
Chapter 4
Understanding the Dynamics of Collision
and Near-Collision Motions in the N-Body
Problem

Lennard F. Bakker

Introduction

For ages, humankind has observed the regular and predicable motion of the planets
and other bodies in the solar system and asked, will the motion of the bodies in
the solar system continue forever as they are currently observed? This philosophical
question is the object of the mathematical notion of stability. A difficulty in applying
the notion of stability to the motion of the solar system is that of collision and near-
collision motions of bodies in the solar system. Collision and near-collision motions
do occur in the solar system. Section “Phenomenon” recounts a few of these that
have been observed or predicted.

The standard mathematical model for understanding the motion of planets and
other bodies in the solar system is the Newtonian N-Body problem, presented in
section “The N-Body Problem”. Included here are some of the basic features and
mathematical theory of the Newtonian N-Body Problem, its integrals or constants
of motion, special solutions such as periodic solutions, and the notions of stability
and linear stability of periodic solutions and their relationship.

The notions and basic theory of collisions and singularities in the Newtonian
N-Body Problem is presented in section “Collisions”. This includes a discussion of
the probabilities of collisions, and the regularization or the lack thereof for colli-
sions. A collision motion is rare in that is has a probability of zero of occurring,
whereas a near-collision motion has a positive probability of occurring. Regulariza-
tion is a mathematical technique that removes the collision singularities from the
Newtonian N-body problem and enables an analysis of near-collision motions in
terms of collision motions through the continuous dependence of motions on ini-
tial conditions. This regularization is illustrated in the collinear 2-body problem, the
simplest of all the N-body problems.
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Recent results are presented in section “Results” on the analytic and numerical
existence and numerical stability and linear stability of periodic motions with reg-
ularizable collisions in various N-body problems with N = 3 and N = 4. Although
fictitious, these periodic motions with regularizable collisions provide a view of
their near-collision motions which could be motions of the bodies in the N-body
problem that are collision-free and bounded for all time.

Phenomenon

Collisions and near-collisions of two or more solar system bodies are apparent
obstacles at which Newton’s law of gravity becomes problematic. Velocities of
colliding bodies become infinite at the moment of collision, while velocities of
near-colliding bodies become very large as they pass by each other. Both of these
situations present problems for numerical estimates of the motion of such bodies.

Although collisions are rare, historical evidence of collisions of solar system
bodies is viewable on the surface of the Earth and the Moon [8]. Only recently have
collisions of solar systems bodies actually been observed. As the comet Shoemaker-
Levy 9 approached Jupiter it was torn apart into fragments by tidal forces. In July of
1994, at least 21 discernible fragments of Shoemaker-Levy 9 collided with Jupiter.
These were the first ever observed collisions of solar system bodies. An animation
of some of the fragments of Shoemaker-Levy 9 colliding with Jupiter can be found
at www2.jpl.nasa.gov/sl9/anim.html.

Near-collision motion are less rare than collisions. As of March 2012, there are
nearly 9,000 known near-Earth asteroids,1 of which 1,306 are potentially hazardous
to Earth.2 One of these potentially hazardous asteroids, named 2012 DA14, was
discovered in 2012. This asteroid will pass by Earth on February 15, 2013, coming
closer to the Earth than satellites in geostationary orbit.3 How close will 2012 DA14
pass by Earth? A mere 17,000 miles (27,000 km).4 In cosmic terms, this close shave
of 2012 DA14 with Earth in 2013 is a near-collision motion.

The N-Body Problem

To model collision and near-collision motions we make some simplifying assump-
tions and use Newton’s inverse square law of gravity. We assume that all the bodies
are idealized as particles with zero volume (i.e., as points), that no particle is torn
apart by tidal forces, that the mass of each particle never changes, and that besides

1 See http://neo.jpl.nasa.gov/stats/.
2 See http://neo.jpl.nasa.gov/neo/groups.html.
3 See article about 2012 DA14 posted March 6, 2012 on MSNBC.com.
4 See article about 2012 DA14 posted March 8, 2012 on Earthsky.org.

www2.jpl.nasa.gov/sl9/anim.html
http://neo.jpl.nasa.gov/stats/
http://neo.jpl.nasa.gov/neo/groups.html
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Newton’s law of gravity there are no other forces acting on the bodies. Under these
assumptions we would think of Shoemaker-Levy 9 as not being torn apart by tidal
forces, but as colliding with Jupiter as a whole.

The Equations

The particles modeling the bodies move in three-dimensional Euclidean space
which we denote by R3. For a positive integer N ≥ 2, suppose there are N parti-
cles with positions q j ∈ R3 and masses m j > 0, j = 1, . . . ,N. The distance between
two of the particles is denoted by

r jk = |q j −qk|, j �= k,

which is the standard Euclidean distance between two points in R3. The Newtonian
N-body problem is the system of second-order nonlinear differential equations

m jq′′
j = ∑

k �= j

Gm jmk(qk −q j)

r3
jk

, j = 1, . . . ,N,

where ′ = d/dt for a time variable t and G = 6.6732×10−11 m2/s2kg. By an appro-
priate choice of units of the q j , we will assume that G = 1 because we are investi-
gating the qualitative or geometric, rather than the quantitative, behavior of collision
and near-collision motions.

By the standard existence, uniqueness, and extension theory in differential equa-
tions (see [9], for example), the initial value problem

m jq′′
j = ∑

k �= j

m jmk(qk −q j)

r3
jk

, q j(t0) = q0
j , q′

j(t0) = q′0
j (1)

has a unique solution
q(t) = (q1(t), . . . ,qN(t))

defined on a maximal interval of definition (t−, t+) as long as r jk �= 0 for all j �= k
at t = t0. Such a solution q(t) describes a motion of the N particles.

Not every initial value problem (1) will have a solution q(t) with t− = −∞ and
t+ = ∞. A solution with either t− > −∞ or t+ < ∞ experiences a singularity at the
finite endpoint of its maximal interval of definition. The notion of a singularity is
addressed in section “Singularities”.

Integrals

An integral of motion of the Newtonian N-body problem is a differentiable function
F of the position q and/or the velocity q′ and/or the masses m = (m1, . . . ,mN) such
that
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d
dt

F(q(t),q′(t),m) = 0, t ∈ (t−, t+).

Along a solution q(t), an integral F of motion satisfies

F(q(t),q′(t),m) = F(q(t0),q′(t0),m), t− < t < t+,

i.e., the value of F is constant along the solution. The Newtonian N-body problem
has ten known integrals of motion.

The translation invariance of the equations of the Newtonian N-body problem
gives rise to 6 integrals of motion. With M = ∑N

j=1 m j, three of these are given by
the components of the center of mass vector

C =
1
M

m

∑
j=1

m jq j,

and three more are given by the components of the linear momentum vector

L =
1
M

N

∑
j=1

m jq′
j.

Typically, both of these are set to 0 so that the relative motion of the N particles is
emphasized.

The rotational symmetry of the equations of the Newtonian N-body problem
gives rise to 3 more integrals of motion. These integrals are given by the components
of the angular momentum vector

A =
N

∑
j=1

m jq j ×q′
j.

The angular momentum plays a key role in understanding collisions in the N-body
problem, as we will see later on.

There is one more integral of motion of the Newtonian N-body problem. The
self-potential (or negative of the potential energy) is

U = ∑
j<k

m jmk

rik
.

The kinetic energy is

K =
1
2

N

∑
j=1

m jq′
j ·q′

j.

The total energy
H = K −U

is an integral of motion for the Newtonian N-body problem.
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In the late 1800s, the mathematical strategy for “solving” the Newtonian N-body
problem was to find enough “independent” integrals of motion [25]. This would
implicitly give each solution as the curve of intersection of the hypersurfaces cor-
responding to the integrals of motion. Each solution q(t) is a curve in R6N . How-
ever, the intersection of the hypersurfaces of the ten integrals of motion gives a
6N − 10 > 1 dimension hypersurface in R6N , which is not a curve! The ten known
integrals of motion are independent of each other (one is not a function of the others)
and are algebraic functions of positions, velocities, and masses. Are there any more
algebraic integrals of motion? This was answered a long time ago in 1887–1888 by
Bruns [7].

Theorem 1. There are no algebraic integrals of motion independent of the ten
known integrals of motion.

Consequently, new integrals of motion, if any, cannot be algebraic! In 1893, New-
comb [20] lamented that no additional integrals had been found to enable the im-
plicit solution of the 3-body problem. It is well-known that the Newtonian 2-body
problem can be solved implicitly,5 but all attempts to solve the N-body problem
with N ≥ 3 have been futile.6

Typically then the solution q(t) of the initial value problem (1) is estimated nu-
merically. From the constant total energy H along a solution q(t), we observe that
if any of the distances r jk get close to 0, i.e., at least two of the particles are near
collision, the self-potential becomes large, and the kinetic energy becomes large too.
The latter implies that the velocity of at least one of the particles becomes large, and
the linear momentum L along q(t) implies that the velocity of at least two particles
becomes large. In particular, from the equations of the Newtonian N-body problem,
the particles that are near collision are the one with the large velocities. These large
velocities present problems for the numerical estimates of such a solution.

Special Solutions

Rather than solving the N-body problem for all of its solutions by finding enough
independent integrals of motion, it is better to examine special solutions with par-
ticular features. The simplest solutions to find are equilibrium solutions, where the
position q j(t) of each particle is constant for all time. But the Newtonian N-body
problem has none of these (see p. 29 in [18]). The next simplest solutions are peri-
odic solutions, i.e., there exist T > 0 such that q(t +T ) = q(t) for all t ∈ R. These
are part of the larger collection of solutions q(t) with t− = −∞ and t+ = ∞ that are
bounded. Such solutions must have a particular total energy (see p. 160 in [25]).

5 See en.wikipedia.org/wiki/Gravitational two-body problem.
6 Karl Sundman did solve the 3-Body Problem when A �= 0 by convergent power series defined for
all time, but the series converge too slowly to be of any theoretic or numerical use [25].
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Theorem 2. If a solution q(t) of the Newtonian N-body problem exists for all time
and is bounded, then the total energy H < 0.

Consequently, any periodic solution q(t) of the Newtonian N-body problem must
have negative total energy. This is why in the search for periodic solutions, the total
energy is always assigned a negative value.

Stability

A periodic solution q(t) of the Newtonian N-body problem gives a predictable
future: we know with certainty what the positions of the N particles will be at any
time t > 0. But what if our measurements of the initial conditions q(0) and q′(0)
are slightly off? A solution q̃(t) with initial conditions near q(0) and q′(0) will stay
close to q(t) for a time, by a property of solutions of initial value problems called
continuity of solutions with respect to initial conditions (see [9]). But if it stays close
for all t > 0, we think of q(t) as being stable.

To quantify this notion of stability for a periodic solution, we use a Poincaré
section which is a hyperplane S containing the point (q(0),q′(0)) that is transverse
to the curve (q(t),q′(t)). If x = (q̃(0), q̃′(0)) is a point on S near the (q(0),q′(0)),
then P(x) is the next point where the curve (q̃(t), q̃′(t)) intersects S,7 and P2(x) is
the next point, and so on. The initial condition x0 = (q(0),q′(0)) is a fixed point of
this Poincaré map P from S to S, i.e., P(x0) = x0.

Definition 1. The periodic solution q(t) is stable if for every real ε > 0, there exist
a real δ > 0 such that |Pk(x)−x0|< ε for all k = 1,2,3, . . . , whenever |x−x0|< δ .

When q(t) is not stable, there are solutions which start nearby but eventually move
away from q(t), and we say that q(t) is unstable.

Showing directly that q(t) is stable or unstable is very difficult. Instead, the
related concept of linearized stability is investigated, at least numerically. The deriva-
tive of the Poincaré map at the fixed point x0 is a square matrix DP(x0).

Definition 2. A periodic solution q(t) is:

1. Spectrally stable8 if all the eigenvalues of DP(x0) have modulus one
2. Linearly unstable if any eigenvalue of DP(x0) has modulus bigger than one

In 1907, Liapunov [15] established a connection between the stability of Definition 1
and the linearized stability of Definition 2.

7 For an illustration of this, see en.wikipedia.org/wiki/Poincaré map.
8 There is a more restrictive notion of spectral stability known as linear stability that requires
additional technical conditions on the square matrix DP(x0).
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Theorem 3. If a periodic solution q(t) is stable, then it is spectrally stable, and if
q(t) is linearly unstable, then it is unstable.

If a periodic solution is shown numerically to be linearly unstable, then by
Theorem 3, the periodic solution is unstable. On the other hand, if a periodic so-
lution is shown numerically to be spectrally stable, it may be stable or unstable.
Examples exist with spectrally stable fixed points of maps like P that are unstable
(see [28]).

The notion of stability for a nonperiodic solution, such as the motion of the sun
and planets in the solar system, is harder to grasp. Here is a sampling of the his-
tory and opinions on this stability problem. In 1891, Poincaré commented that the
stability of the solar system had at that time already preoccupied much time and
attention of researchers (see p. 147 in [10]). In 1971, Siegel and Moser lamented
that a resolution of the stability problem for the N-body problem would probably be
in the distant future (see p. 219 in [28]). In 1978, Moser noted that the answer to the
stability of the solar system was still not known (see p. 127 in [10]). In 2005, Saari
stated that a still unresolved problem for the N-body problem is that of stability (see
p. 132 in [25]). Meyer, Hall, and Offin commented how little is known about the
stability problem and how difficult it was to get (see p. 229 in [18]).

In 1996, Diacu and Holmes suggested that the solar system should be considered
stable (in a weak sense) if no collisions occur among the sun and the planets, and
no planet ever escape from the solar system (see. p.129 in [10]). In this weak sense
of stability, the solar system is stable for the next few billion years according to
numerical work of Hayes [11] in 2007. Much longer-term numerical studies of the
solar system by Batygin and Laughlin [6] in 2008 using small changes in the initial
conditions suggest that Mercury could fall into the sun in 1.261 Gyr9 or that Mer-
cury and Venus could collide in 862 Myr10 and Mars could escape from the solar
system in 822 Myr. The Newtonian N-body problem thus suggests that in the near
future, the Solar System should be free of collisions of planets and the Sun, with
no planets escaping the solar system. But this still leaves open the possibility that
smaller objects, such as asteroids and comets, could collide with any of the planets
in the short and long term. Recall that there are nearly 9,000 of those near-Earth as-
teroids to consider, with 2012 DA14 making its near-collision approach with Earth
on February 15 of 2013.

Collisions

Either in the short term or the long term, collisions put a wrench into the question
of any notion of stability. Why should a solution or any nearby solution of the New-
tonian N-body problem be defined for all time? Remember that Shoemaker-Levy 9
has t+ < ∞!

9 Gyr means giga-year or 1,000,000,000 years.
10 Myr means mega-year or 1,000,000 years.
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Singularities

Collisions are one of the two kinds of singularities in the Newtonian N-body prob-
lem. The solution q(t) of initial value problem (1) is real analytic (i.e., a convergent
power series) on an interval (t0 − δ , t0 + δ ) for some δ > 0, as long as r jk �= 0 for
all j �= k at t0. By a process called analytic continuation (see, e.g., [16]), the interval
(t0 − δ , t0 + δ ) can be extended to the maximal interval (t−, t+).

Definition 3. A singularity of the Newtonian N-body problem is a time t = t+ or t−
when t+ < ∞ or t− >−∞.

In 1897, Painlevé [22] characterized a singularity of the Newtonian N-body prob-
lem, using the quantity

rmin(t) = min
j �=k

r jk(t)

determined by a solution q(t).

Theorem 4. A singularity for the Newtonian N-body problem occurs at time t = t∗
if and only if rmin(t)→ 0 as t → t∗.

An understanding of what this means is obtained by considering the collision set

Δ =
⋃

j �=k

{q : q j = qk} ⊂ (R3)N ,

which is the set of points where two or more of the N-particles occupy the same
position. Painlevé’s characterization means that q(t) approaches the collison set,
i.e.,

q(t)→ Δ as t → t∗

when t∗ is a singularity of the Newtonian N-body problem. Painlevé’s characteriza-
tion introduces two classes of singularities.

Definition 4. A singularity t∗ of the Newtonian N-body problem is a collision singu-
larity when q(t) approaches a specific point of Δ as t → t∗. Otherwise the singularity
t∗ is a non-collision singularity.

Only collision singularities can occur in the Newtonian 2-body problem because
it can be implicitly solved. In 1897, Painlevé [22] showed that only one other New-
tonian N-body problem has only collision singularities.

Theorem 5. In the 3-body problem, all singularities are collision singularities.

Unable to extend his result to more than 3 bodies, Painlevé conjectured that there
exist non-collision singularities in the Newtonian 4 or larger body problem. In 1992,
Xia [34] mostly confirmed Painlevé’s conjecture, giving an example in the Newto-
nian 5-body problem.

Theorem 6. There exist non-collision singularities in the N-body problem for N≥5.
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That leaves unresolved the question of the existence of non-collision singularities in
the Newtonian 4-body problem.

An understanding of what a non-collision singular looks like is obtained by con-
sidering one-half of the polar moment of inertia of the Newtonian N-body problem:

I =
1
2

N

∑
j=1

m jq j ·q j.

This scalar quantity measures the “diameter” of the N particles in the Newtonian
N-body problem. In 1908, von Zeipel [37] characterized a collision singularity in
terms of the polar moment of inertia.

Theorem 7. A singularity of the Newtonian N-body problem at t = t∗ is a collision
if and only if I is bounded as t → t∗.

This implies that for a non-collision singularity, at least one of the N-particles has
to achieve an infinite distance from the origin in just a finite time. This is a rather
strange thing for Newton’s law of gravity to predict. On the other hand, by The-
orem 7, for a collision singularity, all of the positions of the N particles remain
bounded at the moment of the singularity.

A total collapse is an example of a collision singularity in the N-body problem
for which all N particles collide at the same point at the singularity t∗. For a solution
q(t), the quantity

rmax = max
j �=k

r jk(t)

characterizes a total collapse: a total collapse occurs at t∗ if and only if

rmax(t)→ 0 as t → t∗.

There is a relationship between total collapse and the angular momentum that was
known by Weierstrass and established by Sundman (see [25]).

Theorem 8. If A �= 0, then rmax(t) is bounded away from zero.

This does not preclude the collision of less than N particles when A �= 0, as will be
illustrated for certain Newtonian N-body problems in section “Results”.

Improbability

Recall that there are 1,306 potentially hazardous near-Earth asteroids. What are the
chances that Earth will be hit by a near-Earth asteroid or Jupiter will be hit by
another comet? Well, it depends on the arrangement of the particles.

Definition 5. A solution q(t) is called collinear if the N particles always move on
the same fixed line in R3. Otherwise it is called noncollinear.
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Every collinear solution has zero angular momentum because q j(t) is parallel with
q′

j(t) for all t ∈ (t−, t+). In 1971 and 1973, Saari [23, 24] established the probability
of collisions.

Theorem 9. The probability that a noncollinear solution q(t) will have a collision
is zero. Every collinear solution q(t) has a collision.

With collision singularities being rare for a noncollinear N-body problem, why
bother to study them? Diacu and Holmes (see p. 84 and p. 103 in [10]) argue for
the study of collision singularities because without such a study, a complete under-
standing of the Newtonian N-body problem could not be achieved. In particular,
solutions near collision singularities could behave strangely, and the probability of
a solution coming close to a collision singularity is positive and thus cannot be ig-
nored. Understanding then the collision singularities enables an understanding of
the near-collision solutions.

Regularization

Regularization is one method by which we can get an understanding of a collision
singularity. To regularize a collision means to extend the solution beyond the col-
lision through an elastic bounce without loss or gain of total energy in such a way
that all of the solutions nearby have continuity with respect to initial conditions, i.e.,
they look like the extended collision solution for a time (see p. 104 and p. 107 in
[10]). Regularization is typically done by a Levi–Civita-type change of the depen-
dent variables and a Sundman-type change of the independent variable (see [8]),
that together removes the collision singularity from the equations. We illustrate this
regularization in the simplest of the N-body problems.

In the collinear 2-body problem (or Col2BP for short), the positions of the two
particles are the scalar quantities q1 and q2. If x = q2 − q1 is the distance between
the particle with mass m1 at q1 and the particle with mass m2 at q2 > q1, then the
Col2BP takes the form

x′′ =−m1 +m2

x2 , x > 0, (2)

and the total energy takes the form

H =
m1m2

2(m1 +m2)
(x′)2 − m1m2

x
. (3)

As x → 0 the two particles approach collision, and the total energy implies that the
two particles collide with an infinite velocity,

(x′)2 → ∞.

To regularize the binary collision (or total collapse) in this problem, define a new
independent variable s and a new dependent variable w by
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ds
dt

=
1
x
, w2 = x,

where the former is the Sundman-type change of the independent variable, and the
latter is the Levi–Civita-type change of the dependent variable. If ˙= d/ds, the
second-order equation (2) becomes

w2[2wẅ− 2ẇ2 +(m1 +m2)
]
= 0, (4)

and the total energy (3) becomes

Hw2 =
2m1m2

m1 +m2
ẇ2 −m1m2. (5)

As w → 0, the second-order equation (4) makes sense (no dividing by zero), and the
total energy (5) implies that

(ẇ)2 → m1 +m2

2
,

which is a finite nonzero velocity! The collision singularity has been regularized.
The regularized nonlinear second-order equation (4) can actually be solved!

Solving the total energy (5) for 2(ẇ)2 and substituting this into the second-order
equation (4) gives

2w3
[

ẅ− (m1 +m2)H
2m1m2

w

]
= 0. (6)

This makes sense when w = 0, i.e., the moment of collision! For negative H, the
linear second-order equation11 inside the square brackets in (6) solves to give a
real analytic stable periodic solution w(s) which experiences a collision every half
period in terms of the regularized time variable s. The corresponding solution x(t)
is periodic and experiences a collision once a period in terms of the original time
variable t. This doubling of the number of collisions per period is because the change
of dependent variable w2 = x has w(s) “doubling” x(t) in that w(s) passes through 0
twice a period, going from positive to negative and then negative to positive, while
x(t) is positive except at collision where it is zero.

The binary collision singularity in the Newtonian 2-body problem can be regu-
larized in a similar but more complicated way than what was done above for the
Col2BP (see [25]). By Theorem 8, a solution of the 2-body problem with nonzero
angular momentum does not experience a collision or total collapse. A nonzero
angular momentum near-collision solution looks like the zero angular momentum
collision solution.12 The regularized 2-body problem provides good numerical esti-
mates of the motion because there are no infinite velocities!

11 This is a simple harmonic oscillator for H < 0 whose solutions are in terms of cosine and sine.
12 Binary star systems are known to exist in the Universe. The Newtonian 2-body problem predicts
stability for a binary star system, a collision-free solution that is bounded for all time.
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McGehee

What about regularization of a triple collision, when three of the particles meet? In
1974, McGehee [17] showed that regularization of a triple collision is in general
not possible.13 Starting close together, two solutions that approach a near-triple col-
lision can describe radically different motions after the near-triple collision. This
kind of behavior is known as “sensitive dependence on initial conditions” and is
an antithesis of stability. Triple collisions present a numerical nightmare! By exten-
sion, collisions with four or more particles present the same nightmare! So the only
regularizable collisions are those that are essentially a binary collision.

Results

Spectrally stable periodic solutions have been found in Newtonian N-body problems
with regularizable collisions for N ≥ 3. Three of these situations discussed here are
the collinear 3-body problem (or Col3BP), the collinear symmetric 4-body problem
(or ColS4BP), and the planar pairwise symmetric 4-body problem (or PPS4BP).
There are other Newtonian N-body problems where periodic solutions with regu-
larizable collisions whose existence has been given analytically [27, 35, 36], some
of whose stability (in the sense of Definition 1) and linear stability (as defined in
Definition 2) has been numerically determined [5, 33, 35, 36].

Col3BP

As a subproblem of the Newtonian 3-body problem, the Col3BP requires that the
three particles always lie on the same line through the origin. The positions of the
three particles in the Col3BP are the scalars q1, q2, and q3 which can be assumed to
satisfy

q1 ≤ q2 ≤ q3.

By Theorem 9, collisions always occur in the Col3BP. Because the three particles
are collinear for all time, their angular is zero, and by Theorem 8 a total collapse
is possible14 in the Col3BP. In 1974, S.J. Aareth and Zare [1] showed that any two
of the three possible binary collisions in the 3-body problem are regularizable.15

13 This is achieved by “blowing-up” the triple collision singularity and slowing down the motion
as the particles approach a triple collision. This setting does allow for good numerical estimates of
near-triple collisions.
14 Initial conditions leading to total collapse in the equal mass Col3BP are easy to realize: set
q1 =−1, q2 = 0, and q3 = 1 with the initial velocity of each particle set to 0.
15 A good numerical model for the Sun–Jupiter–Shoemaker-Levy 9 or Earth–Moon-2012DA14
situation is regularized 3-body problem of Aarseth and Zare.
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In 1993, Hietarinta and Mikkola [13] used Aarseth and Zare’s regularization [1] to
regularize the binary collisions q1 = q2 and q2 = q3 in the Col3BP.

In 1956, Schubart [26] numerically found a periodic orbit in the equal mass
Col3BP of negative total energy in which the inner particle oscillates between bi-
nary collisions with the outer particles. In 1977, Hénon [12] numerically extended
Schubart’s periodic solution to arbitrary masses and investigated their linear stabil-
ity. In 1993, Hietarinta and Mikkola [13] also numerically investigated the linear sta-
bility of Schubart’s periodic solution for arbitrary masses. Together they showed that
Schubart’s periodic solution is spectrally stable for certain masses and linearly un-
stable for the remaining masses. Hietarinta and Mikkola [13] further numerically in-
vestigated the Poincaré section for Schubart’s periodic solution for arbitrary masses,
showing when there is stability as described in Definition 1. In 2008, Moeckel [19]
and Venturelli [32] separately proved the analytic existence of Schubart’s solution
when m1 = m3 and m2 is arbitrary. Only recently, in 2011, did Shibayama [27] ana-
lytically prove the existence of Schubart’s periodic solution for arbitrary masses in
the Col3BP.

Schubart’s periodic solution for the Col3BP is also a periodic solution of the 3-
body problem, where in the latter the continuity with respect to initial conditions
can be seen for near-collision solutions. For example, Schubart’s periodic solution
for the nearly equal masses

m1 = 0.333333, m2 = 0.333334, m3 = 0.333333

is spectrally stable. Considered in 3-body problem, Schubart’s periodic solution for
these mass values remains spectrally stable [12], and numerically the near-collision
solutions in the Newtonian 3-body problem behave like Schubart’s periodic solu-
tion. It is therefore possible that in the 3-body problem, there are solutions near
Schubart’s periodic solution that are free of collisions and bounded for all time.
Imagine, as did Hénon [12], of Newton’s law of gravity predicting a triple star sys-
tem that is free of collisions and bounded for all time!

ColS4BP

As a subproblem of the Newtonian 4-body problem, the ColS4BP requires that the
four particles always lie on the same line through the origin. The positions of the
four particles are the scalars q1, q2, q3, and q4 that satisfy

q4 =−q1, q3 =−q2, q1 ≥ 0, q2 ≥ 0

and
−q1 ≤−q2 ≤ 0 ≤ q2 ≤ q1

with masses
m1 = 1, m2 = m > 0, m3 = m, m4 = 1.
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The angular momentum for all solutions of the ColS4BP is zero because of the
collinearity, and so by Theorem 8 a total collapse is possible. There are two kinds of
non-total collapse collisions in the ColS4BP: the binary collision of the inner pair
of particles of mass m each, i.e., q2 = 0, and the simultaneous binary collision of the
two outer pairs of particles, i.e., q1 = q2 > 0. In 2002 and 2006, Sweatman [30, 31]
showed, by adapting the regularization of Aarseth and Zare [1], that these non-total
collapse collisions in the ColS4BP are regularizable.

Sweatman [30, 31] numerically found a Schubart-like periodic solution in the
ColS4BP with negative total energy for arbitrary m where the outer pairs collide in
a simultaneous binary collision at one moment and then the inner pair collides at
another moment. He determined numerically that this Schubart-like periodic solu-
tion is spectrally stable when

0 < m < 2.83 and m > 35.4

and is otherwise linearly unstable. In 2010, Bakker et al. [2] verified Sweatman’s
linear stability for the Schubart-like periodic solution using a different technique. In
2011–2012, Ouyang and Yan [21], Shibayama [27], and Huang [14] proved sepa-
rately the analytic existence of the Schubart-like periodic solution in the ColS4BP.

PPS4BP

The PPS4BP has two particles of mass 1 located at the planar locations

q1 and q3 =−q1,

and two particles of mass 0 < m ≤ 1 located at the planar locations

q2 and q4 =−q2.

The four particles in the PPS4BP need not be collinear, so that the angular
momentum need not be zero. Unlike the ColS4BP, total collapse can be avoided
in the PPS4BP by Theorem 8 when the angular momentum is not zero. Like the
ColS4BP, there are two kinds of non-total collapse collisions in the PPS4BP: simul-
taneous binary collisions when q1 = q2 and q3 = q4 or when q1 = q4 and q2 = q3

and binary collisions when q1 = 0 or when q2 = 0. In 2010, Sivasankaran, Steves,
and Sweatman [29] showed that these non-total collapse collisions in the PPS4BP
are regularizable.

The Schubart-like periodic solution in the ColS4BP is also a periodic solution of
the PPS4BP, where in the latter the continuity with respect to initial conditions can
be observed for near-collision solutions. However, as shown by Sweatman [31], in
the PPS4BP the Schubart-like periodic solution of the ColS4BP becomes linearly
unstable for

0 < m < 0.406 and 0.569 < m < 1.02
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as well as 2.83 < m < 35.4, while it remains spectrally stable for

0.407 < m < 0.567 and m > 35.4.

By long-term numerical integrations for the Schubart-like periodic solution as a
solution of the PPS4BP, Sweatman [31] showed that stability in the sense of
Definition 1 is possible when 0.407 < m < 0.567 and when m > 35.4. It is there-
fore possible for these values of m that near Schubart’s periodic solution, there are
collision-free solutions of the PPS4BP that are bounded for all time.

In 2011, adapting the regularization of Aarseth and Zare [1] to simultaneous
binary collisions, Bakker, Ouyang, Yan, and Simmons [3] proved the analytic exis-
tence of a noncollinear periodic solution in the equal mass PPS4BP. This periodic
solution has zero angular momentum, negative total energy, and alternates between
a simultaneous binary collision of the symmetric pairs in the first and third quadrant
where q1 = q2 and q3 = q4 and the simultaneous binary collision of the symmet-
ric pairs in the second and fourth quadrants where q1 = q4 and q2 = q3. Bakker,
Ouyang, Yan, and Simmons [3] then numerically extended this noncollinear peri-
odic simultaneous binary collision solution to unequal masses 0 < m < 1. In 2012,
Bakker, Mancuso, and Simmons [4] have numerically determined that the non-
collinear periodic simultaneous binary collision solution is spectrally stable when

0.199 < m < 0.264 and 0.538 < m ≤ 1

and is linearly unstable for the remaining values of m. Long-term numerical integra-
tions of the regularized equations done by Bakker, Ouyang, Yan, and Simmons [3]
suggest instability when 0.199<m < 0.264 and stability when 0.538<m ≤ 1 in the
sense of Definition 1. For these latter values of m could the near-collision solutions
in the PPS4BP that look like the noncollinear periodic simultaneous binary collision
solution be collision-free and bounded for all time?

Future Work

Both the ColS4BP and the PPS4BP are subproblems of the Newtonian 4-body prob-
lem, where the non-total collapse collisions in the former two problems are regular-
izable. What is not known is how to, if possible, regularize binary collisions and
simultaneous binary collisions in the Newtonian 4-body problem within one coordi-
nate system.16 If such a regularization is possible, then all of the periodic solutions

16 During the special session on Celestial Mechanics at the American Mathematical Society’s
Sectional Conference in April 2011 at the College of the Holy Cross, Worcester, Massachusetts,
Rick Moeckel put forth the problem of finding an elegant coordinate system for the Newtonian
4-body problem in which regularizes binary collisions and simultaneous binary collisions and
blows up all triple collisions and total collapse. The regularization of binary collisions and simul-
taneous binary collisions can be achieved within multiple coordinate systems, with one coordinate
system for each regularizable collision.
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thus known in the ColS4BP and PPS4BP would also be periodic solutions of the
Newtonian 4-body problem, and the investigation of their stability and linear sta-
bility in the Newtonian 4-body problem could begin. With more possible perturba-
tions of initial conditions in the Newtonian 4-body problem as compared with the
PPS4BP, a loss of spectral stability could indeed happen as it did with going from
the ColS4BP to the PPS4BP. But some of the spectral stability might survive pas-
sage from the PPS4BP to the Newtonian 4-body problem, giving the possibility of
near-collision solutions that are collision-free and bounded for all time.
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