
Chapter 11
Optimal Control for Distributed Linear
Systems Subjected to Null Controllability
with Constraints on the State

Michelle Mercan

Introduction

Let d ∈ N
∗ and Ω be a bounded open subset of Rd with boundary Γ of class C2,

T >0. Let also ω be an open nonempty subset of Ω. Set Q = Ω× (0,T ), Σ = Γ×
(0,T ), and G = ω × (0,T). We consider the parabolic evolution equation

⎧
⎨

⎩

y′ −Δy+ a0y = h+ kχω in Q,
y = 0 on Σ,

y(0) = 0 in Ω,
(1)

where (.)′ is the partial derivative with respect to time t, a0 ∈ L∞(Q), (h,k) ∈
L2(Q)× L2(G), and χω denotes the characteristic function of the control set ω .
It is well known that problem (1) admits a unique solution y in the following Hilbert
space

Ξ1,2(Q) = H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)∩H1
0 (Ω)).

Let {ei, 1 ≤ i ≤ M} be a set of functions of L2(Q) such that

eiχω 1 ≤ i ≤ M are linearly independent. (2)

From now on, we use the notation

y = y(h,k)

to mean that each source term h and k plays a particular role. More precisely, we
would like to choose the control pair (h,k) in order to achieve two objectives that
we present under the form (in the cascade sense) of two problems.
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Problem 1. Let H ⊂ L2(Q) be a Hilbert space and {ei, 1 ≤ i ≤ M} be a set of func-
tions of L2(Q) and assume that (2) holds. Fix h ∈ H. Then the Follower’s problem
can be stated as follows: Given a0 ∈ L∞(Q), find a control k ∈ L2(G) such that if y
is solution of

⎧
⎨

⎩

y′ −Δy+ a0y = h+ kχω in Q,
y = 0 on Σ,

y(0) = 0 in Ω,
(3)

then,
∫

Q
yei dxdt = 0, (4)

and

y(T ) = 0, in Ω. (5)

The role of k is to insure the null-controllability property (5) in the presence of
the forcing term h and under the constraint (4).

In the sequel, we introduce a suitable nonnegative weight function θ , which will
be defined below, and consider the Hilbert space

H = {h|h ∈ L2(Q),θh ∈ L2(Q)} (6)

endowed with the scalar product and the norm

(h, l)θ =

∫

Q
θ 2hl dxdt, ‖h‖H = ‖θh‖L2(Q).

For fixed h ∈ H, we will see that there exists several controls k such that (3), (4),
and (5) are satisfied. Thus, we need to add some criteria to select k. More precisely,
we will see that k is of the form k = k0(h)+ v. We consider then the maps F and
F1 defined, respectively, by

F : H → L2(G)
h 
→ v = F (h)

(7)

and

F1 : H → L2(G)
h 
→ F1(h) = k0(h).

(8)

We will see below (see section “Optimal Strategy for the Leader”) that these maps
are linear and continuous from H into L2(G).

In addition to the null-controllability problem (5) subject to the constraint (4),
the second objective is to choose the forcing term h such that

y(h,k) is not too far from zd

where zd is given in L2(Q).
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In order to achieve this objective, we introduce the cost function J defined by

J(h) =
1
2
‖y(h,k)− zd‖2

L2(Q) +
N
2
‖h‖2

H

where zd ∈ L2(Q) and Uad is a nonempty closed convex subset of H. Then, we con-
sider the following minimization problem:

Problem 2. Find ĥ ∈ Uad such that

J(ĥ) = min
h∈Uad

J(h). (9)

Problem 1 is a null-controllability problem with state constraints. Few results are
known for such problem. Indeed, recently O. Nakoulima [6] gave a result of null
controllability for the linear heat equation with constraints on a distributed control.
His result was based on an observability inequality adapted to the constraint. In
[4], G. Mophou and O. Nakoulima proved the existence of sentinels with given
sensitivity by solving a problem of null controllability with constraint on the control.
In [3], O. Nakoulima and G. Mophou studied a null controllability with constraints
on the state for a semilinear heat equation by proving that the considering problem
was equivalent to null controllability with constraint on the control. G. Mophou
[5] generalizes these results to the case where the nonlinear term contains gradient
terms.

Problem 2 is an optimal control problem. Such problem has been widely studied
by J.L. Lions [2].

In this paper, we extend the works of G. Mophou and O. Nakoulima [3, 4] to a
problem of control with two controls that we have to determine successively under
some constraints. This is done by solving the combination of Problems 1 and 2,
called Stackelberg problem. In this case, the controls h and k are, respectively, called
Leader and Follower.

The main results of this paper are the following theorems.

Theorem 1. Existence, uniqueness, and characterization of the Follower.
Let Ω be a bounded open subset of Rn with boundary Γ of class C2, and let H be
the Hilbert space defined by (6). Then, for every ei ∈ L2(Q), 1 ≤ i ≤ M verifying
(2) and every h ∈ H, there exists a unique control k = k(h) ∈ L2(Q) such that the
solution y = y(h,k(h)) of (3) satisfies (4) and (5). Moreover, the control k can be
selected such that

‖k‖ ≤C‖h‖H (10)

where C =C

(

Ω,ω ,a0,T,
M

∑
i=1

‖ei‖L2(Q)

)

> 0.

Theorem 2. Existence, uniqueness, and characterization of the Leader.
Let Ω be a bounded open subset of Rn with boundary Γ of class C2. Let also θ be de-
fined as previously, and F and F1 be the linear and continuous maps, respectively,
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defined by (7) and (8). Then, the minimization problem (9) admits a unique solution
ĥ characterized by the following optimality condition

(

Λ−1(
1
θ

I+F ∗
1 +F )(p)+Nĥ,h− ĥ

)

H
≥ 0, ∀h ∈ Uad (11)

where Λ−1 is the isometric isomorphism from H ′ into H, I is the identity operator
of L2(Q), and p is solution of

⎧
⎨

⎩

−p′ −Δp+ a0p = y(ĥ,k)− zd in Q,
p = 0 on Σ,

p(T ) = 0 in Ω.

The rest of this paper is organized as follows. Section “Equivalence Between the
Null-Controllability Problem with Constraints on the State and a Null- Controllabil-
ity Problem with Constraint on the Control” is devoted to proving the equivalence
between the null-controllability problem with constraints on the state and a null-
controllability problem with constraint on the control. In section “Optimal Strategy
for the Follower”, we solve the null-controllability problem with constraint on the
control. Finally, in section “Optimal Strategy for the Leader”, we solve the Leader’s
problem.

Equivalence Between the Null-Controllability Problem
with Constraints on the State and a Null-Controllability
Problem with Constraint on the Control

Proposition 1. Let Ω be a bounded open subset of Rn with boundary Γ of class
C2. Then, there exists a positive real weight function θ (a precise definition of θ
will be given later on), two finite dimensional subspaces M and Mθ such that for
any h ∈ H, there exists k0 = k0(h) ∈ Mθ such that the null-controllability problem
with constraints on the state (3), (4), and (5) is equivalent to the following null-
controllability problem with constraint on the control: Given a0 ∈ L∞(Q) and k0 ∈
Mθ , find v ∈ L2(G) such that

v ∈ M⊥ (12)

k = k0 + v (13)

and the solution y of
⎧
⎨

⎩

y′ −Δy+ a0y = h+(k0+ v)χω in Q,
y = 0 on Σ,

y(0) = 0 in Ω,
(14)
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satisfies
y(T ) = 0 in Q. (15)

Proof. We interpret the constraint (4) by using the adjoint state. More precisely, for
any ei, 1 ≤ i ≤ M, we consider the adjoint system

⎧
⎨

⎩

−q′i −Δqi+ a0qi = ei in Q,
qi = 0 on Σ,

qi(T ) = 0 in Ω.
(16)

Since a0 ∈ L∞(Q) and ei ∈ L2(Q), problem (16) admits a unique solution

qi = qi(z) ∈ Ξ1,2(Q).

We multiply both sides of the differential equation (3) by qi solution of (16) and we
integrate over Q. By applying the Green formula, we obtain

∫

Q
yei dxdt =

∫

Q
(h+ kχω)qi dxdt.

From (4), we have

0 =
∫

Q
(h+ kχω)qi dxdt.

Thus, ∫

G
kqi dxdt =−

∫

Q
hqi dxdt. (17)

Let
M = Span{qiχω , 1 ≤ i ≤ M}

be the vector subspace of L2(G) generated by the M functions qiχω , 1 ≤ i ≤ M.
We denote M⊥ the orthogonal of M in L2(G). We set

Mθ =
1
θ

M

the vector subspace of L2(G) generated by the M functions
1
θ

qiχω , 1 ≤ i ≤ M.

Since the matrix

(∫ T

0

∫

ω

1
θ

qiq j dxdt

)

1≤i, j≤M
is symmetric positive definite (cf.

Lemma 3), there exists a unique k0 = k0(h) ∈ Mθ such that
∫

G
k0qi dxdt =−

∫

Q
hqi dxdt, 1 ≤ i ≤ M. (18)

Thus, combining (17) and (18), we deduce that
∫

G
(k− k0)qi dxdt = 0 1 ≤ i ≤ M.



218 Michelle Mercan

Consequently

k− k0 ∈ M⊥.

Then k = k0 + v with v ∈ M⊥. Therefore, replacing kχω by (k0 + v)χω in (3), we
obtain (14).

Conversely, fix h ∈ L2(Q). For every ei ∈ L2(Q), 1 ≤ i ≤ M, assume that (v,y)
is the solution of (12), (13), (14), and (15). Then, by solving (16), we obtain the
functions qi, 1 ≤ i ≤ M. Let M and Mθ be defined as previously. Let also M⊥ be
the orthogonal of M in L2(G), v ∈ M⊥ and k0 verifying (18).

Multiplying both sides of Eq. (14) by qi and integrating by parts over Q, we obtain
∫

Q
y′qi dxdt −

∫

Q
Δyqi dxdt +

∫

Q
a0qi dxdt =

∫

Q
[h+(k0 + v)χω ]qi dxdt,

i.e.,

−
∫

Q
hqi dxdt +

∫

Q
yei dxdt =

∫

Q
(k0 + v)χωqi dxdt.

Since v ∈ M⊥ and k0 verifies (18), the previous identity is reduced to (4). Thus,
(k,y) is solution of (3), (4), and (5). �
Lemma 1. Assume that (2) holds. Then, the functions qiχω , 1 ≤ i ≤ M are linearly

independent. Moreover, the functions
1
θ

qiχω , 1 ≤ i ≤ M are also linearly indepen-

dent.

Proof.

For γi ∈ R, 1 ≤ i ≤ M, let k̃ =
M

∑
i=1

γiqi on Q such that k̃|G = 0. Since qi is solution of

(16), we have

− ∂ k̃
∂ t

−Δk̃+ a0k̃ =
M

∑
i=1

γiei, in Q, (19)

k̃ = 0, on Σ. (20)

Then, k̃ being identically zero on G, we deduce that k̃ = 0 in Q. This means that
M

∑
i=1

γiei = 0 in Q. Thus,

M

∑
i=1

γiei = 0, in G.

Since the functions eiχω , i ∈ {1, . . . ,M} satisfy (2), we conclude that γi = 0, 1 ≤
i ≤ M.

The second assertion of the lemma follows immediately. �
In order to obtain a priori estimates on k0(h), we need the following result which

is proved in [3].
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Lemma 2. Let qi be defined by (16) and θ be a positive function defined below by

relation (31). Let also Aθ =

(∫

G

1
θ

qiq j dxdt

)

i, j
, 1 ≤ i, j ≤ M. Then, there exists

δ > 0 such that

(Aθ X ,X)
RM ≥ δ‖X‖2

RM

where

(Aθ X ,X)
RM =

∫

G

1
θ

(
M

∑
i=1

Xi pi

)(
M

∑
j=1

Xj p j

)

dxdt

and

X = (X1, . . . ,XM) ∈ R
M.

Proposition 2. Let θ be defined below by relation (31) and h be in H. Let also
qi and k0(h) be defined, respectively, by (16) and (18). Then, there exists C =

C(Ω,a0,T,
M

∑
i=1

‖ei‖L2(Q))> 0 such that

‖θk0(h)‖L2(G) ≤ C‖h‖H (21)

‖k0(h)‖L2(G) ≤ C‖h‖H. (22)

Proof. From (18), we have
∫

G
k0(h)qi dxdt =−

∫

Q
hqi dxdt, 1 ≤ i ≤ M. (23)

Since k0(h) ∈ Span{ 1
θ

q1χω , . . . ,
1
θ

qMχω}, there exists

α = (α1, . . . ,αM) ∈ R
M

such that

k0(h) =
M

∑
j=1

α j
1
θ

q jχω . (24)

Thus, replacing k0(h) by
M

∑
j=1

α j
1
θ

q jχω in (23), we obtain

∫

G

M

∑
j=1

α j
1
θ

q jqi dxdt =−
∫

Q
hqi dxdt, 1 ≤ i ≤ M

and consequently,

∫

G

M

∑
j=1

α j
1
θ

q jχω
M

∑
i=1

αiqi dxdt =−
∫

Q
θh

M

∑
i=1

αi
1
θ

qi dxdt.



220 Michelle Mercan

Applying to this latter identity Lemma 2 with X = α to the left-hand side and to the
right-hand side and using Cauchy–Schwartz inequality, we obtain

δ‖α‖2 ≤ ‖h‖H

M

∑
i=1

|αi|‖qi‖L2(Q). (25)

From the energy inequality for qi solution of (16), it follows that for 1 ≤ i ≤ M,

‖qi‖L2(Q) ≤C(Ω,a0,T )‖ei‖L2(Q)

which, combined with (25) and the fact that δ > 0 gives

‖α‖2 ≤ δ−1C(Ω,a0,T )‖h‖H‖α‖RM

√
M

∑
i=1

‖ei‖2
L2(Q)

,

i.e.,

‖α‖ ≤ δ−1C(Ω,a0,T )‖h‖H

√
M

∑
i=1

‖ei‖2
L2(Q)

. (26)

Finally, from (24), we have

‖θk0(h)‖L2(G) ≤
M

∑
j=1

|α j|‖q j‖L2(G),

≤ C(Ω,a0,T )
M

∑
j=1

|α j|‖e j‖L2(Q),

≤ C(Ω,a0,T )‖α‖
(

M

∑
i=1

‖ei‖L2(Q)

) 1
2

,

and

‖k0(h)‖L2(G) ≤C(Ω,a0,T )‖α‖
(

M

∑
i=1

‖ei‖L2(Q)

) 1
2

.

Hence, using (26) and the fact that
1
θ

is bounded in L∞(Q), and setting

C =C(Ω,a0,T,
M

∑
i=1

‖ei‖L2(Q)) = δ−1C(Ω,a0,T )
2

M

∑
i=1

‖ei‖2
L2(Q),

we deduce (21) and (22). �
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Optimal Strategy for the Follower

Controllability Problem with Constraint on the Control

We consider a auxiliary function ψ ∈C2(Ω) which satisfies the following conditions:

ψ(x)> 0 ∀x ∈ Ω,

ψ(x) = 0 ∀x ∈ Γ, (27)

|ψ(x)| �= 0 ∀x ∈ Ω−ω.

Such a function exists according to A. Fursikov and O. Yu. Imanuvilov [1]. Then,
for any λ > 0, we define the following weight functions:

ϕ(x, t) =
eλ (ψ(x)+m1)

t(T − t)
, (28)

η(x, t) =
eλ (|ψ(x)|∞+m2) + eλ (ψ(x)+m1)

t(T − t)
, (29)

for (x, t) ∈ Q and m > 1 and we adopt the following notations:

L =
∂
∂ t

−Δ+ a0I,

L∗ =− ∂
∂ t

−Δ+ a0I,

V = {ρ ∈C∞(Q) | ρ = 0 on Σ}.
Then, we have the following Carleman inequality (see [1, 3]).

Proposition 3. Let ψ , ϕ , and η be defined by (27), (28), and (29). Then, there exists
λ0 = λ0(Ω,ω ,a0), s0 = s0(Ω,ω ,a0,T ) and C = C(Ω,ω ,a0,T ) such that for any
λ ≥ λ0, any s ≥ s0 and any ρ ∈ V , we have

∫

Q

e−2sη

sϕ

(

|∂ρ
∂ t

|2 + |Δρ |2
)

dxdt + sλ 2
∫

Q
ϕe−2sη |∇ρ |2 dxdt+

s3λ 4
∫

Q
ϕ3e−2sη |ρ |2 dxdt ≤C

(∫

Q
e−2sη |L∗ρ |2 dxdt + s3λ 4

∫

G
ϕ3e−2sη |ρ |2 dxdt

)

.

(30)

As ϕ does not vanish over Q, we set

θ = ϕ− 3
2 esη . (31)

From the definition of ϕ and η given by (28) and (29), the function θ is positive

and
1
θ

is bounded. Since
1
ϕ

is also bounded, taking λ ≥ λ0 > 1 and s ≥ s0 > 1, we

obtain the following observability inequality:
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∫

Q

1
θ 2 |ρ |2 dxdt ≤C

(∫

Q
|L∗ρ |2 dxdt +

∫

G
|ρ |2 dxdt

)

, ∀ρ ∈ V . (32)

Denote by:

• P the orthogonal projection operator from L2(G) into M .
• Pρ the orthogonal projection of ρχω for ρ ∈ L2(Q).

From (32), we derive the following adapted Carleman estimate which is proved in
[3, 4, 6].

Proposition 4. Assume that (2) holds. Let θ be defined by (31). Then, there exists
λ0 = λ0(Ω,ω ,a0) > 1, s0 = s0(Ω,ω ,a0,T ) > 1 and C = C(Ω,ω ,a0,T ) > 0 such
that for any λ ≥ λ0 and s ≥ s0 and for any ρ ∈ V , we have

∫

Q

1
θ 2 |ρ |2 dxdt ≤C

(∫

Q
|L∗ρ |2 dxdt +

∫

G
|ρ −Pρ |2 dxdt

)

. (33)

Now, we consider the following symmetric bilinear form:

a(ρ , ρ̂) =
∫

Q
L∗ρL∗ρ̂ dxdt +

∫

G
(ρ −Pρ)(ρ̂ −Pρ̂)dxdt. (34)

According to Proposition 4, this symmetric bilinear form is a scalar product over V .
Let V = V the completion of V with respect to the norm

ρ 
→ ‖ρ‖V =
√

a(ρ ,ρ). (35)

Then, V is a Hilbert space.

Assume that (2) holds. Let H be a Hilbert space defined by (6) and h ∈ H. Let
also θ and k0(h) be, respectively, defined by (31) and (18). Then, thanks to the
estimation of θk0(h) given by (21) and the Cauchy–Schwartz inequality, the linear
form defined on V by

ρ 
→
∫

Q
hρ dxdt +

∫

G
k0(h)ρ dxdt

is continuous on V . Thus, Lax–Milgram theorem allows us to say that for any h∈ H,
there exists a unique ρθ = ρθ (h) ∈V solution of the variational equation

a(ρθ ,ρ) =
∫

Q
L∗ρθ L∗ρ dxdt +

∫

G
(ρθ −Pρθ )(ρ −Pρ)dxdt, ∀ρ ∈V,

a(ρθ ,ρ) =
∫

Q
(h+ k0(h)χω)ρ dxdt, ∀ρ ∈V. (36)

Proposition 5. Assume that (2) holds. Let h ∈ H, and let ρθ be the unique solution
of (36). Set
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vθ =−(ρθ χω −Pρθ) (37)

and

yθ = L∗ρθ . (38)

Then, the pair (vθ ,yθ ) is such that (12)–(15) hold.

Moreover, there exists C =C(Ω,ω ,a0,T,
M

∑
i=1

‖ei‖L2(Q))> 0 such that

‖ρθ‖V ≤ C‖h‖H, (39)

‖vθ‖L2(G) ≤ C‖h‖H, (40)

‖yθ‖Ξ1,2(Q) ≤ C‖h‖H. (41)

Proof. We proceed in two steps.
Step 1. We prove that (vθ ,yθ ) is solution of (12)–(15).

Since ρθ ∈V , then vθ =−(ρθ χω −Pρθ)∈ L2(G) and yθ ∈ L2(Q). As Pρθ ∈M ,
the function vθ ∈ M⊥. Replacing −(ρθ χω −Pρθ ) by vθ and L∗ρθ by yθ in (36),
we have

∫

Q
yθ L∗ρ dxdt +

∫

G
(ρθ −Pρθ)(ρ −Pρ)dxdt =

∫

Q
(h+ k0χω)ρ dxdt.

As Pρ ∈ M , then
∫

Q
yθ L∗ρ dxdt

∫

G
(ρθ −Pρθ )ρ dxdt =

∫

Q
(h+ k0χω)ρ dxdt ∀ρ ∈V.

This means that
∫

Q
yθ L∗ρ dxdt =

∫

Q
(h+ k0χω)ρ dxdt +

∫

G
vθ ρ dxdt, ∀ρ ∈V. (42)

Actually, yθ is the weak solution of a heat equation. Indeed, for φ ∈ L2(Q), let p
be the solution of

⎧
⎨

⎩

−p′ −Δp+ a0p = φ in Q,
p = 0 on Σ,

p(0) = 0 in Ω.

Thus, p ∈V , and replacing ρ in (42) by p, we obtain
∫

Q
yθ φ dxdt =

∫

Q
(h+ k0χω)pdxdt +

∫

G
vθpdxdt.

Consequently, yθ is the weak solution, by transposition of the system (14) with
k = vθ (see [2]). And we know that the solution of this equation is in Ξ1,2(Q).
Hence, yθ ∈ C([0,T ],L2(Ω)). Then, multiplying the first equation of (3) by ϕ ∈ V
and integrating by parts over Q, it follows that for any ϕ ∈ V ,
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∫

Ω
yθ (T )ϕ(T )dx−

∫

Ω
yθ (0)ϕ(0)dx+

∫

Q
yθ L∗ϕ dxdt =

∫

Q
(h+ k0χω)ϕ dxdt

+

∫

G
vθ ϕ dxdt.

As ϕ ∈ V , we deduce from (42) that
∫

Ω
yθ (T )ϕ(T )dx = 0, ∀ϕ ∈ V .

Therefore, yθ (T ) = 0 in Ω. Consequently, the pair (vθ ,yθ ) is solution of the prob-
lem (12)–(15).

Step 2. Let us prove the estimates (39)–(41).
Replacing ϕ by ρθ in (36), it follows from (33) and (21) that

a(ρθ ,ρθ ) = ‖yθ‖2
L2(Q) + ‖vθ‖2

L2(G),

≤ ‖θ (h+ k0)‖L2(Q)‖
1
θ

ρθ‖L2(Q),

≤ C‖h‖H‖ρθ‖V .

From the definition of the norm on V given by (35), we obtain (39) and then (40).
Finally, (41) is a consequence of (40) and the classic properties of heat equations.�

Proposition 6. Assume that the assumptions of Proposition 5 hold. Then there exists
a unique control v such that

v = min
ṽ∈E

‖ṽ‖ (43)

where E = {ṽ ∈ M⊥ | (ṽ, ỹ) satisfies (12)− (15)}.

Furthermore, there exists C =C(Ω,ω ,a0,T,
M

∑
i=1

‖ei‖L2(Q))> 0 such that

‖v‖L2(G) ≤C‖h‖H . (44)

Proof. According to Proposition 5, the pair (vθ ,yθ ) satisfies (12)–(15). Conse-
quently, E is nonempty. Since E is also a closed convex subset of L2(G), we deduce
that there exists a unique control v of minimal norm in L2(G). Particularly,

‖v‖L2(G) ≤ ‖vθ‖L2(G).

Hence, using (40), we obtain (44). �

From now on, we denote by v = F (h) the optimal control verifying (43) and by
y(h,k(h)) the optimal state with k(h) = k0(h)+F (h).
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Penalization Method

In this subsection, we characterize the optimal solution. To this end, we use a penal-
ization method of Lions (see [2]).
Let

⎧
⎨

⎩

u ∈ M⊥, z ∈ L2(Q),
z′ −Δz ∈ L2(Q), z = 0 on Σ,
z(0) = 0, z(T ) = 0.

(45)

We define for any h ∈ H and for any (u,z) verifying (45),

Iε(u,z) =
1
2
‖u‖2

L2(G) +
1

2ε
‖Lz− h− k0− uχω‖2

L2(Q) (46)

and we consider the following problem

inf{Iε(u,z), (u,z) verifying (45)}. (47)

Since Iε is coercive, continuous, and strictly convex, Problem (47) admits a
unique solution (vε = vε(h),yε = yε(h)), i.e.,

Iε(vε ,yε)≤ Iε(u,z).

We give now the optimality system verified by (vε ,yε).

Proposition 7. Assume that the assumptions of Proposition 5 hold. Then, the fol-
lowing assertions are equivalent:

(i) (vε ,yε ) ∈ M⊥×Ξ1,2(Q) is an optimal solution of Problem (47).
(ii) There exists ρε ∈ V such that the triplet (vε ,yε ,ρε) is solution of the following

optimality system:

vε =−(ρε χω −Pρε) ∈ M⊥ (48)
⎧
⎨

⎩

y′ε −Δyε + a0yε = h+ k0χω + vε χω − ερε in Q,
yε = 0 on Σ,

yε(0) = 0 on Ω,
(49)

yε(T ) = 0 in Ω, (50)
{−ρ ′

ε −Δρε + a0ρε = 0 in Q,
ρε = 0 on Σ. (51)

Proof. We express the Euler–Lagrange optimality conditions which characterize
(vε ,yε).

{ d
dλ

Iε(vε ,yε +λ ϕ)|λ=0
= 0, ∀ϕ ∈C∞(Q) such that

ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω,

d
dλ

Iε(vε +λ v,yε)|λ=0
= 0, ∀v ∈ M⊥.
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After calculations, we have
⎧
⎨

⎩

∫

Q

1
ε
(Lyε − h− k0χω − vε χω)Lϕ dxdt = 0,

∀ϕ ∈C∞(Q) such that , ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω
(52)

and
∫

G
vε vdxdt −

∫

Q

1
ε
(Lyε − h− k0χω − vε χω)vdxdt = 0, ∀v ∈ M⊥. (53)

Then we define the adjoint state

ρε = ρε(h) =−1
ε
(Lyε − h− k0χω − vε χω). (54)

Hence, we deduce that Lyε = h+k0χω +vε χω −ερε ∈ L2(Q). And, since (vε ,yε)
verifies (45), we have yε = 0 on Σ, yε(0) = 0 in Ω,and yε(T ) = 0 in Ω. Thus,
(vε ,yε ,ρε) is such that (49)–(50) hold. Since h+ k0χω + vε − ερε ∈ L2(Q), we ob-

tain that yε ∈ Ξ1,2(Q). Now, replacing −1
ε
(Lyε − h− k0χω − vε χω) by ρε , in (52)

and (53), we, respectively, obtain
⎧
⎨

⎩

∫

Q
ρε Lϕ dxdt = 0,

∀ϕ ∈C∞(Q) such that , ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω
(55)

and
∫

G
vε vdxdt +

∫

Q
ρεvdxdt = 0, ∀v ∈ M⊥. (56)

Therefore, from (55), we derive

L∗ρε =−ρ ′
ε −Δρε + a0ρε = 0 in Q.

Thus, ρε ∈ L2(Q) and L∗ρε ∈ L2(Q). Consequently, we can define ρε on Σ and
show that ρε = 0 on Σ.
From (56), we have

∫

G
(vε +ρε χω)vdxdt = 0, ∀v ∈ M⊥.

Hence, vε +ρε χω ∈ M⊥. Since vε ∈ M⊥, we have vε +ρε χω = P(vε +ρε χω) =
Pρε . Thus, vε =−(ρε χω −Pρε) ∈ M⊥. �

Furthermore, we have the following estimates:

Proposition 8. Let (vε ,yε ,ρε) be defined as in Proposition 7. Then, there exists a
positive constant C, independent on ε such that

‖vε‖L2(G) ≤ C, (57)



11 Optimal Control for Distributed Linear Systems Subjected to Null Controllability. . . 227

‖yε‖Ξ1,2(Q) ≤ C, (58)

‖ρε χω‖L2(G) ≤ C, (59)

‖ρε‖V ≤ C. (60)

Proof. The structure of Iε , on the one hand, and the existence of (vθ ,yθ ) on the
other hand show that

0 ≤ Iε(vε ,yε )≤ Iε(vθ ,yθ ) =
1
2
‖vθ‖2

L2(Q) ≤C.

Thus, we have (57) and

‖Lyε − h− k0χω − vε χω‖L2(Q) ≤C
√

ε. (61)

Consequently, (54) and (61) give ‖ερε‖L2(Q) ≤ C
√

ε , and yε being solution of
(49), we obtain (58), thanks to the regularity properties of heat equations.

Furthermore, since L∗ρε = 0 and (57) holds, using the definition of the norm on
V given by (35), we obtain (60).

On the other hand, since ρε ∈ V , applying the observability inequality (33) to

ρε , we have ‖ 1
θ

ρε‖L2(G) ≤ C. Thus, using (48), (57), and the fact that
1
θ
∈ L∞(Q),

we deduce that ‖ 1
θ

Pρε‖L2(G) ≤C. Since Pρε ∈ M which is finite dimensional, we

have ‖Pρε‖L2(G) ≤C. Hence, using again (48) and (57), we obtain estimate (59). �

Now, we can pass to the limit when ε tends to zero to obtain the singular opti-
mality system associated to Problem 1.

Proposition 9. Let v = F (h) be the unique solution of (43). Let also P be the or-
thogonal projection operator from L2(G) into M . Then

F (h) =−(ρχω −Pρ) (62)

where ρ ∈V is solution of

L∗ρ = 0 in Q, (63)

ρ = 0 on Σ. (64)

Proof. We proceed in three steps.
Step 1. We study the convergence of (vε ,yε).

According to (57) and (58), we can extract two subsequences, still denoted (vε)ε
and (yε )ε such that

vε ⇀ v0(h) weakly in L2(G), (65)

yε ⇀ y0(h) weakly in Ξ1,2(Q). (66)
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And, as vε ∈ M⊥ which is a closed vector subspace of L2(G), we have

v0(h) ∈ M⊥. (67)

Since the injection of Ξ1,2(Q) into L2(Q) is compact, the pair (v0 = v0(h),y0 =
y0(h)) is such that

⎧
⎨

⎩

y′0 −Δy0 + a0y0 = h+ k0χω + v0χω in Q,
y0 = 0 on Σ,

y0(0) = 0 in Ω.
(68)

y0(T ) = 0 in Ω. (69)

Step 2. We show that (v0, y0) = (F (h),y(h,k(h))).
From the expression of Iε given by (46), we can write

1
2
‖vε‖2

L2(G) ≤ Iε(vε ,yε ).

Since (F (h),y(h,k(h))) satisfies (12)–(15) and (43), this latter inequality becomes

1
2
‖vε‖2

L2(G) ≤ Iε(vε ,yε)≤ 1
2
‖F (h)‖2

L2(G). (70)

Then, using (65) while passing to the limit in (70), we obtain

1
2
‖v0‖2

L2(G) ≤ liminf
ε→0

Iε(vε ,yε)≤ 1
2
‖F (h)‖2

L2(G).

Consequently

‖v0‖L2(G) ≤ ‖F (h)‖L2(G),

and thus,

‖v0‖L2(G) = ‖F (h)‖L2(G).

Hence,

v0 = F (h), (71)

and since (68) admits a unique solution, it follows that y0 = y(h,k(h)).

Remark 1. Note that ‖F (h)‖L2(G) ≤ C‖h‖H. Indeed, as (vθ ,yθ ) satisfies (45), we
can write

Iε(vε ,yε )≤ Iε(vθ ,yθ ) =
1
2
‖vθ‖L2(G).

Threfore, using the fact that vθ verifies (40) and the definition of Iε given by (46),
we obtain that ‖vε‖L2(G) ≤ C‖h‖H. Hence, in view of (65) and (71), we have
‖F (h)‖L2(G) ≤C‖h‖H.
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Step 3. According to estimates (59) and (60), we can extract a subsequence, still
denoted (ρε)ε such that

ρε χω ⇀ ρ(h)χω weakly in L2(G), (72)

ρε χω ⇀ ρ(h)χω weakly in V, (73)

and it follows from (51) that ρ(h) is solution of
{

L∗ρ = 0 in Q,
ρ = 0 on Σ.

As P is a compact operator, we deduce from (72) that

Pρε → Pρ(h) strongly in L2(G). (74)

Therefore, combining (72) and (74), we obtain

vε =−(ρε χω −Pρε)⇀ F (h) =−(ρ(h)χω −Pρ(h)) weakly in L2(G).

Thus, we have showed that for any h∈H, the unique pair (F (h),y(h,k(h))) satisfies
(12)–(15) where F (h) =−(ρ(h)χω −Pρ(h)) and ρ = ρ(h) is solution of (63). �

Proof of Theorem 1
We have proven that there exists a unique control v= v(h)∈M⊥ solution of (43)

such that the pair (v,y) verifies (14) and (15). Therefore, Proposition 1 allows us to
say that the control k = k(h) = (k0(h)+v(h)) with k0 ∈Mθ is such that (k,y(k)) sat-
isfies the null-controllability problem with constraints on the state (3), (4), and (5).
Therefore, using (22) and (44), we deduce (10).

Optimal Strategy for the Leader

Properties of F

Lemma 3. For any h ∈ H, let ρ = ρ(h) be the solution of (63). Then, the map F
defined by

F (h) =−(ρ −Pρ)χω (75)

is linear and continuous from H into L2(G).

Proof. Consider the vector subspace V0 from V defined by

V0 = {ϕ ∈V |L∗ϕ = 0}.
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Since F (h) is solution of problem (12)–(15) and verifies (62), we multiply the first
equation of (14) by ϕ ∈V0 and we integrate by parts. Then, we obtain

∫

Q
hϕ dxdt +

∫

Q
k0(h)ϕ dxdt +

∫

Q
vχωϕ dxdt = 0 ∀ϕ ∈V0,

i.e.,
∫

Q
hϕ dxdt +

∫

Q
k0(h)ϕ dxdt −

∫

Q
(ρ −Pρ)χωϕ dxdt = 0 ∀ϕ ∈V0,

or equivalently,
∫

Q
hϕ dxdt +

∫

Q
k0(h)ϕ dxdt +

∫

Q
F (h)χωϕ dxdt = 0 ∀ϕ ∈V0.

Using the fact that the map ϕ 
→
∫

Q
hϕ dxdt +

∫

Q
k0(h)ϕ dxdt is linear and continu-

ous on V and

−
∫

G
F (h)ϕ dxdt =

∫

G
(ρ(h)−Pρ(h))ϕ dxdt,

=

∫

G
(ρ(h)−Pρ(h))(ϕ −Pϕ)dxdt,

= a(ρ(h),ϕ),

we deduce that ρ = ρ(h) is solution of the variational problem

a(ρ ,ϕ) =
∫

Q
hϕ dxdt +

∫

Q
k0(h)ϕ dxdt ∀ϕ ∈V0. (76)

Hence, the map h 
→ ρ = ρ(h)χω is linear from H to L2(G). And since the projection
operator I−P which is defined from L2(G) to M⊥ ⊂ L2(G) is also linear, we deduce
that the map F is linear from H to L2(G). Hence, it follows from Remark 1 that F
is continuous on H since ‖F (h)‖L2(G) ≤C‖h‖H . �

Remark 2. Let k0 be defined as in (18) . Then

1. k0 ∈ H. Indeed, since k0 ∈Mθ , we have on the one hand, k0 ∈ L2(G), and on the
other hand, θk0 ∈ M ⊂ L2(G).

2. In view of (18), the map F1 : h 
→ k0(h) is linear, and since (22) holds, this map
is continuous on H.

From now on, we denote k0(h) = F1(h).

Proof of Theorem 2

We consider the cost function J defined by

J(h) =
1
2
‖y(h,k(h))− zd‖2

L2(Q) +
N
2
‖h‖2

H (77)
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from which we associate the minimization problem

inf
h∈Uad

J(h) (78)

where Uad is a nonempty closed convex subspace of L2(Q).
Using the properties of the maps F given by Lemma 3 and F1 given by Remark 1,
we have that J is strictly convex, continuous, and coercive. Thus, we have the fol-
lowing classic result:

Proposition 10. Problem (78) has a unique control ĥ ∈ Uad.

Observing that k(h) = k0(h)+ v(h) = F1(h)+F (h), we will denote, now and in
the sequel, by ŷ = y(ĥ, k̂ = k̂(ĥ)) the state associated to the optimal control ĥ. Let us
characterize ĥ.

Writing the Euler–Lagrange condition, we obtain

d
dλ

J(ĥ+λ (h− ĥ))|λ=0
≥ 0, ∀h ∈ Uad

which after calculations gives

d
dλ

J(ĥ+λ (h− ĥ))|λ=0
= (ŷ− zd ,y(h− ĥ,k(h− ĥ))L2(Q) + (Nĥ,h− ĥ)H .

Thus,

(ŷ− zd,y(h− ĥ,k(h− ĥ))L2(Q) + (Nĥ,h− ĥ)H ≥ 0, ∀h ∈ Uad .

We interpret this condition using the adjoint state notion. To make our calcula-
tions easier, we set w = h− ĥ and we denote y = y(w,k(w)). Let p be the solution of
the following system:

⎧
⎨

⎩

−p′ −Δp+ a0p = ŷ− zd in Q,
p = 0 on Σ,

p(T ) = 0 in Ω.
(79)

Since ŷ− zd ∈ L2(Q), we know that p ∈ Ξ1,2(Q). Multiply the first equation of (79)
by y and integrate by parts over Q, we obtain

∫

Q
p(w+(F1(w)+F(w))χω )dxdt =

∫

Q
y(ŷ− zd)dxdt.

This means that,
∫

Q
pwdxdt +

∫

Q
pF1(w)χω dxdt +

∫

Q
pF (w)χω dxdt =

∫

Q
y(ŷ− zd)dxdt.
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Let H ′ be the dual of the Hilbert space H. Let also Λ−1 be the isometric isomorphism
from H ′ to H. Observing on the one hand that F =F ∗ because of the symmetry of
the operator a(., .), and on the other hand that we can write

∫

Q
pwdxdt =

∫

Q

1
θ

pθw = 〈 1
θ

p,w〉H′ ,H ,

∫

G
pF1(w)dxdt = 〈F ∗

1 (p),w〉H′ ,H ,

and
∫

G
pF (w)dxdt = 〈F ∗(p),w〉H′ ,H ,

we have
∫

Q
pwdxdt = (Λ−1(

1
θ

p),w)H ,

∫

G
pF1(w)dxdt = (Λ−1F ∗

1 (p),w)H ,

and
∫

G
pF (w)dxdt = (Λ−1F (p),w)H .

Therefore, the Euler–Lagrange condition gives
(

Λ−1 1
θ
(p)+Λ−1F ∗

1 (p)+Λ−1F (p)+Nĥ,h− ĥ

)

H
≥ 0, ∀h ∈ Uad

or
(

Λ−1(
1
θ

I +F ∗
1 +F )(p)+Nĥ,h− ĥ

)

H
≥ 0, ∀h ∈ Uad

where I is the identity operator of L2(Q).
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