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Abstract This paper compares the warping of neuro-images using brain
deformation predicted by means of patient-specific biomechanical model with
the neuro-image registration using BSpline-based free form deformation algorithm.
Deformation fields obtained from both algorithms are qualitatively compared and
overlaps of edges extracted from the images are examined. Finally, an edge-based
Hausdorff distance metric is defined to quantitatively evaluate the accuracy of
registration for these two algorithms. From the results it is concluded that the
patient-specific biomechanical model ensures higher registration accuracy than the
BSpline registration algorithm.
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1 Introduction

In a neurosurgical procedure the aim of a surgeon is to resect as much diseased
tissues as possible while preserving healthy tissues. Sophisticated pre-operative
imaging techniques have been developed over the past decade to aid neurosurgeons
with improved visualization [1]. However, surgical interventions (craniotomy, for
example) tend to distort the pre-operative anatomy and often lead to misalignment
between the actual position of pathology and its position determined from
pre-operative images [2]. In addition, constraints of the operating room restrict
the contrast and resolution of intra-operative images. These barriers, in principle,
can be overcome by aligning high quality pre-operative scans to intra-operative
ones. Accurate alignment demands that the pre-operative image is non-rigidly
registered with the intra-operative image.

The field of non-rigid registration of medical images has evolved in two separate
streams. One way to register the pre-operative image with the intra-operative
image is to use some intensity-based similarity criterion and derive a non-linear
warp function, which then can be used for warping the pre-operative image. In
this approach images are often treated as fluids or elastic bodies subjected to
elastic deformation [3]. The similarity criterion acts as the driving force of the
deformation. The BSpline-based free form deformation (FFD) algorithm [4] is
considered as a state-of-the-art non-rigid registration algorithm belonging to this
category. However, BSpline registration algorithm may often produce physically
implausible deformation field [5].

On the other hand it is shown in [2, 6–10] that the craniotomy-induced brain
shift can be predicted by non-linear biomechanical models. These models take into
account the mechanical behaviour of different classes of brain tissue (ventricle,
parenchyma, and tumour) and do not need a similarity criterion to drive the
numerical computation. In fact, the need for a target image (intra-operative image
in this case) can be eliminated and numerical computation can be carried out with
only the knowledge of the displacement of few points on the brain surface near
craniotomy.

In this work, the non-rigidly registered pre-operative images obtained using
deformations within the brain predicted by means of both a biomechanical model
[2, 6] and a BSpline algorithm implemented in 3D Slicer (www.slicer.org) are
analyzed and compared. For five different patients undergoing surgery, the accuracy
of registration is compared both qualitatively and quantitatively. The deformation
fields obtained from each registration algorithm are qualitatively compared. Also
the amount of overlap between edge contours obtained from the registered pre-
operative image and the edge contours of the intra-operative image is compared for
both registration algorithms. Finally, a novel edge-based Hausdorff distance (HD)
measure is used to compare the results quantitatively.

www.slicer.org
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2 Registration Methods

2.1 Image Data

Five surgery cases involving tumour resection were analysed in this work. They
were used for biomechanical model-based warping in previous studies carried out
in [2] and [6]. For each case a high resolution, high quality pre-operative image
and a low resolution intra-operative image were available. For the purpose of this
paper the preoperative image for each case is registered with its corresponding intra-
operative image using both the biomechanical model and the BSpline registration
algorithm. The pre-operative images have a resolution of 256× 256× 124 voxels
and the intra-operative images have a resolution of 256× 256× 60 voxels. Voxel
size for the pre-operative image is 0.9375× 0.9375× 1.3mm3 and for the intra-
operative image 0.8594× 0.8594×2.5mm3.

2.2 Image Warping Using Intra-operative Brain Deformations
Predicted from Patient-Specific BiomechanicalModel

Construction of patient-specific finite element mesh. A three-dimensional (3D)
surface model of each patient’s brain was created from segmented pre-operative
magnetic resonance image (MRI). A brain mesh was constructed from the surface
model with 8-noded hexahedral and 4-noded tetrahedral elements. The meshes
were generated using IA-FEMesh (University of Iowa [11]) and HyperMesh
(commercial FE mesh generator by Altair of Troy, MI, USA).

Loading and boundary conditions. The displacements were applied on the exposed
part (due to craniotomy) of the brain surface. In [12] it is suggested that for
this type of loading the unknown deformation field within the brain very weakly
depends on the constitutive model. The displacements for loading the models were
determined from the segmented pre-operative and intra-operative cortical surfaces.
The correspondence between pre-operative and intra-operative cortical surface was
determined by applying the Vector-Spline regularization algorithm [13] to the
surface curvature maps. In order to define the boundary condition for the unexposed
nodes on the brain surface, a contact interface was defined between the rigid skull
model and that part of the brain. The frictionless sliding contact proposed in [14] is
used which prevents the brain from penetrating the skull.

Mechanical properties. According to [12] if geometric nonlinearity is considered,
the results of prediction of deformation field within the brain shift are only weakly
affected by the constitutive model of the brain tissue. Therefore, a simple Neo-
Hookean model was used [15]. The Young’s modulus of 3,000 Pa was selected
for parenchyma [16]. The Young’s modulus for tumour was assigned two times
larger than for parenchyma. Poisson’s ratio 0.49 was chosen for the parenchyma
and tumour following [2].
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Algorithm. An efficient algorithm for integrating the equations of solid mechanics
has been developed by Joldes et al. [17–19]. The computational efficiency of this
algorithm is achieved by using—(1) Total Lagrangian (TL) formulation [17] for
updating the calculated variables; and (2) Explicit Integration in the time domain
combined with mass proportional damping. In the TL formulation, all the calculated
variables (such as displacements and strains) are referred to the original configura-
tion of the analysed continuum [18]. The decisive advantage of this formulation
is that all derivatives with respect to spatial coordinates can be pre-computed
[17]. In explicit time integration, the displacement at time t + Δt(where Δt is
the time step) is solely based on the equilibrium at time t. Therefore, no matrix
inversion and iterations are required when solving nonlinear problems. Application
of explicit time integration scheme reduces the time required to compute the brain
deformations by an order of magnitude in comparison with implicit integration
typically used in commercial finite element codes [2].

Image warping. At first the pre-operative image is aligned with the intra-operative
image using rigid registration. In order to obtain the warped pre-operative image,
the coordinate of each voxel of the discrete image grid has to be mapped onto
the original (un-deformed) pre-operative image grid. To perform such mapping,
the deformed (when predicting the deformation within the brain) and un-deformed
(corresponding to the pre-operative brain geometry) brain meshes are first re-
meshed by Delaunay tessellation. Then the enclosing tetrahedral element for each
voxel is found using the Quick–Hull algorithm [20]. The coordinate of a particular
voxel in the original pre-operative image grid is determined by using the shape
functions of its enclosing tetrahedron. The intensity value of the voxel is interpolated
from the intensity value of its neighbours by using tri-cubic interpolation [21]. All
these tasks are performed using an in-house code programmed in MATLABTM.

2.3 BSpline Registration

BSplines are bell-shaped functions that were introduced by Schoenberg [22] for
interpolation. Due to their minimal local support they have become a strong tool
for modelling 3D deformable shapes. BSplines are useful for both interpolation and
approximation of scattered data. Free-form-deformation (FFD) based on BSpline
algorithm is widely used for non-rigid image registration [3]. The initial algorithm
proposed by Rueckert et al. [4] was based on the multi-level BSpline approximation
algorithm (MBA) developed by Lee et al. [23] for scattered data interpolation. The
basic idea of FFD is to deform an object by manipulating an underlying mesh
of control points. The resulting deformation controls the shape of the 3D object
and produces a smooth transformation. The FFD algorithm maximizes the mutual
information [24] between the pre-operative and intra-operative image to obtain the
warping transform. A regular grid of control points with equal spacing is required.
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For highly localized non-rigid deformations, which can be expected in neuro-
surgery, a high resolution control grid needs to be used. The resolution also defines
the number of degrees of freedom (DoF) of the transformation, for example a
10× 10× 10 grid of control points yields a transformation with 3× 10× 10× 10
DoFs in 3D.

The BSpline transform for the analysed neurosurgery cases were obtained by
the BSpline registration module of 3D Slicer v3.6. The initial size of the BSpline
grid was 10× 10× 10. Fifty histogram bins and 10,000 spatial samples were used
to calculate the marginal and joint entropies [25]. Total number of iterations was
selected as 20. The similarity criterion of this Slicer module is based on Mattes
mutual information [25].

3 Qualitative Comparison

3.1 Deformation Field

The deformation fields predicted by the biomechanical model and the deformation
field obtained from the BSpline transform are compared in Fig. 1. These deforma-
tion fields are three dimensional. However, for clarity, only arrows representing 2D
vectors (x and y component of displacement) are shown overlaid on the un-deformed
pre-operative slices. Each of these arrows represents the displacement of a voxel of
the pre-operative image domain.

The deformation fields predicted by the biomechanical model is very similar
to the one calculated from the BSpline registration for case 1. For this case
the maximum deformation of the surface of the brain was approximately 4 mm.
However, for case 2 deformation predicted by the biomechanical model significantly
differs from that obtained using BSpline registration. For this case the maximum
deformation of the brain surface was around 8 mm. For cases 3 and 5, the maximum
deformation of the brain surface was between 4 and 5 mm. For these two cases,
the deformation fields from the biomechanical model and BSpline registration are
similar in the craniotomy and tumour areas, but look significantly different in other
parts of the brain. For case 4, the deformation fields predicted using the two methods
differ significantly near the craniotomy.

3.2 Canny Edges

Plot of deformation vectors provides useful estimate of the nature of non-rigid
transform between two images. However, to obtain a qualitative assessment of
the degree of alignment after registration, one must examine the overlap of cor-
responding anatomical features of the intra-operative and registered pre-operative



132 A. Mostayed et al.

Fig. 1 The predicted deformation fields overlaid on an axial slice of pre-operative image. An
arrow represents a 2D vector consisting of the x (R–L) and y (A–P) components of displacement
at a voxel centre. Left column: deformation field predicted by biomechanical warping. Right
column: deformation field derived from BSpline registration transform. The predicted deformation
fields overlaid on an axial slice of pre-operative image. Left column: deformation field predicted
by biomechanical warping. Right column: deformation field derived from BSpline registration
transform
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Fig. 1 (continued)

image. For this purpose tumours and ventricles in both registered pre-operative and
intra-operative images can be segmented and their surfaces can be compared [6].
Image segmentation is time consuming, not fully automated and not suitable for
comparing a large number of image pairs [26]. Therefore in this study, we use edges
detected from an image. Such edges are regarded as useful and easily recognizable
features, and they can be detected using techniques that are totally automated and
fast. Hence, Canny edges [27] obtained from the intra-operative and registered pre-
operative image slices are labelled in different colours and overlaid (Fig. 2). In Fig. 2
intra-operative edges are labelled with blue and pre-operative edges are represented
with red and their overlap pixels are labelled in green.

From Fig. 2 we can see that misalignments between the edges detected from
the intra-operative images and the edges from the pre-operative images updated
to the intra-operative brain geometry are much lower for the biomechanics-based
warping than for BSpline registration. The edges obtained from the images warped
with both registration algorithms are similar for cases 1, 4, and 5. It is related to
the fact that the deformation fields predicted using our biomechanical model and
BSpline registration are very similar for these three cases. However, as indicated
by visual inspections, for case 2, misalignment between the edges obtained from
the intra-operative image and edges from the pre-operative image registered using
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Fig. 2 Canny edges extracted from intra-operative and the registered pre-operative image slices
overlaid on each other. Blue colour represents the non-overlapping pixels of the intra-operative
slice and red colour represents the non-overlapping pixels of the pre-operative slice. Green
colour represents the overlapping pixels. Left column: edges of the deformed pre-operative image
obtained by applying biomechanical warping. Right column: edges of the deformed pre-operative
image obtained by applying BSpline registration algorithm



Intra-operative Update of Neuro-images: Comparison of Performance. . . 135

BSpline algorithm can be observed. For this case there was a large intra-operative
brain shift and the deformation field obtained using BSpline algorithm significantly
differ from deformation predicted using biomechanical model. It is an indication
that the BSpline registration algorithm cannot perform as well as the biomechanics
warping if large deformation is involved. In Sect. 4 the misalignment between edges
is quantified using a novel edge-based Hausdorff distance measure [28].

4 Quantitative Comparison

4.1 Edge-based Hausdorff Distance

We begin the section with a definition of the traditional point-based Hausdorff
distance (HD) between two intensity images I and J. Let I and be J the binary
edge images derived from I and J, respectively, and A = {a1, · · · ,an} and B =
{b1, · · · ,bn} are the set of non-zero points corresponding the non-zero pixels on
the edge images, then the directed distance between them h(A,B) is defined as the
maximum distance from any of the points in the first set to the second one:

h(A,B) = argmax
a∈A

[
argmin

b∈B
‖a− b‖2

]
(1)

h(B,A) = argmax
b∈B

[
argmin

a∈A
‖b− a‖2

]
(2)

The HD between the two sets H(A,B) is defined as the maximum of these two
directed distances:

H(A,B) = max(h(A,B),h(B,A)) (3)

The proposed directed distance between two sets of edges is defined as

he(Ae,Be) = argmax
ae

i ∈Ae

[
argmin

be
j∈Be

∥∥ae
i − be

j

∥∥
]

(4)

where Ae = {ae
1, · · · ,ae

m} and Be = {be
1, · · · ,be

n} are two sets of edges.
The quantity ‖ae

i − be
j‖ in Eq. (4) is nothing but the point-based Hausdorff

distance between two point sets M = {m,
1 · · · ,mp} and T = {t ,1 · · · , tq} representing

edges ae
i and be

i , respectively,

∥∥ae
i − be

j

∥∥ := d(ae
i − be

j) = max(h(T,M),h(M,T)) (5)

Now the edge-based Hausdorff distance is defined as

He(Ae,Be) = max(he(Ae,Be),he(Be,Ae)) (6)
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Fig. 3 Overlaid edges before (left) and after (right) round-trip consistency. Blue colour represents
the non-overlapping pixels of the intra-operative slice and red colour represents the non-
overlapping pixels of the pre-operative slice. Green colour represents the overlapping pixels

Pre-processing. Some pre-processing of the extracted edges was required before the
edge-based Hausdorff distance could be calculated. Some small misalignments be-
tween the edges detected from two images are inevitable even after the registration.
The pre-processing step finds the pixels of one image that are most likely to have
correspondence with the other image. For each non-zero pixel involved in the binary
edge image, A, the closest non-zero pixel in the other image, B, is found. The same
procedure is repeated from this pixel in image B to find the closet non-zero pixel in
image A. One would reach the starting point, if the images were perfectly aligned.
However, in reality, the images are not perfectly aligned. Hence, we often end up
at a point that is different from the starting point in image A. The distance between
the starting point and end point in image A is termed the “round-trip distance”. The
pixels that have a round trip distance greater than a prescribed threshold (referred
to as “round-trip threshold”) are excluded (see Fig. 3), as they are less likely to
have correspondence with any pixel in the other image. The higher the threshold;
the lower the consistency between the pixels. However, excessively low value of this
threshold can cause removal of important feature points. Hence, it is crucial to select
an optimal threshold that maximizes the consistency and minimizes the number
of features removed. Throughout this paper a threshold of 1.5 mm is used. The
round-trip consistency procedure tends to generate artefacts by eliminating points
in the interior of an edge which results in several broken edges. Such edge pixels
are recovered by applying morphological filters [21]. Any edge shorter than 5 mm
was removed from the images before maximizing the consistency using round-trip
consistency criterion as their dimension is insignificant compared to the relevant
brain dimension.

Methodology. For the quantitative evaluation of registration accuracy, each image
volume was cropped into a region-of-interest (ROI) which encloses the tumour.
These ROI sub-volumes were re-sliced (in the axial plane) with a slice thickness
of 1.45 mm and the in-plane resolution was increased to 0.5× 0.5mm2. This was
done to improve the precision of Canny edge detection [27] used in a slice-by-
slice registration accuracy evaluation process. The proposed edge-based Hausdorff
distance (HD) was used to calculate the misalignment between slice pairs. The
directed distances for all edge pairs [see Eq. (4)] are recorded and the edge-based
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Hausdorff distance values at different percentile of directed distances are plotted
(see Fig. 4). The Pth percentile HD, “D”, between two images means that “P”
percent of edge pairs have a Hausdorff distance below D.

4.2 Results

The percentile vs. Hausdorff distance (HD) curve provides an estimation of the
percentage of edges that were successfully registered in the registration process
(Fig. 4). As accuracy of the edge detection is limited within the image resolution, an
alignment error twice the in-plane resolution of the intra-operative image (which is
0.8594 mm for the five cases considered) cannot be avoided. Hence, for five cases
analysed here, any edge pair having HD value less than 1.7 mm can be considered
successfully registered. It is obvious from Fig. 4 that biomechanical warping was
able to successfully register more edges than the BSpline registration for all five
cases.

Percentile of edges successfully registered by two registration algorithms (i.e.
warping using biomechanical model and BSpline registration) for each analysed
case is listed in Table 1. It can be clearly seen from this table that the percentile of
successfully registered edge is higher for image warping using biomechanical model
than for BSpline registration.

For all five cases, the percentiles vs. HD curves tend to rise steeply around 90
percentile. Hence, it can be safely assumed that edge pairs that do not have any
correspondence (outliers) are between 91 and 100 percentile. The 90-percentile HD
values for five cases are listed in Table 2.

5 Discussions

From the results presented in Sects. 3 and 4 it is evident that application of the intra-
operative deformation predicted using patient-specific biomechanical model [2, 6]
to warp pre-operative images ensures higher registration accuracy than BSpline-
based image registration [4]. Biomechanical models are especially effective in
neurosurgery cases where intra-operative brain shift is large. Another distinctive
advantage of the biomechanical algorithm is that it does not need the intra-operative
image at all to compute deformation. Only the displacement of a limited number of
points on the exposed (during craniotomy) intra-operative brain surface is required.
Such displacement can be determined from 3D ultrasound or 3D laser range
imaging [29].

For image warping using the intra-operative brain deformation predicted from
patient-specific biomechanical model, the required amount of intra-operative data
points is reduced to a few hundred compared to few millions for BSpline registration
(Table 3).
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Fig. 4 The plot of Hausdorff distance between intra-operative and registered pre-operative images
against the percentile of edges. The horizontal line is the 1.7 mm mark
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Table 1 Percentile of edges
successfully registered for
five patient specific cases

Percentile of edges successfully registered

Case Biomechanics BSpline

‘1’ 80 72
‘2’ 59 49
‘3’ 58 34
‘4’ 72 62
‘5’ 62 47

Table 2 90 percentile
Hausdorff distance values for
five patient specific cases

Non-rigid registration algorithm

Case Biomechanics BSpline

‘1’ 2.06 mm 2.49 mm
‘2’ 2.49 mm 3.19 mm
‘3’ 2.49 mm 3.52 mm
‘4’ 2.11 mm 2.54 mm
‘5’ 2.49 mm 3.03 mm

Table 3 Number of points of
intra-operative geometry
required for numerical
computation

Data requirement (No. of points)

Case Biomechanics BSpline

‘1’ 322 3.932×106

‘2’ 328 3.932×106

‘3’ 171 3.932×106

‘4’ 134 3.932×106

‘5’ 63 3.932×106

The presented results of comparison of warping of neuro-images using brain
deformation predicted by means of patient-specific biomechanical model with the
BSpline-based neuro-image registration were obtained using the BSpline algorithm
implemented in 3D Slicer. An alternative implementation and alternative algorithms
for image-based alignment should be evaluated in future work.
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