
Chapter 10
A Galerkin Method Solution of Heat
Transfer Problems in Closed Channels:
Fluid Flow Analysis

Nasser Ghariban

Introduction

The study of conventional forced convection in channels is a requirement for well-
designed heat transfer equipment. A channel is a configuration for studying internal
flows. Being well informed or having knowledge of the structure of flow in a channel
is of great engineering interest since it can be applied in many applications. Chan-
nels contain flows that are considered Newtonian fluid. The traditional application of
this study is in heat transfer equipment, such as heat exchangers; the friction factor
and heat transfer coefficient are important parameters for evaluating design perfor-
mance of these equipment. Recently, the growth in microfluidic systems with needs
of transporting of liquids or gases in channels with micro cross-sectional dimensions
is of great importance in many applications. These applications in microelectronic
cooling, MEMS, fuel cell technology, and medical and biomedical devices moti-
vated researchers to investigate on simple solutions for channel flow. Microchan-
nels have specific characteristics such as high surface area per unit volume and high
heat transfer coefficient that will provide further application in the future. A study
of velocity and temperature distribution in these channels will help investigators
to understand the pressure drop and heat transfer rate at the boundaries. Although
the behavior of fluid in microchannels is laminar in larger-scale equipment such as
heat exchangers, the designer usually deals with turbulent flow. When flow is turbu-
lent, the computations are difficult. Often, the experimental studies of shear stress
and heat transfer in turbulent flow guide researchers toward theoretical predictions.
However, the experimental data are not universally available for all possible shapes
and flow conditions.
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Numerical computation has served engineers well and is a powerful tool. This
work seeks a simple mathematical model that can produce relatively accurate results
with little computational effort. The Galerkin-based method of solution given by
Haji-Sheikh et al. [4] and Beck et al. [1] is modified to solve laminar flow in closed
channels as well as study of turbulent flow. This method provided a simple and
effective method for calculating laminar flow characteristics in various shape chan-
nels. It is also shown that this method can also be used for turbulent flow; how-
ever, major modifications are needed. A set of basis functions that are markedly
different from the basis functions for laminar flow must be selected. Improved
accuracy and rapid convergence are realized when the basis functions include the
dependence of turbulent viscosity on the velocity gradient. From several differ-
ent turbulent viscosity models, the Van Driest model is chosen for this solution
method. It was determined that a modified Van Driest model provides computed
data that agree well with experimental data of other investigators, e.g., Laufer [7]
and Nikuradse [9].

Analysis

The objective of this paper is to develop a simple and computationally efficient
method for finding flow properties such as pressure drop. The Galerkin method is
selected because it is equally applicable to circular and noncircular ducts. The same
method has been extended for soling thermal characteristics of the channels that will
be address in second part of this publication.

Governing Equations

The Galerkin-based method is a simple technique for finding the velocity field in
ducts with arbitrary cross-section areas. For convenience, the Cartesian coordinates
are used to describe the method of solution. The cylindrical coordinates are used for
study of pipe flow as demonstrated in example 1 and 3 of this study. The momentum
equations for fully developed channel flow are

ρ
Du
Dt

= ρ . f −∇P+ μ∇2u (1)

In the absence of external forces and steady-state condition, the equation for a lam-
inar flow will simplify to

− ∂P
∂Z

+ μ(
∂ 2w
∂x2 +

∂ 2w
∂y2 ) = 0 (2a)

where w is the velocity of the flow along channel axis (z).
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For turbulent flow the equation will have an extra term due to fluctuation of
velocity along x,y, and z axis as

− ∂P
∂ z

+ μ(
∂ 2w
∂x2 +

∂ 2w
∂y2 )−ρ(

∂u′w′

∂x
+

∂v′w′

∂y
) = 0 (2b)

The Boussinesq’s eddy-diffusivity coefficients for momentum are defined as

−ρu′w′ = μt
∂w
∂x

−ρv′w′ = μt
∂w
∂y

(3)

The following equation is given by substituting the above expressions into Eq. (2b)

− ∂P
∂ z

+
∂
∂x

(μe
∂w
∂x

)+
∂
∂y

(μe
∂w
∂y

) = 0 (4)

where μe is the effective viscosity given as

μe = μ + μt

If the vector notation is used, the turbulent momentum equation is shortened to

− ∂P
∂ z

+∇ · (μe ∇w) = 0 (5)

This equation can be written in nondimensional form as

1+∇1 · (μ∗
e ∇1W ) = 0 (6)

where μ∗
e = 1+(μt/μ) = 1+ μ∗

t for laminar flow in absence of eddy-diffusivity
μ∗

e = 1 and Eq. (6) will be simplified to 1+∇2
1W = 0

W =
μw

−a2 ∂P
∂ z

where a is a characteristic length

and

∇1 =
∂

∂X
i+

∂
∂Y

j where X = x/a and Y = y/a

Turbulent Viscosity

Equation (6) indicates that the momentum equations contain turbulent viscosity that
is a function of the surface sheer stress. Because of the appearance of this term, the
mean flow equations are not complete; a turbulent model is necessary to determine
the turbulent diffusivity terms before the equations can be solved.
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Fig. 10.1 Nondimensional velocity profile for turbulent boundary layer

Kakac et al. [5] has summarized different models of turbulent viscosity for pre-
dicting velocity profile inside the turbulent boundary layer. Figure 10.1 shows the
velocity distribution from the wall with the nondimensional parameters u+ and y+,

u+ =
u

√
τw/ρ

, y+ =
y
√

τw/ρ
ν

where τw is the wall shear stress.
The circular and the triangular symbols are the results of an experimental study

for Reynolds number of 1.5× 106 and 1.0× 106, respectively, conducted by the
author. As Fig. 10.1 illustrates, the Van Driest model is smooth and continuous in
the near wall region and follows experimental data with a good agreement. The
good prediction of turbulence near the wall by the Van Driest model is the primary
reason for its selection. This model is solely a function of y+; therefore, it would
considerably simplify the numerical calculations and increase the accuracy of the
results. According to the Van Driest [11] model, the effective viscosity is given as

μe = μ
1+ {1+ 4κ2(y+)2[1− exp(−y+/A+)]2}1/2

2
(7)

Researchers who have used the Van Driest model to study turbulent flow inside
ducts report that an additional modification is necessary to remove certain inaccura-
cies. Malhotra and Kang [8] used Eq.(7) with an additional correction factor which
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emerged as a result of studies on a two-equation model of turbulence for pipe flow.
The turbulence viscosity then becomes

μt = ρκ2y2[1− exp(y+/A+)]

∣∣
∣
∣
∂u
∂y

∣∣
∣
∣/(1+

3y
R

+
3y2

R2 )

where R is the radius of the pipe and y is the distance from the wall. Richman and
Azad [10] assumed a constant turbulence viscosity in the range 0.158 ≤ y/R ≤ 1 as

μt = μ
{1+ 4κ2(y+)2[1− exp(−y+/A+)]2}1/2 − 1

2
(8)

for 0 ≤ y/R ≤ 0.158 and μt = (μt)y/R=0.158 for 0.158 ≤ y/R ≤ 1
In the present study, the second modification yields a closer agreement with the

experimental data.

Calculation of Fluid Flow Properties and Pressure Drop

A Galerkin-based integral (GBI) method [1] is used to solve momentum and energy
equations. This is based on weighted residual methods. The method can be used for
any ordinary differential equation such as L[y(x)]+ f (x) = 0 over interval a ≤ x ≤ b
where L denotes a linear differential equation.

Multiplying this equation with any arbitrary function w(x) and integrating over
the interval [a,b] provide

∫ b

a
w(x){L [y(x)]+ f (x)}dx = 0

Weighted residual method provides solution to this equation by introducing a trial
solution of u(x) as

u(x) = φ0(x)+
n

∑
j=1

c jφ j(x)

Replacing y(x) with u(x) on the left side of original differential equation, the residual
is defined as follows:

r(x) = L [u(x)]+ f (x)

The goal of this method is to construct u(x) so that the integral of the residual will be
zero for some choices of weighted functions. This means the following condition,
zero residual, must be satisfied for some choices of w(x):

∫ b

a
w(x){L [u(x)]+ f (x)}dx = 0
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Galerkin Method

Galerkin method is one of the most commonly used weighted residual methods.
This method chooses the weight function, w(x), as a function of basis functions,
w(x) ∈ φi(x)|ni=1

∫ b

a
φi(x){L [u(x)]+ f (x)}dx = 0 for i = 1,2, . . . . . . ,n

Introducing trial function, u(x) = φ0(x)+
n
∑
j=1

c jφ j(x), into this equation provides a

set of n equations that must be solved to find the coefficients of basis functions Cj:

∫ b

a
φi(x)

{

L

[
n

∑
j=1

c jφ j(x)

]

+L [φo(x)]+ f (x)

}

dx = 0 for i = 1,2, . . . . . . ,n (9)

Solution of the Momentum Equation

Equation (6) is the momentum equation in nondimensional space with the boundary
condition V = 0 on the wall. According to the Galerkin-based integral method, the
solution is approximated as a linear combination of a set of basis functions

V (X ,Y ) =
N

∑
i=1

ci fi(X ,Y ) (10)

The basis functions, fi, are linearly independent and satisfy the same homogeneous
boundary conditions as V ; thus, V (X ,Y ), axial velocity in Z direction, satisfies the
given boundary conditions for all choices of the ci’s. Next, if the error or residual is
formed and the di’s are chosen so that the weighted integral of the residual is zero
for each i = 1, . . . ,N, a linear algebraic system is obtained as

A · c = b (11)

where d is the vector of coefficients which has the elements d1,d2, . . . ,dN and it is
the solution of the above system of N linear equations. The vector g has elements

bi =− 1
A

∫

A
fidA (12)

and the matrix A has the elements

ai j =
1
A

∫

A

fi∇1 · (μ∗
e ∇1 f j) for turbulent flow (13a)

ai j =
1
A

∫

A

fi∇1 · (∇1 f j) for laminar flow (13b)
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The solution of Eq. (11) results in the evaluation of coefficients, c1,c2, . . . .,cN , and
their substitution in Eq. (10) yields the solution for velocity V .

Haji-Sheikh et al. [4] derived the following equations for skin friction and
dimensionless velocity by this method:

Cf Re =
2D2

e

a2Vav
=

2D2
e

Vav
(14)

V
Vav

=
V

Vav
=

Cf Re

2De2

N

∑
i=1

di fi (15)

where Cf = −(∂P/∂Z)De/(ρvav/2) = 4τw/(ρvav/2), Re = ρDevav/μ , and De/a is
designated as the nondimensional hydraulic diameter.

The solution for laminar flow has simple steps of defining suitable basis func-
tions, solving array b and matrix a Eqs. (12) and (13b), and then solving for array c
to find velocity profile from Eq. (10).

The momentum equation for turbulent flow to solve is more complex. The turbu-
lent viscosity (μ∗

e ) is a function of wall shear stress (τw) that must be determined.
An iterative method is used to solve this equation for turbulent flow. Figure 10.2
demonstrates the flow chart for this solution.

Example 1: Laminar Pipe Flow

The momentum equation in cylindrical coordinate can be written as − dP
dz

+ μ
[

1
r

d
dr

(
r dv

dr

)]
= 0 with boundary condition of v = 0 at r = R0. (R0 is the radius

of the pipe.)
Introducing nondimensional velocity as

V =− μv
R2

o(dP/dz)
and R =

r
Ro

the equation reduces to
[

1
R

d
dr

(
R

dV
dR

)]
+ 1 = 0 with boundary condition of V = 0 at R = 1

The exact solution for this equation is

V =
1
4
(1−R2)

Dividing it by average velocity, it can be normalized to U∗ = V
Vave

= 2(1−R2)
And the exact solution for skin friction using Eq. (9) can be evaluated as

Cf Re = 64.
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Fig. 10.2 Calculation procedure for turbulent flow

The Galerkin solution can be found by writing Eq. (9) for cylindrical coordinates
as Galerkin’s solution to this differential equation will be in the form of

∫ 1

0
φi(R)

{
1
R

d
dR

(

R
d

dR

n

∑
j=1

c jφ j(R)

)

+ 1

}

dR = 0

That can be written in form of a set of linear equations as

Ai j ·Cj = Bi

where

Ai j =

∫ 1

0
φi(R)

{
1
R

d
dR

(
R

d
dR

φ j(R)

)}
dR and Bi =

∫ 1

0
φi(R)dR
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Fig. 10.3 Basis function for a flow in a cylindrical pipe

The Galerkin method starts with selecting the basis functions. The basis functions
must satisfy the same boundary condition as governing equation. A suitable basis
function can be in the form of φi(R)|=

[
cos(π

2 R)
]i

. Figure 10.3 illustrates the basis
functions for n = 1,2,3.

A program in MATHLab was developed to evaluate matrics Ai j, Bi, Cj, and f for
different value of n. Following is calculation for n = 4:

Ai j =

⎡

⎢⎢
⎣

−2.6882 −3.3870 −3.9424 −4.4201
−2.2171 −3.2451 −3.9434 −4.4945
−1.9310 −3.0478 −3.8335 −4.4488
−1.7334 −2.8641 −3.6957 −4.3559

⎤

⎥⎥
⎦ ,

Bi = [−0.6366 − 0.5000 − 0.4244 − 0.3750],

and Cj =

⎡

⎢
⎢
⎣

0.3180
−0.0974

0.0385
−0.0091

⎤

⎥
⎥
⎦

The result for skin friction is given in the following table for different value of n:

n 1 2 3 4 5 6
Cf ·Re 73.0132 63.7913 64.0286 63.9969 64.0004 63.9999

As the table indicates with only two terms the resistance coefficient can be eval-
uated with an error of 0.3%.
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Fig. 10.4 Comparison of analytical and exact solution velocity profile

The velocity profile can be evaluated from

v =
n

∑
i=1

Ci ·φi

For example, for n = 4 velocity profile will be

v = 0.3180cos(π/2R)− 0.0974cos2(π/2R)+ 0.0385cos3(π/2R)

− 0.0091cos4(π/2R)

As this figure indicates analytical and exact solutions are in excellent agreement
with each other even with two-term solution (n = 2) for the velocity (Fig. 10.4).
Another basis function that satisfies boundary condition and provides great accuracy
is in the form of

fi = (1−R2)R2(i−1) (16)

The first basis function in this set ( f1 = 1−R2) matches with the exact solution, and
the method and one-term solution will match perfectly with exact solution.

Example 2: Laminar Flow Inside Square Duct

The governing equations in general for pipe flow are Navier–Stokes equations for
incompressible laminar steady-state flow and can be written as
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−dP
dz

+ μ
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
= 0

where u(x,y) is velocity in two dimensions with boundary condition of u(x,y) = 0
at the wall and dP/dz is pressure drop and μ is viscosity.

For a square channel with side “a,” assuming X = x
a and Y = y

a the equation can
be written in nondimensional form

1+
∂ 2U
∂X2 +

∂ 2U
∂Y 2 = 0 (17)

where U =− μ/a2

dP/dz u with the boundary condition of U = 0 for X = 0, Y = 0, X = 1,
and Y = 1.

The following figure illustrates the geometry of such a channel:
Galerkin method starts with assuming a set of basis function then

U =
k

∑
i=1

Ciφi

where φi is the basis function that should satisfy the boundary condition (zero
velocity on walls). One satisfactory expression for this function can be in the form of

φi = cosm(πX) · cosn(πY )

where m and n are any set of integer numbers greater than zero. The following table
can represent one set of such numbers that has been used in this study:

i m n
1 1 1
2 1 2
3 2 1
4 2 2
5 3 1
6 3 2
· · ·
· · ·

The following figures illustrate the shape of basis functions (φ1 and φ3) along X
axis and Y = 0.3 (Fig. 10.5).

Multiplying both sides of Eq. (17) with the basis function and integrating over
the domain, the governing equation will be changed to integral equation as

∫ 1/2

−1/2

∫ 1/2

−1/2
φi(x)

{

1+(
∂ 2

∂X2 +
∂ 2

∂Y 2 )

[
n

∑
j=1

c jφ j(x)

]}

dx = 0

And this integral equation can be converted to a set of linear equation as

Ai j ·Cj = Bi
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Fig. 10.5 Basis function for a flow in a square closed channel

where

Ai j =

∫ 1/2

−1/2

∫ 1/2

−1/2
φi(x)

{
(

∂ 2

∂X2 +
∂ 2

∂Y 2 )φ j(x)

}
dXdY

Bi =

∫ 1/2

−1/2

∫ 1/2

−1/2
φi(x)dXdY

To solve the problem Bi and Ai j must be evaluated. Following is a sample of calcu-
lation for i = j = 1 where φ1 = cos(πX) · cos(πY ):

B1 =

∫ 1/2

−1/2

∫ 1/2

−1/2
φ1dXdY =

∫ 1/2

−1/2

∫ 1/2

−1/2
cos(πX)cos(πY )dXdY

=
1
π

sin(πX)|1/2
−1/2 ·

1
π

sin(πY )|1/2
−1/2

B1 =
4

π2

For A11 second partial derivative of basis functions must be calculated first before
integrating over the area:

∂φ1

∂X
=−π sin(πX) · cos(πY ) and

∂ 2φ1

∂X2 =−π2 cos(πX) · cos(πY )

∂φ1

∂X
=−π cos(πX) · sin(πX) and

∂ 2φ1

∂X2 =−π2 cos(πX) · cos(πX)

and
∂ 2φ1

∂X2 +
∂ 2φ1

∂Y 2 =−2π2 cos(πX) · cos(πX)

then

Ai j =

∫ 1/2

−1/2

∫ 1/2

−1/2
cos(πX) · cos(πY ) · (−2π2 cos(πX) · cos(πY ))dXdY
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Ai j = −2π2
∫ 1/2

−1/2
cos2(πX)dX

∫ 1/2

−1/2
cos2(πY )dY

Ai j = −2π2
∫ 1/2

−1/2

1
2
(1− cos(2πX))dX

∫ 1/2

−1/2

1
2
(1− cos(2πY ))dY

Ai j = −π2

2

Velocity coefficient will be calculated from A11 ·C1 = B1

C1 = B1/A11 =
8

π4 = .08213

The result for six terms is as follows:

B =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

−0.4053
−0.3183
−0.3183
−0.2500
−0.2702
−0.2122

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

A =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

−4.9348 −4.1888 −4.1888 −3.5556 −3.7011 −3.1416
−4.1888 −4.3180 −3.5556 −3.6652 −3.1416 −3.2385
−4.1888 −3.5556 −4.3180 −3.6652 −4.1888 −3.5556
−3.5556 −3.6652 −3.6652 −3.7011 −3.5556 −3.5605
−3.7011 −3.1416 −4.1888 −3.5556 −4.3180 −3.6652
−3.1416 −3.2385 −3.5556 −3.5605 −3.6652 −3.6240

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

C =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

0.188037
−0.083799
−0.131458

0.091192
0.045730

−0.036434

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

Figure 10.6 illustrates the velocity profile in different locations from the center of
the channel. The maximum velocity will be at location X = 0 and Y = 0 with a
value of Umax = 0.0735.

Figure 10.7 illustrates the same data in three-dimensional format.
The normalized velocity can be evaluated from Eq. (15) to be compared with

other studies and experimental values. The normalized velocity at the center of the
channel with this study is s

umax

uave
= 2.093

This result was compared to an experimental study by Kakac et al. [5] and a finite
difference method by the author. The experimental method is given for rectangular
channels as

u
umax

=

(
m+ 1

m

)(
n+ 1

n

)

m = 1.7+ 0.5α∗−1.4

n =

{
2 f or α∗ ≤ 1

3
2+ 0.3

(
α∗ − 1

3

)
f or α∗ ≥ 1

3
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Fig. 10.6 Velocity profile inside a square channel
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Fig. 10.7 Velocity profile inside a square channel

where α∗ = 1 for square channel; as a result m = n = 2.2 and the maximum velocity
will be

umax

uave
= 2.115

This is in good agreement with result evaluated by Galerkin-based solution.
The finite difference method yields this value as 2.099 using 101×101 elements.

Finite difference method takes significant computational time for converging results.
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Fig. 10.8 Convergence of skin friction using polynomial basis function

Example 3: Turbulent Pipe Flow

The same procedure as example 1 is used for studying the turbulent flow in a circular
pipe. The initial attempt is to use the same basis polynomial functions as introduced
in example 1, Eq. (16). Although fi in Eq. (16) is a simple function of R, the a matrix
cannot be calculated analytically because of the existence of μ∗

e in Eq. (9) which is a
function of r. Numerical integration is used to evaluate the members of the a matrix.
The array g, however, is the same as that given for laminar flow.

Having matrix a and array b available, the skin friction and the velocity profile
are calculated by an iterative procedure as shown in Fig. 10.8. The calculations show
that the convergence of the results for skin friction requires a large number of the
basis functions. This is the initial difficulty encountered when calculating pressure
drop in turbulent flow by the standard GBI method. In contrast, the laminar flow
requires as few as two basis functions for an accurate solution.

Figure 10.8 shows the convergence of the results for Reynolds numbers 5 ×
104,105, and 106 using a different number of terms. This figure confirms that a
higher Reynolds number requires more terms to have convergence. It is also noticed
that the upper limit for N is 16. For values of N greater than 16, the matrix inversion
routine fails, and convergence never happens. According to Fig. 10.8, solutions for
a Reynolds number of 106 or higher cannot be obtained.

The velocity profile for Reynolds number 105 and for different values of N is
given in Fig. 10.9. The computed results are compared with the experimental data
given by Nikuradse [9] for the same Reynolds number. This figure shows that, as
the number of terms increases, the calculated velocity profile gets closer to the ex-
perimental data. For N=16, which satisfies the convergence, the calculated velocity
is in agreement with the experimental data within 3%.
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Fig. 10.9 Predicted velocity profile by using polynomial basis functions

The calculated values of skin friction and velocity profile, Figs. 10.8 and 10.9,
require a large number of terms to achieve convergence. Increasing the number of
terms increases the computer time and reduces the accuracy of the results. For these
reasons, selecting a set of basis functions that describes the behavior of the turbu-
lent velocity profile is necessary. The following basis functions have the necessary
characteristics to describe the turbulent velocity profile:

fi = {1− e[−β (1−R2)]}R2(i−1) (18)

The factor 1 − e[−β (1−R2) in Eq. (18) is a turbulence factor that depends on the
Reynolds number. It provides a sharp slope for the velocity profile at the wall and
disappears far from the wall. The factor B is a constant that depends on the turbu-
lence similar to A in the turbulent viscosity equation of Van Driest. The value of β
is arbitrarily selected equal to one for laminar flow.

The computed results for three different Reynolds numbers are given in Fig. 10.10.
This figure illustrates that the calculated skin friction decreases by increasing the co-
efficient β , then begins to increase as β increases. A value of β that makes the skin
friction minimum is the proper choice. A justification of selecting β at minimum
skin friction is given in the Appendix. The calculated skin friction at the optimum
β provides the best agreement with the experimental values.

The optimum values of β , for different Reynolds numbers, were calculated, and
method of least square was used to find correlation for β and skin friction as given
in the following equation:

B =
Cf Re

19
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Fig. 10.10 Calculated skin friction for different values of β
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Fig. 10.11 Convergence of the result by using new basis functions

Once a correlation for β is available, one can proceed to solve for velocity profile
and skin friction at any Reynolds number. Figure 10.11 shows the convergence of
skin friction for three different Reynolds numbers versus the number of terms, N. A
comparison between the data in Figs. 10.8 and 10.11shows that the new basis func-
tions provide convergence with fewer terms. In fact, for a small Reynolds number
(Re = 50,000), two terms in the series give the skin friction that has a satisfactory
agreement with the experimental values.

The analysis also shows a good agreement with the experimental velocity profile
given by Laufer [7]. The experimental data of Laufer [7] are given in Fig. 10.12
and compared with the analytical results for this study when N = 2,4, and 8. The
figure shows the agreement between analytical and experimental velocity profiles to
within 6% using as few as 2 terms in the series.
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Fig. 10.12 Velocity profiles for 2, 4, and 8 terms in series

The velocity profiles, using 8 terms, and the experimental data of Laufer[7] for
Re= 5×104 and 5×105 and Nikuradse [9] are shown in Fig. 10.13. Both calculated
velocity profiles agree with the experimental measurements to within 3%. For more
than 8 terms, no significant improvement is observed.
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Fig. 10.13 Comparison of predicted velocity profile and experimental data

Conclusions

A simple Galerkin-based solution has been presented that predicts the skin friction
and velocity flow field in fully developed duct flow. The analytical steps, described
in this study, apply to both laminar and turbulent flow in ducts with various cross-
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sectional shapes. A comparison of the calculated values with the experimental data
shows satisfactory agreement leading to the following major conclusions.

The solution for turbulent flow shows that special care must be taken in selecting
basis functions. A suitable set of basis functions reduces the number of terms in the
series, N, and consequently decreases computing time and increases the accuracy of
the results. The value of N = 8 provides data with good accuracy over a rather large
range of the Reynolds number, 4× 104 < Re < 106. Even for Re < 105 the method
provides an accurate solution with as few as two terms.

It is shown that the modified Van Driest model for effective viscosity given by
Richman and Azad [10] is a sufficiently accurate model for predicting turbulence.
The calculated Nusselt numbers based on this model show good agreement with the
correlation of Gnielinski [2].

Appendix

Highlights of the Variational Steps

The details of the minimization principle are provided by Ghariban [3]; only a brief
description is given here. The Galerkin method is based on minimization of the
integral

I =
∫

A

{
1
2

μ∗
e (X ,Y )

[(
∂W
∂X

)2

+

(
∂W
∂Y

)2
]

+W

}

dA (19)

In the minimization of Eq. (19), it is assumed that μ∗
e is a known function of X and

Y. The variational steps begin by replacing W by W and then setting W(X,Y) =
W(X,Y)+εη(X,Y). The calculation of (∂ I/∂ε) as ε → 0 leads to the equation [6],

∫

A

η(X ,Y )�1−∇1 · (μ∗
e ∇1W )	]dA = 0 (20)

where η(X,Y) is an arbitrarily selected function. The Galerkin method uses Eq. (20)
to compute W(X,Y). For example, one substitutes for W(X,Y) in Eq. (20) a quan-
tity

W (X ,Y ) =
N

∑
i=1

di fi(X ,Y ) (21)

and replaces the arbitrary function η(X ,Y ) by fJ(X ,Y ) for j = 1,2, . . .,N. It is to
be noted that μe is assumed to be a known function of X and Y. This yields the
Galerkin solution described by Eq. (8). For turbulent flow, μ∗

e (X ,Y ) is a function
of shear stress at the wall, and shear stress is unknown. One must provide a value
for the shear stress and then solve for velocity field. The subsequent calculation of
shear stress from computed velocity field should be followed by recalculation of the
velocity field. The continuation of this iterative procedure leads to a Galerkin-type
solution.
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For turbulent flow, the numerical studies show that the number of terms using
fi(X ,Y ) functions with simple forms, Eq. (20), can be prohibitively large. It is sug-
gested, in this paper, to introduce a new form for fi(X ,Y ), Eq. (21), that changes as
the shear stress changes. The iterative minimization procedure, using this latter form
of fi(X ,Y,B) with an additional parameter B, needs some modifications. The first
step of iteration is to consider a known value for B and solve for W (X ,Y ) using the
standard Galerkin solution method. A selected value of B influences the value of the
calculated average shear stress, and B represents the effect of the turbulence inten-
sity on the velocity profile. The minimization of function I, following some algebra
[3], leads to an additional equation

∫

A

∂ μ∗
e (X ,Y )
∂B

dA

[(
∂W
∂X

)2

+

(
∂W
∂Y

)2
]

dA = 0 (22)

Because (∂W/∂X)2 + (∂W/∂Y )2 > 0, the integral given by Eq. (22) is zero if
(∂ μ∗

e /∂B) = 0. For turbulent flow, it is assumed that B in Eq. (21) depends
on the average shear stress, τw . Therefore, the minimization of I requires that
(∂ μ∗

e /∂τw)(∂τw/∂B) = 0 in addition to Eq. (20). For turbulent flow, the effective
viscosity coefficient, μ∗

e , increases as τw increases, indicating ∂ μ∗
e /∂τw > 0; then

I is minimum if ∂τw/∂B = 0. The dimensionless form of this condition is used in
subsequent calculations; that is, B is computed so that

∂Cf

∂B
= 0
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Nomenclature

A Characteristic length
ai j,bi j,ci j Element of matrices A,B,C
A Flow area of duct
A+ Damping constant
A,B,C Matrices
β Constant in Eq. (12)
ci Element of the array c
c Array of velocity coefficient
Cf Friction factor
Cn Temperature profile coefficient
De Hydraulic diameter
De Hydraulic diameter, dimensionless
fi Basis function
gi Element of the array g
g Auxiliary array
i, j Indices
N Number of terms in series
P Static pressure
r Cylindrical coordinate, dimensionless
R Cylindrical coordinate
Ro Pipe radius
T Local temperature
T ′ Fluctuating temperature
u′,v′,w′ Fluctuating velocity components
u+ Velocity parameter
w Axial velocity
W Axial velocity, dimensionless
wav Average velocity
Wav Average velocity, dimensionless
X ,Y,Z Coordinates
X ,Y,Z Coordinates, dimensionless
y+ Wall distance parameter
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κ Von Karman constant
μ Molecular viscosity
μe Effective viscosity
μ∗

e Effective viscosity, dimensionless
μt Turbulent viscosity
μ∗

t Turbulent viscosity, dimensionless
ρ Fluid density
τw Wall shear stress
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