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        Introduction and Historical 
Background 

 The association of hydrocephalus and the Chiari 
malformations has been described from the time 
of Hans Chiari’s initial report in 1891  [  1  ] . The 
pathophysiology of Chiari-associated hydro-
cephalus has nonetheless been controversial, 
with several hypotheses proposed to explain 
its pathophysiology. In his original manuscript, 
Chiari postulated that tonsillar herniation resulted 
from supratentorial pressure due to concomitant 
hydrocephalus  [  1  ] , suggesting that brain her-
niation was in fact secondary to intrinsic hydro-
cephalus. This initial explanation was cogent 
and quite popular and still provides the ratio-
nale for CSF diversion as a primary treatment of 
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  Abstract 

 The association of hydrocephalus and the Chiari malformations has been 
described from the time of Hans Chiari’s initial report in 1891. Whether 
hydrocephalus is the cause of or the result of hindbrain herniation remains 
a subject of long-standing controversy, but recent advances in vascular and 
volumetric imaging may eventually provide de fi nitive information to settle 
the debate. Though there is a wide range of hindbrain herniations that fall 
under the Chiari rubric, most authors would agree that coexisting hydro-
cephalus should be managed with CSF diversion  fi rst, either by shunting 
or endoscopic ventriculostomy, before consideration is given to posterior 
fossa decompression. It is crucial to keep in mind that pseudotumor cere-
bri may also present with symptoms that mimic those seen in Chiari mal-
formation, making it critical that the neurosurgeon strive to differentiate 
these two groups prior to surgical intervention for optimal outcome.  
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 Chiari-associated hydrocephalus. The Dutch sur-
geon van Houweninge Graftdijk proposed a con-
verse theory in 1932  [  2  ] , whereby the foramina 
of the fourth ventricle, herniated into the upper 
end of the spinal canal, act as a valvular obstruc-
tion and precipitate hydrocephalus. He advocated 
surgical correction of the hindbrain herniation in 
order to widen the space and allow for better  fl ow 
of CSF. More recent advances in cranial imag-
ing and volumetric analysis have provided some 
detail to this theory, linking tonsillar herniation to 
a disorder of the paraxial mesoderm with under-
development of the occipital somites and second-
ary hypoplasia of the occipital bone, leading to 
overcrowding of the vascular and neural struc-
tures within the posterior cranial fossa  [  3,   4  ] . This 
combination of factors may lead to impaired CSF 
absorption and  fl ow due to hindbrain distortion, 
decreased cisterns, and anomalies of the venous 
circulation, resulting in hydrocephalus. Whether 
hydrocephalus is the cause of or the result of 
hindbrain herniation is quite relevant, as it may 
dictate the surgeon’s approach to a management 
strategy that is perceived to lead to the best clini-
cal outcome for each individual patient. Given 
the wide range of hindbrain anomalies that fall 
under the Chiari rubric, each Chiari subtype will 
be discussed separately.  

   Chiari I 

   Epidemiology and Clinical Presentation 

 Reported incidence rates of hydrocephalus in 
cases of Chiari I malformation (CMI) range from 
0 to 9.6 %  [  4–  6  ] , and it may often be associated 
with concomitant syringomyelia  [  4  ] . In addition 
to classic hindbrain symptoms of CMI, symp-
toms of hydrocephalus and resultant elevated ICP 
may include headaches, vomiting, papilledema, 
and enlarging head circumference in infants. 
Magnetic resonance imaging is the modality of 
choice for diagnosis of both entities and also 
allows evaluation of the spinal cord to rule out 
associated syringomyelia. In patients being con-
sidered for ETV, MRI also provides necessary 
anatomic detail of the third ventricle, basilar 

artery, and prepontine space (Fig.  24.1 ). Threshold 
values of ventricular enlargement necessary for a 
diagnosis of hydrocephalus are not well de fi ned 
in the literature, making clinical diagnosis of ele-
vated ICP a crucial component of the decision-
making process.   

   Management and Outcomes 

 As mentioned before, some controversy exists 
regarding whether hydrocephalus should be con-
sidered the cause of the CMI hindbrain hernia-
tion or rather the effect of obstruction at the level 
of the fourth ventricular outlet or even abnormal 
CSF absorption at the level of the posterior fossa 
cisterns  [  3  ] . This controversy notwithstanding, it 
is generally accepted that in cases of CMI, hydro-
cephalus should be managed by adequate CSF 
diversion before consideration is given to suboc-
cipital decompression  [  7–  10  ] . 

 Ventriculoperitoneal shunt placement has long 
been the mainstay of treatment for CMI-associ-
ated hydrocephalus. While there are no published 
studies looking speci fi cally at the durability of 

  Fig. 24.1    Chiari I malformation with hydrocephalus. 
Sagittal T1-weighted MR imaging demonstrates caudal 
displacement of the cerebellar tonsils and ventricular 
enlargement       
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VPS for CMI-associated hydrocephalus, the 
complication and infection rates for shunt place-
ment are not insigni fi cant, especially in the pedi-
atric population  [  11,   12  ] . 

 Recent studies have reported relative success 
of ETV in the management of CMI-related HCP 
 [  13–  24  ] . The two largest series  [  22,   23  ]  reported 
an 87–94 % (28 of 31) early success rate with two 
failures due to late (>1 year) stoma closure and in 
one case of a previously shunted patient. Together, 
the two series reported no mortality or clinically 
signi fi cant complications and syringomyelia res-
olution or improvement in 8 of 11 patients. Of 
note, despite similar success rates in management 
of HCP, the two groups reported very different 
rates of patients going on to require subsequent 
posterior fossa decompression for persistent CMI 
symptomatology (0 vs. 37.5 %). Whether this 
was due to different mean ages of their popula-
tions (15.2 vs. 31.9) or criteria for operative 
decompression is unclear. Nonetheless, both 
groups advocate ETV as the procedure of choice 
in the management of hydrocephalus associated 
with CMI, both for hydrocephalus control and 
treatment of hindbrain herniation symptoms, 
including syringomyelia. 

 Prospective, randomized studies are required 
to validate this encouraging preliminary data.   

   Chiari II Malformation 

   Epidemiology and Clinical Presentation 

 The Chiari II malformation (CMII) almost always 
occurs in patients born with neural tube defects, 
most commonly myelomeningocele or encephal-
ocele. Criteria for diagnosis include the elonga-
tion and caudal migration of the cerebellar vermis, 
brainstem, and fourth ventricle into the upper 
cervical canal, as well as a host of other cerebral 
anomalies (Fig.  24.2 ). Associated  fi ndings may 
include tectal beaking, basilar invagination, col-
pocephaly, low-lying torcular, skull anomalies, 
and syringomyelia (40–95 %)  [  25  ] . Incidence of 
clinical hydrocephalus requiring CSF diversion 
varies from 40 % in prenatally closed groups  [  26  ]  
to 52–90 % in postnatally closed series  [  27–  33  ] . 

This wide variation in reported incidence is likely 
a re fl ection of different patient populations, 
health systems, and criteria for diagnosis and 
intervention.  

 Symptoms of hydrocephalus in infants with 
CMII may include bulging fontanelle, split cra-
nial sutures, and leakage from the myelomenin-
gocele closure site. Of note, hydrocephalus may 
also worsen symptoms referable to the CMII, 
including lower cranial neuropathies, swallowing 
dysfunction, and stridor. Numerous methods exist 
to quantify ventriculomegaly, including calcula-
tion of the ratio of biventricular diameter to bipa-
rietal diameter  [  34  ] , frontal-occipital horn ratio, 
and ventricular index, though no published stud-
ies to date have clearly delineated the best 
measure.  

   Management and Outcomes 

 As in CMI, management of hydrocephalus or 
veri fi cation of a working shunt should always 
precede suboccipital decompression, even in the 
setting of brainstem symptomatology (i.e., stridor, 

  Fig. 24.2    Chiari II malformation with hydrocephalus. 
Sagittal T1-weighted MR imaging demonstrates elonga-
tion and caudal displacement of the cerebellar vermis and 
brainstem into the upper cervical canal, tectal beaking, 
and low-lying torcular       
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dysphagia, sleep apnea) or worsening syringomy-
elia. Criteria for CSF diversion have historically 
been somewhat variable, though efforts have been 
made to standardize indications to better compare 
outcomes across multiple institutions  [  26  ] . 
Traditionally, ventriculoperitoneal shunting has 
been the most common procedure used for treat-
ment of hydrocephalus associated with CMII and 
myelomeningocele. However, shunt complication 
rates and death in children with myelomeningo-
cele may be higher than in children requiring 
shunt for other reasons  [  35–  38  ] . Some authors 
have suggested that infective complications of 
shunting may have a greater impact on cognitive 
development than the hydrocephalus  [  39  ]  and that 
children with myelomeningocele who do not 
require shunt placement have better survival 
 [  40,   41  ]  and higher IQ  [  42  ]  than those who have 
undergone shunt placement. These studies are 
limited by their retrospective nature and potential 
bias, and prospective studies are required to eluci-
date the appropriate threshold for intervention 
given the known risks of shunting. In children 
with mild ventriculomegaly and no signs or symp-
toms of increased intracranial pressure, poten-
tially improved brain development must be 
weighed against the known risks of CSF diver-
sion in this population. Based on preliminary data 
suggesting improved neuropsychological scores 
6 months following shunt insertion  [  43  ] , prospec-
tive studies are under way to evaluate ventricular 
size and neurocognitive outcome. 

 More recently, endoscopic third ventriculos-
tomy has been proposed as an acceptable alterna-
tive to ventriculoperitoneal shunting in children 
with myelomeningocele  [  44–  49  ] , with acknowl-
edged lower success rates in infants and children 
with a previously placed shunt  [  46–  48,   50  ] . The 
addition of choroid plexus cauterization to ETV 
has also been investigated, based on extensive 
experience with children in developing countries 
 [  51–  54  ] , where cost and medical access preclude 
ventriculoperitoneal shunt placement. Long-term 
follow-up in this cohort demonstrated similar 
neurocognitive outcomes in the ETV/CPC and 
VP shunt groups  [  52  ] . It remains unclear whether 
these very promising  fi ndings are directly trans-
latable to infants in developed countries.   

   Chiari III 

 Chiari malformation type III (CM III) is an 
extremely rare entity characterized by herniation 
of the posterior fossa contents through a low 
occipital and/or upper cervical osseous defect 
 [  1,   55,   56  ] , estimated to account for 0.64–4 % of 
all Chiari malformations  [  57,   58  ] . Published series 
report a high incidence of associated hydrocepha-
lus, syringomyelia, and tethered cord syndrome 
 [  25,   55,   56  ] . Associated hydrocephalus has tradi-
tionally been managed with ventriculoperitoneal 
shunt placement, and the rarity of CM III limits 
the availability of published data regarding long-
term shunt survival or alternative CSF diversion. 

   Pseudotumor Cerebri and the Chiari 
Malformation 

 Tonsillar descent secondary to lumboperitoneal 
shunting for pseudotumor cerebri (PTC) is quite 
common, well described in the literature  [  59  ] , 
and will not be treated further here. However, 
there has been much disagreement regarding the 
nature of the association between PTC and pri-
mary Chiari malformation. PTC classically pres-
ents with headaches, visual changes, elevated 
intracranial pressure measured on lumbar punc-
ture in the lateral decubitus position, and no evi-
dence of hydrocephalus or intracranial pathology. 
It is most often observed in obese women of 
childbearing age, though it can also be seen sec-
ondary to certain medications (tetracycline, mino-
cycline, vitamin A, corticosteroids, lithium, and 
oral contraceptives) and in the setting of venous 
sinus thrombosis  [  60  ] . The source of the contro-
versy lies in two observations. First, several 
groups have described an increased prevalence of 
cerebellar ectopia in patients with PTC. Sinclair 
described a series of 156 cases of PTC noting an 
overall incidence of 2.7 %, signi fi cantly higher 
than the 0.77 % rate previously reported in the 
general population  [  61  ] . Banik observed a 24 % 
rate of inferior tonsillar displacement in patients 
with PTC, with 10 % ful fi lling criteria for Chiari 
malformation (>5 mm)  [  62  ] . Of note, all patients 
with tonsillar descent were female and obese. 
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 Second, several groups have described the 
effectiveness of CSF shunting in patients with 
recurrent Chiari symptoms following posterior 
fossa decompression. Fagan reported a series of 
15 patients with post-Chiari PTC, de fi ned as 
recurrence of Chiari-like symptoms after decom-
pression, elevated lumbar CSF pressure in the 
absence of meningitis or ventriculomegaly, and 
transient resolution of symptoms following lum-
bar CSF drainage  [  63  ] . All patients were evalu-
ated with CSF  fl ow studies at the foramen magnum 
as well as lumbar puncture to rule out infection/
aseptic meningitis and to evaluate intracranial 
pressure. Those found to have increased ICP 
underwent lumboperitoneal shunting, with 
signi fi cant symptom resolution in 7/9 (78 %) 
pediatric patients and in 0/6 adult patients  [  63  ] . 
Bejjani reported a series of six adult patients with 
similar recurrence of Chiari-like symptoms fol-
lowing posterior fossa decompression and found 
signi fi cant improvement in all following either 
shunting or repeat LP with acetazolamide  [  64  ] . 

 Whether the association is real or coincidental 
is unclear. Some authors argue that they are two 
pathophysiologically distinct entities with over-
lapping clinical presentation, speci fi cally head-
aches and tonsillar descent  [  65  ] . Others suggest 
that the entities may actually share a similar 
pathophysiology, namely, increased intracranial 
contents, engorged brain with venous hyperten-
sion, decreased intracranial volume, and mechan-
ical obstruction of CSF out fl ow at the foramen 
magnum with a common end result of altered 
compliance and disturbed neural hydrodynamics 
 [  62,   64,   66  ] . De fi nitive resolution of the issue 
will require more detailed imaging and prospec-
tive studies of larger populations. 

 Practically speaking, given the similar demo-
graphics, clinical presentation, and increased 
incidence of tonsillar ectopia in patients with 
pseudotumor cerebri, it is critical that the neuro-
surgeon strive to differentiate these two groups 
during clinical evaluation prior to surgery for 
optimal outcome. Patients with atypical head-
aches, obesity, relevant medication exposure, 
visual changes, and papilledema should be most 
closely examined to better differentiate between 
the two diagnoses. Detailed fundoscopic exam, 

MRI cine studies to visualize CSF  fl ow at the 
foramen magnum, and lumbar puncture may be 
considered in these complex patients to evaluate 
intracranial pressure and also determine if the 
patient responds symptomatically to CSF drain-
age. Those patients with evidence of intracra-
nial hypertension and symptomatic improvement 
following lumbar puncture will bene fi t from 
CSF diversion instead of posterior fossa 
decompression.  

   A Special Note About Predicting 
Success of ETV in the Chiari I and II 
Populations 

 Major factors that predict the success of ETV 
include age, etiology of hydrocephalus, and the 
presence or absence of a shunt preoperatively 
 [  48,   67–  79  ] . In 2009, Kulkarni et al. used these 
factors to develop a model to predict the proba-
bility of ETV success in the treatment of child-
hood hydrocephalus: the Endoscopic Third 
Ventriculostomy Success Score  [  48  ]  (Fig.  24.3 ). 
By assigning a score to age range, etiology, and 
shunt history, an overall score is calculated that 
predicts the likelihood of successful ETV at 
6 months post-procedure and was found to closely 
approximate success. Since that time, there have 
been several publications using the ETVSS. The 
Canadian Pediatric Neurosurgery Group evalu-
ated a multicenter cohort of children newly diag-
nosed with hydrocephalus and evaluated the risk 
of failure between ETV and VPS for high-, mod-
erate-, and low-ETVSS group  [  80  ] . For all groups, 
the risk of ETV failure became progressively 
lower compared with shunt failure with increas-
ing time from surgery. In the high-ETVSS group, 
the risk of ETV failure was lower than shunt fail-
ure soon after surgery. For all the rest, the risk of 
ETV failure only became lower than shunt failure 
3–6 months out from surgery. Kulkarni, Riva-
Cambrin, and Browd then applied the ETVSS to 
several well-known published series of patients 
on whom ETV was performed for various rea-
sons. The overall mean-predicted ETVSS was 
58 %, and the actual ETV success rate was 59 %, 
showing excellent predictive capability of the 
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model  [  46  ] . Two articles were published in 
November of 2011 in Journal of Neurosurgery: 
Pediatrics intended to further validate the ETVSS 
 [  45,   81  ] . Both single-institution series showed 
excellent predictive capability of the ETVSS in 
separate analyses.  

 As reviewed earlier, hydrocephalus related to 
the CMI is relatively rare. Therefore, ETVs for 
hydrocephalus due to CMI make up only a small 
part of most single-center and multicenter ETV 
series. Within the etiology portion of the ETVSS, 
the same predictive capability is apportioned to 
CMI (“other”) as those etiologies that tradition-
ally have a high rate of success: aqueductal steno-
sis and tectal tumors. Despite the initial success in 
published series reviewed above, this may very 
well be an overestimation of the capability of ETV 
to adequately treat hydrocephalus in patients with 
CMI, or this may be clinically accurate. Additional 
series continue to accrue  [  22,   23  ] , and future 
adjustments to the model may be necessary. 

 Performance of an ETV for hydrocephalus 
related to spina bi fi da, however, is becoming 
more common. Based on the current ETVSS 
model, there is less likelihood of success in 
patients with this etiology than with CMI. Due 
to the large number of patients with post- 
infectious hydrocephalus, Warf, Mugamba, and 
Kulkarni modi fi ed the existing ETVSS in order 
to apply it to children seen at the CURE 
Children’s Hospital of Uganda (CCHU)  [  78  ] . As 
a result, the CCHU ETVSS for use in the  fi eld 
predicted ETV success to a much higher degree 
by taking into consideration age, etiology, and 
the degree of choroid plexus cauterization 
(CPC). A substantial number of ETVs in this 
population were performed with choroid plexus 
cauterization. In a very interesting  fi nding and 
one that was independent of CPC and age, 
regression analysis revealed that the odds of 
ETV success were 2.25 times greater in spina 
bi fi da patients compared with other etiologies. 
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Further validation studies may shed more light 
on this relationship and again may contribute to 
a further honing of the model.   

   Conclusion 

 The Chiari malformations have long been associ-
ated with hydrocephalus. Controversy remains, 
however, regarding which entity precedes the 
other, though most authors agree the pathophys-
iology is multifactorial. Though hydrocephalus 
is relatively rare in the setting of the CMI, most 
agree that CSF diversion should be performed 
prior to suboccipital decompression. In addi-
tion to traditional shunting, emerging data sug-
gest that ETV is effective in a large majority 
of these patients and may improve hindbrain 
compression symptoms and syringomyelia. 
Hydrocephalus is much more common in the 
CMII–myelomeningocele population, though 
controversy remains regarding the proportion 
of these patients that will ultimately require 
CSF diversion. As in the Chiari I population, 
adequate CSF drainage should be ensured prior 
to surgical decompression, even in the setting of 
hindbrain compression symptoms or syringo-
myelia. Though traditional shunting remains the 
most common treatment for these patients, ETV 
has emerged as an acceptable alternative, espe-
cially in experienced centers when combined 
with choroid plexus cauterization. Prospective 
studies of both entities are ongoing, examin-
ing diagnostic criteria, neuropsychological out-
comes, and preferred CSF diversion technique 
in these challenging populations.      
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