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Real-Time Noise Cancellation Using Wavelet
Transforms

Ehsan Sheybani

Introduction

Noise from different sources can have dramatic effects on the performance and
decision-making process of the systems. As such, total elimination of the noise
could also be damaging to the final outcome, as it may result in removing useful
information that can benefit the decision-making process. Several efforts have been
made to find the optimal balance between noise and data parameters. For the most
part, experts in the field agree that it is more beneficial to remove noise at the node
level where data is collected [1–3]. This is mainly stressed so that the low-power,
low bandwidth, and low computational overhead constraints are met while fused
datasets can still be used to make reliable decisions [4–6].

Digital signal processing algorithms, based on advanced mathematical concepts,
have long served to manipulate data to be a good fit for analysis and synthesis of any
kind. For the noise removal application, a special wavelet-based approach has been
considered to suppress the effect of noise in data. The proposed technique uses the
orthogonality properties of wavelets to decompose the dataset into spaces of coarse
and detailed signals. With the filter banks being designed from special bases for
this specific application, the output signal in this case would be components of the
original signal represented at different time and frequency scales and translations.
A detailed description of the techniques follows in the next section.
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Wavelet-Based Transforms

Traditionally, Fourier transform (FT) has been applied to time-domain signals for
signal processing tasks such as noise removal. The shortcoming of the FT is in its
dependence on time averaging over entire duration of the signal. Due to its short
time span, analysis of dataset requires resolution in particular time and frequency
rather than frequency alone. Wavelets are the result of translation and scaling of
a finite-length waveform known as mother wavelet. A wavelet divides a function
into its frequency components such that its resolution matches the frequency scale
and translation. To represent a signal in this fashion, it would have to go through
a wavelet transform. Application of the wavelet transform to a function results in
a set of orthogonal basis functions which are the time-frequency components of
the signal. Due to its resolution in both time and frequency, wavelet transform is
the best tool for detection and classification of signals that are nonstationary or have
discontinuities and sharp peaks. Depending on whether a given function is analyzed
in all scales and translations or a subset of them, the continuous (CWT), discrete
(DWT), or multi-resolution wavelet transform (MWT) can be applied.

An example of the generating function (mother wavelet) based on the sinc func-
tion for the CWT is

ψ(t) = 2Sinc(2t)− Sinc(t) =
Sin(2πt)− Sin(πt)

πt
(1)

normalized with scale one frequency band [1, 2]. The subspaces of this function are
generated by translation and scaling. For instance, the subspace of scale (dilation) a
and translation (shift) b of the above function is

ψa,b(t) =
1√
a

ψ
(

t − b
a

)
(2)

a > 0 defines the scale and frequency band [1/a, 2/a], whereas b ε R is any real
number defining the shift. When a function x is projected into this subspace, an
integral would have to be evaluated to calculate the wavelet coefficients in that scale:

WTψ{x}(a,b) = 〈
x,ψa,b

〉
=

∫
R

x(t)ψa,b(t)dt (3)

where ψa,b(t) indicates the conjugate of function ψa,b and 〈x,ψa,b〉 is the inner prod-
uct of L2(R), the space of square-integrable function over R. And therefore, the
function x can be shown in term of its components:

xa(t) =
∫
R

WTψ{x}(a,b).ψa,b(t)db (4)
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projection of x onto the subspace of scale a. Due to computational and time
constraints, it is impossible to analyze a function using all wavelet coefficients.
Therefore, usually a subset of the discrete coefficients is used to reconstruct the
best approximation of the signal. This subset is generated from the discrete version
of the generating function with the corresponding wavelet coefficients:

ψm,n(t) = a−m/2ψ
(
a−mt − nb

)
. (5)

with integers m, n ε Z. Applying this subset to a function x representing a signal
with finite energy will result in DWT coefficients from which one can closely ap-
proximate (reconstruct) x using the coarse coefficients of this sequence:

x(t) = ∑
m∈Z

∑
n∈Z

〈x,ψm,n〉.ψm,n(t). (6)

The MWT is obtained by choosing a finite number of wavelet coefficients from a set
of DWT coefficients. However, to avoid computational complexity, two generating
functions φ and ψ are used to create the subspaces restricting a to a = 2 and b to
b = 1. As a result, we have the subspace Vm = span(φm,n, nεZ) generated by the
coefficients

φm,n(t) = 2−m/2φ
(
2−mt − n

)
(7)

and the subspace Wm = span(ψm,n, nεZ) generated by the coefficients

ψm,n(t) = 2−m/2ψ
(
2−mt − n

)
. (8)

The subspace Vm forms a decreasing sequence in L2(R), with Wm its orthogonal
complement from which the two (fast) wavelet transform pairs (MWT) can be gen-
erated:

φ(t) =
√

2 ∑
n∈Z

hnφ(2t − n) (9)

and

ψ(t) =
√

2 ∑
n∈Z

gnφ(2t − n) (10)

with hn =< φ0,0, φ−1,n >, and gn =< ψ0,0, ψ−1,n >.
In this paper the DWT has been used to suppress noise in a dataset. Due to its abil-

ity to extract information in both time and frequency domain, DWT is considered a
very powerful tool. The approach consists of decomposing the signal of interest into
its detailed and smoothed components (high- and low-frequency). The detailed com-
ponents of the signal at different levels of resolution localize the time and frequency
of the event. Therefore, the DWT can extract the coarse features of the signal (com-
pression) and filter out details at high frequency (noise). DWT has been successfully
applied to system analysis for removal of noise [7, 8]. In this paper we present how
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DWT can be applied to detect and filter out noise. A detailed discussion of theory
and design methodology for the special-purpose filters for this application follows.

Theory of DWT-Based Filters for Noise Suppression

DWT-based filters can be used to localize abrupt changes in signals in time and
frequency. Creative techniques have been implemented to suppress noise in datasets
using this approach [7–12]. These techniques range in their approach from calcu-
lating the wavelet transforms for all circular shifts and selecting the “best” one that
minimizes a cost function [9] to using the entropy criterion [10] and adaptively
decomposing a signal in a tree structure so as to minimize the entropy of the rep-
resentation. In this paper a new approach to cancellation of noise in data has been
proposed. The discrete Meyer adaptive wavelet (DMAW) is both translation- and
scale-invariant and can represent a signal in a multi-scale format. While DMAW is
not the best fit for entropy criterion, it is well suited for the proposed noise cancel-
lation purposes [12].

The process to implement DMAW filters starts with discretizing the Meyer
wavelets defined by wavelet and scaling functions as

φ(t) =
√

2 ∑
n∈Z

hnφ(2t − n) (11)

and

ψ(t) =
√

2 ∑
n∈Z

gnφ(2t − n). (12)

The masks for these functions are obtained as{
φ(0),φ

(
1

2m

)
, · · · ,φ(M − 1

2m )

}
(13)

and {
0,0, . . . ,0,ψ(0),ψ

(
1
σ

)
, · · · ,ψ

(
N
σ

)}
(14)

As these two masks are convolved, the generating function (mother wavelet) mask
(F) can be obtained as

F

(
k

2m

)
(−M ≤ k ≤ N) (15)

where for every integer k, integers nk
1,n

k
2, . . . ..,n

k
q can be found to satisfy the

inequality

− 3 < μ − nk
i +

kσ
2m <

3σ
2m (1 ≤ i ≤ q). (16)
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The corresponding values from mother wavelet mask can then be taken to calculate

αk
i =

2m/2

σ
F

(
ρk

i

2m

)
,

where ρk
i =

[
(μ − nk

i )2
m + kσ

]
(1 ≤ i ≤ q) and

c−m,k√
α

−
q

∑
i=1

cniαk
i . (17)

Decomposing the re-normalized signal
c−m,k√

α (k ∈ Z) according to the conventional
DWT will result in the entire DMAW filter basis for different scales:

c−m+1,k√
α

,
d−m+1,k√

α
,

c−m+2,k√
α

,
d−m+2,k√

α
, · · · , c0,k√

α
,

d0,k√
α
. (18)

Experimental Results

Noisy Sinusoidal Signal

Figures 8.1, 8.2, and 8.3 show the experimental results for the application of the
proposed filter banks to a noisy sinusoidal signal. As is evident from these figures,
a signal can be decomposed in as many levels as desired by the application and al-
lowed by the computational constraints. Levels shown from top to bottom represent
the coarse to detailed components of the original signal. Once the signal is decom-
posed to its components, it is easy to do away with pieces that are not needed. For
instance, noise, which is the lowermost signal in Fig. 8.1, can be totally discarded.
The reconstructed signal is a fairly good approximation of the original signal. Fig-
ure 8.2 shows the thresholds and coefficients of the signal being filtered. Figure 8.3
shows the histogram (frequency of components distribution) of the signal.

Comparison to Other Noisy Signals

For comparison purposes, the same filter banks have also been applied to a quad-
chirp signal with noise, and the results are shown in Figs. 8.4–8.9. The versions of
the signal have been computed and plotted. In each case the coefficients that have
remained intact have also been displayed. Finally, in Figs. 8.7–8.16, the histogram
for the denoised quad-chirp, auto-regressive, and white noise has been compared to
the original signal. The effectiveness of the proposed filter banks and their capabil-
ity to maintain the important components of the original signal is evident in these
figures.
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Fig. 8.1 Decomposed signal showing all the components of a mixed sine wave with noise

Fig. 8.2 Threshold and coefficients of the decomposed signal
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Fig. 8.3 Histogram and cumulative histogram of the signal

Fig. 8.4 Decomposed signal showing all the components of a quad-chirp wave with noise
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Fig. 8.5 Original and denoised signal with original and thresholded coefficients

Fig. 8.6 Threshold and coefficients of the decomposed signal showing retained energy and number
of zeros
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Fig. 8.7 Histogram and cumulative histogram of the original quad-chirp signal

Fig. 8.8 Histogram and cumulative histogram of the denoised quad-chirp signal

Conclusions and Future Work

As expected from the theory, the DMAW filters performed well under noisy con-
ditions. The decomposed signal could be easily freed up from noise. Future plans
include the application of these filters to fused datasets and comparison between the
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Fig. 8.9 Decomposed signal showing all the components of an auto-regressive wave with noise

Fig. 8.10 Histogram and cumulative histogram of the original auto-regressive signal

two approaches. Additionally, the results of this study can be used in the decision-
making stage to realize the difference this approach can make in accuracy of this
process.
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Fig. 8.11 Threshold and coefficients of the decomposed signal showing retained energy and num-
ber of zeros

Fig. 8.12 Original and denoised signal with original and thresholded coefficients
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Fig. 8.13 Decomposed signal showing all the components of white noise

Fig. 8.14 Histogram and cumulative histogram of the original white noise signal

Future work will address issues such as characterizing the parameters for sim-
ulation and modeling of the proposed filter for wireless sensor networks, showing
how complex examples with correlated sensor data will be filtered for redundancy,
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Fig. 8.15 Threshold and coefficients of the decomposed signal showing retained energy and num-
ber of zeros

Fig. 8.16 Original and denoised signal with original and thresholded coefficients
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and comparing the proposed approach with other similar approaches and giving
comparative results to support the claimed advantages, both theoretically and exper-
imentally.
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