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Abstract In this paper we present a non-rigid registration method to align
pre-operative MRI (preMRI) with resected intra-operative MRI (iMRI) to
compensate for brain deformation during tumor resection. This method formulates
the registration as a three-variable (point correspondence, deformation field and
resection region) functional minimization problem, in which point correspondence
is represented by a fuzzy assign matrix, deformation field is represented by a
piece-wise linear function regularized by the strain energy of a heterogeneous
biomechanical model, and resection region is represented by a maximal connected
tetrahedral mesh. A Nested Expectation and Maximization framework is developed
to simultaneously resolve these three variables. This method accommodates a
heterogeneous biomechanical model as the regularization term to realistically
describe the underlying deformation field and allows the removal of the tetrahedra
from the model to simulate the tumor resection. A simple two tissue heterogeneous
model (ventricle plus the rest of the brain) is used to evaluate this method on
14 clinical cases. The experimental results show the effectiveness of this method
in correcting the deformation induced by resection. The comparison between
the homogeneous model and the heterogeneous model demonstrates the statistical
significance of the improvement brought by the heterogeneous model (P-value 0.04)

Y. Liu
Department of Computer Science, Old Dominion University, Norfolk, USA

Radiology and Imaging Sciences, National Institutes of Health
e-mail: yixun.liu@nih.gov

N. Chrisochoides (�)
Department of Computer Science, Old Dominion University, Norfolk, USA
email: nikos@cs.odu.edu

A. Wittek et al. (eds.), Computational Biomechanics for Medicine: Models, Algorithms
and Implementation, DOI 10.1007/978-1-4614-6351-1 11,
© Springer Science+Business Media New York 2013

115

yixun.liu@nih.gov
nikos@cs.odu.edu


116 Y. Liu and N. Chrisochoides

1 Introduction

Brain shift severely compromises the fidelity of image-guided neurosurgery (IGNS).
Most studies use a biomechanical model to estimate the brain shift based on sparse
intra-operative data after the dura is opened [1–3]. Very few studies in the literature
address brain deformation during and after tumor resection. The difficulty originates
from the fact that resection creates a cavity, which renders the biomechanical model
defined on pre-operative MRI inaccurate due to the existence of the additional part
of the model corresponding to the resection region. In this work, the model accuracy
will be improved by (1) removing the tetrahedra in the model corresponding to the
resection region and (2) building a heterogeneous biomechanical model, which is
facilitated by our multi-tissue mesh generation method [4].

In [5], Miga et al. investigated tissue retraction and resection using sparse
operating room (OR) data and a finite element model. They developed a two-
step method: (1) remove tissue volume by manual deletion of model elements
that coincide with the targeted zone and then (2) apply boundary conditions to
the new surfaces created during the excision process. Determining the cavity is
challenging because a portion of it will be filled by surrounding tissues [6]. Our
method eliminates the manual removal step by treating the resection region as
a variable, which is able to be automatically resolved by a Nested Expectation
and Maximization (EM) framework, an extension of traditional EM optimization
[7]. Based on the bijective Demons algorithm, Risholm et al. presented an elastic
FEM-based registration algorithm and evaluated it on the registration of 2D pre-
with intra-operative images, where a superficial tumor has been resected [8]. Ding
et al. [6] presented a semi-automatic method based on postbrain tumor resection
and laser range data. Vessels were identified in both pre-operative MRI and laser
range image; then the robust point matching (RPM) method [9] was used to force
the corresponding vessels to exactly match each other under the constraint of the
bending energy of the whole image. RPM uses thin-plate splines (TPS) as the
mapping function. The basis function of TPS is a solution of the biharmonic [10],
which does not have compact support and will therefore lead to, in real application,
unrealistic deformation in the region far away from the matching points. In other
words, RPM is not suitable for estimating deformation using sparse data. We
use a heterogeneous biomechanical model to realistically simulate the underlying
movement of the brain, which extends our previous work using a homogeneous
model [11].

In this work, we target the specific feature point-based non-rigid registration
(NRR) problem, which can be stated as:

Given a heterogeneous patient-specific brain model, a source point set in
pre-operative MRI and a target point set in intra-operative MRI, find point
correspondence, deformation field and resection region.

To resolve this problem, the three variables are incorporated into one cost
function, which is minimized by a Nested EM strategy. The deformation field is
represented by a displacement vector defined on the mesh nodes, the correspondence
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between two point sets is represented by a correspondence matrix, and the resection
region is represented by a connected submesh.

2 Method

In this section, we first develop the cost function step by step from a simple point-
based non-rigid registration cost function to the three-variable cost function and then
present a Nested Expectation and Maximization framework to resolve it.

2.1 Cost Function

Given a source point set S = {si}N
i=1 ∈ ℜ3 and a target point set T = {ti}N

i=1 ∈ ℜ3,
with known correspondence, i.e., si corresponding to ti, the point-based non-rigid
registration problem can be formulated as:

ū = argmin
u

⎛
⎝
∫

Ω

R(u)dΩ +λ ∑
si∈Ω

‖si + u(si)− ti‖2

⎞
⎠ (1)

where the first term is regularization or smoothing energy, and the second term is
similarity energy. u is the deformation field and λ controls the trade-off between
these two energies. Ω is the problem domain, namely the segmented brain. The
removed tumor influences Ω and therefore influences both terms in Eq. (1). We
extend Eq. (1) to (2) by specifying the regularization term with the strain energy of
a linear elastic model, removing the limitation of correspondence between S and T ,
and accommodating tumor resection.

(ū, c̄ij,Ω̄ ′) = argmin
u,cij,Ω ′

⎛
⎝

∫

Ω−Ω ′
σ(u)ε(u)d(Ω −Ω ′)+λ1 ∑

si∈Ω−Ω ′
||si + u(si)

− ∑
t j∈ΩR

cijt j||2
)
+λ2

∫ ∫ ∫

Ω ′
dxdydz (2)

where variable Ω ′ represents the resection region, and variable ci j reflects the
degree to which point si corresponds to t j. The ci j is defined as in RPM [9] with
soft assignment. The classic Iterative Closest Point (ICP) method [12] treats the
correspondence as a binary variable and assigns the value based on the nearest-
neighbor relationship. However, this simple and crude assignment is not valid
for non-rigid registration, especially when large deformation and outliers are
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involved [13]. We define a range ΩR, a sphere centered at the source point with
radius R, and only take into account: (1) the target points, which are located in ΩR

of the source point, and (2) the source points, which have at least one target point in
ΩR. Thus, with this simple extension of RPM, our method is capable of eliminating
outliers existing in both point sets. The first two terms come from the extension of
Eq. (1), and the last term is used to prevent too much regions from being rejected.

The homogeneous model employed in the regularization term in Eq. (2) is further
extended to the following heterogeneous model:

(ū, c̄ij,Ω̄ ′) = argmin
u,cij,Ω ′

⎛
⎝ ∑

Ωi∈Ω−Ω ′

∫

Ωi

σi(u)εi(u)dΩi +λ1 ∑
si∈Ω−Ω ′

||si + u(si)

− ∑
t j∈ΩR

ci jt j||2
)
+λ2

∫ ∫ ∫

Ω ′
dxdydz (3)

where ∪Ωi = Ω−Ω′, i = 1 . . .n.

Remark: If n = 1, Ω ′ = Empty, and cij = 1 then Eq. (3) is reduced to Eq. (1),
which means the proposed method can be viewed as a general point-based NRR
method characterized by (1) employing a heterogeneous biomechanical model as the
regularization, (2) accommodating incomplete data, and (3) without correspondence
requirement.

Equation (3) is approximated by Eq. (4) using finite element method:

J(U,C,MRem) =∑UTKiU +λ1(HU −D(C))TW (HU −D(C))+λ2 |MRem| (4)

where UTKiU approximates
∫

Ωi
σi(u)εi(u)dΩi as in [14, 15]. C is a point corre-

spondence matrix with entries cij. The equation to calculate cij will be given later.
The entries of the vector D are defined as: di(cij) = si −∑t j∈ΩR

cijt j,∀si ∈ M\MRem,
where M is the non-resected mesh that approximates Ω , and MRem is the removed
mesh that approximates Ω′. The first term of Eq. (4) is the strain energy assembled
on all elements in M\MRem, the second term is similarity energy defined on all
source points si ∈ M\MRem, and the third term prevents too much tetrahedral from
being rejected.

W in the second term is a weighted matrix of size 3 |S| × 3|S|. W is a block-
diagonal matrix whose 3× 3 submatrix Wk is defined as m

|S|S
avg
k , where m is the

number of the vertices of the mesh. m
|S| makes the matching term independent

of the numbers of the vertices and the registration (source) points. Savg
k is the

average stiffness tensor for the k-th registration point. Savg
k makes the registration

point behavior like an elastic node of the finite element model. Assume the k -th
registration point is located in the tetrahedron defined by vertices ci, i∈ [0 : 3]. Savg

k
is calculated by Savg

k = ∑3
i=0 hiKci , where Kci is a 3× 3 sub-matrix of the global
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Fig. 1 Nested expectation and maximization framework

stiffness matrix K. hi is the interpolation factor, the element of the global linear
interpolation matrix H [16].

Finding C and MRem is equivalent to outlier rejection. We developed a Nested
Expectation and Maximization method to iteratively reject point and element
outliers.

2.2 Nested Expectation and Maximization

The Expectation and Maximization (EM) algorithm [7] is a general algorithm for
maximum-likelihood [17] estimation of the model parameter (unknowns) in the
presence of missing or hidden data. EM proceeds iteratively to estimate the model
parameters. Each iteration of the EM algorithm consists of two steps: The E step
and the M step. In the E step, the missing data is estimated given the observed
data and current estimate of the model parameters. In the M step, the likelihood
function is maximized under the assumption that the missing data is known. The
estimate of the missing data from the E step is used in lieu of the actual missing data.
Convergence is assured since the algorithm is guaranteed to increase the likelihood
at each iteration [7].

The proposed Nested EM framework is shown in Fig. 1. The inner EM is used to
resolve 〈U,C〉 with MRem fixed, and the outer EM is used to resolve MRem. MRem is
approximated as a collection of tetrahedra located in a region of the model, which
corresponds to the resection region in the intra-operative MRI. MRem is initialized as
empty and updated at each iteration of the outer EM. If all the tetrahedra contained
in the resection region are collected, the outer EM stops.
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Alg 1. Feature point outlier rejection (inner EM)

2.2.1 Inner EM

Inner EM is used to resolve 〈U,C〉 given MRem.
For each source point si, assume its correspondences are subject to Gaussian

distribution, so cij can be estimated (E step) by Eq. (5).

cij =
c′ij

∑m
k=1 c′ik

,c′ij =
1

R
√

2π
e
−(t j−si)

2

2R2 ,∀t j ∈ ΩR, j = 1 . . .m (5)

Once C is estimated, U can be resolved by solving the minimization equation
obtained by setting the derivative of functional (4) to zero, i.e., dJ/dU = 0. The
last term can be ignored because it becomes a constant. The resolved U is used to
warp S closer to T , and then the correspondence C is estimated again. The pseudo
code of the inner EM is presented in Algorithm 1.

2.2.2 Outer EM

Outer EM is used to find MRem. In M step, 〈U,C〉 is resolved by the inner EM.
In E step, MRem is resolved by an element outlier rejection algorithm. MRem is
approximated by a collection of tetrahedron outliers, which fall in the resection
region of the intra-operative MRI. The resection region does not need to be identified
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Alg 2. Element outlier rejection

in the intra-operative MRI, and it is in fact impossible to distinguish the resection
region from the background. The Background Image BGI including the resection
region and the background can be very easily segmented by a simple threshold
segmentation method. However, we cannot determine if a tetrahedron is an outlier
based only on whether it is located in the BGI because this tetrahedra might happen
to fall in the background rather than the resection region. To make the element
outlier rejection algorithm robust, we utilize the fact that the resection region is
a collection of tetrahedra, which not only fall in the BGI of intra-operative MRI
but also connect with each other and constitute a maximal connected submesh. The
collection of the outliers proceeds iteratively, and at each iteration, more specifically
the E step of outer EM, additional outliers will be added into MRem if they fall in
the BGI and connect with the maximal connected submesh identified in previous
iteration.

The element outlier rejection algorithm is presented in Algorithm 2.
The outer EM iteratively rejects element outliers using Algorithm 2 and com-

putes 〈U,C〉 using Algorithm 1 until no additional element outliers are detected.
Algorithm 3 presents the whole pseudo code of the Nested EM algorithm.

3 Results

We conducted experiments on 14 clinical cases using MRI data, which were
acquired with the protocol: T1-weighted magnetization-prepared rapid gradient
echo (MPRAGE) sagittal images with [dimension = 256 × 256 × 176, in plane
resolution = 1.0× 1.0mm, thickness = 1.0mm, FOV = 256× 256].

Figure 2a shows the multi-tissue mesh we used to build the heterogeneous model.
Figure 2b shows the result of element outlier rejection produced by Algorithm 2

and the deformation field of the heterogeneous model. A portion of the brain is cut
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Alg 3. Nested expectation and maximization

Fig. 2 (a) Multi-tissue mesh: brain and ventricle. (b) Deformation field of resected heterogeneous
model

off to expose the ventricle and its deformation field. The largest deformation reaches
18.2 mm, still in the effective range of the linear elastic biomechanical model. The
larger deformation occurs in the region near the resection, and the ventricle on the
tumor side is squeezed inward as the arrows show.

Figure 3 shows the results of point outlier rejection produced by Algorithm 1.
Comparing to the edges before outlier rejection, most point outliers are removed
after outlier rejection.

Figure 4 shows the results of the Nested EM method. We superimpose edges
detected on iMRI onto preMRI and warped preMRI, respectively, to illustrate the
improvement of the boundary matching after registration.

To quantitatively evaluate the proposed method, Hausdorff Distance (HD) [18] is
employed as the measurement of the registration accuracy. We use outlier rejected
edge points in preMRI and iMRI to calculate HD before non-rigid registration
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Fig. 3 Point outlier rejection. The blue points are edge detected by canny edge detection. The top
two figures are edge points before outlier rejection. The bottom two figures are remaining edge
points after outlier rejection

Fig. 4 Qualitative evaluation regarding canny edges. The blue points are edge detected by canny
edge detection on iMRI. The detected edge points are superimposed on the preMRI (left) and
warped preMR (right)
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(after rigid registration) and use outlier rejected edge points in iMRI and warped
preMRI to calculated the HD after registration. Both the homogeneous model and
the heterogeneous model are used for the registration. As shown in Table 1, both
models can significantly improve the accuracy.

We also conducted experiments to compare the homogeneous model and the
heterogeneous model. To specifically measure the influence of the model on the
registration, we employ the multi-tissue mesh, as shown in Fig. 2a, in both models.
As a result, the influence of the discrepancy of the geometry and topology between
the single mesh and the multi-tissue mesh can be eliminated. The only difference
between the two models is the biomechanical attributes of the ventricle. The
homogeneous model uses Young’s modulus E = 3,000Pa, Poisson’s ratio ν = 0.45
for all tetrahedra, and the heterogeneous model replaces Young’s modulus with
E = 10Pa and Poisson’s ratio with ν = 0.1 for the ventricle [19]. We compared
the two models regarding edge points with HD as the measurement. The evaluation
results show the magnitude improvement brought by the heterogeneous model is not
large, but statistically significant (Two tailed t test, P-value 0.04).

4 Conclusion and Future Work

We present a novel non-rigid registration method to compensate for brain de-
formation induced by tumor resection. This method does not require the point
correspondence to be known in advance and allows the input data to be incomplete.

This method uses strain energy of the biomechanical model to regularize the
solution. To improve the fidelity of the simulation of the underlying deformation
field, we build a heterogeneous model based on a multi-tissue mesher. To resolve
the deformation field with unknown correspondence and resection region, we
develop a Nested EM framework, which can effectively resolve these three variables
simultaneously.

The heterogeneous model, embedded in the proposed registration method, can
incorporate as many tissues as possible. In this work, we use a simple two-tissue
model to perform the evaluation. Compared to rigid registration, the proposed
method can significantly improve the accuracy. Compared to the homogeneous
model, the improvement of the accuracy brought by the heterogeneous model is
statistically significant. We believe as more tissues are incorporated into the model,
such as the falx of the brain, the improvement of the accuracy will become more
noticeable.
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