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Abstract Modelling and simulation of soft tissue cutting in 3D remain one of the
most challenging problems in surgery simulation, not only because of the nonlinear
geometric and material behaviour exhibited by soft tissue but also due to the
complexity of introducing the cutting-induced discontinuity. In most publications,
the progressive surgical cutting is modelled by conventional finite element (FE)
method, in which the high computational cost and error accumulation due to
re-meshing constrain the computational efficiency and accuracy. In this paper, a
meshless Total Lagrangian Adaptive Dynamic Relaxation (MTLADR) 3D cutting
algorithm is proposed to predict the steady-state responses of soft tissue at any
stage of surgical cutting in 3D. The MTLADR 3D algorithm features a spatial
discretisation using a cloud of nodes. With the benefits of no meshing and no
re-meshing, the cutting-induced discontinuity is modelled and simulated by adding
nodes on the cutting faces and implementing the visibility criterion with the aid of
the level set method. The accuracy of the MTLADR 3D cutting algorithm is verified
against the established nonlinear solution procedures available in commercial FE
software Abaqus.
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1 Introduction

Surgery simulation has great significance in extending surgeons’ ability to learn,
plan and carry out surgical interventions more accurately and less invasively.
Potential applications include surgical simulators for highly realistic surgical
training and planning, non-rigid registration in image-guided surgery systems
and computer-aided design of medical devices and procedures.

Modelling and simulation of soft tissue cutting remain one of the most chal-
lenging problems in surgery simulation. The challenges exist in the complexity
of introducing cutting-induced discontinuity and the capability of handling the
nonlinear geometric and material behaviour of soft tissue [1–3] while reducing the
high computational cost of 3D simulation.

So far, the progressive surgical cutting has been modelled and simulated by
subdivision of elements of the volumetric mesh using conventional finite element
(FE) method [4–7]. Even when using sophisticated re-meshing technologies, the
FE method tends to become unstable and its accuracy deteriorates when the mesh
undergoes distortion and fragmentation due to large deformations and cutting [8].
Despite the exploration of speed-up technologies [7, 9, 10], the high computational
cost constrains the computational efficiency of FE method in surgical cutting
simulation.

In this paper, a meshless Total Lagrangian Aadaptive Dynamic Relaxation
(MTLADR) 3D cutting algorithm is developed to provide robust solution for mod-
elling and simulation of soft tissue responses during cutting in 3D. This algorithm
belongs to the Element-Free Galerkin (EFG) family and is a generalisation of the
2D version presented in [11]. A cloud of points is used for discretisation and
approximation of the deformation field within the continuum which eliminates the
need for time-consuming generation of FE meshes and avoids the shortcomings of
the distortion and fragmentation of finite elements. In the MTLADR 3D cutting
algorithm, the cutting path is geometrically represented as a series of cutting planes.
The discontinuities induced by surgical cutting are modelled and traced using nodes
with specific level set values and appropriate field values (the nodal displacements
and the size of influence domain). The update of the level set values is performed
using simple and fast algebraic computations based on the geometry of the cutting
path. The effect of cutting is entirely reflected in the changes of the shape and size
of the influence domain of the nodes by efficiently implementing visibility criterion
with the aid of level set values.

Using adaptive dynamic relaxation, MTLADR 3D cutting algorithm offers a
fast convergence to the deformed state of deformation for problems with non-
linear geometric and material behaviour. The application of Total Lagrangian
(TL) formulation eliminates the error accumulation due to the stress/strain update
associated with the Updated Lagrangian (UL) formulation. The accuracy of the
algorithm is well controlled by the stringent convergence criteria of dynamic
relaxation. A range of numerical experiments were conducted for verification of the
results.
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This paper is organised as follows. The methods for modelling and simulation
of surgical cutting in 3D are presented in Section 2. The numerical experiments
and result verification are given in Section 3. Section 4 contains discussion and
conclusions.

2 Methods

2.1 Governing Equation and Solution

The deformed state of soft tissue at any stage of cutting is solved using dynamic
relaxation with optimal time stepping to obtain steady-state solution of the deformed
continuum [12]. Details of the solution method are given in our previous papers
[11, 13, 14].

2.2 Modelling of Surgical Cutting in 3D

In this study, we geometrically represent the progressing surgical cut in 3D as a
series of cutting planes as shown in Fig. 1. We adapt the level set method proposed
by Osher and Sethian [15] and developed by Stolarska et al. [16] to mathematically
describe the signed distances of all the nodes and integration points relative to
the cutting path. The discontinuities induced by surgical cutting are modelled and
traced using pairs of nodes which are created by adding two new nodes or splitting
the existing node at the point of discretisation. Every pair of discretising nodes
on the cutting faces is assigned specific level set values in order to be allocated
into the opposite sides of the cutting path. The appropriate field values (the nodal

Fig. 1 The cutting path in
3D problem domain is
represented by a series of
cutting planes (ABCD, CDEF
and EFGH)
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displacement and the size of domain of influence) of the newly added node can
either be interpolated by the existing nodal field parameters or be inherited from the
existing node. The effect of cutting is entirely reflected in the changes of the shape
and size of the influence domain of the nodes by implementing visibility criterion
with the help of the level set values of the nodes and integration points.

2.2.1 Initialisation of the Level Set Values of the Nodes
and Integration Points

When the first cut (e.g. the cutting plane ABCD illustrated in Fig. 1) is made, the
cutting face and its extension plane are mathematically represented as the zero level
set of function ψ(x,y,z) as defined in (1). The bottom line of the cut is defined as
the intersection of the cutting face and its orthogonal plane, which is mathematically
represented by the zero level set of function φ(x,y,z) as defined in (2):

ψ(x,y,z) =
(
x− xep

) Kx

‖K‖ +
(
y− yep

) Ky

‖K‖ +
(
z− zep

) Kz

‖K‖ (1)

φ(x,y,z) =
(
x− xep

) Tx

‖T‖ +
(
y− yep

) Ty

‖T‖ +
(
z− zep

) Tz

‖T‖ (2)

where (x,y,z) is the coordinate of a given point in the problem domain;
(
xep,yep,zep

)

is the coordinate of an arbitrary point located at the end-line/endpoint of the cutting
plane; K represents the normal vector of the cutting plane; Kx, Ky, and Kz are the x, y,
z components of vector K respectively; ‖K‖ is the length of vector K; T represents
the normal vector of the orthogonal plane of the cutting face which points to the
cutting direction; Tx, Ty, and Tz are the x, y, z components of vector T respectively;
‖T‖ is the length of vector T .

The values of both level set functions ψ and φ are calculated and stored for all the
nodes and integration points to indicate their positions relative to the cutting path.
The value of the level set function ψ at a given point is the signed distance from this
point to the cutting face. As illustrated in Fig. 2, the points with positive values of
the level set function ψ are all located on the same side of the cutting plane P and its
extension plane P1, while the points with negative values are all on the other side.
Zero value of function ψ indicates that the point is located right on the cutting plane
P or its extension plane P1. Following the same principle, the value of the level set
function φ indicates the signed distance from a given point to the plane P2 which
is orthogonal to the cutting face at the end-line of cutting L. If a point is judged to
be located on the cutting plane P (zero value of function ψ and negative value of
function φ), the associated value of function ψ is set to a small positive or negative
value in order to allocate the point to one of the sub-domains S1 or S2 (Fig. 2).
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Fig. 2 The initialisation of
level set values of functions
ψ and φ . The 3D problem
domain is divided into four
subdomains: subdomain S1:
ψ < 0 and φ < 0; subdomain
S2: ψ > 0 and φ < 0;
subdomain S3: ψ < 0 and
φ > 0; subdomain S4: ψ > 0
and φ > 0. ψ = 0 on the
cutting plane P and its
extension plane P1. φ = 0 on
the orthogonal plane P2

2.2.2 Spatial Discretisation of the Cutting Planes

The cutting planes representing the cutting path are discretised using nodes spaced
at the average nodal interval of the computational grid. If the computational grid
obtained by discretising the geometry of the analysed continuum contains no node
at the discretised position of the end-line of the cut, we add one node there with zero
values of level set functions ψ and φ . If there is no node at the discretised position
of the rest of the cutting planes, two nodes (having the same coordinates) are added
at this position. If there is an existing node at the discretised position or elsewhere
on the cutting planes, we split this node into two nodes having the same coordinates.

2.2.3 Update of Level Set Values of Nodes and Integration Points
During Progressing Cutting

When cutting progresses from one cutting plane to the next, the level set values of
functions ψ and φ at the nodes and the integration points need to be updated. In the
following algorithm, ψn and φn denote the values of functions ψ and φ at step n;
ψn+1 and φn+1 denote the values of functions ψ and φ at step n+ 1; (x,y,z) are the
coordinates of a given node or integration point; (xn

ep,y
n
ep,z

n
ep) and (xn+1

ep ,yn+1
ep ,zn+1

ep )
are the coordinates of an arbitrary point located at the end-line/endpoint of the
cutting plane at step n and n+ 1 respectively; T n+1 denotes the normal vector of
the orthogonal plane of the cutting face at step n+ 1 which points in the cutting
direction; T n+1

x , T n+1
y , T n+1

z are the x, y, z components of the normal vector T n+1;
‖T n+1‖ is the length of the normal vector T n+1; Kn+1 denotes the normal vector of
the cutting face at step n+ 1; Kn+1

x , Kn+1
y , Kn+1

z are the x, y, z components of the
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Fig. 3 Progression of cutting
without direction change
(cutting plane ABCD and
CDEF are co-linear). The
shaded space, where φ n < 0,
is a non-update space
Ω non-update while the rest of
the domain is an update space
Ω update

normal vector Kn+1 respectively; ‖Kn+1‖ is the length of the normal vector Kn+1;Ω
represents the whole region of the problem domain.

1. Cutting direction does not change. When cutting progresses from one cutting
plane to the next without direction change, the values of level set function φ of
the nodes and integration points whose φn ≥ 0 need to be updated. The update
process is illustrated in Fig. 3. No update is done in the space where φn < 0
(indicated as non-update space Ω non-update in Fig. 3) while the rest of the analysed
domain (where φn ≥ 0) is an update space

ψn+1 = ψn inΩ (3)

φn+1 = φn inΩ non-update (4)

φn+1(x,y,z) = (x− xn+1
ep ) T n+1

x‖T n+1‖ +(y− yn+1
ep )

T n+1
y

‖T n+1‖
+
(
z− zn+1

ep

) T n+1
z

‖T n+1‖ inΩ update (5)

where Ω is the union of Ω non-update and Ω update regions.
2. Cutting direction changes. If the cutting direction changes, the update region

Ω update
c is defined as the space where φ̄n > 0 while the rest of the analysed domain

is defined as the non-update region Ω non-update
c (Fig. 4).

(a) Level set function φ̄n is obtained by rotating function φn around the end-
line/endpoints of the cutting plane at step n (e.g. end-line CD of cutting
plane ABCD in Fig. 4) until orthogonal to the cutting plane at step n+ 1
(e.g. cutting plane CDEF in Fig. 4):
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Fig. 4 Progression of cutting
with direction change: the
cutting proceeds from cutting
plane ABCD to cutting plane
CDEF with direction change.
Level set function φ̄ n is
obtained by rotating level set
function φ n until it is
orthogonal to the current
cutting plane CDEF. The
shaded space, where φ̄ n ≤ 0,
is non-update region
Ω non-update

c while the rest of
the problem domain is an
update region Ω update

c
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(b) Following changes in the cutting direction, the values of function ψn+1 of
the nodes and integration points in the update region Ω update

c are re-computed
while no re-computation is needed in the non-update region

ψn+1 = ψninΩ non-update
c (7)
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(c) Re-computation of function φn+1 is conducted in the entire analysed space
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(9)
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Fig. 5 The influence domain
of node N1 intersects the
cutting plane P; points I1 and
I2 should be eliminated from
the influence domain of this
node

2.2.4 Update of Influence Domains During Progressing Cutting

The update of the influence domains of every node in the vicinity of the cutting faces
is implemented by finding and eliminating the points that are no longer influenced
by the node due to the cutting path. In the following algorithm, ψi and φi denote the
values of the level set functions ψ and φ at node i while ψpt and φpt denote the values
of level set functions ψ and φ at an integration point/node in the influence domain
of node i.

1. The influence domain of a node, which is defined as a sphere in our algorithm,
is updated if it intersects the cutting path (Fig. 5). The selection criterion for the
node whose influence domain needs to be updated is

|ψi| ≤ Ri AND φi < Ri (10)

where Ri is the size (radius) of the influence domain of node i.
2. If the point and the node are located at the opposite sides of the cutting faces

and the line segment linking the node and the point intersects the cutting plane
(Fig. 5),

ψi ×ψpt < 0 AND φpt <−φi ×
∣∣
∣
∣
ψpt

ψi

∣∣
∣
∣ (11)

the point is removed from the influence domain of the node. Otherwise, the node
remains to be the supporting node of the point for interpolation.
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3. The following updates are made to account for the changes in influence
domains:

• For the points that are eliminated from the influence domains of the nodes, the
shape functions and their derivatives are re-calculated.

• The global 3D mass matrix is updated.

3 Numerical Results and Algorithm Verification

3.1 Numerical Experiment

The large deformation preceding cutting is simulated by the elongation of a cube
(0.1× 0.1 × 0.1m). One face of the cube (at y = 0m) is rigidly constrained in
x,y,z axes directions. The opposite face (at y = 0.1m) is elongated by 20% of the
initial length along y axis while the displacements in x and z axis direction are
constrained. The cube is spatially discretised into nodes to create the computational
grid for meshless algorithm. The soft tissue-like material property of the specimen
is modelled as soft and nearly incompressible continuum using Neo-Hookean
material model (Young’s modulus = 3,000Pa, Poisson’s ratio = 0.49, mass density
= 1,000kg/m3) that approximates the mechanical response of brain tissue [2].
Cutting is conducted in the deformed soft tissue-like specimen via three sequential
steps with arbitrary direction as shown in Fig. 6a, b, and c respectively. The strain
energy, the reaction force at the rigidly constrained face of the specimen, and the
nodal displacements are predicted at every stage of the simulation.

Fig. 6 Model for verification of the MTLADR 3D cutting algorithm (shown using 729 nodes
for discretisation). Cutting is carried out in the stretched specimen of soft tissue-like material
along the pre-defined path shown using thick line segments. (a) The first cutting plane ABCD:
A(0.0953,0.05,0.095), B(0.0047,0.05,0.095), C(0.005,0.06,0.077) and D(0.095,0.06,0.077). Cut-
ting starts with arbitrary angle; (b) The second cutting plane CDEF: E(0.095,0.065,0.068)
and F(0.005,0.065,0.068). Cutting progresses without direction change; (c) The third cutting
plane EFGH: G(0.0053,0.058,0.041) and H(0.095,0.058,0.041). Cutting progresses with direction
change. Dimensions are in meters (m)
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Fig. 7 The deformed model of the 3D specimen of soft tissue-like material before the change of
cutting direction obtained using the MTLADR 3D cutting algorithm (converged solution shown
using 17,576 nodes): (a) the projection of the deformed model on the YOZ plane; (b) 3D view of
the deformed model

Fig. 8 The deformed model of the 3D specimen of soft tissue-like material at the end of 3-step
arbitrarily angled cutting obtained using the MTLADR 3D cutting algorithm: (a) the projection of
the deformed model on the YOZ plane; (b) 3D view of the deformed model

3.2 Numerical Results

Careful convergence studies were conducted. The deformed state of the specimen
before the change of cutting direction (converged solution) is shown in Fig. 7. The
deformed shape of the specimen at the end of cutting (converged solution), i.e. after
the change in cutting direction is introduced, is shown in Fig. 8.
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Fig. 9 The mesh of elements
of the FE model analysed to
obtain the reference solution
in Abaqus (18,133 nodes).
The edges of the elements
were aligned and separated
along the pre-cut face, which
is shown as thick line
segments, in order to assure
the good aspect ratio of the
elements

3.3 Reference Solution for Verification of MTLADR 3D
Cutting Algorithm

The results of MTLADR 3D cutting algorithm were verified against the well-
tested nonlinear FE analysis procedure available in commercial software Abaqus
6.10–1. As simulation of cutting is not supported by Abaqus, we computed only
the deformed configuration of the specimen with pre-introduced discontinuity
corresponding to the cutting path (Fig. 9).

3.4 Comparison of MTLADR 3D and Abaqus Solutions

The strain energy, reaction force and nodal displacements obtained using the
MTLADR 3D cutting algorithm agree well with the reference solution obtained
using the commercial FE solver Abaqus. The relative differences for strain energy
and the reaction force between the two methods are 0.34% and 0.29% respectively.
To enable verification of the predicted deformations, the nodal displacements
obtained using the MTLADR 3D cutting algorithm were re-calculated (through
interpolation using the MLS shape functions) for the nodal positions of the Abaqus
model. For the nodal displacement magnitudes, the maximum absolute difference
between the results obtained using the MTLADR 3D cutting algorithm and Abaqus
is 0.78 mm (3.9% of the imposed elongation) and the average difference (averaging
over all model nodes) is only 0.039 mm (0.19% of the imposed elongation).
The absolute difference at most of the nodal positions (95.76%) is less than 0.1 mm
(0.5% of the imposed elongation).
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Fig. 10 Verification results
for the proposed MTLADR
3D cutting algorithm.
Distribution of the absolute
differences between the nodal
displacement magnitudes
computed using the
MTLADR 3D cutting
algorithm and the reference
results from the established
nonlinear static solution
procedures available in
commercial finite element
software Abaqus

As shown in the distribution of the absolute differences demonstrated in Fig. 10,
the maximum differences are located at the vicinity of the endpoints of the cutting
plane while the differences in the other areas are extremely small (well below
0.1 mm). It is probable that the maximum differences may be caused by the
deterioration of the finite element solution accuracy caused by mesh distortion
at large strains in the vicinity of the endpoints of the cutting plane rather than
by our meshless algorithm. Considering that the accuracy of the state-of-the-art
image-guided neurosurgery techniques is not better than 1 mm [17], the accuracy
of the proposed MTLADR 3D cutting algorithm can be regarded as satisfying the
requirements of computer-integrated surgery.

4 Discussion and Conclusions

We developed the MTLADR 3D cutting algorithm, which belongs to the EFG
family, to predict the steady-state responses of soft tissue at any stage of surgical
cutting in 3D. The algorithm is capable of modelling both large deformations and
nonlinear material properties of soft tissues that are necessary in simulating surgery.
Since the spatial discretisation is in a form of a cloud of nodes, the burdensome
mesh generation and re-meshing in 3D required by the FE method are effectively
alleviated. The application of TL formulation eliminates the accumulation of errors
due to the reference frame update that occurs in UL formulation, which is typically
utilised in commercial FE codes. The privilege of pre-computing the shape functions
and their spatial derivatives greatly reduces the number of numerical operations
as compared to UL formulation. Furthermore, the strategy of dynamic relaxation
offers excellent performance in terms of computation speed while preserving good
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accuracy by controlling errors using stringent convergence criteria. These features
make our MTLADR method faster than FEM using tetrahedra.

The trajectory of cutting in 3D is geometrically represented as a series of cutting
planes. The cutting-induced discontinuity is modelled by creating a pair of nodes
at each discretised position of the cutting faces and introducing one node at each
discretised position of the end-line of the cutting. The nodes of each nodal pair on
the cutting faces are allocated to the opposite sides of the cutting path by using
specific level set values. For explicit time integration, the field variable values at
these nodes (i.e. the nodal displacements at the current and previous time step
and the size of the influence domain) are either inherited or interpolated (using
MLS shape functions) from the surrounding nodes. The effect of the cutting in the
deformation of the continuum is modelled solely through the changes in the nodal
domains of influence, which is effected through the efficient implementation of the
visibility criterion using the level set method.

The accuracy of the proposed MTLADR 3D cutting algorithm is verified against
the well-established nonlinear solution procedures available in the commercial finite
element software Abaqus. Numerical experiments were carried out to predict the
behaviour of a deformed (stretched) specimen of soft tissue-like material during
surgical cutting in 3D. The computed strain energy, reaction force, and the nodal
displacements agree very well with the reference solution obtained using the
nonlinear static solution procedures in Abaqus.

The key factor determining the computational cost of the proposed MTLADR
3D cutting algorithm is the number of iterations associated with dynamic relaxation
rather than modelling of cuts through the visibility criterion and level set method.
We have already completed a prototype implementation of the dynamic relaxation
part of our 3D cutting algorithm on graphics processing unit (GPU) (from within
Matlab) and achieved more than two orders of magnitude improvement in computa-
tional speed in comparison with the Matlab implementation on CPU alone. We are
confident that our approach is sufficiently computationally efficient to offer the
prospect of surgical simulation within the time constraints of the operating theatre.
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