvalues (two spectra), one for the original Jacobi
matrix and one for the matrix obtained by deleting the last row and last column
of the Jacobi matrix. Uuniqueness and existence results for solution of the inverse
problems are established and an explicit procedure of reconstruction of the matrix
from the spectral data is given. It is shown how the results can be used to solve finite
Toda lattices subject to the complex-valued initial conditions.

9.1 Introduction

An N×N complex Jacobi matrix is a matrix of the form

J =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2

0 0 0 · · · 0 aN−2 bN−1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (9.1)
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where for each n, an and bn are arbitrary complex numbers such that an is different
from zero:

an,bn ∈ C, an �= 0. (9.2)

The general inverse spectral problem is to reconstruct the matrix J given some
of its spectral characteristics (spectral data). Many versions of the inverse spectral
problem for finite and infinite Jacobi matrices have been investigated in the litera-
ture and many procedures and algorithms for their solution have been proposed (see
[1–4, 6–15]). Some of them form analogs of problems of inverse Sturm–Liouville
theory [5, 17] in which a coefficient function or “potential” in a second-order differ-
ential equation is to be recovered, either given the spectral function or alternatively
given two sets of eigenvalues corresponding to two given boundary conditions at
one end, the boundary condition at the other end being fixed.

A distinguishing feature of the Jacobi matrix (9.1) from other matrices is that the
eigenvalue problem Jy = λy for a column vector y = {yn}N−1

n=0 is equivalent to the
second-order linear difference equation

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ {0,1, . . . ,N− 1}, a−1 = aN−1 = 1,

(9.3)

for {yn}N
n=−1, with the boundary conditions

y−1 = yN = 0. (9.4)

This allows using techniques from the theory of three-term linear difference equa-
tions [1], to develop a thorough analysis of the eigenvalue problem Jy = λy.

Problem (9.3), (9.4) arises, for example, in the discretization of the (continuous)
Sturm–Liouville eigenvalue problem

d
dx

[
p(x)

dy(x)
dx

]
+ q(x)y(x) = λy(x), x ∈ [a,b],

y(a) = y(b) = 0,

where [a,b] is a finite interval.
In the case of real entries the finite Jacobi matrix is self-adjoint and its eigen-

values are real and distinct. In the complex case the Jacobi matrix is, in general,
no longer self-adjoint and its eigenvalues may be complex and multiple. In [9] the
author introduced the concept of spectral data for finite complex Jacobi matrices
and investigated the inverse spectral problem in which it is required to recover the
matrix from its spectral data. The spectral data consist of the complex-valued eigen-
values and associated normalizing numbers derived by decomposing the resolvent
function (Weyl–Titchmarsh function) into partial fractions using the eigenvalues.
Let R(λ ) = (J−λ I)−1 be the resolvent of the matrix J (by I we denote the identity
matrix of needed dimension) and e0 be the N-dimensional column vector with the
components 1,0, . . . ,0. The rational function



9 Inverse Spectral Problems 151

w(λ ) =−〈R(λ )e0,e0〉=
〈
(λ I− J)−1e0,e0

〉
, (9.5)

introduced earlier in [15], we call the resolvent function of the matrix J, where 〈·, ·〉
denotes the standard inner product in C

N . This function is known also as the Weyl–
Titchmarsh function of J.

Denote by λ1, . . . ,λp all the distinct eigenvalues of the matrix J and by m1, . . . ,mp

their multiplicities, respectively, as the zeros of the characteristic polynomial
det(J−λ I), so that 1≤ p≤ N, m1 + . . .+mp = N, and

det(λ I− J) = (λ −λ1)
m1 · · ·(λ −λp)

mp . (9.6)

We can decompose the rational function w(λ ) into partial fractions to get

w(λ ) =
p

∑
k=1

mk

∑
j=1

βk j

(λ −λk) j ,

where βk j are some complex numbers uniquely determined by the matrix J. For
each k ∈ {1, . . . , p}, the (finite) sequence {βk1, . . . ,βkmk}, we call the normalizing
chain (of the matrix J) associated with the eigenvalue λk.

The collection of the eigenvalues and normalizing numbers

{λk, βk j ( j = 1, . . . ,mk; k = 1, . . . , p)},

of the matrix J of the form (9.1), (9.2) is called the spectral data of this matrix.
The first inverse problem is to reconstruct the matrix using the eigenvalues and

normalizing numbers (spectral data) of the matrix.
Let J1 be the (N− 1)× (N− 1) matrix obtained from J by deleting its last row

and last column:

J1 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

b0 a0 0 · · · 0 0
a0 b1 a1 · · · 0 0
0 a1 b2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . bN−3 aN−3

0 0 0 · · · aN−3 bN−2

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

. (9.7)

Denote by μ1, . . . ,μq all the distinct eigenvalues of the matrix J1 and by n1, . . . ,nq

their multiplicities, respectively, as the roots of the characteristic polynomial
det(J1−λ I) so that 1≤ q≤ N− 1 and n1 + . . .+ nq = N− 1.

The collections

{λk, mk (k = 1, . . . , p)} and {μk, nk (k = 1, . . . ,q)}
form the spectra (together with their multiplicities) of the matrices J and J1, respec-
tively. We call these collections the two spectra of the matrix J.

The second inverse problem (inverse problem about two spectra) consists in the
reconstruction of the matrix J by its two spectra.
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This paper consists, besides this introductory section, of three sections. Sec-
tion 9.2 presents solution of the inverse problem for eigenvalues and normalizing
numbers (spectral data) of the matrix and Sect. 9.3 presents a uniqueness result for
solution of the inverse problem for two spectra. Finally, in Sect. 9.4, we show how
to solve finite Toda lattices subject to the complex-valued initial conditions by the
method of inverse spectral problem.

9.2 Inverse Problem for Eigenvalues and Normalizing
Numbers

Given a Jacobi matrix J of the form (9.1) with the entries (9.2), consider the eigen-
value problem Jy = λy for a column vector y = {yn}N−1

n=0 , which is equivalent to
the problem (9.3), (9.4). Denote by {Pn(λ )}N

n=−1 and {Qn(λ )}N
n=−1 the solutions of

(9.3) satisfying the initial conditions

P−1(λ ) = 0, P0(λ ) = 1; (9.8)

Q−1(λ ) =−1, Q0(λ ) = 0. (9.9)

For each n ≥ 0, Pn(λ ) is a polynomial of degree n and is called a polynomial of
first kind and Qn(λ ) is a polynomial of degree n− 1 and is known as a polynomial
of second kind. These polynomials can be found recurrently from (9.3) using initial
conditions (9.8) and (9.9). The leading terms of the polynomials Pn(λ ) and Qn(λ )
have the forms

Pn(λ ) =
λ n

a0a1 · · ·an−1
+ . . . , n≥ 0; Qn(λ ) =

λ n−1

a0a1 · · ·an−1
+ . . . , n≥ 1. (9.10)

The equality
det(J−λ I) = (−1)Na0a1 · · ·aN−2PN(λ ) (9.11)

holds (see [9, 11]) so that the eigenvalues of the matrix J coincide with the zeros of
the polynomial PN(λ ).

The Wronskian of the solutions Pn(λ ) and Qn(λ ) :

an[Pn(λ )Qn+1(λ )−Pn+1(λ )Qn(λ )],

does not depend on n ∈ {−1,0,1, . . . ,N− 1}. On the other hand, the value of this
expression at n =−1 is equal to 1 by (9.8), (9.9), and a−1 = 1. Therefore

an[Pn(λ )Qn+1(λ )−Pn+1(λ )Qn(λ )] = 1 for all n ∈ {−1,0,1, . . . ,N− 1}.

Putting, in particular, n = N− 1, we arrive at

PN−1(λ )QN(λ )−PN(λ )QN−1(λ ) = 1. (9.12)
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The entries Rnm(λ ) of the matrix R(λ ) = (J−λ I)−1 (resolvent of J) are of the
form

Rnm(λ ) =
{

Pn(λ )[Qm(λ )+M(λ )Pm(λ )], 0≤ n≤ m≤ N− 1,
Pm(λ )[Qn(λ )+M(λ )Pn(λ )], 0≤ m≤ n≤ N− 1,

(9.13)

(see [9, 11]) where

M(λ ) =−QN(λ )
PN(λ )

. (9.14)

According to (9.5), (9.13), (9.14) and using initial conditions (9.8), (9.9), we get

w(λ ) =−R00(λ ) =−M(λ ) =
QN(λ )
PN(λ )

. (9.15)

By (9.11) and (9.6) we have

PN(λ ) = c(λ −λ1)
m1 · · · (λ −λp)

mp ,

where c is a nonzero constant. Therefore we can decompose the rational function
w(λ ) into partial fractions to get

w(λ ) =
p

∑
k=1

mk

∑
j=1

βk j

(λ −λk) j , (9.16)

where

βk j =
1

(mk− j)!
lim
λ→λk

dmk− j

dλmk− j

[
(λ −λk)

mk
QN(λ )
PN(λ )

]
(9.17)

are called the normalizing numbers of the matrix J.
The collection of the eigenvalues and normalizing numbers

{λk, βk j ( j = 1, . . . ,mk; k = 1, . . . , p)}, (9.18)

of the matrix J of the form (9.1), (9.2) is called the spectral data of this matrix.
Determination of the spectral data of a given Jacobi matrix is called the direct

spectral problem for this matrix.
Thus, the spectral data consist of the eigenvalues and associated normalizing

numbers derived by decomposing the resolvent function (Weyl–Titchmarsh func-
tion) w(λ ) into partial fractions using the eigenvalues.

It follows from (9.15) by (9.10) that λw(λ ) tends to 1 as λ → ∞. Therefore
multiplying (9.16) by λ and passing then to the limit as λ → ∞, we find that

p

∑
k=1

βk1 = 1. (9.19)
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The inverse spectral problem for spectral data is stated as follows:

(a) Is the matrix J determined uniquely by its spectral data?
(b) To indicate an algorithm for the construction of the matrix J from its spectral

data.
(c) To find necessary and sufficient conditions for a given collection (9.18) to be

the spectral data for some matrix J of the form (9.1) with entries from class (9.2).

This problem was solved by the author in [9] and we will present here the final
result.

Let us set

sl =
p

∑
k=1

mk

∑
j=1

(
l

j− 1

)
βk jλ

l− j+1
k , l = 0,1,2, . . . , (9.20)

where
( l

j−1

)
is a binomial coefficient and we put

( l
j−1

)
= 0 if j−1 > l. Next, using

these numbers sl , we introduce the determinants

Dn =

∣∣
∣
∣
∣
∣∣
∣
∣

s0 s1 · · · sn

s1 s2 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

∣∣
∣
∣
∣
∣∣
∣
∣

, n = 0,1,2, . . . . (9.21)

Let us bring two important properties of the determinants Dn in the form of two
lemmas.

Lemma 9.1. For any collection (9.18), for the determinants Dn defined by (9.21),
(9.20), we have Dn = 0 for n≥ N, where N = m1 + . . .+mp.

Proof. Given a collection (9.18), define a linear functional Ω on the linear space of
all polynomials in λ with complex coefficients as follows: if G(λ ) is a polynomial
then the value 〈Ω ,G(λ )〉 of the functional Ω on the element (polynomial) G is

〈Ω ,G(λ )〉 =
p

∑
k=1

mk

∑
j=1

βk j
G( j−1)(λk)

( j− 1)!
, (9.22)

where G(n)(λ ) denotes the n-th order derivative of G(λ ) with respect to λ . Let m≥ 0
be a fixed integer and set

T (λ ) = λm(λ −λ1)
m1 · · · (λ −λp)

mp

= tmλm + tm+1λm+1 + . . .+ tm+N−1λm+N−1 +λm+N . (9.23)

Then, according to (9.22),
〈
Ω ,λ lT (λ )

〉
= 0, l = 0,1,2, . . . . (9.24)
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Consider (9.24) for l = 0,1,2, . . . ,N+m, and substitute (9.23) in it for T (λ ). Taking
into account that 〈

Ω ,λ l
〉
= sl , l = 0,1,2, . . . , (9.25)

where sl is defined by (9.20), we get

tmsl+m + tm+1sl+m+1 + . . .+ tm+N−1sl+m+N−1 + sl+m+N = 0,

l = 0,1,2, . . . ,N +m.

Therefore (0, . . . ,0, tm, tm+1, . . . , tm+N−1,1) is a nontrivial solution of the homoge-
neous system of linear algebraic equations

x0sl + x1sl+1 + . . .+ xmsl+m + xm+1sl+m+1 + . . .+ xm+N−1sl+m+N−1

+xm+Nsl+m+N = 0, l = 0,1,2, . . . ,N +m,

with the unknowns x0,x1, . . . ,xm,xm+1, . . . ,xm+N−1,xm+N . Therefore, the determi-
nant of this system, which coincides with DN+m, must be zero. ��
Lemma 9.2. If collection (9.18) is the spectral data of the matrix J of the form (9.1)
with entries belonging to the class (9.2), then for the determinants Dn defined
by (9.21), (9.20), we have Dn �= 0 for n ∈ {0,1, . . . ,N− 1}.
Proof. We have

D0 = s0 =
p

∑
k=1

βk1 = 1 �= 0

by (9.19). Consider now Dn for n∈ {1, . . . ,N−1}. For any n ∈ {1, . . . ,N−1} let us
consider the homogeneous system of linear algebraic equations

n

∑
k=0

gksk+m = 0, m = 0,1, . . . ,n, (9.26)

with unknowns g0,g1, . . . ,gn. The determinant of system (9.26) coincides with the
Dn. Therefore, to prove Dn �= 0, it is sufficient to show that system (9.26) has
only a trivial solution. Assume the contrary: let (9.26) have a nontrivial
solution {g0,g1, . . . ,gn}. For each m ∈ {0,1, . . . ,n} take an arbitrary complex
number hm. Multiply both sides of (9.26) by hm and sum the resulting equation over
m ∈ {0,1, . . . ,n} to get

n

∑
m=0

n

∑
k=0

hmgksk+m = 0.

Substituting expression (9.25) for sk+m in this equation and denoting

G(λ ) =
n

∑
k=0

gkλ k, H(λ ) =
n

∑
m=0

hmλm,
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we obtain
〈Ω ,G(λ )H(λ )〉= 0. (9.27)

Since degG(λ ) ≤ n, degH(λ ) ≤ n and the polynomials P0(λ ),P1(λ ), . . . ,Pn(λ )
form a basis (their degrees are different) of the linear space of polynomials of degree
≤ n, we have expansions

G(λ ) =
n

∑
k=0

ckPk(λ ), H(λ ) =
n

∑
k=0

dkPk(λ ).

Substituting these in (9.27) and using the orthogonality relations (see [9])

〈Ω ,Pm(λ )Pn(λ )〉= δmn, m,n ∈ {0,1, . . . ,N− 1},

where δmn is the Kronecker delta [at this place we use the condition that collec-
tion (9.18) is the spectral data for a matrix J of the form (9.1), (9.2)], we get

n

∑
k=0

ckdk = 0.

Since the polynomial H(λ ) is arbitrary, we can take dk = ck in the last equality and
get that c0 = c1 = . . .= cn = 0, that is, G(λ )≡ 0. But this is a contradiction and the
proof is complete. ��

The solution of the above inverse problem is given by the following theorem
(see [9]):

Theorem 9.3. Let an arbitrary collection (9.18) of numbers be given, where 1≤ p≤
N, m1, . . . ,mp are positive integers with m1 + . . .+mp = N, λ1, . . . ,λp are distinct
complex numbers. In order for this collection to be the spectral data for a Jacobi
matrix J of the form (9.1) with entries belonging to the class (9.2), it is necessary
and sufficient that the following two conditions be satisfied:

(i) ∑p
k=1βk1 = 1;

(ii) Dn �= 0, for n ∈ {1,2, . . . ,N − 1}, where Dn is the determinant defined
by (9.21), (9.20).

Under the conditions (i) and (ii) the entries an and bn of the matrix J for which
the collection (9.18) is spectral data are recovered by the formulae

an =
±√Dn−1Dn+1

Dn
, n ∈ {0,1, . . . ,N− 2}, D−1 = 1, (9.28)

bn =
Δn

Dn
− Δn−1

Dn−1
, n ∈ {0,1, . . . ,N− 1}, Δ−1 = 0, Δ0 = s1, (9.29)

where Dn is defined by (9.21), (9.20) and Δn is the determinant obtained from the
determinant Dn by replacing in Dn the last column by the column with the compo-
nents sn+1,sn+2, . . . ,s2n+1.
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It follows from the above solution of the inverse problem that the matrix (9.1)
is not uniquely restored from the spectral data. This is linked with the fact that the
an are determined from (9.28) uniquely up to a sign. To ensure that the inverse
problem is uniquely solvable, we have to specify additionally a sequence of signs
+ and −. Namely, let {σ0,σ1, . . . ,σN−2} be a given finite sequence, where for each
n∈ {0,1, . . . ,N−2}, the σn is + or−. We have 2N−1 such different sequences. Now
to determine an uniquely from (9.28) for n∈{0,1, . . . ,N−2}we can choose the sign
σn when extracting the square root. In this way we get precisely 2N−1 distinct Jacobi
matrices possessing the same spectral data. The inverse problem is solved uniquely
from the data consisting of the spectral data and a sequence {σ0,σ1, . . . ,σN−2} of
signs + and−. Thus, we can say that the inverse problem with respect to the spectral
data is solved uniquely up to signs of the off-diagonal elements of the recovered
Jacobi matrix.

9.3 Inverse Problem for Two Spectra

Let J be an N×N Jacobi matrix of the form (9.1) with entries satisfying (9.2). De-
note by λ1, . . . ,λp all the distinct eigenvalues of the matrix J and by m1, . . . ,mp

their multiplicities, respectively, as the roots of the characteristic polynomial
det(J−λ I) so that 1≤ p≤ N, m1 + . . .+mp = N, and

det(λ I− J) = (λ −λ1)
m1 · · ·(λ −λp)

mp . (9.30)

Further, let J1 be the (N− 1)× (N− 1) truncated matrix obtained from J by (9.7).
Denote by μ1, . . . ,μq all the distinct eigenvalues of the matrix J1 and by n1, . . . ,nq

their multiplicities, respectively, as the roots of the characteristic polynomial
det(J1−λ I) so that 1≤ q≤ N− 1, n1 + . . .+ nq = N− 1 and

det(λ I− J1) = (λ − μ1)
n1 · · · (λ − μq)

nq . (9.31)

The collections

{λk, mk (k = 1, . . . , p)} and {μk, nk (k = 1, . . . ,q)} (9.32)

form the spectra (together with their multiplicities) of the matrices J and J1, respec-
tively. We call these collections the two spectra of the matrix J.

The inverse problem about two spectra consists in the reconstruction of the
matrix J by its two spectra.

In this section, we reduce the inverse problem for two spectra to the inverse
problem for the spectral data consisting of the eigenvalues and normalizing numbers
solved above in Sect. 9.2 and show in this way that the complex Jacobi matrix is
determined from the two its spectra uniquely up to signs of the off-diagonal elements
of the matrix.
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First let us study some necessary properties of the two spectra of the Jacobi
matrix J.

Let Pn(λ ) and Qn(λ ) be the polynomials of the first and second kind for the
matrix J. By (9.11) we have

det(J−λ I) = (−1)Na0a1 · · ·aN−2PN(λ ), (9.33)

det(J1−λ I) = (−1)N−1a0a1 · · ·aN−2PN−1(λ ). (9.34)

Note that we have used the fact that aN−1 = 1. Therefore the eigenvalues λ1, . . . ,λp

and μ1, . . . ,μq of the matrices J and J1 and their multiplicities coincide with the
zeros and their multiplicities of the polynomials PN(λ ) and PN−1(λ ), respectively.

Dividing both sides of (9.12) by PN−1(λ )PN(λ ) gives

QN(λ )
PN(λ )

− QN−1(λ )
PN−1(λ )

=
1

PN−1(λ )PN(λ )
.

Therefore, by formula (9.15) for the resolvent function w(λ ), we obtain

w(λ ) =
QN−1(λ )
PN−1(λ )

+
1

PN−1(λ )PN(λ )
. (9.35)

Lemma 9.4. The matrices J and J1 have no common eigenvalues, that is, λk �= μ j

for all values of k and j.

Proof. Suppose that λ is a common eigenvalue of the matrices J and J1. Then
by (9.33) and (9.34), we have PN(λ ) = PN−1(λ ) = 0. But this is impossible
by (9.12). ��

The following lemma gives a formula for calculating the normalizing numbers
βk j ( j = 1, . . . ,mk; k = 1, . . . , p) in terms of the two spectra.

Lemma 9.5. For each k ∈ {1, . . . , p} and j ∈ {1, . . . ,mk} the formula

βk j =
a

(mk− j)!
lim
λ→λk

dmk− j

dλmk− j

1
p
∏

l=1,l �=k
(λ −λl)ml

q
∏
i=1

(λ − μi)ni

(9.36)

holds, where

1
a
=

p

∑
k=1

1
(mk− 1)!

lim
λ→λk

dmk−1

dλmk−1

1
p
∏

l=1,l �=k
(λ −λl)ml

q
∏
i=1

(λ − μi)ni

. (9.37)

Proof. Substituting (9.16) in the left-hand side of (9.35) we can write

p

∑
k=1

mk

∑
j=1

βk j

(λ −λk) j =
QN−1(λ )
PN−1(λ )

+
1

PN−1(λ )PN(λ )
.
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Hence, taking into account that PN−1(λk) �= 0, we get

βk j =
1

(mk− j)!
lim
λ→λk

dmk− j

dλmk− j

[
(λ −λk)

mk

(
QN−1(λ )
PN−1(λ )

+
1

PN−1(λ )PN(λ )

)]

=
1

(mk− j)!
lim
λ→λk

dmk− j

dλmk− j

[
(λ −λk)

mk
1

PN−1(λ )PN(λ )

]
. (9.38)

Next, by (9.30), (9.31), (9.33), and (9.34), we have

(−1)Na0a1 · · ·aN−2PN(λ ) =
p

∏
l=1

(λl−λ )ml ,

(−1)N−1a0a1 · · ·aN−2PN−1(λ ) =
q

∏
i=1

(μi−λ )ni.

Substituting these in the right-hand side of (9.38), we obtain

βk j =
a

(mk− j)!
lim
λ→λk

dmk− j

dλmk− j

1
p
∏

l=1,l �=k
(λ −λl)ml

q
∏
i=1

(λ − μi)ni

, (9.39)

where

a = (a0a1 · · ·aN−2)
2.

Thus (9.36) is proved. Next, putting j = 1 in (9.39) and then summing this equa-
tion over k = 1, . . . , p and taking into account (9.19), we get (9.37). The lemma
is proved. ��
Theorem 9.6. (Uniqueness Result). The two spectra in (9.32) determine the matrix
J uniquely up to signs of the off-diagonal elements of J.

Proof. Given the two spectra in (9.32) we uniquely determine the normalizing num-
bers βk j of the matrix J by (9.36), (9.37). Since the inverse problem for the spectral
data (9.18) is solved uniquely up to signs of the off-diagonal elements of the recov-
ered matrix (see Theorem 9.3), the proof is complete. ��

The procedure of reconstruction of the matrix J from the two spectra consists in
the following: If we are given the two spectra in (9.32), we find the quantities βk j

from (9.36), (9.37) and then solve the inverse problem with respect to the spectral
data

{λk, βk j ( j = 1, . . . ,mk; k = 1, . . . , p)}
to recover the matrix J by using formulae (9.28) and (9.29).
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9.4 Solving of the Toda Lattice

The (open) finite Toda lattice is a nonlinear Hamiltonian system which describes
the motion of N particles moving in a straight line, with “exponential interactions”.
Adjacent particles are connected by strings. Let the positions of the particles at time
t be q0(t), q1(t), . . . ,qN−1(t), where qn = qn(t) is the displacement at the moment
t of the n-th particle from its equilibrium position. We assume that each particle
has mass 1. The momentum of the n-th particle at time t is therefore pn = q̇n. The
Hamiltonian function is defined to be

H =
1
2

N−1

∑
n=0

p2
n +

N−2

∑
n=0

eqn−qn+1 .

The Hamiltonian system

q̇n =
∂H
∂ pn

, ṗn =− ∂H
∂qn

becomes

q̇n = pn, n = 0,1, . . . ,N− 1,

ṗ0 =−eq0−q1 ,

ṗn = eqn−1−qn− eqn−qn+1 , n = 1,2, . . . ,N− 2,

ṗN−1 = eqN−2−qN−1 ,

where the dot denotes differentiation with respect to t. Let us set

an =
1
2

e(qn−qn+1)/2, n = 0,1, . . . ,N− 2,

bn =−1
2

pn, n = 0,1, . . . ,N− 1.

Then the above system can be written in the form

ȧn = an(bn+1− bn), ḃn = 2(a2
n− a2

n−1), n = 0,1, . . . ,N− 1, (9.40)

with the boundary conditions

a−1 = aN−1 = 0. (9.41)

If we define the N×N matrices J and A by
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J =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2

0 0 0 · · · 0 aN−2 bN−1

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, (9.42)

A =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0 −a0 0 · · · 0 0 0
a0 0 −a1 · · · 0 0 0
0 a1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 −aN−3 0
0 0 0 · · · aN−3 0 −aN−2

0 0 0 · · · 0 aN−2 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

, (9.43)

then the system (9.40) with the boundary conditions (9.41) is equivalent to the Lax
equation

d
dt

J = [J,A] = JA−AJ. (9.44)

The system (9.40), (9.41) is considered subject to the initial conditions

an(0) = a0
n, bn(0) = b0

n, n = 0,1, . . . ,N− 1, (9.45)

where a0
n, b0

n are given complex numbers such that a0
n �= 0 (n = 0,1, . . . ,N − 2),

a0
N−1 = 0.

In this section we present a procedure for solving the problem (9.40),
(9.41), (9.45) by the method of inverse spectral problem.

Let {an(t),bn(t)} be a solution of (9.40), (9.41) and J = J(t) be the Jacobi matrix
defined by this solution according to (9.42). In [16] it is shown that then the eigen-
values of the matrix J(t), as well as their multiplicities, do not depend on t; however,
the normalizing numbers βk j of the matrix J(t) depend on t and for the normalizing
numbers βk j(t) ( j = 1, . . . ,mk; k = 1, . . . , p) of the matrix J(t) the following time
evolution holds:

βk j(t) =
e2λkt

S(t)

mk

∑
s= j

βks(0)
(2t)s− j

(s− j)!
, (9.46)

where

S(t) =
p

∑
k=1

e2λkt
mk

∑
j=1

βk j(0)
(2t) j−1

( j− 1)!
. (9.47)

Therefore we get the following procedure for solving the problem (9.40), (9.41),
(9.45). We construct from the initial data {an(0), bn(0)} the Jacobi matrix
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J(0) =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

b0(0) a0(0) 0 · · · 0 0 0
a0(0) b1(0) a1(0) · · · 0 0 0

0 a1(0) b2(0) · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3(0) aN−3(0) 0
0 0 0 · · · aN−3(0) bN−2(0) aN−2(0)
0 0 0 · · · 0 aN−2(0) bN−1(0)

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

and determine its spectral data

{λk, βk j(0) ( j = 1, . . . ,mk,k = 1, . . . , p)}.

Then we calculate for each t ≥ 0 the numbers βk j(t) dependent on t by (9.46), (9.47).
Finally, solving the inverse spectral problem with respect to

{λk, βk j(t) ( j = 1, . . . ,mk,k = 1, . . . , p)},

we construct a Jacobi matrix J(t). The entries {an(t), bn(t)} of the matrix J(t) give
a solution of problem (9.40), (9.41), (9.45). We can write the explicit expressions
for an(t), bn(t) through the moments

sl(t) =
p

∑
k=1

mk

∑
j=1

(
l

j− 1

)
βk j(t)λ

l− j+1
k , l = 0,1,2, . . . ,

using (9.21), (9.28), (9.29) (sl in them should be replaced by sl(t)).
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Chapter 10
To Approximate Solution of Ordinary
Differential Equations, I

Tamaz S. Vashakmadze

Abstract This article is dedicated to approximate solution of two-point boundary
value problems for linear and nonlinear normal systems of ordinary differential
equations. We study problems connected with solvability, construction of high order
finite difference and finite sums schemes, error estimation and investigate the order
of arithmetic operations for finding approximate solutions. Corresponding results
refined and generalized well-known classical achievements in this field.

10.1 Introduction: Nonlinear ODE of 2nd Order
with Dirichlet Conditions

We consider the problem of approximate solution (AOS) of two-point boundary
value problems (BVPs) for ordinary differential equations (ODEs) by using
multipoint finite-difference method. Let us divide BVP into two classes. We include
in the first class the problems satisfying the Banach–Picard–Schauder conditions
and in the second class those satisfying the maximum principle. We remark that
the basic apparatus are special spline-functions (named as(P),(Q) formulae which
are the high-order finite elements too) and Cesáro–Stieltjes-type method of finite
sums (see [4]). These results for first class of BVP refined and generalized the
corresponding results of Shröder [2], Collatz, Berezin, and Jidkov, and Quarteroni
et al., Buthcher and Stetter, having first order of convergence and arithmetic op-
erations for finding of AOS of O(n2logn). First order of convergence with respect
to n, where n is the number of subintervals, has the multiple shooting method
(Keller, Osborne, Bulirsch), but the order of AOS is not less than O(n2). For the
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second class, the corresponding results which are cited in the classical textbooks of
Collats, Henrici, Keller, Richtmaier, Engel-Miugler and Router, Berezin and Jidkov,
Marchuk, Kantorovich and Krilov, Strang and Fix, de Boor and recent manuals (e.g.,
of Quarteroni and Buthcher and Stetter, Bulirsch and Stoer, Ascher et al.) may be
formulated in the following form: by finite-difference or FEM methods, the AOSs
converge to exact solutions with no more than fourth order with respect to mesh
width and order of AOS is O(1/ h). Further the high-order-accuracy three-point
schemes were obtained by Tikhonov and Samarski, and Volkov. The constructions
of these models contain unstable processes and the orders of AOSs are no less than
two because an employment of multipoint formulae of numerical differentiation is
necessary for them.

For the first class of BVPs we proved the following statement:

Theorem 10.1. The order of arithmetic operations for calculation of AOS and its
derivative of BVP for nonlinear second-order DE or for system with two equations
of normal form with Sturm–Liouville boundary conditions is O(n log n) Horner unit.
The convergence of the AOS and its derivative has (p - 1) order with respect to mesh
width h = 1/n if exact solution y(x) has (p + 1) order continuously differentiable
derivatives. If the order is less than p, the remainder member of corresponding
scheme has the best constant in Sard’s sense.

Proof. For the proof of this theorem, let us consider second-order nonlinear ODE

y′′(x) = f (x,y(x),y′(x))(0 < x < 1), (10.1)

for simplicity with the following boundary conditions:

y(0) = α,y(1) = β . (10.2)

Let us consider a uniform step h = (2ks)−1 (p = 2s+1 = 3,5,7) or Gauss’ (p =
2s+3) partion of interval [0,1]. In the last case subinterval (x(t−1)(s+1)+1,xt(s+1)+1)
(t = 1,2, . . . ,2k− 1) are divided into s parts such that knots are s degree Legendre
polynomial zeroes distributed here.

Now we use the approach of [5] (Chap. 3, point 13.1), which represents the sum-
mary analogous of Green formula in the netpoints expressions presenting linear
form with respect to y′′(xi), reminder terms and y(0) and y(1). Introducing artifi-
cial parameter z, which is equal to s for a uniform mesh and s+ 1 if the mesh is
Gaussian, we have the following general representation:

y(t−1)z+i = α(t−1)z+iy(0)+β(t−1)z+iy(1)+σ(t−1)z+i, (10.3)

when t = 1,2, . . . .,2k − 2 then i = 2,3, . . . ,z + 1; when t = 2k − 1 then i =
2,3, . . . .,2z. Here

α(t−1)(s+1)+i =
2k− 2kxi− t + 1

2k
,β(t−1)(s+1)+i =

2kxi + t− 1
2k

,

Φ (x)≡ y′′ (x)−R′′2z (x;y) ,
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σ(t−1)z+i = (1− kxi)σ(t−1)z+1 + kxiσ(t+1)z+1 +

2z

∑
j=2

bi j

(
y′′(t−1)z+ j−R′′2z

(
x(t−1)z+ j;y

))
,

σtz+1 =
t
k
σkz+1 +

t
k− 1

Σ [k−1] + . . . ..+
t

t + 1
Σ [t+1] +Σ [t], t < k,

σtz+1 =
2k− t

k
σkz+1 +

2k− t
k− 1

Σ [k+1] + . . . ..+
2k− t

2k− t+ 1
Σ [t−1] +Σ [t], t > k,

σkz+1 =
k−1

∑
t=1

t
2z

∑
j=2

bz+1, jΦ(t−1)z+ j + k
2s

∑
j=2

bz+1, jΦ(t−1)z+ j+

k−1

∑
t=1

t
2s

∑
j=2

bz+1, jΦ(2k−1−t)z+ j,

Σ [t] =
2

t + 1

t

∑
i=1

i
2z

∑
j=2

bz+1, jΦ(i−1)z+ j,Σ [2k−t] =
2

t + 1

t

∑
i=1

i
2z

∑
j=2

bz+1, jΦ(2k−i−1)z+ j.

These formulae are equivalence of the following recurrence relations:

ykz+1 =
1
2

y(0)+
1
2

y(1)+σkz+1; (10.4)

ytz+1 =
t

t + 1
y(t+1)z+1 +

1
t + 1

y(0)+Σ [t], t < k; (10.5)

ytz+1 =
2k− t

2k− t+ 1
y(t−1)z+1 +

1
2k− t + 1

y(1)+Σ [t], t > k; (10.6)

y(t−1)z+i = (1− kxi)y(t−1)z+1 + kxiy(t+1)z+1 +
2z

∑
j=2

bi jΦ(t−1)z+ j. (10.7)

If we neglect the remainder members in these (10.3) or (10.4)–(10.7) expressions
it is possible to use immediately a simple iteration method. But here arisen two
problems:

1. Let us define high-accuracy scheme for slopes too; if we use the high-order
schemes of numerical differentiations, these processes are unstable in ordinary
sense.

2. Construction of the following approximation by scheme (10.3) having an AOS
of O(n lnn), (n = 2kz).

Let us investigate the first problem. For this we used in the interval
(x(t−1)z+1,x(t+1)z+1) by (Q)-special splines ([4], p. 160) and formula (10.4)–(10.7)
which give

y′(k−1)z+i = k[y(k+1)z+1− y(k−1)z+1]− k
2z

∑
j=2

ci jy
′′
(k−1)z+ j−ρ2z−2,(k−1)z+i, (10.8)
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where ci j are known coefficients, ρ2z−2,(k−1)z+i are the remainder members and
i = 1,2, . . . ,2z+ 1. (10.8) contains the first-order differences, for which from
(10.4)–(10.7) immediately follows

y(k+1)z+1− y(k−1)z+1 =

1
k
[y(1)− y(0)]+

2
k

k−1

∑
r=1

r
2z

∑
j=2

bz+1, j
[
Φ(2k−r−1)z+ j−Φ(r−1)z+ j

]
.

(10.9)

The construction of (10.8)-type formula corresponding to xtz=i ∈ [0,1]/
(x(t−1)z+1,
x(t+1)z+1) netpoints is easy, but they define unstable processes. In this connection let
us consider two Cauchy problems:

y′1(x) = f (x,λ (x),y1(x)), l1 ≤ x≤ 1, (10.10)

y1(l1) = γ;

y′1(x) = f (x,μ(x),y1(x)), l2 ≥ x≥ 0, (10.11)

y1(l2) = δ ,

where x(k−1)z+1 = l1,xk−1)z+1 = l2,y′(x) = y1(x).
Let us consider (10.3) or (10.4)–(10.7) and (10.8) and to initial value prob-

lems (10.10) and (10.11). Such expressions approximate the (10.1) and (10.2)
BVP. For remainder vector we have explicit expressions. Now we choose the AOS

and slopes (ApS and Sl), so let us have two sequences (y[0]1 ,y[0]2 , . . . ,y[0]2kz,y
[0]
2kz+1)

T

and (y′[0]1 ,y′[0]2 , . . . ,y′[0]2kz,y
′[0]
2kz+1)

T , by which using (10.4)–(10.7) and (10.8), we find
the first approximations of ApS in each netpoints of (0,1) and slopes on the net-
points of interval (x(t−1)z+1,x(t+1)z+1). To define slopes in the other netpoints, we
use Hermite–Gauss numerical processes [4] for initial value problems of (10.10)
and (10.11); the functions λ (x) , μ (x) in discrete points will be same with ApS
defined by the first approximation; for the initial table for slopes, we use the
expressions (10.8) without the reminder terms. Continuing this process we shall

find y[m]
i ,y′[m]

i , m = 2,3, . . . .
Now we consider the problem (ii). It is evident that from schemes (10.3) the

calculation of each ytz+1 value request AOS of order O(n) multiplications, as well
as for all ytz+1, is equal to O

(
n2
)
. We will have different results if we use (10.4)–

(10.7) schemes. They represent the recurrence-type relations and for approximate
calculation of any ordinate corresponding to central points xtz+1request no more
than five operations, because we know that sums ∀ ∑[t], t �= k are subsumes of σkz+1.
For other ordinates if we apply (10.7), they request no more than 2z+1 AOS. Since
the process of solution is realized for finite z and variable k, AOS of finding AOS
for each step of iteration is O(n) = O(k). The same results are true while finding
the slopes corresponding to netpoints x(k−1)z+i. This fact is stipulated by (10.8). For
Cauchy problems (10.10) (10.11) when high-order finite-difference method is used
for them, it is evident that the order of AOS is O(n).
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The remainder member of corresponding scheme has the best constant in Sard’s
sense. For simplicity and clearness let p = 5, and then when i = 3, main part of the
(P)-formulae, we have

y(2h) =
1
2
(y(0)+ y(4h))− 1

2

∫ 2h

0
t
(
y′′(t)+ y′′(4h− t)

)
dt,

∫ 2h

0
t
(
y′′(t)+ y′′(4h− t)

)
dt =

∫ 2h

0
Φ(t)dt =

4h2

3

[
y′′(h)+ y′′(2h)+ y′′(3h)

]
+
∫ 2h

0
Fr(t)Φ(r)(t)dt,

where Fr(t) is a well-known piecewise polynomial of degree r and corresponds
to Simpson’s rule in the interval (0,2h) (according to Sard’s technology). Then, for
i= 3, from (P)-type formulae follows Sard-type best constant estimation of arbitrary
r ≤ p+ 1. It is evident that this scheme is typical and the same results are true for
all (P) formulae corresponding to central netpoints for uniform p ≤ 7 or all z ≥ 3
for Gaussian grid. ��
The process of defining by representations (10.3)–(10.9) for AOS of (10.1)–(10.2) is
realized by two independent parallel procedure, as well as for definition of ordinates
for noncentral points xtz+i, i �= 1 may be used by computers with k multiprocessors.
The slope finding processes are automatically parallel procedure as Cauchy prob-
lems (10.10) and (10.11) must be solved in different intervals (x(k+1)z+1,0)

1 and
(x(k−1)z+1,1). The initial table for slopes is defined by (10.8) on 2z+ 1 knots.

10.2 Linear 2nd Order ODE of Self-adjoint Type

According to [4], for the numerical solution of BVP,

−(Au+ qu)=
d
dt

(
k (t)u′ (t)

)−q(t)·u(t) = f (t) , k > 0, q≥ 0, 0< t < 1, (10.12)

u(0)− k1u′ (0) = α,u(1)+ k2u′ (1) = β ,(ki ≥ 0) . (10.13)

The method of any order of accuracy, depending on the order of the smoothness
of the unknown solution u(t), will be given below. These numerical schemes are
contained as particular case of the corresponding results presented in [1, Chap. 2,
point 2.2].

Preliminarily we shall put the auxiliary formula. They are generalized (P)
and (Q) formulae of [4, Sect. 13.1]. Thus we suppose that u(t) ∈ C(p+1) (0,1) ,
p = 2s+ 1.

1 Here, please note that the notation (x(k+1)z+1,0) underlines that the corresponding Cauchy prob-
lem solved from the initial point x(k+1)z+1 to the point zero.
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(P) formulae have a form (the notation here and below are borrowed from [4,
Sect. 13]):

u(ti) = α p,1
i (k)u(t1)+β p,1

i (k)u(ti+s)−
p−1

∑
j=2

bp,1
i j (k) [Au(t j)−Rp−1 (ti)] , (10.14)

where

bp,1
i, j (τ) =

1
τp− τ1

[
(τp− τ1)

∫ τi

τ1

dt
∫ t

τ1

l j (t)dt− (τi− τ1)
∫ τp

τ1

dt
∫ t

τ1

l j (t)dt

]
,

i, j = 2,3, . . . , p− 1, τi =

∫ tp

ti
k−1(t)dt,

α p,1
i (k) =

(∫ tp

t1
k−1 (t)dt

)−1

·
∫ tp

ti
k−1 (t)dt,β p,1

i (k) = 1−α p,1
i (k) ,

l j (t) =
p−1

∏
i = 2
j �= i

t− ti
t j− ti

.

(Q) formulae are presented as follows:

u′ (ti) =γ p,1
i (k) [u(tp)− u(t1)]+

p−1

∑
j=2

cp,1
i, j (k)Au(t j)+

∫ τp

τ1

dt
∫ t

τi

k (t)Arp−3 (t)dt, i = 1,2, . . . , p,
(10.15)

cp,1
i, j (τ) =

∫ τp

τ1

dt
∫ t

τi

l j (t)dt,(i = 1,2, . . . , p, j = 2,3, . . . , p− 1) ,

γ p,1
i (k) = 1/(τ1k(ti)) .

Now let ωh designate the net area as: ωh = {0 = t1, t2, . . . , tn, tn+1 = 1;
hi = ti− ti−1}. As bounding points of the net ωh we shall name those ti knots, for
which i ≤ s+ 1 or i≥ n− s+ 1. For relation (10.14) for bounding points it follows
that

u(ti) = α i+s,1
i (k)u(0)+β i+s,1

i (k)u(ti+s)−
2s

∑
j=2

bi+s,1
i, j (k)k (t j)Au(t j)+O

(
h2s+1) , i≤ s+ 1;

(10.16)
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u(ti) = αn+1,i−s
i (k)u(ti−s)+β n+1,i−s

i (k)u(1)−
2s

∑
j=2

bn+1,i−s
i, j (k)k (t j)Au(t j)+O

(
h2s+1) .

(10.17)

The above relations permit to receive expressions of the following form:

u(ti) =
αi

1+ k1γ1

[
u(0)− k1u′ (0)

]
+
βi + k1γ1

1+ k1γ1
u(ti+s)−

2s

∑
j=2

(
bi+s,1

i, j (k)− k1αi

1+ k1γ1
ci, j

)
k (t j)Au(t j)+O

(
h2s+1) , i≤ s+ 1,

(10.18)

u(ti) =
βi

1+ k2γn+1

[
u(1)+ k2u′ (1)

]
+
αi + k2γn+1

1+ k2γn+1
u(ti−s)−

n

∑
j=n−2s+1

(
bi+s,1

i, j (k)− k2βiγn+1

1+ k2γn+1
cn+1, j

)
k (t j)Au(t j)+O

(
h2s+1) , i≥ n− s+ 1.

Here and below, in the coefficients, the top indexes and the dependence of factors
on the function k (t) are omitted. In addition the designation h = maxi (ti+1− ti)
is introduced. A feature of the formulae (10.18) is that the right parts contain the
same expression (from conditions (10.14)), as data of initial problem. Obviously,
the approach of construction of the formulae of a type (10.18) allows generalization
for other conditions.

Let ti − ti− j = ti+ j − ti, (s+ 2≤ i≤ n− s). Then the residual member of the
formula (10.14) allows
the valuation:

∣∣
∣
∣
∣

i+s−1

∑
j=i−s+1

bi, j (k)ARp−1 (t j)

∣∣
∣
∣
∣
< c1Mp+1hp+1,Mp+1 = max

(0,1)

∣
∣
∣u(p+1) (t)

∣
∣
∣ .

For interior knots ti ∈ ωh from expression (10.14) follows:

u(ti)=αiu(ti−s)+βiu(ti+s)−
i+s−1

∑
j=i−s+1

bi, j (k)Au+O
(
h2s+2) , i≥ n−s+1. (10.19)

If now in the formulae (10.19) we replace the expression Au by qu + f and
then omit the remainder term, we shall obtain algebraic system of linear equations,
the solution of which shall be designated through ui, (i = 2,3, . . . ,n) . The matrix
appropriate to this system is a multi-diagonal matrix depending on s. For the solu-
tion of such systems it is easy to apply the classical factorization method, which is
done below.
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For convenience we shall rewrite the system of equations concerning the values
ui, received from (10.18), as:

ui =
βi + k1γ1

1+ k1γ1
ui+s +

2s

∑
j=2

di ju j +Fi, i = 2,3, . . . ,s+ 1, (10.20)

ui = αiui−s+βiui+s +
i+s−1

∑
j=i−s+1

di ju j +Fi, i = s+ 2, . . . ,n− s, (10.21)

ui =
αi + k2γn+1

1+ k2γn+1
ui−s +

n

∑
j=n−2s+1

di ju j +Fi, i = n− s+ 1, . . . ,n, (10.22)

where, for example,

Fi =
αi

1+ k1γ1
α+

2s

∑
j=2

di j f (t j) , i≤ s+ 1.

The first s of the formulae give the following recurrence expression:

ui = Aiui+s +
2s

∑
j = i+ 1
j �= i+ s

Ai ju j +Bi, i = 2,3, . . . ,s+ 1, (10.23)

where
Ai j =

ei j

1− ei j
, j = i+ 1, . . . ,2s, j �= i+ s,

Ai = Ai,i+s =
βi + k1γ1

(1− eii)(1+ k1γ1)
,

eii = di j +
i−1

∑
k=2

dik

i−1

∑
l=k

Ai j

l−1

∏
m=k

Am,m+1,
l−1

∏
m=k

·= 1, k > l− 1, (10.24)

Bi =
Fi +∑i−1

k=2 dik∑i−1
l=k Bl ∏l−1

m=k Am,m+1

1− eii
, i = 2,3, . . . .,s+ 1.

Let i be the number of any internal point of the net areaωh. Then from expres-
sions (10.20)–(10.24) follows:

ui = Aiui+s +
i+s−1

∑
j=i+1

Ai ju j +B j, i = s+ 2, . . . ,n− s, (10.25)

where
Ai j =

ei j

1− ei j
, j = i+ 1, . . . ,2s, j �= i+ s,
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Ai = Ai,i+s =
βi

(1− eii)

eii = di j +
i−1

∑
k=i−s+1

dik

i−1

∑
l=k

Al j

l−1

∏
m=k

Am,m+1 + diAi−s, j, (10.26)

Bi =
Fi +∑i−1

k=i−s+1 dik∑i−1
l=k Bl ∏l−1

m=k Am,m+1 + diBi−s

1− eii
, i = 2,3, . . . .,s+ 1.

The values ui, i = n− s+ 1, . . .,n satisfy the following equalities:

ui =
i+s−1

∑
j=i+1

Ai ju j +Bi, i = n− s+ 1, . . .,n− 1, (10.27)

where

Ai j =
ei j

1− ei j
, j �= i+ s,Ai = Ai,i+s =

βi

(1− eii)
(10.28)

eii = di j +
i−1

∑
k=i−s+1

dik

i−1

∑
l=k

Al j

l−1

∏
m=k

Am,m+1 +
αi + k2γn+1

1+ k2γn+1
Ai−s, j,

Bi =
Fi +∑i−1

k=i−s+1 dik∑i−1
l=k Bl ∏l−1

m=k Am,m+1 +
αi+k2γn+1
1+k2γn+1

Bi−s

1− eii
.

At last, the value un is defined explicitly:

un = Bn, (10.29)

Bn =
Fn +

αn+k2γn+1
1+k2γn+1

Bn−s +∑n−1
k=n−s+1 dnk∑n−1

l=k Bl ∏l−1
m=k Am,m+1

1− enn
,

enn = dnn +
n−1

∑
k=n−s+1

dnk

n−1

∑
l=k

Aln

l−1

∏
m=k

Am,m+1 +
αn + k2γn+1

1+ k2γn+1
An−s,n. (10.30)

Let αi and βi satisfy the following bilateral inequalities:

1
s
< βi,αn+1−i <

1
2
, i = 2,3, . . . ,s+ 1,

1− c3h2 < αiβ−1
i < 1+ c4h2, c3,c4 > 0, i = s+ 2, . . . ,n− s,

where c3 and c4 are constants. Obviously, these inequalities are true with
the appropriate choice of h [see expressions for α and β in (10.14)]. Then
from (10.24), (10.28), and (10.30) follows:

Ai j < (1− c5h) max
i≤s+1

{Ai,As+2} , Bi < c6α+ c7β + c8 max
j

∣
∣ f (t j)

∣
∣ , (10.31)

where nonnegative constants c5, c6, c7, and c8 do not depend on h.
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The conditions (10.31) are the definition of stability of computing process by for-
mulae (10.25) and (10.27) concerning to initial data and the right part accordingly.
The stability of process (10.23), (10.25) and (10.27) for calculation of values ui is
also obvious, as the appropriate operator corresponding to these expressions is an
operator of compression. From the above-stated formulae it follows that the method
of generalized factorization is optimum, as the number of arithmetic operations nec-
essary for calculation of AOS ui is directly proportional to the number of points of
the net area ωh.

Finally we remark that when k(t) ≡ 1, p = 3 we have the classical cases. For
p = 4, 5 and k(t)≡ 1 these schemes are different from well-known Strang and Fix
unstable FEMs [3].

10.3 Nonlinear ODE of 2nd Order with Newton’s Conditions

Now we consider more general case when we have nonlinear differential equation
with Newton’s boundary conditions

u′′(x) = f (x,u(x),u′(x)),0 < x < 1, −M < u, u′ < M, (10.32)

k1u(0)− u′(0) = α,k2u(1)+ u′(1) = β ,k2
1 + k2

2 > 0, (ki ≥ 0) . (10.33)

Here we use some expressions from the first two parts and construct one parametri-
cal class of schemes which are equivalence of BVP (10.32)–(10.33).
Let us give the partition of [0,1] as a uniform if z ≤ 8 and arbitrary z if a grid is
Gaussian. Then for the central knots we have

utz+1 =
1
2

u(t−1)z+1 +
1
2

u(t+1)z+1 +At , t = 2,3, . . . ,k− 1, (10.34)

where At = ∑2z
j=2 bz+1, ju′′(t−1)z+ j +O

(
hp+1

z−s

)
.

By using formulae of type (10.18) we have

uz+1 =
1
2

1
k+ k2

(k1u(0)− u′(0))+
1
2

2k+ k1

k+ k1
u2z+1 +A1, (10.35)

u(2k−1)z+1 =
1
2

1
k+ k2

(k2u(1)+ u′(1))+
1
2

2k+ k2

k+ k2
u(2k−2)z+1 +A2k−1, (10.36)

where

A1 =
2z

∑
j=2

(bz+1, j− k2 xz+1

k+ k1
c1, j)u

′′
j +O

(
hp+1

z−s

)
,

A2k−1 =
2kz

∑
i=2(k−1)z+2

(
bz+1, j− k2 xz+1

k+ k2
c2z+1

)
u′′j +O

(
hp+1

z−s

)
.
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Now if we multiply the expressions (10.34) by unknown numbers αi(i = 1, . . . ,
2k− 1) and select these numbers so that the following ratios were executed:

ukz+1 =
2+ k2

2(k1 + k2 + k1k2)
α+

2+ k
2(k1 + k2 + k1k2)

β +σkz+1, (10.37)

σkz+1 =
1

k1 + k2 + k1k2

[

(2+ k2)
(
(k+ k1)A1 +

k−1

∑
i=2

(2k+ ik1)Ai +
1
2
(2+ k1)Ak

)
+

(2+ k1)
(1

2
(2+ k2)Ak +

k−1

∑
i=2

(2k+ ik2)A2k−i +(k+ k2)A2k−1

)
]

utz+1 = (2k+(t + 1)k1)
−1α+(2k+(t+ 1)k1)

−1(2k+ tk1)u(t+1)z+1 +Σ [t],

where

Σ [t] = 2(2k+(t+ 1)k1)
−1

[

(k+ k1)A1 +
t

∑
i=2

(2k+ ik1)Ai

]

, t = 1,k− 1

u(2k−t)z+1 =
β

2k+(t + 1)k2
+

2k+ k1

2k+(t + 1)k1
u(2k−t+1)z+1 +Σ [2k−t], t = 1,k− 1

Σ [2k−t] =
2

2k+(t + 1)k2

[

(k1 + k2)A2k−1 +
t

∑
i=2

(2k+ ik2)Ai2k−i

]

, t = 1,2k− 1.

From expressions (10.37), after some calculations, follows

utz+1 =
2k+(2k− t)k2

2k(k1 + k2 + k1k2)
α+

2k+ tk1

2k(k1 + k2 + k1k2)
β +σtz+1, t = 1,2k− 1, (10.38)

where

σtz+1 =
2k+ tk1

2k+ kk1
σkz+1 +

k−1

∑
j=t

2k− tk1

2k+ jk1
Σ [ j],

σ(2k−1)z+1 =
2k+ tk2

2k+ kk2
σkz+1 +

k−1

∑
j=t

2k+ tk2

2k+ jk2
Σ [2k− j].

Now from (10.14) and (10.38) for u(t−1)z+i(i �= z+ 1) follows

u(t−1)z+i =
2k+(2k− 2kxi− t + 1)k2

2k(k1 + k2 + k1k2)
α+

2k+(2kxi+ t− 1)k1

2k(k1 + k2 + k1k2)
β +σ(t−1)z+i,

(10.39)



176 T.S. Vashakmadze

where

σ(t−1)z+i = (1− kxi)σ(t−1)z+1 + kxiσ(t+1)z+1 +
2s

∑
j=2

bi jΦ(t−1)z+n,

t = 2,2k− 1, i = 2,z+ 1.

If we use the formulae of type

ui = k
x2z+1− xi

k+ k1
α+ k

1+ xik1

k+ k1
y2z+1 +

2s

∑
j=2

(
bi j− k2 x2z+1− xi

k+ k1
ci j

)
u′′j +O(hp

z−s)

u2kz+1−i = k
x2z+1

k+ k2
β + k

1+ xik2

k+ k2
y(2k−1)z+1+

2s

∑
j=2(k−1)z+2

(
b2z+2, j + k2 x2z+1− xi

k+ k2
c2z+1 j

)
u′′j +O(hp

z−s)

for boarding points xi,1−xi, (i = 2,z) analogously to the last formulae we will have

ui =
1+(1− xi)k2

k1 + k2 + k1k2
α+

1+ xik1

k1 + k2 + k1k2
β +σi, (10.40)

u2kz+1−i =
1+ xik2

2(k1 + k2 + k1k2)
α+

1+(1− xi)k1

2(k1 + k2 + k1k2)
β +σ2kz+1−i, (10.41)

where

σi =
k+ xikk1

k+ k1
σ2z+1 +

2z

∑
j=2

(
bi j− k2

x2z+1− xi

k+ k1
ci j

)
u′′j +O(hp

z−s),

σ2kz+1−i =
k+ xikk2

k+ k2
σ2(k−1)z+1+

2kz

∑
j=2(k−1)z+2

(
b2z+2−i, j + k2 x2z+1− xi

k+ k2
c2z+1, j

)
u′′j +O(hp

z−s).

The expressions (10.38)–(10.41) are difference analogue of Green’s function for
any arbitrary (fixed) degree of exactness with respect to mesh wide. To these expres-
sions, the finite-difference-type formulae with respect to slopes should be added.
As in the first part we use the same scheme for slopes and in this case we have

u′(k−1)z+i =
k1β − k2α

k1 + k2 + k1k2
+σ ′(k−1)z+i[ f ], (10.42)
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σ ′(k−1)z+i =
2

(k1 + k2 + k1k2)

{

k1

[
(2+ k21)Ak +

k−1

∑
i=2

(2k+ ik2)A2k−i+

(k+ k2)A2k−1

]
−k2

[1
2

k(2+ k1)Ak +
k−1

∑
i=2

(2k+ ik1)Ai +(k+ k1)A1

]
}

−

k
2z

∑
j=2

ci ju
′′
(k−1)z+ j +O(hp−1),

and as above the Cauchy problems:

u′1(x) = f (x, λ (x), u1(x)), l1 ≤ x≤ 1,u1(l1) = γ, l1 = x(k−1)z+1,

u′1(x) = f (x, μ(x), u1(x)), l2 ≥ x≥ 0,u1(l2) = δ , l2 = x(k+1)z+1.

Now we return to study the problem (10.32)–(10.33) and introduce the following
values:

ω1 =
1
8
+

1
4(k1 + k2 + k1k2)

(

4+ k1+ k2 +
(k2− k1)

2

k1 + k2 + k1k2

)

,

ω2 =
1

2(k1 + k2 + k1k2)
(k1k2 + 2max{k1,k2}) , (10.43)

ω ′2 =
1
2
− k1k2

4(k1 + k2 + k1k2)
,ω = max

{
ω2,ω ′2

}
.

The above expressions of this part and the methodology of first part give possibility
to prove the truthiness of following theorems:

Theorem 10.2. Let the function f (x,u(x) ,u′ (x)) be continuous with respect to x
and satisfy a Lipschitz’s condition relative to u and u′ with constants L and L′,
respectively; in addition, let one of two conditions be executed:

ω
(
L+L′

)
< 1,ω1L+ω2L′ < 1. (10.44)

Then the initial problem has the unique solution which can be constructed by an
iterative method.

Proof. The proof of this theorem coincides with the scheme of the proofs of Theo-
rems 13.2 and 13.3 in [4]. ��

Now in the formulae of the type (10.38)–(10.42), we omit the remainder terms.
We get the expressions for construction of the initial table. We shall replace the
Cauchy problem by the multistage methods. We shall name the resulting system as
the difference scheme.
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Theorem 10.3. For the problem (10.32)–(10.33), let one of the conditions (10.44)
be true. Then:

1) The difference scheme has a unique solution and the iteration method converges.
2) As in the case of the uniform grid (p = 3, 5, 7) and in the case of Gaussian grid

(p > 3), convergence of the solution of algebraic analogue to the solution of a
problem (10.1)–(10.2) and its derivative have (p− 1)-degree with respect to h.

Proof. The proof of this theorem coincides with the scheme of the proof of Theorem
13.4 in [4]. ��
Theorem 10.4. The number of arithmetic operations which is necessary for the cal-
culation of AOS u(x) and its derivative u′ (x) is O(k lnk).

Proof. A proof of this theorem as in the first part is based on the specific character
of sums σtz+1. If we calculate σkz+1, then σtz+1 ∀t �= k will be calculated, as it is
contained in σkz+1 as subsums. ��

10.4 The BVPs of Normal Type System of ODEs

Now we consider the BVP for system of DEs of normal form:

y′ (x) = f (x,y(x)) ,y = (y1,y2, . . . ,y2m)
T ,0 < x < 1, (10.45)

with boundary conditions:

yi(0) = li[y(0)]+αi, i = 1,2, . . .n,yi(1) = ln+i[y(1)]+βi, i = 1,2, . . . ,2m− n,
(10.46)

where I− liand I− li+n are the matrix operators with ranks of n and 2m−n, respec-
tively. Below we consider the case when the BVP (10.45)–(10.46) belongs to the
first class, satisfying the Banach–Picard–Schauder-type conditions.

Let us consider the following three problems:

y′(x) = f (x,y(x)) ,0 < x < l,yi(0) = li[y(0)]+αi,

yn+ j(0) = ᾱ j( j = 1,2, . . . ,2m− n;
(10.47)

y′(x) = f (x,y(x)) , l < x < 1− l, yi (l) = ai, yi (1− l) = bi, i = 1,2, . . . ,2m;
(10.48)

y′(x) = f (x,y(x)) ,1− l < x < 1,yi(1) = ln+i[y(1)]+βi,

y j(1) = β̄ j, j = 2m− n+ 1, . . .,2m.

(10.49)

Here we count that 0< l < 1/2; numbers ᾱ, β̄ , a, b will be defined below when we
consider the processes of investigation of above problems.
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The scheme of AOS of these problems by iteration is such: we solve at first ( i−),
(i+) as Cauchy problems (s is the number of iterations):

y′[s](x) = f
(

x,y[s](x)
)
, 0 < x < l,

y[s]i (0) = li[y(0)]+αi, y[s]n+ j(0) = ᾱ j, j = 1,2, . . . ,2m− n;

y′[s](x) = f
(

x,y[s](x)
)
, 1− l < x < 1,

y[s]i (1) = ln+i[y
[s](1)]+βi, y[s]j (1) = β̄ j, j = 2m− n+ 1, . . .,2m.

Then we solve the following BVP:

y′[s](x) = f
(

x,y[s](x)
)
, l < x < 1− x,

y[s]i (l) = ai, y[s]i (1− l) = bi, i = 1,2, . . . ,2m,

by which we define new initial values in the points l, 1− l and solve two Cauchy
problems into intervals (l,0), (1− l,1); we denote these solutions as y[s+1](x), l >
x≥ 0 and y[s+1](x), 1− l < x≤ 1. By these values we define the following iteration
relative to conditions (10.46):

y[s+2]
i (0) = li[y

[s+1](0)]+αi,y
[s+2]
n+i (0) = y[s+1]

n+i (0);

y[s+2]
i (1) = ln+i[y

[s+1](1)]+βi, y[s+2]
j (1) = y[s+1]

j (1),

solve again two Cauchy problems in intervals (0, l), (1, 1− l) and so on.
For solution of the BVP type (ii) we construct the scheme which will be same

with the method which we considered in parts 1 and 3.
Let us separate (l, 1− l) interval into 2k subintervals, each of them we divide

into z parts. Thus, as above we have : xtz+i+1 = xtz+i +hi, t = 0,1,2, . . . ,2k−1, i =
1,2, . . . ,z, hi > 0 are mesh widths. In such case from (ii) follows

y(xtz+1) =
1
2

(
y
(
x(t−1)z+1

)
+ y

(
x(t+1)z+1

))
+

+
1
2

z

∑
j=2

bz+1, j
(

f (x(t−1)z+ j,y
(
x(t−1)z+ j

)− f (xtz+ j,y(xtz+ j)
)
+O

(
h2z−2)

(10.50)

if z ≥ 5,h = maxhi,bz+1,Jare weights of quadrature formulae Gauss or Clenshaw–
Curtis type. When z ≤ 4 more preferable ones are a uniform grid and trapezoid,
Simpson’s and of 3/8 rules (Newton–Cotes formula with four nodes) as so we
have

y(xt+1) =
1
2
(y(xt)+ y(xt+2))+

h
2
( f (xt ,y(xt)− f (xt+2,y(xt+2))+O(h4),
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y(x2t+1) =
1
2 (y(x2t−1)+ y(x2t+3))+

h
3 ( f2t−1− f2t+3 + 4( f2t− f2t+2))+O

(
h6
)
,

(10.51)

y(x3t+1) =
1
2 (y(x3t−2)+ y(x3t+4))+

3h
8 ( f3t−2− f3t+4 + 3( f3t−1 + f3t − f3t+2− f3t+3))+O

(
h6
)
.

As we see the expressions (10.50) and (10.51) have a form by which it is easy
to construct direct relations of type (10.3) or recurrence expressions of kind (10.4)–
(10.6). Instead of the formula (10.7) for Gaussian grid we have

y(xtz+i) =
1
2

(
y
(
x(t−1)z+1

)
+ y

(
x(t+1)z+1

))
+

1
2

2z+1

∑
j=1

bi j
(

f (x(t−1)z+ j,y
(
x(t−1)z+ j

))
+O

(
h2z+2) ,

where bi j, i = 1,2, . . . ,z are weights of quadrature formulae following from expres-
sions of type (10.50) with respect to knots xtz+i. Similarly, as early as we saw in
parts 1 or 3, the AOS of finding ApS for each step of iteration would be O(k).

When the grid is uniform for all points, it is possible to construct relations of
type (10.4)–(10.6) by enlarging the network in left and right sides no more than at
two knots.

With respect to problems of solvability, error estimation, and convergence we
must study the members of σtz+i type [see (10.4)–(10.7)]. For decision of this ques-
tion typical and most important is the case when t = k. If we denote here the corre-
sponding member as early as we have

σkz+1 =
1
2

k−1

∑
t=1

t(At+1 +A2k−t+1)+ kBk+1,

Bt =
1
2

z

∑
j=2

bz+1, j
(

f
(
x(t−1)z+ j,y

(
x(t−1)z+ j

))− f (xtz+ j,y(xtz+ j))
)
.

(10.52)

If we consider (10.52) for differences δ f = f (x,y(x)) − f (t,y(t) in the paral-
lelepiped D = (l, i− l)×∏2m

i=1(−Y < yi < Y ) , we have:

|δ fi| ≤ 1
2k

M,M = max
i

sup
D

[∣
∣
∣
∣
∂ fi

∂x

∣
∣
∣
∣+

2m

∑
j=1

∣
∣
∣
∣ f j

∂ fi

∂y j

∣
∣
∣
∣

]

and |σkz+1| ≤ 1− 2l
8

M.

We underline that when l = 0.5, the scheme of AOS of the BVP is almost the
same with well-known simple shooting method.
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10.5 Remark

In [6] with respect to numerical solution of Cauchy problem basing on applications
of Gauss and Clenshaw–Curtis type quadratures and Hermite interpolation we for-
mulated that the new (Adam’s type) multistep finite-difference schemes converge as
O(h2n) for any finite integer n and they are absolutely stable if the matrices of nodes
are normal types in Fejer’s sense. The creation of corresponding schemes and proof
of these results are described in the article “To Approximate Solution of Ordinary
Differential Equations, II” (in appear).
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Chapter 11
A Hybrid Method for Inverse Scattering
Problem for a Dielectric

Ahmet Altundag

Abstract The inverse problem under consideration is to reconstruct the shape of a
homogeneous dielectric infinite cylinder from the far field pattern for scattering of a
time-harmonic E-polarized electromagnetic plane wave. We propose an inverse al-
gorithm that extends the approach suggested by Kress [14] and further investigated
by Kress and Serranho [17, 18] and Serranho [22] for the case of the inverse problem
for a perfectly conducting scatterer. It is based on a system of nonlinear boundary
integral equations associated with a single-layer potential approach to solve the for-
ward scattering problem. We present the mathematical foundations of the method
and exhibit its feasibility by numerical examples.

11.1 Introduction

In inverse obstacle scattering problems for time-harmonic waves, the scattering
object is a homogeneous obstacle and the inverse problem is to obtain an image
of the scattering object, i.e., an image of the shape of the obstacle from a knowledge
of the scattered wave at large distances, i.e., from the far-field pattern. In this paper
we deal with dielectric scatterers and confine ourselves to the case of infinitely long
cylinders.

Assume that the simply connected bounded domain D ⊂ IR2 with C2 boundary
∂D represents the cross section of a dielectric infinite cylinder having constant wave
number kd with Rekd > 0 and Imkd ≥ 0 embedded in a homogeneous background
with positive wave number k0. Denote by ν the outward unit normal to ∂D. Then,
given an incident plane wave ui(x) = eik0 x·d with incident direction given by the
unit vector d, the direct scattering problem for E-polarized electromagnetic waves
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is modeled by the following transmission problem for the Helmholtz equation: Find
solutions u ∈ H1

loc(IR
2 \ D̄) and v ∈H1(D) to the Helmholtz equations

�u+ k2
0u = 0 in IR2 \ D̄, �v+ k2

dv = 0 in D (11.1)

satisfying the transmission conditions

u = v,
∂u
∂ν

=
∂v
∂ν

on ∂D (11.2)

in the trace sense such that u = ui + us with the scattered wave us fulfilling the
Sommerfeld radiation condition

lim
r→∞

r1/2
(
∂us

∂ r
− ik0us

)
= 0, r = |x|, (11.3)

uniformly with respect to all directions. The latter is equivalent to an asymptotic
behavior of the form

us(x) =
eik0|x|
√|x|

{
u∞

(
x
|x|

)
+O

(
1
|x|

)}
, |x| → ∞, (11.4)

uniformly in all directions, with the far-field pattern u∞ defined on the unit circle S1

in IR2 (see [4]). In the above, u and v represent the electric field that is parallel to the
cylinder axis, (11.1) corresponds to the time-harmonic Maxwell equations and the
transmission conditions (11.2) model the continuity of the tangential components of
the electric and magnetic field across the interface ∂D.

The inverse obstacle problem we are interested in is given the far-field pattern u∞
for one incident plane wave with incident direction d ∈ S1 to determine the boundary
∂D of the scattering dielectric D. More generally, we also consider the reconstruc-
tion of ∂D from the far-field patterns for a small finite number of incident plane
waves with different incident directions. This inverse problem is nonlinear and ill-
posed, since the solution of the scattering problem (11.1)–(11.3) is nonlinear with
respect to the boundary and since the mapping from the boundary into the far-field
pattern is extremely smoothing.

At this point we note that uniqueness results for this inverse transmission prob-
lem are only available for the case of infinitely many incident waves (see [11]).
A general uniqueness result based on the far-field pattern for one or finitely many
incident waves is still lacking. More recently, a uniqueness result for recovering a
dielectric disk from the far-field pattern for scattering of one incident plane wave
was established by Altundag and Kress [2].

For a stable solution of the inverse transmission problem we propose an algo-
rithm that extends the approach suggested by Kress [14] and further investigated
by Kress and Serranho [17, 18] and Serranho [22] for the case of the inverse prob-
lem for a perfectly conducting scatterer. Representing the solution v and us to the
forward scattering problem in terms of single-layer potentials in D and in IR2 \ D̄
with densities ϕd and ϕ0, respectively, the transmission condition (11.2) provides a
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system of two boundary integral equations on ∂D for the corresponding densities
that in the sequel we will denote as field equations. For the inverse problem, the
required coincidence of the far field of the single-layer potential representing us and
the given far field u∞ provides a further equation that we denote as data equation.
The system of the field and data equations can be viewed as three equations for
three unknowns, i.e., the two densities and the boundary curve. They are linear with
respect to the densities and nonlinear with respect to the boundary curve.

In the spirit of [14, 17, 18], given a current approximation ∂Dapprox for the
unknown boundary ∂D. In a first step, the ill-posed data equation can be regular-
ized via Tikhonov regularization and one of the density can be solved on ∂Dapprox.
Then in a second step, keeping the density fixed we can solve the other density
from one of the field equation. In a third step, keeping the densities fixed we
linearize the remaining field equation with respect to boundary ∂D. In a fourth step,
the solution of the ill-posed linearized equation can be utilized to update the bound-
ary approximation. Because of the ill-posedness the solution of this update equation
requires stabilization, for example, by Tikhonov regularization. These four steps can
be iterated until some suitable stopping criterion is satisfied.

We also consider the inverse problem for the physical parameter such as recon-
structing the interior wave number kd . The direct and inverse problem proceed the
same line as the shape reconstruction with difference that the unknown boundary
∂D is replaced by interior wave number kd .

In principle, one can also think of linearizing both the field and the data equa-
tions simultaneously with respect to the densities and the boundary curve. Such
a full linearization of a corresponding system for the perfect conductor boundary
condition has been considered by Ivanyshyn and Kress [8]. For a recent survey
on the connections of the different approaches Ivanyshyn and Johansson [7] and
Ivanyshyn, Kress and Serranho [9]. For related work for the Laplace equation we
refer to Kress and Rundell [16] for the Dirichlet boundary condition and Eckel and
Kress [5], Hohage and Schormann [6], Altundag and Kress [2] for the transmission
condition. Finally, for a recent survey on the hybrid method see Kress [14], Kress
and Serranho [17, 18] and Serranho [22].

The plan of the paper is as follows: In Sect. 11.2, as ingredient of our inverse al-
gorithm we describe the solution of the forward scattering problem via a single-layer
approach followed by a corresponding numerical solution method in Sect. 11.3. The
details of the inverse algorithm are presented in Sect. 11.4, and in Sect. 11.5 we
demonstrate the feasibility of the method by some numerical examples.

11.2 The Direct Problem

The forward scattering problem (11.1)–(11.3) has at most one solution (see [3, 15]
for the three-dimensional case). Existence can be proven via boundary integral
equations by a combined single- and double-layer approach (see [3, 15] for the
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three-dimensional case). Here, we base the solution of the forward problem on a
single-layer approach as investigated in [2]. For this we denote by

Φk(x,y) :=
i
4

H(1)
0 (k|x− y|), x �= y,

the fundamental solution to the Helmholtz equation with wave number k in IR2 in

terms of the Hankel function H(1)
0 of order zero and of the first kind. Adopting the

notation of [4], in a Sobolev space setting, for k = kd and k = k0, we introduce the
single-layer potential operators

Sk : H−1/2(∂D)→ H1/2(∂D)

by

(Skϕ)(x) := 2
∫

∂D
Φk(x,y)ϕ(y)ds(y), x ∈ ∂D (11.5)

and the normal derivative operators

K′k : H−1/2(∂D)→ H−1/2(∂D)

by

(K′kϕ)(x) := 2
∫

∂D

∂Φk(x,y)
∂ν(x)

ϕ(y)ds(y), x ∈ ∂D. (11.6)

For the Sobolev spaces and the mapping properties of these operators we refer to
[13, 20]. Then, from the jump relations it can be seen that the single-layer potentials

v(x)=
∫

∂D
Φkd (x,y)ϕd(y)ds(y), x ∈ D,

us(x)=
∫

∂D
Φk0(x,y)ϕ0(y)ds(y), x ∈ IR2 \ D̄,

(11.7)

solve the scattering problem (11.1)–(11.3) provided the densities ϕd and ϕ0 satisfy
the system of integral equations

Skdϕd− Sk0ϕ0=2ui|∂D,

ϕd +K′kd
ϕd +ϕ0−K′k0

ϕ0=2
∂ui

∂ν

∣
∣∣
∣
∂D

,
(11.8)

which in the sequel we will call the field equations. Provided k0 is not a Dirichlet
eigenvalue of the negative Laplacian for the domain D, with the aid of the Riesz–
Fredholm theory, in [2] it has been shown that the system (11.8) has a unique solu-
tion in H−1/2(∂D)×H−1/2(∂D). Thus, throughout this paper we shall assume that
k0 is not a Dirichlet eigenvalue of the negative Laplacian for the domain D.
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After introducing the far-field operator S∞ : H−1/2(∂D)→ L2(S1) by

(S∞ϕ)(x̂) := γ
∫

∂D
e−ik0 x̂·yϕ(y)ds(y), x̂ ∈ S1, (11.9)

from (11.7) and asymptotics of the Hankel function we observe that the far-field
pattern for the solution to the scattering problem (11.1)–(11.3) is given by

u∞ = S∞ϕ0 (11.10)

in terms of the solution to (11.8).

11.3 Numerical Solution

For the numerical solution of (11.8) and the presentation of our inverse algorithm
we assume that the boundary curve ∂D is given by a regular 2π-periodic parameter-
ization

∂D = {z(t) : 0≤ t ≤ 2π}. (11.11)

Then, via ψ = ϕ ◦ z emphasizing the dependence of the operators on the boundary
curve, we introduce the parameterized single-layer operator

S̃k : H−1/2[0,2π ]×C2[0,2π ]→H1/2[0,2π ]

by

S̃k(ψ ,z)(t) :=
i
2

∫ 2π

0
H(1)

0 (k|z(t)− z(τ)|) |z′(τ)|ψ(τ)dτ

and the parameterized normal derivative operators

K̃′k : H−1/2[0,2π ]×C2[0,2π ]→H−1/2[0,2π ]

by

K̃′k(ψ ,z)(t) :=
ik
2

∫ 2π

0

[z′(t)]⊥ · [z(τ)− z(t)]
|z′(t)| |z(t)− z(τ)| H(1)

1 (k|z(t)− z(τ)|) |z′(τ)|ψ(τ)dτ

for t ∈ [0,2π ]. Here we made use of H(1)′
0 = −H(1)

1 with the Hankel function H(1)
1

of order zero and of the first kind. Furthermore, we write a⊥ = (a2,−a1) for any
vector a = (a1,a2), that is, a⊥ is obtained by rotating a clockwise by 90 degrees.
Then the parameterized form of (11.8) is given by

S̃kd (ψd ,z)− S̃k0(ψ0,z)=2ui ◦ z,

ψd + K̃′kd
(ψd ,z)+ψ0− K̃′k0

(ψ0,z)=
2
|z′| [z

′]⊥ ·gradui ◦ z.
(11.12)
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The kernels

M(t,τ) :=
i
2

H(1)
0 (k|z(t)− z(τ)|) |z′(τ)|

and

L(t,τ) :=
ik
2

[z′(t)]⊥ · [z(τ)− z(t)]
|z′(t)| |z(t)− z(τ)| H(1)

1 (k|z(t)− z(τ)|) |z′(τ)|

of the operators S̃k and K̃′k can be written in the form

M(t,τ) = M1(t,τ) ln

(
4sin2 t− τ

2

)
+M2(t,τ),

L(t,τ) = L1(t,τ) ln

(
4sin2 t− τ

2

)
+L2(t,τ),

(11.13)

where

M1(t,τ) :=− 1
2π

J0(k|z(t)− z(τ)|)|z′(τ)|,

M2(t,τ) := M(t,τ)−M1(t,τ) ln

(
4sin2 t− τ

2

)
,

L1(t,τ) :=− k
2π

[z′(t)]⊥ · [z(τ)− z(t)]
|z′(t)| |z(t)− z(τ)| J1(k|z(t)− z(τ)|) |z′(τ)|,

L2(t,τ) := L(t,τ)−L1(t,τ) ln

(
4sin2 t− τ

2

)
.

The functions M1,M2,L1, and L2 turn out to be smooth with diagonal terms

M2(t, t) =

[
i
2
− C
π
− 1
π

ln

(
k
2
|z′(t)|

)]
|z′(t)|

in terms of Euler’s constant C and

L2(t, t) =− 1
2π

[z′(t)]⊥ · z′′(t)
|z′1(t)|2

.

For integral equations with kernels of the form (11.13) a combined collocation and
quadrature method based on trigonometric interpolation as described in Sect. 3.5
of [4] or in [19] is at our disposal. We refrain from repeating the details. For a related
error analysis we refer to [13] and note that we have exponential convergence for
smooth, i.e., analytic boundary curves ∂D.
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For a numerical example, we consider the scattering of a plane wave by a
dielectric cylinder with a non-convex kite-shaped cross section with boundary ∂D
described by the parametric representation

z(t) = (cost + 0.65cos2t− 0.65,1.5sint), 0≤ t ≤ 2π . (11.14)

From the asymptotics for the Hankel functions, it can be deduced that the far-field
pattern of the single-layer potential us with density ϕ0 is given by

u∞(x̂) = γ
∫

∂D
e−ik0 x̂·yϕ0(y)ds(y), x̂ ∈ S1, (11.15)

where

γ =
ei π4√
8πk0

.

The latter expression can be evaluated by the composite trapezoidal rule after solv-
ing the system of integral equations (11.8) for ϕ0, i.e., after solving (11.12) for
ψ0. Table 11.1 gives some approximate values for the far-field pattern u∞(d) and
u∞(−d) in the forward direction d and the backward direction −d. The direction d
of the incident wave is d = (1,0) and the wave numbers are k0 = 1 and kd = 2+3i.
Note that the exponential convergence is clearly exhibited.

Table 11.1: Numerical results for direct scattering problem

n Reu∞(d) Imu∞(d) Reu∞(−d) Imu∞(−d)

8 −0.6017247940 −0.0053550779 −0.2460323014 0.3184957768
16 −0.6018967551 −0.0056192337 −0.2461831740 0.3186052686
32 −0.6019018135 −0.0056277492 −0.2461946976 0.3186049949
64 −0.6019018076 −0.0056277397 −0.2461946846 0.3186049951

11.4 The Inverse Problem

We now proceed describing an iterative algorithm for approximately solving the
inverse scattering problem by extending the method proposed by Kress [14] and
further investigated by Kress and Serranho [17, 18] and Serranho [22] for the case
of the inverse problem for a perfectly conducting scatterer.

After introducing the far-field operator S∞ : H−1/2(∂D)→ L2(S1) by

(S∞ϕ)(x̂) := γ
∫

∂D
e−ik0 x̂·yϕ(y)ds(y), x̂ ∈ S1, (11.16)
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from (11.7) and (11.15) we observe that the far-field pattern for the solution to the
scattering problem (11.1)–(11.3) is given by

u∞ = S∞ϕ0 (11.17)

in terms of the solution to (11.8).

11.4.1 The Inverse Problem for Shape Reconstruction

We can state the following theorem as theoretical basis of our inverse algorithm. For
this we note that all our integral operators depend on the boundary curve ∂D.

Theorem 11.1. For a given incident field ui and a given far-field pattern u∞, assume
that ∂D and the densities ϕd and ϕ0 satisfy the system of three integral equations

Skdϕd− Sk0ϕ0=2ui,

ϕd +K′kd
ϕd +ϕ0−K′k0

ϕ0=2
∂ui

∂ν
,

S∞ϕ0=u∞.

(11.18)

Then ∂D solves the inverse problem.

The ill-posedness of the inverse problem is reflected through the ill-posedness of
the third integral equation, the far-field equation that we denote as data equation.
Note that (11.18) is linear with respect to the densities and nonlinear with respect
to the boundary ∂D. This opens up a variety of approaches to solve (11.18) by
linearization and iteration. In [2] we investigated an extension of the approach sug-
gested by Johansson and Sleeman [10] for a perfectly conducting scatterer. Given
a current approximation ∂Dapprox for the unknown boundary ∂D we first solved
the first two equations, or field equations, of system (11.18) for the unknown den-
sities ϕd and ϕ0. Then, keeping ϕ0 fixed we linearized the third equation, or data
equation, of system (11.18) with respect to the boundary ∂D to update the approx-
imation. Here, following [14, 17, 18] we are going to proceed differently. Given a
current approximation ∂Dapprox the unknown boundary ∂D. In a first step, the data
equation regularized via Tikhonov regularization, the density ϕ0 can be found on
∂Dapprox. Then in a second step, keeping the density ϕ0 fixed we find the density
ϕd from the second equation of (11.18). In a third step, keeping the densities ϕ0 and
ϕd fixed we linearize the first equation of (11.18) with respect to boundary ∂D. In
a fourth step, the solution of ill-posed linearized equation can be utilized to update
the boundary approximation.

To describe this in more detail, we also require the parameterized version

S̃∞ : H−1/2[0,2π ]×C2[0,2π ]→ L2(S1)
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of the far-field operator as given by

S̃∞(ψ ,z)(x̂) := γ
∫ 2π

0
e−ik0 x̂·z(τ)ψ(τ)dτ, x̂ ∈ S1. (11.19)

Then the parameterized form of (11.18) is given by

S̃kd (ψd ,z)− S̃k0(ψ0,z)=2ui ◦ z,

ψd + K̃′kd
(ψd ,z)+ψ0− K̃′k0

(ψ0,z)=
2
|z′| [z

′]⊥ ·gradui ◦ z,

S̃∞(ψ0,z)=u∞.

(11.20)

For a fixed ψ the Fréchet derivative of the operator S̃k with respect to the bound-
ary z in the direction h is given by (see [21])

∂ S̃k(ψ,z;h)(t) =
−ik

2

∫ 2π

0

(z(t)− z(τ)) · (h(t)−h(τ))
|z(t)− z(τ)| |z′(τ)|H(1)

1 (k|z(t)− z(τ)|)ψ(τ)dτ

+
i
2

∫ 2π

0

z′(τ) ·h′(τ)
|z′(τ)| H(1)

0 (k|z(t)− z(τ)|)ψ(τ)dτ. (11.21)

Then the linearization of the first equation in (11.20) with respect to z in the
direction h reads

∂ S̃kd(ψd ,z;h)−∂ S̃k0(ψ0,z;h)−2gradui◦z·h = 2ui ◦ z−S̃kd(ψd ,z)+S̃k0(ψ0,z)

and is a linear equation for the update h.
Now, given an approximation for the boundary curve ∂D with parameterization

z, each iteration step of the proposed inverse algorithm consists of four parts:

1. We find the density ψ0 from the regularized data equation via Tikhonov regular-
ization

(αI + S̃∗∞ S̃∞)ψ0 = S̃∗∞ u∞, (11.22)

where S̃∗∞ is the adjoint operator of S̃∞.
2. We keep ψ0 fixed and find the density ψd from

(I + K̃′kd
)(ψd ,z) =

2
|z′| [z

′(t)]⊥ ·gradui ◦ z−ψ0+ K̃′k0
(ψ0,z).

3. We keep the densities ψd and ψ0 fixed and find the perturbed boundary h form
the linearized equation

∂ S̃kd(ψd ,z;h)−∂ S̃k0(ψ0,z;h)−2gradui◦z·h = 2ui ◦ z−S̃kd(ψd ,z)+S̃k0(ψ0,z).

(11.23)
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4. Updating the boundary z := z + h then we go to first step. We continue this
procedure until some stopping criteria is achieved. The stopping criterion for
the iterative scheme is given by the relative error

‖ u∞;N− u∞ ‖
‖ u∞ ‖ ≤ ε1, (11.24)

where u∞;N is the computed far-field pattern after N iteration steps.

In principle, the parameterization of the update is not unique. To cope with this
ambiguity, one possibility that we will pursue in our numerical examples of the
subsequent section is to allow only parameterizations of the form

z(t) = r(t)

(
cost
sin t

)
, 0≤ t ≤ 2π , (11.25)

with a non-negative function r representing the radial distance of ∂D from the
origin. Consequently, the perturbations are of the form

h(t) = q(t)

(
cost
sin t

)
, 0≤ t ≤ 2π , (11.26)

with a real function q. In the approximations we assume r and its update q to have
the form of a trigonometric polynomial of degree J, in particular,

q(t) =
J

∑
j=0

a j cos jt +
J

∑
j=1

b j sin jt. (11.27)

Then the update equation (11.23) is solved in the least squares sense, penalized
via Tikhonov regularization, for the unknown coefficients a0, . . . ,aJ and b1, . . . ,bJ

of the trigonometric polynomial representing the update q. As experienced in the
application of the above approach for related problems, it is advantageous to use an
H p Sobolev penalty term rather than an L2 penalty in the Tikhonov regularization,
i.e., to interpret ∂ S̃k as an ill-posed linear operator

∂ S̃k : H p[0,2π ]→ L2[0,2π ] (11.28)

for some small p ∈ IN.
As a theoretical basis for the application of Tikhonov regularization from [4] we

cite that, after the restriction to starlike boundaries, the operator ∂ S̃k is injective
provided k2

0 is not a Neumann eigenvalue for the negative Laplacian in D.
The above algorithm has a straightforward extension for the case of more than

one incident wave. Assume that ui
1, . . . ,u

i
M are M incident waves with different inci-

dent directions and u∞,1, . . . ,u∞,M the corresponding far-field patterns for scattering
from ∂D. Then the inverse problem to determine the unknown boundary ∂D from
these given far-field patterns and incident fields is equivalent to solve the following
iterative scheme: Given a current approximation to the boundary ∂D, parametrized
by z:
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1. We find the densities ψ0,1, . . . ,ψ0,M from the regularized data equations via
Tikhonov regularization

(αI + S̃∗∞ S̃∞)ψ0,m = S̃∗∞u∞,m, for m = 1, . . . ,M.

2. We keep the ψ0,1, . . . ,ψ0,M fixed and find densities ψd,1, . . . ,ψd,M from

(I + K̃′kd
)(ψd,m,z) =

2
|z′| [z

′(t)]⊥ ·gradui
m ◦ z−ψ0,m+ K̃′k0

(ψ0,m,z).

for m = 1, . . . ,M.
3. We keep the densities ψ0,1, . . . ,ψ0,M and ψd,1, . . . ,ψd,M fixed and find the per-

turbed boundary h form the linearized equation

∂ S̃kd(ψd,m,z;h)−∂ S̃k0(ψ0,m,z;h)−2gradui
m◦z·h=2ui

m ◦ z−S̃kd(ψd,m,z)+S̃k0(ψ0,m,z),

for m = 1, . . . ,M. For the update h by interpreting them as one ill-posed equation
with an operator from H p[0,2π ] �→ (L2[0,2π ])M and applying Tikhonov regular-
ization.

4. We update the boundary z := z+ h then go to first step. We continue this pro-
cedure until some stopping criteria is achieved. The stopping criterion for the
iterative scheme is given by the relative error (11.24).

For the numerical implementation we need to discretize the boundary operator
∂Sk in (11.21). The kernels of the operator ∂Sk can be written in the form

A(t,τ) := − ik
2
(z(t)− z(τ)) · (h(t)− h(τ))

|z(t)− z(τ)| |z′(τ)|H(1)
1 (k|z(t)− z(τ)|),

B(t,τ) :=
i
2

z′(τ) ·h′(τ)
|z′(τ)| H(1)

0 (k|z(t)− z(τ)|).

The kernels A and B can be expressed of the form

A(t,τ) = A1(t,τ) ln(4sin2 t− τ
2

)+A2(t,τ),

B(t,τ) = B1(t,τ) ln(4sin2 t− τ
2

)+B2(t,τ),

where

A1(t,τ) :=
k

2π
(z(t)− z(τ)) · (h(t)− h(τ))

|z(t)− z(τ)| |z′(τ)|J1(k|z(t)− z(τ)|),

A2(t,τ) := A(t,τ)−A1(t,τ) ln(4sin2 t− τ
2

),

B1(t,τ) := − 1
2π

z′(τ) ·h′(τ)
|z′(τ)| J0(k|z(t)− z(τ)|),

B2(t,τ) := B(t,τ)−B1(t,τ) ln(4sin2 t− τ
2

)
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in terms of Bessel functions J0 and J1. The functions A1, A2, B1 and B2 turn out to
be smooth with diagonal terms. Their diagonal terms are in the form

A1(t, t) = 0, & A2(t, t) =− 1
π

z′(t) ·h′(t)
|z′(t)| .

B1(t, t) =− 1
2π

z′(t) ·h′(t)
|z′(t)| , & B2(t, t) =

{
i
2
− 1
π

ln

(
k
2
|z′(t)|

)
−C
π

}
z′(t) ·h′(t).

in terms of Euler’s constant C.

11.4.2 The Inverse Problem for the Interior Wave Number kd
Reconstruction

The inverse problem we are interested is that given an incident plane wave ui, far-
field pattern u∞ and the shape of the scatterer, we would like to determine the interior
wave number of the field that occurs inside the obstacle.

We can state the following theorem as theoretical basis of our inverse algorithm:

Theorem 11.2. For a given incident field ui and a given far-field pattern u∞ and the
shape of the scatterer, assume that kd and the densities ϕd and ϕ0 satisfy the system
of three integral equations

Skdϕd− Sk0ϕ0=2ui,

ϕd +K′kd
ϕd +ϕ0−K′k0

ϕ0=2
∂ui

∂ν
,

S∞ϕ0=u∞.

(11.29)

Then kd solves the inverse problem.

The ill-posedness of the inverse problem is reflected through the ill-posedness of
the third integral equation, the far-field equation that we denote as data equation.
Note that (11.29) is linear with respect to the densities and nonlinear with respect
to the interior wave number kd . In the spirit of [14, 17, 18] we are going to describe
the iterative scheme for the inverse problem.

Given a current approximation kdapprox to unknown interior wave number kd . In a
first step, after the data equation regularized via Tikhonov regularization, the density
ϕ0 can be found for kdapprox . Then in a second step, keeping the density ϕ0 fixed we
find the density ϕd from the second equation of (11.29). In a third step, keeping the
densities ϕ0 and ϕd fixed we linearize the first equation of (11.29) with respect to
boundary kd to update the approximation.

We now proceed describing an iterative algorithm for approximately solving this
inverse problem for the interior wave number. Now we consider an operator
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S̃kd : L2[0,2π ]×C→ L2[0,2π ]. (11.30)

Then the parameterized form of (11.29) is given by (11.20). For a fixed ψd the
Fréchet derivative of the operator S̃kd with respect to the interior wave number kd in
the direction σ is given by

∂ S̃kd (ψd ,kd ;σ) =− iσ
2

∫ 2π

0
H(1)

1 (kd |z(t)− z(τ)|)|z(t)− z(τ)||z′(τ)|ψd(τ)dτ,
(11.31)

for t ∈ [0,2π ].
Now, the first iteration step of the proposed inverse algorithm consists of four

parts and the rest of iteration steps consist of three parts:

1. In a first part, we find the density ψ0 from the stabilized data equation, i.e., from

(αI + S̃∗∞ S̃∞)ψ0 = S̃∗∞ u∞.

2. Give a current approximation for the interior wave number kd . In a second part,
we find ψd from the following equation

(I+ K̃′kd
)(ψd ,kd) =

2
|z′| [z

′(t)]⊥ ·gradui ◦ z−ψ0+ K̃′k0
(ψ0,z).

3. In a third part, we keep the density ψd fixed and linearize the first field equation
with respect to interior wave number kd in the direction of σ , and then we find
perturbed interior wave number σ from the following linearized equation:

∂ S̃kd (ψd ,kd ;σ) = 2ui ◦ z− S̃kd(ψd ,z)+ S̃k0(ψ0,z). (11.32)

4. In a fourth part, we update the interior wave number as kd := kd +σ and then we
return to the second part and repeat this procedure until some stopping criteria is
achieved. The stopping criterion for the iterative scheme is given by the relative
error |kd;N− kd|

|kd | ≤ ε2, (11.33)

where kd;N is the computed interior wave number after N iteration steps.

The kernel,

P(t,τ;kd) := − i
2
|z(t)− z(τ)||z′(τ)|H(1)

1 (kd |z(t)− z(τ)|),

of the operator ∂ S̃kd (ψd ,kd ;σ) in (11.31) can be written in the form

P(t,τ;kd) = P1(t,τ;kd) ln(4sin2 t− τ
2

)+P2(t,τ;kd),

where
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P1(t,τ;kd) =
1

2π
|z(t)− z(τ)||z′(τ)|J1(kd |z(t)− z(τ)|),

P2(t,τ;kd) = P(t,τ;kd)−P1(t,τ;kd) ln(4sin2 t− τ
2

).

The functions P1 and P2 turn out to be smooth with diagonal terms. Their diagonal
terms are in the form

P1(t, t;kd) = 0 & P2(t, t;kd) =− 1
πkd
|z′(t)|.

11.5 Numerical Examples

To avoid an inverse crime, in our numerical examples the synthetic far-field data
were obtained by a numerical solution of the boundary integral equations based
on a combined single- and double-layer approach (see [3, 15]) using the numer-
ical schemes as described in [4, 12, 13]. In each iteration step of the inverse
algorithm for the solution of the field equations we used the numerical method
described in Sect. 11.3 using 64 quadrature points. The data equation was solved
via Tikhonov regularization with an L2 penalty term with α regularization parame-
ter. The linearized first field equation (11.23) with respect to boundary was solved
by Tikhonov regularization with an H2 penalty term, i.e., p = 2 in (11.28) and with
a λ regularization parameter. The linearized first field equation (11.32) with respect
to interior wave number was solved by Tikhonov regularization with an L2 penalty
term in (11.30) and with a μ regularization parameter. The regularized data equation
is solved by Nyström’s method with the composite trapezoidal rule again using 64
quadrature points.

11.5.1 Numerical Examples of Shape Reconstruction

In all our five examples we used M = 8 as a number of incident waves with the
directions d = (cos(2πm/M),sin(2πm/M)), m = 1, . . . ,M and J = 5 as degree for
the approximating trigonometric polynomials in (11.27) and N as the number of
recursion and the wave numbers k0 = 1 and kd = 10+10i. The initial guess is given
by the green curve, the exact boundary curves are given by the dashed (blue) lines,
and the reconstructions by the full (red) lines. The iteration numbers and the regular-
ization parameters α and λ for the Tikhonov regularization of (11.22) and (11.23),
respectively, were chosen by trial and error and their values are indicated in the
following description of the individual examples.

In order to obtain noisy data, random errors are added point-wise to u∞,

ũ∞ = u∞+ δξ
||u∞||
|ξ | (11.34)
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with the random variable ξ ∈ C and {Reξ , Imξ} ∈ (0,1).

Table 11.2: Parametric representation of boundary curves

Counter type Parametric representation

Apple-shaped : z(t) = { 0.5+0.4cos t+0.1sin2t
1+0.7cos t (cos t, sint) : t ∈ [0,2π ]}

Dropped-shaped : z(t) = {(−0.5+0.75sin t
2 ,−0.75sint) : t ∈ [0,2π ]}

Kite-shaped : z(t) = {(cos t +1.3cos2 t−1.3,1.5sint) : t ∈ [0,2π ]}

Peanut-shaped : z(t) = {√cos2 t +0.25sint (cos t, sint) : t ∈ [0,2π ]}

Rounded triangle : z(t) = {(2+0.3cos3t)(cos t, sint) : t ∈ [0,2π ]}

In the first example Fig. 11.1 shows reconstructions after N = 12 iterations with
the regularization parameters α = 10−7 and λ = 0.8 j decreasing with the iteration
steps j. For the stopping criteria (11.24), ε1 = 10−3 is chosen.

In the second example Fig. 11.2 shows reconstructions after N = 10 iterations
with the regularization parameter chosen as in the first example. For the stopping
criteria (11.24), ε1 = 10−3 is chosen.

In the third example the reconstructions in Fig. 11.3 were obtained after N = 15
iterations with the regularization parameter chosen as in the first example. For the
stopping criteria (11.24), ε = 10−2 is chosen.

In the fourth example the reconstructions in Fig. 11.4 were obtained after N = 10
iterations with the regularization parameters chosen as α = 10−6 and λ = 0.7 j. For
the stopping criteria (11.24), ε1 = 10−3 is chosen. In the final example Fig. 11.5
shows reconstructions after N = 8 iterations with the regularization parameters cho-
sen as α = 10−6 and λ = 0.8 j. For the stopping criteria (11.24), ε1 = 10−3 is chosen.
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Fig. 11.1: Reconstruction of the apple-shaped contour (Table 11.2) for exact data (left), 1% noise
(middle) and 2% noise (right)
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Fig. 11.2: Reconstruction of dropped-shaped contour (Table 11.2) for exact data (left), 1% noise
(middle) and 2% noise (right)
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Fig. 11.3: Reconstruction of kite-shaped contour (Table 11.2) for exact data (left), 1% noise
(middle) and 2% noise (right)
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Fig. 11.4: Reconstruction of peanut-shaped contour (Table 11.2) for exact data (left), 1% noise
(middle) and 2% noise (right)

Our examples clearly indicate the feasibility of the proposed algorithm. From
our further numerical experiments it is observed that using more than one incident
wave improved on the accuracy of the reconstruction and the stability. Furthermore,
an appropriate initial guess was important to ensure numerical convergence of the
iterations. Our examples also indicate that the proposed algorithm with the numer-
ical reconstructions is superior to those obtained by Johansson and Sleeman [10]
in [2]. This behavior is confirmed by a number of further numerical examples in
[1]. However, the proposed algorithm is sensitive to noise level. It only tolerates 1%
noise level.
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Fig. 11.5: Reconstruction of rounded-triangle-shaped contour (Table 11.2) for exact data (left),
1% noise (middle) and 2% noise (right)

11.5.2 Numerical Example of Interior Wave Number kd
Reconstruction

The table shows the reconstruction of the interior wave number kd after N = 12
iteration steps. The regularization parameter μ is chosen by trial and error. For the
numerical example, μ = 10−8 is chosen. For the stopping criteria (11.33), ε2 = 10−4

is chosen. kd = 5+3.5i is the initial guess for the interior wave number. kd = 6+3i
is the exact value of the interior wave number.

j Rekd Imkd

1 7.1183586985 0.7713567402
2 7.0978164742 1.1142157466
3 6.7877484915 1.7601039965
4 6.4182938086 2.4436691343
5 6.0756484419 2.8851109484
6 6.0007133176 2.9782074624
7 5.9963101217 2.9978738350
8 5.9987548077 3.0003488868
9 5.9997523215 3.0002332761

10 5.9999618896 3.0000776416
11 5.9999839302 3.0000316851
12 5.9999813584 3.0000238253

Further research will be directed towards applying the algorithm to real data, to
extend the numerics to the three-dimensional case and to a simultaneous lineariza-
tion of the field and data equations with respect to the boundary and the densities in
the spirit of [8, 16].
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Chapter 12
Solving Second-Order Discrete Sturm–Liouville
BVP Using Matrix Pencils

Michael K. Wilson and Aihua Li

Abstract This paper deals with discrete second order Sturm-Liouville Boundary
Value Problems (DSLBVP) where the parameter λ , as part of the difference equa-
tion, appears nonlinearly in the boundary conditions. We focus on the case where
the boundary condition is given by a cubic equation in λ . We first describe the prob-
lem by a matrix equation with nonlinear variables such that solving the DSLBVP is
equivalent to solving the matrix equation. We develop methods to finding roots of
the characteristic polynomial (in the variable λ ) of the involved matrix. We further
reduce the problem to finding eigenvalues of a matrix pencil in the form of A−λB.
Under certain conditions, such a matrix pencil eigenvalue problem can be reduced
to a stabdard eigenvalue problem, so that existing computational tools can be used
to solve the problem. The main results of the paper provide the reduction procedure
and rules to identify the cubic DSLBVPs which can be reduced to standard eigen-
value problems. We also investigate the structure of the matrix form of a DSLBVP
and its effect on the reality of the eigenvalues of the problem. We give a class of
DSLBVPs which have only real eigenvalues.
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12.1 Introduction

12.1.1 History of Sturm–Liouville Problems

Named after Jacques Charles Francois Sturm (1803–1855) and Joseph Liouville
(1809–1882), a second-order Sturm–Liouville equation is a real second-order
differential equation of the form:

d
dx

(
p(x)

dy
dx

)
+(λw(x)− q(x))y = 0,

where λ is a constant and w(x), p(x), and q(x) are known real functions. A solution
pair (λ ,y) to the equation (with appropriate boundary conditions) is called an eigen-
pair, where λ is called an eigenvalue and y the corresponding eigenfunction or
eigenvector. The solutions of this equation satisfy important mathematical prop-
erties under appropriate boundary conditions [5].

The classical Sturm–Liouville Boundary Value Problem over a finite closed
interval [a,b] can be described in the following form:

⎧
⎨

⎩

Ly = (1/r)(−py′)′+ qy = λwy
A1y(a)+A2p(a)y′(a) = 0
B1y(b)+B2p(b)y′(b) = 0.

Here L is an operator, r, p,q,w are real functions on [a,b], and r, p are positive
valued functions.

The continuous version of Sturm–Liouville Boundary Value Problems with the
parameter appearing linearly in the boundary conditions has been dealt with by
Walters [21], Hinton [13], Fulton [9], Schneider [19], Belinskiy and Graef [3], and
many others. This type of boundary condition arises from various applied problems
such as the study of stability of rotating axles [1], heat conduction [15], and diffu-
sion through porous membranes [17]. The Sturm–Liouville Boundary Value Prob-
lems with the parameter appearing nonlinearly in the boundary conditions also have
many applications in science and engineering. For example, they were discussed
in the study of waves of ice-covered oceans in [2, 4]. In particular, when consider-
ing an acoustic wave guide covered by an ice cover, an SLBVP arises in which the
parameter occurs quadratically at one end [4]. The continuous version of this prob-
lem with quadratic boundary conditions was dealt with by Paul A. Binding [5],
Patrick J. Browne and Bruce A. Watson [6, 7], Yoko Shioji [20], and Leon Green-
berg and I. Babuska [10].

The discrete version (DSLBVP) of the problem in which the parameter appears
linearly in the boundary conditions was dealt with by Harmsen and Li [11]. They
further studied DSLBVP with the parameter appearing quadratically in the bound-
ary condition [12]. They proved that the eigenvalues of the DSLBVP are simple,
distinct, and real under certain conditions.
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This paper focuses on DSLBVPs in which the parameter appears nonlinearly in
the boundary condition given by a cubic polynomial equation.

12.1.2 Statement of the Problem

In the continuous case, if we choose the interval [0,1] and w ≡ 0, the problem is
simplified as ⎧

⎨

⎩

Ly = (1/r)(−py′)′+ qy = λy
y(0) = 0

C(λ )y(1) = D(λ )y′(1),

where C(λ ) and D(λ ) are fixed real functions. We focus on the discrete version of
the above problem. Consider the equalized partition of the time interval [0,1]. For
an integer N > 1, let t0 = 0 < t1 < · · · < tN−1 < 1 = tN and T = [t0, t1, . . . , tN−1, t1].
We use a constant step size h = tn+1− tn for n = 0,1, . . . ,N− 1. Let y be a complex
valued function on T . We will use the shorthand notation yn for y(tn). Corresponding
to the derivative notation, the delta difference is commonly used:

Definition 12.1. The delta difference is defined as

Δyn =
yn+1− yn

tn+1− tn
=

yn+1− yn

h
.

For simplicity, we assume that r, p,q are all constant real-valued functions on T
and r and p are positive. By applying the “product rule” for the delta difference, that
is, Δ(ynzn) = ynΔzn + zn−1Δyn, the operator L is discretized as

Lyn =
1
r
(∇(−pΔyn)+ qyn) =−ayn+1 +σyn− ayn−1 = λyn,

where

a =− p
rh2 , σ =

2p
rh2 + q.

Now we add the cubic boundary condition to the problem. Let C(λ ) = c0+c1λ+
c2λ 2 + c3λ 3 and D(λ ) = d0 + d1λ + d2λ 2 + d3λ 3 be cubic real polynomials. The
discrete version of the second-order Sturm–Liouville problem with cubic boundary
condition has the following form:

⎧
⎨

⎩

Lyn = λyn for n from 1 to N− 1
y0 = 0

C(λ )yN =−pD(λ )ΔyN−1.
(12.1)

To simplify the notations, we define

α(λ ) = pD(λ )/h = α3λ 3 +α2λ 2 +α1λ +α0

β (λ ) = C(λ )+ pD(λ )/h = β3λ 3 +β2λ 2 +β1λ +β0.
(12.2)
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The boundary condition in (12.1) then can be rewritten as α(λ )yN−1 = β (λ )yN .
The corresponding discrete boundary problem (12.1) can be formulated as

(DSLBVP)

⎧
⎨

⎩

Lyn = λyn for n from 1 to N− 1
y0 = 0

α(λ )yN−1 +β (λ )yN = 0.
(12.3)

This is the discrete version of the Sturm–Liouville problem we concentrate in
this paper.

12.2 The Matrix Form of DSLBVP

It is straightforward to check that the top operation in DSLBVP (12.3) is equivalent
to the matrix equation Γλy = 0, where y = (y1, · · · ,yN)

T and Γλ is an N×N matrix
given by

Γλ =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

σ −λ −a 0 · · · 0 0 0

−a σ −λ −a · · · 0 0 0
. . .

. . .
. . . 0 0 0 · · · −a

. . .
. . .

. . . 0 0 0 · · · −a σ −λ −a 0 0 0 · · · 0

0 0 0 · · · −a σ −λ −a
0 0 0 · · · 0 α(λ ) β (λ )

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

(12.4)

where α(λ ) = α3λ 3 +α2λ 2 +α1λ +α0 and β (λ ) = β3λ 3 +β2λ 2 +β1λ +β0.
Every eigenvalue of DSLBVP (12.3) is a root of the polynomial |Γλ | in λ . Thus,

the matrix Γλ will help us to find solutions to (12.3) and analyze the eigenvalues.
The following example shows how to find the solutions to a DSLBVP (12.3) by
converting it to a matrix equation and then solve the equation.

Example 12.2. Let N = 4, h = 1
4 , r = 16, p = 1, q = 0.

Then the operator L satisfies Lyn = −yn+1 + 2yn− yn−1 = λyn and the boundary
condition is (−1+ 3λ + 2λ 3)y4 = (−1+ 2λ 3)(−Δy3). Thus we have

Ly1 = −y2 + 2y1 = λy1

Ly2 = −y3 + 2y2− y1 = λy2

Ly3 = −y4 + 2y3− y2 = λy3

(−1+ 3λ+ 2λ 3)y4 = −2(−1+ 2λ 3)(y4− y3).

From the equations above, we obtain the matrix form of the DSLBVP as
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Γλy =

⎡

⎢
⎢
⎣

2−λ −1 0 0
−1 2−λ −1 0
0 −1 2−λ −1
0 0 4− 8λ 3 −5+ 3λ + 10λ 3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

y1

y2

y3

y4

⎤

⎥
⎥
⎦= 0.

The determinant |Γλ | = −8+ 46λ − 56λ 2 + 39λ 3− 71λ 4 + 52λ 5− 10λ 6 has five
distinct roots:

1.6646, 3.2731, 0.73058,−0.3507+ 0.85963i,−0.3507− 0.85963i.

For λ1 = 3.2731 we solve the matrix equation:

Γλy =

⎡

⎢⎢
⎣

−1.2731 −1 0 0
−1 −1.2731 −2 0
0 −1 −1.2731 −1
0 0 −276.52 355.47

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

y1

y2

y3

y4

⎤

⎥⎥
⎦= 0.

An eigenvector is given by yT = [2.0712,−2.6366, 1.2855, 1]T . One can easily
verify that

Lyn =−yn+1 + 2yn− yn−1 = 3.2731yn for n = 1, 2, 3

and (−1+ 3λ1+ 2λ 3
1 )y4 = −2(−1+ 2λ 3

1 )(y4− y3).

We now focus on the matrix problem derived from (12.3) and apply linear alge-
braic techniques to find solutions and analyze them. We state an iterative formula
for finding determinant of a tridiagonal matrix which will be used later.

Lemma 12.3. (Mikkawy and Karawia [16]) Consider the tridiagonal matrix Tn =
[ti j] in which ti j = 0 for |i− j| ≥ 2 :

Tn =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

σ1 a1 0 · · · · · · 0
b2 σ2 a2 · · · · · · 0
0 b3 σ3 a3 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · bn−1 σn−1 an−1

0 0 · · · 0 bn σn

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

and assume a1a2 · · ·an−1 �= 0 and b2b3 · · ·bn �= 0 (n > 2). Then

|Ti|=
⎧
⎨

⎩

σ1 if i = 1
σ1σ2− a1b2 if i = 2

σi|Ti−1|− biai−1|Ti−2| if i = 3, 4, · · · ,n.
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12.3 Matrix Pencils from DSLBVP

From the last section, the matrix form of DSLBVP (12.3) is ΓλyT = 0, where Γλ
is given in (12.4). Note that the last row of Γλ involves cubic polynomials α(λ ) =
α3λ 3 +α2λ 2 +α1λ +α0 and β (λ ) = β3λ 3 + β2λ 2 +β1λ + β0. Thus finding the
roots of Γλ is not a standard eigenvalue problem. It needs special treatment so that
the existing algorithms for finding standard eigenvalues can be applied. Let In denote
the n× n identity matrix. The following matrices play important roles when we
examine behavior of eigenvalues.

Definition 12.4. Refer to the matrix Γλ . We define

A3 =

⎡

⎣
0N−2 0 0

0 0 0
0 α3 β3

⎤

⎦ , A2 =

⎡

⎣
0N−2 0 0

0 0 0
0 α2 β2

⎤

⎦ ,

A1 =

⎡

⎣
−IN−2 0 0

0 −1 0
0 α1 β1

⎤

⎦ , A0 =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

σ a 0 · · · · · · 0
a σ a · · · · · · 0
0 a σ a · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · a σ a
0 0 · · · 0 α0 β0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

,

where A0 is an N×N matrix.

Now we represent ΓλyT = 0 as an equation involving the above block matrices,
which gives the same set of eigenvalues.

Lemma 12.5. The equationΓλyT = 0 is equivalent to the following matrix equation:
⎛

⎝

⎡

⎣
A2 A1 A0

0 IN 0
IN 0 0

⎤

⎦−λ
⎡

⎣
−A3 0 0

0 0 IN

0 IN 0

⎤

⎦

⎞

⎠

⎡

⎣
λ 2y
λy
y

⎤

⎦=

⎡

⎣
0
0
0

⎤

⎦ ,

It is straightforward to check the equivalence. We skip the proof.

In [8], a matrix in the form of A−λB is defined as a matrix pencil, where λ is an
indeterminate. From Lemma 12.5 we can immediately claim that

Lemma 12.6. The set of eigenvalues of DSLBVP (12.3) and the set of eigenvalues
of the matrix pencil A−λB are identical, where

A =

⎡

⎣
A2 A1 A0

0 IN 0
IN 0 0

⎤

⎦ and B =

⎡

⎣
−A3 0 0

0 0 IN

0 IN 0

⎤

⎦ .

Now we focus on investigating eigenvalues of matrix pencils.
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12.4 Solving the DSLBVP as a Standard Eigenvalue Problem

When the matrix A is nonsingular, all roots of the polynomial |A−λB| are nonzero.
Thus it is obvious that

|A−λB|= 0 ⇐⇒
∣
∣
∣
∣

1
λ

A−1(A−λB)

∣
∣
∣
∣= 0

⇐⇒
∣∣
∣
∣

1
λ

I−A−1B

∣∣
∣
∣= 0

⇐⇒ ∣
∣A−1B− μI

∣
∣= 0, where μ =

1
λ
.

Now finding eigenvalues of the matrix pencil A−λB is converted to finding the stan-
dard (nonzero) eigenvalues of the matrix A−1B. In this case, using the matrix pencil,
we can reduce the DSLBVP into a standard eigenvalue problem. The requirements
of A being nonsingular is a key here. Our next task then is to investigate conditions
for A to be nonsingular.

From the configuration of A in Lemma 12.6, we note that |A|=±|A0|; thus, A is
nonsingular if and only if A0 is nonsingular. Refer to Definition 12.5. A0 is a tridi-
agonal matrix with the diagonal element σ > 0 and the other nonzero number a < 0
which appears on the second diagonal above or below the main diagonal, except for
the last row. The numbers in the last row are α0 and β0 which are the constant terms
of α(λ ) and β (λ ), respectively. For 0 < i < N, let Ui be the determinant of the i× i
main diagonal submatrix of A0, that is,

Ui =

∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣

σ a 0 · · · · · · 0
a σ a · · · · · · 0
0 a σ a · · · 0

. . .
. . .

. . . 0
0 · · · · · · a σ a
0 0 · · · 0 a σ

∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣

, 0 < i < N.

We implement a result on tridiagonal matrices obtained from [16] (see Lemma 12.3
to give an iterative formula for Ui and a formula for |A0|.
Lemma 12.7. Consider the (N×N) (N > 2) tridiagonal matrix A0 defined before
and the determinant Ui as above. Then:

1. U1 = σ , U2 = σ2− a2, and Ui = σUi−1− a2Ui−2 for 3≤ i≤ N− 1.
2. The determinant UN = |A0|= β0UN−1− aα0UN−2.

The proof is immediately from Lemma 12.3 and the determinant rules. Lemma
12.7 helps us to develop explicit formulas for Ui and |A0|.
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Lemma 12.8. Consider the tridiagonal matrix A0 and the values Ui as above. Let

s1 = σ+
√

σ2−4a2

2 and s2 = σ−
√

σ2−4a2

2 be the solutions to the equation x2−σx+
a2 = 0. Then for 1≤ i < N,

Ui =

{
si+1
1 −si+1

2
s1−s2

if σ2 �= 4a2;
(1+ i)si

1 if σ2 = 4a2.

Proof. The characteristic equation for the recursive relation Ui = σUi−1−a2Ui−2 is
x2−σx+a2 = 0. Note that s1 = s2⇐⇒ σ2 = 4a2. Thus, for each i = 1,2, · · · ,N−1,
Ui has the following form:

Ui =

{
u1si

1 + u2si
2 if σ2 �= 4a2;

u1si
1 + u2isi

1 if σ2 = 4a2,

where u1,u2 are constant complex numbers. By applying the initial conditions U1 =
σ and U2 = σ2 − a2, we obtain u1 = s1/(s1− s2) and u2 = −s2/(s1− s2) when
σ2 �= 4a2 and u1 = 1 = u2 when σ2 = 4a2. The result follows immediately. ��

We next focus on the cases when σ2−4a2 ≥ 0, that is, when s1,s2 are real num-
bers. We give an explicit formula for |A0|:
Theorem 12.9. Let s1,s2 be as above, which are the solutions to x2−σx+ a2 = 0.
If σ2 > 4a2, then

|A0|= 1
s1− s2

[(
β0− α0

a
s2

)
sN

1 −
(
β0− α0

a
s1

)
sN

2

]
.

If σ2 = 4a2, then
|A0|= sN−2

1 (β0Ns1−α0a(N− 1)) .

Proof. Recall that s1,s2 are the real solutions of the equation x2− σx + a2 with
s1 ≥ s2. In addition, |A0|=UN = β0UN−1− aα0UN−2.
Case 1. σ2 > 4a2. In this case, s1 > s2 > 0 since s1s2 = a2 and a < 0. By
Lemmas 12.7 and 12.8,

|A0| =
β0

(
sN

1 − sN
2

)

s1− s2
− aα0

(
sN−1

1 − sN−1
2

)

s1− s2

=
1

s1− s2

[(
β0− α0

a
s2

)
sN

1 −
(
β0− α0

a
s1

)
sN

2

]
.

Case 2. σ2 = 4a2 =⇒ s1 = s2, σ = 2s1, and a2 = s2
1. Thus

|A0| = β0NsN−1
1 −α0a(N− 1)sN−2

1

= sN−2
1 [β0Ns1−α0a(N− 1)] .

��
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After establishing the above results about the determinant of A0, we now discuss
conditions for A0 to be nonsingular. We require A0 to be nonsingular because we
can then reduce the DSLBVP to a regular eigenvalue problem. We summarize these
conditions in the following remark and theorem.

Theorem 12.10. Consider the (N×N) tridiagonal matrix A0 as above with N > 2
and (α0,β0) �= (0,0). Then A0 is nonsingular in any of the following cases:

1. α0β0 = 0, or
2. α0β0 �= 0, σ2 = 4a2, and α0(N− 1) �= Nβ0, or

3. α0β0 �= 0, σ2 > 4a2, and α0
β0
�= sN

1 −sN
2

a(sN−1
1 −sN−1

2 )
.

Proof. 1. Assume α0 = 0. Then β0 �= 0. By Theorem 12.9, |A0| = β0(s
N
1 −sN

2 )
s1−s2

when

σ2 > 4a2 or |A0|= β0NsN−1
1 when σ2 = 4a2. In the first case, s1 > s2 > 0 and in

the second case, s2
1 = a2 > 0. It is obvious that in either case, |A0| �= 0. Similarly,

β0 = 0 =⇒ |A0| �= 0.
2. Let σ2 = 4a2 and assume |A0| = 0. It is equivalent to β0Ns1−α0a(N− 1) = 0.

As before a < 0 and s2
1 = a2 =⇒ s1 =−a > 0. Thus, if α0β0 �= 0,

|A0|= 0⇐⇒ β0N +α0(N− 1) = 0⇐⇒ α0

β0
=

N
1−N

.

By the condition β0N +α0(N− 1) �= 0, we claim that |A0| �= 0.
3. In case α0β0 �= 0 and σ2 > 4a2, we have s1 > s2 > 0 and

|A0|= 0 ⇐⇒ (β0a−α0s2)s
N−1
1 = (β0a−α0s1)s

N−1
2 .

If |A0|= 0, then β0a−α0s2 �= 0 and β0a−α0s1 �= 0 because s1 �= s2 and α0 �= 0.
With a = s1s2, it implies

(β0a−α0s2)s
N−1
1 = (β0a−α0s1)s

N−1
2 =⇒

α0

β0
=

sN
1 − sN

2

a(sN−1
1 − sN−1

2 )
, a contradiction.

So |A0| �= 0.
��

A quick test on the singularity of A0 s given below:

Corollary 12.11. Let N be an integer greater than 2 and σ2 ≥ 4a2. Then A0 is
nonsingular if α0β0 > 0.

Proof. Let α0β0 > 0. By Theorem 12.9, when σ2 = 4a2, |A0| = 0 =⇒ α0/β0 =
N/(1−N), which is negative because N is a positive integer > 2. In case σ2 > 4a2,
|A0|= 0 =⇒
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α0

β0
=

sN
1 − sN

2

a(sN−1
1 − sN−1

2 )
,

which is also negative. In either case, a contradiction to α0β0 > 0 occurs. Thus
|A0| �= 0. ��

With the above results on the nonsingularity of A0 established, we can proceed to
discuss

∣
∣A−1B− μI

∣
∣, where

A =

⎡

⎣
A2 A1 A0

0 IN 0
IN 0 0

⎤

⎦ and B =

⎡

⎣
−A3 0 0

0 0 IN

0 IN 0

⎤

⎦ .

By applying matrix operations,

A−1 =

⎡

⎣
0 0 IN

0 IN 0
A−1

0 −A−1
0 A1 −A−1

0 A2

⎤

⎦ and furthermore

A−1B =

⎡

⎣
0 IN 0
0 0 IN

−A−1
0 A3 −A−1

0 A2 −A−1
0 A1

⎤

⎦ .

Therefore we solve
∣
∣A−1B− μI

∣
∣ = 0, which is a standard eigenvalue problem, to

determine the solutions of the DSLBVP (12.3).

12.5 Reality of Eigenvalues

We now discuss conditions for all the eigenvalues to be real. We begin with a Lemma
which shows the conditions when A0 is similar to a symmetric matrix.

Lemma 12.12. If aα0 > 0, then A0 is similar to a symmetric matrix.

Proof. Write A0 in the form

A0 =

[
E1 E2

E3 β0

]
,

where E1 is the (N−1)×(N−1) major diagonal submatrix of A0, E2 = [0 · · · 0 a]T ,
and E3 = [0 · · · 0 α0] .

Define Q =

[
IN−1 0

0
√

α0
a

]

and A′−1
0 A0Q; then
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A′−1
0 A0Q =

⎡

⎣
E1

√
α0
a E2√

a
α0

E3 β0

⎤

⎦ .

Obviously E1 is symmetric and
(√

α0
a E2

)T
= [0 · · · 0

√
α0a] =

√
a
α0

E3. Therefore

A′0 is symmetric and is similar to A0. ��
Example 12.13. We show an example here to demonstrate Lemma 12.5. Consider
the matrix G2 as below:

G2 =

⎡

⎢
⎢
⎣

8 −4 0 0
−4 8 −4 0
0 −4 8 −4
0 0 −2 3

⎤

⎥
⎥
⎦ ,which implies E1 =

⎡

⎣
8 −4 0
−4 8 −4
0 −4 8

⎤

⎦ ,

E2 = [0 0 − 4]T , and E3 = [0 0 − 2].

One can check that

Q−1G2Q =

⎡

⎢
⎢
⎣

8 −4 0 0
−4 8 −4 0
0 −4 8 −2

√
2

0 0 −2
√

2 3

⎤

⎥
⎥
⎦ , which is symmetric,

where Q =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1√

2

⎤

⎥
⎥
⎦ .

We end the paper by giving a type of DSLBVP where all the eigenvalues are real.

Theorem 12.14. If D(λ ) ≡ d0 < 0 and A0 is nonsingular, then all the eigenvalues
of the DSLBVP (12.3) are real.

Proof. As stated earlier, the eigenvalues of the DSLBVP with cubic boundary
condition are the eigenvalues of the matrix pencil A−λB, where

A =

⎡

⎣
A2 A1 A0

0 IN 0
IN 0 0

⎤

⎦ and B =

⎡

⎣
−A3 0 0

0 0 IN

0 IN 0

⎤

⎦ .

We know from linear algebra that if A and B are symmetric matrices with real
entries, then the eigenvalues of the pencil are all real [8].

Given D(λ )≡ d0 < 0, then α(λ )≡ pd0/h=α0 < 0, since h and p are both positive.
Since a< 0, we have aα0 > 0. We can thus apply Lemma 12.12 to construct a matrix
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Q0 so that Q−1
0 A0Q0 = A′0 is a nonsingular symmetric matrix. Also, D(λ ) = d0

implies that α1 = α2 = α3 = 0. Thus A1, A2, A3 are all diagonal and so symmetric
matrices.

We use N×N matrix Q0 as above to define a new (3N)× (3N) matrix:

Q =

⎡

⎣
Q−1

0
Q−1

0
Q−1

0

⎤

⎦ .

Then A is similar to the matrix A′ by Q as follows:

Q−1

⎡

⎣
A2 A1 A0

0 IN 0
IN 0 0

⎤

⎦Q =

⎡

⎣
A2 A1 A′0
0 IN 0
IN 0 0

⎤

⎦= A′.

Similarly, B is similar to a symmetric matrix B′ by Q:

Q

⎡

⎣
−A3 0 0

0 0 IN

0 IN 0

⎤

⎦Q =

⎡

⎣
−A3 0 0

0 0 IN

0 IN 0

⎤

⎦= B′.

Next we define P =

⎡

⎣
IN 0 0
0 A′0 A1

0 0 A′0

⎤

⎦ and compute:

P(A′ −λB′) =

⎡

⎣
A2 A1 A′0
A1 A′0 0
A′0 0 0

⎤

⎦−λ
⎡

⎣
−A3 0 0

0 A1 A′0
0 A′0 0

⎤

⎦ .

Denote

A′′ =

⎡

⎣
A2 A1 A′0
A1 A′0 0
A′0 0 0

⎤

⎦ and B′′ =

⎡

⎣
−A3 0 0

0 A1 A′0
0 A′0 0

⎤

⎦ .

We have P(A′ −λB′) = A′′ −λB′′. Since the matrix P is invertible,

(A′ −λB′)y = 0 ⇐⇒ P(A′ −λB′)y = 0 ⇐⇒ (A′′ −λB′′)y = 0.

Therefore, since A3, A2, and A1 are symmetric and A0 is similar to a symmetric
matrix with real entries, A′′ and B′′ are both similar to symmetric matrices with real
entries, which implies that the DSLBVP has all distinct real eigenvalues. ��
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12.6 Conclusion and Future Directions

In this paper we discuss discrete second-order Sturm–Liouville Boundary Value
Problems (DSLBVP) where the parameter λ appears nonlinearly in the bound-
ary conditions. We focus on analyzing a DSLBVP with cubic nonlinearity in the
boundary condition. We first describe the problem with a matrix equation (Γλy = 0)
which involves the parameter λ in a cubic polynomial. We then construct a new
matrix equation (A−Bλ )y= 0 which has the same solution space. Thus finding the
eigenvalues of Γλy = 0 is equivalent to finding the eigenvalues of the matrix pencil
A−Bλ .

Since several key matrices involved are tridiagonal, we apply linear algebraic
results on tridiagonal matrices and combinatorial results of general forms of iterative
numbers to obtain explicit formulas for the determinants of the involved matrices.
With these formulas we are able to give conditions under which the matrix A is
nonsingular. When A is nonsingular, we can formulate a process of reducing the
DSLBVP into a regular eigenvalue problem so that many powerful existing tools of
solving eigenvalue problems can be implemented. In the last part of the paper we
discuss the reality of the eigenvalues of the DSLBVP. We give conditions on the
boundary constraints under which all the eigenvalues are real.

Many questions remain open. For example, what can we say when the matrix
A is singular? Can we give less restricted conditions to guarantee the reality of
the eigenvalues of the problem? Under what conditions will all the eigenvalues be
distinct? We can further explore similar problems where the boundary conditions
have higher degrees.
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Chapter 13
Approximation Formulas for the Ergodic
Moments of Gaussian Random Walk
with a Reflecting Barrier

Tahir Khaniyev, Basak Gever and Zulfiyya Mammadova

Abstract In this study, Gaussian random walk process with a generalized reflecting
barrier is constructed mathematically. Under some weak conditions, the ergodicity
of the process is discussed and exact form of the first four moments of the ergodic
distribution is obtained. After, the asymptotic expansions for these moments are
established. Moreover, the coefficients of the asymptotic expansions are expressed
by means of numerical characteristics of a residual waiting time.

13.1 Introduction

The random walk processes with one or two barriers are being used to solve a
number of very interesting problems in the fields of inventory, mathematical biol-
ogy, queueing and reliability theories, etc. These barriers can be reflecting, delaying,
absorbing, elastic, etc., depending on concrete problems at hand. Numerous studies
have been done about random walks with one or two barriers because of their prac-
tical and theoretical importance ([1–5, 7–10, 12, 13, 15–17, 19, 21, 25], etc.). More-
over, some special real-world problems can be expressed by random walks with
reflecting barriers. For example, motion of the particle with high energy in a diluted
environment can be expressed by means of random walk with reflecting barriers.
There are some studies in this subject in literature, as well (e.g., [3, 6, 7, 11, 14, 22–
24, 26], etc.). However, these studies are generally in a theoretical character and
they don’t have useful results for application because of their complex structure. To
remove these difficulties, it is tried to obtain simple but approximate formulas lately.
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Thus, in this study, a generalized Gaussian random walk with a reflecting barrier is
investigated, and approximation formulas for the ergodic moments of this process
are obtained.

The Model. In this study, we assume that the capital amount of a company is
λ z > 0 at the start time. At the random times Tn = ∑n

i=1 ξi,n ≥ 1 the capital of the
company is increasing by coming premiums or is decreasing because of accidents.
Amount of decrease or increase is represented by {−ηn},n≥ 1. According to defi-
nition, the random variables {ηn},n≥ 1 can take both positive and negative values.
The capital level of system increases or decreases until it drops to a negative value.
However, when the capital level is negative, company makes decision to take credit
or debt. This amount of credit or debt is λ times of the amount of the negative part
(−ζ1) of capital level. After that, the company starts working with a new initial level
of capital (λζ1) and the changes continue until the capital level becomes negative,
again. When the capital level decreases to the position (−ζ2), the company deter-
mines new initial level of the capital (λζ2). Next, the system continues in similar
way. At a company which serves like that, the variation of the capital amount is
expressed by means of a stochastic process which is called “Random walk with a
generalized reflecting barrier.” Our aim is to define this process mathematically and
to obtain the asymptotic results for the ergodic moments of this process.

13.2 Mathematical Construction of the Process X(t)

Let {(ξn,ηn)},n = 1,2,3, . . ., be a sequence of independent and identically dis-
tributed random variables defined on any probability space (Ω ,ℑ, IP) where the
ξns take only positive values and ηns have normal distribution with the parameters
(m,1),(m > 0). Suppose that ξn and ηn are mutually independent random variables.
Define the renewal sequence {Tn} and random walk {Sn} as follows:

T0 ≡ S0 ≡ 0; Tn =
n

∑
i=1

ξi; Sn =
n

∑
i=1

ηi, n = 1,2, . . .

Additionally, define the following random variables:

N0 = 0; ζ0 = z≥ 0; N1 ≡ N1(λ z) = inf{k≥ 1 : λ z− Sk < 0};

ζ1 ≡ ζ1(λ z) = |λζ0− SN1 |;
N2 ≡ N2(λζ1) = inf{k≥ N1 + 1 : λζ1− (Sk− SN1)< 0};

ζ2 = ζ2(λζ1) = |λζ1− (SN2− SN1)|;
. . .

Nn ≡ Nn(λζn−1) = inf{k≥ Nn−1 + 1 : λζn−1− (Sk− SNn−1)< 0};
ζn ≡ ζn(λζn−1) = |λζn−1− (SNn− SNn−1)|, n = 1,2, . . .
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Fig. 13.1: A sample trajectory of the process X(t)

Using the sequence of integer-valued random variables {Nn}, n = 1,2, . . ., the
following sequence {τn},n = 1,2, . . . is constructed:

τ0 ≡ 0, τ1 = τ1(λ z) =
N1

∑
i=1

ξi, τ2 =
N2

∑
i=1

ξi, . . . , τn =
Nn

∑
i=1

ξi, . . .

Moreover, we put ν(t) = max{n≥ 0 : Tn ≤ t}, t > 0.
Now, we can construct the desired stochastic process which is as follows:

X(t)≡ λζn− (Sν(t)− SNn),

for each t ∈ [τn;τn+1), n = 0,1,2, . . .
The following alternative representation can be given for the process X(t):

X(t)≡
∞

∑
n=0

(
λζn− (Sν(t)− SNn)

)
I[τn;τn+1)(t),

where IA(t) is indicator function of set A.
The process X(t) is called as “Gaussian Random Walk with a Generalized Re-

flecting Barrier.” The process X(t) is known as “Gaussian Random Walk with a
Reflecting Barrier,” when λ = 1, in literature.

A sample trajectory of the considered process can be seen as in the following
Fig. 13.1.

13.3 The Ergodicity of the Process X(t)

Before investigating the stationary characteristics of the process, we need to show
that this process is ergodic. For this reason, let’s state the following theorem on the
ergodicity of the process X(t):
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Theorem 13.1. Let the initial random variables {ξn} and {ηn} be satisfied the fol-
lowing supplementary conditions:

1. 0 < E(ξ1)< ∞.
2. Random variable η1 has a Gaussian distribution with parameters (m,1), i.e.,

F(x) = P{η1 ≤ x} = 1√
2π

∫ x

−∞
exp

{
− (u−m)2

2

}
du.

3. E(η1)≡ m > 0.

Then, the process X(t) is ergodic.

Proof. Considered process belongs to a wide class which is called “semi-Markov
processes with a discrete interference of chance” in literature. The general ergodic
theorem is proved in the monography of Gihman and Skorohod [8] for this class.

In order to apply this theorem, the following two assumptions should be satisfied:
Assumption 1. It is required to choose a sequence of ascending random times

(τ0 ≡ 0 < τ1 < τ2 < .. . < τn < .. .), such that the values of the process X(t) at these

times
(

X(τn)
)

form an ergodic Markov chain.

For this aim, it is enough to choose the sequence {τn} defined as in the Sect. 13.2.
Then, X(τn) = λζn. According to the definition of the process X(t), the sequence
{ζn} is an ergodic Markov chain. Hence, the first assumption is satisfied.

Assumption 2. For each z ∈ (0,∞), E(τ1) = E
(
τ1(λ z)

)
<∞ and

E(τn − τn−1) =
∫ ∞

0 E
(
τ1(λ z)

)
dπλ (z) < ∞, n = 2,3, . . . should be hold. Here

πλ (z) is the ergodic distribution of the Markov chain {ζn}, n = 0,1,2, . . ., i.e.,

πλ (z) ≡ lim
n→∞

P{ζn ≤ z}.

Under the conditions of Theorem 13.1, it is not difficult to see that Assumption
2 is also satisfied. Therefore, the second assumption of general ergodic theorem is
hold. This means that the process X(t) is ergodic and Theorem 13.1 is proved. ��
Theorem 13.2. Suppose that the conditions of Theorem 13.1 are satisfied. Then, for
each measurable function f (x)( f : [0,∞)→ R), the following relation is hold, with
probability 1:

lim
t→∞

1
t

∫ t

0
f
(

X(s)
)

ds =
1

E(τ1)

∫ ∞

z=0

∫ ∞

x=0

∫ ∞

t=0
f (x)Pλ z{τ1 ≥ t;X(t) ∈ dx}dtdπλ (z),

(13.1)

where πλ (z) is the ergodic distribution of the Markov chain {ζn}, n = 0,1,2.

By the help with the basic identity for the random walk process [7] and the The-
orem 13.2, we can give the following form for the characteristic function of the
ergodic distribution of the process X(t):

Theorem 13.3. Assume that the conditions of Theorem 13.1 are satisfied. Then, the

characteristic function
(
ϕX (α)

)
of the ergodic distribution of the process X(t) can
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be expressed by means of the characteristics of the boundary functionals N1(λ z)
and SN1(λ z), as follows:

ϕX(α) =
1

E
(

N1(λζ )
)
∫ ∞

0
eiαλ z

ϕSN1(λz)
(−α)− 1

ϕη(−α)− 1
dπλ (z), (13.2)

where ζ is a random variable having distribution πλ (z), i.e.,

P{ζ ≤ z} ≡ πλ (z)≡ limn→∞P{ζn ≤ z}. Moreover, ϕη(−α)≡ E
(

exp(−iαη1)
)
,

ϕSN1(λz)
(−α)≡ E

(
exp(−iαSN1(λ z))

)
, E(N1(λζ ))≡

∫ ∞
0 E

(
N1(λ z)

)
dπλ (z).

We can acquire many valuable results by means of the relation (13.2). In this
study, from the relation (13.2), the exact expressions for the first four ergodic mo-
ments of the process X(t) are derived.

13.4 The Exact Expressions for the Ergodic Moments of the
Process X(t)

The aim of this section is to obtain the exact expressions for the moments of ergodic
distribution of the process X(t). Therefore, let’s give the following notations:

mn = E(η1); mn1 =
mn

nm1
; Mn(z)≡ E

(
Sn

N1(z)

)
; E(Xn)≡ limt→∞ E(Xn(t));

E
(
ζ rMn(ζ )

)
≡

∫ ∞

0
zrMn(z)dπλ (z), r = 0,1,2, . . . , n = 1,2, . . .

Theorem 13.4. In addition to the conditions of Theorem 13.1, assume that

E
(
|η1|n+1

)
< ∞ is satisfied. Then, the nth moment of the ergodic distribution

exists, and it can be shown as follows, for each n = 1,2,3,4:

E(X) =
1

E
(

M1(λζ )
)
{

E
(
λζM1(λζ )

)
− 1

2
E
(

M2(λζ )
)
+A1E

(
M1(λζ )

)}
;

E(X2) =
1

E
(

M1(λζ )
)
{

E
(
λ 2ζ 2M1(λζ )

)
−E

(
λζM2(λζ )

)
+

1
3

E
(

M3(λζ )
)

+A1[2E
(
λζM1(λζ )

)
−E

(
M2(λζ )

)
]+A2E

(
M1(λζ )

)}
;

E(X3) =
1

E
(

M1(λζ )
)
{

E
(
λ 3ζ 3M1(λζ )

)
− 3

2
E
(
λ 2ζ 2M1(λζ )

)
+E

(
λζM3(λζ )

)
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−1
4

E
(

M4(λζ )
)
+A1

[
3E

(
λ 2ζ 2M1(λζ )

)
−3E

(
λζM2(λζ )

)
+E

(
M3(λζ )

)]

+3A2

[
E
(
λζM1(λζ )

)
− 1

2
E
(

2M2(λζ1)
)]

+3A3E
(

M1(λζ )
)}

E(X4) =
1

E
(

M1(λζ )
)
{

E
(
λ 4ζ 4M1(λζ )

)
−2E

(
λ 3ζ 3M2(λζ )

)
−E

(
λ 2ζ 2M3(λζ )

)

−E
(
λζM4(λζ )

)
+

1
5

E
(

M5(λζ )
)
+A1

[
4E

(
λ 3ζ 3M1(λζ )

)

−6E
(
λ 2ζ 2M2(λζ )

)
+4E

(
λζM3(λζ )

)
−E

(
M4(λζ )

)]

+2A2

[
3E

(
λ 2ζ 2M1(λζ )

)
−3E

(
λζM2(λζ )

)
+E

(
M3(λζ )

)]

+6A3

[
2E

(
λζM1(λζ )

)
−E

(
M2(λζ )

)]
+3A4E

(
M1(λζ )

)}

where A1 = m21; A2 = 2m2
21−m31; A3 = (1/3)m41− 2m21m31 + 2m3

21;
A4 = 4m4

21−6m2
21m31+m2

31− (1/6)m51; mk1 = mk/km1; mk = E(ηk
1),k = 1,5.

Remark 13.5. As seen in Theorem 13.4, the exact expressions for the first four mo-
ments are written. It is difficult to apply these exact expressions in practice. Conse-
quently, instead of the exact expressions for the ergodic moments, it is advisable to
have asymptotic expansions or approximation expressions. In order to get asymp-
totic expansions, first of all, the moments of the boundary functional SN1(z) should
be investigated.

13.5 Asymptotic Expansions for the Moments of Boundary
Functional SN1(z)

In the previous section, the first four moments of the process X(t) have been ex-
pressed by means of the first five moments of the boundary functional SN1(z). How-
ever, it is difficult to compute these expressions. Therefore, in this study, using
asymptotic methods, we aim to obtain asymptotic expansions for the moments of
the process X(t). For this reason, we will first get the asymptotic expansions for the
moments of the boundary functional SN1(z), when z→ ∞. We will use the ladder
heights and ladder epochs of the random walk {Sn},n ≥ 0. Hence, let’s give the
definition of the first ladder epoch (ν+

1 ) and the first ladder height (χ+
1 ) as follows,

respectively:

ν+
1 = inf{n≥ 1 : Sn > 0}; χ+

1 = Sν+1
=

ν+1
∑
i=0

ηi.

These special random variables ν+
1 and χ+

1 have an important role in the investi-
gation of random walks (see, [7], p. 391). Suppose that {ν+

n } and {χ+
n },n ≥ 1 are
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sequences of independent and positive-valued random variables having the same
distribution with the random variables ν+

1 and χ+
1 , respectively. Let H(z) represent

the renewal process which is generated by the random variables χ+
n ,n≥ 1, i.e.,

H(z) = inf
{

n≥ 1 :
n

∑
i=1

χ+
i > z

}
,z≥ 0.

According to the principle of E. Dynkin, the boundary functionals N1(z) and
SN1(z) can be expressed by means of the random variables {ν+

n } and {χ+
n },n ≥ 1,

as follows:

N1(z) =
H(z)

∑
i=1

ν+
i ; SN1(z) =

H(z)

∑
i=1

χ+
i

The renewal function generated by ladder heights χ+
n ,n ≥ 1, is denoted by the no-

tation U+(z), i.e.,

U+(z)≡ E(H(z)) = 1+
∞

∑
n=0

F∗(n)+ (z), z≥ 0,

where F∗(n)+ (z) represents the n-fold convolution multiplication of the distribution
function F+(z)≡ P{χ+

1 ≤ z}. In this part, the aim is to obtain the asymptotic results
for the following integrals:

E
(
λ nζ nMk(λζ )

)
=

∫ ∞

z=0
(λ z)nMk(λ z)dπλ (z), n = 0,1,2, . . . , k = 1,2, . . . ,

(13.3)

where Mk(z) ≡ E
(

Sk
N1(z)

)
, k = 1,5 and πλ (z) is the ergodic distribution of the

Markov chain {ζn} and at the same time it is the distribution of the random
variable ζ . The main aim of this section is to get the asymptotic expansion with
two terms for the moments Mk(z), when z→ ∞. Using the study of Rogozin [20],
the following lemmas can be given:

Lemma 13.6. Suppose that E
(
|η3

1 |
)
< ∞. Then, the following asymptotic expan-

sions with two terms for the first five moments
(

Mk(z)
)

of the boundary functional

SN1(z) can be written:

Mn(z)≡ E
(

Sn
N1
(z)

)
= zn + nμ21zn−1 +

1
2

n(n− 1)μ31zn−2 + o(zn−2), n = 1,5,

where μk ≡ E(χ+k
1 );μk1 = μk/kμ1,k = 2,3 and the random variable χ+

1 is the first
ladder height of the random walk {Sn}. �

Our aim is to obtain the asymptotic expansions with two terms for the integrals
in Eq. (13.3), when λ → ∞. Hence, we should first give the following lemma:
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Lemma 13.7. Assume that E(χ+2
1 )<∞. Then, for each n = 0,1,2,3 . . ., the follow-

ing asymptotic expressions with three terms can be written, when λ → ∞:

E
(
ζ nMk(λζ )

)
= λ kβn+k +λ k−1μ21βn+k−1 + o(λ k−1), k = 1,5.

Here, βr ≡ E(ζ r),r = 1,2,3; μ21 = μ2/2μ1.

Proof. • According to Lemma 13.6, the following equality is true:

M1(λ z) = λ z+ μ21 + g1(λ z).

Here limλ→∞ g1(λ z) = 0. Taking this expansion into account,

E
(

M1(λζ )
)
≡ λβ1 + μ21 + o(1)

can be obtained. Here βn ≡ E(ζ n), n = 1,2, . . . ; β ≡ β1 ≡ E(ζ );
μ21 = μ2/2μ1. On the other hand, for each n= 1,2,3, . . ., the following expansion
can be obtained:

E
(
λ nζ nM1(λζ )

)
=

∫ ∞

0
(λ z)nM1(λ z)dπλ (z)

=

∫ ∞

0
(λ z)n

(
λ z+ μ21+ g1(λ z)

)
dπλ (z)

=
∫ ∞

0
λ n+1zn+1dπλ (z)+ μ21

∫ ∞

0
λ nzndπλ (z)

+

∫ ∞

0
λ nzng1(λ z)dπλ (z)

= λ n+1E(ζ n+1)+λ nμ21E(ζ n)+ o(λ n)

= λ n+1βn+1 +λ nμ21βn + o(λ n),

where βn ≡ E(ζ n) =
∫ ∞

0 zndπλ (z).
• In Lemma 13.6, it can be shown that

M2(λ z) = (λ z)2 + 2μ21λ z+λ zg2(λ z).

Here limλ→∞ g2(λ z) = 0. In this case, for each n = 0,1,2, . . ., the following ex-
pansion can be found:

E
(
λ nζ nM2(λζ )

)
=

∫ ∞

0
(λ z)nM2(λ z)dπλ (z)

=

∫ ∞

0
(λ z)n

(
(λ z)2 + 2μ21λ z+λ zg2(λ z)

)
dπλ (z)

=

∫ ∞

0
(λ z)n+2dπλ (z)+ 2μ21

∫ ∞

0
(λ z)n+1dπλ (z)

+
∫ ∞

0
(λ z)n+1g2(λ z)dπλ (z)
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= λ n+2E(ζ n+2)+λ n+12μ21E(ζ n+1)+ o(λ n+1)

λ n+2βn+2 +λ n+12μ21βn+1 + o(λ n+1).

Thus, the second part of the proof is completed.
• In Lemma 13.6, the following expansion is indicated:

M3(z) = (λ z)3 + 3μ21(λ z)2 +(λ z)2g3

(
(λ z)

)

Here, limz→∞ g3(λ z) = 0. In this case, for each n = 0,1,2, . . ., the following ex-
pansion can be written:

E
(
λ nζ nM3(λζ )

)
=

∫ ∞

0
(λ z)nM3(λ z)dπλ (z)

=

∫ ∞

0
(λ z)n

(
(λ z)3 + 3μ21(λ z)2 +(λ z)2g3

(
(λ z)

))
dπλ (z)

=

∫ ∞

0
(λ z)n+3dπλ (z)+ 3μ21

∫ ∞

0
(λ z)n+2dπλ (z)

+
∫ ∞

0
(λ z)n+2g3

(
(λ z)

)
dπλ (z)

= λ n+3E(ζ n+3)+λ n+23μ31E(ζ n+2)+ o(λ n+2)

= λ n+3βn+3 +λ n+23μ21βn+2 + o(λ n+2).

Hence, the third part of the proof is completed.
• In Lemma 13.6, the following expansion is shown:

M4(z) = (λ z)4 + 4μ21(λ z)3 +(λ z)3g4

(
(λ z)

)
,

where limλ→∞ g4(λ z) = 0. In this case, for each n = 0,1,2, . . ., the following
expansion can be obtained:

E
(
λ nζ nM4(λζ )

)
=

∫ ∞

0
(λ z)nM4(λ z)dπλ (z)

=
∫ ∞

0
(λ z)n

(
(λ z)4 + 4μ21(λ z)3 +(λ z)3g4

(
(λ z)

))
dπλ (z)

=

∫ ∞

0
(λ z)n+4dπλ (z)+ 4μ21

∫ ∞

0
(λ z)n+3dπλ (z)

+

∫ ∞

0
(λ z)n+3g4

(
(λ z)

)
dπλ (z)

= λ n+4E(ζ n+4)+λ n+34μ21E(ζ n+3)+ o(λ n+3)

= λ n+4βn+4 +λ n+34μ21βn+3 + o(λ n+3).

This completes the fourth part of the proof.
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• In Lemma 13.6, M5(z) can be shown as follows:

M5(z) = (λ z)5 + 5μ21(λ z)4 +(λ z)4g5

(
(λ z)

)

Here, limλ→∞g5(λ z) = 0 In this case, for each n = 0,1,2, . . ., the following ex-
pansion can be obtained:

E
(
λ nζ nM5(λζ )

)
=

∫ ∞

0
(λ z)nM5(λ z)dπλ (z)

=

∫ ∞

0
(λ z)n

(
(λ z)5 + 5μ21(λ z)4 +(λ z)4g5

(
(λ z)

))
dπλ (z)

=

∫ ∞

0
(λ z)n+5dπλ (z)+ 5μ21

∫ ∞

0
(λ z)n+4dπλ (z)

+
∫ ∞

0
(λ z)n+4g5

(
(λ z)

)
dπλ (z)

= λ n+5E(ζ n+5)+λ n+45μ21E(ζ n+4)+ o(λ n+4)

= λ n+5βn+5 +λ n+45μ21βn+4 + o(λ n+4)

is hold and this completes the fifth part of the proof.

Since the five part is proved, the proof of Lemma 13.7 is completed. Thus, the be-
havior of the integrals related with the boundary functional of SN1(λ z) is investigated.
��

Using the asymptotic expansions for the moments of boundary functional SN1(z)
above, it is possible to obtain the asymptotic expansions for the ergodic moments of
the process X(t).

13.6 The Asymptotic Expansions for the Moments
of the Process X(t)

The aim of this section is to obtain the asymptotic expansions with two terms for

the first four ergodic moments
(

E(Xk),k = 1,4
)

of the process X(t), when λ → ∞.

The main result of this section can be given with the following theorem:

Theorem 13.8. Under the conditions E(η1) > 0 and E(|η3
1 |) < ∞, the following

asymptotic expansions can be written, when λ → ∞:

E(Xn) = λ nβ(n+1),1 +λ n−1Dn + o(λ n−1),n = 1,4,

where Dn = nm21βn1 − μ21c(n+1),1, n = 1,4; βn = E(ζ n); βn1 = βn/nβ1;

cn1 = βn/nβ 2
1 , n = 2,5; mn1 = mn/nm1; μn1 = μn/nμ1; mn = E(ηn

1 );
μn = E(χ+n

1 ).
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Proposition 13.9. Assume that E(χ+(n+1)
1 )<∞. Then, the following asymptotic re-

lation can be written, when λ → ∞

βn ≡ E(ζ n)→ μn+1

(n+ 1)μ1
, n = 1,2, . . . ,

where μn = E(χ+n
1 ).

Proof. The random variable ζ has the distribution πλ (z) and πλ (z) is an ergodic
distribution of the Markov chain {ζn}. On the other hand, πλ (z) converges π0(z),
when λ → ∞, i.e., (Feller [7])

πλ (z)→ π0(z)≡ 1
μ1

∫ z

0

(
1−F+(x)

)
dx.

In other words, the random variable ζ expresses the residual waiting time of the
renewal process generated by ladder heights {χ+

n }. According to Rogozin [20], in
this case, the following relation is true, when λ → ∞:

βn ≡ E(ζ n)→ μn+1

(n+ 1)μ1
.

Therefore, βn =
μn+1

(n+1)μ1
+ o(1), as λ → ∞. ��

Corollary 13.10. Under the conditions of Theorem 13.8, the following asymptotic
relation can be written:

βn1 =
βn

nβ1
=

2μn+1

n(n+ 1)μ2
+ o(1) (13.4)

where μn = E(χ+n
1 ).

Theorem 13.11. Suppose that E(χ+(n+2)
1 )<∞. Then, the following expansions can

be written, when λ → ∞:

E(Xn) =
2

(n+ 1)(n+ 2)μ2
{μn+2λ n +[(n+ 2)m21μn+1− μn+2]λ n−1}+ o(λ n−1).

Proof. Taking the Corollary 13.10 into consideration, we can get the proof of
Theorem 13.11. ��

To compute E(Xn), it is necessary to know μn = E(χ+n
1 ). The random variable

χ+
1 is a ladder height of the random walk Sn =∑n

i=1ηi. In this study, m1 = E(η1)≡
m > 0. As known, computing the moments of the ladder heights is a very com-
plicated problem. However, for some cases (e.g., Gaussian random walk), when
m = 0, the exact expressions for the first five moments of the first ladder height
(χ+

1 ) have been obtained. To be able to use these results, let’s express the moments
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μn ≡ μn(m),m > 0 by means of μn(0)≡ μn(m)|m=0. In the study of Siegmund [21],
the relation between these two various types of moments is established as follows:

μn(m) = μn(0)+
n

n+ 1
μn+1(0)m+ o(m),n = 1,2, . . .

On the other hand, in the studies of Spitzer [22], Chang and Peres [5], Lotov [17],
and Nagaev [18], the following exact expressions have been obtained for μn(0),
n = 1,5:

μ1(0) =

√
2

2
(Spitzer); μ2(0) = A (Lotov);

μ3(0) =
3
√

2
8

(1+ 2A2) (Chang and Peres);

μ4(0) =
3
2

A+A3 +B (Chang and Peres)

μ5(0) =
5
√

2
32
{5+ 12A2+ 4A4 + 16AB} (Nagaev).

Here A = −ζ (1/2)√
π ; B = ζ (3/2)

π3/2 . Moreover, ζ (x) is Riemann zeta function in here.

Using these exact expressions, for the moments μn(0),n = 1,5, the following
values can be obtained:

μ1(0) = 0.707106781 . . .; μ2(0) = 0.823893771 . . .; μ3(0) = 1.250307211 . . .;

μ4(0) = 2.264330947 . . .; μ5(0) = 4.678835252 . . .

Using these knowledge, we can state the following theorem:

Theorem 13.12. Suppose that E(χ+(n+3)
1 )<∞. Then, the following expansions with

approximation coefficients are hold, when m→ 0 and λ →∞, for each n = 1,2,3,4:

E(Xn) =
2

(n+ 1)(n+ 2)μ2(0)

{
[An +mBn]λ n− [Cn +mDn]λ n−1 + o(λ n−1)

}
,

where An = μn+2(0); Bn = [(n+2)/(n+3)]μn+3(0)− [(2μ3(0))/(3μ2(0)]μn+2(0);
Cn = μn+2(0)− (n+ 2)m21μn+1(0); Dn = [(n+ 2)/(n+ 3)]μn+3(0)

−
(
(n+ 1)m21+[(2μ3(0))/(3μ2(0))]

)
μn+2(0)+ [(2μ3(0))/(3μ2(0))](n+ 2)m21

μn+1(0);m21 = m2/(2m1); mk = E(ηk
1); μk(0) = E(χ+k

1 )|m=0, k = 1,2, . . .

13.7 Conclusion

It is known that many interesting problems in stock control, queuing, reliability
theory, etc. can be expressed by means of Gaussian random walk and its modifica-
tions. In addition, the probability and numerical characteristics of these processes
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are generally expressed by the Wiener–Hopf factorization components. To compute
the factorization components is quite difficult. In order to remove this difficulty, in
this study, a random walk with a reflecting barrier is investigated by using a new
asymptotic approach. Additionally, the exact and asymptotic expansions for the first
four moments of the ergodic distribution are found. Moreover, using the formula of
Siegmund, asymptotic expansions with approximated coefficient for the first four
moments of the process are also obtained. The main result which is quite useful for
application is stated by Theorem 13.12. Especially, the leading terms of the asymp-
totic expansions coincided with the moments of a residual waiting time. This infor-
mation gives us a clue that the ergodic distribution of the process can converge to
the limit distribution of a residual waiting time. Finally, the approximation methods
used in this study can be applied to random walk with another type of barrier, e.g.,
delaying, elastic, and absorbing.
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Chapter 14
A Generalization of Some Orthogonal
Polynomials

Boussayoud Ali, Kerada Mohamed and Abdelhamid Abderrezzak

Abstract In this paper we show how the action of operators Lk
e1e2

to the sequences

∑∞
j=0 a j e j

1z j allows us to obtain an alternative approach of Fibonacci numbers and
some results of Foata and other results on Tchebychev polynomials of first and
second kind.

14.1 Introduction

By studying the Fibonacci sequence, we note its close connection with the equation
x2 = x+ 1, where whose roots are the golden numbers Φ1 and Φ2, and with the
matrix

M =

(
1 1
1 0

)
,

where the eigenvalues are also two golden numbers [4], we then have (Vieta for-
mulas) 1 = σ1 = λ1 +λ2 and 1 = σ2 = −λ1λ2 (where λ1 and λ2 are the two roots
of the equation (real)). So the eigenvectors of M are proportional to v1 =

(λ1
1

)
and

v2 =
(λ2

1

)
.

If we assume that |λ1|> |λ2| , we have (see [1])

Mn =

(
Sn(λ1 +λ2) −λ1λ2Sn−1(λ1 +λ2)

Sn−1(λ1 +λ2) −λ1λ2Sn−2(λ1 +λ2)

)
avec : Sn(λ1 +λ2) =

λ n+1
1 −λ n+1

2

λ1−λ2
.
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In this chapter, given an alphabet E = {e1,e2} and define in Sect. 14.3 the
operator Lk

e1e2
to the sequences ∑∞

j=0 a je
j
1 z j. After that, we will give an impor-

tant result (Theorem 14.2) which allows us doing some customization on the above
alphabet to obtain the results of Foata [3] and other results obtained.

14.2 Preliminaries

14.2.1 Definition of Symmetric Functions in Several Variables

A function of several variables is said to be symmetric if its value does not change
when we permute the variables.

Consider an equation of degree n :

(x−λ1)(x−λ2)(x−λ3) . . . (x−λn) = 0,

with n real or complex roots λ1, λ2,. . . , λn. If we develop the left side, we obtain [5]

xn−σ1xn−1 +σ2xn−2−σ3xn−3 + . . .+(−1)nσn = 0, (14.1)

where σ1,σ2, . . . , σn are homogeneous and symmetrical polynomials in λ1,λ2, . . . ,

λn. To be more accurate, these polynomial can be noted σi(λ1,λ2, . . . ,λn), or σ (n)
i

(if we want to specify only the number of roots):

(X −λ1)(X −λ2)(X −λ3) . . . (X−λn).

These polynomials σ are called elementary symmetric functions of roots [5]. For an
equation of degree 2 (n = 2), we have two roots: λ1 and λ2, where

⎧
⎨

⎩

σ0 = 1
σ1 = λ1 +λ2

σ2 = λ1λ2.
(14.2)

The general formula is σm(λ1,λ2, . . . ,λn) = ∑
i1+i2+...+in=m

λ i1
1 λ

i2
2 . . .λ in

n with

i1, i2, . . . , in = 0 or 1. σ (n)
m is the sum of all distinct products that can be formed

by monomials polynomial Cm
n of degree n. (Cm

n = n!
m!(n−m)! ) σ (n)

m vanishes for
m > n.

14.2.2 Symmetric Functions

Let A, B two finished sets of indeterminates (called alphabets), we denote by
S j(A−B) the coefficients of the rational sequence of poles A and zeros B [1, 2]:
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∞

∑
j=0

S j(A−B)z j =
Π

b∈B
(1− bz)

Π
a∈A

(1− az)
. (14.3)

The polynomial whose roots are B is written as

S j(x−B),with cardB = j

or in the case where A has cardinality 1 (that is to say A = {x}). It is clear that

Π
b∈B

(1− bz)

(1− xz)
= 1+ . . . ..+ z j−1S j−1(x−B)+ z j S j(x−B)

(1− xz)
, (14.4)

where S j+k(x−B) = xkS j(x−B) and this equality for all k ≥ 0. The separation of
the numerator and denominator of equality (14.3), obtained by successively placing
A = φ and B = φ , gives

Sn(A−B) =
n

∑
j=0

Sn− j(−B)S j(A). (14.5)

The summation is actually limited to a finite number of terms, since for all k > 0,
S−k(.) = 0 [1, 2]. In particular,

Π
b∈B

(x− b) = S j(x−B) = x jS0(−B)+ x j−1S1(−B)+ x j−2S2(−B)+ . . . , (14.6)

where the Sk(−B) are the coefficients of the polynomials S j(x−B), 0 ≤ k ≤ j ;
these coefficients are zero for k > j, for example, if all b ∈ B are equal (that is
to write B = nb). We have S j(x− nb) = (x− b)n, and by specializing b = 1, i.e.,
B = {1,1, . . . ,1} , we obtain

Sk(− j) = (−1)k
(

j
k

)
et Sk( j) =

(
j+ k− 1

k

)
. (14.7)

There is another manner of writing the previous polynomials by showing the bino-
mial coefficients. If n is a positive integer, E is an alphabet and x an indeterminate.
According to (14.4) and (14.7) we have [1, 2]

S j(E− nx) = S j(E)−
(

j
1

)
xS j−1(E)+ . . . . . . .±

(
j
j

)
x j, (14.8)

where Sk(− jx) = (−x)k
( j

k

)
.

14.2.3 Divided Difference

We define operators on the polynomial ring that extend to these rings many proper-
ties of symmetric functions. So for any pair (xi,xi+1) we can associate the divided
difference ∂xixi+1 , defined by
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∂xixi+1( f ) =
f (x1,x2, ..xi,xi+1 . . . .)− f (x1,x2, ..xi+1,xi . . . .)

xi− xi+1
. (14.9)

14.3 The Major Formulas

We deduce that the inverse of the sequence
∞
∑
j=0

a j z j is the sequence 1
∞
∑

j=0
b jz j

that is

∞

∑
j=0

a jz
j =

1
∞
∑
j=0

b jz j
. (14.10)

We define the symmetric operator Lk
xy by

Lk
xy f (x) =

xk f (x)− yk f (y)
x− y

. (14.11)

If f (x) = x, the operator (14.11) gives us

Lk
xyx = Sk (x+ y). (14.12)

Proposition 14.1. Let E = {e1,e2} ,we define for any integer natural k the operator
Lk

e1e2
:

Lk
e1e2

f (e1) = Sk−1(e1 + e2) f (e1)+ ek
2∂e1e2 f (e1). (14.13)

Our result is as follows:

Theorem 14.2. Given an alphabet E = {e1,e2} and two sequences
∞
∑
j=0

a jz j and

∞
∑
j=0

b jz j as

(
∞
∑
j=0

a jz j

)(
∞
∑
j=0

b jz j

)

= 1, then

∞

∑
j=0

a jSk+ j−1(e1+e2)z
j =

k−1
∑
j=0

b je
j
1e j

2Sk− j−1(e1 +e2)z j−ek
1ek

2zk+1
∞
∑
j=0

b j+k+1S j(e1 +e2)z j

(
∞
∑

j=0
b je

j
1z j

)(
∞
∑

j=0
b je

j
2z j

) .

(14.14)

Proof (Proof of the Main Theorem). Let
∞
∑
j=0

a jz j and
∞
∑
j=0

b jz j be two sequences as

∞
∑
j=0

a jz j = 1
∞
∑

j=0
b jz j

; then 1st member of formula (14.13) is written:
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Łk
e1e2

f (e1) = Łk
e1e2

(
∞

∑
j=0

a je
j
1z j

)

=
∞

∑
j=0

a jSk+ j−1(e1 + e2)z
j

and the second member of the formula (14.13) can be written:

Sk−1(e1 + e2) f (e1)+ ek
2∂e1 e2

f (e1)

=
Sk−1(e1 + e2)

∞
∑
j=0

b je
j
1z j

+ ek
2∂e1e2

1
∞
∑
j=0

b je
j
1z j

=
Sk−1(e1 + e2)

∞
∑
j=0

b je
j
1z j

−

∞
∑
j=0

b jS j−1(e1 + e2)z j

(
∞
∑
j=0

b je
j
1z j

)(
∞
∑
j=0

b je
j
2z j

)

=

∞
∑
j=0

b j

[
e j

2Sk−1(e1 + e2)− ek
2S j−1(e1 + e2)

]
z j

(
∞
∑
j=0

b je
j
1z j

)(
∞
∑
j=0

b je
j
2z j

)

=

k−1
∑
j=0

b j

[
e j

2Sk−1(e1 + e2)− ek
2S j−1(e1 + e2)

]
z j

(
∞
∑
j=0

b je
j
1z j

)(
∞
∑
j=0

b je
j
2z j

)

+

∞
∑

j=k+1
b j

[
e j

2Sk−1(e1 + e2)− ek
2S j−1(e1 + e2)

]
z j

(
∞
∑
j=0

b je
j
1z j

)(
∞
∑
j=0

b je
j
2z j

)

=

k−1
∑
j=0

b je
j
1e j

2Sk− j−1(e1 + e2)z j− ek
1ek

2zk+1
∞
∑
j=0

b j+k+1S j(e1 + e2)z j

(
∞
∑
j=0

b je
j
1z j

)(
∞
∑
j=0

b je
j
2z j

) .

��
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14.4 Applications

In the case
1

1− z
=

∞

∑
j=0

z j,

the coefficients of the two series in question ( in the theorems below) are {1,−1,0,
0, . . . .} and {1,1,1, . . . .} :

Corollary 14.3. Given an alphabet E = {e1,e2} and an integer k, then we have

∞

∑
j=0

Sk+ j−1(e1 + e2)z
j =

Sk−1(e1 + e2)− e1e2Sk−2(e1 + e2)z
(1− ze1) (1− ze2)

. (14.15)

Note:
Taking e1 = 1 and e2 = x then (14.15) are written:

∞

∑
j=0

(1+x+ . . . . . . . . .xk+ j−1)z j =
(1+ x+ . . .. . . . . .xk−1)− x(1+ x+ . . .. . . . . .xk−2)z

(1− z)(1− zx)
.

In the case k = 1 Corollary 14.3 can be written as follows:

∞

∑
j=0

S j(e1 + e2)z
j =

1
(1− ze1) (1− ze2)

. (14.16)

By replacing e2 by (−e2) , Corollary 14.3 becomes

∞

∑
j=0

S j(e1 +[−e2])z
j =

1
(1− ze1) (1+ ze2)

. (14.17)

If

{
e1e2 = 1

e1− e2 = 1
formula (14.17) becomes

∞

∑
j=0

S j(e1 +[−e2])z
j =

1
1− z− z2 . (14.18)

Formula (14.18) is given by Foata [3]. We note that in the Fibonacci numbers can
be written as

Fj = S j(e1 +[−e2]). (14.19)

By the formula (14.17), we can deduce it by replacing e1 on 2e1and e2 on 2e2 and
under the condition 4e1e2 =−1 Formula (14.18) becomes

∞

∑
j=0

S j(2e1 +[−2e2])z
j =

1
1− 2(e1− e2)z+ z2 . (14.20)
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The formula (14.20) is similar to the one proved by Foata [3]. Consequently, the
Chebyshev polynomials of the second kind are written:

Uj = S j(2e1 +[−2e2]). (14.21)

By the formula (14.20) we can deduce

∞

∑
j=0

[
S j(2e1 +[−2e2])− (e1− e2)S j−1(2e1 +[−2e2])

]
z j =

1− (e1− e2)z
1− 2(e1− e2)z+ z2 .

(14.22)

We find the formula (14.22) in Foata [3]. Consequently, the Chebyshev polynomials
of first kind are written:

Tj(e1− e2) =
[
S j(2e1 +[−2e2])− (e1− e2)S j−1(2e1 +[−2e2])

]
. (14.23)
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Chapter 15
Numerical Study of the High-Contrast Stokes
Equation and Its Robust Preconditioning

Burak Aksoylu and Zuhal Unlu

Abstract We numerically study the Stokes equation with high-contrast viscosity
coefficients. The high-contrast viscosity values create complications in the conver-
gence of the underlying solver methods. To address this complication, we construct
a preconditioner that is robust with respect to contrast size and mesh size simul-
taneously based on the preconditioner proposed by Aksoylu et al. (Comput. Vis.
Sci. 11:319–331, 2008). We examine the performance of our preconditioner against
multigrid and provide a comparative study reflecting the effect of the underlying dis-
cretization and the aspect ratio of the mesh by utilizing the preconditioned inexact
Uzawa and Minres solvers. Our preconditioner turns out to be most effective when
used as a preconditioner to the inexact p-Uzawa solver and we observe contrast size
and mesh size robustness simultaneously. As the contrast size grows asymptotically,
we numerically demonstrate that the inexact p-Uzawa solver converges to the exact
one. We also observe that our preconditioner is contrast size and mesh size robust
under p-Minres when the Schur complement solve is accurate enough. In this case,
the multigrid preconditioner loses both contrast size and mesh size robustness.
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15.1 Introduction

The Stokes equation plays a fundamental role in the modeling of several problems in
emerging geodynamics applications. Numerical solutions to the Stokes flow prob-
lems especially with high-contrast variations in viscosity are critically needed in
the computational geodynamics community; see recent studies [27, 28, 33, 43].
The high-contrast viscosity corresponds to a small Reynolds number regime be-
cause the Reynolds number is inversely proportional to the viscosity value. One of
the main applications of the high-contrast Stokes equation is the study of earth’s
mantle dynamics. The processes such as the long timescale dynamics of the earth’s
convecting mantle and the formation and subsequent evolution of plate tectonics can
be satisfactorily modeled by the Stokes equation; see [28, 33, 34] for further details.
Realistic simulation of mantle convection critically relies on the treatment of the
two essential components of simulation: the contrast size in viscosity and the mesh
resolution. Hence, our aim is to achieve robustness of the underlying preconditioner
with respect to the contrast size and the mesh size simultaneously, which we call as
m- and h-robustness, respectively.

Roughness of PDE coefficients causes loss of robustness of preconditioners.
In [3, 4] Aksoylu and Beyer have studied the diffusion equation with such coef-
ficients in the operator theory framework and have showed that the roughness of
coefficients creates serious complications. For instance, in [4], they have shown that
the standard elliptic regularity in the smooth coefficient case fails to hold. More-
over, the domain of the diffusion operator heavily depends on the regularity of the
coefficients. Similar complications also arise in the Stokes case. This article came
about from a need to address solver complications through the help of robust precon-
ditioning. For that, we construct a robust preconditioner based on the one proposed
in [2], which we call as the Aksoylu–Graham–Klie–Scheichl (AGKS) precondi-
tioner. The AGKS preconditioner originates from the family of robust precondition-
ers constructed in [5]. It was proven and numerically verified to be m- and h-robust
simultaneously.

The AGKS preconditioner was originally designed for the high-contrast diffusion
equation under finite element discretization. In [6] we extended the AGKS precondi-
tioner from finite element discretization to cell-centered finite volume discretization.
Hence, we have shown that the same preconditioner could be used for different dis-
cretizations with minimal modification. Furthermore, in [7], we applied the same
family of preconditioners to high-contrast biharmonic plate equation. Therefore, we
have accomplished a desirable preconditioning design goal by using the same fam-
ily of preconditioners to solve the elliptic family of PDEs with varying discretiza-
tions. In this article, we aim to bring the same preconditioning technology to vector
-valued problems such as the Stokes equation. We extend the usage of AGKS pre-
conditioner to the solution of the stationary Stokes equation in a domain Ω ⊂ R

2:

−∇ · (ν ∇u)+∇p = f in Ω ,
∇ ·u = 0 in Ω ,

(15.1)
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WL

WH

Fig. 15.1: Ω =ΩH ∪ΩL where ΩH and ΩL are highly and lowly viscous regions, respectively

with piecewise constant high-contrast viscosity used in the slab subduction referred
as the Sinker model by [33] :

ν(x) =

{
m 1, x ∈ΩH ,

1, x ∈ΩL.
(15.2)

see Fig. 15.1.
Here, u, p, and f stand for the velocity, pressure, and body force, respectively.
The discretization of (15.1) gives rise to the following saddle-point matrix:

A

[
u
p

]
=

[
K(m) Bt

B 0

][
u
p

]
=

[
f
0

]
. (15.3)

The velocity vector can be treated componentwise which allows the usage of a single
finite element space for each component. The extension of AGKS preconditioner
from diffusion to Stokes equation is accomplished by the following crucial block
partitioning of (15.3); see [21, p. 226]:

⎡

⎣
Kx(m) 0 (Bx)t

0 Ky(m) (By)t

Bx By 0

⎤

⎦

⎡

⎣
ux

uy

p

⎤

⎦=

⎡

⎣
f x

f y

0

⎤

⎦ , (15.4)

where K∗ = Kx = Ky are the scalar diffusion matrices and Bx and By represent the
weak derivatives in x and y directions, respectively. We apply the AGKS precondi-
tioning idea to the Kx and Ky blocks by further decomposing each of them as the
following 2× 2 block system; see [7, Eqn. 11], [6, Eqn. 4], [2, Eqn. 3]:

K∗(m) =

[
K∗HH(m) K∗HL
K∗LH K∗LL

]
, (15.5)

where the degrees of freedom (DOF) are identified as high and low based on the
viscosity value in (15.2) and K∗HH ,K

∗
HL,K

∗
LH , and K∗LL denote couplings between

the high–high, high–low, low–high, and low–low DOF, respectively. The exact in-
verse of K∗ can be written as
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K∗
−1

=

[
IHH −K∗−1

HH K∗HL
0 ILL

] [
K∗−1

HH 0

0 S∗−1

] [
IHH 0

−K∗LHK∗−1

HH ILL

]
,

where IHH and ILL denote the identity matrices of the appropriate dimension and the
Schur complement S∗ is explicitly given by

S∗(m) = K∗LL−K∗LHK∗
−1

HH (m)K∗HL. (15.6)

The AGKS preconditioner is defined as follows:

K̂∗
−1
(m) :=

[
IHH −K∞†

HHK∗HL
0 ILL

][
KHH(m)∗−1

0

0 S∞
−1

][
IHH 0

−K∗LHK∞†

HH ILL

]
, (15.7)

where K∞†

HH and S∞ are the asymptotic values of K∗−1

HH and S∗, respectively;
see [2, Lemma 1].

15.1.1 Literature Review

There are many solution methods proposed for the system of equations in (15.3); see
the excellent survey article [15]. Based on where the emphasis is put in the design
of a solution method, solving a saddle-point matrix system can be classified into
two approaches: preconditioning and solver. The preconditioning approach aims
to construct novel preconditioners for standard solver methods such as Uzawa and
Minres. A vast majority of the articles on the preconditioning approach focuses on
the preconditioning of Schur complement matrix; see [18, 31–33, 36, 38, 43]. It
is well known that the Schur complement matrix S is spectrally equivalent to the
pressure mass matrix (PMM) for the steady Stokes equation; see [17]. For rigor-
ous convergence analysis of Krylov solvers with PMM preconditioner, see [40, 44].
Elman and Silvester [24] established that scaled PMM lead to h-robustness for the
Stokes equation with large constant viscosity. Using a new inner product, Olshan-
skii and Reusken [36] introduced a robust preconditioner for the Schur complement
matrix S = BK−1Bt for discontinuous viscosity 0 < ν ≤ 1 and showed that the pre-
conditioned Uzawa (p-Uzawa) and Minres (p-Minres) became h-robust with this
new PMM preconditioner. Further properties of this preconditioner such as cluster-
ing in the spectrum of preconditioned S-system were shown in [30]. It was pointed
out in [31] that Elman [19] designed LSQR commutator (BFBt) preconditioner in
order to overcome the m-robustness issues by using Ŝ = (BBt)−1BKBt(BBt)−1 pre-
conditioner for S. This preconditioner is further studied in [18, 20]. Additionally, the
usage of variants of the BFBt preconditioner for the high-contrast Stokes equation
is popularized with ν|ΩH = m 1 in geodynamics applications in [27, 28, 33, 43].
May and Moresi [33] established that this preconditioner was m-robust when used
along with a preconditioned Schur Complement Reduction solver and h-robustness
of this preconditioner when used with the Schur method and generalized conjugate
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residual method with block triangular preconditioners was obtained by a further
study in [43].

There have been studies focusing on different ways of preconditioning K for
the Stokes equation restricted to constant viscosity case; see [16, 23, 42]. It was
observed that a single multigrid (MG) cycle with an appropriate smoother was usu-
ally a good preconditioner for K because MG is sufficiently effective as a precon-
ditioner for the constant viscosity case; see [21]. For discontinuous coefficient case,
however, there has not been much study to analyze the performance of precondi-
tioners for K in a Stokes solver framework. Since MG loses h-robustness, there is
an imminent need for the robustness study of preconditioners for the case of discon-
tinuous coefficients and we present the AGKS preconditioner to address this need.

The solver method approach aims to construct a solver by sticking with standard
preconditioners such as MG for the K matrix and PMM or BFBt for the S matrix.
The performance of the solver depends heavily on the choice of the inner precondi-
tioner; see [10, 11, 23, 26]. The Uzawa solver is one of the most popular iterative
methods for the saddle-point problems in fluid dynamics; see [8, 26, 29]. Since
this method requires the solution of K-system in each step, this leads to the utiliza-
tion of an inexact Uzawa method involving an approximate evaluation of K−1; see
[13, 45]. This method involves an inner and outer iteration (in our context, S- and
outer-solve, respectively), and the convergence of this method is studied extensively
in [13, 16, 23, 38].

Another commonly used iterative method is Minres; see [37]. The usage of block
diagonal preconditioner for the p-Minres solver was suggested in [25] and further
results were presented for this type of preconditioning in [39]. For constant viscosity
case, there have been many studies for different choices of the preconditioners for
K and S blocks; see [14, 15, 38, 40, 44]. For the discontinuous viscosity case, on the
other hand, Olshanskii and Reusken [35, 36] studied the performance of p-Minres
with a new PMM preconditioner.

The remainder of this paper is structured as follows. In Sect. 15.2, we describe
p-Uzawa and p-Minres solvers. In Sect. 15.3, we comparatively study the perfor-
mance of the AGKS preconditioner against MG used under the above solvers. We
highlight important aspects of robust preconditioning and draw some conclusions in
Sect. 15.4.

15.2 Solver Methods

The LBB stability of Stokes discretizations has been extensively studied due to uti-
lization of weak formulations to solve (15.1). We are interested in the LBB stability
in the case of high-contrast coefficients. In [35], the LBB stability was proved only
for the case 0 < ν ≤ 1. Later, in [36], this restriction was eliminated, and the results
were extended to cover general viscosity, thereby, immediately establishing the LBB
stability of the discretization under consideration as the following:

sup
uh ∈ Vh

(div uh, ph)

‖uh‖V ≥ cLBB ‖ph‖Q, ph ∈ Qh, (15.8)
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The associated spaces and weighted norms are defined as follows:

V := [H1
0 (Ω)]d ,

Q :=
{

p ∈ L2(Ω) : (ν−1 p,1) = 0
}
,

‖u‖V := (ν∇u,∇v)
1
2 , u ∈V,

‖p‖Q := (ν−1 p, p)
1
2 , p ∈Q.

Here Vh⊂V and Qh⊂Q are finite element spaces that are LBB stable. To be precise,
we utilize the Q2-Q1 (the so-called Taylor-Hood finite element) discretization for
numerical experiments in Sect. 15.3.

There are many solution methods for the indefinite saddle-point problem (15.3).
We concentrate on two different solver methods: the p-Uzawa and p-Minres. We test
the performance of the AGKS preconditioner with these solver methods. First, we
establish two spectral equivalences: between the velocity stiffness matrix K and the
AGKS preconditioner and between the Schur complement matrix S and the scaled
PMM. Note that the constant cLBB in (15.8) is directly used for the spectral equiva-
lence of S in the following.

Lemma 15.1. Let K̂ and Ŝ denote the AGKS preconditioner and the scaled PMM.
Then, for sufficiently large m, the following spectral equivalences hold:

(a)
(1− cm−1/2)(K̂u,u)≤ (Ku,u)≤ (1+ cm−1/2)(K̂u,u), (15.9)

for some constant c independent of m.
(b)

c2
LBB(Ŝp, p)Q ≤ (Sp, p)≤ d(Ŝp, p)Q, (15.10)

where cLBB is the constant in (15.8) which is independent of m and h.

Proof. One can extract a symmetric positive semidefinite matrix N ∗
HH with a rank

one kernel from K∗HH in (15.5). N ∗
HH is the so-called Neumann matrix and the

extraction leads to the following decomposition:

K∗HH(m) = mN ∗
HH +Δ .

Δ corresponds to the coupling between the DOF in ΩL and on the boundary of ΩH .
Since ker(N ∗

HH) has rank one, N ∗
HH has a simple zero eigenvalue and the below

spectral decomposition holds with λi > 0, i = 1, . . . ,nH−1 where nH denotes the
order of N ∗

HH :
ZtN ∗

HHZ = diag(λ1, . . . ,λnH−1,0).

Although the eigenvectors in the columns of Z and the eigenvalues λi can change
according to the underlying discretization, there is always one simple zero eigen-
value and its corresponding constant eigenvector independent of the discretization.
This is a direct consequence of the diffusion operator corresponding to a Neumann
problem. Therefore, the spectral equivalence established for the P1 finite element in
[2, Thm. 1] extends to Q2 and Q1 discretizations, thereby, completing the proof of
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part (a) for K∗. The spectral equivalence of K easily follows from that of K∗ because
of the decomposition in (15.4).

The proof of (b) follows from [36, Thm. 6]. ��

15.2.1 The Preconditioned Uzawa Solver

The Uzawa algorithm is a classical solution method which involves block factor-
ization with forward and backward substitution. Here, we use the preconditioned
inexact Uzawa method described in [12, 38]. The system (15.3) can be block factor-
ized as follows:

[
K(m) 0
B −I

][
I K(m)−1Bt

0 S(m)

][
u
p

]
=

[
f
0

]
. (15.11)

Let (uk, pk) be a given approximation of the solution (u, p). Using the block factor-
ization (15.11) combined with a preconditioned Richardson iteration, one obtains

[
uk+1

pk+1

]
=

[
uk

pk

]
+

[
I −K−1BtS−1

0 S−1

][
K−1 0
BK−1 −I

]([
f
0

]
−A

[
uk

pk

])
. (15.12)

This leads to the following iterative method:

uk+1 = uk +wk− K̂−1Btzk, (15.13a)

pk+1 = pk + zk, (15.13b)

where wk := K̂−1rk
1, rk

1 := f −Kuk − Bt pk, and zk := ŜB(wk + uk). Here, K̂ and
Ŝ are the AGKS and PMM preconditioners for K and S, respectively. Computing
zk involves � iterations of pCG. In this computation, since the assembly of S is
prohibitively expensive, first we replace it by S̃. Then, we utilize the preconditioner
K̂ for K and Ŝ for S̃ where the explicit formula is given by

S̃ := BK̂−1Bt . (15.14)

Thus, the total number of applications of K̂−1 in (15.13a) and (15.13b) becomes
�+2. We refer the outer-solve (one Uzawa iteration) as steps (15.13a) and (15.13b)
combined. In particular, we call the computation of zk as an S-solve; see Table 15.1.
The stopping criterion of the S-solve plays an important role for the efficiency of
the Uzawa method and it is affected by the accuracy of K̂; see the analysis in [38,
Sec. 4]. When the AGKS preconditioner is used for velocity stiffness matrix, the
stopping criterion of the S-solve is determined as follows:

Let ri
p be the residual of the S-solve at iteration i. Then, we abort the iteration

when
‖ri

p‖
‖r0

p‖ ≤ δtol where:

• δtol = 0.5 or
• maximum iteration reaches 4.
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15.2.2 The Preconditioned Minres Solver

The p-Minres is a popular iterative method applied to the system (15.3). Let

v :=

[
u
p

]
. With the given initial guess v0 :=

[
u0

p0

]
where p0 ∈ e⊥Q and with the

corresponding error r0 := v− v0, the p-Minres solver computes:

vk = argmin
v∈v0+K k(B−1A ,r̃0)

‖B−1
([

f
0

]
−A v

)
‖.

Here, r̃0 = B−1r0 and K k = span{r̃0,B−1A r̃0, . . . (B−1A )kr̃0}, and the precon-
ditioner has the following block diagonal structure:

B =

[
K̂ 0
0 Ŝ

]
, (15.15)

where K̂ and Ŝ are the preconditioners for K and S, respectively. In each step of
the p-Minres solver the above preconditioner is applied in the following fashion:
for the K-block one application of K̂ and for the S-block several applications of
pCG to the S̃-system with Ŝ as the preconditioner. Here, S̃ = BK̂−1Bt stands for the
approximation of S. Since S is replaced by S̃, this turns the p-Minres algorithm to an
inexact one; see the inexactness discussion in Sect. 15.3.2. The p-Minres iterations
are called outer-solve whereas the pCG solve for the S̃-system is called inner-solve.

The convergence rate of the p-Minres method depends on the condition number
of the preconditioned matrix, B−1A . Combining the spectral equivalences given
in (15.9) and (15.10) with the well-known condition number estimate [9], we obtain

κB(B−1A )≤ max{(1+ cm−1/2),d}
min{(1− cm−1/2),c2

LBB}
It immediately follows that the convergence rate of the p-Minres method is indepen-
dent of m asymptotically.

15.3 Numerical Experiments

The goal of the numerical experiments is to compare the performance of the AGKS
and MG preconditioners by using two different solvers: p-Uzawa and p-Minres. We
use a four-level hierarchy in which the numbers of DOF, N1,N2,N3, and N4, are
659,2467,9539, and 37507 from coarsest to finest level. We consider cavity flow
with enclosed boundary conditions with right-hand side functions f = 1 and g = 0
on a 2D domain [−1,1]× [−1,1].

For discretization, we use the Q2-Q1 (the Taylor-Hood) stable finite elements
and stabilized Q1-Q1 finite elements for the velocity-pressure pair. We consider
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ΩL
ΩL

ΩH ΩH ΩH

ΩL

Fig. 15.2: The streamline plot of the high-contrast Stokes equation for three different
high-viscosity island configurations; (left) rectangular, (middle) L-shaped, and (right) two

disconnected islands

the case of a single island (viscous inclusion) located at the region [−1/4,1/4]×
[−3/4,3/4]. For an extension, we also consider the cases of L-shaped island and
two disconnected islands; see Fig. 15.2. The observation about these cases is given
in Sect. 15.4. The implementation of discretization is based on ifiss3.1 software pro-
vided in [41]; also see [22]. The AGKS preconditioner implementation is based on
our implementation in [2, 6, 7]. The implementation of the MG preconditioner is de-
rived from the one in [1]. We employ a V(1,1)-cycle, with point Gauss–Seidel (GS)
smoother. A direct solver is used for the coarsest level. For each level of refinement,
we present the number of iteration and average reduction factor corresponding to
each solve (outer-solve and S-solve; outer-solve and inner-solve for p-Uzawa and
p-Minres iterations, respectively). In the tables, N stands for the number of DOF in
A for the outer-solves and the number of DOF in S for the S- and inner-solves. We
enforce an iteration bound of 200. If the method seems to converge slightly beyond
this bound, we denote it by ∗. A zero initial guess is used. The numerical experi-
ments were performed on a dual core Macbook Pro, running at 2.4 GHz with 4GB
RAM.

In analyzing m-robustness, we observe a special feature. The iteration count
remains fixed when m becomes larger than a certain threshold value. We define the
notion asymptotic regime to indicate m values bigger than this threshold. Identifying
an asymptotic regime is desirable because it immediately indicates m-robustness.
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15.3.1 The Preconditioned Uzawa Solver

We use pCG solver with scaled PMM as a preconditioner, 0.5 as tolerance and 4
as maximum number of iterations, for the S-system in each iteration of p-Uzawa.
The tolerance for the outer-solve is set to be 5× 10−6. We report the performance
of the p-Uzawa solver applied to a rectangular and skewed mesh with Q2-Q1 dis-
cretization. We observe that the p-Uzawa method is m-robust as long as the optimal
stopping criterion is used for the S-solve; see Tables 15.1–15.6. The performances
of the AGKS and MG preconditioners are observed as follows. When the MG
preconditioner is used, the p-Uzawa solver loses m- and h-robustness and the it-
eration count increases dramatically when the mesh aspect ratio or the island con-
figuration changes; see Tables 15.1,15.3, and15.5. Especially for viscosity values
larger than 105, we further observe that the iteration number of pCG method for the
S-solve, denoted by �, reaches the maximum iteration count 4. Since the MG pre-
conditioner is applied �+ 2 times at each iteration of the outer-solve, we illustrate
how this results in an unreasonable number of applications of the MG precondi-
tioner; see Fig. 15.3. For instance, in Table 15.1, for the case of m = 108, we have
�= 4. Therefore, in each outer iteration, we apply the MG preconditioner �+2 = 6
times. At level = 4, since the total number of MG application is the product of the
outer-solve count with �+ 2, it becomes 48× 6 = 288. The iteration increases even
more rapidly as we refine the mesh. Therefore, the loss of h-robustness sets a major
drawback as larger size problems are considered.

On the other hand, the AGKS preconditioner maintains m- and h-robustness
simultaneously.of the discretization type or Asymptotically, only one iteration
of pCG is sufficient to obtain an accurate S-solve for a rectangular mesh; see
Table 15.2. When we do the above calculation, we find that for a rectangular mesh,
the total number of AGKS applications is 15× (1+ 2) = 45. Since this application
count remains fixed as the mesh is refined, we infer the h-robustness of the AGKS
preconditioner; see Fig. 15.3. When the mesh aspect ratio or the island configura-
tion changes, the number of pCG iterations required to have an accurate S-solve
becomes 2 or 3. However, this is reasonable since the outer-solve maintains h-
and m-robustness; see Tables 15.4 and 15.6. Hence, the AGKS preconditioner will
acceleratedly outperform the MG preconditioner as more mesh refinements are
introduced regardless of the island or mesh configuration.

15.3.2 The Preconditioned Minres Solver

We notice that the p-Minres has not been the solver of choice for high-contrast
problems due to its unfavorable performance with PMM for the S-system; see [35].
We have taken a novel approach for the S-system. First, we replace S by S̃= BK̂−1Bt

where K̂−1 step is one application of the AGKS preconditioner. This makes the
solver method inexact. Then, we solve S̃-system by using a pCG solver with scaled
PMM preconditioner with tolerance 0.05 with a maximum of 20 iterations. The
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Fig. 15.3: The plot of the number of (top-left) MG applications versus problem size for fixed
viscosity value m = 108, (bottom-left) MG applications versus viscosity value for fixed level = 4,

(top-right) AGKS applications versus problem size for fixed viscosity value m = 108,
(bottom-right) AGKS applications versus viscosity value for fixed level = 4

pCG and p-Minres solution steps are called the inner- and outer-solve, respectively.
Our approach for the S-system is similar to the one we take in the p-Uzawa solver.
But, notice that now the inner solver requires more accuracy in order to guarantee a
convergent p-Minres solver.

As in the p-Uzawa case, the effectiveness of the AGKS preconditioner has been
confirmed as it maintains both the m- and h-robustness whereas MG suffers from
the loss of both; see Tables 15.7–15.12. Furthermore, we observe that the choice
of K̂−1—an application of either MG or AGKS—in the inner-solve dramatically
affects the performance of inner-solve. Specifically, the scaled PMM preconditioner
is m-robust, but not h-robust for the inner-solve with MG, whereas it is both m- and
h-robust for inner-solve with AGKS regardless of the mesh aspect ratio or island
configuration.
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15.4 Conclusion

We provide several concluding remarks on the performance of the AGKS precon-
ditioner under two different solvers. For p-Uzawa and p-Minres solvers, we report
numerical results for only Q2-Q1 discretization on a rectangular or skewed mesh
with a single square-shaped or L-shaped island.

The p-Uzawa solver turns out to be the best choice since AGKS preserves both m-
and h-robustness regardless of the discretization type or deterioration in the aspect
ratio of the mesh. The change in one of the above only causes increase in the num-
ber of iterations, but qualitatively m- and h-robustness are maintained. Moreover,
we observe that the asymptotic regime of the p-Uzawa solver starts with the m value
103; see left-bottom in Fig. 15.3. As island configuration changes, the number of
iterations of both K- and S-solve slightly increases. In addition to that, as the dis-
cretization changes, the m-robustness of PMM for S-solve is lost. The asymptotic
regime of the p-Uzawa solver becomes m≥ 107; see Tables 15.4 and 15.6.

The AGKS preconditioner under the p-Minres solver also maintains both m- and
h-robustness as the discretization, the aspect ratio of the mesh, or the island config-
uration change. However, the number of iterations in the p-Minres solver increases
dramatically when the mesh is skewed. Compared to p-Uzawa, one needs a more
accurate inner-solve for a convergent p-Minres. In addition, the asymptotic regime
of p-Minres solver is m ≥ 107. Combining these three features, p-Minres becomes
less desirable compared to p-Uzawa; see bottom-right and top-right in Fig. 15.3.
However, this solver is potentially useful for large-size problems as the AGKS pre-
conditioner maintains h-robustness.
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Chapter 16
Extension of Karmarkar’s Algorithm
for Solving an Optimization Problem

El Amir Djeffal, Lakhdar Djeffal and Djamel Benterki

Abstract In this paper, we propose an algorithm of an interior point method to solve
a linear complementarity problem (LCP). The study is based on the transformation
of a LCP into a convex quadratic problem; then we use the linearization approach to
obtain the simplified problem of Karmarkar. Theoretical results deduct of those are
established later, we show that this algorithm enjoys the best theoretical polynomial
complexity, namely, O(n+m+ 1)L, iteration bound. The numerical tests confirm
that the algorithm is robust.

16.1 Introduction

Let us consider the linear complementarity problem (LCP): find vectors x and y in
real space ℜn that satisfy the following conditions:

x≥ 0, y = Mx+ q≥ 0 and xty = 0,

where q is a given vector in ℜn and M is a given n× n real matrix. LCP has
important applications in mathematical programming and various areas of engi-
neering [1, 6, 7]. Primal-dual path-following is the most attractive method among
interior point methods to solve a large wide of optimization problems because of
their polynomial complexity and their numerical efficiency [2, 4, 5, 8, 16–18]. Since
Karmarkar’s seminal paper [19] a number of various interior point algorithms were
proposed and analyzed. For these the reader refers to [13, 19–21]. The primal-dual
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interior point methods (IPMs) for LO problems were first introduced by Kojima
et al. [11] and Megiddo [12]. They have shown their powers in solving large classes
of optimization problems.

The principal idea of this method is to replace a LCP by a convex quadratic
program. After the appearance of the Karmarkar’s algorithm [9], the researchers
introduced extensions for the convex quadratic programming [3, 10, 14, 15, 22].
We propose in this paper an interior point method of type projective to solve a more
general problem where the objective function is not inevitably linear. We combine
the approach of linearization with ingredients brought by Karmarkar.

The paper is organized as follows. In the next section, the statement of
theproblem is presented; we deal with the preparation of the algorithm and the
description of the algorithm. In Sect. 16.3, we state its polynomial complexity. In
Sect. 16.4, its numerical implementation is stated. In Sect. 16.5, a conclusion and
remarks are given.

We use the classical notation. In particular, ℜn+m denotes the (n + m)-

dimensional Euclidean space. Given u,v ∈ ℜn+m, utv =
n+m
∑

i=1
uivi is their inner prod-

uct, and ‖u‖=√utu is the Euclidean norm. Given a vector z ∈ℜn+m, D = diag(z)
is the (n+m)× (n+m) diagonal matrix. I is the identity matrix and e is the identity
vector.

16.2 Statement of the Problem

We consider the convex nonlinear programming (CNP) in a standard form as
follows:

min{ f (x) : Ax = b, x≥ 0} , (CNP)

where f : ℜn→ℜ is a convex nonlinear function, A∈ℜm×n, rank.(A) = m, b∈ℜm

and its dual problem

max
{

L(x,y,s) : Aty+ s =−∇ f (x), s≥ 0, y ∈ℜm} ,

where L(x,y,s) is the Lagrangian function.
The LCP associated with the convex nonlinear programming (CNP) is written

as follows:

find z ∈ℜn+m such that ztw = 0, w = Mz+ q, (w, z)≥ 0, (LCP)

where w ∈ ℜn+m, z = (x,y) ∈ ℜn+m, M =

(
∇2 f (x) At

−A 0

)
∈ ℜ(n+m)×(n+m) is a

matrix, q ∈ℜn+m.

Remark 16.1. In general, we cannot transform an arbitrary LCP in a convex
quadratic program unless the matrix M is positive semi-definite.
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Theorem 16.2. [20] A LCP is equivalent to the following convex quadratic
program:

min
{

zt(Mz+ q) : Mz+ q≥ 0, z≥ 0
}
, (16.1)

where (z∗,Mz∗+q) is a solution of the LCP if and only if z∗ is a optimal solution of
the problem (16.1) with (z∗)t(Mz∗+ q) = 0.

In the next section we have introduced Karmarkar’s algorithm for solving
the LCP.

16.2.1 Preparation of the Algorithm

We can write the problem (16.1) under the following simplified Karmarkar’s form:

min{g(t) : Bt = 0, t ∈ Sn+m+1} , (16.2)

where g :ℜn+m+1→ℜ is a linear, convex, and differentiable function, B is a matrix,
t is a vector, and Sn+m+1 =

{
t ∈ℜn+m+1 : et

n+m+1t = 1, t ≥ 0
}

is the simplex of
dimension (n+m) and of the center ai =

1
n+m+1 , i = 1, . . . , n+m+ 1.

We introduce the projective Karmarkar’s transformation defined by

Tk : ℜn+m→ Sn+m+1

z→ t,

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ti =
zi/zk

i

1+
n+m
∑

i=1
zi/zk

i

, i = 1, . . . , n+m

tn+m+1 = 1−
n+m
∑

i=1
ti,

and we have

z = T−1
k (t) =

Dkt[n+m]

tn+m+1
,

where
t[n+m] = (D−1

k z)tn+m+1 = (zi)
n+m
i=1 , Dk = diag(zk).

Thus the problem

min
{

f (z) = zt(Mz+ q) : Mz+ q≥ 0
}⇔min

{
f (z) = zt(Mz+ q) : Mz = l

}

is transformed as follows:

min

{

f (T−1
k (t)) : M

Dkt[n+m]

tn+m+1
= l,

n+m+1

∑
i=1

ti = 1, t[n+m]≥ 0, tn+m+1 ≥ 0

}

;

(16.3)
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hence, it is advisable to write (16.3) under the equivalent form

min{g(t) = tn+m+1 f (Dkt[n+m]) : Mkt = 0, t ∈ Sn+m+1} , (16.4)

where

Mk = [MDk, − l], t =

[
t[n+m]
tn+m+1

]
.

Note that the optimal value of g is zero and the center of the simplex is feasible
for (16.4); also note that the function g is convex on the set {t ∈ Sn+m+1 : Mkt = 0}.

Applying the linearization of the function g in the neighborhood of the center of
the simplex ai and introducing a ball of center a considered as a neighborhood of

a, we have g(t) = g(a)+ 〈∇g(a), t− a〉 , for all t ∈
{

t ∈ℜn+m+1 : ‖t− a‖2 ≤ β 2
}

.

Then we have the following subproblem:

min
{
∇g(a)t t : Mkt = 0,et

n+m+1t = 1,‖t− a‖2 ≤ β 2
}
. (16.5)

Lemma 16.3. The optimal solution of the problem (16.5) is explicitly given by

tk = a−βdk,

where dk = Pk

‖Pk‖ , Pk = pBk∇g(a), Bk =

[
Mk

et
n+m+1

]
.

Proof. We put z = t− a, then we have Bkz =

[
Mk

et
n+m+1

]
(t − a) = 0, and the sub-

problem (16.5) is equivalent to

min
{
∇g(a)t z : Bkz = 0,‖z‖2 ≤ β 2

}
; (16.6)

z∗ is a solution of (16.6) if and only if ∃λ ∈ℜn+m+1, ∃μ ≥ 0 such that

∇g(a)+Bt
kλ + μz∗ = 0. (16.7)

Multiplying both members of (16.7) by Bk we obtain

Bk∇g(a)+BkBt
kλ + μBkz∗ = 0

⇔ Bk∇g(a)+BkBt
kλ = 0.

Then we have

λ =−(BkBt
k)
−1(Bk∇g(a));

by substituting in (16.7) we obtain

z∗ =− 1
μ

Pk,where Pk =
[
I−Bt

k(BkBt
k)
−1Bk

]
∇g(a),
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‖z∗‖= 1
μ

∥
∥∥Pk

∥
∥∥= β =⇒ z∗ =−β Pk

‖Pk‖ =−βdk,

and we have

tk = t∗ = a+ z∗ = a−βdk.

��

16.2.2 Description of the Algorithm

In this subsection, we describe the generic algorithm for our extension of LCP:
Begin algorithm
Step(1)
Initialization: ε > 0,0 < β < 1, z0 : is a strictly feasible point.
Step(2)
While( f (zk)− f (z∗)≥ ε) do
Compute the matrices:

• Dk = diag(zk)
• Mk = [MDk, − l]

• Bk =

[
Mk

et
n+m+1

]

Compute:

• Pk = pBk∇g(a) =
[
I−Bt

k(BkBt
k)
−1Bk

]
∇g(a)

• dk = Pk

‖Pk‖
• tk = a−βdk

Take:

zk+1 = T−1
k (tk). Let k = k+ 1 and go back to Step (2)

End While
End algorithm.

16.3 Convergence of Algorithm

In order to establish the convergence of our algorithm, we introduce a potential
function associated with problem (16.1) defined by

F(z) = (n+m+ 1) log( f (z)− f (z∗))−
n+m

∑
i=1

log(zi).

We have the following lemma.
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Lemma 16.4. For each iteration, we obtain a reduction of the function g, i.e.,

g(tk)≤ g(a).

Proof. We have

g(zk) = g(a)+
〈
∇g(a), zk− a

〉
and tk = a−β Pk

‖Pk‖ .

Then, we get

g(zk)− g(a) =

〈
∇g(a), −β Pk

‖Pk‖
〉

= − β
‖Pk‖

〈
∇g(a), Pk

〉

= − β
‖Pk‖

∥
∥∥Pk

∥
∥∥

2
< 0,

whence the result.��
Theorem 16.5. In every iteration of our algorithm, potential function is reduced of
a constant value such that

F(zk+1)< F(zk)− δ .

Proof. We have

F(zk+1)−F(zk) = (n+m+ 1) log

[
f (zk+1)− f (z∗)
f (zk)− f (z∗)

]
−

n+m

∑
i=1

log

(
zk+1

i

zk
i

)

,

= (n+m+ 1) log
g(tk)

g(a)
−

n+m

∑
i=1

log
(

tk
i

)
,

≤ (n+m+ 1) log

(
1− β

n+m+ 1
+

β 2

2(1−β )2

)
,

≤ −β +
β 2

2(1−β )2 .

If we use the following result of Karmarkar [9]

−
n+m

∑
i=1

log
(

tk
i

)
≤ β 2

2(1−β )2 ,

then we have

F(zk+1)< F(zk)− δ where δ = β − β 2

2(1−β )2 ,

which completes the proof. ��
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Consider the following assumptions:
Assumption 1. The initial solution z0verifies z0 ≥ 2−2Len+m+1.
Assumption 2. The optimal solution z∗ verifies z∗ ≤ 22Len+m+1; for any solution

z we have −23L ≤ f (z∗)≤ 23L.
In the following theorem, we study the complexity analysis of our algorithm.

Theorem 16.6. For each iteration, the algorithm finds the optimal solution after
O((n+m+ 1)L) iterations.

Proof. We have

f (zk)− f (z∗)
f (z0)− f (z∗)

= η(zk)exp

[
F(zk)−F(z0)

n+m+ 1

]
.

Under the assumptions (16.1) and (16.2), we have η(zk)≤ 22L; then

f (zk)− f (z∗) ≤ 22L( f (z0)− f (z∗))exp

[
F(zk)−F(z0)

n+m+ 1

]

≤ 22L23L exp

( −kδ
n+m+ 1

)
.

Hence, we get

k ≥ ξ (n+m+ 1)L, where ξ ∈ℜ∗+,
which gives the result. ��

16.4 Numerical Implementation

In this section, we deal with the numerical implementation of our algorithm applied
to some problems of monotone LCP. Here we use (z0)t = ((x0)t ,(y0)t)t to denote
the feasible starting solution of the algorithm, z∗ the optimal solution of LCP, and
Iter means the iterations number produced by the algorithm. The implementation
is manipulated in DEV C++. Our tolerance is 10−6.

Problem 1:

M =

⎛

⎜
⎜
⎜⎜
⎝

0 0 2 1 0
0 0 1 2 1
−2 −1 0 0 0
−1 −2 0 0 0
0 −1 0 0 0

⎞

⎟
⎟
⎟⎟
⎠
, q =

(−4 −5 8 7 3
)t

.

The feasible starting solution is
z0 =

(
2 2 2 2 2

)t .
The optimal solution is
z∗ =

(
2 3 2 1 1

)t
.

Iter: 6.
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Problem 2:

M =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 3 0.8 0.32 1.128 0.0512
0 0 0 0 0 0 1 0.8 0.32 1.128
0 0 0 0 0 0 0 1 0.8 0.32
0 0 0 0 0 0 0 0 1 0.8
0 0 0 0 0 0 0 0 0 1
−3 0 0 0 0 0 0 0 0 0
−0.8 −1 0 0 0 0 0 0 0 0
−0.32 −0.8 −1 0 0 0 0 0 0 0
−1.28 −0.32 −0.8 −1 0 0 0 0 0 0
−0.0512 −1.28 −0.32 −0.8 −1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

,

q =
(−0.0256 −0.064 −0.16 −0.4 −1 1 1 1 1 1

)t .
The feasible starting solution is
z0 =

(
0.18 0.18 0.18 0.18 0.25 3 4 5 6 9

)t
.

The optimal solution is
z∗ =

(
0 0 0 0 1 0 0 0 0 1

)t
.

Iter: 11.

16.5 Concluding Remarks

In this paper we have extended results from Karmarkar [9] and also proved that
the polynomial complexity of the algorithm for solving LCP is no more than
O((n + m + 1)L). Our numerical results are acceptable whereas getting a start-
ing feasible solution for our algorithm. Finally, the numerical tests are interesting
for investigating the behavior of the algorithm so as to be compared with other
approaches.
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Chapter 17
State-Dependent Sweeping Process
with Perturbation

Tahar Haddad and Touma Haddad

Abstract We prove, via a new projection algorithm, the existence of solutions for
differential inclusion generated by sweeping process with closed convex sets de-
pending on state.

17.1 Introduction

The existence of solutions for the first-order differential inclusion governed by
state-dependent sweeping process

⎧
⎨

⎩

−u̇(t) ∈ NC(t,u(t))(u(t)) a.e. on [0,T ];
u(t) ∈C(t,u(t)), for all t ∈ [0,T ]

u(0) = u0 ∈C(0,u0),
(17.1)

where NC(t,u(t))(·) denotes the normal cone to C(t,u(t)), has been studied when
the sets C(t,u(t)) are convex by Kunze and Monteiro Marques for the first time
in Hilbert space H; see [7]. They used an implicit projection algorithm based
on the fixed point theorem (implicit discretization). Recently, in [1], the authors
treated the problem (17.1) in uniformly convex and uniformly smooth Banach
spaces when the sets C(t,u(t)) are convex.

In this chapter we are interested by the new variant of state-dependent sweeping
process

⎧
⎨

⎩

−u̇(t) ∈ NC(u(t))(u(t))+Au(t)+ f (t) a.e. on [0,T ];
u(t) ∈C(u(t)), for all t ∈ [0,T ]

u(0) = u0 ∈C(u0),
(17.2)
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Laboratoire de Mathématiques Pures et Appliquées , Faculté des Sciences,
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where the linear operator A is bounded, f be a continuous and uniformly bounded
function and the constraints C(u) ∈ H are convex. Problem (17.2) includes as a
special case the following evolution quasi-variational inequality:

Find u : I→H,u(0)= u0 ∈C(u0),such that u(t)∈C(u(t)) for all t ∈ [0,T ], and

〈l(t),w− u(t)〉 ≤ 〈u̇(t),w− u(t)〉+ a(u(t),w− u(t)) a.e. on [0,T ] (17.3)

for all w ∈ C(u(t)). Here a(·, ·) is a real bilinear, symmetric, bounded, and elliptic
form on H×H, l ∈W 1,2((0,T );H), and K(u)⊂H is a set of constraints. The quasi-
variational inequality of type (17.3) arises in superconductivity model (see Duvaut
and Lions [6]). By using a new projection algorithm (explicit discretization) and
techniques from nonsmooth analysis, we give a new proof of the variant of state-
dependent sweeping process described by (17.2) which improves the ones given in
[1, 7].

This chapter is organized as follows. Section 17.2 contains some definitions,
notations, and important results needed in the chapter. In Sect. 17.3, we prove an
existence result for (17.2) when C(u) is a convex set of the Hilbert space H moving
in a Lipschitz continuous way. In Sect. 17.4, we state an application to the quasi-
variational inequality (17.3).

17.2 Notation and Preliminaries

In the sequel, H denotes a real separable Hilbert space. Let S be a closed subset of
H. We denote by B the closed unit ball of H and by dS(·) the usual distance function
associated with S, i.e. d(x,S) := infu∈S ‖x−u‖ (x ∈H.) We need first to recall some
notations and definitions needed in the chapter.

Let ϕ : H→ R∪+∞ be a convex lower semicontinuous (l.s.c) function and let x
be any point where ϕ is finite. We recall that the subdifferential ∂ϕ(x) (in the sense
of convex analysis) is the set of all ξ ∈ H such that

〈ξ ,x′ − x〉 ≤ ϕ(x′)−ϕ(x)
for all x

′ ∈ H. By convention we set ∂ϕ(x) = /0 if ϕ(x) is not finite. Let S be a
nonempty closed subset of H and x be a point in S. The convex normal cone of S at
x is defined by (see for instance [4])

NS(x) = {ξ ∈ H| 〈ξ ,x′ − x〉 ≤ 0 for all x
′ ∈ S}.

It is well known (see for example [4]) that NS(x) the normal cone of a closed convex
set S at x ∈ H can be defined in terms of projection operator ProjS(.) as follows:

NS(x) = {ξ ∈ H| there exists r > 0 such that x ∈ ProjS(x+ rξ )}.

Let us recall the two following results. For their proofs we refer to [2, 8],
respectively.



17 State-Dependent Sweeping Process 275

Proposition 17.1. Let S be a nonempty closed subset of H and x ∈ S. Then

∂dS(x) = NS(x)∩B.
Proposition 17.2. Let C : H ⇒ H be a Hausdorff-continuous set-valued mapping
with nonempty closed convex values. Then the mapping

(x,y) �→ ∂dC(x)(y)

has closed convex values and satisfying the following upper semicontinuity prop-
erty: Let (xn) be a sequence in H converging to x ∈H, and (yn) be a sequence in H
with yn ∈C(xn) for all n, converging to y ∈C(x), then for any ξ ∈ H, we have

limsup
n

σ(∂dC(xn)(yn),ξ ))≤ σ(∂dC(x)(y),ξ ),

where
σ(∂dC(x)(y),ξ ) := sup

p∈∂dC(x)(y)
〈p,ξ 〉

stands for the support function of ∂dC(x)(y) at ξ .

Let now B be a bounded set of a normed space E . Then the Kuratowski measure
of noncompactness of B, α(B), is defined by

α(B) = inf{d > 0| B =
m⋃

i=1

Bi for some m and Bi with diam(Bi)≤ d}

Here diam(A) stands for the diameter of A given by

diamA := sup
x,y∈A
‖x− y‖.

In the following lemma we recall (see for instance Proposition 9.1 in [5]) some
useful properties for the measure of noncompactness α .

Lemma 17.3. Let H be an infinite dimensional real Banach space and D1,D2 be
two bounded subsets of H.

1. α(D1) = 0⇔ D1 is relatively compact.
2. α(λD1) = |λ |α(D1) for all λ ∈R.
3. D1 ⊂ D2⇒ α(D1)≤ α(D2).
4. α(D1 +D2)≤ α(D1)+α(D2).
5. if x0 ∈H and r is a positive real number, then α(x0 + rB) = 2r.

17.3 Main Result

The following existence theorem establishes our main result in this chapter.
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Theorem 17.4. Let H be a separable Hilbert space and let C : H → H be a
set-valued mapping with nonempty closed convex values satisfying the following
assumptions:
(H1) C is Lipschitz continuous with constant 0 < L < 1, i.e. for all x,u,v ∈ H, we
have

|dC(u)(x)− dC(v)(x)| ≤ L‖u− v‖;
(H2) there exists a strongly compact set S such that C(u)⊂ S for all u ∈ H. Let A :
H→H be a linear bounded operator. Assume also that f : [0,T ]→H is continuous
and uniformly bounded, that is, there exists β > 0 such that ‖ f (t)‖ ≤ β for all t ∈
[0,T ]. Then for any u0 ∈C(u0), there exists at least one Lipschitz solution of (17.2).

Proof. Let ρ > 0 such that C(u)⊂ S⊂ ρB for all u∈H. For each n∈N, we consider
the following partition of the interval I := [0,T ]

In
i+1 :=]tn

i , t
n
i+1], tn

i := iμn, 0≤ i≤ n− 1, In
0 := {tn

0}.

Algorithm 1. Put μn := T
n . Fix n≥ 2. We define by induction

• un
0 = u0 ∈C(u0), and f n

0 = f (tn
0 )

• 0≤ i≤ n− 1 : un
i+1 = ProjC(un

i )
(un

i − μnAun
i − μn f n

i )

• f n
i+1 = f (tn

i+1)

The existence of the projection is ensured since C has closed convex values, and
so the Algorithm 1 is well defined. Using the sequences (un

i ) and ( f n
i ) to construct

sequences of mapping un and fn from [0,T ] to H by defining their restrictions to
each interval In

i as follows:

For t ∈ In
0 set fn(t) = f n

0 and un(t) = u0; for t ∈ In
i+1 (0≤ i≤ n− 1)

set fn(t) = f n
i , and

un(t) = un
i +(un

i+1− un
i )
(t− tn

i )

μn
(17.4)

Clearly un is continuous on [0,T ] and differentiable on [0,T ]\{tn
i } with

u̇n(t) =
un

i+1− un
i

μn
, ∀t ∈ [0,T ]\{tn

i }. (17.5)

By Algorithm 1, we have

un
i+1 = ProjC(un

i )
(un

i − μnAun
i − μn f n

i ).

Using the characterization of the normal cone in terms of projection operator, we
can write for a.e. t ∈ [0,T ]

un
i − un

i+1− μnAun
i − μn f n

i ∈ NC(un
i )
(un

i+1),
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or

− un
i+1− un

i

μn
−Aun

i − f n
i ∈ NC(un

i )
(un

i+1). (17.6)

Let us find an upper bound estimate for the expression ‖− un
i+1−un

i
μn
−Aun

i − f n
i ‖.

By Algorithm 1, ‖ f n
i ‖ ≤ β and un

i+1 ∈C(un
i )⊂ ρB, that is, ‖un

i ‖ ≤ ρ , for all i≥ 0.
Therefore the Lipschitz property of C ensures that

‖un
i − un

i+1− μnAun
i − μn f n

i ‖ = dC(un
i )
(un

i − μnAun
i − μn f n

i )

≤ dC(un
i )
(un

i )− dC(un
i−1)

(un
i )+ μn‖A‖‖un

i ‖+ μn‖ f n
i ‖

≤ L‖‖un
i − un

i−1‖+ μn(ρ‖A‖+β ).
(17.7)

By construction we have

‖un
i − un

i−1‖ = ‖un
i − un

i−1+ μnAun
i−1 + μn f n

i−1− μnAun
i−1− μn f n

i−1‖
≤ ‖un

i−1− un
i − μnAun

i−1− μn f n
i−1‖+ μn‖A‖‖un

i−1‖+ μn‖ f n
i−1‖

= dC(un
i−1)

(un
i−1− μnAun

i−1− μn f n
i−1)+ μn‖A‖‖un

i−1‖+ μn‖ f n
i−1‖

≤ dC(un
i−1)

(un
i−1)− dC(un

i−2)
(un

i−1)+ 2μn‖A‖‖un
i−1‖+ 2μn‖ f n

i−1‖
≤ L‖un

i−1− un
i−2‖+ 2μn(ρ‖A‖+β ).

By induction we obtain

‖un
i − un

i−1‖ ≤ 2μn(ρ‖A‖+β )+L
(

2μn‖A‖ρ+ 2μnβ +L‖un
i−2− un

i−3‖
)

= 2μn(ρ‖A‖+β )
(
1+L

)
+L2‖un

i−2− un
i−3‖

. . . . . .
≤ 2μn(ρ‖A‖+β )

(
1+L+L2+ · · ·+Li−2

)
+Li−1‖un

1− un
0‖.

The initial condition u0 ∈C(u0) entails

‖un
1− un

0‖ ≤ ‖un
0− un

1− μnAun
0− μn f n

0 ‖+ μn‖A‖‖un
0‖+ μn‖ f n

0 ‖
≤ dC(un

0)
(un

0− μnAun
0− μn f n

0 )+ μn‖A‖ρ+ μnβ
≤ dC(un

0)
(un

0)+ 2μn‖A‖ρ+ 2μnβ
= 2μn(ρ‖A‖+β ).

So

‖un
i − un

i−1‖ ≤ 2μn(ρ‖A‖+β )
(
1+L+L2+ · · ·+Li−1

)
. (17.8)

Hence (17.7) and (17.8) imply that

‖un
i − un

i+1− μnAun
i − μn f n

i ‖ ≤ μn(2ρ‖A‖+ 2β )
(
1+L+L2+ · · ·+Li

)
.

Using the fact that L < 1, we get

‖un
i − un

i+1− μnAun
i − μn f n

i ‖ ≤ μn(2ρ‖A‖+ 2β )
(

1−Li+1

1−L

)

≤
(

2‖A‖ρ+2β
1−L

)
μn,



278 Tahar Haddad and Touma Haddad

or

‖− un
i+1−un

i
μn
−Aun

i − f n
i ‖ ≤

(
2‖A‖ρ+2β

1−L

)
. (17.9)

The inclusion (17.6) and Proposition 17.1 give

− un
i+1− un

i

μn
−Aun

i − f n
i ∈

(
2‖A‖ρ+ 2β

1−L

)
∂dC(un

i )
(un

i+1). (17.10)

Now let us define the step functions from [0,T ] to [0,T ] by

θn(t) = tn
i ; t ∈ In

i+1,
ηn(t) = tn

i+1; t ∈ In
i+1,

θn(0) = ηn(0) = 0.
(17.11)

Then (17.4), (17.5), (17.10), and (17.11) yield that

−u̇n(t)−Aun(θn(t))− fn(t) ∈
(

2‖A‖ρ+2β
1−L

)
∂dC(un(θn(t))(un(ηn(t))) a.e. on [0,T ].

(17.12)
As lim

n→+∞
θn(t) = lim

n→+∞
ηn(t) = t, we can write by the continuity of f

lim
n→+∞

f (θn(t)) = lim
n→+∞

fn(t) = f (t), uniformly on [0,T ]. Let us prove that the

sequence (un) has a convergent subsequence. By (17.5) and (17.9)

‖u̇n(t)‖ ≤
(

2‖A‖ρ+ 2β
1−L

)
+ ‖A‖ρ+β := γ, (17.13)

and it is clear that the sequence (un(t)) is equi-Lipschitz with constant γ . Now we
show that the set X (t) = {un(t)|n ≥ 2} is relatively compact in H for every t ∈
[0,T ]. From the definition of (un) we have for all t ∈ [0,T ] and all n≥ 2, un(ηn(t))∈
C(un(θn(t)))⊂ S. Then the set {un(ηn(t))|n ≥ 2} is relatively compact in H for all
t ∈ [0,T ], and so by Lemma 17.3 we get

α(un(ηn(t))|n≥ 2}) = 0.

We have X (t) = {un(t)|n ≥ 2} = {un(t)− un(ηn(t)) + un(ηn(t))|n ≥ 2} for all
t ∈ [0,T ]. Then by Lemma 17.3 we obtain that

α(X (t)) ≤ α({un(t)− un(ηn(t))|n≥ 2})+α({un(ηn(t))|n≥ 2})

≤ α

⎛

⎝

⎧
⎨

⎩

ηn(t)∫

t

u̇n(s)ds|n ≥ 2

⎫
⎬

⎭

⎞

⎠+ 0

≤ α
(

B

(
0,

T
n
γ
))

= 2γ
T
n
→ 0 as n→ ∞.
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Here by Lemma 17.3 the set X (t) is relatively strongly compact in H for all t ∈
[0,T ].

Then the all assumptions of Arzela–Ascoli theorem are satisfied and hence there
exists a Lipschitz mapping u : [0,T ]→H with ratio γ such that

• (un) converges uniformly to u on [0,T ], that is, lim
n→+∞

max
t∈[0,T ]

‖un(t)− u(t)‖= 0;

• (u̇n) weakly converges to u̇ in L1([0,T ],H).

Since lim
n→+∞

θn(t) = lim
n→+∞

ηn(t) = t, we have

lim
n→+∞

un(θn(t)) = lim
n→+∞

un(ηn(t))

= lim
n→+∞

un(t) = u(t)

uniformly on [0,T ]. Using now the Lipschitz property of C and the fact that
un(ηn(t)) ∈C(un(θn(t))), ∀t ∈ [0,T ] and for all n≥ 2, we get

d(u(t),C(u(t))) = dC(u(t))(u(t))− dC(un(θn(t)))(un(ηn(t)))

≤ ‖un(ηn(t))− u(t)‖+L‖un(ηn(t))− u(t)‖
≤ (1+L)‖un− u‖∞→ 0 as n→ ∞,

and so the closeness of the set C(u(t)) ensures that u(t) ∈C(u(t)) for all t ∈ [0,T ].
We proceed now to prove that

−u̇(t) ∈ NC(u(t))(u(t))+Au(u(t))+ f (t) for almost all t ∈ [0,T ].

Applying Castaing techniques (see for instance [3]), the uniform convergence of un

to u, the weak convergence of u̇n to u̇ in L1([0,T ],H), the uniform convergence of
fn to f , and Mazur’s lemma entail

−u̇(t)−Au(t)− f (t)∈
⋂

n

co{−u̇k(t)−A(uk(t))− fk(t)|k ≥ n}

for almost all t ∈ [0,T ]. Hence co denotes the closed convex hull.

Fix any such t ∈ [0,T ] and consider any ξ ∈ H. The last relation above yields

〈ξ ,−u̇(t)−Au(t)− f (t)〉 ≤ inf
n

sup
k≥n
〈ξ ,−u̇k(t)−A(uk(t))− fk(t)〉.

According to (17.12) we obtain that

〈ξ ,−u̇(t)−Au(t)− f (t)〉 ≤ limsup
n

σ
((2‖A‖ρ+ 2β

1−L

)
∂dC(un(θn(t)))(un(ηn(t))),ξ

)

≤ σ
((2‖A‖ρ+ 2β

1−L

)
∂PdC(t,u(t))(u(t)),ξ

)
,
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where the last inequality follows from the upper semicontinuity property given
in Proposition 17.2 and because of θn(t) → t and ηn(t) → t, un(ηn(t))→ u(t),
un(θn(t))→ u(t), strongly. Since the set ∂dC(u(t))(u(t)) is closed convex (see Propo-
sition 17.2 and u(t) ∈C(u(t)), we obtain that

−u̇(t)−Au(t)− f (t)∈
(2‖A‖ρ+ 2β

1−L

)
∂dC(u(t))(u(t))⊂ NC(u(t))(u(t))

and so

−u̇(t) ∈ NC(u(t))(u(t))+Au(t)+ f (t) for a.e. t ∈ [0,T ].

This completes the proof of the theorem. ��

17.4 Application

As a direct application of our main result we obtain an existence result for the
evolution quasi-variational inequality:
Find u : I→H,u(0) = u0 ∈C(u0),such that u(t) ∈C(u(t)) for all t ∈ [0,T ], and

〈l(t),w− u(t)〉 ≤ 〈u̇(t),w− u(t)〉+ a(u(t),w− u(t)) a.e. on [0,T ] (17.14)

for all w ∈C(u(t)).

Here a(·, ·) is a real bilinear, symmetric, bounded, and elliptic form on H ×H,
l ∈W 1,2((0,T );H) and K(u)⊂H is a set of constraints. The differential variational
inequality of type (17.3) arises in superconductivity model (see Duvaut and Lions
[6])

Proposition 17.5. Assume that C : H ⇒ H is Lipschitz continuous with ratio 0 <
L < 1 and convex values such that C(u)⊂ S for all u∈H for some strongly compact
set S ⊂ H. Assume that l is uniformly bounded, that is, there exists β > 0 such that
‖l(t)‖ ≤ β for all t ∈ [0,T ]. Then, for every u0 ∈ C(u0), there exists at least one
Lipschitz solution of (17.14).

Proof. Let A be a linear and bounded operator on H associated with a(·, ·), that is,
a(u,v) = 〈Au,v〉 for all u,v ∈ H and put f (t) = −l(t), for all t ∈ [0,T ]. Since C
has convex values, the evolution quasi-variational inequality of type (17.14) can be
rewritten in the form of (17.2) as follows:

−u̇(t) ∈ NC(t,u(t))(u(t))+Au(t)+ f (t) a.e. on [0,T ],

with u(0) = u0 ∈ C(u0). By the Sobolev embedding theorem, W 1,2((0,T );H) ⊂
C((0,T );H), we conclude that f is continuous. Thus all assumptions of Theo-
rem 17.4 are satisfied and so the proof is complete. ��
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Chapter 18
Boundary Value Problems for Impulsive
Fractional Differential Equations with Nonlocal
Conditions

Hilmi Ergören and M. Giyas Sakar

Abstract In this study, we discuss some existence results for the solutions to impul-
sive fractional differential equations with nonlocal conditions by using contraction
mapping principle and Krasnoselskii’s fixed point theorem.

18.1 Introduction

This work is concerned with the existence and uniqueness of the solutions to the
boundary value problem (BVP for short), for the following impulsive fractional
differential equation with nonlocal conditions:

⎧
⎨

⎩

CDαy(t) = f (t,y(t)), t ∈ J := [0,T ], t �= tk, 1 < α ≤ 2
Δy(tk) = Ik(y(t

−
k )), Δy

′
(tk) = I∗k (y(t

−
k )), k = 1,2, . . . , p

ay(0)+ by(T) = g1(y), cy
′
(0)+ dy

′
(T ) = g2(y),

(18.1)

where CDα is the Caputo fractional derivative, f ∈ C(J × R,R), Ik,I∗k ∈ C(R,R),
g1,g2 : PC(J,R)→ R (PC(J,R)will be defined later), Δy(tk) = y(t+k )− y(t−k ) with
y(t+k ) = limh→0+ y(tk + h), y(t−k ) = limh→0− y(tk + h), and Δy′(tk) has a similar
meaning for y′(t), 0 = t0 < t1 < t2 < .. . < tp < tp+1 = T, a,b,c, and d are real
constants with a+ b �= 0, c+ d �= 0.

The subject of fractional differential equations has been recently addressed by
several authors and it is gaining much importance. This is due to the fact that
the fractional derivatives serve an excellent tool for the description of hereditary
properties of different materials and processes. Actually, fractional differential equa-
tions arise in many engineering and scientific disciplines such as physics, chemistry,
biology, electrochemistry, electromagnetic, control theory, economics, signal and
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image processing, aerodynamics, and porous media (see [12–15, 17, 20, 22, 23, 25,
27] and references therein). On the other hand, theory of impulsive differential equa-
tions for integer order has become important and found its extensive applications in
mathematical modeling of phenomena and practical situations in both physical and
social sciences in recent years. One can see a remarkable development in impulsive
theory. For instance, for the general theory and applications of impulsive differential
equations we refer the readers to [11, 19, 24, 28].

Boundary value problems take place in the studies of fractional differential
equations differently many times (see [1–4, 6, 16, 21, 26, 31] and the relevant ref-
erences therein). More precisely, nonlocal conditions were initiated by Byszewski
[9] when he proved the existence and uniqueness of mild and classical solutions
of nonlocal Cauchy problems. As pointed out in [8, 10], nonlocal boundary condi-
tions can be more useful than standard conditions to describe physical phenomena.
For instance, g(y) may be given by

g(y) =
m

∑
i=1

ηiy(ξi)

where ηi, i = 1,2, . . . ,m are given constants and 0 < ξ1 < ξ2 < .. . < ξm < T .
That is why, nonlocal BVPs for fractional differential equations have received

considerable attention (see [5, 8, 32]). However, to the best of our knowledge, there
are few studies considering BVPs for impulsive fractional differential equations
with nonlocal conditions (see[7, 30]).

Motivated by the mentioned recent work above, in this study, we investigate the
existence and uniqueness of solutions to the nonlocal BVP for fractional differential
equation with impulses. Throughout this chapter, in Sect. 18.2, we present some
notations and preliminary results about fractional calculus and differential equations
to be used in the following sections. In Sect. 18.3, we discuss some existence and
uniqueness results for solutions of BVP (18.1), namely, the first one is based on
Banach’s fixed point theorem, and the second one is based on the Krasnoselskii’s
fixed point theorem. At the end, we give an illustrative example for our results.

18.2 Preliminaries

Set J0 = [0, t1] , J1 = (t1, t2] , . . . ,Jk−1 = (tk−1, tk], Jk = (tk, tk+1], J
′

:= [0,T ]\
{t1, t2, . . . , tp} and define the set of functions:

PC(J,R) = {y : J→ R : y∈C((tk, tk+1],R), k = 0,1,2, . . . , p and there exist y(t+k )
and y(t−k ), k = 1,2, . . . , p with y(t−k ) = y(tk)} and

PC1(J,R) = {y ∈ PC(J,R), y
′ ∈C((tk, tk+1],R), k = 0,1,2, . . . , p, and there exist

y
′
(t+k ) and y

′
(t−k ), k = 1,2, . . . , p with y

′
(t−k ) = y

′
(tk)} which is a Banach space with

the norm ‖y‖= supt∈J

{
‖y‖PC ,

∥
∥
∥y
′
∥
∥
∥

PC

}
where ‖y‖PC := sup{|y(t)| : t ∈ J}.

Definition 18.1. ([17, 22]) The fractional (arbitrary) order integral of the function
h ∈ L1 (J,R+) of order α ∈ R+ is defined by
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Iα0+h(t) =
1

Γ (α)

∫ t

0
(t− s)α−1h(s)ds

where Γ (.) is the Euler gamma function.

Definition 18.2. ([17, 22]) For a function h given on the interval J, Caputo fractional
derivative of order α > 0 is defined by

CDα
0+h(t) =

1
Γ (n−α)

∫ t

0
(t− s)n−α−1h(n)(s)ds, n = [α]+ 1

where the function h(t) has absolutely continuous derivatives up to order (n− 1).

Lemma 18.3. ([17, 31]) Let α > 0, then the differential equation

CDαh(t) = 0

has solution

h(t) = c0 + c1t + c2t2 + . . .+ cn−1tn−1, ci ∈ R, i = 0,1,2, . . . ,n− 1, n = [α]+ 1.

Lemma 18.4. ([17, 31]) Let α > 0, then

Iα CDαh(t) = h(t)+ c0+ c1t + c2t2 + . . .+ cn−1tn−1

for some ci ∈ R, i = 0,1,2, . . . ,n− 1, n = [α]+ 1.

Theorem 18.5. ([18])(Krasnoselskii’s fixed point theorem) Let M be a closed con-
vex and nonempty subset of a Banach space X. Let A,B be the operators such that
(i) Ax+By ∈M whenever x,y ∈ M, (ii) A is compact and continuous, (iii) B is a
contraction mapping. Then, there exists z ∈M such that z = Az+Bz.

Theorem 18.6. ([29])(Banach’s fixed point theorem) Let S be a nonempty closed
subset of a Banach space X, then any contraction mapping T of S into itself has a
unique fixed point.

Lemma 18.7. Let 1 < α ≤ 2 and σ : J → R be continuous. A function y(t) is a
solution of the fractional integral equation

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
0
(t−s)α−1

Γ (α) σ(s)ds+m0 +m1t, i f t ∈ J0,

∫ t
tk

(t−s)α−1

Γ (α) σ(s)ds+
k
∑

i=1

∫ ti
ti−1

(ti−s)α−1

Γ (α) σ(s)ds

+
k
∑

i=1
(t− tk)

∫ ti
ti−1

(ti−s)α−2

Γ (α−1) σ(s)ds+
k−1
∑

i=1
(tk− ti)

∫ ti
ti−1

(ti−s)α−2

Γ (α−1) σ(s)ds

+
k
∑

i=1
Ii(y(ti))+

k−1
∑

i=1
(t− ti)I∗i (y(ti))+ I∗k (y(tk))+m0 +m1t, i f t ∈ Jk

(18.2)

if and only if y(t) is a solution of the fractional BVP
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⎧
⎨

⎩

CDαy(t) = σ(t), t ∈ J
′

Δy(tk) = Ik(y(t
−
k )), Δy

′
(tk) = I∗k (y(t

−
k )),

ay(0)+ by(T) = g1(y),cy
′
(0)+ dy

′
(T ) = g2(y)

(18.3)

where k = 1,2, . . . , p and

m0 =
g1(y)
a+b

− b
a+b

[
k

∑
i=1

∫ ti

ti−1

(ti−s)α−1

Γ (α)
σ(s)ds+

k

∑
i=1

(T − tk)
∫ ti

ti−1

(ti− s)α−2

Γ (α−1)
σ(s)ds

+
k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α−1)
σ(s)ds+

∫ T

tk

(T − s)α−1

Γ (α)
σ(s)ds+

k

∑
i=1

Ii(y(ti))

+
k−1

∑
i=1

(T − ti)I
∗
i (y(ti))+ I∗k (y(tk))

]

+
bT

(a+b)(c+d)

[

−g2(y)+d
∫ T

tk

(T − s)α−2

Γ (α−1)
σ(s)ds+

k−1

∑
i=1

d
∫ ti

ti−1

(ti− s)α−2

Γ (α−1)
σ(s)ds

]

,

m1 =
g2(y)
c+ d

− d
c+ d

[∫ T

tk

(T − s)α−2

Γ (α− 1)
σ(s)ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
σ(s)ds

]

.

Proof. Let y be the solution of (18.3). If t ∈ J0, then Lemma 18.4 implies that

y(t) = Iασ(t)− c0− c1t =
∫ t

0

(t− s)α−1

Γ (α)
σ(s)ds− c0− c1t,

y
′
(t) =

∫ t

0

(t− s)α−2

Γ (α− 1)
σ(s)ds− c1

for some c0,c1 ∈ R.
If t ∈ J1, then Lemma 18.4 implies that

y(t) =
∫ t

t1

(t− s)α−1

Γ (α)
σ(s)ds− d0− d1(t− t1),

y
′
(t) =

∫ t

t1

(t− s)α−2

Γ (α− 1)
σ(s)ds− d1

for some d0,d1 ∈ R. Thus, we have

y(t−1 ) =
∫ t1

0

(t1− s)α−1

Γ (α)
σ(s)ds− c0− c1t1, y(t+1 ) =−d0,

y
′
(t−1 ) =

∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds− c1, y

′
(t+1 ) =−d1.

In view of Δy(t1) = y(t+1 )− y(t−1 ) = I1(y(t
−
1 )) and Δy

′
(t1) = y

′
(t+1 )− y

′
(t−1 ) =

I∗1 (y(t
−
1 )), we have
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−d0 =

∫ t1

0

(t1− s)α−1

Γ (α)
σ(s)ds− c0− c1t1 + I1(y(t

−
1 )),

−d1 =
∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds− c1 + I∗1(y(t

−
1 )),

hence, for t ∈ J1,

y(t) =
∫ t

t1

(t− s)α−1

Γ (α)
σ(s)ds+

∫ t1

0

(t1− s)α−1

Γ (α)
σ(s)ds

+(t− t1)
∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds+ I1(y(t

−
1 ))

+(t− t1)I
∗
1(y(t

−
1 ))− c0− c1t,

y
′
(t) =

∫ t

t1

(t− s)α−2

Γ (α− 1)
σ(s)ds+

∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds+ I∗1(y(t

−
1 ))− c1.

If t ∈ J2, then Lemma 18.4 implies that

y(t) =
∫ t

t2

(t− s)α−1

Γ (α)
σ(s)ds− e0− e1(t− t2),

y
′
(t) =

∫ t

t2

(t− s)α−2

Γ (α− 1)
σ(s)ds− e1

for some e0,e1 ∈ R. Thus we have

y(t−2 ) =

∫ t2

t1

(t2− s)α−1

Γ (α)
σ(s)ds+

∫ t1

0

(t1− s)α−1

Γ (α)
σ(s)ds

+(t2− t1)
∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds+ I1(y(t

−
1 ))

+(t2− t1)I
∗
1 (y(t

−
1 ))− c0− c1t2,

y(t+2 ) = −e0,

y
′
(t−2 ) =

∫ t2

t1

(t2− s)α−2

Γ (α− 1)
σ(s)ds+

∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds+ I∗1(y(t

−
1 ))− c1,

y
′
(t+2 ) = −e1.

In view of Δy(t2) = y(t+2 )− y(t−2 ) = I2(y(t
−
2 )) and Δy

′
(t2) = y

′
(t+2 )− y

′
(t−2 ) =

I∗2 (y(t
−
2 )), we have

−e0 = y(t−2 )+ I2(y(t
−
2 )),

−e1 = y
′
(t−2 )+ I∗2(y(t

−
2 )),
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hence, for t ∈ J2,

y(t) =
∫ t

t2

(t− s)α−1

Γ (α)
σ(s)ds+

∫ t1

0

(t1− s)α−1

Γ (α)
σ(s)ds

+

∫ t2

t1

(t2− s)α−1

Γ (α)
σ(s)ds+(t2− t1)

∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds

+(t− t2)

[∫ t1

0

(t1− s)α−2

Γ (α− 1)
σ(s)ds+

∫ t2

t1

(t2− s)α−2

Γ (α− 1)
σ(s)ds

]

+I1(y(t
−
1 ))+ I2(y(t

−
2 ))+ (t− t1)I

∗
1 (y(t

−
1 ))+ I∗2(y(t

−
2 ))− c0− c1t.

By repeating the same process, if t ∈ Jk, then again from Lemma 18.4, we get

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t
tk

(t−s)α−1

Γ (α) σ(s)ds+
k
∑

i=1

∫ ti
ti−1

(ti−s)α−1

Γ (α) σ(s)ds

+
k
∑

i=1
(t− tk)

∫ ti
ti−1

(ti−s)α−2

Γ (α−1) σ(s)ds+
k−1
∑

i=1
(tk− ti)

∫ ti
ti−1

(ti−s)α−2

Γ (α−1) σ(s)ds

+
k
∑

i=1
Ii(y(t−i ))+

k−1
∑

i=1
(t− ti)I∗i (y(t

−
i ))+ I∗k (y(t

−
k ))− c0− c1t.

Applying the conditions ay(0) + by(T ) = g1(y), cy
′
(0) + dy

′
(T ) = g2(y) and

replacing−c0 and −c1 with m0 and m1, respectively, we obtain (18.2).
Conversely, assume that y satisfies the impulsive fractional integral equation

(18.2), then by direct computation, it can be seen that the solution given by (18.2)
satisfies (18.3). The proof is complete.

18.3 Main Results

Definition 18.8. A function y∈ PC1(J,R) with its α-derivative existing on J
′
is said

to be a solution of (18.1) if y satisfies the equation CDαy(t) = f (t,y(t)) on J′ and
satisfies the conditions

Δy(tk) = Ik(y(t
−
k )), Δy

′
(tk) = I∗k (y(t

−
k )),

ay(0)+ by(T) = g1(y),cy
′
(0)+ dy

′
(T ) = g2(y).

The following are the main results of this chapter.

Theorem 18.9. Assume that

(A1) The function f : J×R→ R is continuous and there exists a constant L1 > 0
such that ‖ f (t,u)− f (t,v)‖ ≤ L1 ‖u− v‖, ∀t ∈ J, and u,v ∈ R,

(A2) Ik, I∗k : R→ R are continuous and there exist constants L2 > 0, L3 > 0, M1 > 0
and M2 > 0 such that ‖Ik(u)− Ik(v)‖ ≤ L2 ‖u− v‖, ∥∥I∗k (u)− I∗k (v)

∥∥ ≤
L3 ‖u− v‖ , ‖Ik(u)‖ ≤M1,

∥
∥I∗k (u)

∥
∥≤M2 for each u,v ∈ R and k = 1,2, . . . , p,
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(A3) There exist constants qi > 0, Gi > 0 and gi : PC(J,R)→ R are continuous
functions such that ‖gi(u)− gi(v)‖ ≤ qi ‖u− v‖ ,‖gi(u)‖ ≤ Gi, i = 1,2.

Moreover,
(

1+
|b|
|a+ b|

)(
L1Tα

Γ (α+ 1)

(
1+ p+ 2pα+

α (1+ p)|d|
|c+ d|

)

+ (pL2 + pL3T +L3))+
q1

|a+ b|+
q2T
|c+ d|+

|b|q2T
|(a+ b)(c+ d)|

: =Ωa,b,c,d,p,T,L1,L2,L3,q1,q2 < 1 (18.4)

with

L1 ≤ 1
2

[
Tα

Γ (α+ 1)

(
1+

|b|
|a+ b|

)(
1+ p+ 2pα+

α (1+ p)|d|
|c+ d|

)]−1

.

Then, BVP(̃18.1) has a unique solution on J.

Proof. Define an operator F : PC1(J,R)→ PC1(J,R) by

(Fy)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
tk

(t−s)α−1

Γ (α) f (s,y(s))ds+
k
∑

i=1

∫ ti
ti−1

(ti−s)α−1

Γ (α) f (s,y(s))ds

+
k
∑

i=1
(t− tk)

∫ ti
ti−1

(ti−s)α−2

Γ (α−1) f (s,y(s))ds

+
k−1
∑

i=1
(tk− ti)

∫ ti
ti−1

(ti−s)α−2

Γ (α−1) f (s,y(s))ds

+
k
∑

i=1
Ii(y(t

−
i ))+

k−1
∑

i=1
(t− ti)I∗i (y(t

−
i ))+ I∗k (y(t

−
k ))+C0 +C1t, i f t ∈ Jk

where

C0 =
g1(y)
a+b

− b
a+b

[
k

∑
i=1

∫ ti

ti−1

(ti−s)α−1

Γ (α)
f (s,y(s))ds

+
k

∑
i=1

(T − tk)
∫ ti

ti−1

(ti−s)α−2

Γ (α−1)
f (s,y(s))ds+

k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α−1)
f (s,y(s))ds

+
∫ T

tk

(T − s)α−1

Γ (α)
f (s,y(s))ds+

k

∑
i=1

Ii(y(t
−
i ))+

k−1

∑
i=1

(T − ti)I
∗
i (y(t

−
i ))+ I∗k (y(t

−
k ))

]

+
bT

(a+b)(c+d)

[

−g2(y)+d
∫ T

tk

(T − s)α−2

Γ (α−1)
f (s,y(s))ds

+
k−1

∑
i=1

d
∫ ti

ti−1

(ti− s)α−2

Γ (α−1)
f (s,y(s))ds

]

,

C1 =
g2(y)
c+d

− d
c+d

[∫ T

tk

(T − s)α−2

Γ (α−1)
f (s,y(s))ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α−1)
f (s,y(s))ds

]
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with supt∈J ‖ f (t,0)‖= K. Choosing

r
2
≥

(
1+

|b|
|a+ b|

)[
KTα

Γ (α+ 1)

(
1+ p+ 2pα+

α (1+ p)|d|
|c+ d|

)

+(pM1 + pM2T +M2)

]
+

G1

|a+ b|+
G2T
|c+ d| +

|b|G2T
|(a+ b)(c+ d)| ,

we show that FBr ⊂ Br, where Br = {y ∈ PC(J,R) : ‖y‖ ≤ r}. For y ∈ Br, we
have

‖(Fy)(t)‖ ≤
∫ t

tk

(t− s)α−1

Γ (α)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+
k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+
k

∑
i=1

(t− tk)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+
k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+
k

∑
i=1

∥∥Ii(y(t
−
i ))

∥∥+
k−1

∑
i=1

(t− ti)
∥∥I∗i (y(t

−
i ))

∥∥+
∥∥I∗k (y(t

−
k ))

∥∥+
‖g1(y)‖
|a+ b|

+
|b|
|a+ b|

[
k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+
k

∑
i=1

(T − tk)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+
k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+

∫ T

tk

(T − s)α−1

Γ (α)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

+
k

∑
i=1

∥∥Ii(y(t
−
i ))

∥∥+
k−1

∑
i=1

(T − ti)
∥∥I∗i (y(t

−
i ))

∥∥+
∥∥I∗k (y(t

−
k ))

∥∥
]

+
|b|T

|(a+b)(c+d)|

[

‖g2(y)‖+ |d|
∫ T

tk

(T−s)α−2

Γ (α−1)
(‖ f (s,y(s))

− f (s,0)‖+‖ f (s,0)‖)ds

+
k−1

∑
i=1
|d|

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

]

+
‖g2(y)‖ t
|c+d| +

|d| t
|c+d|

[∫ T

tk

(T−s)α−2

Γ (α−1)
(‖ f (s,y(s))−f (s,0)‖+‖ f (s,0)‖)ds

+
k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
(‖ f (s,y(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

]
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‖(Fy)(t)‖ ≤ (L1r+K)

[∫ t

tk

(t− s)α−1

Γ (α)
ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
ds

+
k

∑
i=1

|t− tk|
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
ds+

k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
ds

+
|b|
|a+ b|

(∫ T

tk

(T − s)α−1

Γ (α)
ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
ds

+
k

∑
i=1

(T − tk)
∫ ti

ti−1

(ti− s)α−2

Γ (α − 1)
ds+

k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
ds

)

+
|bd|T

|(a+ b)(c+ d)|

(∫ T

tk

(T − s)α−2

Γ (α− 1)
ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
ds

)

+
|d| t
|c+ d|

(∫ T

tk

(T − s)α−2

Γ (α− 1)
ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
ds

)]

+
‖g1(y)‖
|a+ b| +

‖g2(y)‖ t
|c+ d| +

|b|‖g2(y)‖T
|(a+ b)(c+ d)|

+
k

∑
i=1

∥
∥Ii(y(t

−
i ))

∥
∥+

k−1

∑
i=1

|t− ti|
∥
∥I∗i (y(t

−
i ))

∥
∥+

∥
∥I∗k (y(t

−
k ))

∥
∥

+
|b|
|a+ b|

[
k

∑
i=1

∥∥Ii(y(t
−
i ))

∥∥+
k−1

∑
i=1

(T − ti)
∥∥I∗i (y(t

−
i ))

∥∥+
∥∥I∗k (y(t

−
k ))

∥∥
]

≤ (L1r+K)

[
Tα

Γ (α+ 1)
+

pTα

Γ (α+ 1)
+

2pTα

Γ (α)

+
|b|
|a+ b|

(
Tα

Γ (α+ 1)
+

pTα

Γ (α+ 1)
+

2pTα

Γ (α)

)

+

( |bd|
|(a+ b)(c+ d)|+

|d|
|c+ d|

)
(1+ p)Tα

Γ (α)

]

+
G1

|a+ b|+
G2T
|c+ d|+

|b|G2T
|(a+ b)(c+ d)|+ pM1 + pM2T +M2

+
|b|
|a+ b| (pM1 + pM2T +M2)

≤ (L1r+K)
Tα

Γ (α+ 1)

(
1+

|b|
|a+ b|

)(
1+ p+ 2pα+

α (1+ p)|d|
|c+ d|

)

+

(
1+

|b|
|a+ b|

)
(pM1 + pM2T +M2)

+
G1

|a+ b|+
G2T
|c+ d|+

|b|G2T
|(a+ b)(c+ d)|
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≤ L1
Tα

Γ (α+ 1)

(
1+

|b|
|a+ b|

)(
1+ p+ 2pα+

α (1+ p) |d|
|c+ d|

)
r

+

(
1+

|b|
|a+ b|

)[
KTα

Γ (α+ 1)

(
1+ p+ 2pα+

α (1+ p)|d|
|c+ d|

)

+(pM1 + pM2T +M2)

]
+

G1

|a+ b|+
G2T
|c+ d|+

|b|G2T
|(a+ b)(c+ d)| .

Now, for x,y ∈ PC(J,R) and for each t ∈ J, we obtain

‖(Fx)(t)− (Fy)(t)‖

≤
∫ t

tk

(t− s)α−1

Γ (α)
‖ f (s,x(s))− f (s,y(s))‖ ds

+
k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
‖ f (s,x(s))− f (s,y(s))‖ ds

+
k

∑
i=1
|t− tk|

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ ds

+
k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ ds

+
k

∑
i=1

∥
∥Ii(x(t

−
i ))− Ii(y(t

−
i ))

∥
∥+

k−1

∑
i=1
|t− ti|

∥
∥I∗i (x(t

−
i ))− I∗i (y(t

−
i ))

∥
∥

+
∥
∥I∗k (x(t

−
k ))− I∗k (y(t

−
k ))

∥
∥+
‖g1(x)− g1(y)‖
|a+ b|

+
|b|
|a+ b|

[
k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
‖ f (s,x(s))− f (s,y(s))‖ ds

+
k

∑
i=1

(T − tk)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ ds

+
k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ ds

+

∫ T

tk

(T − s)α−1

Γ (α)
‖ f (s,x(s))− f (s,y(s))‖ ds+

k

∑
i=1

∥∥Ii(x(t
−
i ))− Ii(y(t

−
i ))

∥∥

+
k−1

∑
i=1

(T − ti)
∥∥I∗i (x(t

−
i ))− I∗i (y(t

−
i ))

∥∥+
∥∥I∗k (x(t

−
k ))− I∗k (y(t

−
k ))

∥∥
]

+
|b|T

|(a+b)(c+d)|

[

‖g2(x)−g2(y)‖+ |d|
∫ T

tk

(T−s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ds
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+
k−1

∑
i=1
|d|

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ ds

]

+
‖g2(x)− g2(y)‖ t

|c+ d| +
|d| t
|c+ d|

[∫ T

tk

(T − s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ ds

+
k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
‖ f (s,x(s))− f (s,y(s))‖ ds

]

.

Then, we have

‖(Fx)(t)− (Fy)(t)‖
≤

[(
1+

|b|
|a+ b|

)(
L1Tα

Γ (α+ 1)

(
1+ p+ 2pα+

α (1+ p) |d|
|c+ d|

)

+ (pL2 + pL3T +L3))+
q1

|a+ b|+
q2T
|c+ d| +

|b|q2T
|(a+ b)(c+ d)|

]
‖x(s)− y(s)‖

≤ Ωa,b,c,d,p,T,L1,L2,L3,q1,q2 ‖x(s)− y(s)‖ .

Therefore, by (18.4) and thanks to Theorem 18.6, the operator F is contraction map-
ping. Consequently, BVP (18.1) has a unique solution.

Theorem 18.10. Assume that(A1)–(A3) hold with
(A4) ‖ f (t,x)‖ ≤ γ(t), ∀(t,x) ∈ J×R, where γ ∈ L1(J,R).
Then the BVP has at least one solution on J.

Proof. Let us fix

ρ ≥
[(

1+
|b|
|a+ b|

){ ‖γ‖L1
Tα

Γ (α+ 1)

(
1+ p+ 2pα+

α (1+ p)|d|
|c+ d|

)

+(pM1 + pM2T +M2)

}
+

G1

|a+ b|+
G2T
|c+ d|+

|b|G2T
|(a+ b)(c+ d)|

]

and consider Bρ = {y ∈ PC(J,R) : ‖y‖∞ ≤ ρ}. We define the operators φ and ψ on
Bρ by

(φy)(t) =
∫ t

tk

(t− s)α−1

Γ (α)
f (s,y(s))ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
f (s,y(s))ds

+
k

∑
i=1

(t− tk)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
f (s,y(s))ds

+
k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
f (s,y(s))ds

− b
a+ b

[
k

∑
i=1

∫ ti

ti−1

(ti− s)α−1

Γ (α)
f (s,y(s))ds
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+
k

∑
i=1

(T − tk)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
f (s,y(s))ds

+
k−1

∑
i=1

(tk− ti)
∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
f (s,y(s))ds+

∫ T

tk

(T − s)α−1

Γ (α)
f (s,y(s))ds

]

+
bdT

(a+ b)(c+ d)

[∫ T

tk

(T − s)α−2

Γ (α− 1)
f (s,y(s))ds

+
k−1

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
f (s,y(s))ds

]

− dt
c+ d

[∫ T

tk

(T − s)α−2

Γ (α− 1)
f (s,y(s))ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
f (s,y(s))ds

]

,

(ψy)(t) =
k

∑
i=1

Ii(y(t
−
i ))+

k−1

∑
i=1

(t− ti)I
∗
i (y(t

−
i ))+ I∗k (y(t

−
k ))

− b
a+ b

[
k

∑
i=1

Ii(y(t
−
i ))+

k−1

∑
i=1

(T − ti)I
∗
i (y(t

−
i ))+ I∗k (y(t

−
k ))

]

+
g1(y)
a+ b

− g2(y)bT
(a+ b)(c+ d)

+
g2(y)t
c+ d

.

Now, one can observe that if x,y ∈ Bρ , then φx+ψy ∈ Bρ checking the inequality

‖φx+ψy‖ ≤ ρ .

It is obvious that ψ is contraction mapping for
(

1+
|b|
|a+ b|

)
(pL2 + pL3T +L3)+

q1

|a+ b|+
q2T
|c+ d| +

|b|q2T
|(a+ b)(c+ d)| < 1.

Continuity of f implies the operator φ is continuous. Also, the inequality

‖(φy)(t)‖ ≤ ‖γ‖L1
Tα

Γ (α+ 1)

(
1+

|b|
|a+ b|

)(
1+ p+ 2pα+

α (1+ p)|d|
|c+ d|

)

implies that φ is uniformly bounded on Bρ .
Now, in order to prove the compactness of the operator φ , equicontinuity of

(φy)(t) is left. Letting (t,y) ∈ J×Bρ , and using the fact that f is bounded on the
compact set J×Bρ , we define supt∈J×R ‖ f (t,y)‖ = fmax < ∞. Then, for τ1,τ2 ∈ Jk

with τ1 < τ2, 0≤ k ≤ p, we have

|(φy)(τ2)− (φy)(τ1)| ≤
∫ τ2

τ1

∣∣(φy)′(s)
∣∣ds≤ L(τ2− τ1)
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where

∣
∣(φy)′(t)

∣
∣ ≤

∫ t

tk

(t− s)α−2

Γ (α− 1)
| f (s,y(s))|ds+

k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
| f (s,y(s))|ds

+
|d|
|c+ d|

[∫ T

tk

(T − s)α−2

Γ (α− 1)
| f (s,y(s))|ds

+
k

∑
i=1

∫ ti

ti−1

(ti− s)α−2

Γ (α− 1)
| f (s,y(s))|ds

]

≤ fmaxT α−1
[
(1+ p)
Γ (α)

(
1+

|d|
|c+ d|

)]
:= L for any t ∈ Jk.

This implies that φ is equicontinuous on all the subintervals Jk, k = 0,1,2, . . . , p.
Therefore, φ is relatively compact on Bρ . By the Arzela–Ascoli Theorem, φ is com-
pact on Bρ . Consequently, we conclude the result of our theorem dependent upon
the Krasnoselskii’s theorem.

18.4 An Example

Consider the following impulsive fractional BVP

CD
3
2 y(t) =

sin5t |y(t)|
(t + 5)3(1+ |y(t)|) , t ∈ [0,1], t �= 1

2
,

Δy(
1
2
) =

∣
∣
∣y( 1

2
−
)
∣
∣
∣

5+
∣
∣
∣y( 1

2
−
)
∣
∣
∣
, Δy

′
(

1
2
) =

∣
∣
∣y
′
( 1

2
−
)
∣
∣
∣

20+
∣
∣
∣y′( 1

2
−
)
∣
∣
∣

(18.5)

2y(0)+ 3y(1) =
m

∑
i=1

ηiy(ξi), y
′
(0)+ 5y

′
(1) =

m

∑
j=1

η̃ j ỹ(ξi)

where 0 < η1 < η2 < .. . < 1, 0 < η̃1 < η̃2 < .. . < 1, and ηi, η̃ j are given positive

constants with
m
∑

i=1
ηi <

2
15 and

m
∑
j=1

η̃ j <
3
15 .

Here, a = 2, b = 3, c = 1, d = 5, α = 3
2 , T = 1, p = 1. Obviously, L1 =

1
125 , L2 =

1
5 , L3 =

1
20 , q1 =

2
15 , q2 =

3
15 and by (18.4), it can be find that

Ωa,b,c,d,p,T,L1,L2,L3,q1,q2 =
16

125
√
π
+

14
25

= 0.63222< 1.

Therefore, due to fact that all the assumptions of Theorem 18.9 hold, the BVP (18.5)
has a unique solution. Besides, one can easily check the result of Theorem 18.10 for
the BVP (18.5).
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Chapter 19
The Construction of Particular Solutions
of the Nonlinear Equation of Schrodinger Type

K.R. Yesmakhanova and Zh.R. Myrzakulova

Abstract Using the method of ∂̄ -problem, based on the nonlocal ∂̄ -problem, partial
solutions for 2 + 1-dimensional nonlinear equation of Schrodinger type are con-
structed.

19.1 Introduction

In connection with the intensive development of soliton theory, the investigation of
multidimensional nonlinear integrable equations has now become an urgent task.
In the work of Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., Kruskal M.D.,
Shabat A.B., Zakharov V.E., Dubrovin B.A., Matveev V.B., Novikov S.P., Manakov
S., and others, various methods for finding exact solutions of these equations have
been used. One such method is the ∂̄—dressing method. This method allows to
simultaneously construct a nonlinear equation and its Lax representation and the
exact solutions. Adapting the method of ∂̄ to the specific problems of differential
equations is one of the most pressing challenges facing the nonlinear mathematical
physics [1–3]. The needs of mathematical physics and its applications necessitate
the construction of new classes of integrable systems and their research. In this
study the relevance of multidimensional, in particular, the 2+1-dimensional inte-
grable nonlinear equations is beyond doubt. In this chapter, using the method of
∂̄ -problem, we construct the particular solutions, namely, the soliton-like solutions
of 2+1-dimensional nonlinear equation of Schrodinger type. Method of ∂̄ -problem
originates with the work of Zakharov and Shabat, which proposed a scheme for
construction of the integrable equations and calculating the time of their solutions.
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19.2 Statement of the Problem

We consider 2+1-dimensional nonlinear Schrodinger equation type

iqt +M1q+ vq = 0, irt −M1r− vr = 0, M2v =−2M1(rq), (19.1)

where q, r, and v (v = 2(U1−U2)) are some complex functions. The operators M1

and M2 are defined by

M1 = 4(a2− 2ab− b)∂ 2
xx + 4α (b− a)∂ 2

xy +α2∂ 2
yy, (19.2)

M2 = 4a(a+ 1)∂ 2
xx− 2α (2a+ 1)∂ 2

xy +α2∂ 2
yy, (19.3)

where a, b are arbitrary real constants and α is a complex constant.
It also arises in the theory of multidimensional integrable systems. The solution

of equation (19.1) satisfies the boundary conditions: q→ 0, r→ 0, v→ 0 for x,y→
±∞. To construct solutions of (19.1), following the method proposed in [1], it is
necessary to solve the matrix integral equation of the form

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ
∫∫

G

W (μ , μ̄)R(μ , μ̄ ;λ ′, λ̄ ′)dμ ∧dμ̄

(19.4)

for W (λ , λ̄ ) norm of V ≡ 1 and G = E . The equation (19.4) is Fredholm integral
equation of the second kind, we believe that the kernel R(μ , μ̄ ,λ , λ̄ ) must have a
weak singularity. We construct exact solutions for nonlinear Schrodinger type. B0

and Ũ are given by

B0 =−2i[B1,W−1], U = i(W−1)diag. (19.5)

It follows that

q =−2i(W−1)12, r = 2i(W−1)21, U = i(W−1)diag =

(
U1 0
0 U2

)
. (19.6)

19.3 Construction of Particular Solutions of 2+1-Dimensional
Nonlinear Equation of Schrodinger Type

For this we take the kernel of R in the formula (19.4) in the form

R(μ , μ̄;λ , λ̄ ;x,y, t) = eF(μ,x,y,t)R0(μ , μ̄ ;λ , λ̄ )e−F(λ ,x,y,t), (19.7)

where R0 is an arbitrary 2× 2 matrix function and

F(μ ,x,y, t) = iμIx+
2iμ
α

B1y− 4iμ2C2t. (19.8)



19 Construction of Particular Solutions 301

Here, the diagonal and the constant 2× 2 matrices B1,C2, and I are given as

B1 =

(
a+ 1 0

0 a

)
, C2 =

(
b+ 1 0

0 b

)
, I =

(
1 0
0 1

)
. (19.9)

Theorem 19.1. If one has a kernel of R in the form (19.7), then the solutions of the
nonlinear Schrodinger equation of (19.1) are given by

U1(x,y, t) =− 1
2π

∫∫

E

dλ ∧dλ̄
∫∫

E

R011(μ , μ̄ ;λ , λ̄ )·

· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )(a+ 1)y− 4i(μ2−λ 2)(b+ 1)t

)
dμ ∧dμ̄ , (19.10)

q(x,y, t) =
1
π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

R012(μ , μ̄ ;λ , λ̄ )·

· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )ay+

2i
α
μy− 4i(μ2−λ 2)bt− 4iμ2t

)
dμ ∧dμ̄,

(19.11)
r(x,y, t) =− 1

π

∫∫

E

dλ ∧dλ̄
∫∫

E

R021(μ , μ̄ ;λ , λ̄ )·

· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )ay− 2i

α
λy− 4i(μ2−λ 2)bt + 4iλ 2t

)
dμ ∧dμ̄,

(19.12)
U2(x,y, t) =− 1

2π

∫∫

E

dλ ∧dλ̄
∫∫

E

R022(μ , μ̄ ;λ , λ̄ )·

· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )ay− 4i(μ2−λ 2)bt

)
dμ ∧dμ̄. (19.13)

Proof. Let’s start with the matrix ∂̄ -problem. Consider the equation (19.4) with the
additional condition W → 1 in |λ | →∞. In this case the function W can be expanded
in the neighborhood of λ = ∞ in a series of negative powers of λ :

W = 1+λ−1W−1 +λ−2W−2 +λ−3W−3 + ... (19.14)

one expands the integrand 1
λ ′−λ in the integral equation (19.4) in powers of λ k

1
λ ′ −λ =

1
λ ′

∞

∑
k=0

(
λ
λ ′

)k

. (19.15)

Substituting (19.14), (19.15) with λ → ∞ in (19.4), we obtain the expression

λ 0 : 1 = 1, (19.16)

λ−1 : W−1 =− 1
2π i

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

R(μ , μ̄;λ , λ̄ )dμ ∧dμ̄, (19.17)
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λ−2 : W−2 =− 1
2π i

∫∫

E

λ ′dλ ′ ∧dλ̄ ′
∫∫

E

R(μ , μ̄ ;λ , λ̄ )dμ ∧dμ̄−

− 1
2π i

∫∫

E

λ ′dλ ′ ∧dλ̄ ′
∫∫

E

W−1R(μ , μ̄ ;λ , λ̄ )dμ ∧dμ̄, (19.18)

...

from (19.17) using the condition (19.6), obtain the solutions

q(x,y, t) =
1
π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

(W (μ , μ̄)R(μ , μ̄ ;λ , λ̄ ))12dμ ∧dμ̄ , (19.19)

r(x,y, t) =− 1
π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

(W (μ , μ̄)R(μ , μ̄ ;λ , λ̄ ))21dμ ∧dμ̄, (19.20)

U(x,y, t) =
1

2π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

(W (μ , μ̄)R(μ , μ̄ ;λ , λ̄ ))diagdμ ∧dμ̄ . (19.21)

For a given nucleus with a weak singularity R with W (∞) = 1, therefore, have

q(x,y, t) =
1
π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

(R)12(μ , μ̄ ;λ , λ̄ )dμ ∧dμ̄, (19.22)

r(x,y, t) =− 1
π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

(R)21(μ , μ̄ ;λ , λ̄ )dμ ∧dμ̄ . (19.23)

Substituting (19.6) in (19.21) one obtains

U1(x,y, t) =− 1
2π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

(R)11(μ , μ̄ ;λ , λ̄ )dμ ∧dμ̄ , (19.24)

U2(x,y, t) =− 1
2π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

(R)22(μ , μ̄ ;λ , λ̄ )dμ ∧dμ̄ . (19.25)

Assume that R0 is an arbitrary 2× 2 matrix. Then the solutions have the form

q(x,y, t) =
1
π

∫∫

E

dλ ′ ∧dλ̄ ′
∫∫

E

R012(μ , μ̄ ;λ , λ̄ )·

· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )ay+

2i
α
μy− 4i(μ2−λ 2)bt− 4iμ2t

)
dμ ∧dμ̄,

(19.26)

r(x,y, t) =− 1
π

∫∫

E

dλ ∧dλ̄
∫∫

E

R021(μ , μ̄ ;λ , λ̄ )·
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· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )ay− 2i

α
λy− 4i(μ2−λ 2)bt + 4iλ 2t

)
dμ ∧dμ̄,

(19.27)
and

U1(x,y, t) =− 1
2π

∫∫

E

dλ ∧dλ̄
∫∫

E

R011(μ , μ̄ ;λ , λ̄ )·

· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )(a+ 1)y− 4i(μ2−λ 2)(b+ 1)t

)
dμ ∧dμ̄ , (19.28)

U2(x,y, t) =− 1
2π

∫∫

E

dλ ∧dλ̄
∫∫

E

R022(μ , μ̄ ;λ , λ̄ )·

· exp

(
i(μ−λ )x+ 2i

α
(μ−λ )ay− 4i(μ2−λ 2)bt

)
dμ ∧dμ̄. (19.29)

Thus Theorem 19.1 is proved. ��
Now consider the degenerate kernel R0, which has the form

R0(μ , μ̄ ;λ , λ̄ ) =
N

∑
k=1

f0k(μ , μ̄)g0k(λ , λ̄ ), (19.30)

where f0k and g0k are linearly independent arbitrary 2× 2 matrix-valued functions
and N is an arbitrary integer. Substituting the expression for R0 (19.30) in the for-
mula (19.7) obtain the kernel of the form:

R(μ , μ̄ ;λ , λ̄ ,x,y, t) = eF(μ,x,y,t)
N

∑
k=1

f0k(μ , μ̄)g0k(λ , λ̄ )e−F(λ ,x,y,t). (19.31)

Theorem 19.2. If the kernel R is given in the form (19.31), then the solutions of the
nonlinear Schrodinger equation of (19.1) are given by

U1(x,y, t) =− 1
2π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)11, (19.32)

q(x,y, t) =
1
π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)12, (19.33)

r(x,y, t) =− 1
π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)21, (19.34)

U2(x,y, t) =− 1
2π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)22, (19.35)
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where
ξk(x,y, t) =

∫∫

E

eiλ x+ 2iλ
α B1y−4iλ 2C2t f0k(λ , λ̄ )dλ ∧dλ̄ , (19.36)

ηl(x,y, t) =
∫∫

E

g0l(λ , λ̄ )e−iλ Ix− 2iλ
α B1y+4iλ 2C2t dλ ∧dλ̄ , (19.37)

Akl(x,y, t) =
1

2π i

∫∫

E

dμ ∧dμ̄
∫∫

E

1
λ − μ

g0l(μ , μ̄)·

· exp

(
i(μ−λ )Ix+

2i
α
(μ−λ )B1y− 4i(μ2−λ 2)C2t

)
f0k(λ , λ̄ )dλ ∧dλ̄ . (19.38)

We begin the proof of Theorem 19.2 with the trivial case N = 1.

Proof. In this case, the kernel of R has the form

R(μ , μ̄ ;λ , λ̄ ,x,y, t) = eF(μ,x,y,t) f01(μ , μ̄)g01(λ , λ̄ )e−F(λ ,x,y,t), (19.39)

where F is given by (19.8). Substituting in the formula (19.4) instead of R(μ , μ̄ ;λ ,
λ̄ ,x,y, t) its expression (19.39), we reduce (19.4) to the form

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ ·

·
∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f01(μ , μ̄)g01(λ ′, λ̄ ′−F(λ ′,x,y,t)dμ ∧dμ̄ . (19.40)

Assume that equation (19.40) has a solution. Introduce the notation
∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f01(μ , μ̄)dμ ∧dμ̄ = h1. (19.41)

Then (19.40) takes the form

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

h1g01(λ ′, λ̄ ′−F(λ ′,x,y,t)

λ ′ −λ dλ ′ ∧dλ̄ ′. (19.42)

To find the W (λ , λ̄ ), one must calculate h1. The equation for h1 follows from
(19.40). Indeed, multiplying the integral equation (19.40) on the eF(λ ,x,y,t) f01(λ , λ̄ )
on the left and integrating over λ twice, we obtain the following equation:

h1 = ξ1 + h1A11. (19.43)

It follows that
h1 = ξ1(I−A11)

−1, (19.44)
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where h1 is set to (19.41) and

ξ1 =
∫∫

G

V (λ , λ̄ )eF(λ ,x,y,t) f01(λ , λ̄ )dλ ∧dλ̄ , (19.45)

A11 =
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′
∫∫

G

g01(λ ′, λ̄ ′F(λ ,x,y,t)−F(λ ′,x,y,t) f01(λ , λ̄ )
λ ′ −λ dλ ∧dλ̄ .

(19.46)

Thus, the integral matrix equation (19.4) with a degenerate kernel (19.39) reduces to
equation (19.43). If (19.43) is not solvable, then, obviously, (19.4) is also solvable.
Assume that equation (19.43) has a solution h1. Substitute h1 formula (19.44) in
equation (19.42) (with A11 �= 0). Finally, we obtain

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

ξ1(1−A11)
−1g01(λ ′, λ̄ ′−F(λ ′,x,y,t)

λ ′ −λ dλ ′ ∧dλ̄ ′. (19.47)

Formula (19.47) gives an explicit solution of the integral matrix equation (19.4),
which is parametrized by two arbitrary matrix functions f01(λ , λ̄ ) and g01(λ , λ̄ ).
These solutions represent the most wide class of exact solutions of ∂̄ -problem
(19.4). From the foregoing it is clear that the integral matrix equation (19.4) and
linear algebraic equations (19.43) are equivalent. In view of formulas (19.14) and
(19.15), we have

1+
W−1

λ
+

W−2

λ 2 + ...= 1+

+
1

2π i

∫∫

G

(− 1
λ
− λ ′

λ 2 − ...
)
ξ1(1−A11)

−1g01(λ ′, λ̄ ′−F(λ ′,x,y,t)dλ ′ ∧dλ̄ ′. (19.48)

Now we equate coefficients of powers of λ :

λ 0 : 1 = 1, (19.49)

λ−1 : W−1 =− 1
2π i

∫∫

G

ξ1(1−A11)
−1g01(λ ′, λ̄ ′−F(λ ′,x,y,t)dλ ′ ∧dλ̄ ′, (19.50)

λ−2 : W−2 =− 1
2π i

∫∫

G

λ ′ξ1(1−A11)
−1g01(λ ′, λ̄ ′−F(λ ′,x,y,t)dλ ′ ∧dλ̄ ′, (19.51)

...

In the formula (19.50) introduce the notation

W−1 =− 1
2π i

∫∫

G

ξ1(1−A11)
−1g01(λ ′, λ̄ ′−F(λ ′,x,y,t)dλ ′ ∧dλ̄ ′=− 1

2π i
ξ1(1−A11)

−1η1.

(19.52)
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In view of (19.6), obtain the solution of (19.1) for the case N = 1 as follows:

U1(x,y, t) =
1

2π
(ξ1(1−A11)

−1η1)11, (19.53)

q(x,y, t) =
1
π
(ξ1(1−A)−1

11 η1)12, (19.54)

r(x,y, t) =− 1
π
(ξ1(1−A)−1

11 η1)21, (19.55)

U2(x,y, t) =
1

2π
(ξ1(1−A11)

−1η1)22, (19.56)

where
ξ1(x,y, t) =

∫∫

E

eiλ Ix+ 2iλ
α B1y−4iλ 2C2t f01(λ , λ̄ )dλ ∧dλ̄ , (19.57)

η1(x,y, t) =
∫∫

E

g01(λ , λ̄ )e−iλ Ix− 2iλ
α B1y+4iλ 2C2t dλ ∧dλ̄ , (19.58)

and

A11(x,y, t) =
1

2π i

∫∫

E

dμ ∧dμ̄
∫∫

E

g01(μ , μ̄)
λ − μ

·

·g(i(μ−λ )Ix+
2i
α
(μ−λ )B1y− 4i(μ2−λ 2)C2t

)
f01(λ , λ̄ )dλ ∧dλ̄ . (19.59)

Consider the case N = 2. In this case, the kernel of R is given by expression

R(μ , μ̄ ;λ , λ̄ ,x,y, t)= eF(μ,x,y,t)[ f01(μ , μ̄)g01(λ , λ̄ )+ f02(μ , μ̄)g02(λ , λ̄ )]e−F(λ ,x,y,t).
(19.60)

Substituting (19.60) in (19.4), one gets

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ ·

·
∫∫

G

W (μ , μ̄)eF(μ,x,y,t)[ f01(μ , μ̄)g01(λ ′, λ̄ ′)+ f02(μ , μ̄)g02(λ ′, λ̄ ′F(−λ ′,x,y,t)dμ∧dμ̄.

(19.61)
hence

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

[h1g01(λ ′, λ̄ ′)+ h2g02(λ ′, λ̄ ′−F(λ ′,x,y,t)

λ ′ −λ dλ ′ ∧dλ̄ ′,

(19.62)
where

hi =

∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f0i(μ , μ̄)dμ ∧dμ̄, (i = 1,2). (19.63)
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To find the W (λ , λ̄ ), we must calculate all the hi. The system of equations for the
hi follows from (19.62). Multiplying (19.62) on eF(λ ,x,y,t) f01(λ , λ̄ ) on the left and
integrating over λ , one gets
∫∫

G

W (λ , λ̄ )eF(λ ,x,y,t) f01(λ , λ̄ )dλ ∧dλ̄ =

∫∫

G

V (λ , λ̄ )eF(λ ,x,y,t) f01(λ , λ̄ )dλ ∧dλ̄+

+
h1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ
∫∫

G

g01(λ ′, λ̄ ′F(λ ,x,y,t)−F(λ ′,x,y,t) f01(λ , λ̄ )dλ ∧dλ̄+

+
h2

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ
∫∫

G

g02(λ ′, λ̄ ′F(λ ,x,y,t)−F(λ ′,x,y,t) f01(λ , λ̄ )dλ ∧dλ̄ . (19.64)

Similarly, multiplying (19.62) on the eF(λ ,x,y,t) f02(λ , λ̄ ) on the left and integrating
over λ , we get
∫∫

G

W (λ , λ̄ )eF(λ ,x,y,t) f02(λ , λ̄ )dλ ∧dλ̄ =
∫∫

G

V (λ , λ̄ )eF(λ ,x,y,t) f02(λ , λ̄ )dλ ∧dλ̄+

+
h1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ
∫∫

G

g01(λ ′, λ̄ ′F(λ ,x,y,t)−F(λ ′,x,y,t) f02(λ , λ̄ )dλ ∧dλ̄+

+
h2

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ
∫∫

G

g02(λ ′, λ̄ ′F(λ ,x,y,t)−F(λ ′,x,y,t) f02(λ , λ̄ )dλ ∧dλ̄ . (19.65)

This implies a linear algebraic system

h1 = ξ1 + h1A11 + h2A21,

h2 = ξ2 + h1A12 + h2A22. (19.66)

Further
h1(1−A11)− h2A21 = ξ1,

− h1A12 + h2(1−A22) = ξ2. (19.67)

It follows from (19.66) shows that I − A =

(
1−A11 −A21

−A12 1−A22

)
. Assume that

det(I−A) �= 0. Then one can find an expression for hk (k = 1,2):

hk =
2

∑
k,l=1

ξk(I−A)−1
kl , (19.68)
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where
ξk =

∫∫

G

V (λ , λ̄ )eF(λ ,x,y,t) f0k(λ , λ̄ )dλ ∧dλ̄ , (19.69)

Akl =
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′
∫∫

G

g0k(λ ′, λ̄ ′F(λ ,x,y,t)−F(λ ′,x,y,t) f0l(λ , λ̄ )
λ ′ −λ dλ ∧dλ̄ . (19.70)

Thus, the linear integral equation (19.4) with a degenerate kernel (19.60) reduces
to the system (19.66). Assume that the system (19.66) has a solution h1 and h2.
Substitute the expression (19.68) in (19.62). Finally, we obtain

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

2
∑

k,l=1
ξk(I−A)−1

kl g0l(λ ′, λ̄ ′−F(λ ′,x,y,t)

λ ′ −λ dλ ′ ∧dλ̄ ′.

(19.71)
Formula (19.71) gives the solution of the integral matrix equation (19.4),

parameterized with four arbitrary matrix functions f0k(λ , λ̄ ) and g0k(λ , λ̄ ), k = 1,2.
These solutions represent the most wide class of solutions of (19.4). Using linear
algebraic systems (19.66) and (19.6), we obtain the solutions

U1(x,y, t) =− 1
2π

2

∑
k,l=1

(ξk(I−Akl)
−1ηl)11, (19.72)

q(x,y, t) =
1
π

2

∑
k,l=1

(ξk(I−A)−1
kl ηl)12, (19.73)

r(x,y, t) =− 1
π

2

∑
k,l=1

(ξk(I−A)−1
kl ηl)21, (19.74)

U2(x,y, t) =− 1
2π

2

∑
k,l=1

(ξk(I−Akl)
−1ηl)22. (19.75)

Here
ξk(x,y, t) =

∫∫

E

eiλ Ix+ 2iλ
α B1y−4iλ 2C2t f0k(λ , λ̄ )dλ ∧dλ̄ , (19.76)

ηl(x,y, t) =
∫∫

E

g0l(λ , λ̄ )e−iλ Ix− 2iλ
α B1y+4iλ 2C2t dλ ∧dλ̄ , (19.77)

and

Akl(x,y, t) =
1

2π i

∫∫

E

dμ ∧dμ̄
∫∫

E

g0l(μ , μ̄)
λ − μ

·

· exp

(
i(μ−λ )Ix+

2i
α
(μ−λ )C1y− 4i(μ2−λ 2)C2t

)
f0k(λ , λ̄ )dλ ∧dλ̄ . (19.78)
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In the case of N, R0 has the form

R0(μ , μ̄ ;λ , λ̄ ,x,y, t) =
N

∑
k=1

f0k(μ , μ̄)g0k(λ , λ̄ ), (19.79)

respectively, degenerate kernel R has the form

R(μ , μ̄;λ , λ̄ ,x,y, t) = eF(μ,x,y,t)
N

∑
k=1

[ f0k(μ , μ̄)g0k(λ , λ̄ )]e−F(λ ,x,y,t). (19.80)

Substituting (19.80) in (19.4), we obtain

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ ·

·
∫∫

G

W (μ , μ̄)eF(μ,x,y,t)
N

∑
k=1

[ f0k(μ , μ̄)g0k(λ ′, λ̄ ′F(−λ
′,x,y,t)dμ ∧dμ̄ . (19.81)

We introduce the notation

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

∑N
l=1 hlg0l(λ ′, λ̄ ′−F(λ ′,x,y,t)

λ ′ −λ dλ ′ ∧dλ̄ ′, (19.82)

where
hl =

∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f0k(μ , μ̄)dμ ∧dμ̄ . (19.83)

To find the W (λ , λ̄ ), one must compute all hk. The system of equations for hk

follows from (19.82). Indeed, multiplying the integral equation (19.82) on the
eF(λ ,x,y,t) f0k(λ , λ̄ ) on the left and integrating over λ twice, we get
∫∫

G

W (λ , λ̄ )eF(λ ,x,y,t) f0k(λ , λ̄ )dλ ∧dλ̄ =

∫∫

G

V (λ , λ̄ )eF(λ ,x,y,t) f0k(λ , λ̄ )dλ ∧dλ̄+

+
1

2π i

∫∫

G

1
λ ′ −λ

∫∫

G

g0l(λ ′, λ̄ ′−F(λ ′,x,y,t)
N

∑
l=1

hle
F(λ ,x,y,t) f0k(λ , λ̄ )dλ ∧dλ̄ .

(19.84)
Hence we obtain the following system:

hk = ξk +
N

∑
l=1

hlAlk, k = 1, ...,N, (19.85)

where
hk =

∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f0k(μ , μ̄)dμ ∧dμ̄ , (19.86)
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ξk =
∫∫

G

V (λ , λ̄ )eF(λ ,x,y,t) f0k(λ , λ̄ )dλ ∧dλ̄ , (19.87)

Alk =
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′
∫∫

G

g0l(λ ′, λ̄ ′F(λ ,x,y,t)−F(λ ′,x,y,t) f0k(λ , λ̄ )
λ ′ −λ dλ ∧dλ̄ . (19.88)

Here, k, l = 1, ...,N. Thus, equation (19.4) with a degenerate kernel (19.80) reduces
to the system (19.85). If the system (19.85) is solvable, it is obvious that ∂̄ -problem
(19.4) is also solvable. Assume that (19.85) has a solution h1, h2, ...,hN :

hk = ξk(I−A)−1
kl , (19.89)

where I − A is N ×N matrix with elements Alk, given in the form (assume that
det(I−A) �= 0):

I−A =

⎛

⎜
⎜
⎜
⎜
⎝

1−A11 −A21 ... −A1N

−A12 1−A22 ... −A2N

−− .−− −− .−− ... −− .−−
−− .−− −− .−− ... −− .−−
−AN1 −AN2 ... 1−ANN

⎞

⎟
⎟
⎟
⎟
⎠
. (19.90)

Substitute (19.89) in (19.82). Finally, we obtain

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

N
∑

k,l=1
ξk(I−A)−1

kl g0l(λ ′, λ̄ ′−F(λ ′,x,y,t)

λ ′ −λ dλ ′ ∧dλ̄ ′,

(19.91)
Formula (19.91) gives an explicit solution W , associated with the integral equa-

tion (19.4), which is parametrized by 2N matrix of arbitrary functions f0k(λ , λ̄ ) and
g0k(λ , λ̄ ). Now, if V = 1, using the formula (19.14) and (19.15), we obtain solutions
of the nonlinear Schrodinger-type equations for the case of N in the form (19.31)–
(19.14) xik, etal and Akl given by (19.35)–(19.37). ��

Soliton-like solutions. To construct a soliton-like solutions, we consider the
degenerate singular kernel R as follows:

R(μ , μ̄ ;λ , λ̄ ;x,y, t) = eF(μ,x,y,t)
N

∑
1

f0kδ (μ− μk)g0kδ (λ −λk)e
−F(λ ,x,y,t). (19.92)

Formulate the following theorem:

Theorem 19.3. If the kernel R is given in the form of (19.92), then N-soliton-like
solutions of nonlinear Schrodinger-type equations (19.1) have the form

U1(x,y, t) =− 1
2π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)11, (19.93)
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q(x,y, t) =
1
π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)12, (19.94)

r(x,y, t) =− 1
π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)21, (19.95)

U2(x,y, t) =− 1
2π

N

∑
k,l=1

(ξk(I−A)−1
kl ηl)22, (19.96)

where

ξk =−2ieiλkIx+
2iλk
α B1y−4iλ 2

k C2t f0k, k = 1,2, ...,N, (19.97)

ηl =−2ig0le
−iλ ′l Ix− 2iλ ′l

α B1y+4iλ ′2l C2t , l = 1,2, ...,N, (19.98)

Alk =
2i
π

g0lei(μk−λl)Ix+
2i
α (μk−λl)B1y−4i(μ2

k−λ 2
l )C2t f0k

λl− μk
, λl �= μk, ∀k, l = 1,2, ...,N.

(19.99)

Proof. Let’s start with the one-soliton-like the case.
Soliton-like solutions. Find the soliton-like solution of (19.1). Suppose that the

kernel has the form

R0(μ , μ̄ ;λ , λ̄ ) = f01g01δ (μ− μ1)δ (λ −λ1), (19.100)

where f01, g01, μ1, λ1 are arbitrary complex constants and δ (μ− μ1), δ (λ −λ1) is
the Dirac delta function. Then, R has the following form:

R(μ , μ̄ ;λ , λ̄ ;x,y, t) = eF(μ,x,y,t) f01δ (μ− μ1)g01e−F(λ ,x,y,t)δ (λ −λ1), (19.101)

where F(λ ) is given by the formulas (19.8). Substituting (19.100) in the (19.4)
obtain

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ ·

·
∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f01δ (μ− μ1)g01e−F(λ ′,x,y,t)δ (λ ′ −λ1)dμ ∧dμ̄ . (19.102)

Believe that

h1 =

∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f01δ (μ− μ1)dμ ∧dμ̄ . (19.103)

Recall that, by definition, Dirac δ functions satisfy

− 1
2i

∫∫

G

δ (μ− μ1)W (μ , μ̄)dμ ∧dμ̄ =W (μ1, μ̄1). (19.104)



312 K.R. Yesmakhanova and Zh.R. Myrzakulova

Using this property of δ functions, one finds from (19.86)

h1 =−2iW(μ1, μ̄1)e
F(μ1,x,y,t) f01. (19.105)

Then, from (19.102), we get

W (λ , λ̄ ) =V (λ , λ̄ )+
h1

2π i

∫∫

G

g01e−F(λ ′,x,y,t)δ (λ ′ −λ1)

λ ′ −λ dλ ′ ∧dλ̄ ′. (19.106)

To find the W to compute h1. Indeed, multiplying (19.106) on the eF(λ ) f01δ (λ −
λ1) on the left and integrating over λ , obtain
∫∫

G

W (λ , λ̄ )eF(λ ,x,y,t) f01δ (λ−λ1)dλ ∧dλ̄ =
∫∫

G

V (λ , λ̄ )eF(λ ,x,y,t) f01δ (λ−λ1)dλ ∧dλ̄+

+
h1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ
∫∫

G

g01δ (λ ′F(μ,x,y,t)−F(λ ′,x,y,t) f01δ (μ− μ̄1)dμ ∧dμ̄ .

(19.107)
Hence, we obtain (19.43). Here, ξk, ηl and Akl have the form

ξ1 =−2iV(λ1, λ̄1)e
iλ1Ix+

2iλ1
α B1y−4iλ 2

1 C2t f01, (19.108)

A11 =−2i
π

g01ei(μ1−λ1)Ix+
2i
α (μ1−λ1)B1y−4i(μ2

1−λ 2
1 )C2t f01

μ1−λ1
λ1 �= μ1. (19.109)

Thus, the formula (19.4) with (19.100) reduces to the solution of linear algebraic
equations for the coefficients of h1 (19.43). Substituting (19.44) in (19.106) and
using (19.104), we have

W (λ , λ̄ ) =V (λ , λ̄ )− 1
π
ξ1(1−A11)

−1g01eF(λ1,x,y,t)

λ1−λ . (19.110)

This formula is the solution of the integral equation (19.4). The corresponding
solution of 2+1-dimensional nonlinear Schrodinger equation of (19.1) is given by
(19.53)–(19.56) and (19.108), (19.109), but with η1 of the form

η1 =−2ig01e−iλ ′1Ix− 2iλ ′1
α B1y+4iλ ′21 C2t . (19.111)

Two-soliton-like solutions. Now we find the two-soliton-like solution of equa-
tion (19.1). In this case, the kernel of the integral matrix equation (19.4) is given by

R0(μ , μ̄ ;λ , λ̄ ) = f01g01δ (μ− μ1)δ (λ −λ1)+ f02g02δ (μ− μ2)δ (λ −λ2), (19.112)

where f01, f02,g01,g02 and λ1,λ2,μ1,μ2 are arbitrary complex constants. As in the
case N = 1, soliton-like solutions reduce to two algebraic equations
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h1 = ξ1 + h1A11 + h2A21, h2 = ξ2 + h1A12 + h2A22, (19.113)

where

hi =
∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f0iδ (μ−μi)dμ∧dμ̄ =−2iW (μi, μ̄i)e
F(μi,x,y,t) f0i, i= 1,2.

(19.114)
We find the hi, i = 1,2, and then, as in the case of two-soliton-like solutions, we
solve equation of (19.1) in the form (19.72)–(19.75) with

ξk =−2ieiλkIx+
2iλk
α B1y−4iλ 2

k C2t f0k, k = 1,2, (19.115)

ηl =−2igle
−iλ ′l Ix− 2iλ ′l

α B1y+4iλ ′2l C2t , l = 1,2, (19.116)

Alk =
2i
π

g0le
i(μk−λl)Ix+

2i
α (μk−λl)H2y−4i(μ2

k−λ 2
l )H2t f0k

λl− μk
, λl �= μk, ∀k, l = 1,2.

(19.117)
N-soliton-like solutions. We define N discrete points on the complex plane: μk ∈

G, λl ∈ G, μk �= λk for ∀ j,k. If in the formula (19.80) the function f0k(μ , μ̄) and
g0k(μ , μ̄) are

f0k(μ , μ̄) = fkδ (μ− μk), g0k(μ , μ̄) = gkδ (λ −λk), k = 1,2, ...,N, (19.118)

then the singular degenerate kernel R has the form

R(μ , μ̄ ,λ , λ̄ ;x,y, t) =
N

∑
k=1

eF(μ,x,y,t) fkδ (μ− μk)gkδ (λ −λk)e
−F(λ ,x,y,t). (19.119)

Hence, one has

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

dλ ′ ∧dλ̄ ′

λ ′ −λ ·

·
∫∫

G

W (μ , μ̄)eF(μ,x,y,t)
N

∑
k=1

[ f0kδ (μ− μk)g0kδ (λ ′ −λk)]e
F(−λ ′,x,y,t)dμ ∧dμ̄ .

(19.120)
Introduce the notation

W (λ , λ̄ ) =V (λ , λ̄ )+
hl

2π i

∫∫

G

1
λ ′ −λ

N

∑
l=1

g0lδ (λ ′ −λl)e
−F(λ ′,x,y,t)dλ ′ ∧dλ̄ ′,

(19.121)
where

hk =

∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f0kδ (μ− μk)dμ ∧dμ̄, k = 1,2, ...,N. (19.122)



314 K.R. Yesmakhanova and Zh.R. Myrzakulova

To find the W (λ , λ̄ ), we compute all hk. After some intermediate calculations we
obtain the following algebraic system:

hk = ξk +
N

∑
l=1

hlAlk, k = 1, ...,N, (19.123)

where
hk =

∫∫

G

W (μ , μ̄)eF(μ,x,y,t) f0k(μ , μ̄)dμ ∧dμ̄ , (19.124)

ξk =−2ieiλkIx+
2iλk
α B1y−4iλ 2

k C2t f0k, k = 1,2, ...,N, (19.125)

Alk =
2i
π

g0lei(μk−λl)Ix+
2i
α (μk−λl)B1y−4i(μ2

k−λ 2
l )C2t f0k

λl− μk
, λl �= μk, ∀k, l = 1,2, ...,N.

(19.126)

Here, k, l = 1, ...,N. Thus, the linear integral equation (19.4) with a singular degen-
erate kernel (19.119) is reduced a linear algebraic system (19.123). The expressions
obtained from equation (19.123) for hk are substituted in (19.121). Let us, obtain
the solution of the integral matrix equation (19.4) as follows:

W (λ , λ̄ ) =V (λ , λ̄ )+
1

2π i

∫∫

G

N
∑

k,l=1
ξk(I−A)−1

kl g0lδ (λ ′ −λl)e−F(λ ′,x,y,t)

λ ′ −λ dλ ′ ∧dλ̄ ′.

(19.127)

In view of formula (19.104) from (19.127) obtain the solution of (19.4) in the
form

W (λ , λ̄ ) =V (λ , λ̄ )+

N
∑

k,l=1
ξk(I−A)−1

kl g0le−F(λk,x,y,t)

π(λl−λ ) . (19.128)

Hence, using the formula (19.14) and (19.6) in the formula (19.128), we get N-
soliton-like solutions in the form (19.32)–(19.35), where xik and Akl are given by
(19.125), (19.126), and

ηl =−2ig0le
−iλl Ix− 2iλl

α B1y+4iλ 2
l C2t , l = 1,2, ...,N. (19.129)

��
Here present two theorems without proof.

Theorem 19.4. If the kernel R is given by

R(μ , μ̄ ;λ , λ̄ ;x,y, t) = eF(μ,x,y,t)
N

∑
k=1

f0kδ (μ− μk)g0kδ (n,0)(λ −λk)e
−F(λ ,x,y,t),

(19.130)
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than the exact N-soliton-like solutions of nonlinear Schrodinger-type equations
(19.1) have the form

U1(x,y, t) =− i
π

N

∑
k,l=1

(ξk(I+A)−1
kl ηl)11, (19.131)

q(x,y, t) =
2i
π

N

∑
k,l=1

(ξk(I +A)−1
kl ηl)12, (19.132)

r(x,y, t) =−2i
π

N

∑
k,l=1

(ξk(I+A)−1
kl ηl)21, (19.133)

U2(x,y, t) =− i
π

N

∑
k,l=1

(ξk(I+A)−1
kl ηl)22, (19.134)

where ξk, : ηl and Alk are given by

ξk =−2iV(μk, μ̄k)e
F(μk,x,y,t) f0k, k = 1,2, ...,N, (19.135)

ηl =
(−1)ng0l

(λl−λ )n

∂ ne−F(λ ,x,y,t)

∂λ n |λ=λl
, l = 1,2, ...,N, (19.136)

Alk =
1
π

∫∫

G

g0le−F(λ ′,x,y,t)δ (n,0)(λ ′ −λl)eF(μk,x,y,t) f0k

μk−λ ′ dλ ′ ∧dλ̄ ′, (19.137)

here λl �= μk, ∀k, l = 1,2, ...,N.

Similarly, we formulate a theorem.

Theorem 19.5. If the kernel R(μ , μ̄ ;λ , λ̄ ;x,y, t) defined by

R(μ , μ̄ ;λ , λ̄ ;x,y, t) = eF(μ,x,y,t)
N

∑
k=1

f0kδ (0,m)(μ− μk)g0kδ (λ −λk)e
−F(λ ,x,y,t),

(19.138)

then the exact N-soliton-like solution of nonlinear Schrodinger-type equations
(19.1) have the form

U1(x,y, t) =− i
π

N

∑
k,l=1

(ξk(I+A)−1
kl ηl)11, (19.139)

q(x,y, t) =
2i
π

N

∑
k,l=1

(ξk(I +A)−1
kl ηl)12, (19.140)

r(x,y, t) =−2i
π

N

∑
k,l=1

(ξk(I+A)−1
kl ηl)21, (19.141)
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U2(x,y, t) =− i
π

N

∑
k,l=1

(ξk(I+A)−1
kl ηl)22, (19.142)

where

ξk = (−1)m f0k
∂m(VeF(λ ,x,y,t))

∂ λ̄m
, k = 1,2, ...,N, (19.143)

ηl =
g0le−F(λl ,x,y,t)

λl−λ , l = 1,2, ...,N, (19.144)

Alk =
(−1)m

π

∫∫

G

g0le−F(λ ′,x,y,t)δ (λ ′ −λ1)eF(μk,x,y,t) f0k

(μk−λ ′m dλ ′ ∧dλ̄ ′, (19.145)

here λ ′ �= μk è k, l varies from 1 to N.

Proofs of Theorems 19.4 and 19.5 are similar to the previous Theorems
19.1−19.3. Thus, in this study we received partial solutions, i.e., N-soliton-like
solutions of 2+1-dimensional nonlinear Schrodinger equation of the method of
∂̄ -problem.
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Chapter 20
A Method of Solution for Integro-Differential
Parabolic Equation with Purely Integral
Conditions

Ahcene Merad and Abdelfatah Bouziani

Abstract The objective of this paper is to prove existence, uniqueness, and contin-
uous dependence upon the data of solution to integro-differential parabolic equa-
tion with purely integral conditions. The proofs are based on a priory estimates and
Laplace transform method. Finally, we obtain the solution by using a numerical
technique for inverting the Laplace transforms.

20.1 Introduction

In this paper we are concerned with the following parabolic Integro-differential
equation,

∂v
∂ t

(x, t)− ∂ 2v
∂x2 (x, t) = g(x, t)+

t∫

0

a(t− s)v(x,s)ds, 0 < x < 1, 0 < t ≤ T, (20.1)

subject to the initial condition

v(x,0) =Φ (x) , 0 < x < 1, (20.2)

and the integral conditions

1∫

0

v(x, t)dx = r (t) , 0 < t ≤ T, (20.3)

1∫

0

xv(x, t)dx = q(t) , 0 < t ≤ T, (20.4)

Ahcene Merad (�) • Abdelfatah Bouziani
Department of Mathematics, Larbi Ben M’hidi University, Oum El Bouaghi, 04000, Algeria,
e-mail: merad ahcene@yahoo.fr; aefbouziani@yahoo.fr

G.A. Anastassiou and O. Duman (eds.), Advances in Applied Mathematics
and Approximation Theory, Springer Proceedings in Mathematics & Statistics 41,
DOI 10.1007/978-1-4614-6393-1 20, © Springer Science+Business Media New York 2013

317

merad_ahcene@yahoo.fr
aefbouziani@yahoo.fr


318 A. Merad and A. Bouziani

where v is an unknown function, r,q, and Φ (x) are given functions supposed to be
sufficiently regular, a is suitably defined function satisfying certain conditions to be
specified later, and T is a positive constant. Certain problems of modern physics and
technology can be effectively described in terms of nonlocal problems for partial
differential equations [3–7, 9–13, 15, 16, 20, 21, 23–27]. Ang [2] has considered a
one-dimensional heat equation with nonlocal (integral) conditions. The author has
taken the Laplace transform of the problem and then used numerical technique for
the inverse Laplace transform to obtain the numerical solution.

This paper is organized as follows. In Sect. 20.2, we begin introducing certain
function spaces which are used in the next sections, and we reduce the posed prob-
lem to one with homogeneous integral conditions. In Sect. 20.3, we first establish the
existence of solution by the Laplace transform. In Sect. 20.4, we establish a priory
estimates, which give the uniqueness and continuous dependence upon the data.

20.2 Statement of the Problem and Notation

Since integral conditions are inhomogeneous, it is convenient to convert problem
(20.1)–(20.2) to an equivalent problem with homogenous integral conditions. For
this, we introduce a new function u(x, t) representing the deviation of the function
v(x, t) from the function

u(x, t) = v(x, t)− u1 (x, t) , 0 < x < 1, 0 < t ≤ T, (20.5)

where
u1 (x, t) = 6(2q(t)− r (t))x− 2(3q(t)− 2r (t)) . (20.6)

Problem (20.1)–(20.2) with inhomogeneous integral conditions (20.3), (20.4) can
be equivalently reduced to the problem of finding a function u satisfying

∂u
∂ t

(x, t)− ∂ 2u
∂x2 (x, t) = f (x, t)+

t∫

0

a(t− s)u(x,s)ds, 0< x < 1, 0< t ≤ T, (20.7)

u(x,0) = ϕ (x) , 0 < x < 1, (20.8)

1∫

0

u(x, t)dx = 0, 0 < t ≤ T, (20.9)

1∫

0

xu(x, t)dx = 0, 0 < t ≤ T (20.10)

where

f (x, t) = g(x, t)−
⎛

⎝∂u1

∂ t
(x, t)− ∂ 2u1

∂x2 (x, t)−
t∫

0

a(t− s)u1 (x,s)ds

⎞

⎠ (20.11)
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and
ϕ (x) =Φ (x)− u1 (x,0) (20.12)

Hence, instead of solving for v, we simply look for u. The solution of problem
(20.1)–(20.4) will be obtained by the relation (20.5), (20.6). We introduce the
appropriate function spaces that will be used in the rest of the note. Let H be a
Hilbert space with a norm ‖.‖H .

Let L2 (0,1) be the standard function space.

Definition 20.1. (i) Denote by L2 (0,T,H) the set of all measurable abstract func-
tions u(., t) from (0,T ) into H equipped with the norm

‖u‖L2(0,T,H) =

⎛

⎝
T∫

0

‖u(., t)‖2
H dt

⎞

⎠

1/2

< ∞ (20.13)

(ii) Let C (0,T,H) be the set of all continuous functions u(., t) : (0,T )−→ H with

‖u‖C(0,T,H) = max
0≤t≤T

‖u(., t)‖H < ∞ (20.14)

(iii) We denote by C0 (0,1) the vector space of continuous functions with compact
support in (0,1) . Since such function are Lebesgue integrable with respect to
dx, we can define on C0 (0,1) the bilinear form given by

((u,w)) =

1∫

0

Jm
x u.Jm

x wdx, m≥ 1 (20.15)

where

Jm
x u =

x∫

0

(x− ζ )m−1

(m− 1)!
u(ζ , t)dζ ; for m≥ 1 (20.16)

The bilinear form (20.15) is considered as a scalar product on C0 (0,1) is not
complete.

Definition 20.2. Denote by Bm
2 (0,1), the completion of C0 (0,1) for the scalar prod-

uct (20.15), which is denoted (., .)Bm
2 (0,1)

, introduced by [5]. By the norm of function

u from Bm
2 (0,1), m≥ 1, we understand the nonnegative number:

‖u‖Bm
2 (0,1)

=

⎛

⎝
1∫

0

(Jm
x u)2 dx

⎞

⎠

1/2

= ‖Jm
x u‖ ; for m≥ 1 (20.17)

Lemma 20.3. For all m ∈ N
∗, the following inequality holds:

‖u‖2
Bm

2 (0,1)
≤ 1

2
‖u‖2

Bm−1
2 (0,1) . (20.18)
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Proof. See [5]. ��
Corollary 20.4. For all m ∈ N

∗, we have the elementary inequality

‖u‖2
Bm

2 (0,1)
≤
(

1
2

)m

‖u‖2
L2(0,1) . (20.19)

Definition 20.5. We denote by L2(0,T ;Bm
2 (0,1)) the space of functions which are

square integrable in the Bochner sense, with the scalar product

(u,w)L2(0,T ;Bm
2 (0,1))

=

∫ T

0
(u(., t) ,w(., t))Bm

2 (0,1)
dt. (20.20)

Since the space Bm
2 (0,1) is a Hilbert space, it can be shown that L2(0,T ;Bm

2 (0,1)) is
a Hilbert space as well. The set of all continuous abstract functions in [0,T ] equipped
with the norm

sup
0≤t≤T

‖u(., t)‖Bm
2 (0,1)

is denoted C(0,T ;Bm
2 (0,1)).

Corollary 20.6. For every u∈ L2 (0,1) , from which we deduce the continuity of the
imbedding L2 (0,1) −→ Bm

2 (0,1), for m≥ 1.

Lemma 20.7. (Gronwall Lemma) Let f1 (t) , f2 (t) ≥ 0 be two integrable functions
on [0,T ] , f2 (t) is nondecreasing. If

f1 (τ)≤ f2 (τ)+ c
∫ τ

0
f1 (t)dt, ∀τ ∈ [0,T ] , (20.21)

where c ∈R
+, then

f1 (t)≤ f2 (t)exp(ct) , ∀t ∈ [0,T ] . (20.22)

Proof. The proof is the same as that of Lemma 1.3.19 in [19]. ��

20.3 Existence of the Solution

In this section we shall apply the Laplace transform technique to find solutions of
partial differential equations; we have the Laplace transform

V (x,s) = L {v(x, t) ;t −→ s}=
∫ ∞

0
v(x, t)exp(−st)dt, (20.23)

where s is positive reel parameter. Taking the Laplace transforms on both sides of
(20.1), we have

(s−A(s))V (x,s)− d2

dx2 V (x,s) = G(x,s)+ sΦ (x) , (20.24)
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where G(x,s) = L {g(x, t) ;t −→ s} . Similarly, we have

∫ 1

0
V (x,s)dx = R(s), (20.25)

∫ 1

0
xV (x,s)dx = Q(s), (20.26)

where
R(s) = L {r(t);t −→ s}

and
Q(s) = L {q(t);t −→ s} .

Now, we have the following cases:
Case 1: If s−A(s)> 0
Case 2: If s−A(s)< 0
Case 3: If s−A(s) = 0
We only consider cases 2 and 3, as case 1 can be dealt with similarly as in [2].

For (s−A(s)) = 0, we have

d2

dx2 V (x,s) =−G(x,s)− sΦ (x) , (20.27)

The general solution for case 3 is given by

V (x,s) =−
∫ x

0

∫ y

0
[G(x,s)+ sΦ (x)]dzdy+C1 (s)x+C2 (s) , (20.28)

Putting the integral conditions (3.3) ,(3.4) in (3.6) we get

1
2

C1 (s)+C2 (s)

=

∫ 1

0

∫ x

0

∫ y

0
[G(x,s)+ sΦ (x)]dzdy+R(s), (20.29)

1
3

C1 (s)+
1
2

C2 (s)

=

∫ 1

0

∫ x

0

∫ y

0
x [G(x,s)+ sΦ (x)]dzdy+Q(s), (20.30)

where

C1 (s) = 12
∫ 1

0

∫ x

0

∫ y

0
x [G(x,s)+ sΦ (x)]dzdy−

6
∫ 1

0

∫ x

0

∫ y

0
[G(x,s)+ sΦ (x)]dzdy+

12Q(s)− 6R(s), (20.31)
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C2 (s) = 4
∫ 1

0

∫ x

0

∫ y

0
[G(x,s)+ sΦ (x)]dzdy−

6
∫ 1

0

∫ x

0

∫ y

0
x [G(x,s)+ sΦ (x)]dzdy−

6Q(s)+ 4R(s). (20.32)

For case 2, that is, (s−A(s)) < 0,using the method of variation of parameter, we
have the general solution as

V (x,s) =
1

√
A(s)− s

∫ x

0
(G(x,s)+ sΦ (x)) sin

(√
A(s)− s

)
(x− τ)dτ

+d1 (s)cos
√
(A(s)− s)x+ d2 (s) sin

√
(A(s)− s)x (20.33)

From the integral conditions (20.25), (20.26) we get

d1 (s)
∫ 1

0
cos

√
(A(s)− s)xdx+ d2 (s)

∫ 1

0
sin

√
(A(s)− s)xdx =

R(s)− 1
√

A(s)− s

∫ 1

0

∫ x

0
[(G(x,s)+ sΦ (x))

sin
(√

A(s)− s
)
(x− τ)

]
dτdx, (20.34)

d1 (s)
∫ 1

0
xcos

√
(A(s)− s)xdx+ d2 (s)

∫ 1

0
xsin

√
(A(s)− s)xdx =

Q(s)− 1
√

A(s)− s

∫ 1

0

∫ x

0
[x(G(x,s)+ sΦ (x))

sin
(√

A(s)− s
)
(x− τ)

]
dτdx. (20.35)

Thus d1,d2 are given by

(
d1 (s)
d2 (s)

)
=

(
a11 (s) a12 (s)
a21 (s) a22 (s)

)−1

×
(

b1 (s)
b2 (s)

)
, (20.36)

and

a11 (s) =
∫ 1

0
cos

√
(A(s)− s)xdx,

a12 (s) =
∫ 1

0
sin

√
(A(s)− s)xdx,

a21 (s) =
∫ 1

0
xcos

√
(A(s)− s)xdx,

a22 (s) =
∫ 1

0
xsin

√
(A(s)− s)xdx,
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b1 (s) = R(s)− 1
√

A(s)− s

∫ 1

0

∫ x

0
(G(x,s)+ sΦ (x))

×sin
(√

A(s)− s
)
(x− τ)dτdx,

b2 (s) = Q(s)− 1
√

A(s)− s

∫ 1

0

∫ x

0
[x(G(x,s)+ sΦ (x))

sin
(√

A(s)− s
)
(x− τ)

]
dτdx. (20.37)

If it is not possible to calculate the integrals directly, then we calculate it numerically.
We approximate similarly as given in [2]. If the Laplace inversion is possible directly
for (20.28) and (20.33), in this case we shall get our solution. In another case we
use the suitable approximate method and then use the numerical inversion of the
Laplace transform. Considering A(s)− s = k (s) and using Gauss’s formula given in
[1] we have the following approximations of the integrals:

∫ 1

0

(
1
x

)
cos

√
k (s)xdx

# 1
2

N

∑
i=1

wi

(
1

1
2 [xi + 1]

)
cos

(√
k (s)

1
2
[xi + 1]

)
, (20.38)

∫ 1

0

(
1
x

)
sin

√
k (s)xdx

# 1
2

N

∑
i=1

wi

(
1

1
2 [xi + 1]

)
sin

(√
k (s)

1
2
[xi + 1]

)
, (20.39)

∫ x

0
(G(x,s)+ sΦ (x))sin

(√
k (s)

)
(x− τ)dτ

# x
2

N

∑
i=1

wi

[
G
( x

2
[xi + 1] ;s

)
+ sΦ

( x
2
[xi + 1]

)]

×sin
(√

k (s)
[
x− x

2
[xi + 1]

])
, (20.40)

∫ 1

0

[
[G(τ,s)+ sΦ (τ)]

∫ 1

τ

(
1
x

)
sin

(√
k (s)

)
(x− τ)dx

]
dτ

# 1
2

N

∑
i=1

wi

[
G

(
1
2
[xi + 1] ;s

)
+ sΦ

(
1
2
[xi + 1]

)]
×

(
1− 1

2 [xi + 1]

2

)

×
N

∑
i=1

wj

(
1

1− 1
2 [xi+1]

2 x j +
1− 1

2 [xi+1]
2

)
×
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sin

[
√

k (s)×
(

1− 1
2 [xi+1]

2
x j+

1+ 1
2 [xi+1]

2
−1

2
(xi+1)

)]

, (20.41)

where xi and wi are the abscissa and weights, defined as

xi : ith zero of Pn (x) , ωi = 2/
(
1− x2

i

)[
P
′
n (x)

]2
.

Their tabulated values can be found in [1] for different values of N.

20.3.1 Numerical Inversion of Laplace Transform

Sometimes, an analytical inversion of a Laplace domain solution is difficult to
obtain [28]; therefore, a numerical inversion method must be used. A nice com-
parison of four frequently used numerical Laplace inversion algorithms is given by
Hassan Hassanzadeh, Mehran Pooladi-Darvish [18]. In this work we use the Ste-
hfest’s algorithm [29] that is easy to implement. This numerical technique was first
introduced by Graver [17] and its algorithm then offered by [29]. Stehfest’s algo-
rithm approximates the time domain solution as

v(x, t)≈ ln2
t

2m

∑
n=1

βnV

(
x;

n ln2
t

)
, (20.42)

where, m is the positive integer,

βn = (−1)n+m
min(n,m)

∑
k=[ n+1

2 ]

km (2k)!
(m− k)!k!(k− 1)!(n− k)!(2k− n)!

, (20.43)

and [q] denotes the integer part of the real number q.

20.4 Uniqueness and Continuous Dependence
of the Solution

We establish an a priori estimate; the uniqueness and continuous dependence of the
solution with respect to the data are immediate consequences.

Theorem 20.8. If u(x, t) is a solution of problem (20.7)–(20.10) and f ∈ C
(
D
)
,

then we have a priory estimates:

‖u(.,τ)‖2
L2(0,1)

≤ c1

(
‖ f (., t)‖2

L2(0,T ; B1
2(0,1))

+ ‖ϕ‖2
L2(0,1)

)
(20.44)
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∥
∥
∥∥
∂u(.,τ)

∂ t

∥
∥
∥∥

2

L2(0,T ; B1
2(0,1))

≤ c2

(
‖ f (., t)‖2

L2(0,T ; B1
2(0,1))

+ ‖ϕ‖2
L2(0,1)

)
(20.45)

where c1 = exp(a0T ) , c2 =
exp(a0T )

1−a0
, 1 < a(x, t)< a0, and 0≤ τ ≤ T.

Proof. Taking the scalar product in B1
2 (0,1) of equation (20.7) and ∂u

∂ t and integrat-
ing over (0,τ), we have

∫ τ

0

(
∂u(., t)
∂ t

,
∂u(., t)
∂ t

)

B1
2(0,1)

dt−
∫ τ

0

(
∂ 2u(., t)
∂x2 ,

∂u(., t)
∂ t

)

B1
2(0,1)

dt

=
∫ τ

0

(
f (., t) ,

∂u(., t)
∂ t

)

B1
2(0,1)

dt +

∫ τ

0

⎛

⎝
t∫

0

a(t− s)u(x,s)ds,
∂u(., t)
∂ t

⎞

⎠

B1
2(0,1)

dt (20.46)

By integrating by parts, the first and second terms in the left-hand side of (20.46)
we obtain

∥∥
∥
∥
∂u(., t)
∂ t

∥∥
∥
∥

2

L2(0,T ; B1
2(0,1))

+

1
2
‖u(.,τ)‖2

L2(0,1)−
1
2
‖ϕ‖2

L2(0,1)

=
∫ τ

0

(
f (., t) ,

∂u(., t)
∂ t

)

B1
2(0,1)

dt +

∫ τ

0

⎛

⎝
t∫

0

a(t− s)u(x,s)ds,
∂u(., t)
∂ t

⎞

⎠

B1
2(0,1)

dt (20.47)

By the Cauchy inequality, the first term in the right-hand side of (20.46) is
bounded by

1
2
‖ f (., t)‖2

L2(0,T ; B1
2(0,1))

+
1
2

∥
∥
∥
∥
∂u(., t)
∂ t

∥
∥
∥
∥

2

L2(0,T ; B1
2(0,1))

(20.48)

and second term in the right-hand side of (20.46) is bounded by

a0

2

t∫

0

‖u(x,s)‖2
L2(0,T ; B1

2(0,1))
ds+

a0

2

∥
∥
∥
∥
∂u(., t)
∂ t

∥
∥
∥
∥

2

L2(0,T ; B1
2(0,1))

(20.49)
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Substitution of (20.48), (20.49) into (20.47) yields

(1− a0)

∥
∥
∥
∥
∂u(., t)
∂ t

∥
∥
∥
∥

2

L2(0,T ; B1
2(0,1))

+ ‖u(.,τ)‖2
L2(0,1) ≤

(
‖ f (., t)‖2

L2(0,T ; B1
2(0,1))

+ ‖ϕ‖2
L2(0,1)

)
+

a0

2

t∫

0

‖u(x,s)‖2
L2(0,T ; B1

2(0,1))
ds. (20.50)

By Gronwall Lemma, we have

(1− a0)

∥
∥
∥
∥
∂u(., t)
∂ t

∥
∥
∥
∥

2

L2(0,T ; B1
2(0,1))

+ ‖u(.,τ)‖2
L2(0,1)

≤ exp(a0T )
(
‖ f (., t)‖2

L2(0,T ; B1
2(0,1))

+ ‖ϕ‖2
L2(0,1)

)
. (20.51)

From (20.51), we obtain estimates (20.44) and (20.45). ��
Corollary 20.9. If problem (20.7)–(20.10) has a solution, then this solution is
unique and depends continuously on ( f ,ϕ).
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limites intégrales pour une classe d’équations paraboliques, Maghreb Mathematical Review,
9 , no. 1-2, 55–70, (2000).

15. A. Bouziani and R. Mechri, The Rothe Method to a Parabolic Integrodifferential Equation with
a Nonclassical Boundary Conditions, Int. Jour. of Stochastic Analysis, Article ID 519684/16
page, doi: 10.1155/519684/(2010).

16. D. G. Gordeziani and G. A. Avalishvili, Solution of nonlocal problems for one-dimensional
oscillations of a medium, Mat. Model. 12 , no. 1, 94–103 (2000)

17. D. P. Graver, Observing stochastic processes and aproximate transform inversion, Oper. Res.
14, 444–459.(1966).

18. H. Hassanzadeh and M. Pooladi-Darvish, Comparision of different numerical Laplace inver-
sion methods for engineering applications, Appl. Math. Comp. 189 1966–1981(2007).
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Chapter 21
A Better Error Estimation
On Szász–Baskakov–Durrmeyer Operators

Neha Bhardwaj and Naokant Deo

Abstract In this paper, we study a modified sequence of mixed summation–integral
type operators; by this modification we give approximation properties and bet-
ter approximation for these operators. Then we study the rate of convergence,
Voronovskaya results and Korovkin theorem.

21.1 Introduction

We consider a sequence of mixed summation–integral type operators having
Szász–Mirakjan basis function in summation and weight function of Baskakov
operators in integration as follows:

(Sn f ) (x) = (n− 1)
∞

∑
k=0

sn,k(x)
∫ ∞

0
bn,k(t) f (t)dt, x ∈ [0,∞) (21.1)

where sn,k(x) =
e−nx(nx)k

k! , bn,k(x) =

(
n+ k− 1

k

)
tk

(1+t)n+k and f ∈C [0,∞) such that

| f (t)| ≤M(1+ t)γ for some M > 0,γ > 0.

Some approximation properties of modified form of Szász–Mirakjan operators
as well as Baskakov operators were studied by Deo and Singh [2], Duman et al. [5],
Gupta and Deo [7], Heilmann et al. [8], Kasana et al. [9] and Sahai and Prasad [15].

Now we need the following lemmas to study the properties of King [10] type
modified mixed summation–integral operators.
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Lemma 21.1. Let ei(t) = ti, i = 0,1,2,3,4, then for x≥ 0, n∈N and n> 5, we have

(i) Sn(e0;x) = 1

(ii) Sn(e1;x) =
nx+ 1
n− 2

(iii) Sn(e2;x) =
n2x2 + 4nx+ 2
(n− 2)(n− 3)

(iv) Sn(e3;x) =
n3x3 + 9n2x2 + 18nx+ 6
(n− 2)(n− 3) (n− 4)

(v) Sn(e4;x) =
n4x4 + 16n3x3 + 72n2x2 + 96nx+ 24

(n− 2)(n− 3) (n− 4) (n− 5)

Lemma 21.2. Let ϕ i
x(t) = (t− x)i, i = 1,2,3, then for x ≥ 0, n ∈ N and n > 4, we

have

(i) Sn(ϕx;x) =
2x+ 1
n− 2

(ii) Sn(ϕ2
x ;x) =

(n+ 6)x2 + 2(n+ 3)x+ 2
(n− 2)(n− 3)

(iii) Sn(ϕ3
x ;x) =

2x3 (5n+ 12)+ 9x2 (3n+ 4)+ 12x(n+ 2)+ 6
(n− 2)(n− 3)(n− 4)

Several mathematicians (see [4, 6, 9, 11, 13, 14]) had studied this type of mod-
ification for different operators; now we consider same modification for mixed
summation–integral operators.

In this paper, we deal with the approximation properties of King-type modified
Szász–Baskakov–Durrmeyer operators and obtain better error estimation, rate of
convergence, Voronovskaya result as well as Korovkin theorem.

21.2 Construction of Operators and Auxiliary Results

In this section we construct the operators and give necessary basic results.
We assume that {rn(x)} is a sequence of real-valued continuous functions defined

on [0,∞) with 0≤ rn(x)≤ x < ∞, for x ∈ [0,∞) , n ∈ N then we have

(Ŝn f )(x) = (n− 1)
∞

∑
k=0

e−nrn(x) (nrn(x))
k

k!

∫ ∞

0

(
n+ k− 1

k

)
tk

(1+ t)n+k f (t)dt,

(21.2)
where rn(x) =

(n−2)x−1
n with

f ∈ E =

{
h ∈C [0,∞) : lim

x→+∞

h(x)
1+ x2 is f inite

}
. (21.3)
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The Banach lattice E equipped with the norm ‖ f‖∗ = sup
x∈[0,+∞)

| f (x)|
1+x2 is isomorphic to

C[0,1] and the set {e0,e1,e2} is a K+-subset of E .

The classical Peetre’s K2-functional and the second modulus of smoothness of a
function f ∈CB[0,∞) are defined, respectively, by

K2 ( f ,δ ) = inf
{‖ f − g‖+ δ

∥
∥g′′

∥
∥ : g ∈W 2

∞
}
, δ > 0

where W 2
∞ = {g ∈CB[0,∞) : g′,g′′ ∈CB[0,∞)}. From [3], there exists a positive con-

stant C such that

K2 ( f ,δ )≤Cω2

(
f ,
√
δ
)

(21.4)

and

ω2( f ,
√
δ ) = sup

0<h≤δ
sup

x∈[0,∞)
| f (x+ 2h)− 2 f (x+ h)+ f (x)| .

Now we consider the Lipschitz type space

Lip∗M(γ) =

{

f ∈C [0,∞) : | f (t)− f (x)| ≤M
|t− x|γ
(t + x)γ/2

;x, t ∈ (0,∞),

}

where M is any positive constant and 0 < γ ≤ 1.
Now from Lemmas 21.1 and 21.2, we obtain the following results at once.

Lemma 21.3. Let ei(x) = xi, i = 0,1,2,3,4, then for each x≥ 0 and n > 5, we have

(i) Ŝn(e0;x) = 1
(ii) Ŝn(e1;x) = x

(iii) Ŝn(e2;x) =
(n− 2)2x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

(iv) Ŝn(e3;x) =
(n− 2)3x3 + 4(n− 2)2x2 + 3(n− 2)x− 4

(n− 2) (n− 3)(n− 4)

(v) Ŝn(e4;x) =
x
[
(n− 2)3x3 + 12(n− 2)2x2 + 30(n− 2)x− 91

]

(n− 3)(n− 4) (n− 5)

Lemma 21.4. For x ∈ [0,∞) , n ∈ N, n > 3 and ϕx(t) = e1− e0x, we have

(i) Ŝn(ϕx;x) = 0

(ii) Ŝn(ϕ2
x ;x) = (n−2)x2+2(n−2)x−1

(n−2)(n−3)

(iii) Ŝn(ϕm
x ;x) = O

(
n−[

m+1
2 ]

)

The operators Ŝn preserve the linear functions, i.e., for h(t) = at + b, where a,b
any real constants, we obtain Ŝn(h;x) = h(x).
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21.3 Voronovskaya-Type Results

In this section first we establish a direct local approximation theorem for the
modified operators Ŝn in ordinary approximation then compute the rate of conver-
gence and Voronovskaya-type result of these operators (21.2).

Theorem 21.5. Let f ∈ CB[0,∞), then for every x ∈ [0,∞) and for C > 0, n > 3,
we have

∣
∣(Ŝn f

)
(x)− f (x)

∣
∣≤Cω2

(

f ,

√
(n− 2)x2 + 2(n− 2)x− 1

(n− 2) (n− 3)

)

. (21.5)

Proof. Let g ∈W 2
∞. Using Taylor’s expansion

g(y) = g(x)+ g′(x)(y− x)+
∫ y

x
(y− u)g′′(u)du.

From Lemma 21.4, we have

(
Ŝng

)
(x)− g(x) =

(
Ŝn

∫ y

x
(y− u)g′′(u)du

)
(x).

We know that
∣∣
∣
∣

∫ y

x
(y− u)g′′(u)du

∣∣
∣
∣≤ (y− u)2

∥
∥g′′

∥
∥ .

Therefore

∣
∣(Ŝng

)
(x)− g(x)

∣
∣≤

(
Ŝn(y− u)2

)
(x)

∥
∥g′′

∥
∥=

(n− 2)x2 + 2(n− 2)x− 1
(n− 2) (n− 3)

.

By Lemma 21.3, we have

∣
∣(Ŝn f

)
(x)

∣
∣≤ (n− 1)

∞

∑
k=0

sn,k(rn(x))
∫ ∞

0
bn,k(t) f (t)dt ≤ ‖ f‖ .

Hence
∣
∣(Ŝn f

)
(x)− f (x)

∣
∣≤ ∣

∣(Ŝn( f − g)
)
(x)− ( f − g)(x)

∣
∣+

∣
∣(Ŝng

)
(x)− g(x)

∣
∣

≤ 2‖ f − g‖+
(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

)∥
∥g′′

∥
∥

taking the infimum on the right side over all g ∈W 2
∞ and using (21.4), we get the

required result. ��
Remark 21.6. Under the same conditions of Theorem 21.5, we obtain

|(Sn f ) (x)− f (x)| ≤Cω2

(

f ,

√
(n+ 6)x2 + 2(n+ 3)x+ 2

(n− 2)(n− 3)

)

. (21.6)
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Theorem 21.7. If a function f is such that its first and second derivative are
bounded in [0,∞), then we get

(
Ŝn f

)
(x)− f (x) =

1
2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

)
f ′′(x)+ I, (21.7)

for n > 3 where I→ 0 as n→ ∞.

Proof. Applying Taylor’s theorem we write that

f (t)− f (x) = (t− x) f ′(x)+
(t− x)2

2!
f ′′(x)+

(t− x)2

2!
ξ (t,x), (21.8)

where ξ (t,x) is a bounded function ∀ t,x and lim
t→x

ξ (t,x) = 0

Using (21.2) and (21.8), we obtain

(
Ŝn f

)
(x)− f (x) = f ′(x)Ŝn (ϕx,x)+

f ′′(x)
2

Ŝn
(
ϕ2

x ,x
)
+

1
2

Ŝn
(
ϕ2

x ,x
)
ξ (t,x).

From Lemma 21.4, we get

(
Ŝn f

)
(x)− f (x) =

f ′′(x)
2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

)
+

1
2

Ŝn
(
ϕ2

x ,x
)
ξ (t,x).

Now, we have to show that as n→ ∞, the value of I = 1
2 Ŝn

(
ϕ2

x ,x
)
ξ (t,x)→ 0.

Let ε > 0 be given since ξ (t,x)→ 0 as t→ x, then there exists δ > 0 such that when
|t− x|< δ , we have |ξ (t,x)|< ε and when |t− x| ≥ δ , we write

|ξ (t,x)| ≤C <C
(t− x)2

δ 2 .

Thus, for all t,x ∈ [0,∞)

|ξ (t,x)| ≤ ε+C
(t− x)2

δ 2

and

I ≤
(

Ŝnϕ2
x

(
ε+

Cϕ2
x

δ 2

))
(x)≤ ε

(
Ŝnϕ2

x

)
(x)+

C
δ 2

(
Ŝnϕ4

x

)
(x)

By Lemma 21.4, we obtain
I→ 0 as n→ ∞.

This leads to (21.7). ��
Remark 21.8. Under the same conditions of Theorem 21.7, we obtain

( Sn f ) (x)− f (x) =

(
2x+ 1
n− 2

)
f ′ (x)+

[
(n+ 6)x2 +(n+ 3)x2 + 2

]

(n− 2)(n− 3)
f ′′ (x)

2
+R,

(21.9)

where R = 1
2 Sn

(
ϕ2

x ,x
)
ξ (t,x)→ 0 as n→ ∞.
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Theorem 21.9. If g ∈C2
B [0,∞) then we have for n > 3,

∣
∣(Ŝng

)
(x)− g(x)

∣
∣≤ 1

2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2) (n− 3)

)
‖g‖C2

B
. (21.10)

Proof. We have

g(t)− g(x) = (t− x)g′(x)+
1
2
(t− x)2g′′(ζ ) (21.11)

where t ≤ ζ ≤ x. From Lemma 21.4 and (21.11), we get

∣∣(Ŝng
)
(x)− g(x)

∣∣≤ ∥∥g′
∥∥∣∣(Ŝnϕx

)
(x)

∣∣+
1
2

∥∥g′′
∥∥∣∣(Ŝnϕ2

x

)
(x)

∣∣

≤ 1
2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

)∥
∥g′′

∥
∥

=
1
2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

)
‖g‖C2

B
.

��
Remark 21.10. Under the same conditions of Theorem 21.9, we obtain

|(Sng)(x)− g(x)| ≤ (n+ 6)x2 + 2(n+ 3)x+ 2
2(n− 2)(n− 3)

‖g‖C2
B
. (21.12)

Theorem 21.11. For f ∈CB [0,∞), we obtain

∣
∣(Ŝn f

)
(x)− f (x)

∣
∣ ≤ A

{
ω2

(

f ,
1
2

√
1
2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2) (n− 3)

))

(21.13)

+min

(
1,

1
4

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2) (n− 3)

))
‖ f‖CB

}
,

where constant A depends on f &

{
1
2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2) (n− 3)

)}
.

Proof. For f ∈CB [0,∞) and g ∈C2
B [0,∞) we write

(
Ŝn f

)
(x)− f (x) =

(
Ŝn f

)
(x)− (

Ŝng
)
(x)+

(
Ŝng

)
(x)− g(x)+ g(x)− f (x)

From (21.10) and Peetre K2-functions, we get
∣
∣(Ŝn f

)
(x)− f (x)

∣
∣=

∣
∣(Ŝn f

)
(x)− (

Ŝng
)
(x)

∣
∣+

∣
∣(Ŝng

)
(x)− g(x)

∣
∣+ |g(x)− f (x)|

≤ ∥
∥Ŝn f

∥
∥‖ f−g‖+1

2

(
(n−2)x2+2(n−2)x−1

(n−2)(n−3)

)
‖g‖C2

B
+‖ f−g‖

≤ 2‖ f − g‖+ 1
2

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2) (n− 3)

)
‖g‖C2

B
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= 2

{
‖ f − g‖+ 1

4

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

)
‖g‖C2

B

}

≤ 2K2

{
f ,

1
4

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

)}

≤ 2A

{
ω2

(

f ,
1
2

√(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2) (n− 3)

))

+min

(
1,

1
4

(
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

))
‖ f‖CB

}
.

This completes the proof. ��
Remark 21.12. By the same conditions of Theorem 21.11, we get

|(Sn f )(x)− f (x)| ≤ 2A

{
ω2

(

f ,
1
2

√
(n+ 6)x2 + 2(n+ 3)x+ 2

(n− 2) (n− 3)

)

+min

(
1,

(n+ 6)x2 + 2(n+ 3)x+ 2
4(n− 2)(n− 3)

)
‖ f‖CB

}
.

(21.14)

Theorem 21.13. For every f ∈C [0,∞) , x ∈ [0,∞), we obtain
∣
∣(Ŝn f

)
(x)− f (x)

∣
∣≤ 2ω ( f ,δx) (21.15)

where

δx =

√
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)
,

and ω ( f ,δx) is the modulus of continuity of f .

Proof. Let f ∈ C [0,∞) and x ∈ [0,∞). Using linearity and monotonicity of Ŝn, we
obtain, for every δ > 0, n ∈ N and n > 3, that

∣
∣(Ŝn f

)
(x)− f (x)

∣
∣≤ ω( f ,δ )

{
1+

1
δ

√
Ŝn (ϕ2

x ,x)

}
.

By using Lemma 21.4 and choosing δ = δx this completes the proof. ��
Remark 21.14. For the original operator Sn defined in, we may write that, for every
f ∈C [0,∞)

|(Sn f ) (x)− f (x)| ≤ 2ω ( f ,φx) (21.16)

where

φx =

√
(n+ 6)x2 + 2(n+ 3)x+ 2

(n− 2)(n− 3)
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andω ( f ,φx) is the modulus of continuity of f . The error estimate in Theorem 21.13
is better than that of (21.16); for f ∈C [0,∞) and x ∈ [0,∞), we get δx ≤ φx.

Finally we compute rate of convergence of these operators by means of the Lip-
schitz class LipM(γ), (0 < γ ≤ 1). As usual, we say that f ∈ CB [0,∞) belongs to
LipM(γ) if the inequality

| f (t)− f (x)| ≤M|t− x|γ (21.17)

holds.

Theorem 21.15. If f ∈ LipM(γ) and x ∈ [0,∞) then we have for n > 3,

∣
∣(Ŝn f

)
(x)− f (x)

∣
∣≤M

[
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

]γ/2

.

Proof. For f ∈ LipM(γ) and x ≥ 0, from inequality (21.17) and using the Hölder
inequality with p = 2

γ ,q = 2
2−γ , we get

∣
∣(Ŝn f

)
(x)− f (x)

∣
∣≤ (

Ŝn | f (t)− f (x)|)(x)≤M
(
Ŝn|t−x|γ) (x)≤M

{(
Ŝnϕ2

x

)
(x)

}γ/2

≤M

[
(n− 2)x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

]γ/2

This leads to the result. ��
Remark 21.16. From Lemma 21.1, for the original operator Sn, then we have the
following result

|(Sn f ) (x)− f (x)| ≤M

{
(n+ 6)x2 + 2(n+ 3)x+ 2

2(n− 2) (n− 3)

}γ/2

for every f ∈ LipM(γ), x≥ 0 .

21.4 Korovkin-Type Approximation Theorem

Ozarslan and Aktuglu [12] proved Korovkin-type approximation theorem for
Szász–Mirakian Beta operators. In this section we give the proof of this theorem
for modified operators Ŝn. For this we have the following lemma, which proves that
Ŝn maps E into itself.

Lemma 21.17. There exists a constant M such that, for α(x) = (1+x2)−1, we have

α(x)Ŝn

(
1
α

;x

)
≤M
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holds for all x ∈ [0,∞) ,n ∈ N and n > 3. Furthermore, for all f ∈ E, we have
∥∥Ŝn( f )

∥∥∗ ≤M‖ f‖∗
Proof. From Lemma 21.3 and (21.3), we have

α(x)Ŝn

(
1
α

;x

)
=

1
1+ x2 Ŝn

(
1+ t2;x

)
=

1
1+ x2

[
Ŝn (e0;x)+ Ŝn (e2;x)

]

=
1

1+ x2

[

1+
(n− 2)2x2 + 2(n− 2)x− 1

(n− 2)(n− 3)

]

≤M.

Also,

α(x)Ŝn ( f ;x) = α (x)

∣
∣
∣
∣Ŝn

(
α

f
α

;x

)∣∣
∣
∣≤ ‖ f‖∗α (x) Ŝn

(
1
α

;x

)
≤M‖ f‖∗.

Taking the supremum over x ∈ [0,∞) in the above inequality, gives the result. ��
Theorem 21.18. For all f ∈ E, Ŝn ( f ;x) converges uniformly to f on [0,b] if and
only if lim

n→∞
rn (x) = x uniformly on [0,b].

Proof. Using Theorem 4.14(vi) of [1], the universal Korovkin-type property with
respect to monotone operators, results similar to Theorem 3 [12] can be obtained.
��
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Chapter 22
About New Class of Volterra-Type Integral
Equations with Boundary Singularity in Kernels

Nusrat Rajabov

Abstract In this work, we investigate one class of Volterra type integral equation, in
model and non model case, when kernels have first order singularity and logarithmic
singularity. In depend of the signs parameters solution to this integral equation can
contain two arbitrary constants, one constant and may be have unique solution. In
the case, when general solution of integral equation contains arbitrary constant, we
stand and investigate different boundary value problems when conditions is given in
singular point. For considered integral equation, the solution found can represented
in generalized power series.

22.1 Introduction

LetΓ = {x : a< x< b} be the set of point on real axis and let us consider an integral
equation

ϕ(x)+
x∫

0

[
K1(x, t)+K2(x, t) ln

(
x− a
t− a

)]
ϕ(t)
t− a

dt = f (x), (22.1)

where K1(x, t)andK2(x, t) are given functions on the rectangle R with R defined as
the set {a < x < b, a < t < b} and f (x) is a given function in Γ and ϕ(x) to be
found. The theory of the above integral equation at K2(x, t) = 0 has been constructed
in [1–5]. In this work based on the roots of the algebraic equation

λ 2 +K1(a,a)λ +K2(a,a) = 0,
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signs K1(a,a) and K2(a,a), the general solution of the model integral equation in
explicit form is obtained. Moreover, using the method similar to regularization
method [1–6] in theory one-dimensional singular integral equation [2], the problem
of finding general solution of the integral equation stated above is reduced to the
problem of finding general solution of integral equation with weak singularity. The
solution to this equation is sough in the class of functions ϕ(x) ∈C[a,b] vanishing
at the singular point x = a i.e ϕ(x) = o[(x− a)ε ] ε > 0 and x→ a.

22.2 Modelling of Integral Equation

We investigate the following integral equation (in the case of K1(x, t) = p= constant
and K2(x, t) = q = constant in (1.1)) :

ϕ(x)+
x∫

0

[
p+ q ln

(
x− a
t− a

)]
ϕ(t)
t− a

dt = f (x), (22.2)

where p,q are given constants. Support that the solution of the characteristic equa-
tion (22.2) exists and belongs to C(Γ0). Also, assume f (x) ∈ C′′(Γ0). Then differ-
entiating both sides of (22.2) twice arrives at an ordinary differential equation of
the second order with left singular point. Writing out solution obtained ordinary
differential equation according to [7] and returning to conversely, we find solution
integral equation (22.2). For (22.2) the following confirmation is obtained:

Theorem 22.1. Let in integral equation (22.2), p < 0, q > 0, D = p2− 4q > 0,
f (x) ∈C[a,b], f (a) = 0 with the following asymptotic behavior: f (x) = [(x−a)δ1 ],

δ1 > λ1, λ1 =
|p|+√D

2
at x→ a. Then the integral equation (22.2) in class of

function ϕ(x)∈C[a,b] vanishing in point x = a is always solvability and its solution
is given by the following formula:

ϕ(x) = (x− a)λ1C1 +(x− a)λ2C2 + f (x)− 1
√

p2− 4q

×
x∫

a

[

λ 2
2

(
x− a
t− a

)λ2

−λ 2
1

(
x− a
t− a

)λ1
]

f (t)
t− a

dt ≡ K−1 [C1,C2, f (x)] (22.3)

where λ2 =
|p|−√D

2
and C1,C2 are arbitrary constants.

Theorem 22.2. Let in integral equation (22.2), p > 0, q < 0, p2 > 4q. function
f (x) ∈C[a,b], f (a) = 0 with following asymptotic behavior:

f (x) = O[(x− a)δ2 ], δ2 > λ 1
1 , λ

1
1 =

√
p2− 4q− p

2
at x→ a. (22.4)
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Then the integral equation (22.2) in class of function ϕ(x) ∈ C[a,b] vanishing in
point x= a is always solvability; its general solution contains one arbitrary constant
and is given by the formula

ϕ(x) = (x− a)λ
1
1 C3 + f (x)− 1

√
p2 + 4[|q|]

×
x∫

a

[

(λ 1
2 )

2
(

t− a
x− a

)|λ 1
2 |
− (λ 1

1 )
2
(

x− a
t− a

)λ 1
1
]

f (t)
t− a

dt ≡ K−2 [C3, f (x)], (22.5)

where λ 1
2 =
−p−√

p2 + 4|q|
2

and C3 is arbitrary constant.

Theorem 22.3. Let in integral equation (22.2), p < 0, q < 0, p2 > 4q. Assume
that a function f (x) ∈C[a,b], f (a) = 0 with the following asymptotic behavior:

f (x) = O[(x− a)δ3 ], δ3 > λ 2
1 , λ

2
1 =

√
p2− 4q+ |p|

2
at x→ a. (22.6)

Then the integral equation (22.2) in class of function ϕ(x) ∈ C[a,b] vanishing in
point x= a is always solvability; its general solution contains one arbitrary constant
and is given by the formula

ϕ(x) = (x− a)λ
2
1 C4 + f (x)− 1

√
p2 + 4[|q|]

×
x∫

a

[

(λ 2
2 )

2
(

t− a
x− a

)|λ 2
2 |
− (λ 2

1 )
2
(

x− a
t− a

)λ 2
1
]

f (t)
t− a

dt ≡ K−2 [C4, f (x)], (22.7)

where λ 1
2 =
|p|−

√
p2 + 4|q|
2

< 0 and C4 is arbitrary constant.

Theorem 22.4. Let in integral equation (22.2), p > 0, q > 0, p2 > 4q. Assume
that a function f (x) ∈C[a,b], f (a) = 0 with the following asymptotic behavior:

f (x) = O[(x− a)ε ], ε > 0 at x→ a. (22.8)

Then the integral equation (22.2) in class of function ϕ(x) ∈ C[a,b] vanishing in
point x = a has a unique solution which is given by formula
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ϕ(x) = f (x)− 1
√

p2− 4q

×
x∫

a

[

λ 2
2

(
t− a
x− a

)λ2

−λ 2
1

(
t− a
x− a

)λ1
]

f (t)
t− a

dt ≡ K−4 [ f (x)], (22.9)

where λ1 =
−p+

√
p2− 4q

2
and λ2 =

−p−
√

p2− 4q
2

.

Theorem 22.5. Let in integral equation (22.2), p < 0, p2 = 4q. Assume that a
function f (x) ∈C[a,b], f (a) = 0 with the following asymptotic behavior:

f (x) = O[(x− a)ε ], ε > 0 at x→ a. (22.10)

Then, the integral equation (22.2) in class of function ϕ(x) ∈ C[a,b] vanishing in
point x = a is always solvability; its general solution contains two arbitrary con-
stants and is given by the following formula:

ϕ(x) = (x− a)|p|/2[C5 + ln(x− a)C6]+ f (x)

+
|p|
2

x∫

a

(
x− a
t− a

)|p|/2[
2+
|p|
2

ln

(
x− a
t− a

)]
f (t)

t− a
dt ≡ K−5 [C5,C7, f (x)] (22.11)

where C5,C6 are arbitrary constants.

Theorem 22.6. Let in integral equation (22.2), p > 0, p2 = 4q. Assume that a
function f (x) ∈C[a,b], f (a) = 0 with asymptotic behavior (22.8). Then the integral
equation (22.2) in class of function ϕ(x) ∈ C[a,b] vanishing in point x = a has a
unique solution, which is given by the formula

ϕ(x) = f (x)− p
2

x∫

a

(
t− a
x− a

)p/2[
2− p

2
ln

(
x− a
t− a

)]
f (t)

t− a
dt ≡ K−6 [ f (x)]. (22.12)

Theorem 22.7. Let in integral equation (22.2), p < 0, p2 < 4q. Assume that a
function f (x) ∈C[a,b], f (a) = 0. with the following asymptotic behavior:

f (x) = O[(x− a)δ5 ], δ5 >
|p|
2

at x→ a

Then the integral equation (22.2) in class of function ϕ(x) ∈ C[a,b] vanishing in
point x = a is always solvability; its general solution contains two arbitrary con-
stants and is given by the following formula:
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ϕ(x) = (x−a))|p|/2

{

cos

[√
4q−p2

2
ln(x− a)

]

C7+sin

[√
4q−p2

2
ln(x−a)

]

C8

}

+ f (x)+
1

√
4q− p2

x∫

a

(
x− a
t− a

)|p|/2
[

(p2− 4q)sin

[√
4q− p2

2
ln

(
x− a
t− a

)]

− p
√

4q− p2 cos

[√
4q− p2

2
ln

(
x− a
t− a

)]]
f (t)

t− a
dt ≡ K−7 [C7,C8, f (x)], (22.13)

where C7,C8 are arbitrary constants.

Theorem 22.8. Let in integral equation (22.2), p> 0, p2−4q< 0. Function f (x)∈
C[a,b], f (a) = 0 with asymptotic behavior (22.8). Then the integral equation (22.2)
in class of function ϕ(x) ∈ C[a,b] vanishing in point x = a has a unique solution,
which is given by the formula

ϕ(x) = f (x)+
1

√
4q− p2

x∫

a

(
t− a
x− a

)p/2
[

(p2− 4q)sin

[√
4q− p2

2
ln

(
x− a
t− a

)]

− p
√

4q− p2 cos

[√
4q− p2

2
ln

(
x− a
t− a

)]]
f (t)

t− a
dt ≡ K−8 [ f (x)]. (22.14)

Theorems 22.1–22.8 are proved using the relation of the integral equation (22.2)
with corresponding ordinary differential equation and method developed in [1–5].

Corollary 22.9. If q = 0 in integral equation (22.2), then from (22.2) to (22.3) it
follows the solution of the equation

ϕ(x)+ p

x∫

a

ϕ(t)
t− a

dt = f (x),

at p < 0 given by the formula

ϕ(x) = (x− a)|p|[C1 + f (x)− p

x∫

a

(
x− a
t− a

)|p| f (t)
t− a

dt,

that is, in this case obtained solution integral equation (22.2) coincides with formula
(22.10) from [4] or with formula (22.11) from [5]. At p > 0 and q = 0 we have

ϕ(x) = f (x)− p

x∫

a

(
x− a
t− a

)p f (t)
t− a

dt

that is, in this case, obtained solution coincides with formula (22.12) from [4] or
with formula (22.13) from [5].
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Corollary 22.10. If p = 0, q > 0 in integral equation (22.2), then (22.2) admits the
following form:

ϕ(x)+ q

x∫

a

ln

(
x− a
t− a

)
ϕ(t)
t− a

dt = f (x). (22.15)

According to formula (22.14) at q > 0 the solution for this equation is given by the
formula

ϕ(x) = f (x)−√q

x∫

a

sin
√

q

[
ln

(
x− a
t− a

)]
f (t)

t− a
dt. (22.16)

Theorem 22.11. Let in integral equation (22.15), q > 0, f (x) ∈C[a,b], f (a) = 0
with asymptotic behavior (22.10). Then the integral equation (22.15) in class of
function ϕ(x) ∈ C[a,b] vanishing in point x = a has a unique solution which is
given by formula (22.16).

If q < 0 in integral equation (22.15), then from formula (22.3), it follows that the
solution of the integral equation (22.15) is given by the formula

ϕ(x) = (x− a)
√
|q|C9 + f (x)

− q2

2
√|q|

x∫

a

⎡

⎣
(

t− a
x− a

)√|q|
−
(

x− a
t− a

)√|q|⎤
⎦ f (t)

t− a
dt ≡ K−9 [C9, f (x)]. (22.17)

So, in this case, we have the following confirmation:

Theorem 22.12. Let in integral equation (22.15), q < 0, f (x) ∈C[a,b], f (a) = 0
with asymptotic behavior

f (x) = o
[
(x− a)δ6

]
, δ6 >

√
|q| at x→ a.

Then, the integral equation (22.15), in class of function ϕ(x) ∈C[a,b] vanishing in
point x= a is always solvability; its general solution contains one arbitrary constant
and is given by formula (22.17) where C9 is arbitrary constant.

22.3 General Case

Let us rewrite (22.1) as follows:

ϕ(x)+
x∫

a

[
K1(a,a)+K2(a,a) ln

(
x− a
t− a

)]
ϕ(t)
t− a

dt = F(x), (22.18)

where
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F(x) = f (x)−
x∫

a

[
K1(x, t)−K1(a,a)+ (K2(x, t)−K2(a,a)) ln

(
x− a
t− a

)]
ϕ(t)
t− a

dt,

(22.19)

Assuming for a moment that F(x) is known, we can find a general solution to (22.1).
Let K1(a,a) < 0, K2(a,a) > 0,and (K1(a,a))2− 4K2(a,a) > 0, and let functions
f (x), K1(x, t), K2(x, t), and ϕ(x) be such that F(x) ∈C(R), F(a) = 0 with following
asymptotic behavior:

F(x) = [(x− a)γ1 ] , γ1 > δ1, δ1 =
|K1(a,a)|+

√
D

2
,

D2 = (K1(a,a))
2− 4K2(a,a), at x→ a.

Then according to Theorem 22.1 general solution of nonhomogeneous integral
equation (22.1) is

ϕ(x) = (x− a)δ1C1 +(x− a)δ2C2 +F(x)

− 1√
D

x∫

a

[

δ 2
2

(
x− a
t− a

)δ2

− δ 2
1

(
x− a
t− a

)δ1
]

F(t)
t− a

dt ≡ K−1 [C1,C2,F(x)], (22.20)

where δ2 =
|K1(a,a)|−

√
D

2
and C1,C2 are arbitrary constants.

Substituting for F(x) from formula (22.19) we arrive at the solution of the fol-
lowing integral equation:

ϕ(x)+
x∫

a

M(x, t)
t− a

ϕ(t)dt = K1[C1,C2, f (x)], (22.21)

where

M(x, t) = K1(x, t)−K1(a,a)+ (K2(x, t)−K2(a,a)) ln

(
x− a
t− a

)

− 1√
D

x∫

t

[

δ 2
2

(
x− a
t− a

)δ2

− δ 2
1

(
x− a
t− a

)δ1
]

×
[

K1(τ, t)−K1(a,a)+ (K2(τ, t)−K2(a,a)) ln

(
τ− a
t− a

)]
dτ
τ− a

. (22.22)

If the kernels K1(x, t), K2(x, t) in (22.1) are such that for any K(x, t) ∈C(R) (x, t)→
(a,a) satisfies the conditions

K1(x, t)−K1(a,a)

= o[(x− a)α1(t− a)α2 ], α1 > δ1, α2 > δ1 at (x, t)→ (a,a). (22.23)

K2(τ, t)−K2(a,a)

= o[(x− a)α3(t− a)α4], α3 > δ1, α4 > δ1 at (x, t)→ (a,a); (22.24)
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then M(x, t) satisfies the following inequality:

|M(x, t)| ≤ D1(x− a)α1(t− a)α2 +D2(x− a)α3(t− a)α4 ln

(
x− a
t− a

)

D3(x− a)α3(t− a)α3+α4−δ1 · ln
(

x− a
t− a

)
+D4(x− a)δ3(t− a)α1+α2−δ2

+D5(x− a)δ1(t− a)α1+α2−δ1 +D6(x− a)α3(t− a)α4

+D7(x− a)δ1(t− a)α3+α4−δ1 +D8(x− a)δ2(t− a)α3+α4−δ2 , (22.25)

where D j (1 ≤ j ≤ 8) are given constants. From inequality (22.25) we see that if
α1 +α2 > δ2, α3 +α4 > δ2 then M(a,a) = 0. In other words, the kernel M1(x, t) =
(t− a)−1M(x, t) has a weak singularity at t = a.

Let function f (x) ∈C[a,b], f (a) = 0 with asymptotic behavior

f (x) = [(x− a)α5], α5 > δ1, δ1 =
|K1(a,a)|+

√
D

2
at x→ a. (22.26)

Then, the integral equation (22.21), as second kind Volterra-type integral equation
with weak singularity, has a unique solution, which is given by formula

ϕ(x) = K−1 [C1,C2, f (x)]−
x∫

a

Γ (x, t)K−1 [C1,C2, f (t)]dt, (22.27)

where Γ (x, t) is a resolvent of the integral equation (22.21) and C1,C2 are arbitrary
constants.

Thus, from the preceding discussion the theorem follows.

Theorem 22.13. Let in (22.1), K1(x, t) ∈C(R), K2(x, t) ∈C(R), functions K1(x, t),
K2(x, t) in neighborhood point (x, t) = (a,a) satisfy condition (22.23), (22.24),
and let K1(a,a) < 0, K2(a,a) > 0, D = (K1(a,a))2 − 4K2(a,a) > 0, f (x) ∈
C[a,b], f (a) = 0 with asymptotic behavior (22.10), α1 +α2 > δ2, α3 +α4 > δ2.
Then the integral equation (22.2) in class of function ϕ(x) ∈ C[a,b] vanishing in
point x = a is always solvability and its solution is given by formula (22.27), where
C1,C2 are arbitrary constants.

Let K1(a,a)> 0, K2(a,a)< 0, D = (K1(a,a))2− 4K2(a,a)> 0, functions f (x),
K1(x, t), K2(x, t), and ϕ(x) be such that function F(x) ∈ C(R), F(a) = 0 with fol-
lowing asymptotic behavior :

F(x) = O[(x− a)α6 ], α6 > λ 1
1 , λ 1

1 =

√
D−K1(a,a)

2
at x→ a. (22.28)

Then, the integral equation (22.1) in class of function ϕ(x) ∈C[a,b] vanishing in
point x = a is always solvability;, its general solution contains one arbitrary constant
and is given by the formula
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ϕ(x) = (x− a)λ
1
1 C3 +F(x)

− 1
√

p2 + 4[|q|]

x∫

a

[

(λ 1
2 )

2
(

t−a
x− a

)|λ 1
2 |
−(λ 1

1 )
2
(

x−a
t− a

)λ 1
1
]

F(t)
t− a

dt≡K−2 [C3,F(x)],

(22.29)

where λ 1
2 =
−K1(a,a)−

√
D

2
andC3 is arbitrary constant.

Substituting for F(x) formula (22.19) we arrive at solution of the following inte-
gral equation:

ϕ(x)+
x∫

a

M1(x, t)
t− a

ϕ(t)dt = K−2 [C3, f (x)], (22.30)

where

M1(x, t) = K1(x, t)−K1(a,a)+ (K2(x, t)−K2(a,a)) ln

(
x− a
t− a

)

− 1√
D

x∫

t

[

λ 1
2

(
τ− a
x− a

)|λ 1
2 |
−λ 2

2

(
x− a
t− a

)λ 2
2
]

×
[

K1(τ, t)−K1(a,a)+ (K2(τ, t)−K2(a,a)) ln

(
τ− a
t− a

)]
dτ
τ− a

. (22.31)

Let in integral equation (22.1) the functions K1(x, t),K2(x, t) in neighborhood point
(x, t) = (a,a) satisfy the conditions (22.23), (22.24). Then we have

|M1(x, t)| ≤ T1(x− a)α1(t− a)α2 +T2(x− a)α3(t− a)α4 ln

(
x− a
t− a

)

+T3(x− a)−|λ
1
2 |(t− a)|λ

1
2 |+α1+α2 +T4(x− a)λ

2
2 (t− a)α1+α2−λ 2

2

+T5(x− a)α3−|λ 1
2 |(t− a)α4 +T6(x− a)−|λ

1
2 |(t− a)|λ

1
2 |+α3+α4 , (22.32)

where Tj(1 ≤ j ≤ 6) is known constant. Multiplying both sides of (22.30) to (x−
a)|λ 1

2 | and introducing (x− a)|λ 1
2 |ϕ(x) = ψ(x) we obtain a new integral equation

ψ(x)+

x∫

a

M2(x, t)
t− a

ψ(t)dt = (x− a)|λ
1
2 |K−2 [C3, f (x)], (22.33)

where

M2(x, t) =

(
x− a
t− a

)|λ 1
2 |

M1(x, t),
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For M2(x, t) we have the following inequality:

|M2(x, t)| ≤ T1(x−a)α1+|λ 1
2 |(t−a)α2−|λ 1

2 |+T2(x−a)α3+|λ 1
2 |(t−a)α4−|λ 1

2 | ln
(

x− a
t− a

)

+T3(t− a)α1+α2 +T4(x− a)λ
2
2+|λ 1

2 |(t− a)α1+α2−|λ 1
2 |−λ 2

2

+T5(x− a)α3(t− a)α4−|λ 1
2 |+T6(t− a)α3+α4 . (22.34)

From here follows, if α j > |λ 1
2 |( j = 1,2,4), α1 +α2 > |λ 1

2 |+λ 2
2 , then

|M2(0, t)| ≤ T3(t− a)α1+α2 +T6)(t− a)α3+α4 , M2(x,0) = 0.

Thus, if fulfilling the following conditions: α1 + α2 > |λ 1
2 |+ λ 2

2 , α j > |λ 1
2 |( j =

1,2,4), then kernel integral equation (22.33) has a weak singularity. If f (a) = 0 with
asymptotic behavior (22.26), then right part of integral equation (22.33) vanishes in
point x = a. Consequently the integral equation (22.33) has only one solution:

ψ(x) = (x− a)|λ
1
2 |K−2 [C3, f (x)]−

x∫

a

Γ (x, t)(t− a)|λ
1
2 |K−2 [C3, f (t)]dt,

where Γ (x, t) is a resolvent of the integral equation (22.33). Then ϕ(x) the solution
of the integral equation (22.1) is given by the following formula:

ϕ(x) = K−2 [C3, f (x)]−
x∫

a

(
t− a
x− a

)|λ 1
2 |
Γ (x, t)K−2 [C3, f (t)]dt, (22.35)

where C3 is an arbitrary constant. So, we proved the following confirmation:

Theorem 22.14. Let in (22.1), K1(x, t) ∈ C(R), K2(x, t) ∈ C(R), and let functions
K1(x, t), K2(x, t) in neighborhood point (x, t) = (a,a) satisfy conditions (22.23)
and (22.24) at α1 +α2 > |λ 1

2 |, α j > |λ 1
2 |( j = 1,2,4), K1(a,a) > 0, K2(a,a) < 0,

D = (K1(a,a))2− 4K2(a,a)> 0, f (x) ∈C[a,b], f (a) = 0 with asymptotic behavior
(22.26). Then the integral equation (22.1) in class of function ϕ(x) ∈C[a,b] vanish-
ing in point x = a is always solvability and its solution is given by formula (22.35),
where C1,C3 are arbitrary constants.

Remark 22.15. Confirmation is similar to Corollary 22.9 obtained in the case
K1(a,a)< 0, K2(a,a)< 0, D > 0.

Now let K1(a,a)> 0, K2(a,a)> 0, D > 0, f (x) ∈C[a,b], f (a) = 0 with asymp-
totic behavior

f (x) = [(x− a)ε ], ε > 0 at x→ a. (22.36)

In this case, if corresponding solution to the model of integral equation exists, then
this is given by the formula
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ϕ(x) = F(x)− 1
√

p2− 4q

×
x∫

a

[

λ 2
2

(
t− a
x− a

)λ2

−λ 2
1

(
t− a
x− a

)λ1
]

F(t)
t− a

dt ≡ K−4 [F(x)], (22.37)

where λ1 =
−K1(a,a)+

√
D

2
, λ2 =

−K1(a,a)−
√

D
2

, (λ1 < 0, λ2 < 0, λ1 > λ2).

Substituting for F(x) from formula (22.37) we arrive at solution of the following
integral equation:

ϕ(x)+
x∫

a

M3(x, t)
t− a

ϕ(t)dt = K−4 [ f (x)], (22.38)

where

M3(x, t) = K1(x, t)−K1(a,a)+ (K2(x, t)−K2(a,a)) ln

(
x− a
t− a

)

− 1√
D

x∫

t

[

(λ1)
2
(
τ− a
x− a

)|λ1|
− (λ2)

2
(
τ− a
x− a

)|λ2|
]

×
[

K1(τ, t)−K1(a,a)+ (K2(τ, t)−K2(a,a)) ln

(
τ− a
t− a

)]
dτ
τ− a

. (22.39)

Multiplying both sides of (22.38) to (x− a)|λ2| and introducing (x− a)|λ2|ϕ(x) =
ψ(x), we obtain new integral equation

ψ(x)+

x∫

a

N2(x, t)
t− a

ψ(t)dt = (x− a)|λ2|K−4 [ f (x)], (22.40)

where

N2(x, t) =

(
x− a
t− a

)|λ2|
M3(x, t).

For N2(x, t), we have the following inequality:

|N2(x, t)| ≤E1(x−a)α1+|λ2|(t−a)α2−|λ2|+E2(x−a)α3+|λ2|(t−a)α4−|λ2| ln
(

x− a
t− a

)

+E3(t− a)α1+α2 +E4(x− a)|λ2|−|λ1|(t− a)α3+α4+|λ1|−|λ2|

+E5(x− a)α3+|λ |2(t− a)α4−|λ2|+E6(t− a)α3+α4 . (22.41)

From here follows, if α j > |λ2|( j = 2,4),α3 +α4 + |λ1|− |λ2|> 0, then

|N2(0, t)| ≤ E3(t− a)α1+α2 +E6(t− a)α3+α4 , N2(x,0) = 0.
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Thus, if fulfilling the following conditions: α j > |λ2|( j = 2,4),α3 +α4 + |λ1| −
|λ2|> 0, then kernel integral equation (22.40) has weak singularity. If f (a) = 0 with
asymptotic behavior (22.36), then right part of integral equation (22.40) vanishes in
point x = a. Then the integral equation (22.40) has a unique solution, which is given
by the formula

ψ(x) = (x− a)|λ2|K−4 [ f (x)]−
x∫

a

Γ1(x, t)(t− a)|λ2|K−4 [ f (t)]dt,

where Γ1(x, t) is resolvent of the integral equation (22.40). Then we determine from
the formula that

ϕ(x) = K−4 [ f (x)]−
x∫

a

(
t− a
x− a

)|λ2|
Γ1(x, t)K

−
2 [ f (t)]dt. (22.42)

So, we proved the following confirmation:

Theorem 22.16. Let in (22.1), K1(x, t) ∈C(R), K2(x, t) ∈C(R), functions K1(x, t),
K2(x, t) in neighborhood point (x, t) = (a,a) satisfy condition (22.23), (22.24)
at α j > |λ2|( j = 2,4), α3 + α4 + |λ1| − |λ2| > 0, K1(a,a) > 0, K2(a,a) > 0,
D = K1(a,a))2 − 4K2(a,a) > 0, f (x) ∈ C[a,b], f (a) = 0 with asymptotic behav-
ior (22.36). Then the integral equation (22.1) in class of function ϕ(x) ∈ C[a,b]
vanishing in point x = a has a unique solution which is given by formula (22.42).

Remark 22.17. Confirmation is similar to Corollaries 22.9–22.11 obtained in the
following cases: K1(a,a)< 0, D = 0; K1(a,a)> 0, D = 0; K1(a,a)< 0,D < 0; and
K1(a,a)> 0, D < 0.

22.4 Property of the Solution

Let there be a fulfillment in any condition of Theorem 22.1. Differentiating the solu-
tion of the type (22.3), immediate verification, we can easily convince to correctness
of the following equality:

Da
x(ϕ(x)) = λ1(x− a)λ1C1 +λ2(x− a)λ2C2 +Da

x( f (x))+ |p| f (x)

− 1
√

p2− 4q

x∫

a

[

λ 3
2

(
x− a
t− a

)λ2

−λ 3
1

(
x− a
t− a

)λ1
]

f (t)
t− a

dt, (22.43)

where Da
x(ϕ(x)) = (x− a)

dϕ(x)
dx

.

From equality (22.3) and (22.43) we find

C1 =
1

λ2−λ1

{
(x− a)−λ1 [λ2ϕ(x)−Da

x(ϕ(x))]
}

x=a
, (22.44)

C2 =− 1
λ2−λ1

{
(x− a)−λ2[λ1ϕ(x)−Da

x(ϕ(x))]
}

x=a
. (22.45)
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From integral representation (22.5) it follows that if all conditions of Theorem 22.2
are fulfilled, then the solution of the type (22.5) has the properties

[(x− a)−λ1ϕ(x)]x=a =C3. (22.46)

From integral representation (22.7) it follows that if parameters pandq and function
f (x) in (22.2) satisfy all condition of Theorem 22.3, then the solution of the type
(22.7) has the properties

[(x− a)−λ
2
1ϕ(x)]x=a =C4. (22.47)

From integral representation (22.11) it follows that

Da
x(ϕ(x)) = (x− a)|p|/2[C5 +(1+ ln(x− a))C6]+Da

x f (x)+ |p| f (x)

+
|p|
2

x∫

a

(
x− a
t− a

)|p|/2[
2+
|p|
2

+
|p|
2

ln

(
x− a
t− a

)]
f (t)

t− a
dt. (22.48)

Using the formulas (22.11) and (22.48), we easily see that when fulfilling any condi-
tion of Theorem 22.5, then solution of the type (22.11) has the following properties:

[
(x− a)−|p|/2[(1+ ln(x− a))ϕ(x)− ln(x− a)Da

xϕ(x)]
]

x=a
=C5, (22.49)

[
(x− a)−|p|/2[Da

xϕ(x)−ϕ(x)]
]

x=a
=C6, (22.50)

fulfillment of any condition in Theorem 22.7, then from integral representation
(22.13) we have

Da
x(ϕ(x)) = (x− a)|p|/2

×
{[
|p|
2

cos

[√
4q− p2

2
ln(x− a)

]

−
√

4q− p2

2
sin

[√
4q− p2

2
ln(x− a)

]]

C7

[
|p|
2

sin

[√
4q− p2

2
ln(x− a)

]

+

√
4q− p2

2
cos

[√
4q− p2

2
ln(x− a)

]]}

+Da
x( f (x))− f (x)

1
√

4q−p2

x∫

a

(
x−a
t−a

)|p|/2
{[

p
√

4q−p2+
|p|
2
(p2−2q)

]

sin

[√
4q−p2

2
ln

(
x−a
t−a

)]

+

√
4q− p2

2

[
3p2

2
− 2q

]
cos

[√
4q− p2

2
ln

(
x− a
t− a

)]

· f (t)
t− a

dt

}

. (22.51)

Using the formulas (22.13) and (22.51), we observe that, when fulfilling any condi-
tion of Theorem 22.7, the solution of the type (22.13) has the following properties:

C7 = lim
x→a

W3(ϕ),C8 = lim
x→a

W4(ϕ), (22.52)
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where

W3(ϕ) = (x− a)−|p|/2

{

cos

[√
4q− p2

2
ln(x− a)

]

ϕ(x)

− 2
√

p2− 4q
sin

[√
4q− p2

2
ln(x− a)

]

[Da
x(ϕ(x))−ϕ(x)]

}

,

W4(ϕ) = (x− a)−|p|/2

{

sin

[√
4q− p2

2
ln(x− a)

]

ϕ(x)

+
2

√
p2−4q

cos

[√
4q−p2

2
ln(x−a)

][[√
4q−p2

2
ln(x−a)

]

[Da
x(ϕ(x))−ϕ(x)]

]}

.

22.5 Boundary Value Problems

When the general solution contains arbitrary constants, higher mentioned properties
of the solution of the integral equation (22.1) give possibility for integral equation
(22.1) and we investigate the following boundary value problems:

Problem N1. Is required the solution of integral equation (22.1) from class C[a,b]
at p < 0, q > 0, p2− 4q > 0 by boundary conditions

{[
(x− a)−λ1[λ2ϕ(x)−Da

x(ϕ(x))]
]

x=a = A
[
(x− a)−λ2[−λ1ϕ(x)+Da

x(ϕ(x))]
]

x=a = B
(22.53)

where A,B are given constants.
Problem N2. Is required the solution of integral equation (22.1) from class C[a,b]

at p > 0, q < 0, p2− 4q > 0 by boundary conditions
[
(x− a)−λ

1
1ϕ(x)

]

x=a
= A1, (22.54)

where A1 is a given constant and λ 1
1 =
−p+

√
p2 + 4|q|
2

.

Problem N3. Is required the solution of integral equation (22.1) from class C[a,b]
at p < 0, q < 0 by boundary conditions

[
(x− a)−λ

2
1ϕ(x)

]

x=a
= B1, (22.55)

where B1 is a given constant and λ 2
1 =

|p|+
√

p2+4|q|
2 .

Problem N4. Is required the solution of integral equation (22.1) from class C[a,b]
at p < 0, p2 = 4q by boundary conditions
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[
(x− a)|p|/2 [(1+ ln(x− a))ϕ(x)− ln(x− a)Da

xϕ(x)]
]

x=a
= A2, (22.56)

[
(x− a)|p|/2 [Da

xϕ(x)−ϕ(x)]
]

x=a
= B2, (22.57)

where A2,B2 are given constants.
Problem N5. Is required the solution of integral equation (22.1) from class C[a,b]

at p < 0, p2 < 4q by boundary conditions

[W3(ϕ)]x=a = A3, [W4(ϕ)]x=a = B3, (22.58)

where A3, B3 are given constants.
Solution to Problem N1. Let there be a fulfillment in any condition of Theo-

rem 22.1. Then using the solution of the type (22.3) and its properties (22.44) and
(22.45) and condition (22.53) we have

C1 =
A

λ2−λ1
,C2 =

A
λ1−λ2

.

Substituting obtained valued C1 and C2 in formula (22.3) we find the solution of
Problem N1 in the form

ϕ(x) = K−1

[
A

λ2−λ1
,

A
λ1−λ2

, f (x)

]
(22.59)

So, the proof is completed.

Theorem 22.18. Let in integral equation (22.2) parameters p and qand function
f (x) satisfy any condition of Theorem 22.1. Then, Problem N1 has a unique solution
which is given by formula (22.59).

Solution to Problem N2. Let there be a fulfillment in any condition of Theo-
rem 22.2. Then using the solution of the type (22.5) and its properties (22.46) and
condition (22.54) we have C3 = A1. Substituting this value C3 in formula (22.5), we
find the solution of Problem N2 in the form

ϕ(x) = K−2 [A1, f (x)] (22.60)

So, we prove it.

Theorem 22.19. Let in integral equation (22.2) parameters p and q, function f (x)
satisfy any condition of Theorem 22.2. Then Problem N2 has a unique solution which
is given by formula (22.60).

Solution to Problem N3. Let there be a fulfillment in any condition of Theo-
rem 22.3. Then, using the solution of the type (22.7) and its properties (22.47) and
condition (22.55), we have C4 = B1. Substituting this value C4 in formula (22.7), we
find the solution of Problem N3 in the form
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ϕ(x) = K−3 [B1, f (x)], (22.61)

whence the result.

Theorem 22.20. Let in integral equation (22.2) parameters p and q, function f (x)
satisfy any condition of Theorem 22.3. Then, Problem N3 has a unique solution
which is given by formula (22.61).

Solution to Problem N4. Let there be a fulfillment in any condition of
Theorem 22.5. Then, using the solution of the type (22.11) and its properties
(22.49),(22.50) and conditions (22.56), (22.57), we have C5 = A2,C6 = B2. Substi-
tuting these values C5,C6 in formula (22.11), we find the solution of Problem N4 in
the form

ϕ(x) = K−5 [A2,B2, f (x)]. (22.62)

Theorem 22.21. Let in integral equation (22.2) parameters p and q, function f (x)
satisfy any condition of Theorem 22.5. Then, Problem N4 has a unique solution
which is given by formula (22.62).

Solution to Problem N5. Let there be a fulfillment in any condition of Theorem
22.7. Then using the solution of the type (22.13), its properties (22.52), and con-
ditions (22.58), we have C7 = A3,C8 = B3. Substituting the values C7 and C8 in
formula (22.13), we find the solution of Problem N5 in the form

ϕ(x) = K−7 [A3,B3, f (x)]. (22.63)

Theorem 22.22. Let in integral equation (22.2) parameters p and q, function f (x)
satisfy any condition of Theorem 22.7. Then Problem N5 has a unique solution which
is given by formula (22.63).

22.6 Presentation the Solution of the Integral Equation
(22.2) in the Generalized Power Series

Suppose that f (x) has a uniformly convergent power series expansion on Γ :

f (x) =
∞

∑
k=0

(x− a)k+γ fk, (22.64)

where γ = constant > 0 and fk, k = 0,1,2, · · ·, are given constants. We attempt to
find a solution of (22.2) in the form

ϕ(x) =
∞

∑
k=0

(x− a)k+γϕk, (22.65)

where the coefficients ϕk(k = 0,1,2, · · ·) are unknown.
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Substituting power series representations of f (x) and ϕ(x) into (22.2), equating
the coefficients of the corresponding functions, and solving for ϕk, we obtain

ϕk =
(k+ γ)2

(k+ γ)2 + p(k+ γ)+ q
fk,k = 0,1,2, . . . (22.66)

If (k+γ)2+ p(k+γ)+q �= 0 for in all k = 0,1,2,3, · · · putting the found coefficients
back into (22.65), we arrive at the particular solution of (22.2)

ϕ(x) =
∞

∑
k=0

(x− a)k+γϕk =
∞

∑
k=0

(x− a)k+γ (k+ γ)2

(k+ γ)2 + p(k+ γ)+ q
fk. (22.67)

If, for some values k = k1 and k = k2, constants γ, p,q satisfy

k1 =−γ+ −p+
√

p2− 4q
2

,

k1 =−γ− p+
√

p2− 4q
2

.

then the solution to integral equation (22.2) can be represented in form (22.64); it is
necessary and sufficient that fk j = 0, j = 1,2, that is, it is necessary and sufficient
that function f (x) in point x = a satisfies the following two solvability conditions:

[
[(x− a)−γ f (x)](k j )

]

x=a
= 0, j = 1,2. (22.68)

In this case the solution of the integral equation (22.1) in the class of function can
be represented in form (22.2) is given by the formula

ϕ(x) =
k1−1

∑
k=0

(x− a)k+γ (k+ γ)2

(k+ γ)2 + p(k+ γ)+ q
fk

+
k2−1

∑
k=k1+1

(x− a)k+γ (k+ γ)2

(k+ γ)2 + p(k+ γ)+ q
fk

+
∞

∑
k=k2+1

(x− a)k+γ (k+ γ)2

(k+ γ)2 + p(k+ γ)+ q
fk

+ϕk1(x− a)k1 +ϕk2(x− a)k2 , (22.69)

where ϕk1 ,n ϕk2 are arbitrary constants.
Immediately testing it we see that if convergence radius of the series (22.64) is

defined by formula R =
1
l
, l = lim

n→∞

| fn+1|
| fn| , then convergence radius of the series

(22.67) and (22.69) is also defined by this formula. So, we prove the next result.
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Theorem 22.23. Let in integral equation (22.2), function f (x) represents in
form uniformly converges generalized power-series type (22.64)) and (k + γ)2+
p(k+ γ)+ q �= 0 for k = 0,1,2,3, · · ·. Then, the integral equation (22.2) in class
of function ϕ(x) represented in form (22.65) has a unique solution, which is given
by formula (6.5). For values k = k j, j = 1,2,(k j + γ)2 + p(k j + γ) + q = 0, the
existence of the solution of (22.2) can be represented in form (22.65); it is necessary
and a sufficient fulfillment of two solvability condition types (22.69). In this case
integral equation (22.2) in class function represented in form (22.65) is always
solvability and its general solution contains two arbitrary constants and is given by
formula (22.69).

22.7 Conjugate Integral Equation

Integral equation type

ψ(x)+
1

x− a

b∫

x

[
p+ q ln

(
t− a
x− a

)]
ψ(t)dt = g(x), (22.70)

where g(x) – are given function, will be conjugate integral equation for (22.1). For
(22.70) we have the following confirmation:

Theorem 22.24. Let in integral equation (22.70), p < 0, q > 0, p2 > 4q, and let
g(x)∈C[a,b]. Then the integral equation (22.70) in class of functionψ(x) ∈C(a,b)
has a unique solution, which is given by the formula

ψ(x) = g(x)− 1
√

p2− 4q(x− a)

b∫

x

[

μ2
1

(
t− a
x− a

)|μ1|
− μ2

2

(
t− a
x− a

)|μ2|
]

g(t)dt

≡ K−1 [ f (x)], (22.71)

where μ1 =
−|p|+

√
p2− 4q

2
, μ2 =

−|p|−
√

p2− 4q
2

. Moreover this solution in

point x = a turns into infinity with following asymptotic behavior:

ψ(x) = O
[
(x− a)−(|μ2|+1)

]
at x→ a. (22.72)

Let in integral equation (22.70), p > 0,q < 0, p2 > 4q. In this case, at x→ a
the integral in right part of formula (22.71)) converges if g(a) = 0 with following
asymptotic behavior:

g(x) = o
[
(x− a)δ7

]
, δ7 > μ1− 1 at x→ a. (22.73)
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Then, μ1 =
p+

√
p2 + 4|q|
2

> 1, μ2 =
p−√

p2 + 4|q|
2

< 0, and solution of the

type (22.71) may be written in the form

ψ(x) = g(x)− 1
√

p2− 4q(x− a)

b∫

x

[

μ2
1

(
x− a
t− a

)|μ1|
− μ2

2

(
t− a
x− a

)|μ2|
]

g(t)dt.

(22.74)
Then it follows that ψ(a) = 0 with following asymptotic behavior:

ψ(x) = o
[
(x− a)(|μ2|−1)

]
at x→ a. (22.75)

If in (22.70) p < 0, q < 0, p2 + 4|q| > 0, and if the solution of the integral
equation (22.70) exists, then it may be represented in form (22.74), where μ1 =

−|p|+√
p2 + 4|q|

2
> 0, μ2 = −

(
|p|+√

p2 + 4|q|
2

)

< 0. The integral in right

part of expression (22.74) converges if g(a) = 0 with asymptotic behavior (22.73).
In this case, ψ(a) = ∞, with asymptotic behavior (22.75).

If p > 0,q > 0, p2− 4q > 0, and if the solution of (22.70) exists, then it may be
represented in the form

ψ(x) = g(x)− 1
√

p2− 4q(x− a)

×
b∫

x

[
μ2

1

(
x− a
t− a

)μ1

− μ2
2

(
x− a
t− a

)μ2
]

g(t)dt, μ1 > μ2, (22.76)

where μ1 =
p+

√
p2− 4q
2

> 0, μ2 =
p−

√
p2− 4q
2

> 0, and μ1 > μ2.The integral

in right part of expression (22.76) converges if g(a) = 0 with asymptotic behavior

g(x) = o
[
(x− a)δ8

]
, δ8 > μ2− 1 at x→ a. (22.77)

In this case ψ(a) = ∞ with asymptotic behavior

ψ(x) = O
[
(x− a)−(μ2+1)

]
at x→ a.

Remark 22.25. For conjugate equation (22.70), confirmation is similar to Theo-
rem 22.7 obtained in the case p2− 4q = 0 and p2− 4q < 0.
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Chapter 23
Fractional Integration of the Product of Two
Multivariables H-Function and a General Class
of Polynomials

Praveen Agarwal

Abstract A significantly large number of earlier works on the subject of fractional
calculus give interesting account of the theory and applications of fractional calculus
operators in many different areas of mathematical analysis (such as ordinary and
partial differential equations, integral equations, special functions, summation of
series, etc.). The main object of the present paper is to study and develop the Saigo
operators. First, we establish two results that give the images of the product of two
multivariables H-function and a general class of polynomials in Saigo operators.
On account of the general nature of the Saigo operators, multivariable H-functions
and a general class of polynomials a large number of new and Known Images
involving Riemann-Liouville and Erde’lyi-Kober fractional integral operators and
several special functions notably generalized Wright hypergeometric function,
Mittag-Leffler function, Whittaker function follow as special cases of our main
findings. Results given by Kilbas, Kilbas and Sebastian, Saxena et al. and Gupta
et al., follow as special cases of our findings.

23.1 Introduction

The fractional integral operator involving various special functions has found
significant importance and applications in various subfields of applicable math-
ematical analysis. Since last four decades, a number of workers like Love [13],
McBride [15], Kalla [3, 4], Kalla and Saxena [5, 6], Saxena et al. [22], Saigo [18–
20], Kilbas [7], Kilbas and Sebastian [9] and Kiryakova [11, 12] have studied in
depth the properties, applications and different extensions of various hypergeomet-
ric operators of fractional integration. A detailed account of such operators along
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with their properties and applications can be found in the research monographs by
Smako, Kilbas and Marichev [21], Miller and Ross[16]; Kiryakova [11, 12], Kilbas,
Srivastava and Trujillo [10] and Debnath and Bhatta [1].

A useful generalization of the hypergeometric fractional integrals, including the
Saigo operators [18–20], has been introduced by Marichev [14] (see details in
Samko et al. [21] and also see Kilbas and Saigo[8] )as follows:

Let α,β ,ηbe complex numbers and x>0, then the generalized fractional integral
operators (the Saigo operators [18]) involving Gaussian hypergeometric function are
defined by the following equations:

(
Iα ,β ,η0+ f

)
(x) = x−α−β

Γ (α)
∫ x

0 (x− t)α−1
2F1

(
α+β ,−η ;α;1− t

x

)
f (t)dt,

(Re(α)> 0)
(23.1)

and
(

Iα ,β ,η− f
)
(x) = 1

Γ (α)
∫ ∞

x (t− x)α−1 t−α−β 2F1
(
α+β ,−η ;α;1− x

t

)
f (t)dt,

(Re(α)> 0),
(23.2)

where 2F1(.) is the Gaussian hypergeometric function defined by:

2F1(a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
. (23.3)

When β = −α , equations (23.1) and (23.2) reduce to the following classical
Riemann–Liouville fractional integral operator (see Samko et al. [21], p. 94,
(5.1), (5.3)):

(
Iα ,−α ,η0+ f

)
(x) =

(
Iα0+ f

)
(x) =

1
Γ (α)

∫ x

0
(x− t)α−1 f (t)dt, (x > 0) (23.4)

and
(

Iα ,−α ,η− f
)
(x) =

(
Iα− f

)
(x) =

1
Γ (α)

∫ ∞

x
(t− x)α−1 f (t)dt, (x > 0). (23.5)

Again, if β = 0, Equations (23.1) and (23.2) reduce to the following Erde’lyi–Kober
fractional integral operator (see Samko et al. [21], p.322, Eqns. (18.5), (18.6)):

(
Iα ,0,η0+ f

)
(x) =

(
I+η,α f

)
(x) =

x−α−η

Γ (α)

∫ x

0
(x− t)α−1 tη f (t)dt, (x > 0) (23.6)

and

(
Iα ,0,η− f

)
(x) =

(
K−η,α f

)
(x) =

xη

Γ (α)

∫ ∞

x
(t− x)α−1 t−α−η f (t)dt, (x > 0) (23.7)

Recently, Gupta et al. [2] have obtained the images of the product of two H-
functions in Saigo operator given by (23.1) and (23.2) and thereby generalized
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several important results obtained earlier by Kilbas, Kilbas and Sebastian and
Saxena et al. as mentioned in this paper cited above. It has recently become a subject
of interest for many researchers in the field of fractional calculus and its applica-
tions. Motivated by these avenues of applications, a number of workers have made
use of the fractional calculus operators to obtain the image formulas. The aim of
this paper is to obtain two results that give the images of the product of two multi-
variables H-function and a general class of polynomials in Saigo operators.
The H-function of several variables is defined and represented as follows (Srivastava
et al. [23], pp. 251–252, (C.1)– (C.3)):

H[z1, . . . ,zr] ≡ H
0,N :M1,N1;...;Mr ,Nr

P,Q:P1,Q1 ;...;Pr ,Qr

⎡

⎢
⎣

z1
...
zr

∣∣
∣
∣
∣
∣∣

(a j ;α′ j ,...,α
(r)
j )

1,p
: (c′ j ,γ′ j )1,p1

;...; (c
(r)
j ,γ(r)j )

1,pr

(b j ;β ′ j ,...,β
(r)
j )

1,q
: (d′ j ,δ ′ j )1,q1

;...; ( f
(r)
j ,F

(r)
j )

1,qr

⎤

⎥
⎦

=

(
1

2π i

)r ∫

L1

· · · ∫
Lr

φ1 (ξ1) . . . φr (ξr)ψ (ξ1, . . .ξr)zξ1
1 . . . zξr

r dξ1 . . .dξr,

(23.8)
where

φi(ξi) =
∏Mi

j=1Γ (d(i)
j − δ (i)

j ξi)∏Ni
j=1Γ (1− c(i)j + γ(i)j ξi)

∏Qi
j=Mi+1Γ (1− d(i)

j + δ (i)
j ξi)∏Pi

j=Ni+1Γ (c(i)j − γ(i)j ξi)
, (23.9)

ψ(ξ1, . . . ,ξr) =
∏N

j=1Γ (1−a j+∑r
i=1α

(i)
j ξi)

∏Q
j=1Γ (1−b j+∑r

i=1β
(i)
j ξi)∏P

j=N+1Γ (a j−∑r
i=1α

(i)
j ξi)

,

(∀i ∈ {1, . . . ,r}) .
(23.10)

It is assumed that the various H-functions of several variables occurring in this
paper always satisfy the appropriate existence and convergence conditions corre-
sponding appropriately to those recorded in the book by Srivastava et al. [23, pp.
251–253, (C.4)–(C.6)]. In case r = 2, (23.8) reduces to the H-function of two vari-
ables (Srivastava et al.) ([23], p. 82, (6.1.1)).

Also, Sm
n [x] occurring in the sequel denotes the general class of polynomials

introduced by Srivastava ([24], p. 1, (1)):

Sm
n [x] =

[n/m]

∑
k=0

(−n)mk

k!
An,kxk,n = 0,1,2, . . . ., (23.11)

where m is an arbitrary positive integer and the coefficients An,k (n,k ≥ 0) are
arbitrary constants, real or complex. On suitably specializing the coefficients An,k,

Sm
n [x] yields a number of known polynomials as its special cases. These include,

among others, the Hermite polynomials, the Jacobi polynomials, the Laguerre poly-
nomials, the Bessel polynomials, the Gould–Hopper polynomials and the Brafman
polynomials; (see Srivastava and Singh ([25], pp. 158–161)).
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23.2 Preliminary Lemmas

The following lemmas will be required to establish our main results:

Lemma 23.1 (Kilbas and Sebastain [9], p. 871, (15)–(18)). Let α,β ,η ∈ C be
such that Re(α) > 0 and Re(μ) > max{0,Re(β −η)}); then, there holds the
following relation:

(
Iα ,β ,η0+ tμ−1

)
(x) =

Γ (μ)Γ (μ+η−β )
Γ (μ+α+η)Γ (μ−β )xμ−β−1. (23.12)

In particular, if β =−α and β = 0 in (23.12), we have

(
Iα0+tμ−1)(x) =

Γ (μ)
Γ (μ+α)

xμ+α−1, Re(α)> 0, Re(μ)> 0, (23.13)

(
I+η,α tμ−1)(x) =

Γ (μ+η)
Γ (μ+α+η)

xμ−1, Re(α)> 0, Re(μ)>−Re(η) . (23.14)

Lemma 23.2 (Kilbas and Sebastain [9], p. 872, (21)–(24)). Let α,β ,η ∈ C be
such that Re(α)> 0) and Re(μ)< 1+min{Re(β ) ,Re(η)}); then, there holds the
following relation:

(
Iα ,β ,η− tμ−1

)
(x) =

Γ (β − μ+ 1)Γ (η− μ+ 1)
Γ (1− μ)Γ (α+β +η− μ+ 1)

xμ−β−1. (23.15)

In particular, if β =−α and β = 0 in (23.15), author has

(
Iα−tμ−1) (x) =

Γ (1−α− μ)
Γ (1− μ)

xμ+α−1, 1−Re(μ)> Re(α)> 0, (23.16)

(
K−η,α tμ−1)(x) =

Γ (η− μ+ 1)
Γ (1− μ+α+η)

xμ−1, Re(μ)< 1+Re(η) . (23.17)

23.3 Main Results

Image 1:
{

Iα ,β ,η0+

(
tμ−1 (b− at)−ν ∏s

j=1 S
mj
n j

[
c jtλ j (b− at)−δ j

]

×H
[
z1tσ1 (b− at)−ω1 . . .zrtσr (b− at)−ωr

]

×H
[
z′1tσ

′
1 (b− at)−ω

′
1 . . . z′lt

σ ′l (b− at)−ω
′
l

])}
(x)



23 Fractional Integration of the Product . . . 363

= b−νxμ−β−1∑[n1/m1]
k1=0 . . .∑[ns/ms]

ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A
′
n1,m1

. . .A(s)
ns,ms c

k1
1 . . .cks

s (b)
−∑s

j=1 δ jk j (x)∑
s
j=1 λ jk j

×H0,N+N′+3:
P+P′+3,Q+Q′+3:

M1,N1;...;Mr ,Nr ;M′1,N′1;...;M′l ,N
′
l ;1,0

P1,Q1;...;Pr,Qr ;P′1,Q
′
1;...;P′l ,Q

′
l ;0,1

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

z1
xσ1

bω1

...

zr
xσr

bωr

z1
xσ
′
1

bω
′
1

...

zr
xσ
′
l

bω
′
l

− a
b x

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

A : C

B : D

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

(23.18)

where

A =

(

1−ν−
s
∑
j=1

δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω ′l ,1

)

,

(

1− μ−
s
∑
j=1

λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1

)

,

(

1− μ−η+β −
s
∑
j=1

λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1

)

,

(a j; α ′ j, . . . ,α
(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,P, (A j;0, . . . ,0
︸ ︷︷ ︸

r

B′ j, . . . ,B
(l)
j ,0)1,P′

B =

(

1−ν−
s
∑
j=1

δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω ′l ,0

)

,

(

1− μ+β −
s
∑
j=1

λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1

)

(Cj;0, . . . ,0
︸ ︷︷ ︸

r

,D′ j, . . . ,D
(l)
j ,0)1,Q′

C = (c′j,γ ′j)1,P1 ; . . . ; (c(r)j ,γ(r)j )1,Pr ; (C
′
j,E
′
j)1,P′1 ; . . . ; (C(l)

j ,E(l)
j )1,P′l ;−−

D = (d′ j,δ ′ j)1,Q1
; . . . ; (d( r)

j ,δ ( r)
j )

1,Qr
;

(G′ j,H ′ j)1,Q′1
; . . . ; (G( l)

j ,H( l)
j )

1,Q′l
;(0,1)

(23.19)

The sufficient conditions of validity of (23.18) are the following:

(i) α,β ,η ,μ ,ν,δ j ,ωi,ω ′k,a,b,c,zi,z′k ∈C
and λ j,σi,σ ′k > 0 ∀i ∈ {1, . . . ,r}, k ∈ {1, . . . , l} and j ∈ {1, . . . ,s}.

(ii) |argzi|< 1
2Ωiπ and Ωi > 0; |argzi|< 1

2Ω
′
iπ and Ω ′i > 0,



364 P. Agarwal

whereΩi =−
P
∑

j=N+1
α(i)

j −
Q
∑
j=1

β (i)
j +

Ni

∑
j=1

γ(i)j −
Pi

∑
j=Ni+1

γ(i)j +
Mi

∑
j=1

δ (i)
j −

Qi

∑
j=Mi+1

δ (i)
j ;

∀i ∈ {1, . . . ,r}Ω ′i defined as similar to Ωi.
(iii) Re(α)> 0 and

Re(μ)+
r
∑

i=1
σ i min

1≤ j≤Mi
Re

(
d
(i)
j

δ (i)j

)

+
l
∑

k=1
σ ′k min

1≤ j≤M′k
Re

(
G
(k)
j

H(k)
j

)
> max{0,Re(β −η)}

Re(ν)+
r
∑

i=1
ωi min

1≤ j≤Mi
Re

(
d
(i)
j

δ (i)j

)

+
l
∑

k=1
ω ′k min

1≤ j≤M′k
Re

(
G
(k)
j

H
(k)
j

)
> max{0,Re(β −η)}.

(iv)
∣
∣ a

b x
∣
∣< 1.

Proof. In order to prove (23.18), we first express the product of a general class
of polynomials occurring on its left-hand side in the series form given by (23.11),
replace both multivariable H-functions occurring therein by its well-known Mellin–
Barnes contour integral given by (23.8), interchange the order of summations
(ξ1, . . . ,ξr) and

(
ξ ′1, . . . ,ξ

′
l

)
integrals, respectively, and taking the fractional integral

operator inside (which is permissible under the conditions stated) and make a little

simplification. Next, we express the terms (b− ax)−(ν+∑
s
j=1 δ jk j+∑r

i=1ωiξi+∑l
k=1ω

′
kξ
′
k)

in the terms of Mellin–Barnes contour integral (Srivastava et al. [23], 94 p.
18, (2.6.3); p. 10, (2.1.1)) and it takes the following form (Say I) after a little
simplification:

I = (b)−ν
[n1/m1]

∑
k1=0

. . .
[ns/ms]

∑
ks=0

(−n1)m1k1
. . .(−ns)msks

k1! . . .ks!

×A′n1,m1 . . .A
(s)
ns,ms c1

k1 . . .cs
ks(b)

−
s
∑

j=1
δ jk j

1

(2π i)r+l+1

∫

L1

. . .

∫

Lr

∫

L′1

. . .

∫

L′ l

ψ (ξ1, . . . ,ξr)ψ ′
(
ξ ′1, . . . ,ξ

′
l

)

×
r

∏
i=1

φi (ξi)z
ξi
i

l

∏
k=1

φ ′k
(
ξ ′k

)
z′k
ξ ′k(b)

−(
r
∑

i=1
ωiξi+

l
∑

k=1
ω ′kξ ′k)

(23.20)

×
∫

L

Γ

(

ν+
s
∑
j=1

δ jk j +
r
∑

i=1
ωiξi +

l
∑

k=1
ω ′kξ ′k + ξ

)

Γ

(

ν+
s
∑
j=1

δ jk j +
r
∑

i=1
ωiξi +

l
∑

k=1
ω ′kξ ′k

)

Γ (1+ ξ)

(
−a

b

)ξ

×dξ

⎛

⎝Iα ,β ,η0+ t
μ+

s
∑

j=1
λ jk j+

r
∑

i=1
σiξi+

l
∑

k=1
σ ′kξ ′k+ξ−1

⎞

⎠(x) .
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Finally, applying the Lemma 23.1 and reinterpreting the Mellin–Barnes contour
integral thus obtain in terms of the multivariable H-function defined by (23.8), we
arrive at the right-hand side of (23.18) after a little simplification. ��
If we put β = −α in Image 1, we arrive at the following new and interesting
corollary concerning Riemann–Liouville fractional integral operator defined by
(23.4) and using (23.13):

Corollary 23.3.
{

Iα0+

(

tμ−1(b− at)−ν
s

∏
j=1

S
mj
n j

[
c jt

λ j(b− at)−δ j
]

×H
[
z1tσ1(b− at)−ω1 . . . zrt

σr(b− at)−ωr
]

×H
[
z′1tσ

′
1(b− at)−ω

′
1 . . . z′ltσ

′
l (b− at)−ω

′
l
])}

(x)

= b−νxμ+α−1
[n1/m1]

∑
k1=0

. . .
[ns/ms]

∑
ks=0

(−n1)m1k1
. . . (−ns)msks

k1! . . .ks!

×A′n1,m1 . . .A
(s)
ns,ms c1

k1 . . .cs
ks(b)

−
s
∑

j=1
δ jk j

(x)

s
∑

j=1
λ jk j

(23.21)

H0,N+N′+2:
P+P′+2,Q+Q′+2:

M1,N1;...;Mr ,Nr ;M′1,N′1;...;M′ l ,N′ l ;1,0
P1,Q1;...;Pr ,Qr ;P′1,Q′1;...;P′l ,Q′ l ;0,1

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

z1
xσ1

bω1
...

zr
xσr

bωr

z1
xσ
′
1

bω
′
1

...

zr
xσ
′
l

bω
′
l

− a
b x

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣

A′ : C
B′ : D

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

where

A′ =
(

1−ν−∑s
j=1 δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω

′
l ,1

)
,

(
1− μ−∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

(a j; α ′j, . . . ,α
(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,P,(A j;0, . . . ,0
︸ ︷︷ ︸

r

B′j, . . . ,B
(l)
j ,0)1,P′

B′ =
(

1−ν−∑s
j=1 δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω ′l ,0

)
,

(
1− μ−α−∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ
′
l ,1

)
,

(
1− μ−α−η−∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

(b j; β ′j , . . . ,β
(r)
j )1,Q(b j; β ′j , . . . ,β

(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,Q,

(Cj;0, . . . ,0
︸ ︷︷ ︸

r

,D′j, . . . ,D
(l)
j ,0)1,Q′

(23.22)
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where C and D are same as given in (23.19) and the conditions of existence of the
above corollary follow easily with the help of Image 1.

Again, if we put β = 0 in Image 1, we get the following result which is also
beloved to be new and pertains to Erde’lyi–Kober fractional integral operators
defined by (23.6) and using (23.14).

Corollary 23.4.
{

I+η,α
(

tμ−1 (b−at)−ν ∏s
j=1 S

m j
n j

[
c jtλ j (b−at)−δ j

]

H
[
z1tσ1 (b−at)−ω1 . . .zrtσr (b−at)−ωr

]
H
[
z′1tσ

′
1 (b−at)−ω

′
1 . . .z′lt

σ ′l (b−at)−ω
′
l

])}
(x)

= b−ν xμ−1∑[n1/m1]
k1=0 . . .∑[ns/ms]

ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A′n1,m1
. . .A(s)

ns,ms c
k1
1 . . .cks

s (b)−∑
s
j=1 δ jk j (x)∑

s
j=1 λ jk j

×H0,N+N ′+2:
P+P′+2,Q+Q′+2:

M1,N1;...;Mr,Nr;M′1,N ′1;...;M′l ,N
′
l ;1,0

P1,Q1;...;Pr,Qr ;P′1,Q′1;...;P′l ,Q
′
l ;0,1

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎣

z1
xσ1

bω1
...

zr
xσr

bωr

z1
xσ
′
1

bω
′
1

...

zr
xσ
′
l

bω
′
l

− a
b x

∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣∣
∣∣∣
∣∣

A′′ : C
B′′ : D

,

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎦

(23.23)

where C and D are same as given in (23.19) and

A′′ =
(

1−ν−∑s
j=1 δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω

′
l ,1

)
,

(
1− μ−η−∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

(a j; α ′j, . . . ,α
(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,P,(A j;0, . . . ,0
︸ ︷︷ ︸

r

B′j, . . . ,B
(l)
j ,0)1,P′

B′′ =
(

1−ν−∑s
j=1 δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω ′l ,0

)
,

(
1− μ−α−η−∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ
′
l ,1

)
,

(b j; β ′j , . . . ,β
(r)
j )1,Q(b j; β ′j , . . . ,β

(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,Q,

(Cj;0, . . . ,0
︸ ︷︷ ︸

r

,D′j, . . . ,D
(l)
j ,0)1,Q′ .

(23.24)

The sufficient conditions of validity of (23.23) are:

(i) Re(α)> 0 and

Re(μ)+
r
∑

i=1
σi min

1≤ j≤Mi
Re

(
d
(i)
j

δ (i)j

)
+

l
∑

k=1
σ ′k min

1≤ j≤M′k
Re

(
G
(k)
j

H
(k)
j

)
>−Re(η)
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Re(ν)+
r
∑

i=1
ωi min

1≤ j≤Mi
Re

(
d
(i)
j

δ (i)j

)
+

l
∑

k=1
ω ′k min

1≤ j≤M′k
Re

(
G
(k)
j

H
(k)
j

)
>−Re(η)

and the conditions (i),(ii)and (iv) in Image 1 are also satisfied.

Image 2:
{

Iα ,β ,η−

(

tμ−1(b− at)−ν
s
∏
j=1

S
mj
n j

[
c jtλ j (b− at)−δ j

]

×H
[
z1tσ1(b− at)−ω1 . . . zrtσr(b− at)−ωr

]

×H
[
z′1tσ

′
1(b− at)−ω

′
1 . . .z′ltσ

′
l (b− at)−ω

′
l
])}

(x)

= b−νxμ−β−1
[n1/m1]

∑
k1=0

. . .
[ns/ms]

∑
ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A′n1,m1 . . .A
(s)
ns,ms c1

k1 . . .cs
ks(b)

−
s
∑

j=1
δ jk j

(x)

s
∑

j=1
λ jk j

×H0,N+N′+3:
P+P′+3,Q+Q′+3:

M1,N1;...;Mr ,Nr ;M′1,N′1;...;M′ l ,N′ l ;1,0
P1,Q1;...;Pr,Qr ;P′1,Q′1;...;P′ l ,Q′ l ;0,1

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

z1
xσ1

bω1
...

zr
xσr

bωr

z1
xσ
′
1

bω
′
1

...

zr
xσ
′
l

bω
′
l

− a
b x

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣

A∗ : C
B∗ : D

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

(23.25)

where C and D are given by (23.19) and

A∗ =
(

1−ν−∑s
j=1 δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω

′
l ,1

)
,

(
μ−β +∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

(
μ−η+∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ
′
l ,1

)
,

(a j; α ′j, . . . ,α
(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,P,(A j;0, . . . ,0
︸ ︷︷ ︸

r

B′j, . . . ,B
(l)
j ,0)1,P′ ,

B∗ =
(

1−ν−∑s
j=1 δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω

′
l ,0

)
,

(
μ+∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

(
μ−α−β −η+∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ
′
l ,1

)
,

(b j; β ′j , . . . ,β
(r)
j )1,Q(b j; β ′j , . . . ,β

(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,Q,

(Cj;0, . . . ,0
︸ ︷︷ ︸

r

,D′j, . . . ,D
(l)
j ,0)1,Q′ .

(23.26)

The sufficient conditions of validity of (23.25) are as follows:

(i) Re(α)> 0 and
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Re(μ)−
r
∑

i=1
σi min

1≤ j≤Mi

Re

(
d(i)

j

δ (i)
j

)
−

l
∑

k=1
σ ′k min

1≤ j≤M′k
Re

(
G(k)

j

H (k)
j

)
< 1+min{Re(β ) ,Re(η)}

Re(ν)−
r
∑

i=1
ωi min

1≤ j≤Mi

Re

(
d(i)

j

δ (i)
j

)
−

l
∑

k=1
ω ′k min

1≤ j≤M′k
Re

(
G(k)

j

H (k)
j

)
< 1+min{Re(β ) ,Re(η)}

and the conditions (i),(ii) and (iv) in Image 1are also satisfied.

Proof. We easily obtain the Image 2 after a little simplification on making use of
similar lines as adopted in Image 1 and using Lemma 23.2. ��
If we put β = −α and β = 0 in Image 2 and using (23.16) and (23.17), in succes-
sion we shall easily arrive at the corresponding corollaries concerning Riemann–
Liouville and Erde’lyi–Kober fractional integral operators, respectively.

Corollary 23.5.
{

Iα−
(

tμ−1 (b− at)−ν ∏s
j=1 S

mj
n j

[
c jtλ j (b− at)−δ j

]

×H
[
z1tσ1 (b− at)−ω1 . . . zrtσr (b− at)−ωr

]

H
[
z′1tσ

′
1 (b− at)−ω

′
1 . . . z′lt

σ ′l (b− at)−ω
′
l

])}
(x)

= b−νxμ+α−1∑[n1/m1]
k1=0 . . .∑[ns/ms]

ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A′n1,m1
. . .A(s)

ns,ms c
k1
1 . . .cks

s (b)
−∑s

j=1 δ jk j (x)∑
s
j=1 λ jk j

×H0,N+N′+2:
P+P′+2,Q+Q′+2:

M1,N1;...;Mr ,Nr ;M′1,N′1;...;M′l ,N
′
l ;1,0

P1,Q1;...;Pr ,Qr ;P′1,Q
′
1;...;P′l ,Q

′
l ;0,1

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

z1
xσ1

bω1
...

zr
xσr

bωr

z1
xσ
′
1

bω
′
1

...

zr
xσ
′
l

bω
′
l

− a
b x

∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣

A∗∗ : C
B∗∗ : D

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

(23.27)

where C and D are given by (23.19) and conditions of validity are same as
(23.25) and

A∗∗ =
(

1−ν−∑s
j=1δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω ′l ,1

)
,

(
α+ μ+∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ
′
l ,1

)

(a j; α ′j, . . . ,α
(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,P,(A j;0, . . . ,0
︸ ︷︷ ︸

r

B′j, . . . ,B
(l)
j ,0)1,P′

B∗∗ =
(

1−ν−∑s
j=1δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω ′l ,0

)
,

(
μ+∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

(b j; β ′j , . . . ,β
(r)
j )1,Q(b j; β ′j , . . . ,β

(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,Q,

(Cj;0, . . . ,0
︸ ︷︷ ︸

r

,D′j, . . . ,D
(l)
j ,0)1,Q′ .

(23.28)
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Corollary 23.6.
{

K−η,α

(

tμ−1(b− at)−ν
s
∏
j=1

S
mj
n j

[
c jtλ j(b− at)−δ j

]

×H
[
z1tσ1(b− at)−ω1 . . .zrtσr(b− at)−ωr

]

×H
[
z′1tσ

′
1(b− at)−ω

′
1 . . .z′ltσ

′
l (b− at)−ω

′
l
])}

(x)

= b−νxμ−1
[n1/m1]

∑
k1=0

. . .
[ns/ms]

∑
ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A′n1,m1 . . .A
(s)
ns,ms c1

k1 . . .cs
ks(b)

−
s
∑

j=1
δ jk j

(x)

s
∑

j=1
λ jk j

×H0,N+N′+2:
P+P′+2,Q+Q′+2:

M1,N1;...;Mr ,Nr ;M′1,N′1;...;M′ l ,N′ l ;1,0
P1,Q1;...;Pr ,Qr ;P′1,Q′1;...;P′l ,Q′ l ;0,1

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

z1
xσ1

bω1
...

zr
xσr

bωr

z1
xσ
′
1

bω
′
1

...

zr
xσ
′
l

bω
′
l

− a
b x

∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣

A∗∗∗ : C

B∗∗∗ : D

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

(23.29)

where C and D are given by (23.19) and

A∗∗∗ =
(

1−ν−∑s
j=1δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω

′
l ,1

)
,

(
μ−η+∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

( a j; α ′j , . . . ,α
(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,P,(A j;0, . . . ,0
︸ ︷︷ ︸

r

B′j, . . . ,B
(l)
j ,0)1,P′ ,

B∗∗∗ =
(

1−ν−∑s
j=1δ jk j;ω1, . . . ,ωr,ω ′1, . . . ,ω ′l ,0

)
,

(
μ−α−η+∑s

j=1λ jk j;σ1, . . . ,σr,σ ′1, . . . ,σ ′l ,1
)
,

( b j; β ′j , . . . ,β
(r)
j )1,Q( b j; β ′j , . . . ,β

(r)
j ,0, . . . ,0

︸ ︷︷ ︸
l

,0)1,Q,

(C j;0, . . . ,0
︸ ︷︷ ︸

r

,D′j , . . . ,D
(l)
j ,0)1,Q′

(23.30)

The conditions of validity of the above results follow easily from the conditions
given with Image 2.
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23.4 Special Cases and Applications

The generalized fractional integral operator Images 1 and 2 established here are
unified in nature and act as key formulae. Thus the product of general class of poly-
nomials involved in Images 1 and 2 reduces to a large spectrum of polynomials
listed by Srivastava and Singh ([25], pp. 158–161), and so from Images 1 and 2 we
can further obtain various fractional integral results involving a number of simpler
polynomials. Again, the multivariable H-function occurring in these images can be
suitably specialized to a remarkably wide variety of useful functions (or product
of several such functions) which are expressible in terms of generalized Wright
hypergeometric function, generalized Mittag–Leffler function and Bessel functions
of one variable. For example

1. If we reduce the multivariable H-function in to the Fox H-functions in Image 1
and then reduce one H-function to the exponential function by taking σ1 = 1,
ω1→ 0, we get the following result after a little simplification which is believe
to be new:

{Iα ,β ,η0+ tμ−1 (b− at)−ν ∏s
j=1 S

mj
n j

[
c jtλ j (b− at)−δ j

]

e−z1tHM2,N2
P2,Q2

[

z2tσ2 (b− at)−ω2
(c j,γ j)1,P2

(d j,δ j)1,Q2

]}

(x)

= b−νxμ−β−1∑[n1/m1]
k1=0 . . .∑[ns/ms]

ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A′n1,m1
. . .A(s)

ns,ms c
k1
1 . . .cks

s (b)
−∑s

j=1 δ jk j (x)∑
s
j=1 λ jk j

H0,3:
3,3:

1,0;M2,N2;1,0
0,1;P2,Q2;0,1

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

z1x

z2
xσ2

bω2

− a
b x

∣
∣
∣∣
∣
∣
∣

{
(

1−ν−∑s
j=1δ jk j;1,ω2,1

)
,

(
1− μ−∑s

j=1λ jk j;1,σ2,1
)
,

(
1− μ−η+β −∑s

j=1λ jk j;1,σ2,1
)
} :

{
(

1−ν−∑s
j=1δ jk j;1,ω2,0

)
,

(
1− μ+β −∑s

j=1λ jk j;1,σ2,1
)
,

(
1− μ−α−η−∑s

j=1λ jk j;1,σ2,1
)
} :

−;(c j,γ j)1,P2
;−

(0,1) ;(d j,δ j)1,Q2
;(0,1)

]

(23.31)

The conditions of validity of the above result easily follow from (23.19).

• If we put β = −α and ν,ω2 = 0 and S
mj
n j = 1 and make suitable adjustment in

the parameters in (23.31), we arrive at the known result (see Kilbas and Saigo
[18], p. 52, (2.7.9)).
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• If we put ν,ω2,z1 = 0 and S
mj
n j = 1 and make suitable adjustment in the

parameters in (23.31), we arrive at the known result (see Gupta et al. [2]
p. 209, (25)).

2. If we reduce the H-function of one variable to generalized Wright hypergeo-
metric function ([23], p.19, (2.6.11)) in the result given by (23.31), we get the
following new and interesting result after little simplification:

{Iα ,β ,η0+ tμ−1 (b− at)−ν ∏s
j=1 S

mj
n j

[
c jtλ j (b− at)−δ j

]
e−z1t

P2ψQ2

×
[

−z2tσ2 (b− at)−ω2

∣
∣
∣∣
∣

(1− c j,γ j)1,P2

(0,1) ,(1− d j,δ j)1,Q2

]}

(x)

= b−νxμ−β−1∑[n1/m1]
k1=0 . . .∑[ns/ms]

ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A′n1,m1
. . .A(s)

ns,ms c
k1
1 . . .cks

s (b)
−∑s

j=1 δ jk j (x)∑
s
j=1 λ jk j

H0,3:
3,3:

1,0;1,P2;1,0
0,1;P2,Q2;0,1

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1x

−z2
xσ2

bω2

− a
b x

∣
∣
∣
∣
∣∣
∣
∣

{
(

1−ν−∑s
j=1δ jk j;1,ω2,1

)
,

(
1− μ−∑s

j=1λ jk j;1,σ2,1
)
,

(
1− μ−η+β −∑s

j=1λ jk j;1,σ2,1
)
} :

{
(

1−ν−∑s
j=1δ jk j;1,ω2,0

)
,

(
1− μ+β −∑s

j=1λ jk j;1,σ2,1
)
,

(
1− μ−α−η−∑s

j=1λ jk j;1,σ2,1
)
} :

−;(c j,γ j)1,P2
;−

(0,1) ;(d j,δ j)1,Q2
;(0,1)

]

(23.32)

The conditions of validity of the above result easily follow from (23.19).

• If we put β = −α and ν,ω2 = 0 and S
mj
n j = 1 and make suitable adjustment in

the parameters in (23.32), we arrive at the known result [see [7], p. 117, (11)].
• If we put ν,ω2,z1 = 0 and S

mj
n j = 1 and make suitable adjustment in the

parameters in (23.32), we arrive at the known result [see Gupta et al. [2], p.
210, (27)].

• If we take z2,σ2 = 1, and ω2 = 0 in (23.31) and reduce the H-function of one
variable occurring therein to generalized Mittag–Laffler function (Prabhakar)
([17], p. 19, (2.6.11)), we easily get after little simplification the following new
and interesting result:
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{

Iα ,β ,η0+

(

tμ−1(b− at)−ν
s
∏
j=1

S
mj
n j

[
c jtλ j(b− at)−δ j

]
e−z1tEρ

M2,N2
[t]

}

(x)

= b−ν
Γ (ρ)xμ−β−1

[n1/m1]

∑
k1=0

. . .
[ns/ms]

∑
ks=0

(−n1)m1k1
...(−ns)msks

k1!...ks!

×A′n1,m1 . . .A
(s)
ns,ms c1

k1 . . .cs
ks(b)

−
s
∑

j=1
δ jk j

(−x)

s
∑

j=1
λ jk j

H0,3:
3,2:

1,0;1,1;1,0
0,1;1,3;0,1⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

z1x

x

− a
b x

∣
∣
∣
∣∣
∣
∣

{
(

1−ν−∑s
j=1 δ jk j;1,0,1

)
,

(
1− μ−∑s

j=1λ jk j;1,1,1
)
,

(
1− μ−η+β −∑s

j=1λ jk j;1,1,1
)
} :

{
(

1−ν−∑s
j=1 δ jk j;1,0,0

)
,

(
1− μ+β −∑s

j=1λ jk j;1,1,1
)
,

(
1− μ−α−η−∑s

j=1λ jk j;1,1,1
)
} :

−;(1−ρ ,1) ;−
(0,1) ;(0,1) ,(1−ν;o) ,(1−N2;M2) ;(0,1)

]

(23.33)

The conditions of validity of the above result can be easily followed directly from
those given with (23.19).

• If we put β = −α and ν,ω2 = 0 and S
mj
n j = 1 and make suitable adjustment in

the parameters in (23.33), we arrive at the known result (see Saxena et al. [22],
p. 168, (2.1)).

• If we put ν = 0 and S
mj
n j = 1, and make suitable adjustment in the parameters in

(23.33), we arrive at the known result (see Gupta et al. [2], p. 210, (29)).
• If we take β =−α and ν,ω2 = 0 and S

mj
n j = 1, z2 =

1
4 , σ2 = 2 and reduce the H-

function to the Bessel function of first kind in (23.31), we also get known result
(see Kilbas and Sebastain [9] 3, p. 873, (25) to (29)).

A number of other special cases of Images 1 and 2 can also be obtained, but we do
not mention them here on account of lack of space.

23.5 Conclusion

In this paper, we have obtained the images of the generalized fractional integral
operators given by Saigo. The images have been developed in terms of the prod-
uct of the two multivariables H-function and a general class of polynomials in a
compact and elegant form with the help of Saigo operators. Most of the results ob-
tained in this paper are useful in deriving certain composition formulas involving
Riemann–Liouville, Erde’lyi–Kober fractional calculus operators and multivariable
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H-functions. The findings of this paper provide an extension of the results given
earlier by Kilbas, Kilbas and Saigo, Kilbas and Sebastain, Saxena et al. and Gupta
et al. as mentioned earlier.
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Chapter 24
Non-asymptotic Norm Estimates
for the q-Bernstein Operators

Sofiya Ostrovska and Ahmet Yaşar Özban

Abstract The aim of this paper is to present new non-asymptotic norm estimates
in C[0,1] for the q-Bernstein operators Bn,q in the case q > 1. While for 0 < q ≤
1, ‖Bn,q‖= 1 for all n ∈ N, in the case q > 1, the norm ‖Bn,q‖ grows rather rapidly
as n→ +∞ and q→ +∞. Both theoretical and numerical comparisons of the new
estimates with the previously available ones are carried out. The conditions are de-
termined under which the new estimates are better than the known ones.

24.1 Introduction

Prior to presenting the subject of this paper, let us recall some notions of the
q-calculus (see, e.g., [1], Chap. 10). Given q > 0, for any nonnegative integer k,
the q-integer [k]q is defined by

[k]q := 1+ q+ · · ·+ qk−1 (k = 1,2, . . .), [0]q := 0;

and the q-factorial [k]q! by

[k]q! := [1]q[2]q . . . [k]q (k = 1,2, . . . ), [0]q! := 1.

For integers k and n with 0≤ k ≤ n, the q-binomial coefficient
[ n

k

]
q is defined by:

[n
k

]

q
:=

[n]q!
[k]q![n− k]q!

.
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In addition, the following standard notations will be employed:

(a;q)0 := 1, (a;q)k :=
k−1

∏
s=0

(1− aqs), (a;q)∞ :=
∞

∏
s=0

(1− aqs).

The space of the continuous functions on [0,1] equipped with the uniform norm
‖.‖ is denoted by C[0,1].

Definition 24.1 ([12]). Let f ∈C[0,1]. The q-Bernstein polynomial of f is

Bn,q( f ;x) :=
n

∑
k=0

f

(
[k]q
[n]q

)
pnk(q;x), n = 1,2, . . . ,

where the q-Bernstein basic polynomials pnk(q;x) are given by:

pnk(q;x) :=
[n

k

]

q
xk(x;q)n−k, k = 0,1, . . .n. (24.1)

Note that for q = 1, Bn,q( f ;x) is the classical Bernstein polynomial. Convention-
ally, the name q-Bernstein polynomials is reserved for q �= 1.

Definition 24.2. The q-Bernstein operator on C[0,1] is given by:

Bn,q : f �→ Bn,q( f ; .).

A detailed review of the results on the q-Bernstein polynomials along with the
extensive bibliography has been provided in [9]. The popularity of the q-Bernstein
polynomials is attributed to the fact that they are closely related to the q-binomial
and the q-deformed Poisson probability distributions (cf. [3, 17]). The q-binomial
distribution plays an important role in the q-boson theory, providing a q-deformation
for the quantum harmonic formalism. More specifically, it has been used to construct
the binomial state for the q-boson. Meanwhile, its limit form called the q-deformed
Poisson distribution defines the distribution of energy in a q-analogue of the coher-
ent state [2, 5]. Consequently, the properties of the q-deformed binomial distribu-
tion and related q-Bernstein basis (24.1) are essential for applications in physics,
analysis, and approximation theory.

Similar to the classical Bernstein polynomials, the q-Bernstein polynomials have
the end-point interpolation property, possess the divided differences representation,
and exhibit the saturation phenomena. This is while the q-Bernstein operators have
linear functions as their fixed points (see [6, 9, 12, 14, 16]).

Nevertheless, the striking differences in between the properties of the q-Bernstein
polynomials and those of the classical ones appear in their convergence properties.
What is more, in terms of convergence, the cases 0 < q < 1 and q> 1 are not similar
to each other, as shown in [4, 8]. This is because, for 0 < q < 1, Bn,q are positive
linear operators on C[0,1], whereas, for q > 1, no positivity occurs. In addition,
the case q > 1 is aggravated by the rather irregular behavior of basic polynomials
(24.1), which, in this case, combine the fast increase in magnitude with the sign
oscillations. For details see [15].
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In this paper, new results are presented on the bounds of the norms of the
q-Bernstein operators in the case when q > 1 varies. Generally speaking, the norm
of a linear operator characterizes its modulus of continuity. For q > 1, the erratic
behavior of the q-Bernstein polynomials can be explained to a certain degree by the
fact that the continuity of the q-Bernstein operators deteriorates in a relatively rapid
manner as n and/or q increase. The asymptotic estimates of the norms have been
provided in [10, 15], where it is shown that

‖Bn,q‖ ∼ 2
e
· q

n(n−1)/2

n
as n→ ∞,q→+∞.

In distinction to these results, this paper deals with non-asymptotic estimates valid
for all q > 1. Here, it should be stated that knowledge concerning the rate of growth
for a sequence of the approximating operators is very important since such rate
affects the construction of the corresponding algorithms in the theory of regular-
izability of inverse linear operators (see [11]). Also, studies on the norms of vari-
ous projection operators play a significant role in the structure theory of Lp spaces
(see [13]). The authors would like to mention that I. Novikov in [7] has investigated
the asymptotic properties of a particular sequence of Bernstein polynomials from a
different point of view.

Finally, it must be pointed out that all the numerical results have been obtained in
a Maple 8 environment using 500 decimal digits of mantissa in computations with
floating point representation.

24.2 Lower Estimates

In this section, we obtain direct estimates from below for the norm ‖Bn,q‖ with any
q > 1. The case n = 2 is rather straightforward as

‖B2,q‖= q2 + 1
2q

.

Therefore, we have to obtain estimates only for n≥ 3.

Theorem 24.3. For all q > 1, n≥ 3, we have

‖Bn,q‖ ≥ K(n;q) := max

{
1,

1
2n−1 ·

(
q2− 1

q2

)n

·qn(n−1)/2
}

(24.2)

Proof. Since ‖Bn,q‖ = max
x∈[0,1]

n

∑
k=0

|pnk(q;x)|, one can write ‖Bn,q‖ ≥ ∑n
k=0 |pnk(q;x)|

for any x ∈ [0,1]. Let x0 ∈ (1/q,1). Then, for k = 0,1, . . . ,n− 2,
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|pnk(q;x0)|=
[n

k

]

q
xk

0(1− x0)(qx0− 1) . . .(qn−k−1x0− 1)

= qn(n−1)/2−k(k−1)/2
[n

k

]

1
q

xn−1
0 (1− x0)

(
1

qx0
;

1
q

)

n−k−1

≥ qn(n−1)/2−k(k−1)/2
[n

k

]

1
q

xn−1
0 (1− x0)

(
1

qx0
;

1
q

)

n−1
.

Meanwhile,

|pn,n−1(q;x0)|=
[

n
n− 1

]

q
xn−1

0 (1− x0)

= qn(n−1)/2−(n−1)(n−2)/2
[

n
n− 1

]

1
q

xn−1
0 (1− x0)

≥ qn(n−1)/2−(n−1)(n−2)/2
[

n
n− 1

]

1
q

xn−1
0 (1− x0)

(
1

qx0
;

1
q

)

n−1
,

and
pnn(q;x0) = xn

0 = xn−1
0 (1− x0)+ xn−1

0 (2x0− 1)

≥ xn−1
0 (1− x0)

(
1

qx0
;

1
q

)

n−1
+ xn−1

0 (2x0− 1).

Therefore, for any x0 ∈ (1/q,1),

n

∑
k=0
|pnk(q;x0)| ≥ qn(n−1)/2xn−1

0 (1−x0)

(
1

qx0
;

1
q

)

n−1
·

n

∑
k=0

[n
k

]

1
q

q−k(k−1)/2+xn−1
0 (2x0−1).

By virtue of the Rothe identity (cf. [1], Chap. 10, Corollary 10.2.2),

n

∑
k=0

[n
k

]

1
q

q−k(k−1)/2 =

(
−1;

1
q

)

n
= 2

(
−1

q
;

1
q

)

n−1
.

Setting x0 =
q+1
2q , one obtains:

(
1− 1

q jx0

)
= 1− 2

q j + q j−1 ≥ 1− 2
q j + 1

=
q j− 1
q j + 1

, j = 1, . . .n− 1,

whence
(

1
qx0

;
1
q

)

n−1

(
−1

q
;

1
q

)

n−1
≥
(

1
q

;
1
q

)

n−1
≥
(

1− 1
q

)(
1− 1

q2

)n−2

.

Then it follows that
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n

∑
k=0

∣
∣
∣
∣pnk

(
q;

q+1
2q

)∣∣
∣
∣� 2qn(n−1)/2 ·

(
q+1

2q

)n−1

· (q−1)2

2q2

(
q2−1

q2

)n−2

+
1
q
·
(

q+1
2q

)n−1

≥ 1
2n−1 ·qn(n−1)/2 ·

(
q2−1

q2

)n

+
1
q
·
(

q+1
2q

)n−1

.

This completes the proof. ��
Now, we compare the derived estimate with the previously known ones from

[10], namely,

‖Bn,q‖ ≥ L(n;q) := max

{
1,

1
22n−1 ·qn(n−1)/2

}
. (24.3)

and, for q≥ 3,

‖Bn,q‖ ≥M(n;q) :=
2

3
√

3ne
qn(n−1)/2. (24.4)

It is not difficult to see that for n = 3,4, and 5, estimate (24.2) is the best one for
all q > 1. As to n ≥ 6, the best estimate depends on the interval of q. Table 24.1
exhibits the optimal lower bounds for ‖Bn,q‖ for different values of n as a function

of q. The value q0 is the positive solution of
(
1− 1/q2

)6
2−5 = 1/

(
9
√

3e
)

whence
q0 ≈ 4.67673.

n q ∈
(

1,
√

2
)

q ∈
(√

2,3
)

q ∈ (3,q0) q ∈ (q0,∞)
3,4,5 K(n,q) K(n,q) K(n,q) K(n,q)

6 K(n,q) K(n,q) M(n,q) K(n,q)
7 K(n,q) K(n,q) M(n,q) M(n,q)
8 K(n,q) K(n,q) M(n,q) M(n,q)

� 9 L(n,q) K(n,q) M(n,q) M(n,q)

Table 24.1: Optimal lower bounds for
∥∥Bn,q

∥∥

For n = 3 and n = 9, the relations among the estimates are illustrated by Figs. 24.1
and 24.2.

24.3 Upper Estimates

Theorem 24.4. The following estimate holds for all n≥ 3 and all q > 1 :

‖Bn,q‖ ≤ H(n;q) := 1+
2n

n+ 1
·qn(n−1)/2. (24.5)

Proof. For k = 0,1, . . . ,n− 1 and x ∈ [0,1], one has:
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Fig. 24.1: Graphs of y = K(3;q), y = L(3;q), and y = M(3;q)

|pnk(q;x)| =
[n

k

]

q
q(n−k)(n−k−1)/2xk(1− x)

n−k−1

∏
j=1

(
x− 1

q j

)

≤
[n

k

]

q
q(n−k)(n−k−1)/2xk(1− x),

while |pnn(q;x)|= xn(1− x)+ xn+1. Using the Rothe identity, we obtain:

n

∑
k=0

|pnk(q;x)| ≤ qn(n−1)/2(1− x)
n

∑
k=0

[n
k

]

q
qk(k−1)/2

(
x

qn−1

)k

+ xn+1

= qn(n−1)/2(1− x)(−x;1/q)n+ xn+1 ≤ qn(n−1)/2(1− x)(1+ x)n+ xn+1, x ∈ [0,1].

Clearly,

max
x∈[0,1]

(1− x)(1+ x)n =
2n+1

n+ 1

(
1− 1

n+ 1

)n

.

Since the sequence
{(

1− 1
n+1

)n
}

is decreasing in n, it follows that

max
x∈[0,1]

(1− x)(1+ x)n ≤ 2n

n+ 1
for n≥ 2,

leading to estimate (24.5). ��
Next, we compare estimate (24.5) with the two previously known upper estimates

for the norm ‖Bn,q‖ from [10], which are:
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Fig. 24.2: Graphs of y = K(9;q), y = L(9;q), and y = M(9;q)

(i) ‖Bn,q‖ ≤ F(n;q) := 1+
q− 1

q
·3n−1 · (n− 1)qn(n−1)/2 (24.6)

and

(ii) ‖Bn,q‖ ≤ G(n;q) := 1+
1
4

e
1

q−1 ·qn(n−1)/2. (24.7)

Clearly,

‖Bn,q‖ ≤min{F(n;q),G(n;q),H(n;q)} .
It is obvious that estimate (24.6) is exact for q = 1 and, as such, is better than (24.5)
and (24.7) in a right neighborhood of 1. On the other hand, (24.7) provides a better
upper bound for ‖Bn,q‖ than the others for large values of q. At this stage, we prove
that estimate (24.5) is an optimal one in a certain interval [q1,q2], where q1 and q2

depend on n.

Theorem 24.5. For any n ≥ 3, there exists an interval [q1,q2] with q1 = q1(n) and
q2 = q2(n), such that

min{F(n;q),G(n;q),H(n;q)}= H(n;q) for q ∈ [q1,q2].

Proof. Let n≥ 3. For q> 1, consider the functions: f (q) = q−1
q 3n−1 (n− 1), g(q) =

1
4 exp(1/(q− 1)), and h(q) = 2n

n+1 . Clearly, both equations f (q) = h(q) and g(q) =
h(q) have unique solutions q1 and q2, respectively. Henceforth, the theorem will be
proved if we show that q1 < q2 for all n≥ 3.
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Indeed, f (q) = h(q) for q = q1 =
3n−1(n2−1)

3n−1(n2−1)−2n , while g(q) = h(q) for q = q2 =

1+ 1/
(

ln
(

2n+2

n+1

))
. Obviously, for n≥ 3

(n+ 1)<
1
3

(
3
2

)n (
n2− 1

)
.

Hence,

n <
1
3

(
3
2

)n (
n2− 1

)− 1.

In addition, for n≥ 3,

ln

(
2n+2

n+ 1

)
< ln2n < n.

Combining the last two inequalities, one can see that

ln

(
2n+2

n+ 1

)
<

1
3

(
3
2

)n (
n2− 1

)− 1.

Equivalently,

2n

3n−1 (n2− 1)− 2n <
1

ln
(

2n+2

n+1

) ,

whence

1+
2n

3n−1 (n2− 1)− 2n < 1+
1

ln
(

2n+2

n+1

)

which proves that q1 < q2 for n≥ 3. ��
Table 24.2 includes the intervals [q1,q2] for some values of n. Moreover, the
relations among the upper estimates are illustrated by Fig. 24.3 for n = 3 and n = 4.

n Intervals on which H(n;q) is the minimum

3 [1+0.125 ,1+0.48090]

4
[
1+4.1131×10−2,1+0.39224

]

5
[
1+1.6736×10−2,1+0.32677

]

10
[
1+5.2578×10−4,1+0.16892

]

25
[
1+1.9039×10−7,1+6.4696×10−2

]

50
[
1+1.8827×10−12,1+3.1141×10−2

]

100
[
1+7.3797×10−22,1+1.5132×10−2

]

Table 24.2: n values and intervals on which H(n;q) is the minimum
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Fig. 24.3: Graphs of y = F(n;q), y = G(n;q), and y = H(n;q) for n = 3,4
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Chapter 25
Approximation Techniques in Impulsive Control
Problems for the Tubes of Solutions of Uncertain
Differential Systems

Tatiana Filippova

Abstract The paper deals with the control problems for the system described by
differential equations containing impulsive terms (or measures). The problem is
studied under uncertainty conditions with set-membership description of uncertain
variables, which are taken to be unknown but bounded with given bounds (e.g., the
model may contain unpredictable errors without their statistical description). The
main problem is to find external and internal estimates for set-valued states of non-
linear dynamical impulsive control systems and related nonlinear differential inclu-
sions with uncertain initial state. Basing on the techniques of approximation of the
generalized trajectory tubes by the solutions of usual differential systems without
measure terms and using the techniques of ellipsoidal calculus we present here a
new state estimation algorithms for the studied impulsive control problem. The ex-
amples of construction of such ellipsoidal estimates of reachable sets and trajectory
tubes of impulsive control systems are given.

25.1 Introduction

Consider a dynamic system described by a differential equation

dx(t) = f (t,x(t),u(t))dt +B(t,x(t),u(t))dv(t), x ∈ Rn, t0 ≤ t ≤ T, (25.1)

with unknown but bounded initial condition

x(t0− 0) = x0, x0 ∈ X0 ⊂ Rn. (25.2)
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Here u(t) is a usual (measurable) control with constraint

u(t) ∈U, U ⊂ Rm,

and v(t) is an impulsive control (a control measure) which is continuous from the
right, with bounded variation

Vart∈[t0 ,T ] v(t)≤ μ (μ > 0).

We assume f (t,x,u) and n× k-matrix B(t,x,u) to be continuous in their variables.
The dynamical problems with impulsive control inputs arise in various

applications such as finance, mechanics, hybrid systems, chaotic communica-
tions systems and nano-electronics, renewable resource management, or aerospace
navigation, where the solution is contained in the set of control processes with
trajectories of bounded variation. This in turn gives a strong impetus to the rapid
development of the theory of such systems and numerical schemes implementing
the control strategies.

Therefore, impulsive systems arise naturally from a wide variety of applications
and can be used as an appropriate description of these phenomena of abrupt
qualitative dynamical changes of essentially continuous time systems. Significant
progress has been made in the theory of impulsive differential equations in re-
cent decades. Among the long list of publications devoted to impulsive control
problems, we specifically mention the results most closely related to this study
[1–3, 5, 15, 18, 19, 23, 24, 27]. However, the corresponding theory for uncertain
impulsive systems has not yet been fully developed.

In this paper the impulsive control problem for a dynamic system (25.1) with
unknown but bounded initial states (25.2) is studied. Using the ideas of the guar-
anteed state estimation approach [12–14, 16–18] and the techniques of differential
inclusions theory [6, 20, 26] we study the set-valued solutions (trajectory tubes) of
the related differential inclusion of impulsive type. We present the modified state
estimation approaches which use the special nonlinear structure of the impulsive
control system. Examples and numerical results related to procedures of set-valued
approximations of trajectory tubes and reachable sets are also presented.

25.2 Problem Statement

Let Rn be the n-dimensional Euclidean space and x′y be the usual inner product of
x,y ∈ Rn with the prime as a transpose and with ‖ x ‖ = (x′x)1/2. Denote comp Rn

to be the variety of all compact subsets A ⊂ Rn and conv Rn to be the variety of
all compact convex subsets A ⊂ Rn. We denote as B(a,r) the ball in Rn, B(a,r) =
{x ∈ Rn : ‖ x− a ‖ ≤ r}, and I is the identity n× n-matrix. Denote by E(a,Q) the
ellipsoid in Rn, E(a,Q) = {x∈ Rn : (x−a)′Q−1(x−a)≤ 1}, with center a∈ Rn and
symmetric positive definite n×n-matrix Q. For any n×n-matrix M = {mi j} denote
Tr(M) =∑i=n

i=1 mii.
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We consider here a nonlinear dynamical system of a simpler type described by a
differential equation with a measure

dx(t) = f (t,x(t),u(t))dt +B(t)dv(t), x ∈ Rn, t0 ≤ t ≤ T, (25.3)

with unknown but bounded initial condition

x(t0− 0) = x0, x0 ∈ X0. (25.4)

Here X0 ∈ comp Rn, u(t) is a usual (measurable) control with constraint

u(t) ∈U, U ∈ comp Rm, (25.5)

and v(t) is a scalar impulsive control function which is continuous from the right,
with constrained variation (μ > 0 is fixed)

Vart∈[t0,T ] v(t)≤ μ , (25.6)

Vart∈[t0,T ] v(t) = sup
{ti|t0≤t1≤...≤tk=T}

{
k

∑
i=1
|v(ti)− v(ti−1)|} ≤ μ .

We assume that n-vector functions f (t,x,u) and B(t) are continuous in their
variables.

The guaranteed estimation problem consists in describing the trajectory tube [16]

X(·, t0,X0) =
⋃

{u(·),v(·)}
{x[·] |x[t] = x(t, t0,x

0,u,v),x0 ∈ X0} (25.7)

of solutions x[t] = x(t, t0,x0,u,v) to the system (25.3)–(25.4) under constraints
(25.5)–(25.6). Note that the set X(t, t0,X0) coincides with the reachable set of the
system (25.3)–(25.4) at the instant t and X(t0, t0,X0) = X0.

It should be noted also that the exact description of reachable sets of a control
system is a difficult problem even in the case of linear dynamics. The estimation
theory and related algorithms basing on ideas of construction outer and inner set-
valued estimates of reachable sets have been developed in [4, 17] for linear control
systems and in [7–11] for some classes of nonlinear systems.

In this paper, the modified state estimation approaches which use the special
quadratic structure of nonlinearity of the studied impulsive control system and use
also the advantages of ellipsoidal calculus are presented.

The main approach to the solution of the problem under consideration is based
on the sequence of following steps:

• Use the reparametrization procedure to reformulate the impulsive control prob-
lem as a conventional auxiliary problem which does not contain impulsive terms.

• Apply existing results to this problem.
• Express the obtained solution in terms of the original problem.
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The estimation algorithm basing on combination of discrete-time versions of
evolution funnel equations [20, 26] and ellipsoidal calculus [4, 17] is given.
Examples and numerical results related to procedures of set-valued approxima-
tions of trajectory tubes and reachable sets are also presented. The applications of
the problems studied in this paper are in guaranteed state estimation for nonlinear
systems with unknown but bounded errors and in nonlinear control theory.

25.3 Preliminary Results

In this section we present some auxiliary results needed for the implementation of a
three-stage procedure for solving the basic problem outlined above.

25.3.1 Reformulation of the Problem with the Appropriate
Differential Inclusion

Consider a differential inclusion related to (25.3)–(25.4)

dx(t) ∈ F(t,x(t))dt +B(t)dv(t), (25.8)

with the initial condition

x(t0− 0) = x0, x0 ∈ X0. (25.9)

Here we use the notation

F(t,x) = f (t,x,U) = ∪{ f (t,x,u) | u ∈U }.

Definition 25.1. [21] A function x[t] = x(t, t0,x0) (x0 ∈ X0, t ∈ [t0,T ]) will be called
a solution (a trajectory) of the differential inclusion (25.8) if for all t ∈ [t0,T ] we have

x[t] = x0 +

t∫

t0

ψ(t)dt +

t∫

t0

B(t)dv(t), (25.10)

where ψ(·) ∈ Ln
1[t0,T ] is a selector of F , i.e., ψ(t) ∈ F(t,x[t]) a.e. The last integral

in (25.10) is taken as the Riemann–Stieltjes integral.

Following the scheme of the proof of the well-known Caratheodory theorem one
can prove the existence of solutions x[·] = x(·, t0,x0) ∈ BV n[t0,T ] for all x0 ∈ X0

where BV n[t0,T ] is the space of n-vector functions with bounded variation at [t0,T ].
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25.3.2 Discontinuous Replacement of Time

Let us introduce a new time variable [19, 22, 27]:

η(t) = t +

t∫

t0

dv(t),

and a new state coordinate τ(η) = inf { t | η(t)≥ η }.
Consider the following auxiliary differential inclusion of a classical type which

no longer has measures or impulses [7]

d
dη

(
z
τ

)
∈ G(τ,z), t0 ≤ η ≤ T + μ , (25.11)

with the initial condition
z(t0) = x0, τ(t0) = t0.

Here

G(τ,z) =
⋃

0 ≤ν≤ 1

{
(1−ν)

(
F(τ,z)

1

)
+ ν

(
B(τ)

0

) }
. (25.12)

Denote w = {z,τ} = w(η , t0,w0) (w0 = {z0, t0}) the extended state vector of
the system (25.11) and consider the trajectory tube W [·] of this differential inclu-
sion (25.11):

W [η ] =
⋃

w0∈X0×{t0}
w(η , t0,w0), t0 ≤ η ≤ T + μ .

The next lemma explains the construction of the auxiliary differential inclusion
(25.11).

Lemma 25.2 ([7]). The set X [T ] = X(T, t0,X0) is the projection of W [T + μ ] at the
subspace of variables z:

X [T ] = πzW [T + μ ].

Remark 25.3. It follows from results of [7] that the set-valued function G(τ,z) in
the auxiliary differential inclusion (25.11) has convex and compact values and is
Lipschitz continuous in both variables {τ,z}.

25.3.3 Estimation Results for Uncertain Nonlinear Systems

In [8, 9, 11] we studied the uncertain control systems described by ordinary differ-
ential equations with uncertain parameters and presented techniques of constructing
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the external and internal ellipsoidal estimates of trajectory tubes X(·, t0,X0). The
techniques were based on a combination of ellipsoidal calculus [4, 17] and the tech-
niques of evolution funnel equations [20]. Let us recall some basic results.

Consider the differential inclusion generated by a nonlinear control system with
classical controls only (impulsive control terms are absent here), namely, we con-
sider the differential inclusion of the following type:

ẋ ∈ Ax+ f̃ (x)d +P(t), x0 ∈ X0, t0 ≤ t ≤ T, (25.13)

where x∈ Rn, ‖x‖≤K, X0 = E(a0,Q0), P(t) = E(â, Q̂), d,a0, â are given n-vectors,
a scalar function f̃ (x) has a form f̃ (x) = x′Bx, and matrices B, Q0, and Q̂ are sym-
metric and positive definite (more complicated cases with different quadratic forms
fi(x) included in the right-hand side of differential inclusion (25.13) were also stud-
ied in [8]).

Denote as x(·, t0,x0) the absolutely continuous solution to (25.13) with the initial
condition x(t0) = x0 and recall the following definition.

Definition 25.4. The set

X(·) = X(·, t0,X0) =
⋃

x0∈X0

{x(·, t0,x0)} (25.14)

is called a trajectory tube to system (25.13) with initial state {t0,X0}, t ∈ [t0,T ]. The
cross-section X(t) = X(t, t0,X0) of trajectory tube X (·, t0,X0) at instant t ≥ t0 is
called a reachable set to system (25.13) with X(t0) = X(t0, t0,X0) = X0.

Let k−0 and k+0 be positive numbers such that the following two inclusions hold

E(a0,(k
−
0 )

2B−1)⊆ E(a0,Q0)⊆ E(a0,(k
+
0 )

2B−1). (25.15)

We assume that k−0 is maximal and k+0 is minimal for which the inclusions (25.15)
are true.

Theorem 25.5 ([10]). The inclusions hold

E(a−(t),r−(t)B−1)⊆ X(t, t0,X
0)⊆ E(a+(t),r+(t)B−1), t0 ≤ t ≤ T, (25.16)

where functions a+(t), r+(t) are the solutions of the following system of ordinary
differential equations

ȧ+(t) = Aa+(t)+ ((a+(t))′Ba+(t)+ r+(t))d + â, t0 ≤ t ≤ T,

ṙ+(t) = max
‖l‖=1
{l′(2r+(t)(B1/2AB−1/2 + 2B1/2d (a+(t))′B1/2+

q−1(r+(t))B1/2Q̂B1/2)l}+ q(r+(t))r+(t), q(r) = ((nr)−1Tr(BQ̂))1/2,

(25.17)

with initial condition

a+(t0) = a0, r+(t0) = (k+0 )
2, (25.18)
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and where functions a−(t), r−(t) are the solutions of the following system of ordi-
nary differential equations

ȧ−(t) =Aa−(t)+ ((a−(t))′Ba−(t)+ r−(t))d + â, t0 ≤ t ≤ T,

ṙ−(t) = 2 min
‖l‖=1
{l′(r−(t)(B1/2AB−1/2+

2B1/2d(a−(t))′B1/2)+ (r−(t))1/2(B1/2Q̂B1/2)1/2)l},
(25.19)

with
a−(t0) = a0, r−(t0) = (k−0 )

2. (25.20)

Remark 25.6. The inclusions (25.5) give two ellipsoidal estimates for the trajectory
tube X(t), the internal one (E(a−(t),r−(t)B−1)) with respect to inclusion operation
and the external one (E(a+(t),r+(t)B−1)). Parameters of both ellipsoids are easily
computable, for example, using technical computing software (such as MATLAB,
Mathematica, and Mathcad).

Example 25.7. Consider the following control system
⎧
⎨

⎩

ẋ1 = 2x1 + u1,
ẋ2 = 2x2 + x2

1 + x2
2 + u2, x0 ∈ X0, 0≤ t ≤ T. (25.21)

Here, we take t0 = 0, T = 0.4, X0 = B(0,1), P(t) = B(0,r), r = 0.01. In this case
we have A = 2I, B = I, d1 = 0, d2 = 1.

The trajectory tube X(t)with its external ellipsoidal tube E+(t)=E(a+(t),Q+(t))
and its internal ellipsoidal tube E−(t)=E(a−(t),Q−(t)) found by Theorem 25.5 are
shown as 3Dgraphs in Fig. 25.1. We see there that the reachable set X(t) lies inside
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Fig. 25.1: Trajectory tube X(t) and its estimating ellipsoidal tubes E+(t) (left picture) and E−(t)
(right picture)

the ellipsoidal estimate E+(t) and contains the ellipsoidal estimates E−(t). Both
ellipsoids touch the set X(t) at some points so the estimating sets E+(t) and E−(t)
really produce related bounds for X(t) which are enough accurate in some sense.
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25.4 Main Results

Based on the above techniques of approximation of the generalized trajectory tubes
by the solutions of usual differential systems without measure terms and using the
techniques of ellipsoidal calculus we present here new state estimation algorithms
for more complicated dynamics defined by impulsive control problems.

25.4.1 State Estimates for Nonlinear Impulsive Systems

Consider the following impulsive control system

dx(t) = (Ax+ f (x)d+ u(t))dt +Gdv(t), t0 ≤ t ≤ T, (25.22)

x(t0− 0) = x0, x0 ∈ X0 = E(a,k2B−1) (k �= 0). (25.23)

Here A is a constant n× n-matrix and d,G ∈ Rn,

f (x) = x′Bx, (25.24)

where B is a symmetric positive definite n× n-matrix, u(t) ∈ U , U = E(â,Q̂),
Vart∈[t0,T ] v(t)≤ μ .

Following the idea of the previous section we introduce the nonlinear differential
inclusion

d
dη

(
z
τ

)
∈H(τ,z), t0 ≤ η ≤ T + μ , (25.25)

with initial condition

z(t0) = x0 ∈ X0 = E(a,k2B−1), τ(t0) = t0,

where

H(τ,z) =
⋃

0≤ ν ≤1

{
(1−ν)

(
Az+ f (z)d+E(â, Q̂)

1

)
+ ν

(
G
0

) }
. (25.26)

Let W (t; t0,X0×{t0}) be a trajectory tube of the inclusion (25.25)–(25.26).

Theorem 25.8. For any σ > 0 the following inclusion is true:

W (t0 +σ)⊆
⋃

0≤ ν ≤1

⎛

⎝
E(a+(σ ,ν),Q+(σ ,ν))

t0 +σ(1−ν)

⎞

⎠+ o(σ)B∗(0,1). (25.27)

Here, B∗(0,1) is a unit ball in Rn+1, limσ→+0σ−1o(σ) = 0 and

a+(σ ,ν) = a(σ ,ν)+σ(1−ν)â+σνG,

Q+(σ ,ν) = (p−1 + 1)Q(σ ,ν)+ (p+ 1)σ2(1−ν)2Q̂,
(25.28)
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p = p(σ ,ν) is the unique positive solution of the equation

n

∑
i=1

1
p+λi

=
n

p(p+ 1)
,

numbers λi = λi(σ ,ν)≥ 0 satisfy the equation

|Q(σ ,ν)−λσ2(1−ν)2Q̂|= 0

and the following relations hold:

a(σ ,ν) = a+σ(1−ν)(Aa+ a′2d),

Q(σ ,ν) = k2(I +σR)B−1(I +σR)′,

R = (1−ν)(A+ 2da′B).

(25.29)

Proof. The proof follows directly from Theorem 25.5. Parameters of estimating set
in (25.27) are calculated based on formulas (25.25)–(25.26). ��

25.4.2 Algorithm for External Estimation

Now we describe the algorithm which follows directly from Theorem 25.8 and may
be used in theoretical modeling and applied calculations.

Subdivide the time segment [t0,T + μ ] into subsegments {[ti, ti+1]} where ti =
t0 + ih (i = 1, . . . ,m), h = (T + μ − t0)/m, tm = T + μ . Define also the partition
{[νi,νi+1]} of [0,1] where νi = ih∗ (i = 1, . . . ,m), h∗ = 1/m, νm = 1. The algorithm
is based on the consequent repetition of the following five steps. So

1. Given X0 = E(a,k2
0B−1) (k0 �= 0), find m ellipsoids E(ai

1,Q
i
1) from Theorem 25.8

for ai
1 = a+(σ ,νi), Qi

1 = Q+(σ ,νi), σ = h (i = 1, . . . ,m).
2. Next, find in Rn+1 the ellipsoid E(w1(σ),O1(σ)) such that for i = 1, . . . ,m we

have (see also the algorithm in [25])

W (σ ,νi) =

(
E(a+(σ ,νi),Q+(σ ,νi))

t0 +σ(1−νi)

)
⊆ E(w1(σ),O1(σ)).

3. Apply Lemma 25.2 and find the ellipsoid E(a1,Q1) = πz E(w1(σ),O1(σ)).
4. Find the smallest constant k1 > 0 such that E(a1,Q1) ⊂ E(a1,k2

1B−1), and it is
not difficult to prove that k2

1 is the maximal eigenvalue of the matrix B1/2Q1B1/2.
5. Consider the system on the next subsegment [t1, t2] with E(a1,k2

1B−1) as the ini-
tial ellipsoid at instant t1 and go to the first step.

At the end of the process we will get the external ellipsoidal estimate Ẽ(T ) =
E(a+(T ),Q+(T )) of the reachable set X(T ) with accuracy tending to zero when
m→ ∞.
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Example 25.9. Consider the following impulsive control system
{

dx1(t) = x2(t)dt,
dx2(t) = du(t), 0≤ t ≤ T.

(25.30)

The impulsive controls u(t) are continuous from the right, with bounded variation
Vart∈[0,T ]u(t) ≤ 1. To simplify calculations we assume also that every control u(t)
is increasing on [0,T ].

The initial states x0 of the impulsive control system are assumed to be unknown
but bounded, with given ellipsoidal bound,

x0 ∈ X0 = E(0,R), R =

(
4 0
0 1

)
.

We apply the algorithm proposed above and find the external ellipsoidal estimate
Ẽ(T ) = E(a+(T ),Q+(T )) of the exact reachable set X(T ) = X(t, t0,X0). Both sets
E(a+(T ),Q+(T )) and X(T ) are shown in Fig. 25.2 for T = 1.
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Fig. 25.2: Ellipsoidal estimate E(a+(T ),Q+(T )) of the set X(T ) for T = 1

Remark 25.10. It should be noted that the external ellipsoidal estimates of reachable
sets of impulsive systems, obtained in this paper, are less precise than the estimates
of reachable sets of dynamic systems with classical control (e.g., compare simula-
tion results in examples with Figs. 25.1 and 25.2). The reason is that in impulsive
control problems the estimation algorithm is more complicated and contains, in par-
ticular, an additional operation of projection onto the subspace of state variables.

Remark 25.11. The construction of internal ellipsoidal estimates of reachable sets is
much more difficult for impulsive nonlinear systems and is still an open problem for
such systems.
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25.5 Conclusions

We considered the problems of state estimation for dynamical impulsive control
systems with unknown but bounded initial state.

The solution to the differential system is studied through the techniques of
trajectory tubes with their cross-sections X(t) being the reachable sets.

Basing on results of ellipsoidal calculus developed for uncertain dynamical
systems with classical (measurable) controls we present the modified state
estimation approach and related numerical algorithm which use the special structure
of the impulsive control system.
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Chapter 26
A New Viewpoint to Fourier Analysis
in Fractal Space

Mengke Liao, Xiaojun Yang and Qin Yan

Abstract Fractional analysis is an important method for mathematics and engineer-
ing, and fractional differentiation inequalities are great mathematical topic for re-
search. In this paper we point out a new viewpoint to Fourier analysis in fractal
space based on the local fractional calculus and propose the local fractional Fourier
analysis. Based on the generalized Hilbert space, we obtain the generalization of
local fractional Fourier series via the local fractional calculus. An example is given
to elucidate the signal process and reliable result.

26.1 Introduction

Fractional calculus has been used in describing physical phenomena such as
viscoelasticity [1–3], continuum mechanics [4–6], quantum mechanics [7–9], dif-
fusion and wave phenomena [10–16] and other branches of applied mathematics
[17–21] and nonlinear dynamics [22–24] have been studied.

As is well known, fractal curves are everywhere continuous but nowhere
differentiable, and we cannot employ fractional calculus to describe the motions
in cantor time–space [25, 26]. Recently, a modified Riemann–Liouville derivative
[27–32] and local fractional derivative [33–54] has been proposed to deal with the
non-differential functions. Local fractional calculus is revealed to deal with every-
where continuous but nowhere differentiable functions on cantor sets. For these
merits, local fractional calculus was successfully applied in the local fractional
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Laplace transform (also called the Yang–Laplace transform) [48–51], the local frac-
tional Fourier transform (also called the Yang–Fourier transform) [48, 49, 52–55],
the Hölder inequality in fractal space [56], the local fractional short time transform
[48, 49], the local fractional wavelet transform [48, 49], the fractal signals [54, 57],
the discrete Yang–Fourier transform [58] and the fast Yang–Fourier transform [55].

In this paper we investigate the local fractional calculus of real functions,
the fractional-order complex mathematics and the generalized Hilbert space, and
we focus on local fractional Fourier analysis based on local fractional calculus.
The paper is organized as follows. In Sect. 26.2 the local fractional calculus of the
real functions is discussed; in Sect. 26.3 we investigate the fractional-order com-
plex mathematics and the complex Mittag–Leffler functions; in Sect. 26.4 we prove
the generalization of local fractional Fourier series in generalized Hilbert space; in
Sect. 26.5 we propose the local fractional Fourier analysis; in Sect. 26.6 we give
an example of the expansion of local fractional Fourier series with the complex
Mittag–Leffler functions, and conclusions are in Sect. 26.7.

26.2 Local Fractional Calculus of Real Functions

26.2.1 Local Fractional Continuity

Definition 26.1. If there exists [48, 49]

| f (x)− f (x0)|< εα (26.1)

with |x− x0| < δ ,forε,δ > 0 and ε,δ ∈ R, now f (x) is called local fractional con-
tinuous at x = x0, denoted by lim

x→x0
f (x) = f (x0). Then f (x) is called local fractional

continuous on the interval (a,b), denoted by

f (x) ∈Cα (a,b) . (26.2)

Definition 26.2. A function f (x) is called a non-differentiable function of exponent
α , 0 < α ≤ 1, which satisfies Hölder function of exponent α , then for x,y ∈ X such
that [48, 49, 54]

| f (x)− f (y)| ≤C |x− y|α . (26.3)

Definition 26.3. A function f (x)is called to be continuous of order α ,0 < α ≤ 1, or
shortly α continuous, when we have that [48, 49, 54]

f (x)− f (x0) = o
(
(x− x0)

α) . (26.4)

Remark 26.4. Compared with (26.4), (26.1) is standard definition of local fractional
continuity. Here (26.3) is unified local fractional continuity.
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26.2.2 Local Fractional Calculus

Definition 26.5. Let f (x) ∈Cα (a,b). Local fractional derivative of f (x) of order α
at x = x0 is defined as[48–58]

f (α) (x0) =
dα f (x)

dxα
∣
∣x=x0 = lim

x→x0

Δα ( f (x)− f (x0))

(x− x0)
α , (26.5)

whereΔα ( f (x)− f (x0)) ∼= Γ (1+α)Δ ( f (x)− f (x0)). For anyx ∈ (a,b), there
exists

f (α) (x) = D(α)
x f (x) ,

denoted by

f (x) ∈ D(α)
x (a,b) .

Definition 26.6. Let f (x) ∈ Cα (a,b). Local fractional integral of f (x) of order α
in the interval [a,b] is given [48–58]

aI(α)b f (x) =
1

Γ (1+α)

∫ b

a
f (t)(dt)α =

1
Γ (1+α)

lim
Δ t→0

j=N−1

∑
j=0

f (t j)(Δ t j)
α ,

(26.6)

where Δ t j = t j+1 − t j,Δ t = max
{
Δ t1,Δ t2,Δ t j , . . .

}
and

[
t j, t j+1

]
, j = 0, . . . ,N −

1,t0 = a, tN = b, is a partition of the interval[a,b].

For convenience, we assume that

aI(α)a f (x) = 0 if a = b and aI(α)b f (x) =− bI(α)a f (x) if a < b.
For any x ∈ (a,b), we get

aI(α)x f (x) , (26.7)

denoted by

f (x) ∈ I(α)x (a,b) .

Remark 26.7. If f (x) ∈D(α)
x (a,b) , or I(α)x (a,b), we have that

f (x) ∈Cα (a,b) . (26.8)

Remark 26.8. The following relations hold:

1
Γ (1+α)

∫ b

a
Eα (x

α) (dx)α = Eα (b
α)−Eα (a

α) (26.9)

1
Γ (1+α)

∫ b

a
sinα xα (dx)α = cosα aα − cosα bα (26.10)

1
Γ (1+α)

∫ b

a
sinα xα (dx)α = cosα aα − cosα bα (26.11)
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1
Γ (1+α)

∫ b

a
xkα (dx)α =

Γ (1+ kα)
Γ (1+(k+ 1)α)

(
b(k+1)α − a(k+1)α

)
(26.12)

26.3 Fractional-Order Complex Mathematics

Definition 26.9. Fractional-order complex number is defined by [48, 49]

Iα = xα + iαyα ,x,y ∈ R,0 < α ≤ 1, (26.13)

where its conjugate of complex number shows that

Iα = xα − iαyα, (26.14)

and where the fractional modulus is derived as

|Iα |= Iα Iα = Iα Iα =
√

x2α + y2α . (26.15)

Definition 26.10. Complex Mittag–Leffler function in fractal space is defined by
[48, 49]

Eα (z
α) :=

∞

∑
k=0

zαk

Γ (1+ kα)
, (26.16)

for z ∈C(complex number set) and 0 < α ≤ 1.

The following rules hold:

Eα (z
α
1 )Eα (z

α
2 ) = Eα

(
(z1 + z2)

α) (26.17)

Eα (z
α
1 )Eα (−zα2 ) = Eα

(
(z1− z2)

α) (26.18)

Eα (i
αzα1 )Eα (i

αzα2 ) = Eα
(
iα (zα1 + zα2 )

α) (26.19)

When zα = iαxα , the complex Mittag–Leffler function is computed by

Eα (i
αxα) = cosα xα + iα sinα xα (26.20)

with cosα xα :=
∞
∑

k=0
(−1)k x2αk

Γ (1+2αk) and sinα xα :=
∞
∑

k=0
(−1)k xα(2k+1)

Γ [1+α(2k+1)] , for x∈R

and 0 < α ≤ 1, we have that

Eα (i
αxα)Eα (i

αyα) = Eα
(
iα (x+ y)α

)
(26.21)

and

Eα (i
αxα)Eα (−iαyα) = Eα

(
iα (x− y)α

)
. (26.22)
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26.4 Generalization of Local Fractional Fourier Series
in Generalized Hilbert Space

26.4.1 Generalized Inner Product Space

Definition 26.11. Let V be a complex or real vector space. A generalized inner
product on a vector space V is a function〈xα ,yα〉α on pairs (xα ,yα) of vectors in
V ×V taking values satisfying the following properties [48, 49]:

(1) 〈xα ,xα 〉α ≥ 0 for all xα ∈V and 〈xα ,xα〉α = 0 only if x = 0
(2) 〈xα ,yα〉α = 〈yα ,xα〉α for all xα ,yα ∈V
(3) For all xα ,yα ,zα ∈V and scalars a,b ∈ R,

〈aαxα + bαyα ,zα〉α = aα 〈xα ,zα 〉α + bα 〈yα ,zα 〉α (26.23)

A generalized inner product space is a generalized vector space with an inner
product.

Given a generalized inner product space, the following definition provides a
norm:

‖xα‖α = 〈xα ,xα〉
1
2
α =

√
∞

∑
k=1

∣
∣xαk

∣
∣2. (26.24)

Now we can define a scalar (or dot) product of two T -periodic functions f (t) and
g(t) as

〈 f ,g〉α =

∫ T

0
f (t)g(t)(dt)α . (26.25)

For more materials, we see [48, 49].

26.4.2 Generalized Hilbert Space

Definition 26.12. A generalized Hilbert space is a complete generalized inner prod-
uct space [48, 49].

Suppose {eαn } is an orthonormal system in an inner product space X . The follow-
ing are equivalent [48, 49]:

1. span
{

eα1 , . . . ,e
α
n

}
= X , i.e., {eαn } is a basis.

2. (Pythagorean theorem in fractal space)
The equation

∞

∑
k=1

|aαk |2 = ‖ f‖2
α (26.26)

for all f ∈ X , where aαk =
〈

f ,eαk
〉
α .
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3. (Generalized Pythagorean theorem in fractal space)
Generalized equation

〈 f ,g〉=
n

∑
k=1

aαk bαk (26.27)

for all f ,g ∈ X , where aαk = 〈 f ,eαn 〉α and bαk =
〈
g,eαk

〉
α .

4. f =
n
∑

k=1
aαk eαk with sum convergent in X for all f ∈ X.

For more details, see [48, 49].
Here we can take any sequence of T -periodic fractal functions ϕk, k = 0,1, . . .

that are

1. Orthogonal:

〈
ϕk,ϕ j

〉
α =

∫ T

0
ϕk (t)ϕ j (t)(dt)α = 0(i f k �= j) (26.28)

2. Normalized:

〈ϕk,ϕk〉α =
∫ T

0
ϕ2

k (t)(dt)α = 1 (26.29)

3. Complete: If a function x(t) is such that

〈x,ϕk〉α =

∫ T

0
x(t)ϕk (t)(dt)α = 0 (26.30)

for all i, then x(t)≡ 0.

26.4.3 Generalization of Local Fractional Fourier Series
in Generalized Hilbert Space

26.4.3.1 Generalization of Local Fractional Fourier Series in Generalized
Hilbert Space

Definition 26.13. Let {ϕk (t)}∞k=1 be a complete, orthonormal set of functions. Then
any T -periodic fractal signal f (t) can be uniquely represented as an infinite series

f (t) =
∞

∑
k=0

φkϕk (t) (26.31)

This is called the local fractional Fourier series representation of f (t) in the general-
ized Hilbert space. The scalars φi are called the local fractional Fourier coefficients
of f (t).
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26.4.3.2 Local Fractional Fourier Coefficients

To derive the formula for φk, write

f (t)ϕk (t) =
∞

∑
i=0

φ jϕ j (t)ϕk (t) , (26.32)

and integrate over one period by using the generalized Pythagorean theorem in
fractal space

〈 f ,ϕk〉α
=

∫ T
0 f (t)ϕk (t) (dt)α

=
∫ T

0

∞
∑
j=0

φ jϕ j (t)ϕk (t)(dt)α

=
∞
∑
j=0

(
φ j

(∫ T
0 ϕ j (t)ϕk (t)(dt)α

))

=
∞
∑
j=0

φ j
〈
ϕ j ,ϕk

〉
α

= φk

(26.33)

Because the functions ϕk (t) form a complete orthonormal system, the partial sums
of the local fractional Fourier series

f (t) =
∞

∑
k=0

φkϕk (t) (26.34)

converge to f (t) in the following sense:

lim
N→∞

⎛

⎝ 1
Γ (1+α)

∫ T

0

(

f (t)−
∞

∑
k=1

φkϕk (t)

)(

f (t)−
∞

∑
k=1

φkϕk (t)

)

(dt)α

⎞

⎠= 0.

(26.35)

Therefore, we can use the partial sums

fN (t) =
N

∑
k=1

φkϕk (t) (26.36)

to approximate f (t).
Meanwhile, we have that

∫ T

0
f 2 (t)(dt)α =

∞

∑
k=1

φ2
k . (26.37)

The sequence of T -periodic functions in fractal space {ϕk (t)}∞k=0 defined by

ϕ0 (t) =

(
1
T

) α
2

andϕk (t) =

{(
2
T

) α
2 sinα

(
kαωα

0 tα
)
, i f k ≥ 1isodd

( 2
T

) α
2 cosα

(
kαωα

0 tα
)
, i f k > 1iseven

(26.38)

is complete and orthonormal, where ω0 =
2π
T .
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A more common way of writing down the local fractional trigonometric Fourier
series of f (t) is this

f (t) = a0 +
∞

∑
i=1

ak sinα (kαωα
0 tα)+

∞

∑
i=1

bk cosα (kαωα
0 tα) (26.39)

Then the local fractional Fourier coefficients can be computed by

⎧
⎨

⎩

a0 =
1

Tα
∫ T

0 f (t)(dt)α ,
ak =

( 2
T

)α ∫ T
0 f (t)sinα

(
kαωα

0 tα
)
(dt)α ,

bk =
( 2

T

)α ∫ T
0 f (t)cosα

(
kαωα

0 tα
)
(dt)α .

(26.40)

This result is equivalent to results [48, 49, 53, 54].
Another useful complete orthonormal set is furnished by the Mittag–Leffler func-

tions:

ϕk (t) =

√
1

Tα Eα (i
αkαωα

0 tα) ,k = 0,±1,±2, . . . (26.41)

where ω0 =
2π
T .

26.5 Local Fractional Fourier Analysis

Any periodic fractal function f (t) can be represented with a set of Mittag–Leffler
functions as shown below.

f (t) =
∞

∑
k=−∞

FkEα (i
αkαωα

0 tα)

= F0 +F1Eα (i
αωα

0 tα)+F2Eα (2
α iαωα

0 tα)+ . . .+FnEα (n
α iαωα

0 tα)

+ . . .+F−1Eα (−iαωα
0 tα)+F−2Eα (−2α iαωα

0 tα)+ . . .+F−nEα (−nα iαωα
0 tα)+ . . . ,

(26.42)

where ω0 =
2π
T .

Representing a fractal function in terms of its local fractional Fourier series com-
ponents with the Mittag–Leffler functions in fractal space is called the local frac-
tional Fourier analysis. Here the Mittag–Leffler function terms are orthogonal to
each other since

1
Tα

∫ T

0
Eα (i

αmαωα
0 tα)Eα

(
iαnαωα

0 tα
)
(dt)α = 0, m �= n, (26.43)

and the energy of these fractal signals is unity because

1
Tα

∫ T

0
Eα (i

αmαωα
0 tα)Eα

(
iαnαωα

0 tα
)
(dt)α = 1, m = n. (26.44)
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Now this process also shows that
〈

f (t) ,Eα
(
iα jαωα

0 tα
)〉

α
=

∫ T
0 f (t)Eα

(−iα jαωα
0 tα

)
(dt)α

=
∫ T

0

(
∞
∑

k=−∞
FkEα

(
iαkαωα

0 tα
)
)

Eα
(−iα jαωα

0 tα
)
(dt)α

=
∫ T

0

(
∞
∑

k=−∞
FkEα

(
iαkαωα

0 tα
)
Eα

(−iα jααωα
0 tα

)
)
(dt)α

=
∞
∑

k=−∞
Fk

(∫ T
0 Eα

(
iαkαωα

0 tα
)

Eα
(−iα jαωα

0 tα
)
(dt)α

)

=
∞
∑

k=−∞
Fk

(∫ T
0 Eα

(
iα (k− j)α ωα

0 tα
)
(dt)α

)

= Tα
∞
∑

k=−∞
Fk
〈
Eα

(
iαkαωα

0 tα
)
,Eα

(
iα jαωα

0 tα
)〉

α

= FjTα

(26.45)

Hence we get the local fractional Fourier coefficient as follows:

Fk =
1

Tα

∫ T

0
f (t)Eα (−iαkαωα

0 tα)(dt)α . (26.46)

In like manner, we derive Fk as

〈 f (t) ,Eα (−iαkαωα
0 tα)〉α =

〈
f (t) ,Eα

(
iαkαωα

0 tα
)〉

α = Fk.

The weights of the Mittag–Leffler functions are computed by

Fk =
1

Γ (1+α)
∫ T

0 f (t)Eα(iα kαωα
0 tα)(dt)α

1
Γ (1+α)

∫ T
0 Eα(iα kαωα

0 tα)Eα(iα kαωα
0 tα)(dt)α

= 1
Tα

∫ T
0 f (t)Eα

(
iαkαωα

0 tα
)
(dt)α

= 1
Tα

∫ T
0 f (t)Eα

(−iαkαωα
0 tα

)
(dt)α .

(26.47)

For any interval [t0, t0 +T ], we show that

Fk =
1

Γ (1+α)
∫ t0+T

t0
f (t)Eα(iα kαωα

0 tα)(dt)α

1
Γ (1+α)

∫ t0+T
t0

Eα(iαkαωα
0 tα)Eα(iαkαωα

0 tα)(dt)α

= 1
Tα

∫ t0+T
t0

f (t)Eα
(
iαkαωα

0 tα
)
(dt)α

= 1
Tα

∫ t0+T
t0

f (t)Eα
(−iαkαωα

0 tα
)
(dt)α

(26.48)

When T → ∞ and ω0→ 0, the sum becomes a local fractional integral and ωα
0 be-

comes local fractional continuous. Therefore, the resulting representation is termed
as the analysis equation f F,α

ω (ω) , given by [48, 49, 52–54]

f F,α
ω (ω) =

1
Γ (1+α)

∫ ∞

−∞
Eα (−iαωαxα) f (x) (dx)α . (26.49)
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The function f (t) can recovered from f F,α
ω (ω) as

f (x) =
1

(2π)α
∫ ∞

−∞
Eα (i

αωαxα) f F,α
ω (ω) (dω)α . (26.50)

26.6 An Illustrative Example

Expand a l-period fractal signal X (t) = A
(
0 < t ≤ l

2

)
in local fractional Fourier

series.
Since the local fractional Fourier coefficients can be derived as

F0 =
1
lα

∫ l
2

0
f (t)(dt)α =

1
lα

∫ l
2

0
A(dt)α =

A
2α

, (26.51)

Fk

= 1
lα

∫ l
2

0 f (t)Eα

(
−iαkα

(
2π
l

)α
tα
)
(dt)α

= 1
lα

∫ l
2

0 AEα

(
−iαkα

( 2π
l

)α
tα
)
(dt)α

= AΓ (1+α)
(2π)α (1−Eα (−iαkαπα))

= AΓ (1+α)
(2π)α (1−Eα (−iαkαπα))

(26.52)

F−k = F−k =
AΓ (1+α)

(2π)α
(1−Eα (i

αkαπα)) (26.53)

Hence, for 0 < t ≤ l
2 , the fractal signal is presented as

X (t)

=
∞
∑

k=−∞
FkEα

(
iαkαωα

0 tα
)

= A
2α +

∞
∑

k=1

[
AΓ (1+α)
(2π)α (1−Eα (−iαkαπα))

]
Eα

(
iα kα (2π)α tα

lα

)

+
∞
∑

k=1

[
AΓ (1+α)
(2π)α (1−Eα (iαkαπα))

]
Eα

(
− iαkα (2π)α tα

lα

)

= A
2α +

∞
∑

k=1

[
AΓ (1+α)
(2π)α

(
1− (−1)k

)]
Eα

(
iα kα (2π)α tα

lα

)

+
∞
∑

k=1

[
AΓ (1+α)
(2π)α

(
1− (−1)k

)]
Eα

(
− iαkα (2π)α tα

lα

)

(26.54)

26.7 Conclusions

In this paper, the local fractional Fourier series in generalized Hilbert space is
investigated, and the local fractional Fourier analysis is proposed based on the
Mittag–Leffler functions. Particular attention is devoted to the analytical technique
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of the local fractional Fourier analysis for treating these local fractional continuous
functions in a way accessible to applied scientists. There is an efficient example,
which is given to elucidate the signal process and reliable result. It is shown that
local fractional Fourier analysis is the convenient Fourier analysis [59] when fractal
dimension α is equal to 1.
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Chapter 27
Non-solvability of Balakrishnan–Taylor
Equation with Memory Term in R

N

Abderrahmane Zaraı̈ and Nasser-eddine Tatar

Abstract We establish a nonexistence result for a viscoelastic problem with
Balakrishnan-Taylor damping and a nonlinear source in the whole space. The
nonexistence result is based on the test function method developed by Mitidieri and
Pohozaev. We establish some necessary conditions for local existence and global
existence as well.

27.1 Introduction

In the last 45 years or so, blow up in finite time and nonexistence of solutions for
partial differential equations and systems have received an increasing attention. One
can find a rather extensive bibliography on works concerning parabolic and hyper-
bolic equations and systems on bounded domains.

On the whole space RN , the pioneering work for the heat equation with a power-
type nonlinearity is due to Fujita [4] in (1966). For the wave equation we can quote
John [7] (1979), see also Glassey [5, 6] and Kirane and Tatar [8]. Their works have
been extended and generalized to different degenerate and singular equations and
inequalities and on different unbounded domains (like exterior domains and cones).

The question of non-solvability of evolution equations has been treated and dis-
cussed from different angles using different methods and techniques. The basic idea
in most of these works is to compare solutions with sub-solutions that blow up in
finite time.
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Our concern, in this paper, is a viscoelastic problem with a power-type source
as an external force on the whole space R

N , N ≥ 1. Here we study the case where
the kernel h decays polynomially just to fix ideas, but the result remains valid for
many other types of kernels such as exponentially decaying functions. Namely, we
are concerned with the following initial-boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt −
(
ξ0 + ξ1‖∇u(t)‖2

2 +σ (∇u(t) ,∇ut (t))
)
Δu

+
∫ t

0 h(t− s)Δuds+ δut = |u|p in R
N× [0,+∞)

u(0,x) = u0 (x) ∈ L1
loc

(
R

N
)

ut (0,x) = u1 (x) ∈ L1
loc

(
R

N
)
,

(27.1)

where p > 1 and u0(x) and u1(x) are given initial data. Here h represents the kernel
of the memory term. All the parameters ξ0, ξ1 and σ are assumed to be positive
constants. The model in hand in a bounded domain Ω of RN , with Balakrishnan–
Taylor damping (σ > 0) and h = 0, was initially proposed by Balakrishnan and
Taylor in 1989 [1] and Bass and Zes [2]. It is related to the panel flutter equation
and to the spillover problem. So far it has been studied by Y. You [13], H. R. Clark
[3] and N.e. Tatar and A. Zaraı̈ [10–12] and several results on exponential decay and
blow up in finite time have been obtained.

In the present work, we are interested in conditions for non-solvability of (27.1).
The method we use is the so-called test function method developed by Mitidieri and
Pohozaev [9]. Our proof is based on an argument by contradiction, which involves
a priori estimates for the weak solutions of (27.1) and a careful choice of a special
test functions and a scaling argument.

The main goal of this paper is to find a range of values for p for which we have
nonexistence under minimal assumptions on h.

The plan of the remaining part of the paper is as follows: in the next section we
present the notation and what we mean by a (weak) solution to our problem. Sec-
tion 27.3 contains our result on nonexistence of solutions. In Sect. 27.4 we present
some necessary conditions for local existence and global existence of solutions.

27.2 Preliminaries

We shall denote by QT the set QT := (0,T )×R
N and Q := Q∞.

We next make it clear what we mean by a weak solution of problem (27.1).

Definition 27.1. A weak solution of problem (27.1) is a continuous function u:
R
+×R

N → R such that
∫

QT
|u|pϕdxdt +

∫
RN u1 (x)ϕ (0,x)dx+ δ

∫
RN u0 (x)ϕ (0,x)dx

=
∫

QT
uϕtt dxdt− ∫

QT
M(t)uΔϕdxdt− δ ∫QT

uϕtdxdt

+
∫

QT
u(s,x)

(∫ T
s h(t− s)Δϕ(t)dt

)
dsdx

(27.2)
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holds for any ϕ ∈C2
0(QT ),ϕ ≥ 0 and satisfying

ϕ(T,x) = ϕt(T,x) = ϕt(0,x) = 0,

where
M(t) = ξ0 + ξ1‖∇u(t)‖2

2 +σ (∇u(t) ,∇ut (t)) .

By ϕ ∈C2
0(QT ) we mean a function ϕ in C2,2

t,x and with compact support.
Now, we state the hypothesis
(H) h : R+→ R

+ is a bounded C1-function satisfying

h(t)≤ K

(1+ t)ρ
, t ≥ 0,

for some constant K > 0 and ρ ∈ (2,∞).

27.3 Nonexistence Result

In this section we prove our result. It provides a whole range of values for p for
which no weak solutions can exist globally in time.

Theorem 27.2. Suppose that
∫
RN u1 (x)dx + δ

∫
RN u0 (x)dx > 0 and (H) hold.

Assume that θ , N and p̃ are as in the following table:

N = 1 θ = 2, p̃ = 2
N = 2 θ = 2, p̃ = 1
N = 3 θ = 1, p̃ = 1

3

Then, there does not exist any global weak solution to (27.1) for all 1< p< 1+ p̃.

Proof. The proof is by contradiction. Assume that a weak solution of (27.1) exists
globally in time. We introduce the test function

ϕ(t,x) := φ
( |x|

R

)
μ
( t

Rθ

)
(27.3)

with φ ∈C∞
0 (R

N), φ ≥ 0, μ ∈C2(R+), μ ≥ 0 such that

φ(w),μ(w) =
{

1, |w| ≤ 1
0, |w|> 2

and μ satisfies −C ≤ μ ′(t) ≤ 0, μ ′(2Rθ ) = 0 for R >> 1. The function ϕ(t,x) is
supposed to have bounded second-order partial derivatives. Moreover, we assume
without loss of generality that

∫
suppΔϕ M(t) |Δϕ |q (ϕ)1−qdxdt

+
∫

suppϕtt
|ϕtt |q (ϕ)1−qdxdt +

∫
suppϕt

|ϕt |q (ϕ)1−qdxdt < ∞,
(27.4)
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where q is the conjugate exponent of p. If this condition is not satisfied for our
functionϕ(t,x), then we pick ϕλ (t,x) with some sufficiently large λ > 0. We choose
this test function in the definition of a weak solution and start estimating the different
terms in this definition. By multiplying and dividing by ϕ1/p, then applying the ε-
Young inequality, we see that

∫
Q uϕtt dtdx≤ ∫

suppϕtt
uϕ1/pϕ−1/pϕtt dtdx

≤ ε
∫

suppϕtt
|u|pϕdtdx+Cε

∫
suppϕtt

ϕ−q/p |ϕtt |q dtdx.
(27.5)

Likewise, we find

−
∫

Q
M(t)uΔϕdxdt

≤ ε
∫

suppΔϕ
|u|pϕdxdt +Cε

∫

suppΔϕ
|M(t)|q (ϕ)−q/p |Δϕ |q dxdt, (27.6)

−δ
∫

Q
uϕt dxdt

≤ ε
∫

suppϕt

|u|pϕdxdt +Cε

∫

suppϕt

δ q (ϕ)−q/p |ϕt |q dxdt (27.7)

and
∫

Q u
(∫ +∞

s h(t− s)Δϕ(t)dt
)

dsdx

≤ ε
∫

suppΔϕ |u|pϕdsdx+Cε
∫

suppΔϕ(ϕ)−q/p
∣
∣∫ +∞

s h(t− s)Δϕ(t)dt
∣
∣q dsdx.

(27.8)

Taking into account the last three estimates (27.5)–(27.8) in (27.2) we see that
for small ε (for instance, ε ≤ 1/5)

1
5

∫
Q |u|pϕdxdt +

∫
RN u1 (x)ϕ (0,x)dx+ δ

∫
RN u0 (x)ϕ (0,x)dx

≤C1/5
∫

suppϕ(ϕ)−q/p
[
|ϕtt |q + |M(t)|q |Δϕ |q

+δ q |ϕt |q +
∣
∣∫ +∞

s h(t− s)Δϕ(t)dt
∣
∣q
]

dsdx.

(27.9)

Let us now consider the following scaling: t = Rθ τ and x = Ry. Then, it is clear that
∫

suppϕtt

(ϕ)−q/p |ϕtt |q dtdx≤CRN+θ−2θq
∫

Ω
(ϕ)−q/p |ϕττ |q dτdy, (27.10)

∫
suppΔϕ(ϕ)−q/p |M(t)|q |Δϕ |q dtdx

≤CRN+θ−2q ∫
Ω (ϕ)−q/p |Δϕ |q

{
ξ0 + ξ1RN−2 ∫

RN |∇∗u|2 dy

+RN−θ−2 σd
2dτ

∫
RN |∇∗u|2 dy

}q
dτdy

≤CR(q+1)N+θ−4q ∫
Ω (ϕ)−q/p |Δϕ |q

{
ξ0 + ξ1

∫
RN |∇∗u|2 dy

+ σd
2dτ

∫
RN |∇∗u|2 dy

}q
dτdy,

(27.11)
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where ∇∗u = ∑N
i=1

∂u
∂yi

, and

∫

suppϕt

δ q (ϕ)−q/p |ϕt |q dxdt ≤Cδ qRN+θ−θq
∫

Ω
(ϕ)−q/p |ϕτ |q dτdy. (27.12)

Here and in the rest of the proof C is a positive constant which may be different at
different occurrences. For the term containing the memory let us rewrite it as

∫

suppΔϕ
(ϕ)−q/p

∣
∣
∣
∣

∫ +∞

t
h(ν− t)Δϕ(ν)dν

∣
∣
∣
∣

q

dtdx

and use the scaling to get

∫
suppΔϕ(ϕ)−q/p

∣
∣∫+∞

t h(ν− t)Δϕ(ν)dν
∣
∣q dtdx

=
∫

DR
|Δφ |q φ−q/p ∫ 2R

0 (μ)−q/p
∣
∣∫ +∞

t h(ν− t)μ(ν)dν
∣
∣q dtdx

≤CRN+θ−2q ∫
Ω |Δφ |qϕ−

q
p
∣
∣∫ +∞

Rθ τ h(ν−Rθτ)μ(ν)dν
∣
∣q dτdy,

(27.13)

where Ω := {(τ,y) : 1 ≤ τ, |y| ≤ 2} and DR := {x ∈ R
N : R < |x| < 2R}. In virtue

of the assumption (H) and by the change of variable 1+ ν−Rθτ = η and the fact
that μ is non increasing we see that

∫ +∞

Rθ τ
h(ν−Rθτ)μ(ν)dν ≤ K

∫ +∞

1

μ(η+Rθτ− 1)
ηρ dη

as Rθ τ ≥ 1 and as μ(η) = 0 for η ≥ 2 and μ(η)≤ 1 we have

∫ +∞

Rθ τ
h(ν−Rθτ)μ(ν)dν ≤ K

∫ 2

1

1
ηρ dη ≤C

and therefore
∫

suppΔϕ(ϕ)−q/p
∣
∣∫+∞

t h(ν− t)Δϕ(ν)dν
∣
∣q dtdx

≤CRN+θ−2q ∫
Ω |Δϕ |q (ϕ)−q/pdτdy.

(27.14)

The relations (27.9) and (27.4) together with the estimates (27.10)–(27.14) yield

1
5

∫
Q |u|pϕdxdt +

∫
RN u1 (x)ϕ (0,x)dx+ δ

∫
RN u0 (x)ϕ (0,x)dx

≤C
{

RN+θ−2θq +R(q+1)N+θ−4q∫
Ω (ϕ)−q/p |Δϕ |q M̃q(τ)dτdy

+RN+θ−θq +RN+θ−2q
}
,

(27.15)

where

M̃(τ) = ξ0 + ξ1

∫

RN
|∇∗u|2 dy+

σd
2dτ

∫

RN
|∇∗u|2 dy.
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Now, if 1 < p < 1+ p̃, where p̃ is as in the table, then from (27.15) we infer

lim
R→∞

[
1
5

∫

Q
|u|pϕdxdt +

∫

RN
u1 (x)ϕ (0,x)dx+ δ

∫

RN
u0 (x)ϕ (0,x)dx

]
≤ 0.

In fact, the parameter θ has been chosen, after some simple computations, as large
as possible so that the four exponents in (27.15) be nonpositive. That is,

⎧
⎪⎪⎨

⎪⎪⎩

N +θ − 2θq < 0
(q+ 1)N+θ − 4q < 0

N +θ −θq < 0
N +θ − 2q < 0.

On the other hand, the left hand side of (27.15) is equal to 1
5

∫
Q |u|p dxdt +∫

RN u1 (x)dx+ δ
∫
RN u0 (x)dx. This is a contradiction since we have assumed that∫

RN u1 (x)dx+ δ
∫
RN u0 (x)> 0. Hence the theorem is proved. ��

27.4 Necessary Conditions for Local and Global Solutions

Theorem 27.3. Let u be a local solution to (27.1) where T < +∞ and p > 1. Then,
there exist constants α and β such that

lim
|x|→∞

inf(u1(x)+ δu0(x))≤C1/5T 1−q
( α

T q +β
)
.

Proof. By the definition of a weak solution, for any ϕ ∈C∞
0 (QT ), ϕ ≥ 0 we have

∫
QT
|u|pϕdxdt +

∫
RN (u1(x)+ δu0(x))ϕ (0,x)dx

≤ ∫
QT
|u| |ϕtt |dxdt +

∫
QT
|M(t)| |u| |Δϕ |dxdt + δ

∫
QT
|u| |ϕt |dxdt

+
∫

QT
|u(s,x)|

∣
∣
∣
∫ T

s h(t− s)Δϕ(t)dt
∣
∣
∣dsdx.

(27.16)

Using the ε-Young inequality we can estimate all the terms in the right hand side of
(27.16). Indeed, writing |u| |ϕtt |= |u|ϕ1/pϕ−1/p |ϕtt | , we find for ε > 0

∫

QT

|u| |ϕtt |dtdx≤ ε
∫

QT

|u|pϕdtdx+Cε

∫

QT

(ϕ)−q/p |ϕtt |q dtdx. (27.17)

In a similar manner, we find
∫

QT

|M(t)| |u| |Δϕ |dtdx

≤ ε
∫

QT

|u|pϕdxdt +Cε

∫

QT

|M(t)|q (ϕ)−q/p |Δϕ |q dxdt, (27.18)
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δ
∫

QT

|u| |ϕt |dtdx

≤ ε
∫

QT

|u|pϕdxdt +Cεδ q
∫

QT

(ϕ)−q/p |ϕt |q dxdt (27.19)

and

∫
QT
|u(s,x)|

∣
∣
∣
∫ T

s h(t− s)Δϕ(t)dt
∣
∣
∣dsdx

≤ ε
∫

QT
|u|pϕdsdx+Cε

∫
QT

(ϕ)−q/p
∣
∣∣
∫ T

s h(t− s)Δϕ(t)dt
∣
∣∣
q

dsdx.
(27.20)

Taking ε ≤ 1/5, we deduce from (27.17)–(27.20) and (27.16) that

J :=
∫

RN
(u1(x)+ δu0(x))ϕ (0,x)dx

≤C1/5
∫

QT

(
|ϕtt |q + |M(t)|q (ϕ)−q/p |Δϕ |q

+ |ϕt |q +
∣
∣
∣
∫ T

s h(t− s)Δϕ(t)dt
∣
∣
∣
q)

(ϕ)−q/p.
(27.21)

We choose the test function

ϕ(t,x) := φ
( |x|

R

)
μ
( t

T

)
,

where φ ∈ C∞
0 (R

N), φ ≥ 0, suppφ ⊂ {
x ∈R

N : 1 < |x|< 2
}
, |Δφ | ≤ kφ , and we

take

μ
( t

T

)
:=

⎧
⎪⎨

⎪⎩

1, 0 � t � T/2

1− (t−T/2)3

(T/2)3 , T/2 � t � T

0, t � T.

.

Next, we estimate the for terms in the right hand side of (27.16). By making the
change of variables t = τT and using the assumption on ϕ , we find,

∫

QT

(ϕ)−q/p |ϕtt |q ≤ αT 1−2q
∫

RN
φ , (27.22)

∫

QT

|M(t)|q (ϕ)−q/p |Δϕ |q ≤ 3
4

MqkqR−2qT
∫

RN
φ , (27.23)

δ q
∫

QT

(ϕ)−q/p |ϕt |q ≤ βT 1−q
∫

RN
φ (27.24)

and

∫

QT

(ϕ)−q/p

∣
∣
∣
∣

∫ T

s
h(t− s)Δϕ(t)dt

∣
∣
∣
∣

q

≤CkqR−2qT 2
(∫ ∞

0
hp(t)dt

)q/p∫

RN
φ .

(27.25)
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Gathering the relations (27.21)–(27.25), we infer that

inf
|x|>R

(u1(x)+ δu0(x))
∫

RN
φ

≤C1/5

[
αT 1−2q +

3
4

MqkqR−2qT +βT1−q +CkqR−2qT 2
]∫

RN
φ . (27.26)

Taking the sup with respect to t of both sides of (27.26), then, letting R→ +∞, we
obtain

liminf
|x|→∞

(u1(x)+ δu0(x)) ≤C1/5
[
αT 1−2q +βT 1−q] . (27.27)

Hence the theorem is proved. ��
We can immediately deduce the following result

Corollary 27.4. Suppose that p > 1 and u1(x) + δu0(x) ≥ 0. If (27.1) admits a
global weak solution, then

liminf
|x|→∞

(u1(x)+ δu0(x)) = 0.

Proof. Suppose that (27.1) has a global weak solution and that

S := liminf
|x|→∞

(u1(x)+ δu0(x))> 0.

Then from (27.27), it appears that

T ≤max

{(
α+β

S
C1/5

)1/(q−1)

,

(
α+β

S
C1/5

)1/(2q−1)
}

.

This is a contradiction. ��
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Chapter 28
Study of Third-Order Three-Point Boundary
Value Problem with Dependence
on the First-Order Derivative

A. Guezane-Lakoud and L. Zenkoufi

Abstract Under certain conditions on the nonlinearity f and by using Leray–
Schauder nonlinear alternative and the Banach contraction theorem, we prove the
existence and uniqueness of nontrivial solution of the following third-order three-
point boundary value problem (BVP1):

{
u′′′+ f (t,u(t) ,u′ (t)) = 0, t ∈ (0,1)
αu′ (1) = βu(η) , u(0) = u′ (0) = 0

where β , α ∈R
∗
+, 0 < η < 1;

then we study the positivity by applying the well-known Guo–Krasnosel’skii fixed-
point theorem. The interesting point lies in the fact that the nonlinear term is allowed
to depend on the first-order derivative u′.

28.1 Introduction

The study of boundary value problems for certain linear ordinary differential
equations was initiated by Il’in and Moiseev [12]. Since then more general bound-
ary value problems for certain nonlinear ordinary differential equations been exten-
sively studied by many authors, see [7, 9–11, 13]. Recently, the study of existence of
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positive solution to third-order boundary value problems has gained much attention
and is a rapidly growing field; see [1, 3–6]. However, the approaches used in the
literature are usually topological degree theory and fixed-point theorems in cone.

By using the Leray–Schauder nonlinear alternative, the Banach contraction theo-
rem and Guo–Krasnosel’skii theorem we discuss the existence, uniqueness and pos-
itivity of solution to the third-order three-point nonhomogeneous boundary value
problem

u′′′+ f
(
t,u(t) ,u′ (t)

)
= 0, t ∈ (0,1) (28.1)

αu′ (1) = βu(η) , u(0) = u′ (0) = 0 (28.2)

Throughout this paper we make the following assumptions:
(I1) : β , α ∈ R

∗
+ , 0 < η < 1 and f ∈C((0,1)× [0;∞)× [0;∞); [0;∞)).

(I2) : We will use the classical Banach spaces, C [0,1] ,C1 [0,1] , L1 [0,1]. We also
use the Banach space X =

{
u ∈C1 [0,1]/u ∈C [0,1] , u′ ∈C [0,1]

}
, equipped with

the norm
‖u‖X = max{‖u‖∞ , ‖u′‖∞} , where ‖u‖∞ = max

t∈[0,1]
|u(t)|.

28.2 Preliminary Lemmas

In this section, we present several important preliminary lemmas.

Lemma 28.1. Let 2α �= βη2 and y ∈ L1 [0,1] , then the problem

u′′′+ y(t) = 0, 0 < t < 1 (28.3)

αu′ (1) = βu(η) , u(0) = u′ (0) = 0 (28.4)

has a unique solution

u(t) =
∫ 1

0
G(t,s)y(s)ds (28.5)

+
β t2

2α−βη2

∫ 1

0
G(η ,s)y(s)ds,

where

G(t,s) =
1
2

{
(1− s)t2, t ≤ s

(−s+ 2t− t2
)

s, s≤ t.
(28.6)

Proof. Integrating (28.3) over the interval [0, t] for t ∈ [0,1] , we have

u′ (t) = −
∫ t

0
(t− s)y(s)ds+C1t +C2

u(t) = −1
2

∫ t

0
(t− s)2 y(s)ds+

1
2

C1t2 +C2t +C3.
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(1) From u(0) = u′ (0) = 0 we get C3 =C2 = 0.
(2) From αu′ (1) = βu(η) , we deduce

−β
2

∫ η

0
(η− s)2 y(s)ds+α

∫ 1

0
(1− s)y(s)ds =

(
2α−βη2

2

)
C1

C1 =
−β

2α−βη2

∫ η

0
(η− s)2 y(s)ds+

2α
2α−βη2

∫ 1

0
(1− s)y(s)ds

and

u(t) = −1
2

∫ t

0
(t− s)2 y(s)ds

+
t2

2

( −β
2α−βη2

∫ η

0
(η− s)2 y(s)ds+

2α
2α−βη2

∫ 1

0
(1− s)y(s)ds

)
,

so

u(t) = −1
2

∫ t

0
(t− s)2 y(s)ds+

t2

2

∫ 1

0
(1− s)y(s)ds

+
β t2

2 [2α−βη2]

(
−
∫ η

0
(η− s)2 y(s)ds+η2

∫ η

0
(1− s)y(s)ds

+η2
∫ 1

η
(1− s)y(s)ds

)
.

Elementary operations give

u(t) =
∫ 1

0
G(t,s)y(s)ds

+
β t2

2α−βη2

∫ 1

0
G(η ,s)y(s) f ds,

which implies the Lemma 28.1. ��
We need some properties of functions G(t,s).

Lemma 28.2. For all (t,s) ∈ [0,1]× [0,1], we have

0≤ ∂G(t,s)
∂ t

=

{
(1− s)t, t ≤ s
(1− t)s, s≤ t

= G∗ (t,s)≤ 2G(1,s) .

Lemma 28.3. For all (t,s) ∈ [τ,1]× [0,1], we have

τ2G(1,s)≤ G(t,s)≤ G(1,s) =
1
2
(1− s)s.

Proof. For all t,s ∈ [0,1] , if s≤ t, it follows from (28.6) that
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G(t,s) =
1
2

(
2t− t2− s

)
s =

1
2

[
1− s− (

1− t2)]s

≤ 1
2
(1− s)s = G(1,s) ,

and

G(t,s) =
1
2

(
2t− t2− s

)
s

=
1
2

st2 (1− s)+
1
2
(1− t)[(t− s)+ (1− s)t]s

≥ t2G(1,s) .

If t ≤ s, it follows from (28.6) that

1
2

t2 (1− s)s≤G(t,s) =
1
2

t2 (1− s)≤ G(1,s) .

Thus

t2G(1,s)≤ G(t,s)≤ G(1,s) , ∀(t,s) ∈ [0,1]× [0,1] .

Therefore

τ2G(1,s)≤ G(t,s)≤ G(1,s) , ∀(t,s) ∈ [τ,1]× [0,1]

which implies Lemma 28.3. ��
Definition 28.4. We define an operator T by

Tu(t) =
∫ 1

0
G(t,s) f

(
s,u(s) ,u′ (s)

)
ds (28.7)

+
β t2

2α−βη2

∫ 1

0
G(η ,s) f

(
s,u(s) ,u′ (s)

)
ds.

The function u∈E is a solution of the BVP (28.1)–(28.2) if and only if Tu(t) = u(t);
(u is a fixed point of T ) .

28.3 Existence Results

Now we give some existence results for the BVP (28.1)–(28.2).

Theorem 28.5. Assume that u ∈ X , 2α �= βη2 and there exists a nonnegative func-
tion k,h ∈ L1 ([0,1] ,R+) , such that

| f (t,x,y)− f (t,u,v)| ≤ k (t) |x− u|+ h(t) |y− v| , ∀x,y,u,v ∈ R, t ∈ [0,1]

and
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∫ 1

0
G(1,s)(k (s)+ h(s))ds <

∣
∣2α−βη2

∣
∣

2(|2α−βη2|+β )
,

then the BVP (28.1)–(28.2) has a unique solution in X .

Proof. Since we have

Tu(t) =
∫ 1

0
G(t,s) f

(
s,u(s) ,u′ (s)

)
ds

+
β t2

2α−βη2

∫ 1

0
G(η ,s) f

(
s,u(s) ,u′ (s)

)
ds,

we shall prove that T is a contraction. Let u,v ∈ X . Then,

|Tu(t)−Tv(t)| ≤
∫ 1

0
G(1,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)− f
(
s,v(s) ,v′ (s)

)∣∣ds

+
β

|2α−βη2|
∫ 1

0
G(1,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)− f
(
s,v(s) ,v′ (s)

)∣∣ .

So, we can obtain

|Tu(t)−Tv(t)| ≤
(

1+
β

|2α−βη2|
)
×

∫ 1

0
G(1,s)

(
k (s) |u(s)− v(s)|+ h(s)

∣
∣u′ (s)− v′ (s)

∣
∣)ds,

and so

|Tu(t)−Tv(t)| ≤
(

1+
β

|2α−βη2|
)
×

∫ 1

0
G(1,s) (k (s)+ h(s))ds max

0≤t≤1

{‖u− v‖∞ ,
∥
∥u′ − v′

∥
∥
∞
}

≤ ‖u− v‖X .

We have

T ′u(t) =
∫ 1

0
G∗ (t,s) f

(
s,u(s) ,u′ (s)

)
ds

+
2β t

2α−βη2

∫ 1

0
G(η ,s) f

(
s,u(s) ,u′ (s)

)
ds.

Similarly, we have

∣
∣T ′u(t)−T ′v(t)

∣
∣ ≤ 2

(
1+

β
|2α−βη2|

)
×

max
{‖u− v‖∞ ,

∥
∥u′ − v′

∥
∥
∞
}∫ 1

0
G(1,s)(k (s)+ h(s))ds

≤ ‖u− v‖X .
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From this we get

max
{‖Tu−Tv‖∞ ,

∥∥T ′u−T ′v
∥∥
∞
}≤ ‖u− v‖X .

Obviously, we have,
‖Tu−Tv‖X ≤ ‖u− v‖X .

Then T is a contraction, so it has a unique fixed point which is the unique solution
of BVP (28.1)–(28.2). ��

We will employ the following Leray–Schauder nonlinear alternative [2].

Lemma 28.6. Let F be Banach space and Ω be a bounded open subset of F, 0∈Ω .
T : Ω → F be a completely continuous operator. Then, either there exists x ∈ ∂Ω ,
λ > 1 such that T (x) = λx or there exists a fixed point x∗ ∈Ω .

Theorem 28.7. We assume that f (t,0,0) �= 0,2α �=βη2 and there exist nonnegative
functions k, l,h ∈ L1 [0,1] such that

| f (t,u,v)| ≤ k (t) |u|+ l (t) |v|+ h(t) , (t,x) ∈ [0,1]×R,

2

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s) (k (s)+ l (s))ds < 1.

Then the BVP (28.1)–(28.2) has at least one nontrivial solution u∗ ∈ X.

Proof. Setting

F = 2

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s) (k (s)+ l (s))ds,

G = 2

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)h(s)ds,

we prove that T is completely continuous operator on Ω .

1) T is continuous. Let 2α �= βη2 and (uk)k∈N a convergent sequence to u in X .
We can get

|Tuk (t)−Tu(t)| ≤
(

1+
β

|2α−βη2|
)
×

∫ 1

0
G(1,s)

∣∣ f
(
s,uk (s) ,u

′
k (s)

)− f
(
s,u(s) ,u′ (s)

)∣∣ds

≤
(

1+
β

|2α−βη2|
)
×

∫ 1

0
G(1,s)

(
k (s) |uk (s)− u(s)|+ h(s)

∣∣u′k (s)− u′ (s)
∣∣)ds,

and so



28 Study of Third-Order Three-Point Boundary Value Problem 427

|Tuk (t)−Tu(t)| ≤ ‖uk− u‖X

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s) (k (s)+ h(s))ds.

Similarly, we have

∣∣T ′uk (t)−T ′u(t)
∣∣≤ 2‖uk− u‖X

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s) (k (s)+ h(s))ds.

Then,
‖Tuk−Tu‖X ≤ ‖uk− u‖X ,

which implies that ‖Tu(t)−Tv(t)‖ −→
n→∞

0.

2) Let Br = {u ∈ X : ‖u‖X ≤ r} a bounded subset. We will prove that T (Ω ∩Br) is
relatively compact.

(i) T (Ω ∩Br) is uniformly bounded. For some u ∈Ω ∩Br, we have

|Tu(t)| ≤
(

1+
β

|2α−βη2|
)∫ 1

0
G(1,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)∣∣ds

and

∣
∣T ′u(t)

∣
∣≤ 2

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)∣∣ds.

From the above inequalities we have

‖Tu‖X ≤ F ‖u‖X +G≤ Fr+G.

Then, T (Ω ∩Br) is uniformly bounded.
(ii) T (Ω ∩Br) is equicontinuous. ∀ t1, t2 ∈ [0,1] ; u ∈Ω , we have

|Tu(t1)−Tu(t2)| =
∣
∣
∣
∣
∣

∫ 1

0
(G(t1,s)−G(t2,s)) f

(
s,u(s) ,u′ (s)

)
ds

+
β
(
t2
1 − t2

2

)

|2α−βη2|
∫ 1

0
G∗ (ηi,s) f

(
s,u(s) ,u′ (s)

)
ds

∣
∣∣
∣
∣
.

|Tu(t1)−Tu(t2)| ≤ L

[∫ t1

0
|G(t1,s)−G(t2,s)|ds+

∫ t2

t1
|G(t1,s)−G(t2,s)|ds

+

∫ 1

t2
|G(t1,s)−G(t2,s)|ds

]

+
Lβ

∣
∣t2

1 − t2
2

∣
∣

|2α−βη2|
∫ 1

0
G∗ (ηi,s)ds,

where L = max
0<s<1

| f (s,u(s) ,u′ (s))| . Hence,



428 A. Guezane-Lakoud and L. Zenkoufi

|Tu(t1)−Tu(t2)| ≤ L(t2− t1)

[∫ t1

0
|−2s+ s(t1 + t2)|ds+

∫ 1

t2
|(1− s)(t1 + t2)|ds

+
(t1 + t2)β
|2α−βη2|

∫ 1

0
G∗ (ηi,s)ds

]

+L
∫ t2

t1

∣∣(t2
1 − st2 + s2)+

(
t2
1 − t2

2

)
s
∣∣ds.

Then

|Tu(t1)−Tu(t2)| ≤ L(t2− t1)

[
1− t2

2 + t1 (t1− t2 + 3)

+
(t1 + t2)β
|2α−βη2|

∫ 1

0
G∗ (ηi,s)ds

]

Similarly we have

∣
∣T ′u(t1)−T ′u(t2)

∣
∣ =

∣∣
∣
∣

∫ 1

0
(G∗ (t1,s)−G∗ (t2,s)) f

(
s,u(s) ,u′ (s)

)
ds

+ 2β (t1−t2)

|2α−βη2|
∫ 1

0 G∗ (ηi,s) f (s,u(s) ,u′ (s))ds

∣
∣
∣
∣ ,

and so

∣
∣T ′u(t1)−T ′u(t2)

∣
∣ ≤ L(t2− t1)

[∫ t1

0
sds+

∫ 1

t2
|s− 1|ds

+
2β

|2α−βη2|
∫ 1

0
G∗ (ηi,s)ds

]

+L
∫ t2

t1
|(t1− s)+ (t2− t1) s|ds.

Then

∣
∣T ′u(t1)−T ′u(t2)

∣
∣ ≤ L(t2− t1)

[
1+(t1− t2)+

1
2
(3t2− 5t1)

+
2β

|2α−βη2|
∫ 1

0
G∗ (ηi,s)ds

]
,

and |Tu(t1)−Tu(t2)| −→
t1→t2

0 as |T ′u(t1)−T ′u(t2)| −→
t1→t2

0. Consequently

T (Ω ∩Br) is equicontinuous. From Arzela–Ascoli theorem, we deduce that
T is a completely continuous operator. Remarking that F < 1. f (t,0,0) �= 0 and
G > 0, then there exists an interval [σ ,τ]⊂ [0,1] such that min

σ≤t≤r
| f (t,0,0)|> 0

and h(t)≥ | f (t,0,0)| , t ∈ [0,1] .

Let m = G(1−F)−1 , Ω = {u ∈ X : ||u||< m} . We assume that u ∈ ∂Ω , λ > 1
such that Tu = λu, then
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λm = λ ‖u‖= ‖Tu‖X = max
{‖Tu‖∞ ,

∥
∥T ′u

∥
∥
∞
}

.

We have

|Tu(t)| ≤ sup
0≤t≤1

∫ 1

0
G(t,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)∣∣ds

+ sup
0≤t≤1

β t2

|2α−βη2|
∫ 1

0
G(η ,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)∣∣ds.

≤
(

1+
β

|2α−βη2|
)∫ 1

0
G(1,s)

(
k (s) |u(s)|+ l (s)

∣
∣u′ (s)

∣
∣+ h(s)

)
ds.

We also have

|Tu(t)| ≤
(

1+
β

|2α−βη2|
)

max
{‖u‖∞ ,

∥∥u′
∥∥
∞
}∫ 1

0
G(1,s)(k (s)+ l (s))ds.

+

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)h(s)ds

≤ ‖u‖X

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s) (k (s)+ l (s))ds

+

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)h(s)ds

and

∣
∣T ′u(t)

∣
∣ ≤ sup

0≤t≤1

∫ 1

0
G∗ (t,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)∣∣ds

+ sup
0≤t≤1

2β t
|2α−βη2|

∫ 1

0
G(η ,s)

∣
∣ f
(
s,u(s) ,u′ (s)

)∣∣ds.

∣
∣T ′u(t)

∣
∣ ≤ 2‖u‖X

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s) (k (s)+ l (s))ds

+2

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)h(s)ds.

This shows that

λm = ‖Tu‖X ≤ F ||u||X +G = Fm+G.

From this we get

λ ≤ F +
G
m

= F +
G

G(1−F)−1 = F +(1−F) = 1,

which contradicts λ > 1. By applying Lemma 28.6, T has a fixed-point u∗ ∈ Ω
and then the BVP (1.1)–(1.2) has a nontrivial solution u∗ ∈ X . ��
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28.4 Positive Results

In this section, we discuss the existence of positive solution of BVP (28.1)–(28.2).
We make the following additional assumptions:

(Q1) f (t,u,v) = a(t) f1(u,v) where a ∈C((0,1),R+) and f1 ∈C(R+×R,R+).
(Q2)

∫ τ2
τ1

G(1,s)a(s) f1 (u(s) ,u′ (s))ds > 0, 1
2 ≤ τ1 ≤ s, t ≤ τ2 ≤ 1

We need some properties of functions G(t,s) .

Lemma 28.8. For all 0≤ s, t ≤ 1, we have

G∗ (t,s) ≤ 2G(1,s) ,

G(t,s) ≤ G(1,s) .

Lemma 28.9. For all 1
2 ≤ τ1 ≤ s, t ≤ τ2 ≤ 1, we have

τ2
1 G(1,s) ≤ G(t,s) ,

2(1− τ2)G(1,s) ≤ G∗ (t,s) .

Proof. It is easy to see that if t ≤ s, then G∗ (t,s) = (1− s)t = (1− s)s t
s ≥

(1− s)sτ1 ≥ 2(1− τ2)G(1,s) . If s ≤ t, then −t ≤ −s, and hence G∗ (t,s) =
(1− t)s = 1−t

1−s (1− s)s≥ 1
s (1− τ2)(1− s)s≥ 2(1− τ2)G(1,s) . ��

Lemma 28.10. Let u∈ X and assume that 2α > βη2, then the unique solution u of
the BVP (28.1)–(28.2) is nonnegative and satisfies

min
t∈[τ1,τ2]

(
u(t)+ u′ (t)

)≥ γ ||u||X ,

where γ = min
t∈[τ1,τ2]

(
τ2

1 ,(1− τ2)
) ∫ τ2

τ1 G(1,s)a(s) f1(u(s),u′(s))ds
(

1+ β
2α−βη2

)
w
∫ 1

0 G(1,s)a(s) f1(u(s),u′(s))ds
.

Proof. Let u ∈ X , it is obvious that u(t) is nonnegative. For a t ∈ [0,1] , by (28.5)
and Lemma 28.8, it follows that

u(t) =
∫ 1

0
G(t,s) f

(
s,u(s) ,u′ (s)

)
ds

+
β t2

2α−βη2

∫ 1

0
G(η ,s)a(s) f1

(
u(s) ,u′ (s)

)
ds.

Then

u(t)≤
(

1+
β

2α−βη2

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds,

and so

‖u‖∞ ≤
(

1+
β

2α−βη2

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds.
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On the other hand, (28.5) and Lemma 28.9 imply that, for any t ∈ [τ1,τ2] , we
have

u(t)≥ τ2
1

∫ τ2

τ1

G(1,s)a(s) f1
(
u(s) ,u′ (s)

)
ds,

u(t)≥ τ2
1

∫ τ2
τ1

G(1,s)a(s) f1 (u(s) ,u′ (s))ds
(

1+ β
2α−βη2

)∫ 1
0 G(1,s)a(s) f1 (u(s) ,u′ (s))ds

‖u‖∞ .

Therefore, we have
min

t∈[τ1,τ2]
u(t)≥ γ1 ‖u‖∞ ,

where γ1 =
τ2

1
∫ τ2
τ1 G(1,s)a(s) f1(u(s),u′(s))ds

(
1+ β

2α−βη2

)
∫ 1

0 G(1,s)a(s) f1(u(s),u′(s))ds
. Similarly, we get

u′ (t) =
∫ 1

0
G∗ (t,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

+
2β t

2α−βη2

∫ 1

0
G(η ,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

u′ (t) ≤
∫ 1

0
2G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

+
2β

2α−βη2

∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds,

and hence

∥
∥u′

∥
∥
∞ ≤ 2

(
1+

β
2α−βη2

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds.

On the other hand, for 1
2 ≤ τ1 ≤ s, t ≤ τ2 < 1

u′ (t) =
∫ 1

0
G∗ (t,s) f

(
s,x(s) ,x′ (s)

)
ds

+
2β t

2α−βη2

∫ 1

0
G(η ,s) f

(
s,x(s) ,x′ (s)

)
ds,

which implies that

u′ (t) ≥
∫ τ2

τ1

G∗ (t,s)a(s) f1
(
u(s) ,u′ (s)

)
ds

≥
∫ τ2

τ1

2(1− τ2)G(1,s)a(s) f1
(
u(s) ,u′ (s)

)
ds

≥ (1− τ2)
∫ τ2
τ1

G(1,s)a(s) f1 (u(s) ,u′ (s))ds
(

1+ β
2α−βη2

)∫ 1
0 G(1,s)a(s) f1 (u(s) ,u′ (s))ds

∥
∥u′

∥
∥
∞ .
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Therefore,
min

t∈[τ1,τ2]
u′ (t)≥ γ2

∣∣∣∣u′
∣∣∣∣
∞ ,

where γ2 =
∫ τ2
τ1 (1−τ2)G(1,s)a(s) f1(u(s),u′(s))ds

(
1+ β

2α−βη2

)
∫ 1

0 G(1,s)a(s) f1(u(s),u′(s))ds
. Finally,

min
t∈[τ1,τ2]

(
u(t)+ u′ (t)

)≥ γ ||u||X

where γ = min
t∈[τ1,τ2]

(γ1,γ2) . The proof is complete. ��

Definition 28.11. We define the cone K by

X+ = {u ∈ X : u(t)≥ 0, 0 < τ1 ≤ t ≤ τ2 < 1}

K =

{
u ∈ X+ : min

t∈[τ1,τ2]

(
u(t)+ u′ (t)

)≥ γ ||u||X
}

K is a nonempty closed and convex subset of X .

Lemma 28.12. The operator defined in (28.7) is completely continuous and satisfies
T (K)⊆ K.

Proof. Now let us prove that T is completely continuous.

1) T is continuous. Let (uk)k∈N a convergent sequence to u in X . From f1 ∈
C(R+×R,R+) : ∀A > 0 ∃η > 0 such that

∣
∣(uk (t) ,u′k (t)

)− (u(t) ,u′ (t))
∣
∣ < η∣

∣ f1
(
uk (s) ,u′k (s)

)− f1 (u(s) ,u′ (s))
∣
∣< A, we have

|Tuk (t)−Tu(t)| ≤
(

1+
β

|2α−βη2|
)
×

∫ 1

0
G(1,s)a(s) max

0<s<1

∣
∣ f1

(
uk (s) ,u

′
k (s)

)− f1
(
u(s) ,u′ (s)

)∣∣ds.

So,

|Tuk (t)−Tu(t)| ≤
(

1+
β

|2α−βη2|
)

A
∫ 1

0
G(1,s)a(s)ds;

A = max
0<s<1

∣
∣ f1

(
uk (s) ,u

′
k (s)

)− f1
(
u(s) ,u′ (s)

)∣∣ .

Similarly, we have

∣
∣T ′uk (t)−T ′u(t)

∣
∣≤ 2A

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)a(s)ds.

Then, ‖Tuk (t)−Tu(t)‖ −→
k→∞

0.
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2) Let Br = {u ∈ X : ‖u‖X ≤ r} a bounded subset and Ω a bounded open subset
of a Banach space X , such that T : Ω → X . We will prove that T (Ω ∩Br) is
relatively compact :

(i) T (Ω ∩Br) is uniformly bounded. For some u ∈ Ω ∩Br, since f1 and a are
continuous, there exists a positive constant L such L = max

t∈[0,1]
|a(t) f1 (u(t) ,

u′ (t))| then,

|Tu(t)| ≤ L

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)a(s)ds

and
∣
∣T ′u(t)

∣
∣≤ 2L

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)a(s)ds.

From the above inequalities we deduce

‖Tu‖X ≤ 3L

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)a(s)ds.

Then, T (Ω ∩Br) is uniformly bounded.
(ii) T (Ω ∩Br) is equicontinuous. Indeed, ∀ t1, t2 ∈ [0,1] , u ∈ Br, we have

|Tu(t1)−Tu(t2)| =
∣
∣∣
∣
∣

∫ 1

0
(G(t1,s)−G(t2,s))a(s) f1

(
u(s) ,u′ (s)

)
ds

+
β
(
t2
1 − t2

2

)

|2α−βη2|
∫ 1

0
G∗ (ηi,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

∣
∣
∣∣
∣
,

which gives that

|Tu(t1)−Tu(t2)| ≤ L

[∫ t1

0
|G(t1,s)−G(t2,s)|ds+

∫ t2

t1
|G(t1,s)−G(t2,s)|ds

+

∫ 1

t2
|G(t1,s)−G(t2,s)|ds

]

+
Lβ

∣
∣t2

1−t2
2

∣
∣

|2α−βη2|
∫ 1

0
G∗ (ηi,s)ds,

and so

|Tu(t1)−Tu(t2)| ≤ L(t2− t1)

[∫ t1

0
|−2s+ s(t1 + t2)|ds

+
∫ 1

t2
|(1− s)(t1 + t2)|ds

+
β (t1 + t2)
|2α−βη2|

∫ 1

0
G∗ (ηi,s)ds

]

+L
∫ t2

t1

∣
∣(t2

1 − st2 + s2)+
(
t2
1 − t2

2

)
s
∣
∣ds.
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Thus

|Tu(t1)−Tu(t2)| ≤ L(t2− t1)

[
1− t2

2 + t1 (t1− t2 + 3)

+
β (t1 + t2)
|2α−βη2|

∫ 1

0
G∗ (ηi,s)ds

]
.

Similarly, we have

∣
∣T ′u(t1)−T ′u(t2)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
(G∗ (t1,s)−G∗ (t2,s)) f

(
s,u(s) ,u′ (s)

)
ds

+ 2β (t1−t2)

|2α−βη2|
∫ 1

0 G∗ (ηi,s) f (s,u(s) ,u′ (s))ds

∣
∣∣
∣ ,

and

∣
∣T ′u(t1)−T ′u(t2)

∣
∣ ≤ L(t2− t1)

[∫ t1

0
sds+

∫ 1

t2
|s− 1|ds

+
2β

|2α−βη2|
∫ 1

0
G∗ (ηi,s)ds

]

+L
∫ t2

t1
|(t1− s)+ (t2− t1) s|ds,

which yield

∣
∣T ′u(t1)−T ′u(t2)

∣
∣ ≤ L(t2− t1)

[
1+(t1− t2)+

1
2
(3t2− 5t1)

+
2β

|2α−βη2|
∫ 1

0
G∗ (ηi,s)ds

]
.

Then |Tu(t1)−Tu(t2)| → 0 and |T ′u(t1)−T ′u(t2)| → 0, as t1 → t2; conse-
quently T (Ω ∩Br) is equicontinuous. From Arzela–Ascoli theorem, we deduce
that T is completely continuous mapping. Now let us prove that T K ⊂K. In fact
for any u ∈ K, ∀ t ∈ [0,1] we have

‖Tu‖ ≤
(

1+
β

|2α−βη2|
)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds.

Lemma 28.9 implies that ∀ t ∈ [τ1,τ2] we have

Tu(t) ≥
∫ 1

0
G(t,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

≥ τ2
1

∫ τ2

τ1

G(1,s)a(s) f1
(
u(s) ,u′ (s)

)
ds.
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Consequently

Tu(t)≥ τ2
1

∫ τ2
τ1

G(1,s)a(s) f1 (u(s) ,u′ (s))ds
(

1+ β
|2α−βη2|

)
∫ 1

0 G(1,s)a(s) f1 (u(s) ,u′ (s))ds
‖Tu‖∞ .

Similarly, we have

∥∥T ′u
∥∥
∞ ≤ 2

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds.

Therefore

T ′u(t) ≥
∫ 1

0
G∗ (t,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

≥
∫ τ2

τ1

G∗ (t,s)a(s) f1
(
u(s) ,u′ (s)

)
ds

≥
∫ τ2

τ1

2(1− τ2)G(1,s)a(s) f1
(
u(s) ,u′ (s)

)
ds

and

T ′u(t)≥ (1− τ2)
∫ τ2
τ1

G(1,s)a(s) f1 (u(s) ,u′ (s))ds
(

1+ β
|2α−βη2|

)
∫ 1

0 G(1,s)a(s) f1 (u(s) ,u′ (s))ds

∥
∥T ′u

∥
∥
∞ .

Consequently,
min

t∈[τ1,τ2]

(
Tu(t)+T ′u(t)

)≥ γ ‖Tu‖X .

Then, it is obvious that ∀ u ∈ K =⇒ T K ⊂ K .

��
To establish the existence of positive solutions of BVP (28.1)–(28.2), we will

employ the following Guo–Krasnosel’skii fixed-point theorem. [8]

Theorem 28.13. Let E be a Banach space, and let K ⊂ E,be a cone. Assume Ω1,Ω2

are open subsets of E with 0 ∈Ω1, Ω1 ⊂Ω2, and let

A : K∩ (Ω2\Ω1
)→ K

be a completely continuous operator. In addition suppose either:

(i) ||A u|| ≤ ||u|| , u ∈ K∩∂Ω1, and ||A u|| ≥ ||u|| , u ∈ K ∩∂Ω2; or
(ii) ||A u|| ≥ ||u|| , u ∈ K∩∂Ω1, and ||A u|| ≤ ||u|| , u ∈ K ∩∂Ω2

holds. Then A has a fixed point in K∩ (Ω2\Ω1
)
.
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The main result of this section is the following:

Theorem 28.14. Let (I1) and (I2) hold, 2α > βη2 and assume that

f0 = lim
(|u|+|v|)→0

f1 (u,v)
|u|+ |v| , f∞ = lim

(|u|+|v|)→∞

f1 (u,v)
|u|+ |v| .

Then the problem (BVP1) has at least one positive solution in the case:

(i) f0 = 0 and f∞ = ∞ (superlinear) or
(ii) f0 = ∞ and f∞ = 0 (sublinear)

Proof. We shall prove that the problem BVP (28.1)–(28.2) has at least one positive
solution in both the superlinear and sublinear cases. For this we use Theorem 28.13.
We prove the superlinear case. Since f0 = 0, then for any ε > 0, ∃δ1 > 0, such that
f1 (u,v)≤ ε (|u|+ |v|) , for |u|+ |v|< δ1. Let Ω1 be an open set in X defined by

Ω1 = {y ∈ X/ ||y||< δ1} .

Then, for any u ∈ K∩∂Ω1, it yields

Tu(t)≤
(

1+
β

2α−βη2

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds.

Therefore

‖Tu(t)‖∞ ≤ ε ‖u‖X

(
1+

β
2α−βη2

)∫ 1

0
G(1,s)a(s)ds

and

T ′u(t)≤ 2

(
1+

β
2α−βη2

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds.

So
∥
∥T ′u(t)

∥
∥
∞ ≤ 2ε ‖u‖X

(
1+

β
2α−βη2

)∫ 1

0
G(1,s)a(s)ds.

If we choose ε =
[
2
(

1+ β
2α−βη2

)∫ 1
0 G(1,s)a(s)ds

]−1
, then it yields

‖Tu‖ ≤ ‖u‖ , ∀u ∈ K∩∂Ω1.

Now from f∞ = ∞, then ∀M > 0, ∃H > 0, such that f1 (u,v) ≥ M (|u|+ |v|)
for |u|+ |v| ≥ H. Let H1 = max

{
2δ1,

H
γ

}
. Denote by Ω2 the open set Ω2 =

{y ∈ X/‖y‖< H1}. If u ∈ K ∩∂Ω2, then

min
t∈[τ1,τ2]

{
u(t) ,u′ (t)

}≥ γ ‖u‖X = γH1 ≥ H.
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Let u ∈ K∩∂Ω2, then

Tu(t) ≥
τ2

1
∫ τ2
τ1 G(1,s)a(s) f1(u(s),u′(s))ds

(
1+ β

2α−βη2

)
∫ 1

0 G(1,s)a(s) f1(u(s),u′(s))ds
×

(
1+

β
2α−βη2

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

≥ Mγ
(

1+
β

2α−βη2

)∫ 1

0
G(1,s)a(s)ds‖u‖X

and

T ′u(t) ≥
(1−τ2)

∫ τ2
τ1 G(1,s)a(s) f1(u(s),u′(s))ds

(
1+ β

2α−βη2

)
∫ 1

0 G(1,s)a(s) f1(u(s),u′(s))ds
×

(
1+

β
2α−βη2

)∫ 1

0
G(1,s)a(s) f1

(
u(s) ,u′ (s)

)
ds

T ′u(t) ≥ Mγ
(

1+
β

2α−βη2

)∫ 1

0
G(1,s)a(s)ds‖u‖X .

Choosing M =
[
γ
(

1+ β
2α−βη2

)∫ 1
0 G(1,s)a(s)ds

]−1
, we get ‖Tu‖X ≥‖u‖X , ∀u∈

K ∩ ∂Ω . By the first part of Theorem 28.13, T has at least one fixed point in K ∩(
Ω̄2�Ω1

)
such that H ≤ ||y|| ≤ H1. This completes the superlinear case of the

Theorem 28.14.
Case II. Now we assume that f0 =∞ and f∞ = 0 (sublinear case). Proceeding as

above and by the second part of Theorem 28.13, we proof the sublinear case. This
achieves the proof of Theorem 28.14. ��

28.5 Examples

Example 28.15. Consider the following boundary value problem:
{

u′′′+ tu+ t2u′ = 0, 0 < t < 1
u(0) = u′ (0) = 0, αu′ (1) = βu(η) . (28.8)

Set

α =
1
2
, β =

1
3
, η =

1
4
,

and
f (t,u,v) = tu+ t2v

One can choose {
k (t) = t
h(t) = t2 , t ∈ [0,1] ,
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where k, l ∈ L1 [0,1] are nonnegative functions, and

| f (t,x,y)− f (t,u,v)| ≤ t |x− u|+ t2 |y− v| ,
≤ k (t) |x− u|+ h(t) |y− v| ,

and ∫ 1

0
G(1,s)(k (s)+ h(s))ds <

∣
∣2α−βη2

∣
∣

2(|2α−βη2|+β )
.

Hence, by Theorem 28.5, the boundary value problem (28.8) has a unique solution
in X .

Now, if we estimate f as

| f (t,u,v)| ≤ t |u|+ t2 |v| ,
≤ k (t) |u|+ l (t) |v|+ h(t) ,

then one can choose ⎧
⎨

⎩

k (t) = 2
3 t

l (t) = (t+1)
5

h(t) = 0
, t ∈ [0,1] ,

and

2

(
1+

β
|2α−βη2|

)∫ 1

0
G(1,s)(k (t)+ l (t))ds < 1,

where k, l and h ∈ L1 [0,1] are nonnegative functions. Hence, by Theorem 28.7, the
boundary value problem (28.8) has at least one nontrivial solution, u∗ ∈ X .

Example 28.16. Consider the following boundary value problem:

{
u′′′+ t2u2 + t2 (u′)2 = 0, 0 < t < 1

u(0) = u′ (0) = 0, αu′ (1) = βu(η) ,
(28.9)

where

f (t,u,v) = t2
(

u2 +
1
7

v2
)

= a(t) f1 (u,v) ,

where a(t) = t2 ∈C ((0,1) ,R+) , f1 (u,v) ∈C (R+×R,R+) . If we put u = r cosϕ
and v = r sinϕ , when (|u|+ |v|)→ 0 =⇒ r→ 0 and when (|u|+ |v|)→ ∞=⇒ r→
∞, then

f0 = lim
(|u|+|v|)→0

f1 (u,v)
|u|+ |v| = 0,

f∞ = lim
(|u|+|v|)→0

f1 (u,v)
|u|+ |v| = ∞.

By Theorem 28.14 (i) , the BVP (28.9) has at least one positive solution.
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Chapter 29
Reverse and Forward Fractional Integral
Inequalities

George A. Anastassiou and Razvan A. Mezei

Abstract Here we present reverse Lp fractional integral inequalities for left and right
Riemann-Liouville, generalized Riemann-Liouville, Hadamard, Erdelyi-Kober and
multivariate Riemann-Liouville fractional integrals. Then we derive reverse Lp frac-
tional inequalities regarding the left Riemann-Liouville, the left and right Caputo
and the left and right Canavati type fractional derivatives. We finish the article with
general forward fractional integral inequalities regarding Erdelyi-Kober and multi-
variate Riemann-Liouville fractional integrals by involving convexity.

29.1 Introduction

We start with some facts about fractional integrals needed in the sequel; for more
details, see for instance [1, 11].

Let a < b, a,b ∈ R. By CN ([a,b]), we denote the space of all functions on [a,b]
which have continuous derivatives up to order N, and AC ([a,b]) is the space of
all absolutely continuous functions on [a,b]. By ACN ([a,b]), we denote the space
of all functions g with g(N−1) ∈ AC ([a,b]). For any α ∈ R, we denote by [α] the
integral part of α (the integer k satisfying k≤ α < k+1), and �α� is the ceiling of α
(min{n∈N, n≥α}). By L1 (a,b), we denote the space of all functions integrable on
the interval (a,b), and by L∞ (a,b) the set of all functions measurable and essentially
bounded on (a,b). Clearly, L∞ (a,b)⊂ L1 (a,b) .
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We start with the definition of the Riemann–Liouville fractional integrals, see
[14]. Let [a,b], (−∞ < a < b < ∞) be a finite interval on the real axis R. The
Riemann–Liouville fractional integrals Iαa+ f and Iαb− f of order α > 0 are defined by

(
Iαa+ f

)
(x) =

1
Γ (α)

∫ x

a
f (t)(x− t)α−1 dt, (x > a), (29.1)

(
Iαb− f

)
(x) =

1
Γ (α)

∫ b

x
f (t)(t− x)α−1 dt, (x < b), (29.2)

respectively. Here Γ (α) is the gamma function. These integrals are called the left-
sided and the right-sided fractional integrals. We mention some properties of the
operators Iαa+ f and Iαb− f of order α > 0; see also [16]. The first result yields that
the fractional integral operators Iαa+ f and Iαb− f are bounded in Lp (a,b), 1≤ p ≤ ∞,
that is,

∥
∥Iαa+ f

∥
∥

p ≤ K ‖ f‖p ,
∥
∥Iαb− f

∥
∥

p ≤ K ‖ f‖p , (29.3)

where

K =
(b− a)α

αΓ (α)
. (29.4)

Inequality (29.3), that is, the result involving the left-sided fractional integral, was
proved by H. G. Hardy in one of his first papers; see [12].

In this article, we prove reverse and forward Hardy-type fractional Inequalities
and we are motivated by [5, 6, 12, 13].

29.2 Main Results

We present our first result.

Theorem 29.1. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1;αi > 0, i = 1, . . . ,m. Let

fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable

functions, so that

∥∥
∥
∥

m
∏
i=1

(
Iαi
a+ fi

)
∥∥
∥
∥

p
,

m
∏
i=1
‖ fi‖q are finite. Then

∥∥
∥
∥
∥

m

∏
i=1

(
Iαi
a+ fi

)
∥∥
∥
∥
∥

p

≥ (b− a)

m
∑

i=1
αi+m

(
1
p−1

)
+ 1

p

[(
p

m
∑

i=1
αi +m(1− p)+ 1

) 1
p
(

m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖q

)

. (29.5)

Proof. By (29.1) we have
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(
Iαi
a+ fi

)
(x) =

1
Γ (αi)

∫ x

a
(x− t)αi−1 fi (t)dt, (29.6)

x > a, i = 1, . . . ,m. We have that

∣
∣(Iαi

a+ fi
)
(x)

∣
∣=

1
Γ (αi)

∫ x

a
(x− t)αi−1 | fi (t)|dt, (29.7)

x > a, i = 1, . . . ,m. By reverse Hölder’s inequality we get

∣∣(Iαi
a+ fi

)
(x)

∣∣≥ 1
Γ (αi)

(∫ x

a
(x− t)p(αi−1) dt

) 1
p
(∫ x

a
| fi (t)|q dt

) 1
q

≥ 1
Γ (αi)

(x− a)(αi−1)+ 1
p

(p(αi− 1)+ 1)
1
p

(∫ b

a
| fi (t)|q dt

) 1
q

, (29.8)

x > a, i = 1, . . . ,m. Therefore

m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣p ≥ 1

(
m
∏
i=1

Γ (αi)

)p
(x− a)

p
m
∑

i=1
αi+m(1−p)

m
∏
i=1

(p(αi− 1)+ 1)

(
m

∏
i=1

∫ b

a
| fi (t)|q dt

) p
q

,

(29.9)
x ∈ (a,b). Consequently we get

∫ b

a

(
m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣p

)

dx≥

⎛

⎜
⎜
⎝

1
m
∏
i=1

(Γ (αi)
p (p(αi− 1)+ 1))

⎞

⎟
⎟
⎠

·
(∫ b

a
(x− a)

p
m
∑

i=1
αi+m(1−p)

dx

)(
m

∏
i=1

∫ b

a
| fi (t)|q dt

) p
q

(29.10)

=

(b− a)
p

m
∑

i=1
αi+m(1−p)+1

(
m
∏
i=1

∫ b
a | fi (t)|q dt

) p
q

[(
p

m
∑

i=1
αi +m(1− p)+ 1

)(
m
∏
i=1

(Γ (αi)
p (p(αi− 1)+ 1))

)] , (29.11)

proving the claim. ��
We give also the following general variant in:

Theorem 29.2. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1,r > 0;αi > 0, i = 1, . . . ,m.

Let fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measur-

able functions, so that

∥∥
∥
∥

m
∏
i=1

(
Iαi
a+ fi

)
∥∥
∥
∥

r
,

m
∏
i=1
‖ fi‖q are finite. Then
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∥
∥
∥
∥
∥

m

∏
i=1

(
Iαi
a+ fi

)
∥
∥
∥
∥
∥

r

≥ (b− a)

m
∑

i=1
αi−m+m

p +
1
r

[(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

) 1
r
(

m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖q

)

. (29.12)

Proof. Using r > 0 and (29.8) we get

∣
∣(Iαi

a+ fi
)
(x)

∣
∣r ≥ 1

Γ (αi)
r
(x− a)

r
(
(αi−1)+ 1

p

)

(p(αi− 1)+ 1)
r
p

(∫ b

a
| fi (t)|q dt

) r
q

, (29.13)

and

m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣r ≥ 1

m
∏
i=1

Γ (αi)
r

(x− a)
r

(
m
∑

i=1
αi−m+m

p

)

(
m
∏
i=1

(p(αi− 1)+ 1)

) r
p

(
m

∏
i=1

(∫ b

a
| fi (t)|q dt

) 1
q
)r

.

(29.14)
Consequently

∫ b

a

(
m

∏
i=1

∣
∣(Iαi

a+ fi
)
(x)

∣
∣r
)

dx≥

⎛

⎝∫ b
a (x− a)

r

(
m
∑

i=1
αi−m+m

p

)

dx

⎞

⎠

(
m
∏
i=1

Γ (αi)
r
)(

m
∏
i=1

(p(αi− 1)+ 1)

) r
p

·
(

m

∏
i=1

(∫ b

a
| fi (t)|q dt

) 1
q
)r

(29.15)

=
(b− a)

r

(
m
∑

i=1
αi−m+m

p

)
+1

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

)(
m
∏
i=1

Γ (αi) (p(αi− 1)+ 1)
1
p
)r , (29.16)

·
(

m

∏
i=1

(∫ b

a
| fi (t)|q dt

) 1
q
)r

.

The claim is proved. ��
We continue with

Theorem 29.3. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1;αi > 0, i = 1, . . . ,m. Let

fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable

functions, so that

∥
∥
∥
∥

m
∏
i=1

(
Iαi
b− fi

)
∥
∥
∥
∥

p
,

m
∏
i=1
‖ fi‖q are finite. Then
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∥
∥
∥
∥
∥

m

∏
i=1

(
Iαi
b− fi

)
∥
∥
∥
∥
∥

p

≥ (b− a)

m
∑

i=1
αi+m

(
1
p−1

)
+ 1

p

[(
p

m
∑

i=1
αi +m(1− p)+ 1

) 1
p
(

m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖q

)

. (29.17)

Proof. By (29.2) we have

(
Iαi
b− fi

)
(x) =

1
Γ (αi)

∫ b

x
(t− x)αi−1 fi (t)dt, (29.18)

x < b, i = 1, . . . ,m. We have that

∣
∣(Iαi

b− fi
)
(x)

∣
∣=

1
Γ (αi)

∫ b

x
(t− x)αi−1 | fi (t)|dt, (29.19)

x < b, i = 1, . . . ,m. By reverse Hölder’s inequality we get

∣
∣(Iαi

b− fi
)
(x)

∣
∣≥ 1

Γ (αi)

(∫ b

x
(t− x)p(αi−1)dt

) 1
p
(∫ b

x
| fi (t)|q dt

) 1
q

(29.20)

≥ 1
Γ (αi)

(b− x)αi−1+ 1
p

(p(αi− 1)+ 1)
1
p

(∫ b

a
| fi (t)|q dt

) 1
q

, (29.21)

x < b, i = 1, . . . ,m. Therefore

m

∏
i=1

∣
∣(Iαi

b− fi
)
(x)

∣
∣p ≥ 1

(
m
∏
i=1

Γ (αi)

)p
(b− x)

p
m
∑

i=1
αi+m(1−p)

m
∏
i=1

(p(αi− 1)+ 1)

(
m

∏
i=1

∫ b

a
| fi (t)|q dt

) p
q

,

(29.22)
x ∈ (a,b). Consequently we get

∫ b

a

(
m

∏
i=1

∣
∣(Iαi

b− fi
)
(x)

∣
∣p

)

dx≥

⎛

⎜
⎜
⎝

1
(

m
∏
i=1

Γ (αi)

)p( m
∏
i=1

(p(αi− 1)+ 1)

)

⎞

⎟
⎟
⎠

·
(∫ b

a
(b− x)

p
m
∑

i=1
αi+m(1−p)

dx

)(
m

∏
i=1

∫ b

a
| fi (t)|q dt

) p
q

(29.23)
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=

(b− a)
p

m
∑

i=1
αi+m(1−p)+1

(
m
∏
i=1

∫ b
a | fi (t)|q dt

) p
q

[(
p

m
∑

i=1
αi +m(1− p)+ 1

)(
m
∏
i=1

(Γ (αi)
p (p(αi− 1)+ 1))

)] , (29.24)

proving the claim. ��
It follows

Theorem 29.4. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1,r > 0;αi > 0, i = 1, . . . ,m.

Let fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measur-

able functions, so that

∥
∥∥
∥

m
∏
i=1

(
Iαi
b− fi

)
∥
∥∥
∥

r
,

m
∏
i=1
‖ fi‖q are finite. Then

∥
∥
∥
∥
∥

m

∏
i=1

(
Iαi
b− fi

)
∥
∥
∥
∥
∥

r

≥ (b− a)

m
∑

i=1
αi−m+m

p +
1
r

[(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

) 1
r
(

m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖q

)

. (29.25)

Proof. Using r > 0 and (29.21) we get

∣
∣(Iαi

b− fi
)
(x)

∣
∣r ≥ 1

Γ (αi)
r
(b− x)

r
(
(αi−1)+ 1

p

)

(p(αi− 1)+ 1)
r
p

(∫ b

a
| fi (t)|q dt

) r
q

, (29.26)

and

m

∏
i=1

∣∣(Iαi
b− fi

)
(x)

∣∣r ≥ 1
m
∏
i=1

Γ (αi)
r

(b− x)
r

(
m
∑

i=1
αi−m+m

p

)

(
m
∏
i=1

(p(αi− 1)+ 1)

) r
p

(
m

∏
i=1

(∫ b

a
| fi (t)|q dt

) 1
q
)r

.

(29.27)
Consequently it holds

∫ b

a

(
m

∏
i=1

∣
∣(Iαi

b− fi
)
(x)

∣
∣r
)

dx≥

⎛

⎝∫ b
a (b− x)

r

(
m
∑

i=1
αi−m+m

p

)

dx

⎞

⎠

(
m
∏
i=1

Γ (αi)
r
)(

m
∏
i=1

(p(αi− 1)+ 1)

) r
p

·
(

m

∏
i=1

(∫ b

a
| fi (t)|q dt

) 1
q
)r

(29.28)



29 Reverse and Forward Fractional Integral Inequalities 447

=
(b− a)

r

(
m
∑

i=1
αi−m+m

p

)
+1

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

)(
m
∏
i=1

Γ (αi) (p(αi− 1)+ 1)
1
p

)r , (29.29)

·
(

m

∏
i=1

(∫ b

a
| fi (t)|q dt

) 1
q
)r

.

The claim is proved. ��
We need

Definition 29.5. ([14, p. 99]) The fractional integrals of a function f with respect to
given function g are defined as follows:

Let a,b ∈ R, a < b, α > 0. Here g is an increasing function on [a,b] and g ∈
C1 ([a,b]). The left- and right-sided fractional integrals of a function f with respect
to another function g in [a,b] are given by

(
Iαa+;g f

)
(x) =

1
Γ (α)

∫ x

a

g′ (t) f (t)dt

(g(x)− g(t))1−α , x > a, (29.30)

(
Iαb−;g f

)
(x) =

1
Γ (α)

∫ b

x

g′ (t) f (t)dt

(g(t)− g(x))1−α , x < b, (29.31)

respectively.

We present

Theorem 29.6. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1;αi > 0, i = 1, . . . ,m. Here

a,b ∈ R and strictly increasing g with Iαi
a+;g as in Definition 29.5; see (29.30). Let

fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable

functions, so that

∥
∥
∥
∥

m
∏
i=1

(
Iαi
a+;g fi

)
∥
∥
∥
∥

Lp(g)
,

m
∏
i=1
‖ fi‖Lq(g) are finite. Then

∥
∥
∥∥
∥

m

∏
i=1

(
Iαi
a+;g fi

)
∥
∥
∥∥
∥

Lp(g)

≥ (g(b)− g(a))

m
∑

i=1
αi+m

(
1
p−1

)
+ 1

p

[(
p

m
∑

i=1
αi +m(1− p)+ 1

) 1
p
(

m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖Lq(g)

)

. (29.32)

Proof. By (29.30) we have

(
Iαi
a+;g fi

)
(x) =

1
Γ (αi)

∫ x

a

g′(t) fi (t)
(g(x)− g(t))1−αi

dt, (29.33)
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x > a, i = 1, . . . ,m. We have that

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣=

1
Γ (αi)

∫ x

a
(g(x)− g(t))αi−1 g′(t) | fi (t)|dt

=
1

Γ (αi)

∫ x

a
(g(x)− g(t))αi−1 | fi (t)|dg(t), (29.34)

x > a, i = 1, . . . ,m. By reverse Hölder’s inequality we get

∣∣(Iαi
a+;g fi

)
(x)

∣∣≥ 1
Γ (αi)

(∫ x

a
(g(x)− g(t))p(αi−1) dg(t)

) 1
p
(∫ x

a
| fi (t)|q dg(t)

) 1
q

≥ 1
Γ (αi)

(g(x)− g(a))αi−1+ 1
p

(p(αi− 1)+ 1)
1
p

(∫ b

a
| fi (t)|q dg(t)

) 1
q

(29.35)

=
1

Γ (αi)

(g(x)− g(a))αi−1+ 1
p

(p(αi− 1)+ 1)
1
p

‖ fi‖Lq(g) , (29.36)

x > a, i = 1, . . . ,m. So we got

∣∣(Iαi
a+;g fi

)
(x)

∣∣≥ (g(x)− g(a))αi−1+ 1
p

Γ (αi)(p(αi− 1)+ 1)
1
p

‖ fi‖Lq(g) , (29.37)

x > a, i = 1, . . . ,m. Hence

m

∏
i=1

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣p ≥ (g(x)− g(a))

p
m
∑

i=1
αi+m(1−p)

m
∏
i=1

(Γ (αi)
p (p(αi− 1)+ 1))

m

∏
i=1
‖ fi‖p

Lq(g)
, (29.38)

x ∈ (a,b). Consequently, we obtain

∫ b

a

(
m

∏
i=1

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣p

)

dg(x)≥

m
∏
i=1
‖ fi‖p

Lq(g)

∫ b
a (g(x)− g(a))

p
m
∑

i=1
αi+m(1−p)

dg(x)

m
∏
i=1

(Γ (αi)
p (p(αi− 1)+ 1))

=
m

∏
i=1

[ ‖ fi‖p
Lq(g)

(Γ (αi)
p (p(αi− 1)+ 1))

]
(g(b)− g(a))

p
m
∑

i=1
αi+m(1−p)+1

(
p

m
∑

i=1
αi +m(1− p)+ 1

) , (29.39)

proving the claim. ��
We also give
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Theorem 29.7. Let 0 < p < 1,q< 0 such that 1
p +

1
q = 1; αi > 0, i = 1, . . . ,m; r > 0.

Here a,b ∈ R and strictly increasing g with Iαi
a+;g as in Definition 29.5; see (29.30).

Let fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measur-

able functions, and

∥∥
∥
∥

m
∏
i=1

(
Iαi
a+;g fi

)
∥∥
∥
∥

Lr(g)
,

m
∏
i=1
‖ fi‖Lq(g) are finite. Then

∥
∥
∥
∥
∥

m

∏
i=1

(
Iαi
a+;g fi

)
∥
∥
∥
∥
∥

Lr(g)

≥ (g(b)− g(a))

m
∑

i=1
αi−m+m

p +
1
r

[(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

) 1
r
(

m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖Lq(g)

)

. (29.40)

Proof. Using r > 0 and (29.37) we get

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣r ≥ (g(x)− g(a))

r
(
αi−1+ 1

p

)

Γ (αi)
r (p(αi− 1)+ 1)

r
p
‖ fi‖r

Lq(g) , (29.41)

and

m

∏
i=1

∣
∣(Iαi

a+;g fi
)
(x)

∣
∣r ≥ (g(x)− g(a))

r

(
m
∑

i=1
αi−m+m

p

)

(
m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)r

(
m

∏
i=1
‖ fi‖Lq(g)

)r

, (29.42)

x ∈ (a,b). Consequently, it holds

∫ b

a

m

∏
i=1

∣∣(Iαi
a+;g fi

)
(x)

∣∣r dg(x)≥

⎛

⎝∫ b
a (g(x)− g(a))

r

(
m
∑

i=1
αi−m+m

p

)

dg(x)

⎞

⎠

(
m
∏
i=1

(
Γ (αi) (p(αi− 1)+ 1)

1
p

))r

·
(

m

∏
i=1
‖ fi‖Lq(g)

)r

(29.43)

=

(g(b)− g(a))
r

(
m
∑

i=1
αi−m+m

p

)
+1

(
m
∏
i=1
‖ fi‖Lq(g)

)r

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

)(
m
∏
i=1

(
Γ (αi) (p(αi− 1)+ 1)

1
p

))r . (29.44)

The claim is proved. ��
We continue with
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Theorem 29.8. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1;αi > 0, i = 1, . . . ,m. Here

a,b ∈ R and strictly increasing g with Iαi
b−;g as in Definition 29.5; see (29.31). Let

fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable

functions, and

∥
∥
∥
∥

m
∏
i=1

(
Iαi
b−;g fi

)∥∥
∥
∥

Lp(g)
,

m
∏
i=1
‖ fi‖Lq(g) are finite. Then

∥
∥
∥∥
∥

m

∏
i=1

(
Iαi
b−;g fi

)
∥
∥
∥∥
∥

Lp(g)

≥ (g(b)− g(a))

m
∑

i=1
αi+m

(
1
p−1

)
+ 1

p

[(
p

m
∑

i=1
αi+m(1−p)+1

) 1
p
(

m
∏
i=1

Γ (αi)(p(αi− 1)+1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖Lq(g)

)

. (29.45)

Proof. By (29.31) we have

(
Iαi
b−;g fi

)
(x) =

1
Γ (αi)

∫ b

x

g′(t) fi (t)
(g(t)− g(x))1−αi

dt, (29.46)

x < b, i = 1, . . . ,m. We have that

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣=

1
Γ (αi)

∫ b

x
(g(t)− g(x))αi−1 g′(t) | fi (t)|dt

=
1

Γ (αi)

∫ b

x
(g(t)− g(x))αi−1 | fi (t)|dg(t), (29.47)

x < b, i = 1, . . . ,m. By reverse Hölder’s inequality we get

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣ ≥ 1

Γ (αi)

(∫ b

x
(g(t)− g(x))p(αi−1)dg(t)

) 1
p
(∫ b

x
| fi (t)|q dg(t)

) 1
q

≥ 1
Γ (αi)

(g(b)− g(x))αi−1+ 1
p

(p(αi− 1)+ 1)
1
p

(∫ b

a
| fi (t)|q dg(t)

) 1
q

(29.48)

=
1

Γ (αi)

(g(b)− g(x))αi−1+ 1
p

(p(αi− 1)+ 1)
1
p

‖ fi‖Lq(g) , (29.49)

x < b, i = 1, . . . ,m. So we got

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣≥ (g(b)− g(x))αi−1+ 1

p

Γ (αi) (p(αi− 1)+ 1)
1
p

‖ fi‖Lq(g) , (29.50)

x < b, i = 1, . . . ,m. Hence
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m

∏
i=1

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣

p ≥ (g(b)− g(x))
p

m
∑

i=1
αi+m(1−p)

m
∏
i=1

(Γ (αi)
p (p(αi− 1)+ 1))

m

∏
i=1
‖ fi‖p

Lq(g)
, (29.51)

x ∈ (a,b). Consequently, we obtain

∫ b

a

(
m

∏
i=1

∣
∣
∣
(
Iαi
b−;g fi

)
(x)

∣
∣
∣

p
)

dg(x)≥

m
∏
i=1
‖ fi‖p

Lq(g)

(
∫ b

a (g(b)−g(x))
p

m
∑

i=1
αi+m(1−p)

dg(x)

)

m
∏
i=1

(Γ (αi)
p (p(αi−1)+1))

=
m

∏
i=1

[ ‖ fi‖p
Lq(g)

(Γ (αi)
p (p(αi− 1)+ 1))

]
(g(b)− g(a))

p
m
∑

i=1
αi+m(1−p)+1

(
p

m
∑

i=1
αi +m(1− p)+ 1

) , (29.52)

proving the claim. ��
We also give

Theorem 29.9. Let 0 < p < 1, q< 0 such that 1
p +

1
q = 1;αi > 0, i = 1, . . . ,m, r > 0.

Here a,b ∈ R and strictly increasing g with Iαi
b−;g as in Definition 29.5; see (29.31).

Let fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measur-

able functions, and

∥
∥
∥
∥

m
∏
i=1

(
Iαi
b−;g fi

)∥∥
∥
∥

Lr(g)
,

m
∏
i=1
‖ fi‖Lq(g) are finite. Then

∥
∥
∥
∥
∥

m

∏
i=1

(
Iαi
b−;g fi

)
∥
∥
∥
∥
∥

Lr(g)

≥ (g(b)−g(a))

m
∑

i=1
αi−m+m

p +
1
r

[(
r

(
m
∑

i=1
αi−m+m

p

)
+1

) 1
r
(

m
∏
i=1

Γ (αi)(p(αi− 1)+ 1)
1
p

)]

·
(

m

∏
i=1
‖ fi‖Lq(g)

)

. (29.53)

Proof. Using r > 0 and (29.50) we get

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣
r ≥ (g(b)− g(x))

r
(
αi−1+ 1

p

)

Γ (αi)
r (p(αi− 1)+ 1)

r
p
‖ fi‖r

Lq(g) , (29.54)

and

m

∏
i=1

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣
r ≥ (g(b)− g(x))

r

(
m
∑

i=1
αi−m+m

p

)

m
∏
i=1

(
Γ (αi) (p(αi− 1)+ 1)

1
p

)r

(
m

∏
i=1

‖ fi‖Lq(g)

)r

, (29.55)



452 G.A. Anastassiou and R.A. Mezei

x ∈ (a,b). Consequently, it holds

∫ b

a

m

∏
i=1

∣
∣
∣
(

Iαi
b−;g fi

)
(x)

∣
∣
∣
r
dg(x)≥

⎛

⎝∫ b
a (g(b)− g(x))

r

(
m
∑

i=1
αi−m+m

p

)

dg(x)

⎞

⎠

(
m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))r

·
(

m

∏
i=1
‖ fi‖Lq(g)

)r

(29.56)

=

(g(b)− g(a))
r

(
m
∑

i=1
αi−m+m

p

)
+1

(
m
∏
i=1
‖ fi‖Lq(g)

)r

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

)(
m
∏
i=1

(
Γ (αi) (p(αi− 1)+ 1)

1
p

))r . (29.57)

The claim is proved. ��
We need

Definition 29.10. ([13]). Let 0 < a < b < ∞, α > 0. The left- and right-sided
Hadamard fractional integrals of order α are given by

(
Jαa+ f

)
(x) =

1
Γ (α)

∫ x

a

(
ln

x
y

)α−1 f (y)
y

dy, x > a, (29.58)

and
(
Jαb− f

)
(x) =

1
Γ (α)

∫ b

x

(
ln

y
x

)α−1 f (y)
y

dy, x < b, (29.59)

respectively.

Notice that the Hadamard fractional integrals of order α are special cases of left-
and right-sided fractional integrals of a function f with respect to another function,
here g(x) = lnx on [a,b], 0 < a < b < ∞.

Above f is a Lebesgue measurable function from (a,b) into R, such that(
Jαa+ (| f |))(x) and/or

(
Jαb− (| f |)

)
(x) ∈ R, ∀ x ∈ (a,b) .

We present

Theorem 29.11. Let 0 < p < 1,q < 0 such that 1
p + 1

q = 1;αi > 0, i = 1, . . . ,m.

Here 0 < a < b < ∞, and Jαi
a+ as in Definition 29.10; see (29.58). Let fi : (a,b)→

R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable functions,

and

∥∥
∥
∥

m
∏
i=1

(
Jαi

a+ fi
)
∥∥
∥
∥

Lp(ln)
,

m
∏
i=1
‖ fi‖Lq(ln) are finite. Then
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∥
∥∥
∥
∥

m

∏
i=1

(
Jαi

a+ fi
)
∥
∥∥
∥
∥

Lp(ln)

≥
(
ln( b

a )
)

m
∑

i=1
αi+m( 1

p−1)+ 1
p

(
p

m
∑

i=1
αi +m(1− p)+ 1

)1
p
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

·
(

m

∏
i=1
‖ fi‖Lq(ln)

)

. (29.60)

Proof. By Theorem 29.6, for g(x) = lnx. ��
We also have

Theorem 29.12. Let 0< p< 1,q< 0 such that 1
p +

1
q = 1;αi > 0, i= 1, . . . ,m;r > 0.

Here 0 < a < b < ∞, and Jαi
a+ as in Definition 29.10; see (29.58). Let fi : (a,b)→

R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable functions,

and

∥
∥∥
∥

m
∏
i=1

(
Jαi

a+ fi
)
∥
∥∥
∥

Lr(ln)
,

m
∏
i=1
‖ fi‖Lq(ln) are finite. Then

∥
∥
∥
∥∥

m

∏
i=1

(
Jαi

a+ fi
)
∥
∥
∥
∥∥

Lr(ln)

≥
(
ln( b

a )
)

m
∑

i=1
αi−m+m

p +
1
r

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

) 1
r
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

·
(

m

∏
i=1
‖ fi‖Lq(ln)

)

. (29.61)

Proof. By Theorem 29.7, for g(x) = lnx. ��
We continue with

Theorem 29.13. Let 0 < p < 1,q < 0 such that 1
p + 1

q = 1;αi > 0, i = 1, . . . ,m.

Here 0 < a < b < ∞, and Jαi
b− as in Definition 29.10; see (29.59). Let fi : (a,b)→

R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable functions,

and

∥
∥
∥∥

m
∏
i=1

(
Jαi

b− fi
)
∥
∥
∥∥

Lp(ln)
,

m
∏
i=1
‖ fi‖Lq(ln) are finite. Then

∥
∥
∥
∥
∥

m

∏
i=1

(
Jαi

b− fi
)
∥
∥
∥
∥
∥

Lp(ln)

≥
(
ln( b

a )
)

m
∑

i=1
αi+m( 1

p−1)+ 1
p

(
p

m
∑

i=1
αi +m(1− p)+ 1

)1
p
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

·
(

m

∏
i=1
‖ fi‖Lq(ln)

)

. (29.62)
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Proof. By Theorem 29.8, for g(x) = lnx. ��
We also have

Theorem 29.14. Let 0< p< 1,q< 0 such that 1
p +

1
q = 1;αi > 0, i= 1, . . . ,m;r > 0.

Here 0 < a < b < ∞, and Jαi
b− as in Definition 29.10; see (29.59). Let fi : (a,b)→

R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable functions,

and

∥
∥∥
∥

m
∏
i=1

(
Jαi

b− fi
)
∥
∥∥
∥

Lr(ln)
,

m
∏
i=1
‖ fi‖Lq(ln) are finite. Then

∥
∥
∥∥
∥

m

∏
i=1

(
Jαi

b− fi
)
∥
∥
∥∥
∥

Lr(ln)

≥
(
ln( b

a )
)

m
∑

i=1
αi−m+m

p +
1
r

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

) 1
r
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

·
(

m

∏
i=1
‖ fi‖Lq(ln)

)

. (29.63)

Proof. By Theorem 29.9, for g(x) = lnx. ��
We need

Definition 29.15. ([16]) Let (a,b), 0 ≤ a < b < ∞; α,σ > 0. We consider the left-
and right-sided fractional integrals of order α as follows:

1) For η >−1, we define

(
Iαa+;σ ,η f

)
(x) =

σx−σ(α+η)

Γ (α)

∫ x

a

tση+σ−1 f (t)dt

(xσ − tσ)1−α (29.64)

2) For η > 0, we define

(
Iαb−;σ ,η f

)
(x) =

σxση

Γ (α)

∫ b

x

tσ(1−η−α)−1 f (t)dt

(tσ − xσ )1−α (29.65)

These are the Erdélyi-Kober-type fractional integrals.

We present

Theorem 29.16. Let 0 < p < 1, q< 0 such that 1
p +

1
q = 1;αi > 0, i = 1, . . . ,m. Here

0≤ a< b<∞, σ > 0, η >−1, and Iαi
a+;σ ,η is as in Definition 29.15; see (29.64). Let

fi : (a,b)→R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measurable

functions, and

∥
∥
∥
∥

m
∏
i=1

(
xσ(αi+η)

(
Iαi
a+;σ ,η fi

)
(x)

)∥∥
∥
∥

Lp(xσ )
,

m
∏
i=1
‖xση fi(x)‖Lq(xσ ) are finite.

Then
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∥
∥
∥
∥
∥

m

∏
i=1

(
xσ(αi+η)

(
Iαi
a+;σ ,η fi

)
(x)

)
∥
∥
∥
∥
∥

Lp(xσ )

≥ (bσ − aσ)

m
∑

i=1
αi+m( 1

p−1)+ 1
p

(
p

m
∑

i=1
αi +m(1− p)+ 1

)1
p

· 1
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

(
m

∏
i=1
‖xση fi(x)‖Lq(xσ )

)

. (29.66)

Proof. By Definition 29.15 (see (29.64)) we have

(
Iαi
a+;σ ,η fi

)
(x) =

σx−σ(αi+η)

Γ (αi)

∫ x

a

tση+σ−1 fi (t)dt

(xσ − tσ )1−αi
, (29.67)

x > a. We rewrite (29.67) as follows:

L1( fi)(x) := xσ(αi+η)
(
Iαi
a+;σ ,η fi

)
(x)

=
1

Γ (αi)

∫ x

a
(xσ − tσ )αi−1 (tση fi (t))dtσ , (29.68)

and by calling F1i(t) = tση fi(t), we have

L1( fi)(x) =
1

Γ (αi)

∫ x

a
(xσ − tσ )αi−1 F1i(t)dtσ , (29.69)

i = 1, . . . ,m, x > a. Furthermore we notice that

|L1( fi)(x)|= 1
Γ (αi)

∫ x

a
(xσ − tσ )αi−1 |F1i(t)|dtσ , (29.70)

i = 1, . . . ,m, x > a. So that now we can act as in the proof of Theorem 29.6. ��
We continue with

Theorem 29.17. Let 0 < p < 1, q < 0 such that 1
p +

1
q = 1; αi > 0, i=1, . . . ,m, r>0.

Here 0 ≤ a < b < ∞, σ > 0, η > −1, and Iαi
a+;σ ,η is as in Definition 29.15;

see (29.64). Let fi : (a,b) → R, i = 1, . . . ,m, of fixed strict sign a.e., which

are Lebesgue measurable functions, and

∥
∥
∥
∥

m
∏
i=1

(
xσ(αi+η)

(
Iαi
a+;σ ,η fi

)
(x)

)∥∥
∥
∥

Lr(xσ )
,

m
∏
i=1
‖xση fi(x)‖Lq(xσ ) are finite. Then

∥
∥
∥∥
∥

m

∏
i=1

(
xσ(αi+η)

(
Iαi
a+;σ ,η fi

)
(x)

)
∥
∥
∥∥
∥

Lr(xσ )

≥ (bσ − aσ)

m
∑

i=1
αi−m+m

p +
1
r

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

) 1
r
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· 1
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

(
m

∏
i=1
‖xση fi(x)‖Lq(xσ )

)

. (29.71)

Proof. Based on the proof of Theorem 29.16 and similarly acting as in the proof of
Theorem 29.7. ��

We also have

Theorem 29.18. Let 0< p< 1, q< 0 such that 1
p +

1
q = 1; αi > 0, i= 1, . . . ,m. Here

0≤ a < b <∞, σ > 0, η > 0, and Iαi
b−;σ ,η is as in Definition 29.15; see (29.65). Let

fi : (a,b)→ R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue measur-

able functions, and

∥
∥
∥
∥

m
∏
i=1

(
x−ση

(
Iαi
b−;σ ,η fi

)
(x)

)∥∥
∥
∥

Lp(xσ )
,

m
∏
i=1

∥
∥
∥x−σ(η+αi) fi(x)

∥
∥
∥

Lq(xσ )

are finite. Then

∥
∥
∥∥
∥

m

∏
i=1

(
x−ση

(
Iαi
b−;σ ,η fi

)
(x)

)
∥
∥
∥∥
∥

Lp(xσ )

≥ (bσ − aσ)

m
∑

i=1
αi+m( 1

p−1)+ 1
p

(
p

m
∑

i=1
αi +m(1− p)+ 1

)1
p

· 1
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

(
m

∏
i=1

∥
∥
∥x−σ(η+αi) fi(x)

∥
∥
∥

Lq(xσ )

)

. (29.72)

Proof. By Definition 29.15 (see (29.65)) we have

(
Iαi
b−;σ ,η fi

)
(x) =

σxση

Γ (αi)

∫ b

x

tσ(1−η−αi)−1 fi (t)dt

(tσ − xσ )1−αi
, (29.73)

x < b. We rewrite (29.73) as follows:

L2( fi)(x) := x−ση
(

Iαi
b−;σ ,η fi

)
(x)

=
1

Γ (αi)

∫ b

x
(tσ − xσ )αi−1

(
t−σ(η+αi) fi (t)

)
dtσ , (29.74)

and by calling F2i(t) = t−σ(η+αi) fi(t), we have

L2( fi)(x) =
1

Γ (αi)

∫ b

x
(tσ − xσ )αi−1 F2i(t)dtσ , (29.75)

i = 1, . . . ,m, x < b. Furthermore we notice that

|L2( fi)(x)|= 1
Γ (αi)

∫ b

x
(tσ − xσ )αi−1 |F2i(t)|dtσ , (29.76)

i = 1, . . . ,m, x < b. So that now we can act as in the proof of Theorem 29.8. ��
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We continue with

Theorem 29.19. Let 0<p<1, q<0 such that 1
p + 1

q=1; αi > 0, i=1, . . . ,m, r>0.

Here 0≤ a< b<∞, σ > 0, η > 0, and Iαi
b−;σ ,η is as in Definition 29.15; see (29.65).

Let fi : (a,b)→ R, i = 1, . . . ,m, of fixed strict sign a.e., which are Lebesgue mea-

surable functions, and

∥
∥
∥
∥

m
∏
i=1

(
x−ση

(
Iαi
b−;σ ,η fi

)
(x)

)∥∥
∥
∥

Lr(xσ )
,

m
∏
i=1

∥∥
∥x−σ(η+αi) fi(x)

∥∥
∥

Lq(xσ )
are finite. Then

∥
∥∥
∥
∥

m

∏
i=1

(
x−ση

(
Iαi
b−;σ ,η fi

)
(x)

)
∥
∥∥
∥
∥

Lr(xσ )

≥ (bσ − aσ )

m
∑

i=1
αi−m+m

p +
1
r

(
r

(
m
∑

i=1
αi−m+ m

p

)
+ 1

) 1
r

· 1
(

m
∏
i=1

(
Γ (αi)(p(αi− 1)+ 1)

1
p

))

(
m

∏
i=1

∥
∥
∥x−σ(η+αi) fi(x)

∥
∥
∥

Lq(xσ )

)

. (29.77)

Proof. Based on the proof of Theorem 29.18 and acting similarly as in the proof of
Theorem 29.9. ��

We make

Definition 29.20. Let
N
∏
i=1

(ai,bi) ⊂ R
N , N > 1, ai < bi, ai,bi ∈ R. Let αi > 0,

i = 1, . . . ,N; f ∈ L1

(
N
∏
i=1

(ai,bi)

)
, and set a = (a1, . . . ,aN) , b = (b1, . . . ,bN), α =

(α1, . . . ,αN), x = (x1, . . . ,xN) , t = (t1, . . . , tN) . We define the left mixed Riemann–
Liouville fractional multiple integral of order α (see also [15]):

(
Iαa+ f

)
(x) :=

1
N
∏
i=1

Γ (αi)

∫ x1

a1

. . .
∫ xN

aN

N

∏
i=1

(xi− ti)
αi−1 f (t1, . . . , tN)dt1 . . .dtN ,

(29.78)
with xi > ai, i = 1, . . . ,N. We also define the right mixed Riemann–Liouville frac-
tional multiple integral of order α (see also [13]):

(
Iαb− f

)
(x) :=

1
N
∏
i=1

Γ (αi)

∫ b1

x1

. . .
∫ bN

xN

N

∏
i=1

(ti− xi)
αi−1 f (t1, . . . , tN)dt1 . . .dtN ,

(29.79)
with xi < bi, i = 1, . . . ,N.

Notice Iαa+ (| f |), Iαb− (| f |) are finite if f ∈ L∞

(
N
∏
i=1

(ai,bi)

)
. We present
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Theorem 29.21. Let 0 < p < 1, q < 0 such that 1
p + 1

q = 1. Here all as in Def-

inition 29.20, and (29.78) for Iαa+. Let f j :
N
∏
i=1

(ai,bi) → R, j = 1, . . . ,m, of

fixed strict sign a.e., f j ∈ L1

(
N
∏
i=1

(ai,bi)

)
.We assume that

∥
∥
∥
∥
∥

m
∏
j=1

Iαa+ f j

∥
∥
∥
∥
∥

p,
N
∏

i=1
(ai,bi)

,

m
∏
j=1

∥
∥ f j

∥
∥

q,
N
∏

i=1
(ai,bi)

are finite. Then it holds

∥
∥
∥∥
∥

m

∏
j=1

Iαa+ f j

∥
∥
∥∥
∥

p,
N
∏

i=1
(ai,bi)

≥
N

∏
i=1

⎛

⎜
⎝

(bi− ai)

(
m
(
(αi−1)+ 1

p

)
+ 1

p

)

(m(p(αi− 1)+ 1)+ 1)
1
p

(
Γ (αi)(p(αi− 1)+ 1)

1
p

)m

⎞

⎟
⎠

·
⎛

⎝
m

∏
j=1

∥∥ f j
∥∥

q,
N
∏

i=1
(ai,bi)

⎞

⎠ . (29.80)

Proof. By Definition 29.20 (see (29.78)) we have

(
Iαa+ f j

)
(x) =

1
N
∏
i=1

Γ (αi)

∫ x1

a1

. . .
∫ xN

aN

N

∏
i=1

(xi− ti)
αi−1 f j (t1, . . . , tN)dt1 . . .dtN ,

(29.81)
furthermore it holds

∣
∣(Iαa+ f j

)
(x)

∣
∣=

1
N
∏
i=1

Γ (αi)

∫ x1

a1

. . .

∫ xN

aN

N

∏
i=1

(xi− ti)
αi−1 ∣∣ f j (t1, . . . , tN)

∣
∣dt1 . . .dtN ,

(29.82)

j = 1, . . . ,m, x ∈
N
∏
i=1

(ai,bi) . By reverse Hölder’s inequality we get

∣
∣(Iαa+ f j

)
(x)

∣
∣≥ 1

N
∏
i=1

Γ (αi)

(∫ x1

a1

. . .
∫ xN

aN

N

∏
i=1

(xi− ti)
p(αi−1) dt1 . . .dtN

) 1
p

·
(∫ x1

a1

. . .
∫ xN

aN

∣
∣ f j (t1, . . . , tN)

∣
∣q dt1 . . .dtN

) 1
q

(29.83)

≥ 1
N
∏
i=1

Γ (αi)

(
N

∏
i=1

(∫ xi

ai

(xi− ti)
p(αi−1) dti

) 1
p
)⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

1
q

(29.84)
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=
1

N
∏
i=1

Γ (αi)

(
N

∏
i=1

(
(xi− ai)

(αi−1)+ 1
p

(p(αi− 1)+ 1)
1
p

))⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

1
q

. (29.85)

Hence

m

∏
j=1

∣
∣(Iαa+ f j

)
(x)

∣
∣p ≥ 1

(
N
∏
i=1

Γ (αi)

)mp

(
N

∏
i=1

(xi− ai)
(αi−1)+ 1

p

(p(αi− 1)+ 1)
1
p

)mp

·
m

∏
j=1

⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

p
q

, (29.86)

for x ∈
N
∏
i=1

(ai,bi) . Consequently, we get

∫

N
∏

i=1
(ai,bi)

m

∏
j=1

∣
∣(Iαa+ f j

)
(x)

∣
∣p

dx≥

⎛

⎜
⎝

m
∏
j=1

⎛

⎝∫
N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

p
q
⎞

⎟
⎠

(
N
∏
i=1

Γ (αi)

)mp( N
∏
i=1

(p(αi− 1)+ 1)m
)

·
⎛

⎝
∫

N
∏

i=1
(ai,bi)

N

∏
i=1

(xi− ai)
m(p(αi−1)+1) dx1 . . .dxN

⎞

⎠ (29.87)

=
N

∏
i=1

(
(bi− ai)

m(p(αi−1)+1)+1

(m(p(αi− 1)+ 1)+ 1)(Γ (αi)
p (p(αi− 1)+ 1))m

)

·

⎛

⎜
⎝

m

∏
j=1

⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣∣ f j (t)
∣∣q dt

⎞

⎠

p
q
⎞

⎟
⎠ , (29.88)

proving the claim. ��
We have

Theorem 29.22. Let 0 < p < 1, q < 0 such that 1
p + 1

q = 1; r > 0. Here all as

in Definition 29.20, and (29.78) for Iαa+. Let f j :
N
∏
i=1

(ai,bi) → R, j = 1, . . . ,m,

of fixed strict sign a.e., f j ∈ L1

(
N
∏
i=1

(ai,bi)

)
.We assume that

∥
∥
∥
∥∥

m
∏
j=1

Iαa+ f j

∥
∥
∥
∥∥

r,
N
∏

i=1
(ai,bi)

,
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m
∏
j=1

∥
∥ f j

∥
∥

q,
N
∏

i=1
(ai,bi)

are finite. Then

∥
∥
∥
∥
∥

m

∏
j=1

Iαa+ f j

∥
∥
∥
∥
∥

r,
N
∏

i=1
(ai,bi)

≥
N

∏
i=1

⎛

⎜
⎜
⎝

(bi− ai)

(
m
(
(αi−1)+ 1

p

)
+ 1

r

)

(
mr

(
(αi− 1)+ 1

p

)
+ 1

) 1
r Γ (αi)m (p(αi− 1)+ 1)

m
p

⎞

⎟
⎟
⎠

·
⎛

⎝
m

∏
j=1

∥
∥ f j

∥
∥

q,
N
∏

i=1
(ai,bi)

⎞

⎠ . (29.89)

Proof. We have

(
Iαa+ f j

)
(x) =

1
N
∏
i=1

Γ (αi)

∫ x1

a1

. . .

∫ xN

aN

N

∏
i=1

(xi− ti)
αi−1 f j (t1, . . . , tN)dt1 . . .dtN ,

(29.90)
furthermore it holds

∣
∣(Iαa+ f j

)
(x)

∣
∣=

1
N
∏
i=1

Γ (αi)

∫ x1

a1

. . .

∫ xN

aN

N

∏
i=1

(xi− ti)
αi−1 ∣∣ f j (t1, . . . , tN)

∣
∣dt1 . . .dtN ,

(29.91)

j = 1, . . . ,m, x ∈
N
∏
i=1

(ai,bi) . By using (29.85) of the proof of Theorem 29.21 and

r > 0 we get

m

∏
j=1

∣
∣(Iαa+ f j

)
(x)

∣
∣r ≥ 1

(
N
∏
i=1

Γ (αi)

)mr

(
N

∏
i=1

(
(xi− ai)

(αi−1)+ 1
p

(p(αi− 1)+ 1)
1
p

))mr

·
m

∏
j=1

⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

r
q

, (29.92)

for x ∈
N
∏
i=1

(ai,bi) . Consequently, we get

∫

N
∏

i=1
(ai,bi)

m

∏
j=1

∣
∣(Iαa+ f j

)
(x)

∣
∣r dx≥ 1

(
N
∏
i=1

Γ (αi)

)mr

⎛

⎜
⎝

m
∏
j=1

⎛

⎝∫
N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

1
q
⎞

⎟
⎠

r

(
N
∏
i=1

(p(αi− 1)+ 1)
mr
p

)
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·
⎛

⎝
∫

N
∏

i=1
(ai,bi)

N

∏
i=1

(xi− ai)
mr

(
(αi−1)+ 1

p

)

dx

⎞

⎠ (29.93)

=
N

∏
i=1

⎛

⎝ (bi− ai)
mr

(
(αi−1)+ 1

p

)
+1

(
mr

(
(αi− 1)+ 1

p

)
+ 1

)
Γ (αi)

mr (p(αi− 1)+ 1)
mr
p

⎞

⎠

·
⎛

⎝
m

∏
j=1

∥
∥ f j

∥
∥

q,
N
∏

i=1
(ai,bi)

⎞

⎠

r

, (29.94)

proving the claim. ��
We also give

Theorem 29.23. Let 0 < p < 1, q < 0 such that 1
p + 1

q = 1. Here all as in Def-

inition 29.20, and (29.79) for Iαb−. Let f j :
N
∏
i=1

(ai,bi) → R, j = 1, . . . ,m, of

fixed strict sign a.e., f j ∈ L1

(
N
∏
i=1

(ai,bi)

)
.We assume that

∥∥
∥
∥
∥

m
∏
j=1

Iαb− f j

∥∥
∥
∥
∥

p,
N
∏

i=1
(ai,bi)

,

m
∏
j=1

∥∥ f j
∥∥

q,
N
∏

i=1
(ai,bi)

are finite. Then it holds

∥
∥
∥
∥∥

m

∏
j=1

Iαb− f j

∥
∥
∥
∥∥

p,
N
∏

i=1
(ai,bi)

≥
N

∏
i=1

⎛

⎜
⎝

(bi− ai)

(
m
(
(αi−1)+ 1

p

)
+ 1

p

)

(m(p(αi− 1)+ 1)+ 1)
1
p

(
Γ (αi)(p(αi− 1)+ 1)

1
p

)m

⎞

⎟
⎠

·
⎛

⎝
m

∏
j=1

∥
∥ f j

∥
∥

q,
N
∏

i=1
(ai,bi)

⎞

⎠ . (29.95)

Proof. By Definition 29.20 (see (29.79)) we have

(
Iαb− f j

)
(x) =

1
N
∏
i=1

Γ (αi)

∫ b1

x1

. . .

∫ bN

xN

N

∏
i=1

(ti− xi)
αi−1 f j (t1, . . . , tN)dt1 . . .dtN ,

(29.96)
furthermore it holds

∣
∣(Iαb− f j

)
(x)

∣
∣=

1
N
∏
i=1

Γ (αi)

∫ b1

x1

. . .

∫ bN

xN

N

∏
i=1

(ti− xi)
αi−1 ∣∣ f j (t1, . . . , tN)

∣
∣dt1 . . .dtN ,

(29.97)
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j = 1, . . . ,m, x ∈
N
∏
i=1

(ai,bi) . By reverse Hölder’s inequality we get

∣
∣(Iαb− f j

)
(x)

∣
∣≥ 1

N
∏
i=1

Γ (αi)

(∫ b1

x1

. . .

∫ bN

xN

N

∏
i=1

(ti− xi)
p(αi−1) dt1 . . .dtN

) 1
p

·
(∫ b1

x1

. . .

∫ bN

xN

∣
∣ f j (t1, . . . , tN)

∣
∣q dt1 . . .dtN

) 1
q

(29.98)

≥ 1
N
∏
i=1

Γ (αi)

(
N

∏
i=1

(∫ bi

xi

(ti− xi)
p(αi−1)dti

) 1
p
)

·
⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

1
q

(29.99)

=
1

N
∏
i=1

Γ (αi)

(
N

∏
i=1

(
(bi− xi)

(αi−1)+ 1
p

(p(αi− 1)+ 1)
1
p

))

·
⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

1
q

. (29.100)

Hence

m

∏
j=1

∣∣(Iαb− f j
)
(x)

∣∣p ≥ 1
(

N
∏
i=1

Γ (αi)

)mp

(
N

∏
i=1

(bi− xi)
(αi−1)+ 1

p

(p(αi− 1)+ 1)
1
p

)mp

·
m

∏
j=1

⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

p
q

, (29.101)

for x ∈
N
∏
i=1

(ai,bi) . Consequently, we get

∫

N
∏

i=1
(ai,bi)

m

∏
j=1

∣
∣(Iαb− f j

)
(x)

∣
∣p

dx≥

⎛

⎜
⎝

m
∏
j=1

⎛

⎝∫
N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

p
q
⎞

⎟
⎠

(
N
∏
i=1

Γ (αi)

)mp( N
∏
i=1

(p(αi− 1)+ 1)m
)



29 Reverse and Forward Fractional Integral Inequalities 463

·
⎛

⎝
∫

N
∏

i=1
(ai,bi)

N

∏
i=1

(bi− xi)
m(p(αi−1)+1) dx1 . . .dxN

⎞

⎠ (29.102)

=
N

∏
i=1

(
(bi− ai)

m(p(αi−1)+1)+1

(m(p(αi− 1)+ 1)+ 1)((Γ (αi))
p (p(αi− 1)+ 1))m

)

·

⎛

⎜
⎝

m

∏
j=1

⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

p
q
⎞

⎟
⎠ , (29.103)

proving the claim. ��
We have

Theorem 29.24. Let 0 < p < 1, q < 0 such that 1
p + 1

q = 1; r > 0. Here all as

in Definition 29.20, and (29.79) for Iαb−. Let f j :
N
∏
i=1

(ai,bi) → R, j = 1, . . . ,m,

of fixed strict sign a.e., f j ∈ L1

(
N
∏
i=1

(ai,bi)

)
.We assume that

∥
∥∥
∥
∥

m
∏
j=1

Iαb− f j

∥
∥∥
∥
∥

r,
N
∏

i=1
(ai,bi)

,

m
∏
j=1

∥
∥ f j

∥
∥

q,
N
∏

i=1
(ai,bi)

are finite. Then

∥
∥
∥
∥
∥

m

∏
j=1

Iαb− f j

∥
∥
∥
∥
∥

r,
N
∏

i=1
(ai,bi)

≥
N

∏
i=1

⎛

⎜
⎜
⎝

(bi− ai)

(
m
(
(αi−1)+ 1

p

)
+ 1

r

)

(
mr

(
(αi− 1)+ 1

p

)
+ 1

) 1
r Γ (αi)m (p(αi− 1)+ 1)

m
p

⎞

⎟
⎟
⎠

·
⎛

⎝
m

∏
j=1

∥
∥ f j

∥
∥

q,
N
∏

i=1
(ai,bi)

⎞

⎠ . (29.104)

Proof. We have

(
Iαb− f j

)
(x) =

1
N
∏
i=1

Γ (αi)

∫ b1

x1

. . .

∫ bN

xN

N

∏
i=1

(ti− xi)
αi−1 f j (t1, . . . , tN)dt1 . . .dtN ,

(29.105)
furthermore it holds

∣
∣(Iαb− f j

)
(x)

∣
∣=

1
N
∏
i=1

Γ (αi)

∫ b1

x1

. . .

∫ bN

xN

N

∏
i=1

(ti− xi)
αi−1 ∣∣ f j (t1, . . . , tN)

∣
∣dt1 . . .dtN ,

(29.106)
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j = 1, . . . ,m, x ∈
N
∏
i=1

(ai,bi) . By using (29.100) of the proof of Theorem 29.23 and

r > 0 we get

m

∏
j=1

∣
∣(Iαb− f j

)
(x)

∣
∣r ≥ 1

(
N
∏
i=1

Γ (αi)

)mr

(
N

∏
i=1

(
(bi− xi)

(αi−1)+ 1
p

(p(αi− 1)+ 1)
1
p

))mr

·
m

∏
j=1

⎛

⎝
∫

N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

r
q

, (29.107)

for x ∈ N
∏
i=1

(ai,bi) . Consequently, we get

∫

N
∏

i=1
(ai,bi)

m

∏
j=1

∣
∣(Iαb− f j

)
(x)

∣
∣r dx≥ 1

(
N
∏
i=1

Γ (αi)

)mr

⎛

⎜
⎝

m
∏
j=1

⎛

⎝∫
N
∏

i=1
(ai,bi)

∣
∣ f j (t)

∣
∣q dt

⎞

⎠

1
q
⎞

⎟
⎠

r

(
N
∏
i=1

(p(αi− 1)+ 1)
mr
p

)

·
⎛

⎝
∫

N
∏

i=1
(ai,bi)

N

∏
i=1

(bi− xi)
mr

(
(αi−1)+ 1

p

)

dx

⎞

⎠ (29.108)

=
N

∏
i=1

⎛

⎝ (bi− ai)
mr

(
(αi−1)+ 1

p

)
+1

(
mr

(
(αi− 1)+ 1

p

)
+ 1

)
Γ (αi)

mr (p(αi− 1)+ 1)
mr
p

⎞

⎠

·
⎛

⎝
m

∏
j=1

∥∥ f j
∥∥

q,
N
∏

i=1
(ai,bi)

⎞

⎠

r

, (29.109)

proving the claim. ��

Definition 29.25. ([1], p. 448). The left generalized Riemann–Liouville fractional
derivative of f of order β > 0 is given by

Dβ
a f (x) =

1
Γ (n−β )

(
d
dx

)n ∫ x

a
(x− y)n−β−1 f (y)dy, (29.110)

where n = [β ] + 1, x ∈ [a,b] . For a,b ∈ R, we say that f ∈ L1 (a,b) has an L∞
fractional derivative Dβ

a f (β > 0) in [a,b], if and only if:

(1) Dβ−k
a f ∈C ([a,b]) , k = 2, . . . ,n = [β ]+ 1

(2) Dβ−1
a f ∈ AC ([a,b])
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(3) Dβ
a f ∈ L∞ (a,b) .

Above we define D0
a f := f and D−δa f := Iδa+ f , if 0 < δ ≤ 1.

From [1, p. 449] and [11] we mention and use

Lemma 29.26. Let β > α ≥ 0 and let f ∈ L1 (a,b) have an L∞ fractional derivative

Dβ
a f in [a,b] and let Dβ−k

a f (a) = 0, k = 1, . . . , [β ]+ 1, then

Dα
a f (x) =

1
Γ (β −α)

∫ x

a
(x− y)β−α−1 Dβ

a f (y)dy, (29.111)

for all a ≤ x ≤ b. Here Dα
a f ∈ AC ([a,b]) for β −α ≥ 1, and Dα

a f ∈ C ([a,b]) for
β −α ∈ (0,1) .

Notice here that

Dα
a f (x) =

(
Iβ−αa+

(
Dβ

a f
))

(x) , a≤ x≤ b. (29.112)

We present

Theorem 29.27. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1; βi >αi ≥ 0, i = 1, . . . ,m.

Let fi ∈ L1 (a,b) have an L∞ fractional derivative Dβi
a fi in [a,b] and let

Dβi−ki
a fi (a) = 0, ki = 1, . . . , [βi] + 1, so that Dβi

a fi are functions of fixed strict
sign a.e. Then

∥
∥∥
∥
∥

m

∏
i=1

(Dαi
a fi)

∥
∥∥
∥
∥

p

≥ (b− a)

m
∑

i=1
(βi−αi)+m

(
1
p−1

)
+ 1

p

(
p

m
∑

i=1
(βi−αi)+m(1− p)+ 1

) 1
p

· 1
(

m
∏
i=1

Γ (βi−αi) (p(βi−αi− 1)+ 1)
1
p

)

(
m

∏
i=1

∥
∥
∥Dβi

a fi

∥
∥
∥

q

)

. (29.113)

Proof. Using Theorem 29.1, see (29.5), and Lemma 29.26, see (29.112). ��
We also give

Theorem 29.28. Let 0 < p < 1, q < 0 such that 1
p +

1
q = 1; r > 0, βi > αi ≥ 0, i =

1, . . . ,m. Let fi ∈ L1 (a,b) have an L∞ fractional derivative Dβi
a fi in [a,b] and let

Dβi−ki
a fi (a) = 0, ki = 1, . . . , [βi]+ 1, so that Dβi

a fi are functions of fixed strict sign
a.e. Then
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∥
∥
∥
∥
∥

m

∏
i=1

(Dαi
a fi)

∥
∥
∥
∥
∥

r

≥ (b− a)

m
∑

i=1
(βi−αi)−m+m

p +
1
r

(
r

(
m
∑

i=1
(βi−αi)−m+ m

p

)
+ 1

) 1
r

· 1
(

m
∏
i=1

Γ (βi−αi) (p(βi−αi− 1)+ 1)
1
p

)

(
m

∏
i=1

∥
∥
∥Dβi

a fi

∥
∥
∥

q

)

. (29.114)

Proof. Using Theorem 29.2, see (29.12), and Lemma 29.26, see (29.112). ��
We need

Definition 29.29. ([8], p. 50, [1], p. 449) Let ν ≥ 0, n := �ν�, f ∈ ACn ([a,b]). Then
the left Caputo fractional derivative is given by

Dν
∗a f (x) =

1
Γ (n−ν)

∫ x

a
(x− t)n−ν−1 f (n) (t)dt

=
(

In−ν
a+ f (n)

)
(x) , (29.115)

and it exists almost everywhere for x ∈ [a,b], in fact Dν∗a f ∈ L1 (a,b), ([1], p. 394).

We have Dn∗a f = f (n), n ∈ Z+.
We also need

Theorem 29.30. ([4]). Let ν ≥ ρ + 1, ρ > 0, ν,ρ /∈ N. Call n := �ν�, m∗ := �ρ�.
Assume f ∈ACn ([a,b]), such that f (k) (a)= 0, k =m∗,m∗+1, . . . ,n−1, and Dν∗a f ∈
L∞ (a,b). Then Dρ

∗a f ∈ AC ([a,b]) (where Dρ
∗a f =

(
Im∗−ρ
a+ f (m

∗)
)
(x)), and

Dρ
∗a f (x) =

1
Γ (ν−ρ)

∫ x

a
(x− t)ν−ρ−1 Dν

∗a f (t)dt

=
(

Iν−ρa+ (Dν
∗a f )

)
(x) , (29.116)

∀ x ∈ [a,b] .

We present

Theorem 29.31. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1; and let νi ≥ ρi +1, ρi >

0, νi,ρi /∈ N, i = 1, . . . ,m. Call ni := �νi�, m∗i := �ρi�. Suppose fi ∈ ACni ([a,b]),

such that f (ki)
i (a) = 0, ki = m∗i ,m

∗
i + 1, . . . ,ni− 1, and Dνi∗a fi ∈ L∞ (a,b). Assume

Dνi∗a fi, i = 1, . . . ,m, are functions of fixed strict sign a.e. Then

∥
∥∥
∥
∥

m

∏
i=1

(
Dρi∗a fi

)
∥
∥∥
∥
∥

p

≥ (b− a)

m
∑

i=1
(νi−ρi)+m

(
1
p−1

)
+ 1

p

(
p

m
∑

i=1
(νi−ρi)+m(1− p)+ 1

) 1
p
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· 1
(

m
∏
i=1

Γ (νi−ρi)(p(νi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1
‖Dνi∗a fi‖q

)

. (29.117)

Proof. Using Theorem 29.1, see (29.5), and Theorem 29.30, see (29.116). ��
We also give

Theorem 29.32. Let 0 < p < 1,q < 0 such that 1
p + 1

q = 1, r > 0; and let νi ≥
ρi + 1, ρi > 0, νi,ρi /∈ N, i = 1, . . . ,m. Call ni := �νi�, m∗i := �ρi�. Suppose fi ∈
ACni ([a,b]), such that f (ki)

i (a) = 0, ki =m∗i ,m
∗
i +1, . . . ,ni−1, and Dνi∗a fi ∈ L∞ (a,b).

Assume Dνi∗a fi, i = 1, . . . ,m, are functions of fixed strict sign a.e. Then

∥∥
∥
∥
∥

m

∏
i=1

(
Dρi∗a fi

)
∥∥
∥
∥
∥

r

≥ (b− a)

m
∑

i=1
(νi−ρi)−m+m

p +
1
r

(
r

(
m
∑

i=1
(νi−ρi)−m+ m

p

)
+ 1

) 1
r

· 1
(

m
∏
i=1

Γ (νi−ρi)(p(νi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1
‖Dνi∗a fi‖q

)

. (29.118)

Proof. Using Theorem 29.2, see (29.12), and Theorem 29.30, see (29.116). ��
We need

Definition 29.33. ([2, 9, 10]) Let α ≥ 0, n := �α�, f ∈ ACn ([a,b]). We define the
right Caputo fractional derivative of order α ≥ 0 by

D
α
b− f (x) := (−1)n In−α

b− f (n) (x) , (29.119)

we set D
0
− f := f , i.e.,

D
α
b− f (x) =

(−1)n

Γ (n−α)
∫ b

x
(J− x)n−α−1 f (n) (J)dJ. (29.120)

Notice that D
n
b− f = (−1)n f (n), n ∈ N.

In [3] we introduced a balanced fractional derivative combining both right and
left fractional Caputo derivatives.

We need

Theorem 29.34. ([4]) Let f ∈ACn ([a,b]), α > 0, n∈N, n := �α�, α ≥ ρ+1, ρ > 0,
r = �ρ�,α,ρ /∈N. Assume f (k) (b)= 0, k= r,r+1, . . . ,n−1, and D

α
b− f ∈L∞ ([a,b]).

Then
D
ρ
b− f (x) =

(
Iα−ρb−

(
D
α
b− f

))
(x) ∈ AC ([a,b]) , (29.121)
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that is,

D
ρ
b− f (x) =

1
Γ (α−ρ)

∫ b

x
(t− x)α−ρ−1

(
D
α
b− f

)
(t)dt, (29.122)

∀ x ∈ [a,b] .

We present

Theorem 29.35. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1;αi ≥ ρi + 1,ρi > 0, i =

1, . . . ,m. Suppose fi ∈ ACni ([a,b]), ni ∈ N, ni := �αi�, ri = �ρi�, αi,ρi /∈ N, and

f (ki)
i (b) = 0, ki = ri,ri +1, . . . ,ni−1, and D

αi
b− fi ∈ L∞ ([a,b]) , i = 1, . . . ,m. Assume

D
αi
b− fi, i = 1, . . . ,m, are functions of fixed strict sign a.e. Then

∥
∥∥
∥
∥

m

∏
i=1

(
D
ρi
b− fi

)
∥
∥∥
∥
∥

p

≥ (b− a)

m
∑

i=1
(αi−ρi)+m

(
1
p−1

)
+ 1

p

(
p

m
∑

i=1
(αi−ρi)+m(1− p)+ 1

) 1
p

· 1
(

m
∏
i=1

Γ (αi−ρi)(p(αi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1

∥
∥
∥D

αi
b− fi

∥
∥
∥

q

)

. (29.123)

Proof. Using Theorem 29.3, see (29.17), and Theorem 29.34, see (29.121). ��
We also give

Theorem 29.36. Let 0 < p < 1,q < 0 such that 1
p+

1
q=1,r>0; αi ≥ ρi+1,ρi>0,

i = 1, . . . ,m. Suppose fi ∈ ACni ([a,b]), ni ∈ N, ni := �αi�, ri = �ρi�, αi,ρi /∈ N, and

f (ki)
i (b) = 0, ki = ri,ri +1, . . . ,ni−1, and D

αi
b− fi ∈ L∞ ([a,b]) , i = 1, . . . ,m. Assume

D
αi
b− fi, i = 1, . . . ,m, are functions of fixed strict sign a.e. Then

∥
∥
∥
∥∥

m

∏
i=1

(
D
ρi
b− fi

)
∥
∥
∥
∥∥

r

≥ (b− a)

m
∑

i=1
(αi−ρi)−m+m

p +
1
r

(
r

(
m
∑

i=1
(αi−ρi)−m+ m

p

)
+ 1

) 1
r

· 1
(

m
∏
i=1

Γ (αi−ρi)(p(αi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1

∥
∥
∥D

αi
b− fi

∥
∥
∥

q

)

. (29.124)

Proof. Using Theorem 29.4, see (29.25), and Theorem 29.34, see (29.121). ��
We need
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Definition 29.37. Let ν > 0, n := [ν], α := ν−n (0≤ α < 1). Let a,b∈R, a≤ x≤
b, f ∈C ([a,b]). We consider Cν

a ([a,b]) := { f ∈Cn ([a,b]) : I1−α
a+ f (n) ∈C1 ([a,b])}.

For f ∈ Cν
a ([a,b]), we define the left generalized ν-fractional derivative of f over

[a,b] as

Δν
a f :=

(
I1−α
a+ f (n)

)′
, (29.125)

see [1], p. 24, and Canavati derivative in [7].

Notice here Δν
a f ∈C ([a,b]) . So that

(Δν
a f ) (x) =

1
Γ (1−α)

d
dx

∫ x

a
(x− t)−α f (n) (t)dt, (29.126)

∀ x ∈ [a,b] . Notice here that

Δn
a f = f (n), n ∈ Z+. (29.127)

We need

Theorem 29.38. ([4]) Let f ∈ Cν
a ([a,b]), n = [ν], such that f (i) (a) = 0, i = r,r +

1, . . . ,n− 1, where r := [ρ ], with 0 < ρ < ν . Then

(Δρ
a f ) (x) =

1
Γ (ν−ρ)

∫ x

a
(x− t)ν−ρ−1 (Δν

a f ) (t)dt, (29.128)

i.e.,
(Δρ

a f ) = Iν−ρa+ (Δν
a f ) ∈C ([a,b]) . (29.129)

Thus f ∈Cρ
a ([a,b]) .

We present

Theorem 29.39. Let 0 < p < 1, q< 0 such that 1
p +

1
q = 1; νi > ρi > 0, i = 1, . . . ,m.

Let fi ∈Cνi
a ([a,b]), ni = [νi], such that f (ki)

i (a) = 0, ki = ri,ri +1, . . . ,ni−1, where
ri := [ρi] , i = 1, . . . ,m. Assume Δνi

a fi, i = 1, . . . ,m, are functions of fixed strict sign
a.e. Then

∥
∥
∥
∥∥

m

∏
i=1

(Δρi
a fi)

∥
∥
∥
∥∥

p

≥ (b− a)

m
∑

i=1
(νi−ρi)+m

(
1
p−1

)
+ 1

p

(
p

m
∑

i=1
(νi−ρi)+m(1− p)+ 1

) 1
p

· 1
(

m
∏
i=1

Γ (νi−ρi)(p(νi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1
‖Δνi

a fi‖q

)

. (29.130)

Proof. Using Theorem 29.1, see (29.5), and Theorem 29.38, see (29.129). ��
We also give
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Theorem 29.40. Let 0 < p < 1, q < 0 such that 1
p +

1
q = 1, r > 0; νi > ρi > 0, i =

1, . . . ,m. Let fi ∈Cνi
a ([a,b]), ni = [νi], such that f (ki)

i (a)= 0, ki = ri,ri+1, . . . ,ni−1,
where ri := [ρi] , i = 1, . . . ,m. Assume Δνi

a fi, i = 1, . . . ,m, are functions of fixed strict
sign a.e. Then

∥
∥
∥∥
∥

m

∏
i=1

(Δρi
a fi)

∥
∥
∥∥
∥

r

≥ (b− a)

m
∑

i=1
(νi−ρi)−m+m

p +
1
r

(
r

(
m
∑

i=1
(νi−ρi)−m+ m

p

)
+ 1

) 1
r

· 1
(

m
∏
i=1

Γ (νi−ρi)(p(νi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1
‖Δνi

a fi‖q

)

. (29.131)

Proof. Using Theorem 29.2, see (29.12), and Theorem 29.38, see (29.129). ��
We need

Definition 29.41. ([2]) Let ν > 0, n := [ν], α = ν − n, 0 < α < 1, f ∈ C ([a,b]).
Consider

Cν
b− ([a,b]) := { f ∈Cn ([a,b]) : I1−α

b− f (n) ∈C1 ([a,b])}. (29.132)

Define the right generalized ν-fractional derivative of f over [a,b] by

Δν
b− f := (−1)n−1

(
I1−α
b− f (n)

)′
. (29.133)

We set Δ0
b− f = f . Notice that

(
Δν

b− f
)
(x) =

(−1)n−1

Γ (1−α)
d
dx

∫ b

x
(J− x)−α f (n) (J)dJ, (29.134)

and Δν
b− f ∈C ([a,b]) .

We also need

Theorem 29.42. ([4]) Let f ∈ Cν
b− ([a,b]), 0 < ρ < ν . Assume f (i) (b) = 0, i =

r,r+ 1, . . . ,n− 1, where r := [ρ ], n := [ν]. Then

Δρ
b− f (x) =

1
Γ (ν−ρ)

∫ b

x
(J− x)ν−ρ−1 (Δν

b− f
)
(J)dJ, (29.135)

∀ x ∈ [a,b], i.e.
Δρ

b− f = Iν−ρb−
(
Δν

b− f
) ∈C ([a,b]) , (29.136)

and f ∈Cρ
b− ([a,b]) .
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We present

Theorem 29.43. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1; νi > ρi > 0, i = 1, . . . ,m.

Let fi ∈Cνi
b− ([a,b]) such that f (ki)

i (b) = 0, ki = ri,ri +1, . . . ,ni−1, where ri := [ρi],
ni := [νi] , i = 1, . . . , ,m. Assume Δνi

b− fi, i = 1, . . . ,m, are functions of fixed strict sign
a.e. Then

∥
∥
∥
∥
∥

m

∏
i=1

(
Δρi

b− fi
)
∥
∥
∥
∥
∥

p

≥ (b− a)

m
∑

i=1
(νi−ρi)+m

(
1
p−1

)
+ 1

p

(
p

m
∑

i=1
(νi−ρi)+m(1− p)+ 1

) 1
p

· 1
(

m
∏
i=1

Γ (νi−ρi) (p(νi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1

∥
∥Δνi

b− fi
∥
∥

q

)

. (29.137)

Proof. Using Theorem 29.3, see (29.17), and Theorem 29.42, see (29.136). ��
We also give

Theorem 29.44. Let 0 < p < 1,q < 0 such that 1
p +

1
q = 1, r > 0; νi > ρi > 0, i =

1, . . . ,m. Let fi ∈Cνi
b− ([a,b]) such that f (ki)

i (b) = 0, ki = ri,ri + 1, . . . ,ni− 1, where
ri := [ρi], ni := [νi] , i = 1, . . . , ,m. Assume Δνi

b− fi, i = 1, . . . ,m, are functions of fixed
strict sign a.e. Then

∥
∥
∥
∥∥

m

∏
i=1

(
Δρi

b− fi
)
∥
∥
∥
∥∥

r

≥ (b− a)

m
∑

i=1
(νi−ρi)−m+m

p +
1
r

(
r

(
m
∑

i=1
(νi−ρi)−m+ m

p

)
+ 1

) 1
r

· 1
(

m
∏
i=1

Γ (νi−ρi) (p(νi−ρi− 1)+ 1)
1
p

)

(
m

∏
i=1

∥
∥Δνi

b− fi
∥
∥

q

)

. (29.138)

Proof. Using Theorem 29.4, see (29.25), and Theorem 29.42, see (29.136). ��
We continue with

Terminology 29.45. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with pos-
itive σ -finite measures, and let ki : Ω1×Ω2→ R be nonnegative measurable func-
tions, ki (x, ·) measurable on Ω2, and

Ki (x) =
∫

Ω2

ki (x,y)dμ2 (y) , for any x ∈Ω1, (29.139)

i = 1, . . . ,m. We assume that Ki (x) > 0 a.e. on Ω1, and the weight functions are
nonnegative measurable functions on the related set.
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We consider measurable functions gi : Ω1→ R with the representation

gi (x) =
∫

Ω2

ki (x,y) fi (y)dμ2 (y) , (29.140)

where fi : Ω2→ R are measurable functions, i = 1, . . . ,m.
Here u stands for a weight function on Ω1.

For m ∈N, the first author in [5] proved the following general result:

Theorem 29.46. Let j ∈ {1, . . . ,m} be fixed. Assume that the function x �→⎛

⎝
u(x)

m
∏

i=1
ki(x,y)

m
∏

i=1
Ki(x)

⎞

⎠ is integrable on Ω1, for each y ∈Ω2. Define λm on Ω2 by

λm (y) :=
∫

Ω1

⎛

⎜
⎜
⎝

u(x)
m
∏
i=1

ki (x,y)

m
∏
i=1

Ki (x)

⎞

⎟
⎟
⎠dμ1 (x)< ∞. (29.141)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions. Then

∫

Ω1

u(x)
m

∏
i=1

Φi

(∣∣
∣
∣

gi (x)
Ki (x)

∣∣
∣
∣

)
dμ1 (x) (29.142)

≤

⎛

⎜⎜
⎜
⎜
⎜
⎝

m

∏
i=1
i�= j

Ø

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

⎞

⎟⎟
⎟
⎟
⎟
⎠

(∫

Ω2

Φ j
(∣∣ f j (y)

∣
∣)λm (y)dμ2 (y)

)
,

true for all measurable functions, i = 1, . . . ,m, fi : Ω2→R such that:

(i) fi, Φi (| fi|), are both ki (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1,

(ii) λmΦ j
(∣∣ f j

∣
∣) ;Φ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|), are all

μ2 -integrable,

and for all corresponding functions gi given by (29.140). Above ̂Φ j
(∣∣ f j

∣
∣) means

missing item.

We make

Remark 29.47. We remind the beta function

B(x,y) :=
∫ 1

0
tx−1 (1− t)y−1 dt, (29.143)

for Re(x) , Re(y)> 0, and the incomplete beta function
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B(x;α,β ) =
∫ x

0
tα−1 (1− t)β−1 dt, (29.144)

where 0 < x≤ 1; α,β > 0.

For Iαi
a+;σ ,η Erdelyi–Kober fractional integral, αi > 0, i = 1, . . . ,m, by [6] the

corresponding

ki (x,y) =
σx−σ(αi+η)

Γ (αi)
χ(a,x] (y)

yση+σ−1

(xσ − yσ )1−αi
, (29.145)

x,y ∈ (a,b), where χ stands for the characteristic function.
Also from [6] we get

Ki (x) =
(
Iαi
a+;σ ;η (1)

)
(x) (29.146)

=
B(η+ 1,αi)−B

((
a
x

)σ
;η+ 1,αi

)

Γ (αi)
, (29.147)

i = 1, . . . ,m.

We also make

Remark 29.48. For Iαi
b−;σ ,η Erdelyi–Kober fractional integral, αi > 0, i = 1, . . . ,m,

by [6] the corresponding

ki (x,y) =
σxση

Γ (αi)
χ[x,b) (y)

yσ(1−η−αi)−1

(yσ − xσ )1−αi
, (29.148)

x,y ∈ (a,b). Furthermore, by [6] we have

Ki (x) =
(

Iαi
b−;σ ;η (1)

)
(x) (29.149)

=

(
B(η ,αi)−B

((
x
b

)σ
;η ,αi

))

Γ (αi)
, (29.150)

i = 1, . . . ,m.

We give

Theorem 29.49. Here ki (x,y) and
(
Iαi
a+;σ ;η (1)

)
(x) are as in Remark 29.47, for

Iαi
a+;σ ,η Erdelyi–Kober fractional integral. Let j ∈ {1, . . . ,m} be fixed. Assume that

the function x �→
⎛

⎝
u(x)

m
∏

i=1
ki(x,y)

m
∏

i=1
(I

αi
a+;σ ;η (1))(x)

⎞

⎠ is integrable on (a,b), for each y ∈ (a,b).

Define λ+
m on (a,b) by
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λ+
m (y) :=

∫ b

a

⎛

⎜
⎜
⎝

u(x)
m
∏
i=1

ki (x,y)

m
∏
i=1

(
Iαi
a+;σ ;η (1)

)
(x)

⎞

⎟
⎟
⎠dx < ∞. (29.151)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions. Then

∫ b

a
u(x)

m

∏
i=1

Φi

(∣∣
∣
∣∣

Iαi
a+;σ ,η fi (x)(

Iαi
a+;σ ;η (1)

)
(x)

∣
∣
∣
∣∣

)

dx (29.152)

≤

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (y)|)dy

⎞

⎟
⎠
(∫ b

a
Φ j

(∣∣ f j (y)
∣
∣)λ+

m (y)dy

)
,

true for all measurable functions, i = 1, . . . ,m, fi : (a,b)→R such that:

(i) fi, Φi (| fi|), are both ki (x,y)dy -integrable, a.e. in x ∈ (a,b).

(ii) λ+
m Φ j

(∣∣ f j
∣
∣) ;Φ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|), are all

integrable. Above ̂Φ j
(∣∣ f j

∣
∣) means missing item.

Proof. Direct application of Theorem 29.46. ��
We also give

Theorem 29.50. Here ki (x,y) and
(

Iαi
b−;σ ;η (1)

)
(x) are as in Remark 29.48, for

Iαi
b−;σ ,η Erdelyi–Kober fractional integral. Let j ∈ {1, . . . ,m} be fixed. Assume that

the function x �→
⎛

⎝
u(x)

m
∏

i=1
ki(x,y)

m
∏

i=1

(
I
αi
b−;σ ;η (1)

)
(x)

⎞

⎠ is integrable on (a,b), for each y ∈ (a,b).

Define λ−m on (a,b) by

λ−m (y) :=
∫ b

a

⎛

⎜
⎜
⎝

u(x)
m
∏
i=1

ki (x,y)

m
∏
i=1

(
Iαi
b−;σ ;η (1)

)
(x)

⎞

⎟
⎟
⎠dx < ∞. (29.153)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions. Then

∫ b

a
u(x)

m

∏
i=1

Φi

⎛

⎝

∣
∣∣
∣
∣
∣

Iαi
b−;σ ,η fi (x)

(
Iαi
b−;σ ;η (1)

)
(x)

∣
∣∣
∣
∣
∣

⎞

⎠dx (29.154)

≤

⎛

⎜
⎝

m

∏
i=1
i�= j

∫ b

a
Φi (| fi (y)|)dy

⎞

⎟
⎠

(∫ b

a
Φ j

(∣∣ f j (y)
∣
∣)λ−m (y)dy

)
,
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true for all measurable functions, i = 1, . . . ,m, fi : (a,b)→R such that:

(i) fi, Φi (| fi|), are both ki (x,y)dy -integrable, a.e. in x ∈ (a,b).

(ii) λ−m Φ j
(∣∣ f j

∣
∣) ;Φ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . , ̂Φ j

(∣∣ f j
∣
∣), . . . ,Φm (| fm|), are all

integrable. Above ̂Φ j
(∣∣ f j

∣
∣) means missing item.

Proof. Direct application of Theorem 29.46. ��
When k (x,y) = k1 (x,y) = k2 (x,y) = . . . = km (x,y), then K (x) := K1 (x) =

K2 (x) = . . .= Km (x) . Then from Corollary 5, of [5], we get

Proposition 29.51. Assume that the function x �→
(

u(x)km(x,y)
Km(x)

)
is integrable on Ω1,

for each y ∈Ω2. Define Um on Ω2 by

Um (y) :=
∫

Ω1

(
u(x)km (x,y)

Km (x)

)
dμ1 (x)< ∞. (29.155)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions. Then

∫

Ω1

u(x)
m

∏
i=1

Φi

(∣∣
∣
∣
gi (x)
K (x)

∣
∣
∣
∣

)
dμ1 (x) (29.156)

≤
(

m

∏
i=2

∫

Ω2

Φi (| fi (y)|)dμ2 (y)

)(∫

Ω2

Φ1 (| f1 (y)|)Um (y)dμ2 (y)

)
,

true for all measurable functions, i = 1, . . . ,m, fi : Ω2→R such that:

(i) fi, Φi (| fi|), are both k (x,y)dμ2 (y) -integrable, μ1 -a.e. in x ∈Ω1,
(ii) UmΦ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . ,Φm (| fm|), are all μ2 -integrable,

and for all corresponding functions gi given by (29.140).

Remark 29.52. For Iαa+ left mixed Riemann–Liouville fractional multiple integral of
order α the corresponding k(x,y) is

ka+ (x,y) =
1

N
∏
i=1

Γ (αi)

χ N
∏

i=1
(ai,xi]

(y)
N

∏
i=1

(xi− yi)
αi−1 , (29.157)

∀ x,y ∈
N
∏
i=1

(ai,bi) and the corresponding K(x) is

Ka+ (x) = (Iαa+1)(x) =
N

∏
i=1

(xi− ai)
αi

Γ (αi + 1)
, (29.158)

∀ x ∈
N
∏
i=1

(ai,bi) , by [6].
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We also make

Remark 29.53. For Iαb− right mixed Riemann–Liouville fractional multiple integral
of order α the corresponding k(x,y) is

kb− (x,y) =
1

N
∏
i=1

Γ (αi)

χ N
∏

i=1
[xi,bi)

(y)
N

∏
i=1

(yi− xi)
αi−1 , (29.159)

∀ x,y ∈
N
∏
i=1

(ai,bi) and the corresponding K(x) is

Kb− (x) = (Iαb−1)(x) =
N

∏
i=1

(bi− xi)
αi

Γ (αi + 1)
, (29.160)

∀ x ∈
N
∏
i=1

(ai,bi) , by [6].

We give

Proposition 29.54. Here we follow Remark 29.52. Assume that the function x �→(
u(x)km

a+(x,y)

[(Iαa+1)(x)]
m

)
is integrable on

N
∏
i=1

(ai,bi), for each y ∈ N
∏
i=1

(ai,bi). Define U+
m on

N
∏
i=1

(ai,bi) by

U+
m (y) :=

∫

N
∏

i=1
(ai,bi)

(
u(x)km

a+ (x,y)
[
(Iαa+1)(x)

]m

)

dx < ∞. (29.161)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions. Then

∫

N
∏

i=1
(ai,bi)

u(x)
m

∏
i=1

Φi

(∣∣
∣
∣
∣

(
Iαa+ fi

)
(x)

(Iαa+1)(x)

∣
∣
∣
∣
∣

)

dx (29.162)

≤
⎛

⎝
m

∏
i=2

∫

N
∏

i=1
(ai,bi)

Φi (| fi (y)|)dy

⎞

⎠

⎛

⎝
∫

N
∏

i=1
(ai,bi)

Φ1 (| f1 (y)|)U+
m (y)dy

⎞

⎠ ,

true for all measurable functions, i = 1, . . . ,m, fi :
N
∏
i=1

(ai,bi)→ R such that:

(i) fi, Φi (| fi|), are both ka+ (x,y)dy -integrable, a.e. in x ∈
N
∏
i=1

(ai,bi).

(ii) U+
m Φ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . ,Φm (| fm|), are all integrable.

We finish this article with
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Proposition 29.55. Here we follow Remark 29.53. Assume that the function x �→(
u(x)km

b−(x,y)
[(Iαb−1)(x)]

m

)
is integrable on

N
∏
i=1

(ai,bi), for each y ∈
N
∏
i=1

(ai,bi). Define U−m on

N
∏
i=1

(ai,bi) by

U−m (y) :=
∫

N
∏

i=1
(ai,bi)

(
u(x)km

b− (x,y)[
(Iαb−1)(x)

]m

)

dx < ∞. (29.163)

Here Φi : R+→ R+, i = 1, . . . ,m, are convex and increasing functions. Then

∫

N
∏

i=1
(ai,bi)

u(x)
m

∏
i=1

Φi

(∣∣
∣
∣∣

(
Iαb− fi

)
(x)

(Iαb−1)(x)

∣
∣
∣
∣∣

)

dx (29.164)

≤
⎛

⎝
m

∏
i=2

∫

N
∏

i=1
(ai,bi)

Φi (| fi (y)|)dy

⎞

⎠

⎛

⎝
∫

N
∏

i=1
(ai,bi)

Φ1 (| f1 (y)|)U−m (y)dy

⎞

⎠ ,

true for all measurable functions, i = 1, . . . ,m, fi :
N
∏
i=1

(ai,bi)→ R such that:

(i) fi, Φi (| fi|), are both kb− (x,y)dy -integrable, a.e. in x ∈
N
∏
i=1

(ai,bi).

(ii) U−m Φ1 (| f1|) ,Φ2 (| f2|) ,Φ3 (| f3|) , . . . ,Φm (| fm|), are all integrable.
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Cesáro summability, 68–69
density function, 58
density properties, 59
jump operators, 58
measurable function, 59–60, 62, 64–65,

68–69
methods, 60–62
open and closed intervals, 58
real-valued function, 59

Stehfest, H., 324
Step functions, 278
Stokes equation

AGKS preconditioner, 238–240
DOF, 239
multigrid (MG), 241
numerical experiments, 244

P-Minres solver, 246, 253–259



486 Index

Stokes equation (cont.)
P-Uzawa solver, 246–252

PMM, 240, 241
robust preconditioners, 238, 240
solver methods

LBB stability, 241, 242
preconditioned Minres, 244
preconditioned Uzawa, 243
spectral equivalences, 242, 243

Strang, G., 174
Sturm–Liouville boundary conditions, 166
Sturm–Liouville eigenvalue problem, 150
Symmetric functions

binomial coefficients, 231
in variables, 230

Symmetric matrix, 210, 212
Symmetric operator, 232
Szász–Baskakov–Durrmeyer operators

approximation properties, 329–330
Korovkin-type approximation theorem,

336–337
operators construction, 330–331
Voronovskaya-type result, 332–336
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