
Chapter 3
“Rainbows” in Homogeneous and Radially
Inhomogeneous Spheres: Connections with Ray,
Wave, and Potential Scattering Theory

John A. Adam

Introduction: The Rainbow, Its Scientific
and Mathematical Beauty

“Rainbows have long been a source of inspiration both for those who would prefer to
treat them impressionistically or mathematically. The attraction to this phenomenon
of Descartes, Newton, and Young, among others, has resulted in the formulation and
testing of some of the most fundamental principles of mathematical physics.”

K. Sassen [1]

“The rainbow is a bridge between two cultures: poets and scientists alike have
long been challenged to describe it. . . Some of the most powerful tools of mathe-
matical physics were devised explicitly to deal with the problem of the rainbow and
with closely related problems. Indeed, the rainbow has served as a touchstone for
testing theories of optics. With the more successful of those theories it is now pos-
sible to describe the rainbow mathematically, that is, to predict the distribution of
light in the sky. The same methods can also be applied to related phenomena, such
as the bright ring of color called the glory, and even to other kinds of rainbows, such
as atomic and nuclear ones.”

H.M. Nussenzveig [2]

“The theory of the rainbow has been formulated at many levels of sophistication.
In the geometrical-optics theory of Descartes, a rainbow occurs when the angle of
the light rays emerging from a water droplet after a number of internal reflections
reaches an extremum. In Airy’s wave-optics theory, the distortion of the wave front
of the incident light produced by the internal reflections describes the production of

John A. Adam (�)
Department of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23508, USA
e-mail: jadam@odu.edu

B. Toni (ed.), Advances in Interdisciplinary Mathematical Research, Springer
Proceedings in Mathematics & Statistics 37, DOI 10.1007/978-1-4614-6345-0 3,
© Springer Science+Business Media New York 2013

57

jadam@odu.edu


58 John A. Adam

the supernumerary bows and predicts a shift of a few tenths of a degree in the angu-
lar position of the rainbow from its geometrical-optics location. In Mie theory, the
rainbow appears as a strong enhancement in the electric field scattered by the water
droplet. Although the Mie electric field is the exact solution to the light-scattering
problem, it takes the form of an infinite series of partial-wave contributions that is
slowly convergent and whose terms have a mathematically complicated form. In the
complex angular momentum theory, the sum over partial waves is replaced by an
integral, and the rainbow appears as a confluence of saddle-point contributions in
the portion of the integral that describes light rays that have undergone m∗ internal
reflections within the water droplet.”

J. A. Lock [3]

∗In this chapter, p− 1 will replace m, where p ≥ 1.

Complementary Domains of Description

This chapter addresses three related topics: the existence of direct transmission (or
zero-order) bows in radially inhomogeneous spheres, the Mie solution of electro-
magnetic scattering, and the associated wave-theoretic/potential scattering connec-
tion, to be discussed in detail below. This connection is well illustrated in a series of
recent papers by Lock [4–6] (see section “Analysis of Specific Profiles”).

Geometrical optics and wave (or physical) optics are two very different but com-
plementary approaches to describing many optical phenomena and here, specifi-
cally, the rainbow. However, there is a broad “middle ground,” the semiclassical
régime. Thus, there are essentially three domains within which scattering phenom-
ena may be described: the scattering of waves by objects which in size are (i) small,
(ii) comparable with, and (iii) large, compared to the wavelength of the incident
(plane wave) radiation. There may be considerable overlap of region (ii) with the
others, depending on the problem of interest, but basically, the wave-theoretic prin-
ciples in region (i) tell us why the sky is blue (amongst many other things!). At
the other extreme, the “classical” domain (iii) enables us in particular to be able to
describe the basic features of the rainbow in terms of ray optics. The wave-particle
duality so fundamental in quantum mechanics is relevant to region (ii) because the
more subtle features exhibited by such phenomena involve both these aspects of
description and explanation. Indeed, it is useful to relate (somewhat loosely) the
régimes (i)–(iii) above to three domains, as stated by Grandy [7]:

(a) The classical domain: geometrical optics and particle and particle/raylike tra-
jectories

(b) The wave domain: physical optics, acoustic and electromagnetic waves, and
quantum mechanics

(c) The semiclassical domain: “the vast intermediate region between the above two,
containing many interesting physical phenomena”
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Geometrical optics is associated with “real” rays, but their analytic continuation
to complex values of some associated parameters enables the concept of “complex
rays” to be used, often in connection with surface or “evanescent” rays travelling
along a boundary while penetrating the less dense medium in an exponentially
damped manner. However, complex rays can also be used to describe the phe-
nomenon of diffraction: the penetration of light into regions that are forbidden to
the real rays of geometrical optics [8], so there are several different contexts in
which this term can be used. In fact, the primary bow light/shadow transition region
is associated physically with the confluence of a pair of geometrical rays and their
transformation into complex rays; mathematically this corresponds to a pair of real
saddle points merging into a complex saddle point. For the primary bow then, the
two (supernumerary) rays coalesce when they are incident on the sphere surface at
the Descartes angle, and the subsequent vanishing of these rays is associated with
the complex ray on the shadow side of the rainbow. This does not involve “grazing
incidence” at all. On the other hand, rays that graze the sphere and just miss grazing
it may “tunnel” into the interior, or more accurately, both of these regions together
form an “edge region” that gives rise to the tunneling ray. This phenomenon is well
known in quantum mechanics, specifically tunneling through a classically forbidden
potential barrier. Because it occurs in the edge region of semiclassical scattering,
it permits grazing rays (and those just outside the sphere) to interact with it (and
contribute to the radiation field) [8–10]. As shown by Nussenzveig in a series of
very elegant but technical papers [9–12], scattering of scalar waves by a transpar-
ent sphere is in many respects isomorphic to the problem of scattering of particles
by a spherical potential well. In quantum mechanics, as will be shown later in this
chapter, the bound states of a potential well correspond to poles in the elements of
a certain matrix, the scattering matrix, on the negative real energy axis, whereas
resonances of the well (as we shall see) correspond to poles that are just below the
positive real energy axis of the second Riemann sheet associated with those matrix
elements. The closer these poles are to the real axis, the more the resonances behave
like very long-lived bound states or “almost bound” states of the system. In very
simplistic terms, if a particle with a resonance energy is “shot” at the well from far
enough away, it is captured by the well for a considerable time and acts like a bound
particle, but eventually it escapes from the well (this, e.g., is a crude description of
the mechanism of α-decay from a nucleus, though that is a decay phenomenon, not
a scattering one). The reciprocal of the half-width of the resonance is a measure of
the lifetime of the resonance particle in the well.

In view of all this then, mathematically at least, a primary “rainbow” is, amongst
other things [13, 14]:

(1) a concentration of light rays corresponding to an extremum of the deviation or
scattering angle (this extremum is identified as the Descartes’ or rainbow ray); (2) a
caustic, separating a two-ray region from a 0-ray (or shadow) region; (3) an integral
superposition of waves over a (locally) cubic wave front (the Airy approximation);
(4) a coalescence of two real saddle points; (5) a result of scattering by a square
well potential; (6) an example of “Regge-pole dominance”; and (7) a fold diffraction
catastrophe. Most of these complementary descriptions will not be discussed here;
instead the reader is referred to [13, 14] for further details.
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Scattering by a Transparent Sphere: Ray Description

In the following discussion, i refers to the angle of incidence for the incoming ray,
r is the radial distance within a sphere of radius a (which may be taken to be unity),
and D(i) is the deviation undergone by the ray from its original direction. Below,
the subscripts 0 and 1 will be used to distinguish the respective deviations of the ex-
iting ray for the direct transmission (or zero order) and the primary bow. For p− 1
internal reflections in a spherical droplet of constant refractive index n > 1, straight-
forward geometrical optics reveals that the deviation from its original direction of
a ray incident from infinity upon the sphere at angle of incidence i is in radians
(i ∈ [0,π/2])

Dp−1(i) = (p− 1)π + 2i− 2parcsin

(
sin i

n

)
. (1)

In general, an extremum of this angle exists at i = ic, where

ic = arccos

[
n2 − 1
p2 − 1

]1/2

, p > 1. (2)

Naturally, for real optical phenomena such as rainbows, n is such that ic exists. A
primary bow corresponds to p = 2, a secondary bow to p = 3, and so forth. That
a zero order (or direct transmission bow) corresponding to p = 1 cannot exist for
constant n is readily shown from Eq. (1). Nevertheless, it has been established that
such relative extrema (for zero- and higher-order bows) can exist for radially inho-
mogeneous spheres (see [15, 16] for more details). In fact, multiple zero-order and
primary bows may exist depending on the refractive index profile. A well-known
result is that the curvature of the ray path is towards regions of higher refractive in-
dex n. This is a consequence of Snel’s law of refraction generalized to continuously
varying media. Thus within the sphere, if dn(r)/dr ≡ n′(r) < 0, an incoming ray
bends towards the origin; if n′(r)> 0, it bends away from it. From Fig. 3.1 it can be
seen that for direct transmission in the former case,

i+ 2Θ(i)+ (i−|D0 (i)|) = π ⇒ |D0 (i)|= 2i−π + 2Θ(i) . (3)

In this equation, 2Θ(i) is the angle through which the radius vector turns from the
point at which the ray enters the sphere to its point of exit. It is readily noted that
for one internal reflection (corresponding to a primary bow)

|D1 (i)|= 2i−π + 4Θ(i) . (4)

In what follows the absolute value notation will be dropped. The deviation formu-
lae can be extended to higher-order bows in an obvious fashion. The quantity Θ(i)
is an improper definite integral to be defined in section “The Ray Path Integral”.
Analytic expressions for Θ(i) are difficult to obtain except for a few specific n(r)
profiles; several examples are indicated below. For a constant refractive index, Θ(i)
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Fig. 3.1 The ray path for direct transmission through a radially inhomogeneous sphere for
n′(r)< 0

is a standard integral resulting in the inverse secant function and can be readily
evaluated. Specifically,

D0 (i) = 2i− 2r̃ (i) and D1 (i) = 2i+π − 4r̃ (i) , (5a, b)

where r̃(i) is the angle of refraction inside the sphere. Of course, these results are
readily determined from elementary geometry and are the p = 1 and p = 2 cases re-
ferred to earlier. As already noted, there can be no “zero-order rainbow” for the
direct transmission of sunlight in uniform spheres, only primary and secondary
bows (ignoring theoretically possible but practically almost unobservable higher-
order bows).

In Fig. 3.2 the dashed curve Dh represents the deviation D1(i) through a homo-
geneous sphere of constant refractive index n = 4/3. The other graphs represent the
deviations corresponding to a zero bow and a primary bow for the particular (but
arbitrary) choice of refractive index

n1(r) = 1.3− 0.2cos
{
[1.9(r− 0.85)]2

}
. (6)

Note that both D0(i) and D1(i) exhibit fairly broad double extrema in this case. It is
interesting to note that the relative maximum for D1 is much less pronounced than
that for D0. Further discussion of such extrema can be found in [16].

The Ray Path Integral

In a spherically symmetric medium with refractive index n(r) each ray path satisfies
the following equation [17]:

rn(r)sin φ = constant, (7)
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Fig. 3.2 Deviation functions for both a homogeneous (Dh) and inhomogeneous spheres
(D0 and D1) for the profile n1 (r) [inset]

where φ is the angle between the radius vector r and the tangent to the ray at that
point (note that r = |r|). This expression may be thought of as the optical analogue
of the conservation of angular momentum for a particle moving under the action
of a central force. The result, known as Bouguer’s formula (for Pierre Bouguer,
1698–1758), implies that all the ray paths r(θ ) are curves lying in planes through
the origin (θ is the polar angle). Elementary differential geometry establishes that

sinφ =
r (θ )√

r2 (θ )+ (dr/dθ)2
. (8)

From this the angular deviation of a ray, Θ(i) within the sphere can be determined
and subsequently the total angle of deviation D(i) through which an incoming ray
at angle of incidence i is rotated. From this the formula for Θ(i) is found to be

Θ(i) = sin i
∫ 1

rc(i)

dr

r
√

r2n2 (r)− sin2 i
. (9)

The lower limit rc (i) is the point at which the integrand is singular and is there-
fore the solution of Eq. (10) below in which (for a unit sphere) sin i is the impact
parameter. The quantity rc (i) is the radial point of closest approach to the center
of the sphere, sometimes called the turning point. The value of rc (i) is determined
implicitly from the following expression:

η (rc (i))≡ rc (i)n(rc (i)) = sin i. (10)
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The nature of η (r) = rn(r) will be very significant in what follows; in particular,
rc (i) will have only one value if η (r) is a monotonic function. The integral in Eq.
(9) can be evaluated analytically in certain special cases. Consider first the (some-
what unphysical and singular) power-law profile n(r) = n(R)(r/R)m where m can
be of either sign [18]. By a judicious change of variable, this can be reduced to
the standard result for a constant refractive index. For the choice of a “shifted hy-
perbolic” profile of the form n(r) = (ar+ b)−1, the integral (9) can be evaluated
in terms of elementary transcendental functions [15]. The complexity of these inte-
grals increases rapidly with even relatively simple expressions for n(r). In the case
of a linear profile, Eq. (3) can be evaluated in terms of incomplete elliptic integrals
of the first and third kinds [19, 20]. A parabolic profile of the form n(r) = a− br2

also yields a result also in terms of a purely imaginary elliptic integral of the third
kind [20].

Whether the ray path integral is evaluated analytically or numerically, it con-
tributes to the direct problem of geometrical optics, namely, (for direct transmission)
the total angular deviation 2Θ(i) of the ray inside the sphere for a given profile n(r).
Coupled with the refraction at the (in general discontinuous) boundary entrance and
exit points, this naturally yields the total deviation of an incoming ray as a function
of its angle of incidence. The corresponding inverse problem is to determine the
profile n(r) from knowledge of the observable deflection function D(i) (note that
D(i) = D(Θ(i))). This is generally more difficult to accomplish. Another reason
for pursuing the inverse problem is that it would be valuable to find at least some
sufficient conditions under which inhomogeneous spheres can exhibit bows of any
order but especially of zero order (particularly with regard to industrial techniques
such as rainbow refractometry, e.g., see references in [16]). By choosing a generic
profile for D0 (i) or D1(i), for example, it should be possible in principle to examine
the implications on n(r) for such profiles. From a strict mathematical point of view,
inverse problems in general are notorious for their lack of solution uniqueness. In
practical terms it is not significant in this context, and we shall address the topic no
further here.

Properties of η(r) and Interpretation of the Ray Path Integral

A careful analysis of the integral (9) for Θ(i) in the neighborhood of the singularity
yields two possibilities depending on whether or not η (r) is a monotone increasing
function:

(i) Monotonic case. If η ′ (rc) �= 0, then in the neighborhood of r = rc, the integral
for Θ has the dominant behavior (r− rc)

1/2 which tends to zero as r → r+c .
(ii) Non-monotonic case. If η ′ (rc) = 0, then in the neighborhood of r = rc, the

integral for Θ has the dominant behavior ln |r− rc| which tends to −∞ as r →
r+c .

To see this, we expand the quantity r2n2 (r) about the point r = rc. The radicand
then takes the form
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Fig. 3.3 η (r) = rn(r) for the monotonic case. The point of closest approach is r = rc

r2n2 (r)−K2 = r2
c n2 (rc)−K2 +

d
dr

[
r2n2 (r)

]
rc
(r− rc)

+
1
2

d2

dr2

[
r2n2 (r)

]
rc
(r− rc)

2 +O
(
(r− rc)

3
)
. (11)

Simplifying (and neglecting extraneous multiplicative and additive constants), we
find that, as indicated in Fig. 3.3, if

(
d
[
r2n2 (r)

]
/dr

)
rc
> 0, then the integral in Eq.

(9) has the functional form [16]

I ∝
∫

(r− rc)
−1/2dr ∝ (r− rc)

1/2 → 0 (12)

as r → r+c . If on the other hand,
(
d
[
r2n2 (r)

]
/dr

)
rc
= 0, then

I ∝
∫

|r− rc|−1dr ∝ ln |r− rc| → −∞ (13)

as r → r+c .
Generic η (r) profiles for these two cases are illustrated schematically in Figs. 3.3

and 3.4. In the monotonic case, the radius of closest approach for a given angle of in-
cidence is denoted by ri in Fig. 3.3; the distance of the ray trajectory from the center
of the sphere is indicated on the r-axis. This is also indicated in the non-monotonic
case in Fig. 3.4. To interpret this figure, it is best to consider rays with angles of in-
cidence increasing away from zero. The radius (point) of closest approach increases
in a continuous manner until i = i2 as shown. At that stage the point of closest ap-
proach increases discontinuously by an amount Δr to r = rc, thereafter increasing
continuously once again. This behavior corresponds to a spherical “zone” of thick-
ness Δr into which no rays can penetrate. The situation is reversible: starting with
i = π/2 and reducing, it yields the same zonal gap.
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Fig. 3.4 η (r) = rn(r) for the non-monotonic case. The point of closest approach for i > i2 is
r = r+c , and a zone of width Δr exists into which no ray penetrates

In scattering theory, the logarithmic singularity (ii) above is associated with the
phenomenon of orbiting. An extremum of η (r) arises at r = rc when

n′ (rc) =−n(rc)

rc
< 0, (14)

meaning that the refractive index profile n(r) either possesses a local minimum at
r = rm > rc, or it tends monotonically to a constant value as r increases to one (see
Fig. 3.5). Of course, unlike the case of classical and/or atomic or molecular scatter-
ing, n(r) and its corresponding potential V (r) is in general piecewise continuous.
The orbiting behavior illustrated in Fig. 3.5 (lower figures) can be thought of as a
type of “mechanical” version of a limit cycle in a dynamical system. The connec-
tion between the two cases of “classical” and “potential” scattering is illustrated in
Appendix 3.

Analysis of Specific Profiles

We now examine two specific (and possibly singular) refractive index profiles for
the unitsphere, generalizing somewhat that considered in [21]. Before so doing, we
introduce some new notation. Electromagnetic waves possess two different polariza-
tions: the transverse electric (TE) and transverse magnetic (TM) modes. Spherical
TE modes have a magnetic field component in the direction of propagation, in this
case that is in the radial direction, and spherical TM modes have an electric field
component in the radial direction.

The first profile to be considered is

n(r) = n1r1/b−1
(

2− r2/b
)1/2

,n1 = n(1)> 1. (15)
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Fig. 3.5 The phenomenon of orbiting illustrated schematically associated with a zero of η ′ (r)
showing the η (r) and n(r) profiles associated with the existence of a “critical” ray separating two
types of ray behavior (upper diagrams). The lower diagrams illustrate two different ways in which
rays can approach the critical radius rc. (See Eq. (14) and the associated discussion in section
“Properties of η (r) and Interpretation of the Ray Path Integral”)

Note that if b = 1 and n1 = 1, this profile corresponds to the classic Luneberg lens
[22]. Using the result (3.5) D0 (i) = 2i− π + 2Θ, and substituting for n(r) in the
Θ-integral, after some algebra the deviation angle can be shown to be

D0 (i) = π (b− 1)+ 2i− barcsin

(
sin i
n1

)
. (16)

For a zero-order bow to exist for some critical angle of incidence ic ∈ [0,π/2], it is
necessary and sufficient that D′

0 (ic) = 0. This is the case if

cos ic = 2

(
n2

1 − 1
b2 − 4

)1/2

, (17)

which implies that b ≥ 2n1 if we restrict ourselves to the least potentially singular
case of b> 0. We have therefore established that a zero bow can exist, unless n1 = 1,
whence Eq. (16) is a linear function of incidence angle i. It is interesting to note that
the TE wave equation (see Appendix 2) has an exact solution for this choice of
profile, finite for 0 ≤ r ≤ 1, namely,

Sl (r) = rl+1 exp

(
−bkr2/b

2

)
×1F1

(
1
2
+

b
2

(
l +

1
2
− k

)
;1+ b

(
l +

1
2

)
;bkr2/b

)
.

(18)
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Here 1F1 refers to the confluent hypergeometric function. The TM equation cannot
be expressed in terms of well-known functions, though it can be written in terms
of generalized hypergeometric functions and solved by power series expansions in
special cases. In a recent series of papers, Lock [4–6] analyzed the scattering of
plane electromagnetic waves by a modified Luneberg lens. This “lens” is a dielectric
sphere of radius a with a radially varying refractive index [22], specifically

n(r) =
1
f

[
1+ f 2 −

( r
a

)2
]1/2

. (19)

Here f is a parameter determining the focal length of the lens. If 0 < f < 1, the
focus is inside the sphere (i.e., the focal length < a); for f = 1 it is on the surface,
and for f > 1 the focal point is outside the sphere. Note that, in contrast to the
refractive index profiles (15) and (20), for the profile (19), n(a) = 1. Lock also
found the existence of a transmission bow for this profile; indeed, this will occur for
f > 1,whereas for f = 1 this bow evolves into an orbiting ray, and if 0 < f < 1, this
ray in turn evolves into a family of morphology-dependent resonances. In a wave-
theoretic approach to this problem [5], Lock studied the related radial “Schrödinger”
equation for the TE mode using the effective potential approach, discussed in section
“Morphology-Dependent Resonances: The Effective Potential Ul (r) (Constant n)”
below.

When a family of rays has a near-grazing incidence on a dielectric sphere, the so-
called far zone consists of (i) an illuminated region containing rays refracted into the
sphere and making p−1 internal reflections (where p ≥ 1) before exiting the sphere
and (ii) a shadow zone into which no rays enter. (On a related topic, Lock showed
that the asymptotic form of the Airy theory bow far into the illuminated region
becomes the interference pattern of two supernumerary rays (with slightly different
optical path lengths through the sphere.) In an earlier paper [23] he showed that the
zero ray/one ray transition for direct transmission is really a regular zero ray/two
ray transition (as for a primary bow), with the second ray being a “tunneling ray”;
such tunneling will be discussed in section “Morphology-Dependent Resonances:
The Effective Potential Ul (r) (Constant n)”.)

The other choice for refractive index profile discussed here is

n(r) =
2n1r1/c−1

1+ r2/c
,n1 = n(1) . (20)

Detailed algebraic manipulation indicates that in this case,

D0 (i) = π (c− 1)+ 2i. (21)

Obviously, D′
0 (i) �= 0 for any value of i, i.e., there is no zero-order bow for this

profile. Both TE and TM modes have finite solutions for 0 ≤ r ≤ 1, expressible in
terms of the hypergeometric functions 2F1, but we do not state them here. For the
special case of c = 1 and n1 = 1, this profile corresponds to the classic Maxwell
fish-eye lens [24]. Other analytic solutions for the TE/TM modes will be discussed
elsewhere [19].
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Scattering by a Transparent Sphere: Scalar Wave Description

The essential mathematical problem for scalar waves can be thought of either in
terms of classical mathematical physics, e.g., the scattering of sound waves, or
in quantum mechanical terms, e.g., the nonrelativistic scattering of particles by a
square potential well (or barrier) of radius a and depth (or height) V0 [7, 8]. In ei-
ther case we can consider a scalar plane wave impinging in the direction θ = 0 on
a sphere of radius a. In what follows, a boldface letter refers to a vector quantity,
thus here, r = 〈|r| ,θ ,φ 〉 (or 〈r,θ ,φ 〉) denotes a position vector in space (using a
spherical coordinate system). Suppose that we had started with the “classical wave
equation” with dependent variable ψ̃ (r, t) = ψ (r)e−iωt . For the scalar electromag-
netic problem, the angular frequency ω , wave number k, and (constant) refractive
index n are related by ω = kc/n, c being the speed of light in vacuo. Then for a pen-
etrable (=“transparent”) sphere, the spatial part of the wave function ψ (r) satisfies
the scalar Helmholtz equation

∇2ψ + k2n2ψ = 0,r < a, (22a)

∇2ψ + k2ψ = 0,r > a. (22b)

Again, k is the wave number and n > 1 is the (for now, constant) refractive index of
the sphere. We can expand the wave function ψ (r) as

ψ (r) =
∞

∑
l=0

Bl (k)ul (r)r−1Y m
l (θ ,φ)≡

∞

∑
l=0

Al (k)ul (r) r−1Pl (cosθ ), (23)

where r = |r| as noted above and the coefficients Al (k) will be “unfolded” below.
(The coefficients Al and Bl are related by a multiplicative normalization constant
that need not concern us here.) The reason that the spherical harmonics Y m

l (θ ,φ)
reduce to the Legendre polynomials in the above expression is because the cylin-
drical symmetry imposed on the system by the incident radiation renders it axially
symmetric (i.e., independent of the azimuthal angle φ ). The equation satisfied by
ul (r) is

d2ul (r)

dr2 +

[
k2 −V(r)− l(l + 1)

r2

]
ul (r) = 0, (24)

where the potential V (r) is now k-dependent, i.e.,

V (r) = k2 (1− n2) ,r < a

V (r) = 0,r > a. (25a, b)

Since n > 1 within the sphere, this potential corresponds to that of a spherical po-
tential well of depth V0 = k2

(
n2 − 1

)
. This leads very naturally to a discussion of

the effective potential, wherein the potential V (r) is combined with the “centrifugal
barrier” term l (l + 1)/r2.
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Morphology-Dependent Resonances: The Effective
Potential Ul(r) (Constant n)

A rather detailed study of the radial wave equations was carried out by Johnson [25],
specifically for the Mie solution of electromagnetic theory (see section “The Vector
Problem: The Mie Solution of Electromagnetic Scattering Theory”). A crucial part
of his analysis was the use of the effective potential for the TE mode of the Mie
solution, but without any loss of generality, we may still refer to the scalar problem
here. This potential is defined as

Ul (r) =V (r)+
l (l + 1)

r2 = k2(1− n2)+
l (l + 1)

r2 ,r ≤ a, (26a, b)

=
l (l + 1)

r2 ≈ λ 2

r2 , r > a.

It should be noted here that λ as defined here is not the wavelength of the incident
radiation. For large enough values of l, [l (l + 1)]1/2 ≈ l + 1/2. It is clear that Ul (r)
has a discontinuity at r = a because of the “addition” of a potential well to the cen-
trifugal barrier. Thus, there arises a tall and thin enhancement corresponding to a
barrier surrounding a well (see Fig. 3.6), and this suggests the possible existence
of resonances, particularly between the top of the former and bottom of the latter,
where there are three turning points (where the energy k2 is equal to Ul (r)). Such
resonances are called “shape resonances” (or sometimes “morphology-dependent
resonances”); they are quasi-bound states in the potential well that escape by tunnel-
ing through the centrifugal barrier. The widths of these resonances depend on where
they are located; the smaller the number of nodes of the radial wave function within
the well, the deeper that state lies in the well. This in turn determines the width (and
lifetime) of the state, because the tunneling amplitude is “exponentially sensitive”
to the barrier height and width [13]. Since the latter decreases rapidly with the depth
of the well, the smaller is the barrier transmissivity, and the lowest-node resonances
become very narrow for large values of β = ka. The lifetime of the resonance (de-
termined by the rate of tunneling through the barrier) is inversely proportional to
the width of the resonance, so these deep states have the longest lifetimes. (To avoid
confusion of the node number n with the refractive index in Fig. 3.6, the latter has
temporarily been written as N.)

Note that as k2 is reduced, the bottom B of the potential rises (and for some value
of k the energy will coincide with the bottom of the well [25]); however, at the
top of the well, Ul (a) = λ 2/a2 is independent of k2, but if k2 is increased, it will
eventually coincide with the top of the well (T ). Consider a value of k2 between the
top and the bottom of the well: within this range there will be three radial turning
points, the middle one obviously occurring at r = a and the largest at r = b for which
Ul (b) = λ 2/b2. The smallest of the three (rmin) is found by solving the equation

k2 =
λ 2

r2
min

− (
n2 − 1

)
k2 (27)
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Fig. 3.6 (a–d) (Redrawn from [8]): (a) The effective potential U(r) for a transparent sphere of
radius a showing four “energy levels,” respectively, above the top of the potential well, at the top,
in the middle, and at the bottom of the well. Note that the constant refractive n has temporarily been
replaced by N to distinguish it from the node number n in (c). (b) The corresponding incident rays
and impact parameters. Case 2 shows a tangentially incident ray; note that in case 1 the refracted
ray is shown. It passes the center at a distance of l = b/N; the case is readily shown from simple
geometry: from Snel’s law of refraction sin i=N sinr = b/a, and since l = asinr, the result follows
directly. (c) Similar to (a) but with resonant wave functions shown, corresponding to node numbers
n = 0 and n = 1 (the latter possessing a single node). (d) The “tunneling” phenomenon illustrated
for an impact parameter b > a, being multiply reflected after tunneling, between the surface r = a
and the caustic surface r = b/N (the inner turning point)

to obtain, in terms of the impact parameter b(λ ) = λ/k,

rmin =
λ
nk

≡ b
n
, (28)

By applying Snel’s law for given b, it is readily shown that the distance of nearest
approach of the equivalent ray to the center of the sphere is just rmin; indeed, there
are in general many nearly total internal reflections (because of internal incidence
beyond the critical angle for total internal reflection) within the sphere between
r = b/n and r = a. This is analogous to orbiting in a ray picture; on returning to
its original location after one circumnavigation just below the sphere surface, a ray
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must do so with constructive interference. The very low leakage of these states al-
lows the resonance amplitude and energy to build up significantly during a large
resonance lifetime which in turn can lead to nonlinear optical effects. In acoustics
these are called “whispering gallery modes.”

The energy at the bottom of the well (i.e., limr→a− Ul (r)) corresponding to the
turning point at r = a is determined by the impact parameter inequalities a < b < na
or in terms of λ = kb:

Ul
(
a−

)
=

(
λ
na

)2

< k2 <

(
λ
a

)2

=Ul
(
a+

)
. (29)

This is the energy range between the top and bottom of the well (and in which the
resonances occur). To cross the “forbidden region,” a < r < b requires tunneling
through the centrifugal barrier, and near the resonance energies, the usual oscilla-
tory/exponential matching procedures can lead to very large ratios of internal to
external amplitudes (see Fig. 3.6c); these resonances correspond to “quasi-bound”
states of electromagnetic radiation (that would be bound in the limit of zero leak-
age).

We now make a transition to discuss some of the related mathematical properties
associated with resonances. In so doing, the reader should be alerted to a some-
what flexible notation used in connection with the scattering function (or S-matrix
element to be discussed in section “Introduction to the Scattering Matrix”). This is
variously denoted by Sl (λ ,k) or Sl (β ), where β = ka, depending on the context.
Mathematically, the resonances are complex eigenfrequencies associated with the
poles λn of the scattering function Sl (λ ,k) in the first quadrant of the complex
λ -plane; these are known as Regge poles (for real k). Corresponding to the energy
interval [Ul (a−) ,Ul (a+)], the real parts of these poles lie in the interval (β ,nβ)
(or equivalently, (ka,nka)); this corresponds to the tunneling region. The imaginary
parts of the poles are directly related to resonance widths (and therefore lifetimes).
As the node number n decreases, Reλn increases and Imλn decreases very rapidly
(reflecting the exponential behavior of the barrier transmissivity). As β increases,
the poles λn trace out Regge trajectories, and Imλn tend exponentially to zero. When
Reλn passes close to a “physical” value, λ = l + 1/2, it is associated with a reso-
nance in the lth partial wave; the larger the value of β , the sharper the resonance
becomes for a given node number n.

Introduction to the Scattering Matrix

The scattering matrix describes the relationship between the initial and final states
of the “system,” whatever that may be. In fact it is very useful to relate these states
at ‘t = −∞’ and ‘t = ∞’ by means of the scattering operator S acting on the wave
function ψ , such that ψ (∞) = Sψ (−∞). The matrix elements of the operator S form
the scattering matrix itself, not surprisingly.
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Consider first, for simplicity, a scalar plane wave incident upon an impenetrable
sphere of radius a. The solution of the Helmholtz equation (22) (outside the sphere)
is [7]

ψk (r,θ ) =
1
2

∞

∑
l=0

(2l+ 1) il
[
h(2)l (kr)+Sl (β )h(1)l (kr)

]
Pl (cosθ) , (30)

where h(1)l (kr) and h(2)l (kr) are spherical Hankel functions of the first and second
kind, respectively, and

Sl (β ) =−h(2)l (β )

h(1)l (β )
;β ≡ ka =

2πa
λ

. (31)

The quantity Sl (β ) is the element (for a given l-value) of the scattering or S-matrix.
For “elastic” (or nonabsorptive) scattering, Sl (β ) is a phase factor and a very im-
portant one—it completely determines the nature of scattering in a potential field.
As |r|= r → ∞,

h(1)l (kr)∼ (−i)l+1 eikr

kr
;h(2)l (kr)∼ il+1 e−ikr

kr
. (32a, b)

Hence inside the summation we have the term

(−1)l+1

kr
Sl (β )

[
eikr +

(−1)l+1 e−ikr

Sl (β )

]
. (33)

Again, the reader should note that several possible contexts can be considered here.
The modified partial wave number λ = l + 1/2 is in general considered to be com-
plex, with k being a real quantity, but here we consider k to be a complex quantity
also. Thus, so-called bound states (of interest in quantum mechanics) are charac-
terized by a pure imaginary wave number k = iki, ki > 0 corresponding to energy
E = k2 < 0. In order for such a solution to be square integrable in (a,∞), it is nec-
essary that the second term vanish in Eq. (33) above. Formally, this will be the case
if β = ka is a pole of Sl (β ). This is the essential significance of the poles of the
S-matrix in what follows.

For a spherical square well or barrier, corresponding to a transparent sphere with
constant refractive index n, the form of the scattering matrix elements for scalar
waves is more complicated than (31). In fact [8]; see also [26] in terms of spherical
Bessel functions ( jl) and spherical Hankel functions, the S-matrix is

Sl (β ) =−β jl (α)h
′(2)
l (β )−α j′l (α)h(2)l (β )

β jl (α)h
′(1)
l (β )−α j′l (α)h(1)l (β )

. (34)

Equation (34) is an expression of the matching at the finite boundary of the po-
tential of the regular internal solution with the appropriate external solution of the
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Schrödinger equation. Using the notation of Nussenzveig [8], the expression (34) is
equivalent to

Sl (β ) =−h(2)l (β )

h(1)l (β )

[
ln′ h(2)l (β )− n ln′ jl (α)

ln′ h(1)l (β )− n ln′ jl (α)

]
(35)

where ln′ represents the logarithmic derivative operator, jl is a spherical Bessel func-
tion. The “size parameter” β = ka plays the role of a dimensionless external wave
number, and α = nβ is the corresponding internalwave number. Not surprisingly,
Sl (β ) may be equivalently expressed in terms of cylindrical Bessel and Hankel
functions of half-integer order (see Eq. (39)). Note that for l = 0 the S-matrix ele-
ment takes the simpler form [27]

S0 (β ) = e−2iβ α cotα + iβ
α cotα − iβ

. (36)

The lth “partial wave” in the series solution (23) (or (30)) is associated with an im-
pact parameter b(l) = (l + 1/2)/k, i.e., only rays “hitting” the sphere (b ≤ a) are
significantly scattered, and the number of terms that must be retained in the series to
get an accurate result is slightly larger than β . Unfortunately, for visible light scat-
tered by water droplets in the atmosphere, β is approximately several thousand, and
the partial-wave series converges very slowly. This is certainly a nontrivial problem!
In the next section, we examine the resolution of this difficulty for both the scalar
and the vector wave problem.

Introduction to Complex Angular Momentum (CAM) Theory:
The Watson Transform

In the early twentieth century there was a significant mathematical development that
eventually had a profound impact on the study of scalar and vector scattering, and
the present problem in particular. The Watson transform, originally introduced in
1918 by Watson in connection with the diffraction of radio waves around the earth,
is a method for transforming the slowly converging partial-wave series (e.g., (30))
into a rapidly convergent expression involving an integral in the complex angular
momentum plane. This allows the above transformation to effectively “redistribute”
the contributions to the partial-wave series into a few points in the complex plane—
specifically the Regge poles and saddle points. Such decomposition means that in-
stead of identifying angular momentum with certain discrete real numbers, it is now
permitted to vary continuously through complex values. However, despite this mod-
ification, the poles and saddle points have profound physical interpretations in the
rainbow problem.

The Watson transform was subsequently modified by several mathematical physi-
cists, including Nussenzveig [10, 12], in studies of the rainbow problem. It is inti-
mately related to the Poisson sum formula
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∞

∑
l=0

g

(
l +

1
2
,x

)
=

∞

∑
m=−∞

e−imπ
∫ ∞

0
g(λ ,x)e2π imλ dλ , (37)

given an “interpolating function” g(λ ,x), where x denotes a set of parameters and
λ = l+1/2 is again considered to be the complex angular momentum variable. The
function g is introduced to generate poles at the “physical” values of λ (or l) so that
the corresponding residues account for the original partial-wave series. By means of
this conversion of a series to an integral in the complex plane, one is free to deform
the path appropriately. The path can be chosen in such a way that the dominant high-
frequency contributions to the radiation field come from a small number of “critical
points” (such as saddle points or complex poles). This avoids the complexity of
summing these contributions over β (= ka) partial waves (where β�1).

It transpires that certain poles in the complex λ -plane are associated with sur-
face waves (Regge poles; see below) and others are associated with morphology-
dependent resonances in a particular partial wave. The latter are determined by the
poles of the S-function in Eq. (34). But why is angular momentum the relevant pa-
rameter? A little physics helps us here. Although they possess zero rest mass, in
terms of their associated de Broglie wavelength λ̂ , photons have energy E = hc/λ̂
and momentum E/c = h/λ̂ , where h is Planck’s constant and c is the speed of light
in vacuo. (Note that the standard notation for wavelength is of course the Greek letter
λ ; here λ̂ is used instead to avoid confusion with the complex angular momentum
variable.) Thus, for a nonzero impact parameter bi, a photon will carry an angular
momentum bih/λ̂ (bi being the perpendicular distance of the incident ray from the
axis of symmetry of the sun-raindrop system). Each of these discrete values can
be identified with a term in the partial-wave series expansion. Furthermore, as the
photon undergoes repeated internal reflections, it can be thought of as orbiting the
center of the raindrop. As will be reemphasized below, the complex (Regge) poles
mentioned above are associated with so-called creeping rays, generated by tangen-
tial incidence and propagating around the surface, shedding energy exponentially in
a tangential direction. The damping is a result of the increasingly large imaginary
part of these poles, leading to a rapidly convergent residue series in the shadow re-
gion (inhabited, not by real rays, but by diffracted rays). This approach works well
for the impenetrable sphere discussed earlier. In the illuminated region, the primary
contributions come, not surprisingly, from real rays—stationary optical paths deter-
mined by Fermat’s principle of least time. These rays are associated with stationary
phase points on the real λ -axis (real saddle points).

Unfortunately, for a penetrable (or transparent, or dielectric) sphere, the Regge
poles are situated much closer to the real λ -axis, and the convergence is com-
promised. To remedy this, the solution must be “unfolded” in terms of surface-
to-center reflections (and vice versa)—resulting in the so-called Debye series (see
Appendix 1). The scattering amplitudes can then be expanded in a series, each term
of which represents a surface interaction. When the modified Watson transform is
applied to each term, one set of the resulting Regge–Debye poles, as they are called,
are associated with rapidly damped surface waves (see below), and rapidly conver-
gent asymptotic expansions are obtained for each term in the Debye series. In this
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Fig. 3.7 (Redrawn from [11]): The ‘collision’ of two real saddle points in the complex λ -plane
as the rainbow angle (θR) is approached from below (i.e., from the illuminated side). At θR the
points collide and subsequently move away from each other along complex conjugate directions
as θ increases away from θR into the shadow region. It is the lower complex saddle point that
contributes to the wave field in this region

case, the critical points in the λ -plane are exactly those poles and (possibly com-
plex) saddle points. There is a significant difference between the surface waves in
this case and the case for the impenetrable sphere; however, they can also take a
shortcut through the sphere (critical refraction) and reemerge tangentially as surface
waves.

For a Debye term of a given order, p (where p−1, p≥ 1) is the number of internal
reflections at the surface, and a primary rainbow (in particular) is associated in the
λ -plane with the existence of two real saddle points that move towards each other
as the “rainbow scattering angle” is approached (see Fig. 3.7), merging together at
this angle and beyond which (i.e., in the shadow region) the saddle points become
complex and move away from the real axis in complex conjugate directions. Thus,
as described in [7, 8, 10], from a mathematical point of view, a rainbow can be
defined as a collision between two saddle points in the complex angular momentum
plane.

As will be shown in section “The Partial-Wave Scattering Phase Shift δl (k)”, the
scattering amplitude f (k,θ ) is a quantity of fundamental importance in scattering
theory; see section “The Partial-Wave Scattering Phase Shift δl(k)” (see Eqs. (50)
and (51)). It is defined in terms of the scattering matrix elements Sl(k), and using
the Poisson summation formula it may be recast as

f (k,θ ) =
i

ka

∞

∑
m=−∞

(−1)m
∫ ∞

0
(1−Sl (λ ,k))Pλ−1/2 (cosθ )e2π imλ λ dλ . (38)

For fixed β , Sl (λ ,β ) is a meromorphic function of the complex variable λ =
l + 1/2, and again it is the poles of this function that are of interest. In terms of
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cylindrical Bessel and Hankel functions, they are defined by the condition

ln′ H(1)
λ (β ) = n ln′ Jλ (α) . (39)

As already noted, they are called Regge poles in the scattering theory literature
[7, 8]. For the transparent sphere, two types of Regge poles arise. Nussenzveig’s
class I poles [9], located near the real λ -axis, are associated with resonances, via the
internal structure of the potential, which is now of course accessible. These are char-
acterized by an effective radial wave number within the potential well. Typically,
class II poles are associated with surface waves for the impenetrable sphere prob-
lem mentioned above—and lead to a rapidly convergent residue series, representing
the surface wave (or diffracted or creeping ray) contributions to the scattering am-
plitude. Seeking poles of the S-matrix in the complex angular momentum plane and
their Regge trajectories as the energy E (or wave number k) is varied is in fact equiv-
alent to analyzing these singularities and their trajectories in the complex k-plane as
the angular momentum l is varied continuously through real values. In [26] it is
pointed out that these two approaches—Regge trajectories and k-trajectories—are
two different but complementary mathematical descriptions of the same physical
phenomena, and that each one can provide insight into the other.

In the next section we examine another fundamental concept in scattering theory:
the phase shift. This will prove to be crucial to understanding the changes induced
on an incident wave on encountering a potential, be it of finite range or not.

The Partial-Wave Scattering Phase Shift δl(k)

We return to the radial equation (24) in order to introduce this fundamental entity.
The boundary conditions are that ul(r) and u′l (r) are continuous at the surface. We
seek a solution satisfying the boundary condition at the origin

ul (r)r→0 ∼ rl+1. (40)

In the absence of a potential, the solutions ul (r) can be expressed in terms of
Riccati–Bessel functions of the first and second kind (which are in turn related to
the spherical Bessel functions of the first and second kind, jl(kr) and yl(kr), respec-
tively):

ψl(kr) = krjl (kr) =

(
πkr
2

)1/2

Jl+1/2 (kr)∼ sin(kr− lπ/2) as r → ∞, and (41)

ξl(kr) = kryl (kr) = (−1)l−1
(

πkr
2

)1/2

Y(l+1/2) (kr)∼ cos(kr− lπ/2)as r → ∞.

(42)

(Note that some definitions of ξl(kr) use the negative of the above expression, al-
though χl(kr) is commonly used in the literature instead of ξl(kr).) Based on the
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asymptotic forms of the Riccati–Bessel functions, we expect the solution of (24) to
have the following property involving a k- and l-dependent phase shift:

ul (r)r→∞ ∼ sin (kr− lπ/2+ δl (k)) . (43)

In fact, if V (r) can be neglected for r > r0, say, the solution of Eq.(24) can be written
in terms of the phase shift δl (k) as [28–30]

ul (r) = kr [ jl (kr)cosδl (k)− yl (kr)sin δl (k)] . (44)

In particular, for a spherical well or barrier of radius a, the potential is zero for r > a.
The k- or energy-dependent partial-wave phase shifts δl (k) represent the effect the
potential V (r) on the partial waves comprising the incident plane wave. The quan-
tities δl (k) are real functions of the wave number k when the potential V (r), energy
E(= k2), and angular momentum l are all real. Shortly we shall reintroduce the S-
matrix, this time with matrix elements defined in terms of the phase shifts δl (k).
Particle scattering in a potential field is completely determined by these elements.
The physical interpretation of the phase shifts can be understood as follows. The in-
coming plane wave is broken up into an infinite number of parts of differing angular
momentum (these are the partial waves). Each partial wave interacts individually
with the potential to produce a scattered outgoing partial wave. The phase of the
outgoing wave is “pushed out” by an amount delta by a repulsive potential, and the
phase is “pulled in” by an amount delta for an attractive potential. In optical terms
for a sphere of refractive index n > 1, it is the latter case that applies: the potential
is attractive.

Although it is the poles of the S-matrix that are of interest in this chapter, it is
valuable to reflect on the significance of several other concepts introduced here and
below. As noted earlier, the phase shift is a measure of the departure of the radial
wave function from the form it has when the potential V (r) is zero. It follows from
the definition below of the K-matrix that this too is a related measure of the distortion
induced by a nonzero potential. The K-matrix is especially useful if the interaction is
in some sense “weak.” The differential cross section (Eq. (52b)) is useful because it
is the quantity that is directly measured in scattering experiments. The Jost functions
are useful because they help express the pole structure and associated zero structure
of the S-matrix in a very straightforward way.

Returning to the asymptotic result (43), it is also of interest to note that it can be
expressed in two other equivalent ways. They are

(i)ul (r)r→∞ ∼ cosδl [sin(kr− lπ/2)+Kl cos(kr− lπ/2)] , (45)

and(ii)ul (r)r→∞ ∼ e−iδl

2i

[
e−i(kr−lπ/2)−Sl (k)ei(kr−lπ/2)

]
. (46)

The first of these equations defines the elements of the K-matrix, i.e., Kl = tanδl ,
and the second (re)defines the S-matrix elements, i.e., Sl (k) = e2iδl . In fact,
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Sl (k) = exp [2iδl (k)] =
1+ i tanδl (k)
1− i tanδl (k)

≡ 1+ iKl (k)
1− iKl (k)

. (47)

The integral equation satisfied by the radial wave function ul (r) can also be written
in terms of the Riccati–Bessel functions as follows:

ul (r) = ψl (kr)− k−1
∫ r

0

[
ψl (kr)ξl

(
kr′

)−ψl
(
kr′

)
ξl (kr)

]
V (r′)ul

(
r′
)

dr′. (48)

This may be verified by direct substitution into Eq. (24), where now

lim
r→0

ul (r) = lim
r→0

ψl (kr)→ (kr)l+1

(2l + 1)!!
. (49)

At large distances from the sphere (r >> a) the complete wave field ψ(r) can be
decomposed into an (axially symmetric) incident wave + scattered field, i.e.,

ψ (r,θ )∼ eikr cosθ +
f (k,θ )

r
eikr. (50)

In terms of the scattering matrix element for a given l, and therefore Sl(k), the
scattering amplitude is defined as

f (k,θ ) = (2ik)−1
∞

∑
l=0

(2l+ 1) (Sl (k)− 1)Pl (cosθ ) . (51)

Pl (cosθ ) is a Legendre polynomial of degree l. In terms of the phase shift δl , the
scattering amplitude can be written as

f (k,θ ) = k−1
∞

∑
l=0

(2l + 1)eiδl sinδlPl (cosθ ) ; (52a)

For completeness, in the scattering literature, the differential scattering cross section
is defined by

dσ
dΩ

=
scattered flux/unit solid angle

incident flux/unit area
= | f (θ )|2 , (52b)

and the total (elastic) cross section σ is obtained by integrating the differential cross
section over all scattering angles, i.e.,

σ =

∫ 2π

0
dφ

∫ π

0
| f (θ )|2 sinθdθ = 2π

∫ π

0
| f (θ )|2 sinθdθ . (52c)

The quantity

pl
(
k2)= k−1eiδl sinδl = (2ik)−1

(
e2iδl − 1

)
(53)

is often referred to as the partial-wave scattering amplitude.
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Analytic Properties of the S-Matrix: The Jost Functions

We now consider in more detail the analytic properties of the partial-wave S-matrix,
with elements defined by Eqs. (34) or (35), for example, in the complex momentum
plane. We can show that the poles of the S-matrix lying on the positive imaginary k-
axis correspond to bound states, while poles lying in the lower half k-plane close to
the positive real k-axis correspond to the resonances discussed above (see Appendix
4). We may also derive an expression for the behavior of the phase shift and the cross
section when the energy of the scattered particle is in the neighborhood of these
poles. Consider again the solution ul (r) of the radial Schrödinger equation (24)
describing the scattering of a particle by a spherically symmetric potential V (r).
Implicit in the results to be stated here are certain requirements on the potential
V (r). It must be a real, almost everywhere continuous function vanishing at infinity.
Furthermore [31, 32], it must be the case that

(i)
∫ ∞

c
|V (r)|dr = M(c)< ∞ and

(ii)
∫ c′

0
r |V (r)|dr = N(c′)< ∞,

where c and c′ are positive constants (but otherwise arbitrary). The first of these
conditions is equivalent to V ∼ r−(1+ε) as r → ∞, ε > 0 (i.e., rV(r)→ 0 as r → ∞),

and the second implies that V ∼ r−(2+ε ′) as r → 0,ε ′ > 0 (i.e., r2V (r)→ 0 as r →
0). (Note that Burke [28] places more stringent conditions on the potential for the
existence of bound states; instead of (i) he requires that

∫ ∞
0 r2 |V (r)|dr <∞.) We also

introduce two (normalized) Jost solutions fl (±k,r) of (24), defined by the relations

lim
r→∞

fl (±k,r)e±i(kr∓lπ/2) = 1. (54)

This condition at infinity defines fl (k,r) uniquely in the lower half k-plane, where it
is analytic. In the upper half plane, fl (k,r) is no longer unique because it is always
possible to add to it a term proportional to the other Jost solution fl (−k,r) . If the
potential vanishes identically beyond a certain distance a then fl (±k,r) are analytic
functions of k in the open k-plane for all fixed values of r, that is, they are entire
functions of k. We can express the physical solution of (24), defined by the boundary
conditions as a linear combination of fl (±k,r), in keeping with the form (44). Thus,

ul (r) ∝
[

fl (k,r)+ (−1)l+1 fl (−k,r)Sl (k)
]
. (55)

From a theorem proved by Poincaré, the absence of a k-dependence in this boundary
condition implies that this solution is an entire function of k. The Jost functions are
then defined by

f̃l (±k) =W [ fl (±k,r) ,ul (r)] , (56)
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where the Wronskian W is independent of r. It is also convenient to introduce a
normalized Jost function fl (±k) by

fl (±k) =
kl exp(±ilπ/2)

(2l+ 1)!!
f̃l (±k) . (57)

(Note that the notation for these functions should not be confused with the definition
of the scattering amplitude in Eqs. (51) and (52a).) The functions fl (+k) and fl (−k)
are continuous at k = 0 and approach unity at large |k| for Im k ≤ 0 and Im k ≥ 0,
respectively.

Since

W [ fl(±k,r), fl(∓k,r)] =±2ik, (58)

ul(r) may be written in the form

ul (r) =
1

2ik
[ f̃l(k) fl(−k,r)− f̃l(−k) fl(k,r)]. (59)

Comparing this equation with the asymptotic form (44) and using (54) then yields
the following expression for the S-matrix elements:

Sl (k) = eiπ l f̃l (k)

f̃l (−k)
=

fl (k)
fl (−k)

. (60)

This equation relates the analytic properties of the S-matrix with the simpler an-
alytic properties of the Jost functions [29]. Since, in particular, fl(−k,r) satisfies
Eq. (24), i.e., (

d2

dr2 + k2 −V(r)− l (l + 1)
r2

)
fl(−k,r) = 0. (61)

It follows that if we now take the complex conjugate of this equation, we obtain (for
real l and V (r))

(
d2

dr2 + k̄2 −V(r)− l (l + 1)
r2

)
f̄l(−k,r) = 0. (62)

If we also let k →−k̄ in (61), we also have that

(
d2

dr2 + k̄2 −V(r)− l (l + 1)
r2

)
fl(k̄,r) = 0. (63)

Furthermore,

f̄l (−k,r)r→∞ ∼ exp
(−ik̄r

)
and fl

(
k̄,r

)
r→∞ ∼ exp

(−ik̄r
)
, (64a, b)

i.e., they satisfy the same boundary conditions at infinity. Since these functions also
satisfy the same differential equation, namely, (62) and (63), respectively, they are
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equal for all r for all points in the upper half k-plane and for all other points which
admit an analytic continuation from the upper half k-plane. Hence in this region
f̄l (−k,r) = fl

(
k̄,r

)
, and hence, from (56), ¯̃fl (−k) = f̃l

(
k̄
)
. Therefore, from (60)

we find that

Sl (k)Sl (−k) = e2π il f̃l (k)

f̃l (−k)

f̃l (−k)

f̃l (k)
= 1. (65)

We also have the unitarity condition

Sl (k)S̄l
(
k̄
)
=

f̃l (k)

f̃l (−k)

¯̃fl
(
k̄
)

¯̃fl (−k)
= 1. (66)

These relations give in turn the reflection property

Sl (k) = e2π ilS̄l
(−k̄

)
. (67)

It follows from (66) that if k is real then |Sl (k)| = 1 and in terms of the real phase
shift δl (k),

Sl (k) = exp [2iδl (k)] . (68)

This is a result already noted above. The poles and zeros of the S-matrix are sym-
metrically situated with respect to the imaginary k-axis, because it follows from (67)
that if the S-matrix has a pole at the point k, then it also has a pole at the point −k̄,
and from (65) and (6) it has zeros at the points −k and k̄. For potentials satisfying
the conditions stated at the beginning of this section, only a finite number of bound
states can be supported, and these give rise to the poles lying on the positive imag-
inary axis in Fig. 3.8. However, an infinite number of poles can occur in the lower
half k-plane. If they do not lie on the negative imaginary k-axis, they occur in pairs
symmetric with respect to this axis, as discussed above. If they lie on the negative
imaginary k-axis, they are often referred to as virtual state poles; the wave functions
corresponding to these states cannot be normalized. Poles lying in the lower half k-
plane and close to the real positive k-axis give rise to resonance effects in the cross
section equation (52c). Poles lying in the lower half k-plane and far away from the
real positive k-axis contribute to the smooth “background” or “nonresonant” scat-
tering. The distribution of poles in the complex k-plane has been discussed in detail
in a few cases, (see, e.g., [27]) for scattering by a square well potential.

The Breit-Wigner Form

Consider an isolated pole in the S-matrix which lies in the lower half k-plane close
to the positive real k-axis. This pole gives rise to resonance scattering at the nearby
real energy. We note (by virtue of Appendix 5) that the pole occurs at the complex
energy

E = Er − i
2

Γ , (69)
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Fig. 3.8 (Redrawn from [28]): A generic distribution of poles for the S-matrix. Crosses correspond
to bound-state poles, circles to resonance poles, squares to their conjugate poles, and triangles to
virtual states

where Er is the resonance position and Γ is the resonance width and both are real
positive numbers. From the unitarity relation (66), we see that corresponding to this
pole there is a zero in the S-matrix (at a complex energy given by E = Er + iΓ /2)
in the upper half k-plane. For energies E on the real axis in the neighborhood of
this pole, the S-matrix can be written in a form which is both unitary and explicitly
contains the pole and zero:

Sl (k) = exp
[
2iδ 0

l (k)
] E −Er − iΓ/2

E −Er + iΓ/2
. (70)

The quantity δ 0
l (k) in this equation is called the “background” or “nonresonant”

phase shift. Provided that the energy Er is not close to threshold, E = 0, nor to
another resonance, then the background phase shift is slowly varying with energy.
Comparing (68) and (70), we obtain the following expression for the phase shift:

δl (k) = δ 0
l (k)+ δ r

l (k) . (71)

The quantity

δ r
l (k) = arctan

(
Γ /2

Er −E

)
(72)

is called the “resonant” phase shift which is seen to increase through π radians as
the energy E increases from well below to well above the resonance position Er.

Further Comments on Jost Functions and Bound States

It can be seen from Eq. (46) that Sl (β ) is proportional to the ratio of the coeffi-
cients of the outgoing and incoming waves (recall that the harmonic factor e−iωt has
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been suppressed). According to the theorem of Poincaré mentioned earlier, if the
boundary conditions on a differential equation are independent of the parameters in
the equation, the solutions will be analytic functions of those parameters. Therefore,
the solutions ul (r) of Eq. (24) will be analytic functions of energy E = k2 if the nor-
malization condition on the behavior of r−(l+1)ul (r) as r → 0 is also independent
of k2 [33, 34]. For small values of k it can be shown that tanδl ∼ k2l+1 = (k2)l+1/2;
in other words, δl is an analytic function of k (as opposed to k2) near zero energy.
Since exp(2iδl) is an analytic function of δl , the Jost functions will share the branch
points of δl . As noted earlier, it is customary to divide the k2-plane into two Riemann
sheets by requiring that the “physical” sheet corresponds to Im k = Im(k2)1/2 > 0
on that sheet. The positive k2-axis is a branch cut [35].

From Eq. (60), poles of Sl(k) occur when fl(−k) = 0. In the neighborhood of
such a zero, we see from Eqs. (54) and (59) that asymptotically

ul (r) ∝ fl (k)eikr. (73)

Recalling that on the physical sheet Im k = ki > 0, it follows that ul(r) ∝ eikrre−kir

so that it is a square integrable and hence normalizable solution; this means it rep-
resents a bound state. But such a state for an attractive potential (such as a spherical
square well) implies that k2 < 0, that is, k = iki. Poles on the physical sheet pro-
duce an exponentially decaying wave function, so the zeros of fl(−k) for ki > 0
are bound states. In particular, for the case l = 0 it can be shown that Sl(k) can
have poles only where either Re(k) = 0 or Im(k) < 0 [27, 36, 37] (this is proved in
Appendix 4). Furthermore, since the partial-wave amplitude pl(k2) can be expressed
in terms of the Jost functions, this means that poles of pl(k2) (Eq. (53)) on the phys-
ical sheet are also associated with bound states.

In summary at this point, the scattering matrix elements Sl(k), regarded as func-
tions of the complex variable k, have several valuable physical interpretations. If
k is real, the scattering is defined in terms of real phase shifts δl which in turn
determine the scattering cross section. Poles of the elements which are pure imagi-
nary with (i) Im(k) > 0 correspond to bound states of the potential, those with (ii)
Im(k)< 0 correspond to “virtual” or non-normalizable states (or “antibound” states
[27]). If the poles are complex with Im(k) < 0, they are sometimes referred to as
“quasi-stationary states,” and if Re(k) > 0 and |Im(k)| � 1, they are called reso-
nance poles. In the complex E-plane, poles associated with quasi-stationary states
are on the second sheet of the Riemann energy surface.

Regge Poles and Regge Trajectories

Following directly from the previous sentence, the “unphysical” Riemann sheet (but
close to the branch cut) and poles of the S-matrix elements (now written as Sl(k2)),
i.e., at E = k2 = k2

r − iΓ /2 (where Γ is “small” and positive), give rise to the familiar
Breit–Wigner expression examined above for the phase shift δl . Each such pole on
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the unphysical sheet corresponds to a resonance with energy k2
r and “half-width”

Γ /2. What happens as l varies in the radial Schrödinger equation? Again, from
Poincaré’s theorem, the Jost functions will be analytic functions of l as well as k2,
and we know that the bound states of V (r) are found as the zeros of fl(−k). This
criterion can be regarded as an implicit function in l and k (or indeed, l and E = k2),
i.e., l = g(E) (this is a generic function, not the same one as in Eq. (37)). Again,
Eqs. (54) and (59) imply that for k2 < 0,

ul (r)r→∞ ∝
(

fl (k)e−kir − fl (−k)ekir
)
. (74)

Since the radial Schrödinger equation is expressed in terms of real quantities only,
the solution ul (r) is real and so are the Jost functions by virtue of (74); therefore, (in
particular) fl (−k) is also real. Hence the zeros l = g(E) of this function must also be
real functions. On the other hand, if k2 > 0, ul (r) is still real, but the complex expo-
nential factors imply that fl (−k) will be a complex function, whence in general, the
Regge pole trajectories l = G(E) (say) will be complex. However, bound states of
angular momentum l exist when a trajectory intersects the line l =m,m = 0,1,2, . . .,
with corresponding energy k2 = k2 (l).

By contrast, in the complex k-plane for real and positive values of λ = l + 1/2,
all poles in the upper half plane must lie on the imaginary axis. Both complex and
pure imaginary poles can be present in the lower half plane [27], and for physical
(half-integer) values of λ , the symmetry of these poles with respect to the imag-
inary axis is established from the following property for the generalized S-matrix
element S (λ ,k), namely, that S (λ ,k) = S̄

(
λ̄ ,−k̄

)
. Note that, according to [26],

this relation is no longer valid for unphysical values of λ . In summary, there are
two infinite families of “k-poles” (corresponding to the two classes of Regge poles
discussed by Nussenzveig [9, 10]; see also section “Introduction to Complex Angu-
lar Momentum (CAM) Theory: The Watson Transform” above). Class I poles, we
recall, are determined by the interior of the potential and are located in the fourth
quadrant near the positive real semiaxis. By contrast, class II poles correspond to
surface modes on the “spherical potential” and are located in the third and fourth
quadrants. More details can be found in [26].

The Vector Problem: The Mie Solution of Electromagnetic
Scattering Theory

The quantum mechanical scalar analysis in previous sections is appropriate primar-
ily for nonrelativistic scattering of a projectile “particle” of mass m. In this section
a very different phenomenon is discussed: scattering of zero rest-mass photons. The
crucial point to note here is that both of these very different physical systems share
the same mathematical structure, namely, the properties of the scalar wave equation.

So having made considerable reference to the scalar problem and its connection
with the potential scattering theory, we now turn to the vector problem which for
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electromagnetic waves possesses two polarizations (the TE and TM modes); each
radial equation can be examined in turn as a scalar problem. Mie theory is based on
the solution of Maxwell’s equations of electromagnetic theory for a monochromatic
plane wave from infinity incident upon a homogeneous isotropic sphere of radius
a. The surrounding medium is transparent (as the sphere may be), homogeneous,
and isotropic. The incident wave induces forced oscillations of both free and bound
charges in synchrony with the applied field, and this induces a secondary electric and
magnetic field, each of which has components inside and outside the sphere [17].

In this section reference will be made to the intensity functions i1, i2, the Mie
coefficients al , bl , and the angular functions πl , τl . The intensity functions are pro-
portional to the square of the magnitude of two incoherent, plane-polarized com-
ponents scattered by a single particle; they are related to the scattering amplitudes
S1 and S2 in the notation of Nussenzveig [11]. The function i1(β ,n,θ) is associated
with the electric oscillations perpendicular to the plane of scattering (sometimes
called horizontally polarized), and i2 (β ,n,θ) is associated with the electric oscilla-
tions parallel to the plane of scattering (vertically polarized). The scattered spherical
wave is composed of an infinite number of partial waves, the amplitudes of which
depend on al (β ,n) and bl (β ,n). In physical terms, these may be interpreted as the
lth electrical and magnetic multipole waves, respectively. The first set is that part of
the solution for which the radial component of the magnetic vector in the incident
wave is zero; in the second set the corresponding radial component of the electric
vector is zero. A given partial wave can be thought of as coming from an electric
or a magnetic multipole field, the first wave coming from a dipole field, the second
from a quadrupole, and so on [17]. The angular functions πl (cosθ ) and τl (cosθ)
are, as their name implies, independent of size (β ) and refractive index (n).

For a point P located at distance r from the origin of coordinates, at polar angle
θ and azimuthal angle φ , the scattered intensities Iθ and Iφ are, respectively,

Iθ = i2

(
1
kr

)2

cos2 φ and Iφ = i1

(
1
kr

)2

sin2 φ , (75a, b)

where i j =
∣∣S j

∣∣2 , j = 1,2 and the amplitude functions S j are given by

S1 =
∞

∑
l=1

2l+ 1
l (l + 1)

[alπl (cosθ )+ blτl (cosθ )] ,and

S2 =
∞

∑
l=1

2l+ 1
l (l+ 1)

[alτl (cosθ )+ blπl (cosθ )] . (76a, b)

l is the order of the induced electric or magnetic multipole. The Mie angular func-
tions πl (cosθ) and τl (cosθ ) are defined in terms of the associated Legendre func-
tions of the first kind, P1

l (cosθ ) as

πl (cosθ ) =
P1

l (cosθ )
sinθ

and τl (cosθ) =
d

dθ
P1

l (cosθ ) . (77a, b)
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The scattering coefficients al and bl are defined in terms of the previously en-
countered Riccati-Bessel functions of the first and second kinds, respectively. al

and bl can be written in terms of the Riccati–Hankel function of the first kind,
ζ (1)

l (z) = zh(1)l (z) = ψl (z)+ iξl (z), i.e.,

al =
ψl (β )ψ ′

l (α)− nψl (α)ψ ′
l (β )

ζ (1)
l (β )ψ ′

l (α)− nψl (α)ζ (1)′
l (β )

and

bl =
ψl (α)ψ ′

l (β )− nψl (β )ψ ′
l (α)

ζ (1)′
l (β )ψl (α)− nψ ′

l (α)ζ (1)
l (β )

. (78a, b)

For future reference, the Riccati–Hankel function of the second kind is defined by

ζ (2)
l (z) = zh(2)l (z) = ψl (z)− iξl (z). The dimensionless size parameters β = ka and

α = nβ are again used in Eqs. (78a, b). These expressions can be simplified by
the introduction of phase shift angles and result in considerable simplification if the
refractive index is real [38]. In [38] it is demonstrated that the Mie formulae lead,
for large values of β , to a principle for localizing rays and separating diffracted, re-
fracted, and reflected light (in the sense of geometrical optics). The principle asserts
that the term of order l in the partial-wave expansion corresponds approximately to
a ray of distance (l + 1/2)/k from the center of the particle (this is just the impact
parameter). When β >> 1, the expansions for the S j ( j = 1,2) may be truncated at
l + 1/2 ≈ β (in practice, lmax ∼ β + 4β 1/3 + 2; see [8, 9, 39]), and the remaining
sum is separated into two parts: a diffracted light field component independent of
the nature of the particle and reflected and refracted rays dependent on the particle
(see also [40]).

From (78a, ba, b) above, we can define the new quantities [7]

Pe
l ≡ ψl (β )ψ ′

l (α)− nψl (α)ψ ′
l (β ) ,

Qe
l ≡ ξl (β )ψ ′

l (α)− nψl (α)ξ ′
l (β ) ,

Pm
l ≡ ψl (α)ψ ′

l (β )− nψl (β )ψ ′
l (α) ,

Qm
l ≡ ξ ′

l (β )ψl (α)− nψ ′
l (α)ξl (β ) . (79a–d)

The notation of Grandy [7] is followed here (but a common alternative notation
is N/D rather than P/Q). These quantities are real if n is real. Then the external
coefficients (in particular) may be written as

al =
Pe

l

Pe
l + iQe

l
,bl =

Pm
l

Pm
l + iQm

l
. (80a, b)

Furthermore, we may define (for real n) the real phase shifts δl in terms of the K-
matrix elements

tanδ e
l ≡ Pe

l

Qe
l

and tanδ m
l ≡ Pm

l

Qm
l
. (81a, b)
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Hence,

al =
1
2
[1− exp(2iδ e

l )] ,bl =
1
2
[1− exp(2iδ m

l )] . (82a, b)

Also it is readily shown that

al =

(
Pe

l

)2

(
Pe

l

)2
+
(
Qe

l

)2 − i
Pe

l Qe
l(

Pe
l

)2
+
(
Qe

l

)2 , (83)

from which it follows that for no absorption (i.e., elastic scattering),

Re (al) = |al |2 = sin2 δ e
l ∈ [0,1] , and Im(al) =

1
2

sin2δ e
l ∈

[
−1

2
,

1
2

]
. (84a, b)

A similar set of equations can be deduced for bl . It is interesting to note that the locus
of al and bl in the complex δl-plane is a circle of radius 1/2 with center at (1/2,0).
The scalar partial scattering amplitudes fl (k) can be defined using Eq. (51) as

fl (k) =
e−ilπ/2

2ik
[Sl (k)− 1] , (85)

(on reverting to the former notation for Sl (k)), where Sl (k)= exp(2iδl), the vector
problem can be characterized by (for real n) the unitary matrix

Sl =

(
S e

l 0
0 S m

l

)
. (86)

If we now write

al =
1
2
[1−S e

l (k)] ,bl =
1
2
[1−S m

l (k)] . (87a, b)

Substitution into (82a, b) yields the expressions in terms of α and β

S e
l (k) =−ζ (2)

l (β )

ζ (1)
l (β )

[
ln′ ζ (2)

l (β )− n−1 ln′ ψl (α)

ln′ ζ (1)
l (β )− n−1 ln′ ψl (α)

]
,

S m
l (k) =−ζ (2)

l (β )

ζ (1)
l (β )

[
ln′ ζ (2)

l (β )− n ln′ ψl (α)

ln′ ζ (1)
l (β )− n ln′ ψl (α)

]
. (88a, b)

In these expressions, the notation ln′ f (z) = d (ln f (z))/dz has been used. As we
have seen, Re (al) reaches its maximum value (unity) when Qe

l = 0 (for the TM
modes), and similarly, a maximum occurs for Re(bl) when Qm

l = 0 (TE modes).
These conditions correspond to Johnson’s condition for resonance [25], and as
Grandy [7] shows in some detail, they are also equivalent to the poles of the Mie
coefficients al and bl in the complex β -plane, which are in turn equivalent to the
poles of the scattering matrix elements S m

l (λ ,β ) and S e
l (λ ,β ) in the complex

λ -plane. A valuable examination of the formal analogies between Mie theory and
time-independent quantum scattering by a radial potential for both transparent and
absorbing “particles” has been carried out in [41].



88 John A. Adam

Solutions of the radial (Debye) equation (24) are linear combinations of the
Riccati–Bessel functions ψl (kr) and ξl (kr) which vanish at the origin and match
appropriately at r = a, i.e.,

uν
l (r) ∝ ψl (nkr) ,0 ≤ r ≤ a,and

uν
l (r) ∝

(
ξl (kr)− Qν

l

Pν
l

ψl (kr)

)
,r ≥ a. (89a, b)

The superscript ν = e or m refers to the electric or magnetic multipole modes, re-
spectively. Within the barrier, the solution uν

l (r) must be exponentially increasing
with r, from which we infer that Qe

l = 0 for the TM modes and Qm
l = 0 for the

TE modes. As pointed out in [7], these conditions determining the discrete “energy
levels” of a resonance are precisely the conditions mentioned above.

Conclusion

This article attempts to categorize and summarize some of the many and various
connections that exist between ray theory, wave theory, and potential scattering the-
ory. By “meandering” through these related areas in the broader field of mathemat-
ical physics, it is hoped that the reader will recognize how each of the levels of
description can inform the others, resulting (it is to be hoped) in a greater appreci-
ation for the whole. More specifically, the mechanism of rainbow formation by the
scattering of light from a transparent sphere is examined from a ray-theoretic view-
point, for both homogeneous and radially inhomogeneous spheres. By examining
the complementary approach of wave scattering theory, the resulting radial equa-
tions (for scalar and vector wave equations) can be regarded as time-independent
Schrödinger-like equations. Consequently it is possible to exploit some of the math-
ematical techniques in potential scattering theory because every refractive index
profile n(r) defines a (wave number-dependent) scattering potential V (k;r) for the
problem. This is significantly different from the case of time-independent potential
scattering in quantum mechanics because it ensures that there are no bound states
of the system (this result is established in Appendix 2). The close correspondence
between the resonant modes in scattering by a potential of the “well-barrier” type
and the behavior of electromagnetic “rays” in a transparent (or dielectric) sphere is
discussed in some detail.
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Appendix 1: The Debye Series

In [8, 13]; see references therein it is shown that, in terms of cylindrical Hankel
functions of the first and second kinds,

Sl (λ ,β) =
H(2)

λ (β )

H(1)
λ (β )

R22 (λ ,β )+T21 (λ ,β )T12 (λ ,β )
H(1)

λ (α)

H(2)
λ (α)

∞

∑
p=1

[ρ (λ ,β)]p−1

(A1)

where

ρ (λ ,β ) = R11 (λ ,β)
H(1)

λ (α)

H(2)
λ (α)

. (A2)

This is the Debye expansion, arrived at by expanding the expression [1−ρ (λ ,β )]−1

as an infinite geometric series. The quantities R22, R11, T21, and T12 are, respectively,
the external/internal reflection and internal/external transmission coefficients for the
problem. This procedure transforms the interaction of “wave + sphere” into a series
of surface interactions. In so doing it “unfolds” the stationary points of the integrand
so that a given integral in the Poisson summation contains a few stationary points.
This permits a ready identification of the many terms in accordance with ray theory.
The first term represents direct reflection from the surface. The term p = 1 has one
such point (the transmitted ray), whereas p = 2 has either two or zero stationary
points (the former corresponding to the two supernumerary rays of the first-order
rainbow). The pth term in the summation represents transmission into the sphere,
via the term T21 subsequently “bouncing” back and forth between r = a and r = 0
a total of p times with p− 1 internal reflections at the surface (this time via the
R11 term in ρ). The final factor in the second term, T12, corresponds to transmission
to the outside medium. In general, therefore, the pth term of the Debye expansion
represents the effect of p+1 surface interactions. Now f (β ,θ) can be expressed as

f (β ,θ ) = f0 (β ,θ )+
∞

∑
p=1

fp (β ,θ ), (A3)

where

f0 (β ,θ ) =
i
β

∞

∑
m=−∞

(−1)m
∫ ∞

0

(
1− H(2)

λ (β )

H(1)
λ (β )

R22

)
Pλ−1/2 (cosθ)e2π imλ λ dλ .

(A4)

This is the direct reflection term. The expression for fp (β ,θ ) involves a similar
type of integral for p ≥ 1. The direct transmission term is the one of interest for
zero-order bows, but the analysis of Nussenveig and coworkers deals with constant
n, for which no such bow exists. As noted earlier, Lock [4] identified the existence
of a zero bow for a Luneberg lens with focal length exceeding its radius. In general
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however, further work is necessary to determine the nature of direct transmission
bows in other radially inhomogeneous transparent (or dielectric) spheres [19].

Returning to the constant n case, the application of the modified Watson trans-
form to the third term (p = 2) in the Debye expansion of the scattering amplitude
shows that it is this term which is associated with the phenomena of the primary
rainbow. More generally, for a Debye term of given order p, a rainbow is character-
ized in the λ -plane by the occurrence of two real saddle points λ and λ ′ between
0 and β in some domain of scattering angles θ , corresponding to the two scattered
rays on the illuminated side. As θ → θ+

R (θR being the rainbow angle), the two sad-
dle points move towards each other along the real axis (Fig. 3.7), merging together
at θ = θR. As θ moves into the dark side, the two saddle points become complex,
moving away from the real axis in complex conjugate directions. Therefore, as noted
earlier, from a mathematical point of view, a rainbow can be defined as a collision
of two saddle points in the complex angular momentum plane. The primary bow
light/shadow transition region is thus associated physically with the confluence of a
pair of geometrical rays and their transformation into “complex rays.”

Appendix 2: Radially Inhomogeneous Media

In electromagnetic scattering, for radially symmetric media, the electric field vector
E must satisfy the scattering boundary conditions and the vector wave equation

∇×∇×E− k2n2 (r)E = 0. (A5)

By expanding E in terms of vector spherical harmonics, the following radial equa-
tions are obtained for the transverse electric (TE) and transverse magnetic (TM)
modes, respectively [25]:

d2Sl (r)
dr2 +

[
k2n2 (r)− l (l + 1)

r2

]
Sl (r) = 0; (A6)

d2Tl (r)
dr2 − 2n′ (r)

n(r)
dTl (r)

dr
+

[
k2n2 (r)− l (l + 1)

r2

]
Tl (r) = 0. (A7)

Each of these equations can be reworked into a time-independent Schrödinger equa-
tion form, with ψ(r) now being a generic-dependent variable for the two modes
above. Thus,

d2ψ (r)
dr2 +

[
k2 −V(r)− l(l + 1)

r2

]
ψ (r) = 0, (A8a)

or equivalently, as indicated earlier,

d2ψ (r)
dr2 +

[
k2 −V(r)− λ 2 − 1/4

r2

]
ψ (r) = 0, (A8b)
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where k2 = E is the energy of the ’particle’, λ = l+1/2. The “scattering potential”
is now

V (r) = k2 [1− n2 (r)
]

(A9)

for the TE mode and (by eliminating the first derivative term in (A7); see (A13)
below)

V (r) = k2
[

1− n2 (r)+ k−2n(r)
d2

dr2 (n(r))
−1
]

(A10)

for the TM mode. Thus, for scattering by a dielectric sphere, the corresponding
potential has finite range. Note that for constant refractive index, these two equations
are identical in form. We examine one property of the Eqs. (A8a, b) above in more
detail. Although they are formally identical to the radial Schrödinger equation, there
are important differences for both the scalar and the vector problems. Pure “bound-
state” solutions, that is, real, regular, and square-integrable solutions, corresponding
to k2 < 0(Im k > 0) do not in general exist in the “non-QM case.” To see this, assume
that Sl (r) is a square-integrable solution of Eq. (A6). On multiplying by S̄l (r) (the
complex conjugate of Sl (r)) and integrating by parts, we obtain

S̄l (r)S
′

l (r)
∣∣∞
0 −

∫ ∞

0

[∣∣S ′
l (r)

∣∣2 +
{

l (l+ 1)
r2 − k2n2 (r)

}
|Sl (r)|2 dr

]
= 0. (A11)

The integrated term vanishes because to be square integrable, S(r) must vanish at
infinity, and we have noted already that near the origin, Sl(r)∼ rl+1. Hence,

∫ ∞

0

[∣∣S ′
l (r)

∣∣2 + l (l + 1)
r2 |Sl (r)|2

]
dr =

∫ ∞

0
k2n2 (r) |Sl (r)|2 dr. (A12)

Clearly, this cannot be satisfied for k2 < 0 unless n2(r)< 0 in some interval or set of
intervals. This actually “opens the door” for some insight into properties of “meta-
materials” for which the refractive index may be pure imaginary [42]. Regarding the
second of the two potentials (A10), if we write Tl(r) = Ul(r)n(r), then from (A7),
Ul (r) satisfies the equation

d2Ul (r)
dr2 +

[
k2n2 (r)− n(r)

d2

dr2

[
1

n(r)

]
− l (l + 1)

r2

]
Ul (r) = 0. (A13)

A similar procedure to that above yields the less useful form:

∫ ∞

0

[∣∣U ′
l (r)

∣∣2 +
{

l (l + 1)
r2 + n(r)

d2

dr2

(
1

n(r)

)}
|Sl (r)|2

]
dr

=

∫ ∞

0
k2n2 (r) |Ul (r)|2 dr. (A14)
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Clearly, this expression places some conditions on the concavity of n−1 (r), but with
the Liouville transformation [43] r �→ s : s =

∫ r
0 n2 (t)dt, and Ul �→ Wl : Wl (s) =

m(s)Wl (s) , where m(s) = n(r(s)), it follows that

d2Ul (r)
dr2 = m2 (s)

[
m(s)

d2Wl (s)
ds2 −Wl (s)

d2m(s)
ds2

]
, (A15)

and

and
d2

dr2

(
1

n(r)

)
=−m2 (s)

d2m(s)
ds2 . (A16)

Therefore, Eq. (A13) simplifies to the form

d2Wl (s)
ds2 +

[
k2

m2 (s)
− l (l + 1)

m4 (s) r2 (s)

]
Wl (s) = 0. (A17)

The transformation r �→ s is monotonic (and linear for r > 1), and s ∼ r in the neigh-
borhood of the origin, so the previous analysis carries over, and we can conclude
that for n2 > 0, no bound states are possible.

Appendix 3: Connection with Classical Scattering

In the theory of classical scattering of a nonrelativistic projectile particle of mass m
by a central force with potential V (r), the total deflection angle θ is given by [8, 44]

θ = π − 2b
∫ ∞

a

dr

r2 [1− b2/r2 −V (r)/E]1/2
, (A18)

where b is the impact parameter, a is the distance of closest approach, and E is
the particle energy. The integral can be recast to the optical case (using Eq. (9)) by
setting b = sin i and

n(r) =

[
1− V (r)

E

]1/2

, (A19)

with V (r) < 0 corresponding to an attractive potential with refractive index n > 1.
This justifies the notion of a refracting sphere having the characteristics of a po-
tential well, with implications, as we have noted, for morphology-dependent reso-
nances.

Appendix 4: The Location of the S-Matrix Poles

From Eqs. (23) and (46), noting the implicit time-dependence exp(−iωt), we may
write the asymptotic form of the solution for ψl (r, t) as
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ψl (r, t) = O

(
1
r

{
e−ikr −Sl (k)eikr

}
e−iωt

)
. (A20)

The scattering matrix elements Sl (k) are given in terms of the Jost functions by
Eq. (60), and since both functions f̃l (±k) are defined for complex values of k, (60)
defines Sl (k) throughout the complex k-plane [37]. Using the probability conser-
vation law (derived from the time-dependent Schrödinger equation)

∂
∂ t

∫
V

|ψ |2dV =−
∫
S

j ·dS, (A21)

where j is the probability flux density (in units for which m = h̄ = 1),

j =
i
2
(ψ∇ψ̄ − ψ̄∇ψ) . (A22)

The integration in (A21) is carried out on the surface of a large sphere of radius R
such that the asymptotic solution (A20) may be used. Furthermore, if Sl (k) has a
pole at the complex k-value k= kr+ iki, then the first term in (A20) may be neglected
in the neighborhood of this point, and we may write

ψl (r, t) =
ul (r)

r
e−iωt = O

(
−Sl (k)

r
ei(kr−ωt)

)
,r → ∞ (A23)

near the pole k. From (A22) we then find that

krki

∫ R

0
u2

l (r)dr =−kr

2
|Sl (k)|2 e−2kiR < 0. (A24)

Therefore, it follows that either kr = 0 (the poles of Sl (k) lie on the imaginary
axis) or if kr �= 0, then ki < 0 (i.e., the poles of Sl (k) lie in the lower half plane).
Equivalently, the only poles in the upper half plane must lie on the imaginary axis.

Note that in the above discussion, we have tacitly assumed that the angular fre-
quency can be identified with the energy of the “particle.” This is justified by virtue
of the famous relation E = hν ∝ ω . Without loss of generality here we make set the
constant of proportionality to be unity, whence ω = E = k2, so that

ω = (kr + iki)
2 =

(
k2

r − k2
i

)
+ 2ikrki ≡ Er − iΓ

2
,Γ =−4krki. (A25)

Appendix 5: Poles and Resonances on the k-Plane and E-Plane

For algebraic simplicity, we consider the (simple) poles of the S-matrix for the one-
dimensional scalar problem [30, 45]. In this approach, the analysis is based on
a slightly different formulation of the governing time-independent “Schrödinger”
equation, namely,
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1
2

d2u(x)
dx2 +

[
k2 −V(x)

]
u(x) = 0. (A26)

For a square well of depth V0 > 0 (i.e., V (r) =−V0, |x|< a/2 and is zero elsewhere),
the incident “wave” is represented by

u(x) = Aeikx,x <−a/2, (A27)

and a transmitted wave

u(x) = Aeik(x−a)S(E),x > a/2. (A28)

The transmission coefficient S(E) is the one-dimensional scattering matrix in this
problem. It can be shown that [45]

S(E) =

{
cosKa− i

2

(
k
K
+

K
k

)
sinKa

}−1

, (A29)

where now k =
√

2E and K =
√

2(E +V0). Note the similarity of this expression
with the denominator of the S-matrix in Eq. (36). The transmissivity of the well is
defined as

T (E) = |S(E)|2 =
{

1+
V 2

0 sin2 Ka

4E(E +V0)

}−1

. (A30)

This expression has maxima equal to one whenever sinKa = 0, i.e., when Ka =
nπ , n = 1,2,3, . . . Equivalently, E = n2π2/2a2 −V0 > 0. These maxima correspond
to resonances—perfect transmission—in this system. The well contains an integral
number of half wavelengths when this condition is satisfied.

We examine S(E) as an analytic function of the energy E in what follows. For
E > 0,0 < T (E) ≤ 1. Therefore, poles of T (E) (and S(E)) can only occur when
−V0 < E < 0. In fact S(E) has a pole whenever

cosKa− i
2

(
k
K
+

K
k

)
sinKa = 0, (A31)

i.e., when

cotKa =
1
2

(
K
k
− k

K

)
. (A32)

Furthermore, from the identity 2cot2θ = (cotθ − tanθ), the solutions of (A32) can
be recast in terms of odd and even parity bound-state solutions, i.e.,

K cot

(
Ka
2

)
= ik, and K tan

(
Ka
2

)
=−ik. (A.33a, b)

(Again, notice the similarity of (A.33a, b) with α cotα = iβ from Eq. (36).) Suppose
now that a resonance occurs at E = Er ≡ k2

r/2 > 0. In the vicinity of such value of
the resonance energy, we may expand the expression

(
k
K + K

k

)
tanKa as
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(
k
K
+

K
k

)
tanKa =

d
dE

[(
k
K
+

K
k

)
tanKa

]
Er

(E −Er)+O(E −Er)
2 . (A33)

To first order in (E −Er), on simplifying, we find that
(

k
K
+

K
k

)
tanKa ≈ a

[
dK
dE

(
k
K
+

K
k

)]
Er

(E −Er)≡ 4
Γ
(E −Er) . (A34)

We can rewrite Eq. (A29) as

S(E) = secKa

{
1− i

2

(
k
K
+

K
k

)
tanKa

}−1

≈ secKa

{
1− i

2
Γ
(E −Er)

}−1

= secKa

(
iΓ /2

E −Er + iΓ/2

)
≈
(

iΓ /2
E −Er + iΓ/2

)
. (A35)

To this order of approximation, then, the pole of S(E) lies in the fourth quadrant of
the complex E-plane. There is a branch cut along the real axis, E > 0 since if E =

|E|eiθ , and E1/2 = |E|1/2 eiθ/2, in the limit θ → 2π−,
√

E =−|E|1/2, and for E < 0,
k = i |2E|1/2 . As can be seen from the term exp(ikx) in Eq. (A28), therefore, E < 0
corresponds to a decaying transmitted wave, and (A26) then defines the conditions
for the bound states to exist within the potential well. These conditions are exactly
the Eqs. (A.33a, b) above.

Similarly, for the more general three-dimensional case we would expect that,
near a resonance, Sl (E) also has a pole in the fourth quadrant. This pole is in the
analytic continuation of Sl (E) from above to below the positive real axis and lies
on the second Riemann sheet of Sl (E). The bound states of the well correspond
to poles of Sl (E) on the negative real energy axis. The closer the resonances are
to the real axis, the “stronger” they become, that is, the more they behave like very
long-lived bound states [45].

Finally, a nice connection can be made to the phase shift from Eq. (A30). Retain-
ing E as the independent variable, we can write

S(E) = eiδ (E) |T (E)|1/2 . (A36)

For notational convenience, we write Eq. (A29) as S(E) = [A(E)− iB(E)]−1 , with
obvious choices for A and B. Then it follows that

tanδ (E) =
B(E)
A(E)

=
1
2

(
k
K
+

K
k

)
tanKa ≈ 2

Γ
(E −Er) (A37)

on using Eq. (A34). Hence,

δ (E)≈ arctan

[
2
Γ
(E −Er)

]
. (A38)
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Note also that

dδ (E)
dE

=
2Γ

Γ 2 + 4(E −Er)
2 . (A39)

And this derivative has a maximum value when E = Er, that is, at a resonance, so
δ (E) varies rapidly there.
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