
Chapter 12
Almost and Pseudo-Almost Limit Cycles with
Applications to Quasiperiodic Solitary Waves

Bourama Toni and Melissa Watts

Introduction

Periodicity plays an essential role in several natural and man-made systems and
is apparent, for example, in simple models of the solar system, in the circadian
rhythms by which basic biological functions are regulated, and in electronic devices
producing stable periodic signals such as in wireless communications. Periodic tra-
jectories, isolated or otherwise, are crucial in the mathematics of dynamical systems
and its applications to science and engineering by virtue of the importance of pe-
riodic phenomena as well as by the formidable intellectual challenges in detecting
and predicting periodicity.

One important aspect of periodicity is described by the so-called limit cycles,
isolated periodic orbits in the phase space, stable or attractive when the neighboring
solutions tend to them in an asymptotic sense or unstable if the neighboring solu-
tions unwind from them. As such they can be seen as a set of accumulation points
of either the forward or backward trajectory.

Limit cycles, when stable, actually model the dynamical state of self-sustained
oscillations found very often in nature, with examples in biology, chemistry, me-
chanics, electronics, fluid dynamics, etc. See, for example, [3, 4, 8, 19, 21]. They
often arise in many physical systems around a state at which energy generation and
dissipation balance. One of the most important limit cycles of our lives is the heart-
beat. A spectacular example is the Tacoma Narrows Bridge and its 1940 dramatic
collapse, where the limit cycle drew its energy from the wind and involved torsional
oscillations of the roadbed of about 70◦. Dynamic walking in Robotics is another
practical example; the stable gait to which the repeated walking pattern converges
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is modeled as a stable limit cycle, stability easily lost to even small disturbances,
evidence of a narrow basin of attraction of the limit cycle.

Planar limit cycles were defined by Poincaré in the famous paper Mémoire sur les
courbes définies par une équation différentielle [28], using his so-called Method of
Sections, described in section “Overview of Limit Cycles”. However, much atten-
tion in this century has been drawn to the determination of the number, amplitude,
and configuration of limit cycles in a general nonlinear system, which is still an un-
solved problem. This is part of the so-called Hilbert’s 16th Problem. A weakened
version by Arnold called the tangential Hilbert’s problem concerns the bound on
the number of limit cycles which can bifurcate from a first-order perturbation of a
Hamiltonian system

ẋ =−Hy + εP(x,y), ẏ = Hx + εQ(x,y), (1)

P(x,y) and Q(x,y) are polynomials of degree deg(P,Q) ≤ n, and H(x,y) is the
Hamiltonian of degree degH(x,y) = n+ 1. The limit cycles appearing in the per-
turbed system are given by the isolated zeros of the abelian integral (integral of a
rational one form along an algebraic oval)

I(c) :=
∮

γc:H=c
P(x,y)dy−Q(x,y)dx. (2)

If I(c0) = 0, I′(c0) �= 0, then there is a unique hyperbolic (defined below) limit
cycle bifurcating from the level set γc0 : H = c0 [4, 11, 15, 16]. Similar analysis was
used by Toni for explicitly linearizable polynomial systems [32].

Existence/Nonexistence of Periodicity

The existence or nonexistence of periodic orbits, in particular limit cycles, is in-
vestigated in various ways. The possibility of a limit cycle on a plane or a two-
dimensional manifold is restricted to nonlinear dynamical systems, due to the fact
that, for linear systems, kx(t) is also a solution for any constant k if x(t) is a solution.
Therefore, the phase space will contain an infinite number of closed trajectories en-
circling the origin, with none of them isolated. Conservative and gradient systems
do not have limit cycles, though these systems may exhibit almost or pseudo-almost
limit cycles [13]. We overview here the most common techniques for predicting the
absence or existence of periodicity and limit cycles.

1. Index Theory: The interested reader may find definitions and more details in [4,
12, 15, 21]. The index of a limit cycle is 1. If all equilibria inside the periodic orbit
(isolated or not) are hyperbolic, there must be an odd number 2n+1 of equilibria,
n saddle points, and n+ 1 sinks or sources. So if the appropriate equilibria are
not present in a region of the phase space, a periodic orbit cannot exist. And if
the sum of the indices of the equilibria enclosed in a region does not equal unity,
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then a closed path cannot exist in such a region. Moreover, a closed path cannot
surround a region containing no equilibrium nor one containing only a saddle
point. However, the relationship between equilibria and periodic orbits does not
immediately generalize to higher dimensions. The system

ẋ1 = x2, ẋ2 =−x1, ẋ3 = 1− (x2
1 + x2

2) (3)

has no equilibria but has periodic phase paths given by the helices x2
1 + x2

2=1,
x3 = b (b constant). See, for instance, [3].

2. Dulac’s Criterion: There are no periodic orbits lying entirely in a simply con-
nected region D where the divergence of BX is not identically zero and does not
change sign, with B a scalar function defined on D and X the planar vector field.
For instance, the system

ẋ = y, ẏ =−x− y+ x2+ y2 (4)

is actually a perturbation of the linear center or linear isochrone, with a contin-
uum of periodic orbits around the origin. But it has no periodic orbits by the
Dulac test using B = e−2x. All periodic orbits were therefore destroyed by the
perturbation. See, for example, [4, 7, 12, 21].

3. Poincaré–Bendixson Test. If a trajectory enters and does not leave a closed and
bounded region of phase space with no equilibria, then the trajectory must ap-
proach a limit cycle for increasing time. See, for example, [4, 7, 12, 16, 21].

4. Bifurcation theory. A bifurcation, qualitative change in the behavior of the sys-
tem as the system parameter is varied, could involve a change of stability of the
periodic orbit and/or the creation/destruction of periodic orbits. See the above
example of Hamiltonian system. For example, it is known that at most k, limit
cycles (of small amplitude) bifurcate out of a weak focus of order k under a
perturbation of the coefficients [4].
More importantly, Melnikov’s theory is a powerful tool for predicting the num-
ber, positions, and multiplicities of limit cycles that bifurcate from homoclinic
and heteroclinic orbits under perturbations, by associating to a given dynamical
system a function whose roots are related to the existence and location of limit
cycles. It has been developed for the analysis of planar systems

u̇(t) = f (u)+ εg(u), (5)

for u ∈ R2, ε � 1 and f , and g sufficiently smooth functions, assuming that
the unperturbed system at ε = 0 has a one-parameter family of τr-periodic
solutions γr. Then the Melnikov function is given by

M (r) =
∫ τr

0
e
∫ t

0 ∇ f (γr(s))ds f ∧g(γr(t))dt, (6)

where the wedge product of u = (u1,u2) and v = (v1,v2) in R2 is u ∧ v =
u1v2− u2v1. Therefore, if there exist r j j = 1, . . .,n such that M (r j) = 0, with
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M ′(r j) �= 0, then the system has n hyperbolic limit cycles in an O(ε) neighbor-
hood of γr j that bifurcate from the periodic orbits γr j (t). And if M (r0) �= 0, then
the system has no limit cycles in an O(ε) neighborhood of γr0 . See, for instance,
[11, 15, 16, 32].

5. Configuration of limit cycles. Any configuration C of closed curves, that is, any
finite set of mutually disjoint closed curves, is realizable as a configuration of
limit cycles by a polynomial vector field of degree n, as well as a configuration
of algebraic limit cycles by a polynomial vector field of degree ≤ 2(n+ r)− 1
where r is the number of its primary curves (containing no other curves). By real-
izable we mean topologically equivalent with the existence of a homeomorphism
between the set of closed curves and the set of limit cycles. An algebraic closed
curve is a connected component of the zero set of some polynomial function. See
for instance [11, 15].

6. The Toroidal Principle. If a smooth vector field X leaves a toroidal region
(a submanifold M in Rn diffeomorphic to Dn−1× S1) positively invariant and
has a section S diffeomorphic to the closed unit disk Dn−1, then X has a peri-
odic orbit in M by Brouwer’s fixed point theorem. (Dn is the closed unit disk in
Rn.) See [8].

Remarks

The nonlinear character of isolated periodic oscillations renders their detection and
construction challenging. In mechanical terms the appraisal of the regions of the
phase plane where energy loss and energy gain occur might reveal a limit cycle, for
example, in the family of equations of the form

ẍ+ εh(x, ẋ)+ x = 0, (7)

with a small nonlinearity for ε � 1. In particular we have the well-known case of
h(x, ẋ) = (x2− 1)ẋ for the Van del Pol equation. In the absence of a forcing term, it
has a single, self-excited oscillation approached from all nonzero initial conditions,
that is, a stable limit cycle [18, 19, 21].

Let us emphasize that even though in most studies periodicity has been illustrated
more frequently, the occurrence of almost and pseudo-almost periodic oscillations
or waves is actually much more common than that of periodic ones. For instance, in
the simplest model of harmonic oscillator or mathematical pendulum, as well as for
the one-dimensional wave equation, diverse kinds of oscillatory trajectories can be
displayed, both periodic and more generally nonperiodic.

The theory of almost periodic functions introduced by H. Bohr [6] is connected
with problems in differential equations, stability theory, dynamical systems, par-
tial differential equations, or equations in Banach spaces. There are several results
concerning the existence and uniqueness of almost periodic solutions for first-order
differential equations, for example, in [13, 14, 16, 25, 26, 29]. But in most of these
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works the authors derived almost periodic solutions from the existence of bounded
solutions.

We extend the theory of limit cycles to that of almost and pseudo-almost limit
cycles, isolated almost/pseudo-almost periodic orbits, and we discuss in the cur-
rent and future work the usual questions of conditions of existence and uniqueness,
stability and asymptotic stability, bifurcation and perturbation, the coexistence of
limit cycles and almost/pseudo-almost limit cycles, and introduce the idea of al-
most isochrons and pseudo-almost isochrons. Section “Overview of Limit Cycles”
overviews the theory of limit cycles with some examples and presents the con-
cept of isochrons. Section “Almost Limit Cycles” is devoted to almost limit cycles
and includes definition, properties, examples, and the main existence theorem for
Liénard systems. In Section “Pseudo-Almost Limit Cycles”, we present the concept
of pseudo-almost limit cycle, its properties, several illustrative examples including
the so-called linear pseudo-center, and existence theorem in the case of Liénard
systems. The section shows the applications of the existence theorems for Liénard
systems to obtain almost and pseudo-almost periodic waves for some hyperbolic
and parabolic partial differential equations. Finally in Section “Almost and Pseudo-
Almost Periodic Waves” we discuss some directions for future research, and state
several open problems, defining in the process the concept of almost isochrons and
pseudo-almost isochrons. One important question is the requirements for transition
from almost or pseudo-almost periodic behavior to a chaotic behavior.

Overview of Limit Cycles

Let the multidimensional space Rn represents all the possible states of a system
modeling nonlinear phenomena. The dynamics of the system are determined by the
values in Rn in terms of the time. That is to say we define an evolution map or
flow Φ, smooth on the smooth manifold Rn :

Φ : Rn×R−→Rn, (8)

such that Φ(x, t) = y indicates that the state x ∈ Rn evolved into the state y ∈ Rn

after t units of time, together with the usual flow properties

Φ(x,0) = x, Φ(x, t1 + t2) = Φ(Φ(x, t1), t2). (9)

The flow Φ then determines a vector field X (conversely as well) such that, for
x ∈M

X (x) :=
∂Φ
∂ t

(x,0). (10)
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The orbit or trajectory of the flow through x ∈ Rn is given by

O(x) := {Φx(t) := Φ(x, t)|t ∈ R}. (11)

Definition 1. The orbit γ = O(x) based at x is called a limit cycle if there is a neigh-
borhood V of γ such that γ is the only periodic orbit contained in V. The limit cycle
is stable (unstable) if ω(s) = γ (α(s) = γ) for any s ∈V that is, γ is the ω-limit set
(α-limit set) of any point in V.

In other words, a limit cycle is an isolated periodic orbit of some period τ , that
is stable (resp. unstable) if it has a neighborhood U such that, for some distance
function d on Rn, d(Φ(y, t),γ) −→ 0, as t→ ∞ (resp. t→−∞), for any y ∈U.

Note that the phase ϕ of a limit cycle refers to the relative position on the orbit,
which is measured by the elapsed time (modulo the period) to go from a reference
point to the current position on the limit cycle.

Examples: Linear Center and Its Perturbations

Example 1

The linear center or linear isochrone

ẋ =−y, ẏ = x, (12)

where the origin of the plane is surrounded by a continuum of periodic orbits (not
isolated) given by x2 + y2 = c > 0, is perturbed into the following system, in polar
coordinates (r,θ )

ṙ = r(1− r2), θ̇ = 1. (13)

The circle r = 1 is a 2π-periodic orbit and is unique. It is therefore a limit cycle.
Moreover r is a monotone function on each orbit (ṙ > 0 inside and < 0 outside)
so that all nonconstant orbits tend towards the limit cycle which is therefore stable.
This system is the so-called Poincaré Oscillator as in the figure below (Fig. 12.1).

Example 2

The linear center could also be perturbed into a system to generate several limit
cycles as in the following example. The C∞-system

ẋ =−y+ x f (x,y), ẏ = x+ y f (x,y), (14)

where

f (x,y) = sin(
1

x2 + y2 e
− 1

x2+y2 ),
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Fig. 12.1 ṙ = r(1− r), θ̇ = 1

Fig. 12.2 ẋ =−y+ x f (x,y), ẏ = x+ y f (x,y) where f (x,y) = sin( 1
x2+y2 )e

− 1
x2+y2

has an infinite number of limit cycles

γn : x2 + y2 =
1

nπ
, n ∈ Z (15)

accumulating at the origin. The phase portrait appears below in Fig. 12.2.
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Fig. 12.3 Poincaré section

Poincaré’s Method of Sections

Poincaré first observed that if a τ-periodic orbit γ exists for a smooth vector field
X , and if x0 ∈ γ, and H is a hyperplane complementary to the tangent line Tx0(γ)
to x0 at γ , then there is a sufficiently small neighborhood, called a local section or
cross section, Σ ⊂H on which the implicit function theorem provides for each
x ∈ Σ a least positive time tx for the solution based at x to first return to Σ , defining
the so-called smooth Poincaré or “first return” map (monodromy operator) P on Σ .
In other words, we have

1. x0 ∈ Σ , and Σ̄ ∩ γ = {x0}. (Σ̄ denotes the closure of Σ .)
2. Tx0 Σ +Tx0γ = Tx0H . (Σ is transverse to γ at x0.)

By continuity of the flow, and the implicit function theorem, the time τx of first
return exists and is near the period τ for a point x near x0. Therefore, in practice,
P(y) =Φτx(x), where τx is the time taken by the orbit Φx(t) to first return to Σ . And
τx→ τ as x→ x0. Of course, P(x0) = x0, that is, x0 is a fixed point for the map P .
And the existence of fixed points for P implies the existence of periodic orbits for
the flow, allowing for the use of powerful topological fixed point theorems. But the
existence of such a section is itself one of the standard paradigms of the existence
of nonlinear oscillations (Fig. 12.3).

Next consider the monodromy operator given by the matrix Dx0P = [ ∂P
∂x (x0)]

of partial derivatives of P at x0. The limit cycle is said to be hyperbolic or elemen-
tary if Dx0P has no eigenvalue of modulus one. The eigenvalues are the so-called
characteristic (Floquet) multipliers of γ and are independent of the choice of x0

and Σ . A hyperbolic limit cycle is stable (resp. unstable) if it has all the multipliers
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with modulus less than one (resp. greater than one). Each orbit in the neighbor-
hood of γ tends toward (resp. away from) γ exponentially fast. For a planar vector
field X (x,y) = P(x,y)∂x+Q(x,y)∂y, with P and Q at least C1, sufficient condi-
tions for stability are given by the following: for τ the period of the limit cycle γ,
I(τ) =

∫ τ
0 (

∂P(x,y)
∂x + ∂Q(x,y)

∂y )dt is negative for stable limit cycle and positive for un-
stable limit cycle; such limit cycles are said to be hyperbolic. A multiple limit cycle
is obtained for I(τ) = 0 [11, 15, 28].

The idea of a constant first return time identical to the period of the limit cycle
leads to the description of isochrons which we introduce next.

Isochrons

Winfree in [33, 34] introduced the isochrons of limit cycles in biosciences, in par-
ticular in relation to biological rhythms. Then Guckenheimer showed that they are
in fact the stable manifolds of a point on an attractive hyperbolic limit cycles. Their
existence for nonhyperbolic limit cycles was proved by Chicone in [10].

Definition 2. For a hyperbolic stable limit cycle γ of period τ and for x0 ∈ γ , the
isochron at x0, denoted by Is(x0), is defined as a cross section of γ at x0 for which
the time of first return is identically the period τ.

In other words, the isochrons of a limit cycle is the set of points from which
state trajectories evolve to the same phase as the limit cycle. That is, a set of initial
conditions resulting in oscillations having the same phase. The limit cycle itself, like
the unit circle, can be parameterized by one variable called its phase ϕ .

The existence of isochrons is ensured by the Invariant Manifold Theorem as the
leaves of the invariant foliation of the stable manifold of a hyperbolic periodic orbit.
In a 2-state system the foliation is visualized as lines traversing the limit cycle.
They are used extensively in investigating the dynamics of neural oscillators and to
qualitatively illustrate phase resetting in circadian rhythms.

In practice, for a hyperbolic limit cycle γ , there exists a unique ϑ(x) for any x /∈ γ
such that

lim
t←∞
|Φ(t)− γ(t +ϑ(x))|= 0, (16)

where Φ(t) is the trajectory based at x. The value ϑ(x), bounded by the period T (1
or 2π after normalization), is called the asymptotic (or latent) phase of x.

A level set ϑ(x) = c or ϑ−1(c) defines an isochron. And it is an (n− 1)-
dimensional hyperplane. In fact all points of an isochron are points of the sequence
{x(kT )}k≥0. That is, points on the forward orbit Φ(t) observed only at times integer
multiple of the period of the limit cycle, thereby defined by a Poincaré map. There-
fore, an isochron is a special Poincaré section with the time of first return equals the
period of the limit cycle. A phaseless set is formed by those points where isochrons
cannot be defined. See, for example, [3, 19, 33, 34].
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Example

Consider the planar differential equations in polar coordinates (r,θ )

ṙ = (r− 1)r2, θ̇ = r, (17)

with a limit cycle γ : r = 1. Looking for a function f such that the asymptotic
phase is defined by ϑ(r,θ ) = θ − f (r) leads to each isochron ϑ−1(c) being defined
by θ = c+ 1

r −1.Therefore, isochrons exist everywhere in the plane, with the phase-
less set reduced to the singleton containing the origin, whose every neighborhood
intersects all isochrons. Consequently, using the asymptotic phase as the new phase
coordinate allows the dynamics of the phase to be decoupled from the other coordi-
nate, thereby effectively reducing the dimension of the equation in the neighborhood
of the limit cycle.

Remarks

Note that the concept of isochrons extends the notion of phase of a periodic orbit to
a neighborhood of that orbit. The phase difference between two points in the basin
of attraction of a limit cycle can be directly computed as the time difference be-
tween the isochrons to which they belong. Computation of isochrons is usually quite
difficult, requiring sometimes the coordinate transformation to phase variables, or
backward integration of the system from the limit cycle, and collection of points at
time interval of the period. The configuration of the isochrons in a given region also
determines how fast or slow trajectories are moving in that region. The convergence
(resp. divergence) of isochrons indicates a slow (resp. fast) synchronization region.
A numerical resolution of isochrons could be found in [3].

Almost Limit Cycles

Definition 3. The orbit O(x0) based at x0 as defined above is called an almost limit
cycle if it is isolated and the function Φ(.) :=Φx0(.) : R−→Rn is almost periodic
in the following sense (Bohr): ∀ε > 0, ∃lε > 0 such that every interval (a,a+ lε) in
R of length lε contains a number τε such that

||Φx0(t + τε)−Φx0(t)||< ε. (18)

The number τε is called the ε-almost period of Φx0(.), or ε-translation number.
The following properties are derived from those of almost periodic functions which
could be found for instance in [6, 13, 16]. Denote AP(R,Rn) the Banach space of
almost periodic functions from R to Rn.
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Properties of Almost Limit Cycles

1. The set Tε of the ε-translation numbers is relatively dense in R.
2. The orbit O(x0) is bounded, relatively compact in Rn, and the map Φx0(.) is uni-

formly continuous. Moreover there is a sequence of trigonometric polynomials
Pn(t) = ΣN

k=1akeiλkt converging to Φ(t) uniformly in R.
3. The family of translates F := {TτΦ(.) = Φ(.+ τ); τ ∈ R} is relatively com-

pact in the space of almost periodic functions from R to Rn.
4. For a sequence of almost periodic solutions Φk(t), k = 1, . . .,n and ∀ε > 0,

there exist common ε-translation numbers.
5. For Φ ∈ AP(R,Rn) the time mean or mean value of Φ(t) exists and is defined by

M(Φ) := lim
T→∞

1
2T

∫ T

−T
f (t)dt. (19)

6. The Fourier exponent λ and the related Fourier-Bohr coefficient c(λ ) of Φ ∈
AP(R,Rn) are defined by c(λ ) = M(Φ(t)e−iλ t) �= 0. The module mod(Φ)
of Φ is the additive group generated by the set Λ(Φ) = {λ ∈R|c(Φ) �= 0}.
The almost periodic function is said to be quasi-periodic with frequency ω =
(ω1, · · · ,ωm) ∈ Rm if its module is contained in the additive group generated
by ω .

7. Any Φ ∈ AP(R,Rn) satisfies the so-called recurrence property, that is, there
exists a real sequence {τn} with limn−→±∞ τn =±∞ such that limn−→∞ ||Tτn Φ−
Φ||= 0.

Example of Linear Almost Center

Let p(t) ∈ AP(R,C), and consider the differential equation

ẋ(t) =−αx(t)+ p(t), α > 0. (20)

Define a kernel

K(t) =
{

0, f or t < 0, and e−αt , f or t ≥ 0
}
. (21)

Therefore, K∈L1(R,C). Thus, the convolution xα(t)=(K∗p)(t)=e−αt∫ t
−∞ eαsp(s)ds

is also in AP(R,C). Moreover this convolution is an almost periodic solution, not
isolated; therefore it is not an almost limit cycle. Indeed the equation being linear,
we derive a continuum of parameterized family of almost periodic solutions. Such
a continuum is called a linear almost center. This example also appears in [13]. We
represent below the solution for the almost periodic function p(t) = sin t + sin

√
2t

(Fig. 12.4).
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Fig. 12.4 ẋ(t) = αx(t)+(sint + sin
√

2t), α = 1,2,3,4

We introduce here an efficient technique of investigating almost periodic solu-
tions and consequently almost limit cycles.

Hull and Method of Auxiliary Systems

Consider the nonlinear system

ẋ(t) = f (x(t), t), (S)

where the function f is continuous on the open set O = R× I, I ⊂Rn, and almost
periodic in t uniformly with respect to x ∈ K ⊂ I, for K a compact subset of I.

Therefore, f (R,K) is bounded. And the function f (t, .) is uniformly continu-
ous on K. A function g is said to be in the hull H( f ) of f if there exists a se-
quence {τn;n ≥ 1} in R with limn→∞ f (t + τn,x) = g(t,x) uniformly on any set
R×K, K ⊂ I. That is, g is in the closure of the set { f (t + τ,x), τ ∈ R}.

Then consider the auxiliary system

ẋ(t) = g(t,x(t)), g ∈ H( f ). (Sa)

Let D be a region of R×Rn given by D = R×K, K the above compact set. A
solution x(t) of the system (S) whose graph is in D is separated in D if it is either the
only solution with its graph in D or there is a number δ > 0 such that |x(t)−y(t)| ≥
δ , t ∈R, where y(t) is another solution with its graph in D. From Amerio [2, 13] we
obtain the following two theorems:
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Theorem 1. Consider the systems (S) and (Sa):

1. The number of separated solutions with the graph in D is finite.
2. If the system (S) has a solution with graph in D, then each of the auxiliary system

has also a solution with its graph in D.
3. If x(t), t ≥ t0, is a solution of the system (S) such that x(t) ∈ K for t ≥ t0, then the

auxiliary system (Sa) has a solution defined on R whose graph is in D.

Consequently it results:

Theorem 2. Assuming the auxiliary system has its solutions in D separated, then
all these solutions are almost periodic.

Therefore, we are allowed to conclude that bounded separated solutions of sys-
tem (S) are almost periodic. Corduneanu in [13] has effectively used this method to
prove the existence of an asymptotically stable almost periodic solution to a Liénard-
type second-order differential equation.

Next we illustrate the concept of almost limit cycle with several examples.

Almost Periodic Perturbations of the Harmonic Oscillator

Consider the forced oscillations of the harmonic oscillator given by

ẍ(t)+ω0x(t) = f (t) (22a)

or equivalently for ẋ = y

ẋ = y, ẏ =−ω0x+ f (t) (22b)

where the external forcing term is f (t) = k sinω1t with ω1 such that the ratio ω1
ω0

is
irrational. From the Lagrange’s method the general solution is computed as

x(t) = Acos(ω0t +α)+ k(ω2
0 −ω2

1)
−1 sin ω1t. (22c)

This solution certainly represents an oscillatory motion, but due to the fact that the
ratio is irrational, the solution x(t) is not periodic in t but is indeed one of the sim-
plest examples of an almost periodic trajectory in an explicit form. The periodic
perturbation has indeed destroyed the free harmonic oscillations. Setting the pa-
rameters A, α, ω0 k, and ω1 to numerical values provides an example of a unique
asymptotically almost periodic orbit, thus isolated. It is therefore a unique stable
almost limit cycle.

We further illustrate the theory of almost and pseudo-almost limit cycles with the
well-known Liénard systems.



246 Bourama Toni and Melissa Watts

Liénard Systems

Why the Liénard Systems?

Liénard equation, which also generalizes the famous Van der Pol oscillator, is ubiq-
uitous in the study of nonlinear systems [1, 2, 7, 12, 22, 23]. We here recall some by
now classical results about Liénard-type systems.

Consider the one-parameter family of forced Liénard systems

ẍ+ f (x)ẋ+ g(x) = μh(t), (23)

or equivalently

ẋ = y−F(x), ẏ =−g(x)+ μh(t), (24)

where f , g, and h are continuous functions on R, μ a small real parameter, and
F(x) :=

∫ x
0 f (s)ds.

Setting the parameter μ = 0, that is, for homogeneous Liénard systems, we obtain
the following well-known Liénard theorems. See more details in, for example, [7,
9, 12].

Theorem 3. Consider the system

ẍ(t)+ f (x)ẋ(t)+ g(x) = 0 (25)

where f (x) and g(x) are two functions generally nonlinear, assumed continuous,
and differentiable from R to R, together with the following conditions:

(L1) : xg(x)> 0, for x �= 0.
(L2) : lim|x|→∞ |F(x)|= ∞.
(L3) : There exist real numbers α and β such that F(x) < 0, for x < −α or
0 < x < β , and F(x)> 0, for −α < x < 0 or x > β .
(L4) : f (x) is symmetric, while g(x) is antisymmetric.

Then there exists a unique nontrivial periodic solution to the equation.

Theorem 4. If the Liénard’s equations satisfies the following conditions:

1. f (x) is continuous, even and f (0)< 0.
2. g(x) is locally Lipschitz, odd, and such that xg(x)> 0 for x �= 0.
3. f (x) has a unique positive zero at x = b, and it increases at ∞ for x > b.

Then there a unique stable limit cycle.

Therefore, these theorems provide conditions under which there exist, for the un-
perturbed Liénard systems, respectively, a unique periodic solution and a unique
limit cycle, isolated periodic orbit controlling the behavior of neighboring trajecto-
ries. We next subject some classes of Liénard systems to perturbations that, in fact,
destroy the limit cycles to give birth to almost limit cycles or pseudo-almost limit
cycles under suitable conditions.
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Liénard Almost Limit Cycles

We study system (21) or its equivalent form (23) under the following additional
assumptions:

(A1) f (x) > 0, in R, with F(x)sgnx→ ∞ as |x| → ∞.
(A2) xg(x)> 0 for x �= 0, G(x)→ ∞ as |x| → ∞.
(A3) |h(t)| ≤ K, and |H(t)| ≤ K, with H(t) =

∫ t
0 h(s)ds, t ∈ R, and K a positive

constant.
(A4) g′(x)> 0, and g′′(x) exists and is bounded.

It is known that, under such assumptions, for 0 < μ � 1, there exists in the
xy-plane a set E bounded by a regular simple curve (C1 except possibly at a finite
number of points) such that:

1. For every solution γ(t) = (x(t),y(t)) of system (21), there is a value t0 such that
γ(t0) ∈ E.

2. If, for a value t0 of t, we have γ(t0) ∈ E, then we have also γ(t) ∈ E, for t ≥ t0.
That is, solutions entering the set cannot leave it for increasing time.

Moreover the set E depends only on the functions f (x), g(x), h(t), the parameter
μ , and the constant K. Equivalently, the set E may be described by the inequalities
|x(t)| ≤ x0 |ẋ(t)| ≤ v0, for a solution x(t) of Eq. (20), and where x0 and v0 are
constants independent of μ . See, for example, [9, 26, 29]. In other words, under the
above conditions the solutions ultimately settle in a C1-bounded set E in R2.

The main theorem here states:

Theorem 5. Assume the function h(t) is an almost periodic function, then under
the conditions (A1), . . .,(A4), the almost periodically forced Liénard system has a
unique stable almost limit cycle.

This theorem was first presented by the Toni in [31]. We present here an improved
and self-contained proof for the sake of clarity.

Proof. Let γ(t) = (x(t),y(t)) a solution of the system, and γ̃(t) = (x̃(t), ỹ(t)) either
another solution of the system or a solution of an associated system with a suffi-
ciently small perturbation h̄(t) of the forcing term h(t). We have then

lim
t→∞
|γ̃(t)− γ(t)|= 0,

that is,

lim
t→∞
|x̃(t)− x(t)|= 0 = lim

t→∞
|ỹ(t)− y(t)|. (26)

Indeed, upon the change of variables u(t) = x̃(t)− x(t), v(t) = x̃(t)− y(t), we
obtain the system

u̇(t) = v(t)−ϕ(t)u(t)v̇(t) =−ψ(t)u(t)+ μΔh(t), (27)
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where

ϕ(t) =
F(x2)−F(x1)

x2− x1
, ψ(t) =

g(x2)− g(x1)

x2− x1
. (28)

Note that the functions f , g′, and g′′ are bounded on the compact set E. For
sufficiently small values of the parameter μ � 1, we can construct the quadratic
form

Q(t,u,v) = ψ(t)u2 + v2− 2cuv, (29)

with c > 0 chosen small enough for Q(t,u,v) to be positive definite such that

Q(t,u,v)≥ c(u2 + v2), (30)

c a positive constant, and such that

Q̇(t,u,v)+ cQ(t,u,v)< 0. (31)

Actually we have

dQ
dt

(t,u,v) =−2(ϕψ− ψ̇− 2cψ)u2− 2cv2 + 2cϕuv, (32)

yielding

Q̃(t,u,v) := Q̇(t,u,v)+ cQ(t,u,v) =−(2ϕψ− ψ̇− 3cψ)u2+ 2c(ϕ− c)uv− cv2.

(33)

The quadratic form Q̃(t,u,v) can be made negative definite by taking the constant c
such that

c <
2ϕψ− ψ̇

3ψ
, c(3ψ +(ϕ− c)2)< 2ϕψ− ψ̇, (34)

which entails

Q̇(t,u,v)< Q(t0)e
−c(t−t0). (35)

Therefore, Q(t)→ 0 as t → ∞, implying that u→ 0 and v→ 0. The constant c
is appropriately chosen so that, when |Δh(t)| = |h̃(t)− h(t)| → 0, we can make
Q(t)→ 0 for t → ∞. That is, the solutions of the system of the perturbed forcing
term ultimately converge to the solutions of the original system.

Next let γ(t) = (x(t),y(t)) be one of these solutions which settled in E for t ≥ t0.
We then define the sequence of solutions γn(t) = γ(t + n) = (xn(t),yn(t)), t ≥
t0 − n. The sequence is therefore equicontinuous and uniformly bounded. Con-
sequently we can extract a subsequence γnk(t) converging uniformly to a solu-
tion γ̄(t) = (x̄(t), ȳ(t)) lying completely in E for all t ∈ R. (limn→∞(t0 + n,∞) =
(−∞,∞)). And of course γ̄(t) is unique. Therefore, the forced Liénard system has a
unique solution γ̄(t) = (x(t),y(t)) defined on the whole real line R in the set E.
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Now h(t) almost periodic implies there is an ε-almost period τ such that

‖Tτ h(t)− h(t)‖< ε

for any arbitrary ε. For such an ε-period consider the function γ̄(t+τ)=(x̄(t+τ),
ȳ(t + τ)). It is readily a solution of the following system (Eτ):

ẋ = y−F(x)ẏ =−g(x)+ μh(t+ τ). (36)

Take h(t + τ) as a sufficiently small perturbation of h(t) as above. Therefore,
we obtain

‖γ̃(t + τ)− γ̃(t)‖< ε, (37)

which entails that the unique solution γ(t) is also almost periodic with the same
ε-almost period as the forcing term h(t).

Moreover all other solutions of the system that ultimately settle in E con-
verge to the unique almost periodic solution γ(t) ∈ E. Therefore, the system has
a unique (isolated) almost periodic solution to which any other solution unwinds
in the C1-bounded set E. It is a stable almost limit cycle as defined above. Hence
the claim. ��

Remarks

Note that the proof of the theorem actually accomplishes more. That is, under the
assumptions above, only one solution of the system settles in the bounded region
E for all time; that solution will be of the same nature as the forcing term, almost
periodic for an almost periodic forcing in this case. It has been proven also, for
example, in [9, 26, 29], that it is periodic under a periodic forcing. In addition,
we prove in the next section that this single solution becomes as well pseudo-almost
periodic under such a forcing term. Indeed the next section discusses the concept
of pseudo-almost limit cycles from the dual concepts of limit cycles and pseudo-
almost periodicity.

Pseudo-Almost Limit Cycles

Introductory Concepts

Let C (R×Ω ,Rn), Ω ⊂ Rn open, be the Banach space of bounded continu-
ous functions φ(t,x) endowed with the norm ||φ || = supt∈R,x∈Ω |φ(t,x)|. The set
C (R×Ω ,Rn) is a subset of the more general space Lb(R×Ω ,Rn) of all Lebesgue
measurable and bounded functions.
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Fig. 12.5 f (t) = 1− t2, for |t|< 1, and sin(log( 1
t2 )), for |t| ≥ 1

Definition 4. A function f in Lb(R×Ω ,Rn) is said to be ergodic if for every com-
pact subset K ⊂Ω , the mean defined by

M ( f ) := lim
T→∞

1
2T

∫ T

−T
f (t,x)dt (38)

exists uniformly for x ∈ K.

We say that the function has a vanishing mean if M ( f ) = 0. Let E (R×Ω ,Rn)
denote the space of all ergodic functions on R×Ω . Note in passing that not all
uniformly continuous bounded functions on R are ergodic. For instance the function

f (t) = {1− t2, f or |t|< 1, and sin(log(1/t2)), f or |t| ≥ 1,} (39)

is uniformly continuous in R, but not ergodic (Fig. 12.5). In the space L (R×Ω ,Rn)
of all Lebesgue measurable functions on R×Ω , we consider next the following
subspace L0 of all {φ ∈ L : R×Ω → Rn such that ∀x ∈ Ω , φ̃ (.) := φ(.,x) is
Lebesgue measurable on R with M (|φ̃ |) = 0, and M (|φ |) = 0.

For example, the function

φ(t) = t|sinπt|tN
, N > 6, (40)

is unbounded, Lebesgue measurable with vanishing mean M .
The unbounded and discontinuous function

φ(t) := {√n, n≤ t ≤ n+ 1/n, and 0, otherwise} (41)
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is also an element of L0. Indeed we have limT→∞
1

2T

∫ T
−T |φ(t)|dt = limn→∞

1
n ∑n

k=1
1√
k
= 0.

Definition 5. The orbit O(x0) based at x0 as defined above is called a pseudo-almost
limit cycle if it is isolated, and more importantly if the function Φ(.) := Φx0(.) :
R−→ Rn defining the orbit is pseudo-almost periodic in the following sense, ∀ε >
0, ∃δ = δε > 0, a relatively dense subset Dε ⊂ R, a subset Cε ⊂ R, such that:

1. For m the Lebesgue measure on R,

lim
t→∞

m(Cε ∩ [−t, t])
2t

= 0, (Cε is called an ergodic zero set). (42)

2. Let Tτ Φ denotes the translate of Φ by τ, that is, (Tτ Φ(t)) := Φ(t + τ). Then

||(Tτ Φ)(t)−Φ(t)||< ε, τ ∈Dε , t, t + τ ∈ R−Cε . (43)

3. Finally

|t1− t2|< δ =⇒ ||Φ(t1)−Φ(t2)||< ε, t1, t2 ∈ R−Cε . (44)

Denote PA the space of pseudo-almost periodic functions. These functions satisfy
the following properties widely available in the relevant literature [13, 14, 35].

Some Properties of Pseudo-Almost Periodicity

We first give an equivalent definition of a pseudo-almost periodic function, in partic-
ular in the space C (R×Ω ,Rn), with the restriction of L0 to the space E0 containing
all functions φ ∈ C (R×Ω) such that

lim
T→∞

1
2T

∫ T

−T
|φ(t,x)|dt = 0, (45)

uniformly in x ∈Ω .

Definition 6. A function f : R×Ω −→ Rn is called pseudo-almost periodic in t
uniformly on compact subsets K of Ω if it has a unique decomposition in the form

f (t,x) = a(t,x)+ e(t,x), (46)

where a is almost periodic and e ∈ E ⊂ L0. Recall that a is almost periodic if
it satisfies the so-called Bohr’s property. That is, ∀ε > 0 ∃l = l(ε) such that any
interval (t, t + l)⊂ R contains a number τ such that

|| f (t + τ,x)− f (t,x)||< ε, t ∈ R,x ∈Ω . (47)
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The functions a and e are called, respectively, the almost periodic component and
the ergodic perturbation of f . Moreover we have the following properties [14, 35]:

1. For f ∈PA , the set f (R,K) := { f (t,x)|t ∈ R,x ∈ K} is bounded for every
bounded subset K ⊂Ω .

2. The function f (t, .) is uniformly continuous in each bounded subset of Ω uni-
formly in t.

3. When the ergodic zero set Cε = /0, the space PA coincides with the space A P
of almost periodic functions.

4. If both functions f and its derivative f ′ are pseudo-almost periodic, with f = a+e
and f ′ = a′+ e′, where a and a′ in PA and e and e′ in L0, then the functions a
and e are differentiable with a′ = a and e′ = e.

Some Illustrative Examples of Pseudo-Almost Periodic Functions

We present some by now classic examples of pseudo-almost periodic functions. See
also [14, 35]. We include here their graphic requirements.

Example 1

We consider the function

φ1(t) = sin t + sin
√

2t +
e−|t|

1+ t2 (48)

and represent, respectively,

1. The almost periodic component a(t) = sin t + sin
√

2t and the ergodic perturba-

tion e(t) = e−|t|
1+t2 (Fig. 12.6)

2. The pseudo-almost periodic function φ1(t) = a(t)+ e(t) (Fig. 12.7)

Example 2

We consider the function

φ2(t) = sin t + sinπt + t|sinπt|tN
, N > 6, (49)

with the graphic representations given below:
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Fig. 12.6 a(t) = sint + sin
√

2t, and e(t) = e−|t|
1+t2

Fig. 12.7 φ1(t) = a(t)+ e(t) = sint + sin
√

2t + e−|t|
1+t2

1. The almost periodic component a(t) = sin t + sinπt and the ergodic perturbation
e(t) = t|sinπt|tN

for N = 8 (Fig. 12.8)
2. The pseudo-almost periodic function φ2(t) = a(t)+ e(t) (Fig. 12.9)

Example 3

We finally consider the function

φω (t) = I1(t)+ I2(t), ω �= 0, (50)

where

I1(t) =
∫ ∞

−∞
h(t− s)(sins+ sin

√
2s)ds, h ∈ L1(R) (51)
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Fig. 12.8 a(t) = sint + sinπt and e(t) = t| sinπt|t8

Fig. 12.9 φ2(t) = a(t)+ e(t) = sint + sin
√

2t + e−|t|
1+t2

and

I2(t) =
∫ ∞

−∞

h(t− s)
s2 +ω2 ds. (52)

We take h(t) = t2, in L1(R), ω = 1, and represent in figure below:

1. The almost periodic component I1(t) and the ergodic perturbation I2(t) (Fig. 12.10)
2. The pseudo-almost periodic function φ1(t) = I1(t)+ I2(t) (Fig. 12.11)

As in the previous section we now present some examples of existence of pseudo-
almost limit cycles. First we mention the case of the linear pseudo-almost center.
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Fig. 12.10 I1(t) =
∫ ∞
−∞ h(t− s)(sin s+ sin

√
2s)ds and I2(t) =

∫ ∞
−∞

h(t−s)
s2+ω2 ds

Fig. 12.11 φω(t) = I1(t)+ I2(t)

Linear Pseudo-Almost Center: An Example

Let p(t) ∈PA (R,C), that is, a complex-value pseudo-almost periodic function
defined on the real numbers, and consider the differential equation (see also [13])

ẋ(t) =−αx(t)+ p(t), α > 0. (53)

Define a kernel

K(t) =
{

0, t < 0, and e−αt , t ≥ 0}. (54)

Therefore, K ∈ L1(R,C). Thus, the convolution xα =(K∗ p)(t)=e−αt ∫ t
−∞ eαs p(s)ds

is also in PA (R,C), for every α . Indeed the space PA is convolution invariant
by L1. The equation being linear, it results in the existence of a continuum of pa-
rameterized pseudo-almost periodic solutions which we called linear pseudo-almost
center. Therefore, these solutions are not isolated and are not pseudo-almost limit
cycles.



256 Bourama Toni and Melissa Watts

Fig. 12.12 x(t) = sint + sin
√

2t + 1
t2+1

and ẋ = y, ẏ =−x+(−sin
√

2t + t2(t2+4)
(t2+1)3 )

Pseudo-Almost Periodic Perturbations of the Harmonic Oscillator

Consider the forced oscillations of the harmonic oscillator given by

ẍ(t)+ x(t) = f (t) (55)

where the forcing term is

f (t) =−sin
√

2t +
t2(t2 + 4)
(t2 + 1)3 (56)

equivalently, for ẋ = y

ẋ = y, ẏ =−x+ f (t). (57)

Clearly the function explicitly given by

x(t) = sin t + sin
√

2t +
1

t2 + 1
(58)

is the unique solution of the equation, and it is one of the classic examples of pseudo-
almost periodic function that is not periodic. (See also [11].) Therefore, we obtain an
explicit and simple example of pseudo-almost limit cycle. The figure below gives the
phase portrait of (57) and the graph of the pseudo-almost periodic function in (58)
(Fig. 12.12).

Liénard Pseudo-Almost Limit Cycles

We now reconsider the above Liénard systems (20) and (21) under a forcing term
that is now assumed to be a pseudo-almost function. As stated above in the case of
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an almost periodic forcing, the assumptions entail the existence of a unique solution
that settles in the bounded region E for all time. Moreover the proof of Theorem 5
leads to the following:

Proposition 7. Assume the conditions A1, . . .,A4. Let γ(t) = (x(t),y(t)) be a solu-
tion of the system, and γ̃(t) = (x̃(t), ỹ(t)) either another solution of the system or
a solution of an associated system with a sufficiently small perturbation h̄(t) of the
forcing term h(t). Then we have

lim
t→∞
|γ̃(t)− γ(t)|= 0,

that is,

lim
t→∞
|x̃(t)− x(t)|= 0 = lim

t→∞
|ỹ(t)− y(t)|. (59)

Proof. It is a direct consequence of the lines of proof for theorem (cite here). That
is, the solutions of the system associated to the perturbed forcing term ultimately
converge to the solutions of the original system. ��

We now state and prove the main result of this section.

Theorem 6. Assume the forcing term h(t) is a pseudo-almost periodic function.
Then under the conditions (A1), . . .,(A4), the pseudo-almost periodically forced
Liénard system has a unique stable pseudo-almost limit cycle.

Proof. The proof is based on the previous proposition, including the existence of a
unique solution enclosed in E for all time. First assuming the forcing term h(t) is
pseudo-almost periodic entails from the definition above that, for any arbitrary ε,
there exists δ = δ (ε), an ε-pseudo-almost period τ ∈ Dε , a relatively dense set in
R such that

‖h(t + τ)− h(t)‖< ε, t, t + τ ∈ R−Cε (60)

and

|t1− t2|< δ =⇒ ||h(t1)− h(t2)||< ε, t1, t2 ∈ R−Cε , (61)

where Cε is the ergodic zero set defined above. For such an ε-pseudo-almost period,
consider the unique solution γ̄(t) given in the previous lemma that settles in E for
all time t ∈ (−∞,∞), and the associated function γ̄(t+τ) = (x̄(t+τ), ȳ(t+τ)). This
function is readily a solution of the following system (Eτ)

ẋ = y−F(x, ẏ =−g(x)+ μh(t+ τ). (62)

Take h(t + τ) as a sufficiently small perturbation of h(t) as above. Therefore, ac-
cording to the previous propositions, the solutions γ̄(t) and γ̄(t +τ) converge. Thus,
we obtain

‖γ̄(t + τ)− γ̄(t)‖< ε, t, t + τ ∈ R−Cε . (63)



258 Bourama Toni and Melissa Watts

Moreover we also have, for t1, t2 ∈ R−Cε ,

|γ̄(t2)− γ̄(t1)| ≤ |t2− t1|supE | ˙̄γ|,

which ensures the existence of δ such that

|t1− t2|< δ =⇒ ||γ̄(t1)− γ̄(t2)||< ε, t1, t2 ∈ R−Cε . (64)

Therefore, we conclude that the unique solution γ̄(t) is pseudo-almost periodic.
Moreover, from the previous proposition, all other solutions of the system that

ultimately settle in E converge to this unique pseudo-almost periodic solution γ̄(t)∈
E. Therefore, the system has a unique (isolated) almost periodic solution to which
any other solution unwinds in the C1-bounded set E. It is a stable almost limit cycle
as defined above. Hence the claim. ��

Remarks

For a Liénard system under the assumptions stated above, a forcing term, respec-
tively, periodic, almost periodic, and pseudo-almost periodic leads to the emergence,
respectively, of a unique stable limit cycle, stable almost limit cycles, and pseudo-
almost limit cycles. Such characteristics, if need be, add to the “mathematical beauty
and richness” of the Liénard systems. We derive the following natural question as
an open problem.

Open Problem

Re-parameterize the Liénard system if necessary and determine conditions under
which the phase space could be partitioned in regions of limit cycles, almost limit
cycles, and pseudo-almost limit cycles.

Almost and Pseudo-Almost Periodic Waves

The importance of Liénard systems among nonlinear systems also comes from
the fact that several systems can be transformed into Liénard systems and solved
[1, 17, 19, 20]. We present next some partial differential equations solvable first
by reducing them to some Liénard-type equations, then by applying the previous
theorems.
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Illustrative Example 1

Consider systems described by the time-perturbed nonlinear hyperbolic equation

utt = uxx + f0(u)ux + g0(u)+ p(t) (H ).

The search of special solutions of the form

u(x, t) = y(x+ ct), c ∈R (65)

defining the wave with speed |c| yields the Liénard-type equation

(1− c2)ÿ+ f0(y)ẏ+ g0(y) =−p(t). (66)

Define f (y) = f0(y)
1−c2 , g(y) = g0(y)

1−c2)
, and h(t) = −p(t)

1−c2 . The functions f0 and g0 are

continuously differentiable chosen together with the speed |c| of the waves u(t,x)
such that the functions f , g, and h satisfy the assumptions (A1), . . .,(A4). Obviously
p(t) almost periodic or pseudo-almost periodic implies h(t), respectively, almost or
pseudo-almost periodic. Therefore, we conclude under these assumptions:

Theorem 7. For an almost periodic perturbation p(t), the nonlinear hyperbolic
equation (H ) has an almost periodic solitary wave u(x, t) = y(x+ ct), where y(x)
is an almost limit cycle of the perturbed Liénard-type equation (25).

Proof. The proof is immediate and is adapted from Theorems 5 and 6. ��
In the same lines we prove:

Theorem 8. For a pseudo-almost periodic perturbation p(t), the nonlinear hyper-
bolic equation (H ) has a pseudo-almost periodic solitary wave u(x, t) = y(x+ ct),
where y(x) is a pseudo-almost limit cycle of the perturbed Liénard-type equa-
tion (25).

We next consider a parabolic partial differential equation describing a reaction-
diffusion equation.

Reaction-Diffusion Model

Consider now the time-perturbed parabolic equation describing a reaction-diffusion
model

ut = uxx + f0(u)ux + g0(u)+ p(t) (RD).
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Looking again for special solutions of the form (24) leads to the Liénard-type
equation

ÿ+[ f0(y)− c]ẏ+ g0(y) = 0. (67)

As in the previous case we set f (y) = f0(y)− c, g(y) = g0(y), and h(t) = −p(t).
The functions f0 and g0 are continuously differentiable are determined together with
the speed |c| of the waves u(t,x) such that the functions f , g, and h satisfy the as-
sumptions (A1), . . .,(A4). Obviously p(t) almost periodic or pseudo-almost periodic
implies h(t), respectively, almost or pseudo-almost periodic. We therefore obtain the
equivalent theorems of existence of almost and pseudo-almost solitary waves to the
reaction-diffusion equation as functions of the corresponding Liénard almost and
pseudo-almost limit cycles, as in Theorems 7 and 8.

Outlook and Open Problems

Arnold in [5] states

Une trajectoire fermée nondégénérée ne disparait pas par une petite déformation du système,
mais se déforme légèrement. Donc le système des trajectoires est structurellement stable
dans le voisinage de la trajectoire fermée générique.

That is, periodic orbits do not just disappear under small perturbation, but they
may be slightly deformed, due to the fact that the system of trajectories is struc-
turally stable in the neighborhood of a periodic orbit.

Many forced systems such as the Liénard ones are actually small perturbations
of systems having periodic orbits (limit cycles) in their unperturbed form, and many
results such as the above ones are about the existence and uniqueness of almost peri-
odic solution with no mention of the fate of the periodic orbit(s) existing before per-
turbation. The appearing of almost or pseudo-almost periodic solutions could only
results from the bifurcation of the generic orbits for a parameterized system. There-
fore, one must investigate the relation between the “new” almost periodic solutions
appearing upon perturbation and the periodic orbits of the unperturbed system. For
instance, to uncover the existence of the so-called limit periodic almost limit cycles,
where a sequence of periodic orbits such as in the linear isochrone ẋ = −y ẏ = x
accumulate on the new almost/pseudo-almost limit cycle.

The following open problems should be of interest to the community of pure and
applied mathematicians including graduate students. Note first that a periodic func-
tion is also almost periodic and pseudo-almost periodic, as an almost periodic func-
tion is also pseudo-almost periodic with a zero ergodic perturbation. Consequently
a limit cycle is also an almost or a pseudo-almost limit cycle, but not inversely. To
make the distinction, we will call strictly almost limit cycles and strictly pseudo-
almost limit cycles, respectively, those almost or pseudo-almost limit cycles that are
not limit cycles.
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Open Problem 1

Complete a full study of the bifurcation of strictly almost/pseudo-almost limit cycles
in the above forced Liénard systems when the parameter value μ varies in order to
investigate conditions on the functions f and g for which the strictly almost/pseudo-
almost limit cycles that exist for μ � 1 could persist for μ = 1, and eventually
accumulate when μ → 1.

Open Problem 2: Linear Almost and Pseudo-almost Center

Determine the conditions of existence for a continuum of parameterized families
of strictly almost and pseudo-almost trajectories possibly surrounding a critical
point. Such continuum defines, respectively, the linear almost center and the lin-
ear pseudo-almost center.

Open Problem 3: Multiple Almost and Pseudo-almost Limit Cycles

Find parameterized systems and determine conditions under which exist in the same
phase space multiple strictly almost or pseudo-almost limit cycles, similar to several
examples in the case of the usual normal limit cycles.

Open Problem 4: Coexistence of Limit Cycles and Almost and/or
Pseudo-Almost Limit Cycles

Find parameterized systems and determine conditions under which coexist in the
phase space limit cycles and strictly almost or pseudo-almost limit cycles.

Open Problem 5: Isochronous Almost and Pseudo-almost Limit
Cycles

Let γ be a strictly almost or pseudo-almost limit cycle of a flow φ on Rn as in
Section “Overview of limit cycles”. A point x1 in Rn has asymptotic phase with
respect to γ if there is a point x0 ∈ γ such that limt−→±∞ |φt(x1)− φt(x0)| = 0. We
say that x1 is in phase with x0.

It is well known that a hyperbolic limit cycle has some neighborhood where every
point has asymptotic phase with respect to the limit cycle, due to the existence of
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Fig. 12.13 ṙ =−(r−1)2 , θ̇ = 2π +(r−1)

invariant foliation. Similar question needs to be addressed as well in case of strictly
almost or pseudo-almost limit cycles.

Definition 7. A strictly almost or pseudo-almost limit cycle is said to be isochronous
if there is a neighborhood of γ in which every point is in phase with a point on γ.

In the case of limit cycles, we have, for instance, the following examples.

1. The system

ṙ =−(r− 1)2, θ̇ = 2π +(r− 1) (68)

in polar coordinate (r,θ ) has a nonhyperbolic limit cycle γ at r = 1, attracting for
r > 1 and repelling for r < 1, but nonisochronous. Indeed no point (r0,θ0), r0 >
0 has asymptotic phase with γ. For more details, see [10]. The nonisochronous
limit cycle is represented below (Fig. 12.13).

2. The system

ṙ =−1
3
(r− 1)4e|r−1|−3

, θ̇ = 2π (69)

has a nonhyperbolic limit cycle at the unit cycle with period 1, attracting for r>1.
The asymptotic phase of any point (r0,θ0) in its neighborhood is (1,θ0). The
limit cycle is therefore isochronous. For more details, see [10]. The isochronous
limit cycle is represented below (Fig. 12.14).
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Fig. 12.14 ṙ =− 1
3 (r−1)4e|r−1|−3

, θ̇ = 2π

It would be interesting to:

1. Perturb systems (68) and (69), in particular in the angle variable, and study the
conditions of appearance of strictly almost and/or pseudo-almost limit cycles

2. Investigate the conditions of existence of isochronous strictly almost or pseudo-
almost limit cycles, in particular for the forced Liénard systems

Open Problem 6: Almost and Pseudo-almost Isochrons

Following the previous open problem, we further define:

Definition 8. Given x0 ∈ γ where γ is a strictly almost or pseudo-almost limit cycle,
an almost or pseudo-almost isochron I(x0) based at x0 is the set of all point x ∈ Rn

in phase with x0.

As in the case of limit cycles we conjecture the existence of almost or pseudo-almost
isochrons and that they will foliate the neighborhood of almost or pseudo-almost
limit cycles. Their determination is definitely an interesting but difficult question of
research. One line of attack might be similar to Guckenheimer and Winfree investi-
gation of isochrons of limit cycles [3, 19, 33, 34].
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Open Problem 7: Transition to Chaos

It would be interesting to investigate the possibility for a strictly almost or pseudo-
almost behavior to transition to a chaotic behavior. Such study could initiate with
coupling of forced Liénard oscillators, as in the following example. Consider two
almost or pseudo-almost self-sustained oscillators given by forced Liénard systems
under the coupling described as follows:

ẍ(t)+ fα(x)ẋ+ gβ (x) = h(t) (70)

ÿ(t)+ fα(y)ẏ+ gβ (y) = h(t)−K(y− x)H(t− t0) (71)

where h(t) is almost or pseudo-almost periodic, K is the feedback coupling coeffi-
cient, t0 the onset time of synchronization process, and H(z) the Heaviside function
defined as

H(z) = {0, f or z < 0, 1, f or z≥ 0}. (72)

Introduce the new variable z(t) = y(t)− x(t) to measure the closeness between so-
lutions of (70) and (71) and then analyze the resulting second-order equation. The
question is to find the appropriate coupling coefficients and conditions on fα and gβ
which enable (70) to adjust its oscillations and to synchronize with (71).

To fix ideas one may start with fα and gβ such as the systems are two driven
chaotic Van der Pol-Duffing systems, paradigm for relaxation oscillations and
chaotic behavior in small ranges of control parameter, and also systems well
known to be generalized by the Liénard systems. The relevant references include
[3, 10, 24, 27, 30].
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