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Preface

Mathematics is playing an ever more important role in the physical and life sciences,
engineering and technology, blurring the boundaries between scientific disciplines.
This is evidenced in this volume which contains cutting-edge contributions to math-
ematical sciences and to their applications to the STEAM-H disciplines, that is, sci-
ence, technology, engineering, agriculture, mathematics, and health. This volume is
a written and published thematic continuation of the seminar series at Virginia State
University during the academic year 2011–2012. Contributors in this volume, as
leading researchers, present their own work in the perspective to advance their spe-
cific fields in a way to generate a genuine interdisciplinary interaction. All articles
therein were carefully edited and peer-reviewed; they are reasonably self-contained
and pedagogically exposed.

This volume features new advances in mathematical research represented here
on anti-periodicity, almost stochastic difference equations, absolute and conditional
stability in delayed equations, gamma-convergence, the dynamics of collision and
near-collision in celestial mechanics, and almost and pseudo-almost limit cycles.
It includes current advances in the applications to “rainbows” in spheres with
connections to ray, wave, and potential scattering theory; null-controllability of
the heat equation with constraints; optimal control for systems subjected to null-
controllability; the Galerkin method for fluid flow analysis; wavelet transforms
for real-time noise cancellation; signal, image processing, and machine learning
in medicine and biology; durability, reliability, and damage tolerance of aerospace
materials and structures at NASA Langley Research Center; and Γ-convergence for
block copolymer morphology.

This volume will be a reference of choice for established interdisciplinary sci-
entists and mathematicians and a source of inspiration for a broad spectrum of re-
searchers and research students, graduate and postdoctoral; the shared emphasis of
these carefully selected and refereed contributed chapters is on important methods,
research directions, and applications of analysis within and beyond mathematics.
As such the volume promotes mathematical sciences, physical and life sciences,
engineering and technology education, as well as interdisciplinary, industrial and
academic genuine cooperation.
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This volume as a whole will enhance the overall objective of the seminar, that
is, to foster student interest in the STEAM-H disciplines and stimulate graduate and
undergraduate research and collaboration among researchers on a genuine interdis-
ciplinary basis.

Chapter “An Overview of Durability and Damage Tolerance Methodology at
NASA Langley Research Center”, by Jonathan Ransom, Edward Glaessgen, and
James Ratcliffe, is about damage science at NASA Langley Research Center (LaRC),
that is, the design and implementation of computational, analytical, and experimen-
tal strategies and methodologies to simulate and assess damage growth and to char-
acterize the damage tolerance of aerospace materials and structures, including many
fracture mechanics methods to predict and characterize damage in both metallic and
composite materials. This is at the core of the research portfolio of the branch, the
Durability, Reliability and Damage Tolerance Branch (DDTRB), which the author
is heading. This chapter presents a selection of such strategies and methodologies
in a self-contained and streamlined form, accessible to even the classically trained
mathematicians. It discusses new methodologies in continuum mechanics, damage
tolerance capabilities for composite structures, and related activities for prediction
and verification methods for delamination, debonding, and identification of failure
mechanisms. To illustrate the applicability of the expertise the authors include a
fractographic analysis in the case of AA 587 accident investigation. Finally this
chapter advocates a multidisciplinary knowledge base that efficiently combines, for
instance, multi-scale simulation capability, optical microscopy, physical metallurgy,
organic chemistry, finite elements analysis, molecular dynamics, optimization, and
high-performance computing.

Chapter “On the Γ-convergence Theory and its Application to Block Copoly-
mer Morphology”, by Xiaofeng Ren, draws from the expanding field of calculus of
variations the tool of gamma-convergence theory to develop a rigorous notion for
a family of functionals to converge to a functional of a seemingly different type,
while still retaining vital properties in the limiting functional. Using this theory the
author reduces the Ohta–Kawasaki density theory for block copolymers to a geo-
metric problem containing perimeter minimization and nonlocal interaction. Block
copolymers are soft materials characterized by fluidlike disorder on the molecular
scale and a high degree of order at a longer length scale. In the process global and
local minimizers for the Ohta–Kawasaki theory are characterized. This chapter also
discusses the issue of non-locality which often forces a periodic repetition in con-
densed materials such as charged Langmuir monolayers, chiral liquid crystals, and
block copolymers.

Chapter “‘Rainbows’ in Homogeneous and Radially Inhomogeneous Spheres:
Connections with Ray, Wave and Potential Scattering Theory”, by John Adam, starts
with an introduction to the scientific and mathematical beauty of rainbows, which,
according to Sassen, in reference, “have long been a source of inspiration both for
those who would prefer to treat them impressionistically or mathematically. The at-
traction to this phenomenon of Descartes, Newton, and Young, among others, has
resulted in the formulation and testing of some of the most fundamental princi-
ples of mathematical physics.” Follow other interesting descriptions by respectively
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Nussenzveig and Lock. In this work, the author elegantly discusses some direct
and indirect connections between ray theory, wave theory, and potential scatter-
ing theory, providing several perspectives to understand the mathematical nature of
the rainbow. In addition, the pedagogical exposition of the profound and complex
mathematics and physics behind rainbows and the mechanism of their formation
enhance one’s appreciation of same: scattering by transparent spheres and the cor-
respondent scattering matrix; ray path integral; morphology-dependent resonances;
complex angular momentum; Regge poles and Regge trajectories; and Mie solutions
of electromagnetic scattering theory. In the end, using the universal attraction to the
beauty and “mystery” of rainbows, the author successfully unifies the treatment of
the theories of ray, wave, and potential scattering.

Chapter “Understanding the Dynamics of Collision and Near-Collision Motion
in the N-Body Problem”, by Lennard Bakker, is on celestial mechanics where stands
unsolved the N-body problem since Newton’s time. The author makes the point of
the necessity of understanding first the nature and dynamics of collisions and near-
collisions as an indispensable step towards a complete understanding of the N-body
problem, including in a regularized setting which removes the collision singularities.
This chapter also discusses the probabilities of collisions, in fact rare as opposed to
near-collision motions. It also features some historical remarks interwoven through-
out as well as in the footnotes.

Chapter “Absolute Stability and Conditional Stability in General Delayed Dif-
ferential Equations”, by Junping Shi, is concerned with the stability of equilibrium
of delay differential equations. In the case of absolute and conditional stability, it
provides explicit criteria for one or two equations in general form. The dependence
of stability on both the instantaneous feedback and the delayed feedback is also
derived from the results. The chapter closes with an interesting open question on
stability for distributed delay.

Chapter “Existence of Antiperiodic Solutions to Semilinear Evolution Equations
in Intermediate Banach Spaces”, by Gaston N’Guerekata and Gisele Mophou, con-
siders a class of semilinear evolution equations with an unbounded sectorial operator
not necessarily densely defined in a Banach space, together with an intermediate
Banach space. Using an approach based on Banach’s fixed-point theorem, the
authors proved the existence and uniqueness of an antiperiodic mild solution.

Chapter “Signal, Image Processing and Machine Learning: The Key to Complex
Problems in Medicine and Biology”, by Mahsa Zahery and Kayvan Najarian, dis-
cusses some signal processing and machine learning methods used in biomedical
applications and emphasizes their importance on addressing complex problems in
medicine and biology, that is, the computer-aided decision-making procedure aim-
ing at producing accurate and timely diagnosis and prognosis to improve the overall
service and reduce the cost of health care. This chapter describes applications such
as hemorrhage detection involving error correcting output codes (ECOC) and atten-
tion detection using dual-tree complex wavelet transform.

Chapter “Real-Time Noise Cancellation Using Wavelet Transforms”, by Eshan
Sheybani, is about the use of wavelet transforms to develop computationally
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low-power, low-bandwidth, and low-cost filters that will remove the noise acquired
in datasets, effectively in real time for a decision to be made at the node level. The
performance and merit of the approach are profusely illustrated with some experi-
mental results in a series of expressive figures.

Chapter “Null Controllability of the Heat Equation with Two Constraints on the
Control: Application to a Discriminating Sentinel with Given Sensitivity”, by Ous-
seinou Nakoulima and Sadou Tao, studies the null-controllability problem with two
constraints on a pair of controls. The results are then applied to a discriminating
sentinel with given sensitivity to detect some parameters in a pollution problem,
governed by a semilinear parabolic equation with Dirichlet boundary condition.

In chapter “A Galerkin Method Solution of Heat Transfer Problems in Closed
Channels: Fluid Flow Analysis”, by Nasser Ghariban, a fluid flow inside closed
channels is analyzed with a heat transfer model built from momentum and energy
equations and a Galerkin-based method. The results are validated by comparison
with the results from numerical methods and experimental data.

Chapter “Optimal Control for Distributed Linear Systems subjected to Null-
Controllability with Constraints on the State”, by Michelle Mercan, applies the no-
tion of hierarchical control on a distributed system in which the state is governed
by a parabolic equation, assuming two controls: the Leader supposed to bring the
solution of the parabolic equation subjected to finite number of constraints to rest at
time T, while the second, the Follower, expresses that the state does not move too far
from a given state. The results are achieved by means of an observability inequality
of Carleman adapted to the constraint.

Chapter “Almost and Pseudo-Almost Limit Cycles with Applications to Quasiperi-
odic Solitary Waves”, by Melissa Watts and Bourama Toni, extends the theories of
limit cycles, quasi-periodicity, and the related isochrons to the new concepts of al-
most and pseudo-almost limit cycles. It addresses the usual questions of conditions
of existence, uniqueness, stability, and bifurcation. Several illustrative examples are
presented, including some almost and pseudo-almost periodic perturbations of the
harmonic oscillator and the renowned Liénard systems. The existence of almost and
pseudo-almost periodic waves is also derived. The chapter concludes with many
interesting open problems, in particular the question of transitioning an almost or
pseudo-almost periodic behavior to a chaotic one by coupling and synchronization.

The concluding chapter “On Almost Periodic Stochastic Difference Equations”,
by Paul Bezandry, investigates almost periodic random sequence in mean and de-
rives the existence and uniqueness of almost periodic solution of a semilinear system
of stochastic difference equations using exponential dichotomy.

Virginia State University is in an area that is socially, economically, and intel-
lectually very dynamic and home to some of the most important research cen-
ters in the USA, including NASA Langley Research Center, manufacturing com-
panies (Rolls-Royce, Canon, Chromalloy, Sandvik, Siemens, Sulzer Metco, NN
Shipbuilding, Aerojet) and their academic consortium (CCAM), University of Vir-
ginia, Virginia Tech, the Virginia Logistics Research Center, Virginia Nanotechnol-
ogy Center, Aerospace Corporation, C3I Research and Development Center, De-
fense Advanced Research Projects Agency, Naval Surface Warfare Center, National
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Accelerator Facility, and the Homeland Security Institute. The seminar, through its
written thematic continuation published by a world-renowned publisher, Springer, is
expected to become a national and international reference in STEAM-H education
and research.
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Guyane, Guadeloupe, France

Kayvan Najarian
Computer Science & Emergency Medicine, Reanimation Engineering Science
Center Director, Biomedical Signal and Image Processing Group, Virginia
Commonwealth University, Richmond, VA, USA

Ousseynou Nakoulima
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Chapter 1
An Overview of Durability and Damage
Tolerance Methodology at NASA Langley
Research Center

Jonathan B. Ransom, Edwards H. Glaessgen, and James G. Ratcliffe

Introduction

Engineering fracture mechanics, in particular linear elastic fracture mechanics
(LEFM), has played a vital role in the development and certification of virtually
every aerospace vehicle that has been developed since the mid-twentieth century.
Often, LEFM is associated with a damage tolerance design philosophy where a
critical flaw size must be significantly larger than the minimum detectable flaw
(e.g., crack) to insure safety. Here, the critical flaw is assumed to exist in a location
and under a loading where fracture occurs. In this philosophy, analysis or testing, or
a combination of both must show that the detectable crack will not reach a critical
length before a subsequent inspection.

Traditional engineering fracture mechanics is a continuum mechanics construct
that is based on the premise that crack growth will occur when a computed frac-
ture parameter reaches its empirically determined critical value. For example, brit-
tle fracture in metals (in-plane strain) will occur when KI > KIC, i.e., when the
computed value of the stress intensity factor, KI , is greater than or equal to the
experimentally obtained fracture toughness, KIC . In engineering fracture mechan-
ics, fracture toughness is considered to be a property of the material, and the plane
strain fracture toughness, KIC , is the lowest value of material toughness. Similarly
in laminated composite materials that are susceptible to failure mechanisms such
as delamination, the strain energy release rate, G, has been traditionally used as a
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measure of the driving force for delamination growth. In a manner similar to that
employed for brittle fracture in metals, onset of delamination growth is expected
to take place when G becomes equal to or greater than a critical value Gc. As a
consequence of delamination growth being constrained by the bounding plies, a
mixed-mode loading condition can be imparted along the delamination front, in-
volving opening and shear components of G. In such cases, the total strain energy
release rate must be decomposed into its individual components, and a mixed-mode
delamination growth criterion must be used to determine the onset of growth.

There are numerous examples of fracture-related mechanisms exhibited by both
metallic and composite structure where LEFM fails to provide a sufficient repre-
sentation of the failure mechanism in question. Examples include fracture in metals
involving significant levels of metal plasticity and delamination growth in composite
laminates that is accompanied by additional energy dissipating mechanisms such as
fiber bridging or the failure of through-the-thickness reinforcement. In these circum-
stances, approaches are required that either involve alternative approaches to LEFM
or employ LEFM-based approaches that are amended to account for the additional
failure mechanisms.

Furthermore, with the increasing use of composite materials in airframe primary
structure, there is motivation to improve the efficiency of the certification of these
relatively new materials. The typical response to this situation has been the attempt
to establish damage tolerance analysis methods for replacing, and thus reducing, the
amount of testing involved in certifying a composite structure.

Consequently, the Durability, Damage Tolerance and Reliability Branch
(DDTRB) at NASA Langley Research Center (LaRC) continues to develop a broad
portfolio of fracture mechanics methods aimed at understanding damage in both
metallic and composite aerospace structures. Additionally, the branch continues
to develop methods with the aim of decreasing the time required for certifying
aerospace structures. The latter aim has motivated the development of analysis
methods for new forms of metallic structure and has led to a continued effort that is
geared towards the development of standardized testing practices for characterizing
various fracture mechanisms in composite materials.

This chapter presents an overview of the computational, analytical, and experi-
mental strategies for fracture mechanics for fatigue, fracture, and damage tolerance
of metallic and composite aerospace structures at NASA Langley Research Cen-
ter (LaRC). Methodologies for simulating and characterizing fatigue and fracture
of metallic materials are presented. This discussion includes new methodologies in
continuum mechanics as well a new paradigm in damage mechanics, referred to
herein as damage science. Damage tolerance capabilities for composite structures,
including sandwich construction, are then presented. A selection of activities as-
sociated with composite materials is presented, including those involved with the
development of test standards, prediction and verification methods for delamination
and debonding of composite laminates, and the identification of failure mechanisms
for a recent failure investigation.
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Fracture Mechanics of Metallic Materials

Although methodologies for characterization of the fatigue and fracture of metal-
lic materials have been extensively developed over the past several decades, work
in this area remains an active topic of research. The focus of much of the work in
the branch in metallic materials has centered on development of methods to predict
crack growth in new material forms (e.g., friction stir weld panels) and to improve
our understanding of the fundamental mechanisms of deformation and fracture. The
effort on predicting crack growth in new material forms builds upon well-established
methods in continuum fracture mechanics for predicting fracture in built-up struc-
tures. Conversely, a relatively new and largely unproven effort has also been un-
dertaken that offers the promise of changing the fundamental paradigm of fracture
mechanics (and greatly extending the length scales for which it is valid) by examin-
ing damage processes at the micro- and even the nanoscale. This section will discuss
work in the broad range from continuum fracture mechanics to atomistic simulation
of fundamental damage processes.

Residual Strength Predictions for Friction Stir Weld Panels

Friction stir welding (FSW) is a new solid-state joining technology that is being
considered by many airframe manufacturers as a replacement for traditional joining
methods. As is common with other welding methods, FSW results in a residual
stress state that may affect crack growth rates. Thus, determination of the fatigue
life of friction-stir-welded structure requires the ability to predict the residual stress
intensity, Kresidual.

A new method being developed to predict Kresidual is based on determination
of equivalent thermal loads [1]. Equivalent thermal loads are calculated by defin-
ing initial strain due to welding along the length and width of the weld region.
The method determines the equivalent thermal loads that produce the residual stress
field using the elastic modulus, E; coefficient of thermal expansion, α; and change
in temperature, ΔT. The methodology always satisfies self-equilibrium and allows
rapid convergence. Temperature change, ΔT, is calibrated by comparing the pre-
dicted residual stress field to that measured for coupon test data. Similitude can be
assumed such that the same ΔT may be used to generate residual stress fields for
any other configuration (specimen type, component, or panel of any size and shape)
as long as the same welding parameters are used.

The analysis results are compared with experimental data obtained from both
cut-compliance and crack-compliance tests. Compact tension C(T) specimens that
are 4 inches wide and 0.25 inches thick representing two welding configurations
(tensile-dominated and compression-dominated) were modeled using isoparametric
eight-node brick elements in the ZIP3D finite element code as shown in Fig. 1.1
(half the specimens were modeled on the assumption of symmetry about the x-
axis). Aluminum alloy 2024-T3 was considered for all analyses with modulus,
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x-axis symmetry
a

P

Heat affected zone

Fig. 1.1 A typical finite element mesh for 4-inch wide C(T) specimen

E=10 Msi, and coefficient of thermal expansion, α = 13.0 × 10−6in/in◦F. By
comparing the predicted residual stress intensity factor (SIF) distribution to the
experimentally measured values in the weld zone, the change in temperature was
empirically determined to be −200◦F for the tensile-dominated configuration. This
same value of ΔT was then applied to the finite element analysis of the compression-
dominated specimen. Stress intensity factor solutions were generated using virtual
crack closure technique (VCCT) and the J-integral technique and are shown in
Figs. 1.2 and 1.3. Both crack-compliance (symbols) and cut-compliance (lines) ex-
perimental data are shown for comparison. The SIF solution compares well with
experimental data.

Once the residual stress distributions were determined, their effects on residual
strength could be determined. Because the 4-inch wide C(T) specimen was manu-
factured using procedures that mimicked those used on production panels, simili-
tude between the coupon tests and complex FSW panels could be assumed. Hence,
the thermal parameters obtained from the analyses of the C(T) specimens could be
used to account for residual stress effects in the FSW panel. After an equilibrium
solution was obtained in the finite element analysis, the panel was analyzed under
tensile loading (illustrated in Fig. 1.4), and a residual strength prediction was carried
out using crack-tip opening angle (CTOA) fracture criteria. A typical 3D finite ele-
ment model of the 24-inch wide FSW panel containing a through-thickness center
crack is shown in Fig. 1.4 with the heat-affected FSW zone colored red. The anal-
ysis accounted for crack branching, plasticity, variation in panel thickness, residual
stress, and the presence of multiple materials.

The corresponding load-crack extension data are shown in Fig. 1.5. In the figure,
the open and filled symbols correspond to the test data. The black line represents an
analysis carried out without considering the effects of residual stress and is shown
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Fig. 1.2 Residual stress variation for tension-dominated specimen. Experimental data are shown
for comparison
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Fig. 1.3 Residual stress variation for compression-dominated specimen. Experimental data are
shown for comparison

to overpredict the test results. However, by including the residual stress field and
change in material properties in the heat-affected zone, the analysis prediction rep-
resented by the red line is much better and well within the test scatter.
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Fig. 1.4 A typical finite element mesh for 24-inch wide FSW integral panel

Fig. 1.5 Load-crack extension data for 24-inch wide FSW panel
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Fig. 1.6 Typical fatigue crack growth behavior

Fatigue Crack Growth and Crack Closure

The most ubiquitous damage in metallic aerospace structures is the slow develop-
ment and propagation of fatigue cracks during the service life of the aircraft. This
process, known as fatigue crack growth, is usually characterized using standard-
ized coupon tests [2]. Fatigue crack growth (FCG) test data are most commonly
presented in plots of FCG rate, da/dN, (amount of crack growth per number of cy-
cles) as a function of the cyclic crack-tip stress intensity factor, ΔK, as shown in
Fig. 1.6. Three regions are shown, with Region I (the near-threshold region) being
of primary concern to the present work. The near-threshold region corresponds to
very low values of cyclic crack-tip stress intensity factor and is characterized by
slow crack growth rates. It is of practical importance for life prediction because the
majority of fatigue life for many aircraft components is consumed in this regime.

Naturally occurring cracks typically initiate under near-threshold loading con-
ditions and propagate under increasing ΔK conditions. However, because of the
time required to propagate cracks at low values of ΔK, laboratory tests are typically
started in the Paris regime (Region II), and the applied loads are gradually reduced
such that ΔK values decrease as the crack propagates. The procedure requires that
care be taken to ensure that this artificial loading sequence does not affect the fatigue
crack growth rate data. As a result, ASTM standard E647 (“Standard Test Method
for Measurement of Fatigue Crack Growth Rates”) was developed to ensure that
satisfactory test results are obtained [2].
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Fig. 1.7 Closure profile for a specimen of aluminum alloy 8009 with initial Kmax = 11 MPa
√

m
(ΔKi = 9.9MPa

√
m) and C=−393.7/m. Remote closure occurs

Recent research suggests that performing crack growth tests under ΔK-reduction
conditions can adversely affect the FCG data [3, 4] due to a test-history-induced
crack closure phenomenon [5–8]. Fatigue crack closure may result because of crack
face contact near the crack tip during decreasing load but before the minimum
value is reached. Although crack-tip closure is a naturally occurring phenomenon,
the prescribed load reduction method can induce an artificial “remote closure” that
occurs away from the crack tip and can artificially affect the FCG data. Thus, the test
data may be affected by the crack-tip plasticity created at relatively high ΔK near
the start of the FCG test and may not be an accurate indication of the mechanical
performance of the material.

To assess the effects of testing procedure and the resulting remote closure on FCG
data, fatigue crack growth tests were performed using closed-loop servo-hydraulic
test machines with constant amplitude sinusoidal loading. Testing was conducted in
accordance with ASTM standard E647 using eccentrically loaded single-edge notch
tension (ESE(T)) specimens [9] having width, W, and thickness, B, of 38.1 mm and
2.3 mm, respectively. A schematic of the specimen is shown in the insert in Fig. 1.7.
A computer-controlled system [10] was used to continuously monitor crack length
during testing using the back-face compliance technique [11]. This system automat-
ically adjusts the applied loads as the crack grows to ensure that programmed stress
intensity factors are applied throughout the tests.

Crack closure data were obtained by analyzing a series of high-magnification
(300–700X) digital images of the crack obtained during cyclic loading. A random
pattern of 4-mm speckles was deposited on specimen surfaces in the region of crack
growth to provide features whose motion could be tracked as a function of load using
the VIC-2D [12] software program. The presence of crack closure was determined
by tracking the relative displacement of speckles on features on either side of the
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Fig. 1.8 Closure profile for a specimen of aluminum alloy 8009 with initial Kmax =
11MPa

√
m(ΔKi = 9.9MPa

√
m) and C=−393.7/m. No remote closure

crack. After the digital images were analyzed using VIC-2D, the displacement data
was analyzed using the Elber method to determine the load at which the crack closed
[13]. In this method, the crack-opening displacement at a point along the crack wake
is plotted against load resulting in a compliance plot for that specific crack wake
location. Deviations in linearity on the plot indicate crack closure.

Preliminary results of this study [14] demonstrated that remote closure can oc-
cur when the testing parameters recommended by ASTM E647 are greatly ex-
ceeded. Figure 1.7 shows the closure profile of an aluminum alloy 8009 speci-
men tested at constant load ratio, R= 0.1, conditions (initial Kmax =11MPa

√
m and

C= −393.7/m) obtained using VIC-2D. The parameter, C, is the K-gradient and is
evaluated as described in [2]. The experimental results of Fig. 1.7 were taken after
approximately 3mm of crack growth (ΔK = 3.3MPa

√
m), nearly the R= 0.1 FCG

threshold value for this alloy. High-magnification images were taken at three loca-
tions: near the crack tip, the location corresponding to the start of the ΔK-reduction
test, and further behind the crack tip (corresponding to steady-state pre-cracking at
ΔK= 9.9MPa

√
m, R= 0.1). This test exceeds the ASTM standard E647 limits on

the K-gradient, C, by a factor of 5. Here, remote closure is shown to occur because
crack closure occurs in the crack wake before occurring at the crack tip. The hori-
zontal red dashed line in the figure corresponds to the mean normalized closure load
(Pclosure/Pmax = 0.21) of the crack wake. In comparison, the crack tip closes later (at
a lower load Pclosure/Pmax = 0.12), corresponding to remote closure, and is assumed
to be an artifact of the test procedure.

Experimental results also show that the guidelines of ASTM standard E647 are
overly conservative for some load scenarios. Figure 1.8 shows the closure profile
(crack closure loads as a function of distance behind the crack tip) of a specimen
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of an aluminum alloy 8009 specimen tested at an initial Kmax = 11 MPa
√

m and
C= −393.7/m. The data presented in Fig. 1.8 correspond to a ΔK = 7.4 MPa

√
m,

after 800μm of crack growth from the start of the test. Here, crack closure occurs
in the crack wake at approximately Pclosure/Pmax = 0.25, as indicated by the hori-
zontal red dashed line. Closure loads (Pclosure/Pmax) increase closer to the crack tip
(within 100 μm of the crack tip), increasing to approximately Pclosure/Pmax = 0.36
at the crack tip. In this case, crack closure occurs first at the crack tip with closure
occurring in the crack wake at lower loads, in a manner characteristic of steady-state
crack closure in the absence of load history effects [15].

Damage Accumulation in Aluminum Microstructures

The continuum-level behavior discussed previously has its underpinnings at the
micro- and nanoscales, so an understanding of the myriad of microscale and
nanoscale mechanisms is needed to fully understand the mechanics of fracture.
Thus, Damage Science methodologies are being developed. The work studies phe-
nomena that occur at the scale of grains, dislocations, and atoms using novel com-
putational and experimental methodologies.

At the microscale, near-crack-tip plasticity is dominated by the presence of large
plastic strain gradients and the corresponding geometrically necessary dislocations
(GNDs). The effect of GNDs on conventional plasticity formulations is overviewed
by Hutchinson [16]. In this case, a critical issue is the underestimated work harden-
ing during plastic deformation within the strain gradient-dominated field. This gives
rise to strain gradient crystal plasticity formulations in which GNDs are assumed to
dominate micron-scale plastic strain and to be associated with an internal length
scale parameter. These gradient formulations are conceptually related to dislocation
dynamics (as discussed in an upcoming section), thereby providing a natural linkage
to simulations at submicron length scales.

Alternatively, conventional crystal plasticity (CCP) formulations can be em-
ployed to study material state fields within a microstructure even though they do
not accurately capture some aspects of plastic deformation at or below the micron
scale. As with all continuum plasticity formulations, CCP formulations must be sub-
jected to initial calibration to the particular material at hand. Calibration typically
consists of generating a polycrystal model—consisting of a representative popula-
tion of grain size, aspect ratio, and texture—and matching a simulated response to
an observed response by varying several material parameters. The result is a CCP
model that is calibrated to incorporate micron-scale mechanisms in a homogenized
sense.

Even with their quantitative limitations, CCP formulations are being used in con-
junction with precise geometrical representations of metallic microstructures to de-
velop a dramatically improved understanding of the sequence of plastic dissipa-
tion preceding crack growth at the micron scale. By incorporating models for slip
accumulation, a relationship between plastic exhaustion and crack growth can be
computed [17].
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Fig. 1.9 Computed slip fields near a cracked constituent particle that was observed to nucleate a
crack into the surrounding grains

Fig. 1.10 Computed slip fields near a cracked constituent particle that was observed NOT to nu-
cleate a crack into the surrounding grains

To better understand the plastic dissipation during cyclic loading that precedes
nucleation events, finite element models were generated using observed microstruc-
tural data—constituent particles and grain texture and geometry—and slip localiza-
tion and accumulation was computed near cracked particles [18]. Figures 1.9 and
1.10 illustrate the computed slip localization near a cracked constituent particle in
aluminum AA 7075-T651 for two such models. The contoured fields in both figures
are the maximum value of slip on any one of the twelve-face-centered cubic (FCC)
slip systems; the corresponding values given by the contour bars are the magnitude
of slip on the dominant system. The particle shown in Fig. 1.9, P50, was observed
to nucleate a crack into the surrounding grains, while the particle in Fig. 1.10, P135,
did not. It is apparent from these results that slip localization and accumulation
(i.e., plastic dissipation) plays a governing role in crack nucleation at this scale;
see [17] for further discussion. Figures 1.9 and 1.10 also show the correspondence
between computed slip localization and dominant slip system directions, as mea-
sured via electron backscatter diffraction (EBSD). However, the directions of slip
localization did not correspond with the nucleation direction, given by the dotted
line in Fig. 1.9. This observation leads to a hypothesis for crack trajectory based
on alternating shear or maximum tangential stress with neighboring grains. More
simulations are currently underway to investigate these hypotheses.
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Experimental Investigations at the Microscale

An environmental scanning electron microscope (ESEM) equipped with in situ
loading frame and EBSD system has been developed to characterize damage pro-
cesses in single crystals of pure aluminum and polycrystalline aluminum alloys
(Fig. 1.11). The EBSD orientation mapping tools can be used to measure the extent
of high plastic deformation near the fatigue crack tip and crack-tip wake. Plasticity
near the crack tip is related to the plastic strain gradients and thus the geometrically
necessary dislocation density.

Fig. 1.11 Mechanical loading frame in environmental scanning electron microscope (ESEM) for
the examination of damage propagation at high resolution

These dislocations result in bending of the lattice and may be detected as an ori-
entation gradient within a single grain. Additionally, a zone of “significant plastic
strain” about a fatigue crack tip and crack-tip wake can be determined by measuring
the width of the highly defected region (e.g., green-to-red rainbow color scheme on
misorientation maps). Experimentally determined locations of orientation disconti-
nuities, e.g., at sector boundaries, slip bands, near the crack tip, and GND densities
estimated from local lattice rotations can be compared with model predictions to
enable the physics-based models to include correct input parameters, such as source
and obstacle densities.

Recent studies [19, 20] of single crystals and bicrystals have shown that it is pos-
sible to extract some of the components of the Nye dislocation density tensor [21]
using orientation data obtained by EBSD mapping, provided that the crystal orien-
tation and deformation conditions are carefully controlled to constrain the number
of independent components. The present work follows [19] and [20] and consid-
ers a connection between the GND content and the lattice curvature tensor through
spatially resolved local orientation measurements using EBSD.
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Fig. 1.12 Maps of misorientation and geometrically necessary dislocation density. (a) EBSD mis-
orientation map (b) Enhanced dislocation density map

For the purpose of illustration, these approaches have been applied to the EBSD
orientation data obtained from the vicinity of a fatigue crack in precipitation-
hardened aluminum alloy Al-Cu-Mg 2024-T351. The intra-grain misorientation
map (Fig. 1.12a) displays changes in the local orientation, along with large amounts
of intragranular misorientation associated with the large plastic deformation in the
vicinity of a crack-tip wake [22]. White regions in Fig. 1.12a correspond to pix-
els that were not indexed. The misorientation map reveals distinctions in the mor-
phology of plastic damage, e.g., the presence of slipbands near the crack-tip wake.
These maps suggest the presence of a high dislocation content resulting in extensive
disorientation.

Figure 1.12b shows the estimated distribution of GND density within the scanned
area. The regions of lower dislocation density (i.e., base material,∼0.5–1×1014/m2)
are separated by regions of higher dislocation density (i.e., plastically deformed
crack wake, ≥ 1015/m2 and higher) and can be identified by marked
orientation change (Fig. 1.12a) or by the enhanced dislocation density (Fig. 1.12b)
[22]. The boundaries of these banded structures (dislocation patterning) contain a
high GND density, and regions within the bands are relatively free of dislocations
that contribute to lattice curvature. An inhomogeneous distribution of the disloca-
tion density becomes obvious for such cases.

The measurements of local orientation changes and estimates of GND content
near the crack tips and wakes of fatigue cracks can be qualitatively compared
with those predicted by computational models developed with the aid of molecular
dynamics and finite element simulations. This experimental effort will contribute a
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significant quantitative and physical understanding of damage mechanisms that will
enable next-generation damage models to progress beyond the current empirical
models.

In support of experimental studies at the microscale, a comprehensive metallic
materials processing facility has been established. This facility enables unique heat
treatments of commercially available alloys as well as for the production of ideal-
ized microstructures to study specific damage processes. Single and bi-crystalline
pure and simple alloy materials are manufactured using either the Czochralski or
Bridgman crystal growth methods. The materials are characterized for crystallo-
graphic orientation, and grain structure and mechanical test specimens are machined
to study specific damage processes in specific crystallographic orientations.

Discrete Dislocation Simulation

Unlike continuum plasticity formulations wherein the elastic-plastic constitutive
behavior is assumed, discrete dislocation plasticity approaches have been developed
to predict both the plastic stress-strain response and the corresponding evolution of
the dislocation structure as part of the solution [23]. Dislocation dynamics (DD)
simulation methods have been developed to represent large numbers of disloca-
tions at relatively large length scales compared to atomic dimensions. In these ap-
proaches, dislocations are represented as lines of displacement discontinuity where
the magnitude of the discontinuity is equal to the Burgers vector. Away from the
core region, the displacement, stress, and strain fields may be suitably represented
by analytic elasticity solutions. Thus, the displacements and velocities of individual
atoms are not computed. Simulations can involve infinite domains that are modeled
using periodic boundary conditions or as finite domains with various prescribed
boundary conditions.

In discrete dislocation plasticity, the goal of simulation is often to determine
the amount of plastic strain exhibited by a material due to the generation and in-
teraction of the dislocations. For example, Fig. 1.13 depicts the stress-strain re-
sponse of a single-crystal aluminum loaded in tension using the in-house developed
two-dimensional dislocation dynamics code DD-SIM. As shown, both the inelas-
tic plastic yielding together with hardening can be obtained directly from the
simulation [24].

Atomistic Simulation of Crack Growth

Atomistic simulation of fracture has been a topic of considerable study during the
past two decades. Early studies were focused on idealized perfect or non-defect
structures, but improved methodologies and increases in computing power are mak-
ing the study of deformation and fracture in structural materials attainable. Although
only very small volumes of material can be studied using atomistic simulation, the
studies employ interatomic potentials that are grounded in the results of ab initio
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Fig. 1.13 Stress-strain behavior of an aluminum material domain under normal tensile loading

calculations and hence give the promise of understanding damage processes at a
truly fundamental level (for an overview of atomistic simulation, see Allen and
Tildesley [25]).

Atomistic simulations are used to determine the fundamental processes of crack
initiation and growth including plastic mechanisms (e.g., twinning, dislocations,
stacking faults) and the creation of free surfaces (i.e., crack propagation).
Because of the extreme computational cost of interrogating large volumes of materi-
als with atomistic simulation, both concurrent and sequential multiscale methods are
being developed. The concurrent multiscale methods are developed to dramatically
improve computational efficiency by virtually embedding a small (several million
atom) atomistic simulation within a large finite element model [26], whereas the
sequential multiscale methods recast the results of the atomistic simulations for use
in continuum-based methods [27].

Fracture processes in aluminum and aluminum-based alloys are of particular in-
terest. Recently, a number of atomistic simulation studies on intergranular and trans-
granular crack propagation in aluminum have been published [27–31]. The results
of these investigations show that two main mechanisms of crack propagation and
plasticity operate at the nanoscale. These mechanisms include propagation through
deformation twinning and propagation through the emission of full dislocations
from the crack tip (see Fig. 1.14). One major finding of these and other atomistic
simulations disagrees with experiment: most atomistic simulations predict defor-
mation twinning as the dominant deformation mechanism, whereas experimental
observations show that dislocation slip is dominant in aluminum [28].

The discrepancy between simulations and experiments has attracted considerable
attention among researchers because it prevents the reliable and accurate modeling
of fracture in particular and puts doubt on the reliability of the atomistic simulations
in general [17, 31]. Most likely, the source of this discrepancy is related to the very
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Fig. 1.14 Twinning and slip near a crack tip [27]

different length (nanometers vs. millimeters) and time (nanoseconds vs. seconds)
scales at which simulations and experiments are usually performed. Nonetheless,
the exact mechanism of how these length and time scales affect the propagation
process remains unclear and is a very active topic of research.

To improve the understanding of the sources of the discrepancy between simu-
lation and experiment, a detailed study has been undertaken to determine the con-
ditions under which twinning or dislocation emission occur at a crack tip under
Mode I loading [32]. The recently developed embedded statistical coupling method
(ESCM) [26] for concurrent multiscale modeling was used. Studying the crack tip
nucleation process at different crack orientations and loads revealed the existence
of a transition stress intensity, KIT, below which the crack emits full dislocations
and above which deformation twinning becomes dominant. The transition stress in-
tensity was found to depend on the crystallographic orientation and temperature.
This understanding of the competition between the two mechanisms under the con-
ditions of an atomistic simulation will enable determination of the regimes that are
most suitable for study using these methods.

Fracture Mechanics of Composite Materials

The focus of much of the work conducted in the branch on composite materials
has centered on the investigation of the damage tolerance capabilities of laminated
composites and sandwich composites. A long-established theme of this work has
been the development of standardized testing practices for characterizing failure
modes of composite laminates, such as a double cantilever beam test [33] for mea-
suring mode I delamination resistance and a curved beam test [34] for measuring the
interlaminar strength of composite laminates. Efforts have also focused on compu-
tational methods for simulating failure mechanisms, geared towards improving the
design and certification of structure manufactured from composite materials. The
work was performed in support of a number of NASA aeronautics-related programs
and has included collaborative efforts with major domestic airframe manufacturers.
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Fig. 1.15 Delamination resistance curve (R-curve) and DCB specimen

Mode I Fatigue Delamination Round Robin

An ASTM International Round Robin test exercise [35] is being conducted to de-
velop a standard test method for mode I fatigue delamination propagation in uni-
directional fiber-reinforced polymer matrix composites. Round robin participants
include six different laboratories in three countries. The goal of this round robin is
to develop a standard test method for determining delamination growth rate under
constant amplitude fatigue loading as a function of the cyclic strain energy release
rate, GImax.

The round robin uses the double cantilever beam (DCB) specimen, shown in the
inset in Fig. 1.15, to determine the delamination growth rate, da/dN, of three differ-
ent laminated composite materials [35]. Currently, standards exist for using the DCB
specimen to determine mode I fracture toughness, GIc, (ASTM International Stan-
dard D5528) [33] and GImax for delamination onset under cyclic loading (ASTM
International Standard D6115) [36].

Prior to fatigue testing, static DCB tests were conducted on the test materials,
using ASTM Standard D5528, to determine critical displacement levels correspond-
ing to delamination onset and data reduction constants for the fatigue tests. There
is an artificial increase in the fracture toughness because the DCB specimen expe-
riences fiber bridging as the delamination grows. The resulting curve of toughness
vs. crack length, known as an R-curve, is shown in Fig. 1.15, where a polynomial
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Fig. 1.16 Delamination growth rate data normalized by R-curve

expression has been fit to the static data. In order to account for the effect of
fiber bridging in the fatigue tests, the fatigue data are normalized by this R-curve
expression [35].

Fatigue tests were conducted in displacement control using an R-ratio of 0.1
and a frequency of 10Hz. For DCB specimens under displacement control, da/dN
decreases as the delamination grows. To obtain the complete da/dN curve, tests were
run at a GImax level just below GIc and allowed to continue until delamination ar-
rested or until da/dN was 10−6mm/cycle or less. Figure 1.16 shows results of the
fatigue testing of five specimens of one material where the applied GImax has been
normalized by the plateau value of the R-curve (GIR). Delamination growth rates
were consistent for all five specimens. Typically, a power-law expression of the
form da/dN = A(GImax/GIR)

n is fit to this data plot, as shown in the figure. The
purpose of the round robin exercise is to streamline the test protocol to ensure that
the test yields reliable fatigue delamination growth data [35].

Analysis Benchmarking

Over the past two decades, the use of fracture mechanics has become common prac-
tice for characterization of the onset and growth of delaminations. In order to predict
delamination onset or growth, the calculated strain energy release rate components
are compared to interlaminar fracture toughness properties measured over a range
from pure mode I loading to pure mode II loading, using delamination growth char-
acterization tests similar to the specimen discussed in the previous section.

The virtual crack closure technique (VCCT) is widely used for computing energy
release rates based on results from 2D and 3D finite element analyses and for
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Fig. 1.17 Finite element mesh of a single-leg bending (SLB) specimen

supplying the mode separation required when using a mixed-mode fracture crite-
rion [37]. The VCCT procedure was recently implemented in the commercial finite

element codes ABAQUS�, MSC Nastran�, and Marc
TM

These implementations
must be benchmarked to ensure that the method reproduces accurately reference
solutions.

An approach for assessing the delamination propagation capabilities in com-
mercial finite element codes under static loading was demonstrated for VCCT for
ABAQUS� [38]. First, full three-dimensional finite element models of the single-
leg bending (SLB) specimen shown in Fig. 1.17 were developed. Second, starting
from an initially straight front, a benchmark solution that involved manual nodal
release and computation of fracture parameters using VCCT was developed. Third,
the commercial implementation was executed on an identical configuration. Com-
parison of the load-displacement relationship and the total strain energy release rates
obtained from the commercial implementation and the benchmark solution showed
that good agreement could be achieved by selecting the appropriate input parame-
ters as shown in Fig. 1.18. Selecting the appropriate input parameters, however, was
not straightforward and often required an iterative procedure. Overall, the results are
encouraging but further assessment on a structural level is required.

Ongoing efforts include the application of the recently developed benchmark

examples to the commercial finite element codes MSC Nastran
TM

and Marc
TM

.
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Fig. 1.18 Force-displacement response used in benchmarking procedure

Additionally, new benchmark examples are being created. The focus is on the as-
sessment of the delamination growth prediction capabilities in commercial finite
element codes when the specimen is subjected to cyclic loading.

Predicting Delamination Growth in Z-Pin-Reinforced Laminates

The previous two activities focused on methods for characterizing and analyzing
delamination growth in composite laminates. Work has also been conducted to eval-
uate new methods for enhancement of the delamination resistance of a laminate.
A number of techniques have been developed previously to achieve this enhance-
ment, including stitching [39] and a process known as z-pinning [40]. Both methods
involve the placement of fibers through the thickness of a laminate for the pur-
pose of providing closure tractions to delaminations. In the case of z-pinning, pul-
truded carbon rods, available in diameters ranging from 0.25 to 0.5 mm, are placed
into an uncured component using an ultrasonic hammer, as illustrated in Fig. 1.19a.
An example of z-pins bridging the delamination in a DCB specimen is pictured in
Fig. 1.19b.

As a delamination proceeds through a z-pin reinforced laminate, the pins first
provide elastic closure tractions that oppose the delamination process until the bond
between the pins and surrounding laminate begins to fail, after which the pins pull
out from one side of the delaminating sections. A laminate showing debonded and
partially debonded z-pins is shown in Fig. 1.19b. Subsequently, any analysis that
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Fig. 1.19 Z-pin insertion process and example of z-pins bridging a delamination. (a) Z-pin inser-
tion process (b) Z-pins bridging a delamination

Fig. 1.20 Model of DCB specimen reinforced with z-pins. (a) Model of DCB specimen. (b) Con-
stitutive z-pin failure law

aims to predict delamination growth under such circumstances must include the z-
pin failure mechanisms. A recent analysis method [41] that modeled the DCB spec-
imen as a cantilever beam and the bridging z-pins as a series of springs is illustrated
in Fig. 1.20a.

The analysis results in a closed-form solution of the specimen stiffness vs.
delamination length relationship, expressed generally as [41]:

Cn =
δn

P
= 2

[
a3◦

3EI
+

L3 − a3◦
3EzpIzp

]
+

1
3PEzpIzp

[
n

∑
i=1

kizia
2
i (ai − 3L)

]
(1)

where EI is the flexural rigidity of the beam. The other terms in Eq. (1) are illus-
trated in Fig. 1.20. The solution to Eq. (1) requires an iterative procedure in order
to account for the bilinear constitutive law that is employed to represent the z-pin
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Fig. 1.21 Disruption of fiber alignment due to presence of a z-pin

failure mechanism and is illustrated in Fig. 1.20b. Once Eq. (1) is solved for a range
of delamination lengths, the apparent debond toughness is computed using linear
elastic fracture mechanics. The analysis was used to study the effect of z-pin spacing
on delamination growth in the DCB specimens and also to estimate the enhancement
in fracture toughness relative to the parent material. This and other studies [42, 43]
indicated that small areal densities of z-pins, on the order of 1.5%, can increase
delamination resistance by an order of magnitude. It is noted however that the in-
clusion of z-pins in a laminate can negatively affect some in-plane properties, which
must therefore be evaluated when z-pins are being considered for use. An example
of work performed in the branch on this topic follows in the proceeding section.

Influence of Fiber Misalignment Due to Z-Pins on the Compressive
Response of Composite Laminates

Although the toughening properties of stitches, z-pins, and similar structures have
been studied extensively, only a few investigations have focused on the effect of
z-pins on the in-plane properties of laminates. Steeves demonstrated that disruption
in the alignment of the fibers in the composite leads to a significant reduction in the
in-plane compressive strength [44]. The z-pins may cause significant misalignment
of the fibers (see Fig. 1.21) of the composite because the diameter of the z-pins
(∼ 280–510 μm) is large relative to the diameter of the fibers (∼7μm). Previously,
Sun and coworkers studied the influence of shear loads on the uniaxial compression
strength of composites by testing an off-axis unidirectional lamina and extrapolating
the compression strength [45, 46]. They found that the addition of small shear loads
significantly reduce the compression strength of unidirectional composite lamina.

Therefore, the influence of compression and shear loads on the strength of com-
posite laminates with z-pins was evaluated parametrically using a 2D finite element
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code (FLASH) [47] based on Cosserat couple stress theory [48, 49]. Meshes of unit
cells were generated for three unique combinations of z-pin diameter and density
[50]. First, a laminated plate theory analysis was performed on several layups to
determine the biaxial stresses in the zero-degree plies. Second, these stresses were
used to determine the magnitude of the relative load steps prescribed in the FLASH
analyses. Results indicated that increasing pin density was more detrimental to in-
plane compression strength than increasing pin diameter. Compression strengths of
lamina without z-pins agreed well with a closed-form expression derived by Budian-
sky and Fleck [51]. FLASH results for lamina with z-pins were consistent with the
closed-form results, and FLASH results without z-pins, if the initial fiber waviness
due to z-pin insertion was added to the fiber waviness in the material to yield a total
misalignment. The addition of 10% shear to the compression loading significantly
reduced the lamina strength compared to pure compression loading. The addition
of 50% shear to the compression indicated shear yielding rather than kink-band
formation as the likely failure mode. Two different stiffener reinforced skin config-
urations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed.
Six unique loading cases ranging from pure compression to compression plus 50%
shear were analyzed assuming material fiber waviness misalignment angles of 0,
1, and 2 degrees. Compression strength decreased with increased shear loading for
both configurations, with the quasi-isotropic configuration yielding lower strengths
than the orthotropic configuration [50].

Designing Specimens for Characterizing Facesheet-Core
Debonding in Sandwich Structure

Other activities at NASA Langley examine the damage tolerance capabilities of
sandwich structure, with particular attention paid to sandwich employed in rotor-
craft, as discussed in the following two sections. A recent activity, in support of
NASA’s Subsonic Rotary Wing Program and in collaboration with researchers from
the University of Utah, is focused on the development of a standardized testing pro-
tocol for characterizing facesheet-core peel debonding in sandwich structure. The
purpose of the test is to determine the critical strain energy release rate, Gc, asso-
ciated with the facesheet-core debonding process. Following the recent identifica-
tion of an appropriate test specimen [52], namely, the single cantilever beam (SCB)
illustrated in Fig. 1.22, a procedure was developed for determining appropriate di-
mensions of the specimen [53].

The specimen sizing method is based on the beam-on-elastic-foundation model
of the SCB specimen, depicted in Fig. 1.22. Subsequent analysis yields a closed-
form solution of the stiffness-debond length relationship of the SCB specimen,
which is used in the computation of Gc, and is expressed as [54]

CSCB =
δ
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Fig. 1.22 Schematic and beam-on-elastic-foundation model of the SCB specimen

See [53] for a complete description of Eq. 2. This relationship is simplified to a
format that is acceptable for use in a standardized testing protocol by imposing lim-
itations on the SCB specimen dimensions, thereby resulting in the specimen design
method (details of the limitations imposed on the SCB specimen can be found in
[53]). With these limitations imposed, the stiffness-debond length relationship sim-
plifies to [53]

CSCB =
4

E f bt3
f

[
a+

1
λ

]3

(3)

In addition to obtaining the desired stiffness-debond length relationship, the sizing
method is also geared to result in specimens that behave in a linear elastic manner,
as required by the procedures used for computing Gc from the test data. The sizing
method will form part of the standardized testing protocol, developed under ASTM
International’s committee on composite materials, D30.

Predicting the Residual Compressive Strength
of Impact-Damaged Sandwich Panels

In addition to being susceptible to delamination, sandwich composite materials
are very susceptible to damage from out-of-plane loading, including low-velocity
impact. These structures must be designed to sustain ultimate load with barely vis-
ible impact (BVID) damage. BVID can result in a compressive strength reduction
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Fig. 1.23 Edgewise compression test on an impact-damaged sandwich panel

of 50% or more relative to an undamaged structure [55]. Subsequently, a series
of edgewise compression tests were conducted to identify mechanisms involved in
the compressive failure of impact-damaged sandwich panels, and analysis methods
were developed to predict residual compressive strength of impact-damaged sand-
wich panels, as detailed in this section.

In order to measure the residual compressive strength of impact-damaged sand-
wich panels, the specimens are subjected to an axial compressive load using a
test configuration similar to that shown in Fig. 1.23. Specimens subjected to this
test have been observed to fail via one of two distinct failure modes [55], namely,
kink-band propagation or indentation growth. Figure 1.24 shows shadow moiré im-
ages of failure sequences from the two failure modes. With kink-band propagation
(Fig. 1.24a), the damage acts as a stress concentration similar to an open hole. As a
compressive load is applied, the tows or fibers in the loading direction buckle and
break normal to the plane of the facesheet, creating a band of broken fibers (on both
sides of the impact damage) that propagates perpendicular to the loading direction.
This kink band continues to stably propagate away from the damaged region with
increasing load until a critical length is reached where the kink band becomes unsta-
ble, resulting in panel failure. For the indentation-growth failure mode (Fig. 1.24b),
the residual indentation from the impact buckles inward and expands as the com-
pressive load increases. The local buckle in the facesheet applies compressive loads
to the core, causing additional crushing as well as elastic deflections. When a criti-
cal compressive force is reached, the facesheet rapidly buckles across the width and
fails.
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Fig. 1.24 Examples of compressive failure modes (Pmax denotes force at panel failure). (a) Kink-
band propagation (b) Indentation growth

Fig. 1.25 Computing residual compressive strength associated with kink-band growth failure
mode

Two separate analysis methods have been developed to predict the residual com-
pressive strength of panels that exhibit either the kink-band or indentation-growth
failure mode. The method tailored towards the former failure mode proceeds in
two parts [56] and is a modification to a previous analysis [57] designed for pre-
dicting the residual compressive strength of impact-damaged, monolithic laminates.
In the first part, the far-field stress required for stable kink-band growth is com-
puted by modeling the damaged facesheet as an orthotropic plate with an open
hole (Fig. 1.25). This computation is repeated for a range of kink-band lengths and
plotted as illustrated in Fig. 1.25. In the second part, the far-field stress required
for unstable kink-band growth is computed using linear elastic fracture mechanics,
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Fig. 1.26 Finite element model for computing residual strength associated with indentation growth

where the apparent fracture toughness associated with kink-band growth is mea-
sured using the compact-compression test pictured in Fig. 1.25. This computation
is repeated for a range of kink-band lengths and superimposed onto the plot of far-
field stress for stable kink-band growth. Given that panel failure is actually observed
when kink-band growth transitions from stable to unstable conditions, the intersec-
tion of the plots in Fig. 1.25 is deemed to correspond to the residual strength of the
panel.

The method for predicting residual compressive strength of sandwich panels
exhibiting the indentation-growth failure mode involves a finite element model of
the impact-damaged facesheet and core material [58]. The facesheet is modeled us-
ing shell elements, with the impact damage represented as a residual indentation, as
depicted in the sample mesh shown in Fig. 1.26. The core material is represented us-
ing 2-node spring elements. Idealized constitutive traction laws shown in Fig. 1.26
are assigned to the spring elements to represent the crushing response of the core
material during the compression test. These traction laws are based on the crush re-
sponse of honeycomb structure subjected to flatwise compressive loading. The finite
element analysis is executed using the loading and boundary conditions illustrated
in Fig. 1.26. The global force-displacement response is computed at the end of each
increment of the analysis. An example of a typical force-displacement response is
presented in Fig. 1.27, where the maximum force is deemed to correspond to panel
failure (on the basis of experimentally observed force-displacement response), and
is thus used to compute residual compressive strength.
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Fig. 1.27 Computed sandwich panel force-displacement response

Fractographic Analysis

Expertise developed within the branch in the area of damage tolerance of composite
laminates has lead to requests for participation in aviation accident investigations,
as highlighted in the following discussion of a fractographic analysis conducted in
the branch in support of the American Airlines 587 accident investigation.

The accident investigation concerned the American Airlines Airbus A300–600R
aircraft that crashed shortly after takeoff from Kennedy International Airport in
November, 2001. The National Transportation Safety Board (NTSB) determined
that the likely cause of the crash was the in-flight separation of the vertical stabi-
lizer, arising from loads beyond ultimate design that were applied to the stabilizer.
It was found that the stabilizer had separated from the main fuselage of the aircraft
via failures of the stabilizer’s six main lug attachment points. Researchers from the
branch were requested by the NTSB to conduct fractographic analysis on samples
removed from the aircraft debris as part of an effort to determine the cause of the
accident [59].

Prior to the main fractography activities, a series of studies were conducted
to evaluate the general configuration of the laminated structure, including stack-
ing sequence, void content, chemical composition, and glass transition tempera-
ture. Specimens were removed from recovered debris, edges polished and examined
optically to determine stacking sequence and void content. Infrared spectroscopy
(IR) was used to determine chemical composition, and differential scanning calorime-
try (DSC), among other methods, was used to determine glass transition tempera-
ture, Tg. These investigations indicated that the general state of the laminate was
consistent with that prescribed by the manufacturers specifications.
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Fig. 1.28 Micrograph of failed fibers in lug attachment

An initial optical microscopy investigation was performed on recovered debris in
order to establish a preliminary determination of the sequence of events and failure
mechanisms involved in the failure of the composite lugs during detachment of the
vertical stabilizer. This investigation determined that the three right-hand lugs failed
in tension due to the bending moment-induced overloading, followed by a combi-
nation of tensile and compressive failures of the three left-hand lugs, caused by the
continued bending deformation of the stabilizer after the right-hand lugs had failed.

The remaining challenge for the investigation was to determine whether any frac-
ture events, such as delamination fatigue, had occurred prior to the accident. To
address this, an extensive examination of recovered debris was conducted using
scanning electron microscopy (SEM), involving magnifications ranging from 250X
to over 2000X. This series of inspections revealed that no fracture events occurred
prior to the accident, supporting the hypothesis that the failure was associated with
unanticipated, in-flight loading, rather than damage that may have accumulated dur-
ing the service of the aircraft. Data from the inspections also revealed the fracture
modes that took place in each lug, and the direction of fracture propagation. For
instance, the micrograph shown in Fig. 1.28 was used to reveal fracture surface fea-
tures of broken fibers in a lug that had failed under tension [59]. In this instance,
the crack growth direction of individual broken fibers (indicated by white arrows in
Fig. 1.28) was averaged to determine an overall direction of fracture in this section
of the lug [59].

Outlook

An overview of computational, analytical, and experimental strategies for frac-
ture mechanics and its application to understanding damage tolerance of aerospace
structures made of metallic and composite materials has been presented. Method-
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ologies for simulating and characterizing damage growth in metallic materials under
monotonic and cyclic loading were presented in this chapter, including continuum-
based mechanics as well as a new paradigm in damage mechanics, damage science.
In addition, damage tolerance capabilities for composite materials including current
computational and experimental methods for composite structures were discussed.

A multiscale view of fracture mechanics for metallic materials is being devel-
oped with the aim of better understanding the fundamental mechanisms of damage
progression at each relevant length scale. At the continuum scale, methods for pre-
dicting residual strength and fatigue crack growth in friction-stir-welded aluminum
panels were presented. New investigations into the mechanisms of fatigue crack
closure demonstrated that remote closure can occur when the testing parameters
recommended by the testing standard, ASTM E647, are greatly exceeded. These
continuum-level behaviors in metallic materials have underpinnings at the micro-
and nanoscales, so an understanding of the myriad of microscale and nanoscale
mechanisms is needed to fully understand continuum fracture mechanics. Thus,
damage science methodologies are being developed to facilitate the understanding
of durability and damage tolerance at a very fundamental level.

Recent developments for composite materials include the development of stan-
dardized test methods for delamination growth, prediction and verification methods
for characterization of delamination and debonding, and fractographic analysis for
determining underlying mechanisms of damage. The development of standardized
test methods for composite materials is focused on developing a means for gener-
ating reliable data for characterizing delamination growth rate under constant am-
plitude fatigue loading. In addition, a test method for characterizing facesheet-core
peel debonding in sandwich structure is being developed based on a specimen sizing
method acceptable for use in a standardized test protocol. Other developments for
composite materials include methods for predicting delamination growth in z-pin-
reinforced laminates, determining the effect of the z-pins on laminate compressive
strength, and predicting the residual compressive strength of impact-damaged sand-
wich panels. Finally, fractographic analysis has been used to determine mechanisms
of delamination growth and laminate failure during the American Airlines Flight
587 accident investigation.

The outlook for durability and damage tolerance or, more generally, structures
and materials includes a new paradigm in which models and experiments will
overwhelm data management, storage, and, more importantly, analysis capabili-
ties. Predictive capabilities will require multiscale and multi-physics software algo-
rithms to be compatible with modern computing platforms having tens of thousands,
or millions, of processors, including revolutionary computational paradigms (e.g.,
quantum computers). However, even with the most optimistic forecast of comput-
ing power, breakthroughs in computational methodologies are required to enable
the bridging of the vast length and time scales discussed previously. Moreover,
breakthroughs in experimental capabilities at all length scales are required to vali-
date the computational methods and to facilitate developing fundamental knowledge
in the assessment of structural and material response. This fundamental knowledge
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enables development of technologies to support the design, development, process-
ing, qualification, and sustainment of structural materials that are multifunctional,
lightweight, durable, and have optimized performance characteristics. These tech-
nologies optimize material development and reduce material insertion time while
enabling new and more aggressive structural designs for aerospace applications and
for more demanding space exploration missions.

A well-supported infrastructure must include evolutionary and revolutionary
computational and experimental facilities and the supporting personnel to oper-
ate them. Additionally, an environment that integrates analysis and experiment is
required to provide seamless interactions between test and analysis. Most impor-
tantly, personnel with expertise in computer science and algorithm development are
required to exploit the new computational architectures, develop new theories to
better understand physical phenomena, and develop experimental capabilities that
are needed to discover new phenomena, test hypotheses, and validate analyses.

Moreover, the future of structures and materials is based on knowledge beyond
traditional structural mechanics and materials science disciplines and must inte-
grate the previously disjoint testing and analysis elements of high-performance
computing, solid mechanics, and manufacturing. This multidisciplinary knowledge
base should address these disciplines including experimental methods development,
analytical model development and characterization, verification and validation, data
standards and structure, and manufacturing considerations. Skills that are criti-
cal to structures and materials include atomistic and multiscale simulation and
experimental capabilities, and optical microscopy, scanning electron microscope
and transmission electron microscope imaging, physical metallurgy, and organic
chemistry. Relevant skills in mathematics and computer science (e.g., finite element
analysis, molecular dynamics, multidisciplinary analysis and optimization, proba-
bility theory, and algorithm development for high-performance computing) are crit-
ical to multiscale, multidisciplinary simulation capabilities. Hence, the aforemen-
tioned personnel skills and facilities that integrate both experimental and compu-
tational capabilities offer the promise of dramatically increasing the insight of the
research engineers and facilitating their understanding of fundamental physical pro-
cesses in structures and materials.
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Chapter 2
On the Γ-Convergence Theory
and Its Application to Block Copolymer
Morphology

Xiaofeng Ren

Introduction

In this chapter we discuss one major phenomenon that has generated much interest
among analysts and applied mathematicians working in the area of the calculus
of variations. It is the rigorous study of singularly perturbed variational problems
and their associated Euler–Lagrange equations. Usually in such a problem a small,
positive parameter ε appears in front of the highest order term, often the gradient,
of the energy functional. Examples include the Allen–Cahn problem in the phase
transition theory, the Cahn–Hilliard problem for binary alloys, and the Ginzburg–
Landau problem for superconductors.

Singular perturbation is often accompanied by a concentration phenomenon. En-
ergy minimizers, local minimizers, and saddle points form localized structures such
as interfaces, droplets, spikes, and vortices.

One ingredient in many currently studied variational problems is non-locality.
Examples in condensed materials include charged Langmuir monolayers, chiral liq-
uid crystals, and most famously block copolymers. In the Ohta–Kawasaki density
functional theory of diblock copolymers there is a nonlocal quadratic term in the
integrand of the free energy functional. Non-locality may also be introduced by an
additional variable, like the magnetic field in the Ginzburg–Landau problem, that
mediates the primary variable nonlocally. Such non-locality often forces the above-
mentioned structures, like interfaces and droplets, to periodically repeat themselves.

We will discuss these issues with the diblock copolymer problem as the main ex-
ample, although the techniques one learns here may be used in many other problems.

The tool in our studies is the Γ-convergence theory developed by De Giorgi [5]
and later applied to some of the above-mentioned problems by Modica [9],
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Modica and Mortola [10], Kohn and Sternberg [8], Ren and Wei [15], and others.
This theory produces a singular limit, known as the Γ-limit, as the singular perturba-
tion parameter ε tends to zero. In the case of diblock copolymers the Γ-limit is a free
boundary problem which is simpler than the original integrodifferential equation.

The Γ-limit retains many vital properties of the original problem. Solving the
Γ-limit yields much information about the original problem. We will solve the Γ-
limit of the diblock copolymers in one dimension to obtain the so-called lamellar
solutions that are used to model one of the fundamental phases in the theory of block
copolymer morphology: the lamellar phase (see Fig. 2.1).

The Ohta–Kawasaki Theory of Diblock Copolymers

The main example in these lectures is the Ohta–Kawasaki density functional theory
of diblock copolymer morphology. A diblock copolymer melt is a soft material,
characterized by fluid-like disorder on the molecular scale and a high degree of order
at a longer length scale. A molecule in a diblock copolymer is a linear sub-chain of
A-monomers grafted covalently to another sub-chain of B-monomers. Because of
the repulsion between the unlike monomers, the different type sub-chains tend to
segregate, but as they are chemically bonded in chain molecules, segregation of
sub-chains cannot lead to a macroscopic phase separation. Only a local micro-phase
separation occurs: micro-domains rich in A monomers and micro-domains rich in B
monomers emerge as a result. These micro-domains form patterns that are known as
morphology phases. Various phases, including lamellar, cylindrical, spherical, and
gyroid, have been observed in experiments. See Fig. 2.1.

Fig. 2.1 The spherical, cylindrical, and lamellar morphology phases commonly observed in di-
block copolymer melts. The dark color indicates the concentration of type A monomers, and the
white color indicates the concentration of type B monomers

The free energy of a diblock copolymer melt proposed by Ohta and Kawasaki
[13] takes the form

I(u) =
∫

D
[
ε2

2
|∇u|2 +W(u)+

σ
2
|(−Δ)−1/2(u− a)|2]dx. (1)
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Here the sample occupies a bounded and smooth open set D in Rn. The physically
relevant dimensions are n = 1,2,3. A derivation of this model written for mathe-
maticians may be found in Choksi and Ren [3].

This is a rather complex variational problem. It was first introduced to mathe-
maticians by Nishiura and Ohnishi [12]. The function u is the density field. u(x) is
the relative density of A monomers at the place x in a sample. If u(x) is close to 1,
then A monomers occupy x; if u(x) is close to 0, then B monomers occupy x; if u(x)
lies between 0 and 1, then a mixture of A monomers and B monomers occupy x.

There are three parameters in this problem: ε , σ , and a. They are all positive. ε
must be small, and a must be strictly between 0 and 1, i.e.,

a ∈ (0,1). (2)

We will discuss σ a little later.
The function W is a balanced double well function. For simplicity we can take it

to be

W (t) =
1
4

t2(1− t)2. (3)

In general, W is a smooth function. W (t) ≥ 0 for all t ∈ (−∞,∞) and W (t) = 0 if
and only if t = 0 or t = 1. A technical condition is that W has a certain growth rate
which is quadratic, i.e., there exist t0 > 0, C1 > 0 and C2 > 0 such that for all t with
|t|> t0,

C1|t|2 ≤ W (t)≤ C2|t|2. (4)

Note that W in (3) does not have a quadratic growth rate. We can modify this W so
that for t ∈ [−1,2] it is given by (3) and for t ∈ (−∞,∞)\[−1,2], it is given by a
positive function which grows quadratically as |t| → ∞.

The nonlocal operator (−Δ)−1/2 is defined from the −Δ operator by first solving

−Δv = u− a in D, ∂νv = 0 on ∂D,

∫
D

v(x)dx = 0. (5)

This defines the operator (−Δ)−1 by (−Δ)−1(u−a)=v. On {w ∈ L2(D) :
∫

D w(x)
dx = 0}, (−Δ)−1 is a bounded and positive operator, for which one can define its
positive square root (−Δ)−1/2 via the spectrum of (−Δ)−1. Without the nonlocal
term or in other words if σ = 0 in (1), the functional I becomes the Cahn–Hilliard
functional [1] which is used to study binary alloys.

Of course for (5) to be solvable one must assume that
∫

D(u(x)−a)dx= 0. We use

u =
1
|D|
∫

D
u(x)dx (6)

to denote the average of u. Then we impose the condition u = a on u. Physically this
means that the average A monomer density in a sample is fixed at a and the average
B monomer density at 1 − a. This happens if all the chain molecules in a diblock
copolymer are the same. Moreover to make the first term in (1) meaningful, we need
u ∈ W 1,2(D).
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The Euler–Lagrange equation of I is an integrodifferential equation

− ε2Δu+W ′(u)+σ(−Δ)−1(u− a) = λ , in D; ∂νu = 0, on ∂D. (7)

The constant λ on the right side of the last equation is unknown. It is the Lagrange
multiplier corresponding to the constraint u = a.

The Γ-Convergence Theory

We now introduce the analytic tool of the Γ-convergence theory. The concept of this
convergence looks fairly simple.

Definition 1. Let Fε , ε > 0, be a family of functionals all defined on an admissible
set A that takes values in [−∞,∞]. Here A is a complete metric space with the
distance function d. Let F be another functional also from A to [−∞,∞]. We say
that Fε Γ-converges to F if the following two statements hold:

1. For every family {uε} ⊂ A with lim
ε→0

d(uε ,u) = 0, liminf
ε→0

Fε(uε)≥ F(u).

2. For every u ∈ A , there exists a family {uε} ⊂ A such that lim
ε→0

d(uε ,u) = 0 and

limsup
ε→0

Fε(uε)≤ F(u).

Note that we allow Fε to be ±∞. An obvious property of Γ-convergence is that it
is robust under continuous perturbation.

Proposition 2. Suppose Fε: A → [−∞,∞] Γ-converges to F. If G: A → (−∞,∞) is
a continuous functional with respect to the metric d on A , then Fε +G Γ-converges
to F +G.

To apply this theory to the Ohta–Kawasaki functional I we need to choose the
parameter σ properly. The correct choice is that σ has the same order as ε . We
assume that there exists a fixed γ independent of ε such that

σ = εγ. (8)

Rewrite the functional I as

Iε(u) =
∫

D
[
ε2

2
|∇u|2 +W(u)+

εγ
2
|(−Δ)−1/2(u− a)|2]dx. (9)

Here we emphasize that in the notation Iε , ε is the singular perturbation parameter.
In the Γ-convergence theory, ε tends to 0. The problem has two other parameters: a
and γ which are held fixed in the Γ-convergence process. We want to be a bit more
flexible about the admissible set of Iε . We define Iε on

Aa = {u ∈ L2(D) : u = a}. (10)
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If u happens to be in W 1,2(D), then Iε(u) is given by (9); otherwise we set Iε(u) =∞.
It turns out that in this setting ε−1Iε has a Γ-limit.

Let us define this limit functional now and prove that it is indeed the Γ-limit later.
The functional is denoted by J. We first define it for subsets E of D whose Lebesgue
measure is a|D|, i.e.,

|E|= a|D|, (11)

and whose characteristic function

χE(x) = 1 if x ∈ E, χE(x) = 0 if x �∈ E (12)

is in BV (D). Here BV (D) is the space of all functions of bounded variation on D.
For such an E we set

J(E) = τ‖DχE‖(D)+
γ
2

∫
D
|(−Δ)−1/2(χE − a)|2 dx. (13)

The constant τ in (13) depends on the double well potential W :

τ =
∫ 1

0

√
2W(t)dt. (14)

This constant is called the surface tension. See the appendix for more thorough
discussion on this number.

The nonlocal term in (13) is similar to that in (1). The only difference is that
here χE is the characteristic function of a set while in (1) there is a more general
function u. The first term ‖DχE‖(D) needs some explanation. Since χE ∈ BV(D),
we view DχE as a vector valued, signed measure, and let ‖DχE‖ be the positive total
variation measure of DχE . The first term in (13), ‖DχE‖(D), is the ‖DχE‖ measure
of the entire domain D. When ∂DE is a smooth surface or a union of smooth surfaces,
‖DχE‖(D) is just the area of ∂DE . For this reason ‖DχE‖(D) is called the perimeter
of E in D and is sometimes denoted by PD(E).

Now as in the definition of Iε we extend the admissible set of J to the same Aa.
Namely, if an element u in Aa is the characteristic function χE of a set E and χE is
in BV (D), then J(u) is given by (13); otherwise we set J(u) = ∞.

On Aa we use the L2-norm ‖ · ‖2 to define the metric, i.e., for u1,u2 ∈ Aa,

d(u1,u2) = ‖u1 − u2‖2. (15)

A few more words on ‖DχE‖(D). This quantity can be alternatively given by the
formula

‖DχE‖(D) = sup{
∫

D
χE(x)divσ(x)dx : σ ∈ C∞

0 (D;Rn), |σ | ≤ 1}. (16)

There is a structure theorem which says that one can define a measure theoretic
boundary of E , denoted by ∂ ∗E called the reduced boundary, such that the measure
‖DχE‖ is exactly the n−1 dimensional Hausdorff measure Hn−1 restricted to ∂ ∗E .
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The reduced boundary ∂ ∗E coincides with the topological boundary ∂DE when E
is smooth. In general ∂ ∗E ⊂ ∂DE . Note that being measure theoretic, one may add
to or delete from E any set of Lebesgue measure 0 without changing ∂ ∗E . See [6,
Sect. 5.7] for more discussion on this subject.

The functional J has an elegant Euler–Lagrange equation. If E is a critical point
of J and ∂DE , the boundary of E in D, is smooth, then on every point of ∂DE

H(∂DE)+ γ(−Δ)(χE − a) = λ . (17)

Here H is the curvature of ∂DE if E ⊂ D ⊂ R2, and H is the mean curvature of
∂DE if E ⊂ D ⊂ R3. If E ⊂ D ⊂ R1, then H(∂DE) = 0. The constant λ is again a
Lagrange multiplier corresponding to the condition that |E| = a|D|. Equation (17)
is a free boundary problem. It states that the sum of the curvature of ∂DE and
γ(−Δ)−1(χE−a) at every x ∈ ∂DE is constant.

The main result in this section is the following lemma:

Lemma 3. ε−1Iε Γ-converges to J.

Proof. Let us write

ε−1Iε = Lε +N (18)

where

Lε (u) =
∫

D
[
ε
2
|∇u|2 + 1

ε
W (u)]dx (19)

if u ∈ W 1,2(D) and Lε(u) = ∞ if u ∈ Aa\W 1,2(D), and

N(u) =
γ
2

∫
D
|(−Δ)−1/2(u− a)|2 dx, u ∈ Aa. (20)

Here Lε is a local functional and N a nonlocal functional. The functional N is con-
tinuous on Aa with respect to its metric. Therefore by Proposition 2 it suffices to
prove that Lε Γ-converges to L where L is

L(E) = τ‖DχE‖(D), (21)

if u= χE for some Lebesgue measurable set E and χE ∈BV (D); otherwise L(u)=∞.
With these notations, J = L+N.

The Γ-convergence of Lε to L was studied by Modica [9]. We only prove the first
property in Definition 1. The proof of the second property is more involved, and we
refer to [9, Lemma 2, Proposition 2]. Suppose uε → u in L2(D). Let

φ(t) =
∫ t

0
W 1/2(s)ds. (22)

We first claim that φ(uε) converges to φ(u) in L1(D). For this we need Vitali’s
convergence theorem [7, p. 203].
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Vitali’s Convergence Theorem. Let { fn} be a sequence in Lp(D,μ), 1 ≤ p < ∞,
and f be an μ-measurable function such that fn → f μ-a.e. Then f ∈ Lp(D,μ) and
‖ fn − f‖p → 0 if and only if:

1. For each ε > 0, there is a μ-measurable set Aε ⊂ D such that μ(Aε) < ∞ and∫
D\Aε | fn|p dμ < ε for all n.

2. For each ε > 0 there is δ > 0 such that for every μ-measurable set S, μ(S)< δ
implies

∫
S | fn|p dμ < ε for all n.

Part 1 of Vitali’s convergence theorem is not needed here because D itself has finite
Lebesgue measure. Let {uεn} = {un} be any sequence in {uε}, εn → 0 as n → ∞,
un → u in L2, and un → u a.e. By Vitali’s convergence theorem, for every ε > 0 there
exists δ > 0 such that for every S, |S| < δ , one has

∫
S u2

n dx < ε for all n. Then (4)
implies that

|φ(t)| ≤ C+Ct2, (23)

and consequently ∫
S
|φ(un)|dx ≤ Cδ +Cε.

The Vitali’s theorem applied to φ(un) implies that φ(un) converges to φ(u) in L1(D).
If liminfn→∞ Lεn(un) = ∞, then the first property of Definition 1 holds trivially.

Thus we assume that Lεn(un) is bounded in n. The Fatou’s lemma now implies that

0 ≤
∫

D
W (u)≤ liminf

n→∞

∫
D

W (un)dx ≤ liminf
n→∞

εnLεn(un) = 0.

Then for a.e. x ∈D, u(x)= 0 or 1. We can write u= χE where E = {x∈ D : u(x) = 1}
is measurable.

Simple estimation shows that

Lεn(un) =
∫

D
[
εn

2
|∇un|2 + 1

εn
W (un)]dx

≥
√

2
∫

D

√
W (un)|∇un|dx

=
√

2
∫

D
|∇φ(un)|dx

The lower semi-continuity of the BV norm [6, Theorem 1, page 172] asserts that,
since φ(un)→ φ(u) in L1,

liminf
n→∞

∫
D
|∇φ(un)|dx ≥ ‖Dφ(u)‖(D).

Hence
liminf

n→∞
Lεn(un)≥

√
2‖Dφ(u)‖(D).
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Finally we note that since u = χE , φ(u) = φ(1)χE . Then

√
2‖Dφ(u)‖(D) =

√
2φ(1)‖DχE‖(D) = τ‖DχE‖(D).

Therefore
liminf

n→∞
Lεn(un)≥ L(E).

This, together with [9, Lemma 2, Proposition 2], proves the lemma.

Global and Local Minimizers

Let us see how the theory of Γ-convergence helps us understand the minimizers,
local and global, of Fε and F . The following proposition is easy to prove.

Proposition 1. Suppose that Fε Γ-converges to F and Fε has a global minimizer uε .
If uε converges, possibly along a subsequence {uεn}, to u0 in A , then u0 is a global
minimizer of F and limn→∞Fεn(uεn) = F(u0).

Proof. The first property in Definition 1 says that

liminf
n→∞

Fεn(uεn)≥ F(u0). (24)

Let u ∈ A be an arbitrary element. The second property in Definition 1 says that
there exists vεn ∈ A such that vεn → u in A and

limsup
n→∞

Fεn(vεn)≤ F(u). (25)

Since uεn minimizes Fεn , Fεn(uεn)≤ Fεn(vεn). Then (24) and (25) imply that

F(u0)≤ F(u), (26)

i.e., u0 is a global minimizer of F .
If we take u to be u0 in (25), then

limsup
n→∞

Fεn(vεn)≤ F(u0). (27)

Now Fεn(uεn)≤ Fεn(vεn) and (24) imply that

F(u0)≤ liminf
n→∞

Fεn(uεn)≤ limsup
n→∞

Fεn(uεn)≤ F(u0).

Therefore limn→∞Fεn(uεn) = F(u0).
In the last proposition we need an extra assumption that uεn converges to u0 in

A . In general the two properties in the Definition 1 are often insufficient when one
studies the relationships between the minimizers of Fε and those of F . We now add
another property, which is a kind of uniform coercivity, to the Γ-convergence theory.
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Definition 2. Let Fε be a family of functionals from a complete metric space A to
[−∞,∞]. Then Fε is said to be uniformly coercive if for every sequence {uεn} ⊂ A ,
εn → 0 as n →∞, with Fεn(uεn) bounded with respect to n, there is a subsequence of
{uεn} which converges in A .

Lemma 3. The family of the functionals ε−1Iε is uniformly coercive, i.e., every
sequence {uεn} with the property that ε−1

n Iεn(uεn) is bounded has a convergent sub-
sequence {uεnl

} whose limit u is χE for some measurable set E and χE ∈ BV(D).

Proof. Let us denote uεn by un for simplicity. Set

φ(t) =
∫ t

0
W 1/2(s)ds. (28)

Then (4) implies

|φ(t)| ≤ C+C|t|2.
Set wn = φ(un). We claim that wn is bounded in W 1,1(D). For by (4), we find

|wn| ≤ C+C|un|2 ≤ C+CW(un).

Therefore since ε−1
n Iεn(un) is bounded, {wn} is bounded in L1(D). On the other

hand, ∫
D
|∇wn|dx =

∫
D

W 1/2(un)|∇un|dx

≤
√

2
2

(
∫

D
[
εn

2
|∇un|2 + 1

εn
W (un)]dx)

≤
√

2
2

Lεn(un).

So {wn} is bounded in W 1,1(D). The Sobolev embedding theorem asserts that {wn}
is relatively compact in L1(D).

Now consider un = φ−1(wn). Equations (4) and (28) imply that

|φ−1(t)| ≤ C+C|t|1/2, |φ−1(t)|2 ≤ C+C|t|. (29)

To prove that {un} is relatively compact we show that every subsequence of {un}
has a L2-convergent further subsequence. Let {unl} be a subsequence of {un}.
Then there is a subsequence of {wnl = φ(unl )}, denoted by {wnlm

}, and a func-
tion w ∈ L1(D) such that wnlm

→ w in L1 and wnlm
→ w a.e. Then unlm

→ φ−1(w)
a.e. Applying Vitali’s convergence theorem to wnlm

, we find that for every ε > 0
there is δ > 0 such that for every measurable set S, |S|< δ implies

∫
S |wnlm

|dx < ε
for all m. Then (29) implies

∫
S
|unlm

|2 dx ≤
∫

S
(C+C|wnlm

|)dx <Cδ +Cε.
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Now Vitali’s convergence theorem applied to {unlm
} asserts that unlm

→ φ−1(w) in
L2(D).

Let u be the limit of a subsequence {unl} of {un}. We now show that u = χE

for some measurable set E and χE ∈ BV (D). By passing to a further subsequence
if necessary we can assume that unl converges to u a.e. The Fatou’s lemma and the
boundedness of ε−1

n Iεn(un) imply that

0 ≤
∫

D
W (u)≤ liminf

l→∞

∫
D

W (unl )dx ≤ liminf
l→∞

Iεnl
(unl ) = 0.

Then for a.e. x ∈ D, u(x) = 0 or 1. We can write u = χE where E = {x ∈ D : u(x) =
1}. If we consider wnl = φ(unl ), then the boundedness of {wnl} in W 1,1(D), proved
earlier, implies that φ(u), the L1-limit of {wnl}, is a BV function. Again we have
used the lower semi-continuity of the BV norm. Since φ(u) = φ(1)u, u = χE is also
in BV (D).

The next important proposition is proved by Kohn and Sternberg [8]. We denote
an open ball in A centered at u0 of radius δ by Bδ (u0), i.e.,

Bδ (u0) = {u ∈ A : d(u,u0)< δ}. (30)

Proposition 4. Suppose that Fε Γ-converges to F and that Fε is uniformly coercive.
Assume that in every close ball B ⊂ A , Fε has a minimizer. Let δ > 0 and u0 ∈ A
be such that F(u0)< F(u) for all u ∈ Bδ (u0) with u �= u0. Then there exists ε0 > 0
such that for all ε < ε0 there exists uε ∈ Bδ/2(u0) with Fε(uε) ≤ Fε(u) for all u ∈
Bδ/2(u0). In addition limε→0 d(uε ,u0) = 0.

Proof. Let uε ∈ Bδ/2(u0) be a minimizer of Fε in Bδ/2(u0). We claim uε ∈ Bδ/2(u0)
if ε is small enough, i.e., uε is not on the boundary of Bδ/2(u0). Otherwise there
exists a sequence εl → 0, such that d(uεl ,u0) = δ/2 and

Fεl (uεl ) = min
u∈Bδ/2(u0)

Fεl (u).

Property 2 of Definition 1 asserts that there exists a sequence vεl in Bδ/2(u0), if l
is large enough, such that

limsup
l→∞

Fεl (vεl )≤ F(u0).

Therefore,
limsup

l→∞
Fεl (uεl )≤ limsup

l→∞
Fεl (vεl )≤ F(u0). (31)

Definition 2 then asserts that, after passing to a subsequence, again denoted by uεl ,
there exists u0 such that uεl → u0 in A and d(u0,u0) = δ/2. Part 1 of Definition 1
now implies

F(u0)≤ liminf
l→∞

Fεl (uεl ).

By combining this with (31) we find that
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F(u0)≤ liminf
l→∞

Fεl (uεl )≤ limsup
l→∞

Fεl (uεl )≤ F(u0).

This contradicts the condition that F(u0) < F(u) for all u ∈ Bδ (u0) with u �= u0.
Therefore uε is in the open ball Bδ/2(u0), i.e., uε is a local minimizer of Fε .

To show uε → u0 as ε → 0, we assume that there exists a sequence εl → 0 such
that d(uεl ,u0) ≥ δ0 and δ0 < δ/2. Then arguing like above, we have ũ0 such that,
after passing to a subsequence, again denoted by uεl , uεl → ũ0 and d(ũ0,u0) ≥ δ0.
By Part 1 of Definition 1 and (31),

F(ũ0)≤ liminf
l→∞

Fεl (uεl )≤ F(u0),

which is again a contradiction.
In this proposition we have assumed that Fε has a minimizer in each closed ball

B. This property is satisfied by our Ohta–Kawasaki functional Iε . The proof of this
is standard minimization argument.

The Lamellar Phase of Diblock Copolymers

The lamellar phase of a diblock copolymer is plotted in Fig. 2.1. To study this pat-
tern, we look at a line perpendicular to the parallel layers. Therefore we consider
the one-dimension case D = (0,1).

A characteristic function χE in BV (0,1), up to a set of Lebesgue measure 0, is
a step function. χE switches between 0 and 1 at finitely many points x1,x2, . . . ,xK ,
with 0 < x1 < x2 < .. . < xK < 0. The set {x1,x2, . . . ,xK} is the reduced boundary of
E denoted by ∂ ∗E [6, Sect. 6.7, pages 194–207].

If χE ∈ Aa ∩BV (0,1), ‖DχE‖(0,1) has to be nonzero. Otherwise χE would be a
constant. Then χE(x) = 0 for a.e. x ∈ (0,1) or χE(x) = 1 for a.e. x ∈ (0,1). In either
case
∫ 1

0 χE �= a ∈ (0,1). So we have the following mutually disjoint decomposition:

Aa ∩BV ((0,1),{0,1}) = ∪∞
1 AK , where (32)

AK = {χE ∈ Aa ∩BV ((0,1),{0,1}) : ‖DχE‖(0,1) = K}.

Here BV((0,1),{0,1}) is the set of the BV functions that only take values in {0,1}.
Two characteristic functions are particularly important in AK . Let

z1 =
1− a

K
, z3 = z1 +

2
K
, z5 = z3 +

2
K
, . . . (33)

and

z2 =
1+ a

K
, z4 = z2 +

2
K
, z6 = z4 +

2
K
, . . . . (34)

Define

UK,0(x) =

{
0 if x ∈ (0,z1)∪ (z2,z3)∪ (z4,z5)∪ . . . ,
1 if x ∈ (z1,z2)∪ (z3,z4)∪ (z5,z6)∪ . . .

. (35)
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Let

z1 =
a
K
, z3 = z1 +

2
K
, z5 = z3 +

2
K
, . . . (36)

and

z2 =
2− a

K
, z4 = z2 +

2
K
, z6 = z4 +

2
K
, . . . . (37)

Define

UK,1(x) =

{
1 if x ∈ (0,z1)∪ (z2,z3)∪ (z4,z5)∪ . . . ,
0 if x ∈ (z1,z2)∪ (z3,z4)∪ (z5,z6)∪ . . .

. (38)

Lemma 1. For every χE ∈ AK, χE �= UK,0, and χE �= UK,1, we have J(UK,0) =
J(UK,1)< J(E).

Proof. For each χE ∈ AK , let us denote ∂ ∗E by {x1,x2, . . . ,xK}, where 0 < x1 <
x2 . . . < xK < 1. Since ‖Du‖(xi,xi+1) = 0 for each i and (xi,xi+1) is connected, χE =
0 for a.e. x ∈ (xi,xi+1) or χE = 1 for a.e. x ∈ (xi,xi+1). And it follows from the
definition of reduced boundaries [6, p. 194] that χE(x) must jump from 0 to 1 or 1
to 0 when x moves from (xi−1,xi) to (xi,xi+1). We can further decompose AK into
two disjoint sets:

AK,0 = {χE ∈ AK : u = 0, for a.e. x ∈ (0,x1)},
AK,1 = {χE ∈ AK : u = 1, for a.e. x ∈ (0,x1)}. (39)

For χE ∈ AK,0 the constraint
∫ 1

0 χE = a becomes −x1 + x2 − x3 + x4 . . .= a, and for
χE ∈ AK,1 the constraint

∫ 1
0 χE = a becomes x1 − x2 + x3 − x4 . . .= a.

Now AK,0 can be identified with the set

AK,0 = {(x1, . . . ,xK) ∈ RK : 0 < x1 < .. .xK < 1, −x1 + x2 − x3 + x4 . . .= a}, (40)

and AK,1 can be identified with the set

AK,1 = {(x1, . . . ,xK) ∈ RK : 0 < x1 < .. .xK < 1, x1 − x2 + x3 − x4 . . .= a}. (41)

In AK,0 and AK,1, the functional J becomes a function of (x1,x2, . . . ,xK). We
want to find all critical points of J in AK,0 and AK,1. Consider the case χE ∈ AK,0.
The case χE ∈ AK,1 is similar. First consider N(E), the nonlocal part of J(E). Let v
be the solution of

−v′′ = χE − a, v′(0) = v′(1) = 0,
∫ 1

0
v = 0.

Sometimes we write v(x) = v(x;x1,x2, . . . ,xK) since v depends on x1,x2, . . . ,xK .
Denote the Green’s function of this equation by G(x,y). Then

N(E) =
γ
2

∫ 1

0
[(−Δ)−1/2(χE − a)]2 dx

=
γ
2

∫ 1

0
(χE − a)vdx
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=
γ
2

∫ 1

0
χEvdx

=
γ
2
[

∫ x2

x1

vdx+
∫ x4

x3

vdx+ . . .].

Treating N as a function of (x1,x2, . . . ,xK) in AK,0, we calculate

∂N(E)
∂x1

=
γ
2
[−v(x1;x1, . . . ,xK)+

∫ 1

0
χE

∂v
∂x1

dx].

Since

∂v(x;x1, . . . ,xK)

∂x1
=

∂
∂x1

∫ 1

0
(χE − a)G(x,y)dy

=
∂
∂x1

∫
E

G(x,y)dy

=
∂
∂x1

[

∫ x2

x1

G(x,y)dy+
∫ x4

x3

G(x,y)dy+ . . .]

= −G(x,x1),

we deduce

∂N(E)
∂x1

=
γ
2
[−v(x1;x1, . . . ,xK)−

∫ 1

0
χE(x)G(x,x1)dx]

= −γv(x1;x1, . . . ,xK)

The same argument applied to differentiations with respect to the other xi’s yields

∇N(x1, . . . ,xK) = γ(−v(x1;x1, . . . ,xK),v(x2;x1, . . . ,xK), . . . ,

(−1)Kv(xK ;x1, . . . ,xK)). (42)

Since
∫ 1

0 χE = a, or −x1 + x2 − . . . = a, the Lagrange multiplier method asserts
that if (x1,x2, . . . ,xK) is a critical point of N in AK,1, there exists λ such that

∇N(x1, . . . ,xK) = λ (−1,1,−1, . . . ,(−1)K).

Then (42) implies that

v(x1;x1, . . . ,xK) = v(x2;x1, . . . ,xK) = . . .= v(xK ;x1, . . . ,xK). (43)

On (x1,x2), v solves the linear equation −v′′ = 1−a. Then v(x1) = v(x2) implies
that v is symmetric about (x1 + x2)/2, and hence v′(x1) = −v′(x2). On intervals
(0,x1) and (x2,x3), v satisfies the linear equation −v′′ = −a. Since v also satisfies
the conditions v(x1) = v(x2), v′(x1) =−v′(x2), v(x2) = v(x3), and v′(0) = 0, we con-
clude by solving the equation on (0,x1) and (x2,x3) that v on (0,x1) is a reflection
of v on (x2,(x2 + x3)/2). Hence the length of (0,x1) is half of that of (x2,x3). Next
we compare intervals (x2,x3) and (x4,x5) and similarly find that they have the same
length. By repeating this argument we conclude that the intervals where χE = 0 all
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have the same length with the exception of (0,x1) and possibly (xK ,1) if χE = 0
there, whose length is half. The same can be said for the intervals where χE = 1.
Taking −x1 + x2 − x3 + x4 . . .= a into consideration, we find that

x1 =
1−a

K
, x3 = x1+

2
K
, x5 = x3+

2
K
, . . . , x2 =

1+a
K

, x4 = x2+
2
K
, x6 = x4+

2
K
, . . . .

This means that χE =UK,0.
We have proved that N has a unique critical point UK,0 in AK,0. Similarly UK,1 is

the only critical point of N in AK,1. We proceed to prove that UK,0 minimizes N in
AK,0. We first compute N(UK,0). Let v be the solution of

−v′′ =UK,0 − a, v′(0) = v′(1) = 0,
∫ 1

0
v = 0.

Then

N(UK,0) =
γ
2

∫ 1

0
(UK,0 − a)v =

γ
2

∫ 1

0
|v′|2

On (0,x1) v′(x) = ax+ v′(0) = ax. Then

γ
2

∫ x1

0
|v′|2 = γa2x3

1

6
=

γa2(1− a)3

6K3 .

On (x1,(x1+x2)/2), v′(x) =−(1−a)(x−(x1+x2)/2)+v′((x2+x2)/2) =−(1−a)
(x−(x1 + x2)/2). Then

γ
2

∫ (x1+x2)/2

x1

|v′|2 = γ(1− a)2

6
(

x2 − x1

2
)3 =

γ(1− a)2a3

6K3 .

On the whole interval (0,1), we deduce

γ
2

∫ 1

0
|v′|2 = K

γ
2

∫ (x1+x2)/2

0
|v′|2 = K[

γa2(1− a)3

6K3 +
γ(1− a)2a3

6K3 ] =
γa2(1− a)2

6K2 .

Hence

N(UK,0) =
γa2(1− a)2

6K2 . (44)

Similar argument shows that

N(UK,1) =
γa2(1− a)2

6K2 . (45)

We now show that N(χE)>N(UK,0) for every χE ∈ AK,0, χE �=UK,0. If this is not
the case, since there is only one critical point, UK,0, in AK,0, there must be a sequence
{(xn,1,xn,2, . . . ,xn,K)} converging to a point (y1,y2, . . . ,yK) on the boundary of AK,0

such that
lim
n→∞

N(xn,1,xn,2, . . . ,xn,K)≤ N(UK,0).
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For the point (y1,y2, . . . ,yK) to be on the boundary of AK,0, at least two of
0,y1, . . . ,yK ,1 must be identical. Then (y1,y2, . . . ,yK) is identified as a point in AK′,0
or AK′,1 for some K′ < K. Let us denote this point by (z1,z2, . . . ,zK′) and assume,
without the loss of generality, (z1,z2, . . . ,zK′) ∈ AK′,0. We ask whether UK′,0 is the
strict minimum of N in AK′,0. If so,

N(UK′ ,0)≤ N(z1,z2, . . . ,zK′) = lim
n→∞

N(xn,1,xn,2, . . . ,xn,K)≤ N(UK,0),

which, since K′ < K, is inconsistent with (44), where N(UK,0) = N(UK,1) decreases
in K. If UK′,0 is not the strict minimum of N in AK′,0, we use the same argument
on UK′,0 and end up in a AK′′,0 or AK′′,1 with K′′ < K′. This process stops at K = 1,
and there since A1,0 has only one element U1,0 and A1,1 has only one element U1,1,
each is trivially regarded as the strict minimum in its class. Thus we find N(U1,0) =
N(U1,1)≤ N(UK,0), inconsistent with (44) or (45).

So we have proved that UK,0 is the strict minimum of N in AK,0. And since for
χE ∈ AK,0, J(E) = τK +N(E), Lemma 1 is proved.

We now show that the UK,0’s and the UK,1’s are strict local minimizers of J in Aa

under the L2-norm.

Lemma 2. Given any positive integer K, one can find δ > 0 such that for all u ∈
Bδ (UK,0) with u �= UK,0, J(UK,0) < J(u) and for all u ∈ Bδ (UK,1) with u �= UK,1,
J(UK,1)< J(u).

Proof. Let us only consider UK,0. The study of UK,1 is the same. Take δ to be a
positive number to be specified later. Let u ∈ Bδ (UK,0) and u �=UK,0.

If u ∈ AK,0, then Lemma 1 implies Lemma 2.
If u ∈ AK,1, then we choose δ small enough so that UK,1 �∈ Bδ (UK,0). Then u �=

UK,1 and Lemma 1 again implies Lemma 2.
Now we consider u ∈ Aa\AK . If u ∈ (Aa\AK)\BV ((0,1),{−1,1}), then J(UK,0)

< J(u) = ∞.
So we need only to consider u ∈ (Aa\AK)∩ BV ((0,1),{−1,1}). In this case

u = χE for some measurable set E , ‖DχE‖(0,1)< ∞ and ‖DχE‖(0,1) �= K. There
are two cases ‖DχE‖(0,1) is either ≤ K − 1 or ≥ K + 1. We study them separately.

First we prove that the case ‖DχE‖(0,1) ≤ K − 1 does not happen if δ is
small enough. We claim that there is δ > 0 such that for all χE ∈ Bδ (UK,0) ∩
BV ((0,1),{0,1}), ‖DχE‖(0,1) ≥ K. Otherwise there exist δn → 0 and χEn ∈
Bδn(UK,0)∩BV ((0,1),{0,1}) such that ‖DχEn‖(0,1)≤ K −1. Then χEn →UK,0 in
L2(0,1) implies, by the lower semi-continuity of the BV norm (see [6, Theorem 1,
page 172]), that

K = ‖DUK,0‖(0,1)≤ liminf
n→∞

‖DχEn‖(0,1)≤ K − 1,

a contradiction.
Second we consider the case ‖DχE‖(0,1)≥ K + 1. Here

J(E) ≥ τ(K + 1)+N(E)

= J(UK,0)+ τ+N(E)−N(UK,0).
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Because N : Aa → (−∞,∞) is continuous with respect to the L2-norm, by making δ
small, we have

|N(E)−N(UK,0)|< τ
2
.

Then
J(E)≥ J(UK,0)+ τ− τ

2
= J(UK,0)+

τ
2
> J(UK,0).

This proves the lemma.
Now we can apply Proposition 4 to ε−1Iε and J to obtain the following theorem:

Theorem 3. Let D = (0,1). For each positive integer K there are δ > 0 and ε0 > 0
such that for all ε < ε0, there exist a local minimizer uε,K,0 of Iε in Bδ/2(UK,0)
and a local minimizer uε,K,1 ∈ Bδ/2(UK,1). As ε → 0, ‖uε,K,0 −UK,0‖2 → 0 and
‖uε,K,1 −UK,1‖2 → 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
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0.4
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1

Fig. 2.2 A local minimizer of Iε with 6 interfaces

Figure 2.2 depicts a uε,6,1. Now we turn our attention to the global minimiz-
ers of Iε . It is easy to show, by the standard minimization argument, that for each
ε > 0, there exists a global minimizer uε of Iε . If we take any set E so that χE

is in Aa ∩BV (D), then there exists vε ∈ Aa such that limε→0 ‖vε − χE‖2 = 0 and
limsupε→0 ε−1Iε(vε ) ≤ J(E), by Lemma 3. Consequently limsupε→0 ε−1Iε(uε) ≤
J(E)<∞. We deduce from Lemma 3 that along every sequence {uεn} of {uε}, there
exist a subsequence {uεnl

} and u0 ∈ Aa such that uεnl
→ u0 as l → ∞. Proposition 1

implies that u0 is a global minimizer of J.
Since J(u0) < ∞, u0 must be in one of the AK’s. By Lemma 1, we deduce that

u0 =UK,0 or u0 =UK,1 for some K.
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To identify this K, we consider

J(UK,0) = J(UK,1) = τK +
γa2(1− a)2

6K2 (46)

as a function of K. Since u0 is a global minimizer of J, J(u0) ≤ J(UK,0) = J(UK,1)
for all positive integers K, i.e., u0 must minimize (46). Although (46) is convex in
K, the fact that K only takes positive integer values gives rise to two possibilities:

1. For most values of γ , a, and τ , the quantity (46) is minimized by a unique K,
denoted by Kopt .

2. For some exceptional values of γ , a, and τ , the quantity (46) is minimized by two
consecutive positive integers, denoted by Kopt and Kopt + 1.

If the first case occurs, we find that u0 = UKopt ,0 or UKopt ,1. If the second case
occurs, we deduce that u0 =UKopt ,0, UKopt ,1, UKopt+1,0, or UKopt+1,1. We have proved
the following theorem:

Theorem 4. Let D = (0,1) and uε be a global minimum of Iε . Along any sequence
{uεn} of {uε} (εn → 0 as n → ∞), there exists a subsequence {uεnl

} such that as

l → ∞, uεnl
converges in L2 to a global minimizer u0 of J.

1. For most values of γ , a, and τ , u0 =UKopt ,0 or UKopt ,1.
2. For some exceptional values of γ , a, and τ , u0 = UKopt ,0, UKopt ,1, UKopt+1,0, or

UKopt+1,1.

Discussion

Obviously most of the ideas presented here may be used to study radial solutions
of (7). One can find solutions with ring patterns. See Ren and Wei [16, 23, 25] for
more in this direction. Several other problems involving non-locality have also been
successfully studied by the Γ-convergence approach outlined here [4, 14, 19–22].

Although the Γ-convergence is elegant and powerful, it does not answer all
questions.

The description of the global minimizers in Theorem 4 is not entirely clear. If (46)
is minimized by a unique Kopt , the first statement of the theorem does not say exactly
to which of UKopt ,0 and UKopt ,1 uε converges. A much more involved analysis by
Ren and Wei [17] shows that there are exactly two global minimizers of Iε when
ε is sufficiently small. One converges to UKopt ,0 and the other converges to UKopt ,1.
A related result was proved earlier by Müller [11] for the functional I in the case
a = 1/2 and σ = 1 in (1). Note that σ = 1 is a different parameter range from our
assumption σ = εγ for Iε . Müller actually studied a different looking problem which
can be changed to (1) with a = 1/2. See also Chen and Oshita [2].

If Kopt is odd, one global minimizer is the reflection of the other global mini-
mizer with respect to the x = 1/2 vertical line. If Kopt is even, one can obtain one
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global minimizer by reflecting the other minimizer with respect to the x= 0 axis and
shift the part of the graph on (−1/2,1/2) to (0,1). In the odd Kopt case, the simple
reflection about x = 1/2 clearly turns a global minimizer to a global minimizer and
UKopt ,0 to UKopt ,1 or vice versa. In the even Kopt case to show that the above men-
tioned operation turns a global minimizer to another global minimizer, one needs
the following periodicity property for all the local minimizers of Iε constructed in
Theorem 3.

It was shown in [17] that the local minimizer uε,K,0 and uε,K,1 found in Theorem 3
must satisfy

uεn(x+
2m
K

) = uεn(x), x ∈ (0,
1
K
); uεn(x+

2m− 1
K

) = uεn(
1
K
−x), x∈(0, 1

K
)

(47)

for m = 1,2,3, . . ..
If (46) is minimized by two integers, Kopt and Kopt +1, the story is more complex.

It is shown in the same paper [17] that there are three possibilities:

1. Along some sequences {εn}, Iεn has exactly two global minimizers, one converg-
ing to UKopt ,0 and the other to UKopt ,1.

2. Along some sequences {εn}, Iεn has exactly two global minimizers, one converg-
ing to UKopt+1,0 and the other to UKopt+1,1.

3. Along some sequences {εn}, Iεn has exactly four global minimizers. They con-
verge to UKopt ,0, UKopt ,1, UKopt+1,0, and UKopt+1,1, respectively.

The local minimizers uε,K,0 and uε,K,1 found in Theorem 3 may be extended
trivially to a box in R3, i.e., define

ũε,K,0(x1,x2,x3) = uε,K,0(x1), ũε,K,1(x1,x2,x3) = uε,K,1(x1)

for (x1,x2,x3) ∈ (0,1)× (0,1)× (0,1). These extended functions are still critical
points of Iε on (0,1)× (0,1)× (0,1). One wishes to use them to model the lamellar
phase of diblock copolymers depicted in Fig. 2.1. However this is not so trivial. To
claim that ũε,K,0 and ũε,K,1 model the lamellar phase, one must show that they are
still stable in three dimensions, i.e., they are local minimizers of Iε now defined on
(0,1)× (0,1)× (0,1). Surprisingly it turns out that they are stable in three dimen-
sions if K is large and unstable if K is small [18]. The number Kopt given after (46)
is almost the stability borderline for K.

The constraint value a in (10) must be held fixed as ε → 0 in our Γ-convergence
setting. Sometimes it is necessary to study the case that a is small, i.e., a → 0 in
a certain way as ε → 0. This situation seems to be outside the scope of the Γ-
convergence theory. However, using another singular perturbation technique, Ren
and Wei [24] were able to study a case of I that

a = a0 ε1/2, σ ∼ 1 (48)

where a0 > 0 is fixed.
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Also outside the scope of the Γ-convergence theory is the study of unstable crit-
ical points of Iε . Due to the existence of a large number of local minimizers of Iε
when ε is small, one expect that Iε has many saddle points. However in J the UK,0’s
and the UK,1’s are the only critical points of J. So it appears that saddle points are
“lost,” after we pass to the Γ-limit. Actually even if J had a saddle point, we could
not claim from the Γ-convergence theory that there existed a saddle point of Iε . The
Γ-convergence theory only deals with minimizers.

The study of the Ohta–Kawasaki theory in higher dimensions is far from com-
plete. Solutions of the free boundary problem (17) of the Γ-limit problem J which
match the cylindrical and spherical phases in Fig. 2.1 have been constructed by Ren
and Wei [26–28].

Acknowledgements Supported in part by NSF grant DMS-0907777.

Appendix: Interface Profile and Surface Tension

Suppose that uεn,K,0 is a local minimizer found in Theorem 3 which converges to
UK,0 as n → ∞. Since uεn,K,0 is smooth but UK,0 is discontinuous, one may be inter-
ested in the behavior of uεn,K,0 near a discontinuous point of UK,0.

Let z1 be the first discontinuous point and z2 the second discontinuous point of
UK,0 given in (33) and (34) so that UK,0(x) = 0 if x ∈ (0,z1) and UK,0(x) = 1 if
x ∈ (z1,z2). One can show (see [17]) that there exists xεn → z1 as n → ∞ where
uεn,K,0(xεn) = 1/2. If we stretch the variable x, i.e., let εny+ xεn = x, then uεn(εny+
xεn) as a function of y converges in C2([−M,M]) to a function H for every given
M > 0. The function H(y) satisfies

−H ′′(y)+W ′(H(y)) = 0, y ∈ (−∞,∞); lim
y→−∞H(y) = 0, lim

y→∞
H(y) = 1; H(0) =

1
2
.

(A.1)

This H(y) is called a heteroclinic orbit of the ODE in (A.1). It describes the asymp-
totic profile of uε,K,0 near the discontinuous point z1. Note that near z2, uε,K,0 is
approximately 1−H(y).

If W is given by (3), for t ∈ (−1,2), one can solve for H explicitly. In this case,

W ′(t) = t(t − 1
2
)(t − 1). (A.2)

Let Q = H ′. Then
dQ
dH

=
W ′(H)

Q
,

from which we deduce that
Q2

2
=W (H)+C1



54 Xiaofeng Ren

for some constant C1. The decay conditions on H(y) as |y| → ∞ implies that C1 = 0
and hence

Q2 =
H2(1−H)2

2
.

We look for an H whose values are between 0 and 1 and Q ≥ 0. Then

H ′ = Q =
1√
2

H(1−H).

Separating variables shows that

y√
2
=

∫
dH

H(1−H)
=

∫
dH
H

+

∫
dH

1−H
= logH − log(1−H)+C2

for some constant C2. The condition H(0) = 1/2 implies that C2 = 0, and hence

H(y) =
ey/

√
2

1+ ey/
√

2
=

1
2
(1+ tanh

y

2
√

2
). (A.3)

The surface tension τ given in (14) can also be expressed in terms of H. For a
general W , we multiply the equation in (A.1) by H ′ to obtain a first integral

− (H ′(y))2

2
+W(H(y)) =C3.

The decay condition of H(y) as |y| → ∞ implies that C3 = 0 and hence

H ′(y) =
√

2W (H(y)).

Now we deduce that

τ =
∫ 1

0

√
2W (t)dt

=

∫ ∞

−∞

√
2W(H(y))H ′(y)dy

=

∫ ∞

−∞
(H ′(y))2 dy.

Thus we have another formula for the surface tension τ:

τ =
∫ ∞

−∞
(H ′(y))2 dy. (A.4)
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Chapter 3
“Rainbows” in Homogeneous and Radially
Inhomogeneous Spheres: Connections with Ray,
Wave, and Potential Scattering Theory

John A. Adam

Introduction: The Rainbow, Its Scientific
and Mathematical Beauty

“Rainbows have long been a source of inspiration both for those who would prefer to
treat them impressionistically or mathematically. The attraction to this phenomenon
of Descartes, Newton, and Young, among others, has resulted in the formulation and
testing of some of the most fundamental principles of mathematical physics.”

K. Sassen [1]

“The rainbow is a bridge between two cultures: poets and scientists alike have
long been challenged to describe it. . . Some of the most powerful tools of mathe-
matical physics were devised explicitly to deal with the problem of the rainbow and
with closely related problems. Indeed, the rainbow has served as a touchstone for
testing theories of optics. With the more successful of those theories it is now pos-
sible to describe the rainbow mathematically, that is, to predict the distribution of
light in the sky. The same methods can also be applied to related phenomena, such
as the bright ring of color called the glory, and even to other kinds of rainbows, such
as atomic and nuclear ones.”

H.M. Nussenzveig [2]

“The theory of the rainbow has been formulated at many levels of sophistication.
In the geometrical-optics theory of Descartes, a rainbow occurs when the angle of
the light rays emerging from a water droplet after a number of internal reflections
reaches an extremum. In Airy’s wave-optics theory, the distortion of the wave front
of the incident light produced by the internal reflections describes the production of
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the supernumerary bows and predicts a shift of a few tenths of a degree in the angu-
lar position of the rainbow from its geometrical-optics location. In Mie theory, the
rainbow appears as a strong enhancement in the electric field scattered by the water
droplet. Although the Mie electric field is the exact solution to the light-scattering
problem, it takes the form of an infinite series of partial-wave contributions that is
slowly convergent and whose terms have a mathematically complicated form. In the
complex angular momentum theory, the sum over partial waves is replaced by an
integral, and the rainbow appears as a confluence of saddle-point contributions in
the portion of the integral that describes light rays that have undergone m∗ internal
reflections within the water droplet.”

J. A. Lock [3]

∗In this chapter, p− 1 will replace m, where p ≥ 1.

Complementary Domains of Description

This chapter addresses three related topics: the existence of direct transmission (or
zero-order) bows in radially inhomogeneous spheres, the Mie solution of electro-
magnetic scattering, and the associated wave-theoretic/potential scattering connec-
tion, to be discussed in detail below. This connection is well illustrated in a series of
recent papers by Lock [4–6] (see section “Analysis of Specific Profiles”).

Geometrical optics and wave (or physical) optics are two very different but com-
plementary approaches to describing many optical phenomena and here, specifi-
cally, the rainbow. However, there is a broad “middle ground,” the semiclassical
régime. Thus, there are essentially three domains within which scattering phenom-
ena may be described: the scattering of waves by objects which in size are (i) small,
(ii) comparable with, and (iii) large, compared to the wavelength of the incident
(plane wave) radiation. There may be considerable overlap of region (ii) with the
others, depending on the problem of interest, but basically, the wave-theoretic prin-
ciples in region (i) tell us why the sky is blue (amongst many other things!). At
the other extreme, the “classical” domain (iii) enables us in particular to be able to
describe the basic features of the rainbow in terms of ray optics. The wave-particle
duality so fundamental in quantum mechanics is relevant to region (ii) because the
more subtle features exhibited by such phenomena involve both these aspects of
description and explanation. Indeed, it is useful to relate (somewhat loosely) the
régimes (i)–(iii) above to three domains, as stated by Grandy [7]:

(a) The classical domain: geometrical optics and particle and particle/raylike tra-
jectories

(b) The wave domain: physical optics, acoustic and electromagnetic waves, and
quantum mechanics

(c) The semiclassical domain: “the vast intermediate region between the above two,
containing many interesting physical phenomena”
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Geometrical optics is associated with “real” rays, but their analytic continuation
to complex values of some associated parameters enables the concept of “complex
rays” to be used, often in connection with surface or “evanescent” rays travelling
along a boundary while penetrating the less dense medium in an exponentially
damped manner. However, complex rays can also be used to describe the phe-
nomenon of diffraction: the penetration of light into regions that are forbidden to
the real rays of geometrical optics [8], so there are several different contexts in
which this term can be used. In fact, the primary bow light/shadow transition region
is associated physically with the confluence of a pair of geometrical rays and their
transformation into complex rays; mathematically this corresponds to a pair of real
saddle points merging into a complex saddle point. For the primary bow then, the
two (supernumerary) rays coalesce when they are incident on the sphere surface at
the Descartes angle, and the subsequent vanishing of these rays is associated with
the complex ray on the shadow side of the rainbow. This does not involve “grazing
incidence” at all. On the other hand, rays that graze the sphere and just miss grazing
it may “tunnel” into the interior, or more accurately, both of these regions together
form an “edge region” that gives rise to the tunneling ray. This phenomenon is well
known in quantum mechanics, specifically tunneling through a classically forbidden
potential barrier. Because it occurs in the edge region of semiclassical scattering,
it permits grazing rays (and those just outside the sphere) to interact with it (and
contribute to the radiation field) [8–10]. As shown by Nussenzveig in a series of
very elegant but technical papers [9–12], scattering of scalar waves by a transpar-
ent sphere is in many respects isomorphic to the problem of scattering of particles
by a spherical potential well. In quantum mechanics, as will be shown later in this
chapter, the bound states of a potential well correspond to poles in the elements of
a certain matrix, the scattering matrix, on the negative real energy axis, whereas
resonances of the well (as we shall see) correspond to poles that are just below the
positive real energy axis of the second Riemann sheet associated with those matrix
elements. The closer these poles are to the real axis, the more the resonances behave
like very long-lived bound states or “almost bound” states of the system. In very
simplistic terms, if a particle with a resonance energy is “shot” at the well from far
enough away, it is captured by the well for a considerable time and acts like a bound
particle, but eventually it escapes from the well (this, e.g., is a crude description of
the mechanism of α-decay from a nucleus, though that is a decay phenomenon, not
a scattering one). The reciprocal of the half-width of the resonance is a measure of
the lifetime of the resonance particle in the well.

In view of all this then, mathematically at least, a primary “rainbow” is, amongst
other things [13, 14]:

(1) a concentration of light rays corresponding to an extremum of the deviation or
scattering angle (this extremum is identified as the Descartes’ or rainbow ray); (2) a
caustic, separating a two-ray region from a 0-ray (or shadow) region; (3) an integral
superposition of waves over a (locally) cubic wave front (the Airy approximation);
(4) a coalescence of two real saddle points; (5) a result of scattering by a square
well potential; (6) an example of “Regge-pole dominance”; and (7) a fold diffraction
catastrophe. Most of these complementary descriptions will not be discussed here;
instead the reader is referred to [13, 14] for further details.
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Scattering by a Transparent Sphere: Ray Description

In the following discussion, i refers to the angle of incidence for the incoming ray,
r is the radial distance within a sphere of radius a (which may be taken to be unity),
and D(i) is the deviation undergone by the ray from its original direction. Below,
the subscripts 0 and 1 will be used to distinguish the respective deviations of the ex-
iting ray for the direct transmission (or zero order) and the primary bow. For p− 1
internal reflections in a spherical droplet of constant refractive index n > 1, straight-
forward geometrical optics reveals that the deviation from its original direction of
a ray incident from infinity upon the sphere at angle of incidence i is in radians
(i ∈ [0,π/2])

Dp−1(i) = (p− 1)π+ 2i− 2parcsin

(
sin i

n

)
. (1)

In general, an extremum of this angle exists at i = ic, where

ic = arccos

[
n2 − 1
p2 − 1

]1/2

, p > 1. (2)

Naturally, for real optical phenomena such as rainbows, n is such that ic exists. A
primary bow corresponds to p = 2, a secondary bow to p = 3, and so forth. That
a zero order (or direct transmission bow) corresponding to p = 1 cannot exist for
constant n is readily shown from Eq. (1). Nevertheless, it has been established that
such relative extrema (for zero- and higher-order bows) can exist for radially inho-
mogeneous spheres (see [15, 16] for more details). In fact, multiple zero-order and
primary bows may exist depending on the refractive index profile. A well-known
result is that the curvature of the ray path is towards regions of higher refractive in-
dex n. This is a consequence of Snel’s law of refraction generalized to continuously
varying media. Thus within the sphere, if dn(r)/dr ≡ n′(r) < 0, an incoming ray
bends towards the origin; if n′(r)> 0, it bends away from it. From Fig. 3.1 it can be
seen that for direct transmission in the former case,

i+ 2Θ(i)+ (i−|D0 (i)|) = π ⇒ |D0 (i)|= 2i−π+ 2Θ(i) . (3)

In this equation, 2Θ(i) is the angle through which the radius vector turns from the
point at which the ray enters the sphere to its point of exit. It is readily noted that
for one internal reflection (corresponding to a primary bow)

|D1 (i)|= 2i−π+ 4Θ(i) . (4)

In what follows the absolute value notation will be dropped. The deviation formu-
lae can be extended to higher-order bows in an obvious fashion. The quantity Θ(i)
is an improper definite integral to be defined in section “The Ray Path Integral”.
Analytic expressions for Θ(i) are difficult to obtain except for a few specific n(r)
profiles; several examples are indicated below. For a constant refractive index, Θ(i)
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Fig. 3.1 The ray path for direct transmission through a radially inhomogeneous sphere for
n′(r)< 0

is a standard integral resulting in the inverse secant function and can be readily
evaluated. Specifically,

D0 (i) = 2i− 2r̃ (i) and D1 (i) = 2i+π− 4r̃ (i) , (5a, b)

where r̃(i) is the angle of refraction inside the sphere. Of course, these results are
readily determined from elementary geometry and are the p = 1 and p = 2 cases re-
ferred to earlier. As already noted, there can be no “zero-order rainbow” for the
direct transmission of sunlight in uniform spheres, only primary and secondary
bows (ignoring theoretically possible but practically almost unobservable higher-
order bows).

In Fig. 3.2 the dashed curve Dh represents the deviation D1(i) through a homo-
geneous sphere of constant refractive index n = 4/3. The other graphs represent the
deviations corresponding to a zero bow and a primary bow for the particular (but
arbitrary) choice of refractive index

n1(r) = 1.3− 0.2cos
{
[1.9(r− 0.85)]2

}
. (6)

Note that both D0(i) and D1(i) exhibit fairly broad double extrema in this case. It is
interesting to note that the relative maximum for D1 is much less pronounced than
that for D0. Further discussion of such extrema can be found in [16].

The Ray Path Integral

In a spherically symmetric medium with refractive index n(r) each ray path satisfies
the following equation [17]:

rn(r)sinφ = constant, (7)
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Fig. 3.2 Deviation functions for both a homogeneous (Dh) and inhomogeneous spheres
(D0 and D1) for the profile n1 (r) [inset]

where φ is the angle between the radius vector r and the tangent to the ray at that
point (note that r = |r|). This expression may be thought of as the optical analogue
of the conservation of angular momentum for a particle moving under the action
of a central force. The result, known as Bouguer’s formula (for Pierre Bouguer,
1698–1758), implies that all the ray paths r(θ ) are curves lying in planes through
the origin (θ is the polar angle). Elementary differential geometry establishes that

sinφ =
r (θ )√

r2 (θ )+ (dr/dθ)2
. (8)

From this the angular deviation of a ray, Θ(i) within the sphere can be determined
and subsequently the total angle of deviation D(i) through which an incoming ray
at angle of incidence i is rotated. From this the formula for Θ(i) is found to be

Θ(i) = sin i
∫ 1

rc(i)

dr

r
√

r2n2 (r)− sin2 i
. (9)

The lower limit rc (i) is the point at which the integrand is singular and is there-
fore the solution of Eq. (10) below in which (for a unit sphere) sin i is the impact
parameter. The quantity rc (i) is the radial point of closest approach to the center
of the sphere, sometimes called the turning point. The value of rc (i) is determined
implicitly from the following expression:

η (rc (i))≡ rc (i)n(rc (i)) = sin i. (10)
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The nature of η (r) = rn(r) will be very significant in what follows; in particular,
rc (i) will have only one value if η (r) is a monotonic function. The integral in Eq.
(9) can be evaluated analytically in certain special cases. Consider first the (some-
what unphysical and singular) power-law profile n(r) = n(R)(r/R)m where m can
be of either sign [18]. By a judicious change of variable, this can be reduced to
the standard result for a constant refractive index. For the choice of a “shifted hy-
perbolic” profile of the form n(r) = (ar+ b)−1, the integral (9) can be evaluated
in terms of elementary transcendental functions [15]. The complexity of these inte-
grals increases rapidly with even relatively simple expressions for n(r). In the case
of a linear profile, Eq. (3) can be evaluated in terms of incomplete elliptic integrals
of the first and third kinds [19, 20]. A parabolic profile of the form n(r) = a− br2

also yields a result also in terms of a purely imaginary elliptic integral of the third
kind [20].

Whether the ray path integral is evaluated analytically or numerically, it con-
tributes to the direct problem of geometrical optics, namely, (for direct transmission)
the total angular deviation 2Θ(i) of the ray inside the sphere for a given profile n(r).
Coupled with the refraction at the (in general discontinuous) boundary entrance and
exit points, this naturally yields the total deviation of an incoming ray as a function
of its angle of incidence. The corresponding inverse problem is to determine the
profile n(r) from knowledge of the observable deflection function D(i) (note that
D(i) = D(Θ(i))). This is generally more difficult to accomplish. Another reason
for pursuing the inverse problem is that it would be valuable to find at least some
sufficient conditions under which inhomogeneous spheres can exhibit bows of any
order but especially of zero order (particularly with regard to industrial techniques
such as rainbow refractometry, e.g., see references in [16]). By choosing a generic
profile for D0 (i) or D1(i), for example, it should be possible in principle to examine
the implications on n(r) for such profiles. From a strict mathematical point of view,
inverse problems in general are notorious for their lack of solution uniqueness. In
practical terms it is not significant in this context, and we shall address the topic no
further here.

Properties of η(r) and Interpretation of the Ray Path Integral

A careful analysis of the integral (9) for Θ(i) in the neighborhood of the singularity
yields two possibilities depending on whether or not η (r) is a monotone increasing
function:

(i) Monotonic case. If η ′ (rc) �= 0, then in the neighborhood of r = rc, the integral
for Θ has the dominant behavior (r− rc)

1/2 which tends to zero as r → r+c .
(ii) Non-monotonic case. If η ′ (rc) = 0, then in the neighborhood of r = rc, the

integral for Θ has the dominant behavior ln |r− rc| which tends to −∞ as r →
r+c .

To see this, we expand the quantity r2n2 (r) about the point r = rc. The radicand
then takes the form
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Fig. 3.3 η (r) = rn(r) for the monotonic case. The point of closest approach is r = rc

r2n2 (r)−K2 = r2
c n2 (rc)−K2 +

d
dr

[
r2n2 (r)

]
rc
(r− rc)

+
1
2

d2

dr2

[
r2n2 (r)

]
rc
(r− rc)

2 +O
(
(r− rc)

3
)
. (11)

Simplifying (and neglecting extraneous multiplicative and additive constants), we
find that, as indicated in Fig. 3.3, if

(
d
[
r2n2 (r)

]
/dr
)

rc
> 0, then the integral in Eq.

(9) has the functional form [16]

I ∝
∫

(r− rc)
−1/2dr ∝ (r− rc)

1/2 → 0 (12)

as r → r+c . If on the other hand,
(
d
[
r2n2 (r)

]
/dr
)

rc
= 0, then

I ∝
∫

|r− rc|−1dr ∝ ln |r− rc| → −∞ (13)

as r → r+c .
Generic η (r) profiles for these two cases are illustrated schematically in Figs. 3.3

and 3.4. In the monotonic case, the radius of closest approach for a given angle of in-
cidence is denoted by ri in Fig. 3.3; the distance of the ray trajectory from the center
of the sphere is indicated on the r-axis. This is also indicated in the non-monotonic
case in Fig. 3.4. To interpret this figure, it is best to consider rays with angles of in-
cidence increasing away from zero. The radius (point) of closest approach increases
in a continuous manner until i = i2 as shown. At that stage the point of closest ap-
proach increases discontinuously by an amount Δr to r = rc, thereafter increasing
continuously once again. This behavior corresponds to a spherical “zone” of thick-
ness Δr into which no rays can penetrate. The situation is reversible: starting with
i = π/2 and reducing, it yields the same zonal gap.
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Fig. 3.4 η (r) = rn(r) for the non-monotonic case. The point of closest approach for i > i2 is
r = r+c , and a zone of width Δr exists into which no ray penetrates

In scattering theory, the logarithmic singularity (ii) above is associated with the
phenomenon of orbiting. An extremum of η (r) arises at r = rc when

n′ (rc) =−n(rc)

rc
< 0, (14)

meaning that the refractive index profile n(r) either possesses a local minimum at
r = rm > rc, or it tends monotonically to a constant value as r increases to one (see
Fig. 3.5). Of course, unlike the case of classical and/or atomic or molecular scatter-
ing, n(r) and its corresponding potential V (r) is in general piecewise continuous.
The orbiting behavior illustrated in Fig. 3.5 (lower figures) can be thought of as a
type of “mechanical” version of a limit cycle in a dynamical system. The connec-
tion between the two cases of “classical” and “potential” scattering is illustrated in
Appendix 3.

Analysis of Specific Profiles

We now examine two specific (and possibly singular) refractive index profiles for
the unitsphere, generalizing somewhat that considered in [21]. Before so doing, we
introduce some new notation. Electromagnetic waves possess two different polariza-
tions: the transverse electric (TE) and transverse magnetic (TM) modes. Spherical
TE modes have a magnetic field component in the direction of propagation, in this
case that is in the radial direction, and spherical TM modes have an electric field
component in the radial direction.

The first profile to be considered is

n(r) = n1r1/b−1
(

2− r2/b
)1/2

,n1 = n(1)> 1. (15)
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Fig. 3.5 The phenomenon of orbiting illustrated schematically associated with a zero of η ′ (r)
showing the η (r) and n(r) profiles associated with the existence of a “critical” ray separating two
types of ray behavior (upper diagrams). The lower diagrams illustrate two different ways in which
rays can approach the critical radius rc. (See Eq. (14) and the associated discussion in section
“Properties of η (r) and Interpretation of the Ray Path Integral”)

Note that if b = 1 and n1 = 1, this profile corresponds to the classic Luneberg lens
[22]. Using the result (3.5) D0 (i) = 2i− π + 2Θ, and substituting for n(r) in the
Θ-integral, after some algebra the deviation angle can be shown to be

D0 (i) = π (b− 1)+ 2i− barcsin

(
sin i
n1

)
. (16)

For a zero-order bow to exist for some critical angle of incidence ic ∈ [0,π/2], it is
necessary and sufficient that D′

0 (ic) = 0. This is the case if

cos ic = 2

(
n2

1 − 1
b2 − 4

)1/2

, (17)

which implies that b ≥ 2n1 if we restrict ourselves to the least potentially singular
case of b> 0. We have therefore established that a zero bow can exist, unless n1 = 1,
whence Eq. (16) is a linear function of incidence angle i. It is interesting to note that
the TE wave equation (see Appendix 2) has an exact solution for this choice of
profile, finite for 0 ≤ r ≤ 1, namely,

Sl (r) = rl+1 exp

(
−bkr2/b

2

)
×1F1

(
1
2
+

b
2

(
l +

1
2
− k

)
;1+ b

(
l +

1
2

)
;bkr2/b

)
.

(18)
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Here 1F1 refers to the confluent hypergeometric function. The TM equation cannot
be expressed in terms of well-known functions, though it can be written in terms
of generalized hypergeometric functions and solved by power series expansions in
special cases. In a recent series of papers, Lock [4–6] analyzed the scattering of
plane electromagnetic waves by a modified Luneberg lens. This “lens” is a dielectric
sphere of radius a with a radially varying refractive index [22], specifically

n(r) =
1
f

[
1+ f 2 −

( r
a

)2
]1/2

. (19)

Here f is a parameter determining the focal length of the lens. If 0 < f < 1, the
focus is inside the sphere (i.e., the focal length < a); for f = 1 it is on the surface,
and for f > 1 the focal point is outside the sphere. Note that, in contrast to the
refractive index profiles (15) and (20), for the profile (19), n(a) = 1. Lock also
found the existence of a transmission bow for this profile; indeed, this will occur for
f > 1,whereas for f = 1 this bow evolves into an orbiting ray, and if 0 < f < 1, this
ray in turn evolves into a family of morphology-dependent resonances. In a wave-
theoretic approach to this problem [5], Lock studied the related radial “Schrödinger”
equation for the TE mode using the effective potential approach, discussed in section
“Morphology-Dependent Resonances: The Effective Potential Ul (r) (Constant n)”
below.

When a family of rays has a near-grazing incidence on a dielectric sphere, the so-
called far zone consists of (i) an illuminated region containing rays refracted into the
sphere and making p−1 internal reflections (where p ≥ 1) before exiting the sphere
and (ii) a shadow zone into which no rays enter. (On a related topic, Lock showed
that the asymptotic form of the Airy theory bow far into the illuminated region
becomes the interference pattern of two supernumerary rays (with slightly different
optical path lengths through the sphere.) In an earlier paper [23] he showed that the
zero ray/one ray transition for direct transmission is really a regular zero ray/two
ray transition (as for a primary bow), with the second ray being a “tunneling ray”;
such tunneling will be discussed in section “Morphology-Dependent Resonances:
The Effective Potential Ul (r) (Constant n)”.)

The other choice for refractive index profile discussed here is

n(r) =
2n1r1/c−1

1+ r2/c
,n1 = n(1) . (20)

Detailed algebraic manipulation indicates that in this case,

D0 (i) = π (c− 1)+ 2i. (21)

Obviously, D′
0 (i) �= 0 for any value of i, i.e., there is no zero-order bow for this

profile. Both TE and TM modes have finite solutions for 0 ≤ r ≤ 1, expressible in
terms of the hypergeometric functions 2F1, but we do not state them here. For the
special case of c = 1 and n1 = 1, this profile corresponds to the classic Maxwell
fish-eye lens [24]. Other analytic solutions for the TE/TM modes will be discussed
elsewhere [19].
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Scattering by a Transparent Sphere: Scalar Wave Description

The essential mathematical problem for scalar waves can be thought of either in
terms of classical mathematical physics, e.g., the scattering of sound waves, or
in quantum mechanical terms, e.g., the nonrelativistic scattering of particles by a
square potential well (or barrier) of radius a and depth (or height) V0 [7, 8]. In ei-
ther case we can consider a scalar plane wave impinging in the direction θ = 0 on
a sphere of radius a. In what follows, a boldface letter refers to a vector quantity,
thus here, r = 〈|r| ,θ ,φ 〉 (or 〈r,θ ,φ 〉) denotes a position vector in space (using a
spherical coordinate system). Suppose that we had started with the “classical wave
equation” with dependent variable ψ̃ (r, t) = ψ (r)e−iωt . For the scalar electromag-
netic problem, the angular frequency ω , wave number k, and (constant) refractive
index n are related by ω = kc/n, c being the speed of light in vacuo. Then for a pen-
etrable (=“transparent”) sphere, the spatial part of the wave function ψ (r) satisfies
the scalar Helmholtz equation

∇2ψ+ k2n2ψ = 0,r < a, (22a)

∇2ψ+ k2ψ = 0,r > a. (22b)

Again, k is the wave number and n > 1 is the (for now, constant) refractive index of
the sphere. We can expand the wave function ψ (r) as

ψ (r) =
∞

∑
l=0

Bl (k)ul (r)r−1Y m
l (θ ,φ)≡

∞

∑
l=0

Al (k)ul (r) r−1Pl (cosθ ), (23)

where r = |r| as noted above and the coefficients Al (k) will be “unfolded” below.
(The coefficients Al and Bl are related by a multiplicative normalization constant
that need not concern us here.) The reason that the spherical harmonics Y m

l (θ ,φ)
reduce to the Legendre polynomials in the above expression is because the cylin-
drical symmetry imposed on the system by the incident radiation renders it axially
symmetric (i.e., independent of the azimuthal angle φ ). The equation satisfied by
ul (r) is

d2ul (r)

dr2 +

[
k2 −V(r)− l(l + 1)

r2

]
ul (r) = 0, (24)

where the potential V (r) is now k-dependent, i.e.,

V (r) = k2 (1− n2) ,r < a

V (r) = 0,r > a. (25a, b)

Since n > 1 within the sphere, this potential corresponds to that of a spherical po-
tential well of depth V0 = k2

(
n2 − 1

)
. This leads very naturally to a discussion of

the effective potential, wherein the potential V (r) is combined with the “centrifugal
barrier” term l (l + 1)/r2.
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Morphology-Dependent Resonances: The Effective
Potential Ul(r) (Constant n)

A rather detailed study of the radial wave equations was carried out by Johnson [25],
specifically for the Mie solution of electromagnetic theory (see section “The Vector
Problem: The Mie Solution of Electromagnetic Scattering Theory”). A crucial part
of his analysis was the use of the effective potential for the TE mode of the Mie
solution, but without any loss of generality, we may still refer to the scalar problem
here. This potential is defined as

Ul (r) =V (r)+
l (l + 1)

r2 = k2(1− n2)+
l (l + 1)

r2 ,r ≤ a, (26a, b)

=
l (l + 1)

r2 ≈ λ 2

r2 , r > a.

It should be noted here that λ as defined here is not the wavelength of the incident
radiation. For large enough values of l, [l (l + 1)]1/2 ≈ l + 1/2. It is clear that Ul (r)
has a discontinuity at r = a because of the “addition” of a potential well to the cen-
trifugal barrier. Thus, there arises a tall and thin enhancement corresponding to a
barrier surrounding a well (see Fig. 3.6), and this suggests the possible existence
of resonances, particularly between the top of the former and bottom of the latter,
where there are three turning points (where the energy k2 is equal to Ul (r)). Such
resonances are called “shape resonances” (or sometimes “morphology-dependent
resonances”); they are quasi-bound states in the potential well that escape by tunnel-
ing through the centrifugal barrier. The widths of these resonances depend on where
they are located; the smaller the number of nodes of the radial wave function within
the well, the deeper that state lies in the well. This in turn determines the width (and
lifetime) of the state, because the tunneling amplitude is “exponentially sensitive”
to the barrier height and width [13]. Since the latter decreases rapidly with the depth
of the well, the smaller is the barrier transmissivity, and the lowest-node resonances
become very narrow for large values of β = ka. The lifetime of the resonance (de-
termined by the rate of tunneling through the barrier) is inversely proportional to
the width of the resonance, so these deep states have the longest lifetimes. (To avoid
confusion of the node number n with the refractive index in Fig. 3.6, the latter has
temporarily been written as N.)

Note that as k2 is reduced, the bottom B of the potential rises (and for some value
of k the energy will coincide with the bottom of the well [25]); however, at the
top of the well, Ul (a) = λ 2/a2 is independent of k2, but if k2 is increased, it will
eventually coincide with the top of the well (T ). Consider a value of k2 between the
top and the bottom of the well: within this range there will be three radial turning
points, the middle one obviously occurring at r = a and the largest at r = b for which
Ul (b) = λ 2/b2. The smallest of the three (rmin) is found by solving the equation

k2 =
λ 2

r2
min

− (n2 − 1
)

k2 (27)
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Fig. 3.6 (a–d) (Redrawn from [8]): (a) The effective potential U(r) for a transparent sphere of
radius a showing four “energy levels,” respectively, above the top of the potential well, at the top,
in the middle, and at the bottom of the well. Note that the constant refractive n has temporarily been
replaced by N to distinguish it from the node number n in (c). (b) The corresponding incident rays
and impact parameters. Case 2 shows a tangentially incident ray; note that in case 1 the refracted
ray is shown. It passes the center at a distance of l = b/N; the case is readily shown from simple
geometry: from Snel’s law of refraction sin i=N sinr = b/a, and since l = asinr, the result follows
directly. (c) Similar to (a) but with resonant wave functions shown, corresponding to node numbers
n = 0 and n = 1 (the latter possessing a single node). (d) The “tunneling” phenomenon illustrated
for an impact parameter b > a, being multiply reflected after tunneling, between the surface r = a
and the caustic surface r = b/N (the inner turning point)

to obtain, in terms of the impact parameter b(λ ) = λ/k,

rmin =
λ
nk

≡ b
n
, (28)

By applying Snel’s law for given b, it is readily shown that the distance of nearest
approach of the equivalent ray to the center of the sphere is just rmin; indeed, there
are in general many nearly total internal reflections (because of internal incidence
beyond the critical angle for total internal reflection) within the sphere between
r = b/n and r = a. This is analogous to orbiting in a ray picture; on returning to
its original location after one circumnavigation just below the sphere surface, a ray
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must do so with constructive interference. The very low leakage of these states al-
lows the resonance amplitude and energy to build up significantly during a large
resonance lifetime which in turn can lead to nonlinear optical effects. In acoustics
these are called “whispering gallery modes.”

The energy at the bottom of the well (i.e., limr→a− Ul (r)) corresponding to the
turning point at r = a is determined by the impact parameter inequalities a < b < na
or in terms of λ = kb:

Ul
(
a−)=

(
λ
na

)2

< k2 <

(
λ
a

)2

=Ul
(
a+
)
. (29)

This is the energy range between the top and bottom of the well (and in which the
resonances occur). To cross the “forbidden region,” a < r < b requires tunneling
through the centrifugal barrier, and near the resonance energies, the usual oscilla-
tory/exponential matching procedures can lead to very large ratios of internal to
external amplitudes (see Fig. 3.6c); these resonances correspond to “quasi-bound”
states of electromagnetic radiation (that would be bound in the limit of zero leak-
age).

We now make a transition to discuss some of the related mathematical properties
associated with resonances. In so doing, the reader should be alerted to a some-
what flexible notation used in connection with the scattering function (or S-matrix
element to be discussed in section “Introduction to the Scattering Matrix”). This is
variously denoted by Sl (λ ,k) or Sl (β ), where β = ka, depending on the context.
Mathematically, the resonances are complex eigenfrequencies associated with the
poles λn of the scattering function Sl (λ ,k) in the first quadrant of the complex
λ -plane; these are known as Regge poles (for real k). Corresponding to the energy
interval [Ul (a−) ,Ul (a+)], the real parts of these poles lie in the interval (β ,nβ)
(or equivalently, (ka,nka)); this corresponds to the tunneling region. The imaginary
parts of the poles are directly related to resonance widths (and therefore lifetimes).
As the node number n decreases, Reλn increases and Imλn decreases very rapidly
(reflecting the exponential behavior of the barrier transmissivity). As β increases,
the poles λn trace out Regge trajectories, and Imλn tend exponentially to zero. When
Reλn passes close to a “physical” value, λ = l + 1/2, it is associated with a reso-
nance in the lth partial wave; the larger the value of β , the sharper the resonance
becomes for a given node number n.

Introduction to the Scattering Matrix

The scattering matrix describes the relationship between the initial and final states
of the “system,” whatever that may be. In fact it is very useful to relate these states
at ‘t = −∞’ and ‘t = ∞’ by means of the scattering operator S acting on the wave
functionψ , such that ψ (∞) = Sψ (−∞). The matrix elements of the operator S form
the scattering matrix itself, not surprisingly.
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Consider first, for simplicity, a scalar plane wave incident upon an impenetrable
sphere of radius a. The solution of the Helmholtz equation (22) (outside the sphere)
is [7]

ψk (r,θ ) =
1
2

∞

∑
l=0

(2l+ 1) il
[
h(2)l (kr)+Sl (β )h(1)l (kr)

]
Pl (cosθ) , (30)

where h(1)l (kr) and h(2)l (kr) are spherical Hankel functions of the first and second
kind, respectively, and

Sl (β ) =−h(2)l (β )

h(1)l (β )
;β ≡ ka =

2πa
λ

. (31)

The quantity Sl (β ) is the element (for a given l-value) of the scattering or S-matrix.
For “elastic” (or nonabsorptive) scattering, Sl (β ) is a phase factor and a very im-
portant one—it completely determines the nature of scattering in a potential field.
As |r|= r → ∞,

h(1)l (kr)∼ (−i)l+1 eikr

kr
;h(2)l (kr)∼ il+1 e−ikr

kr
. (32a, b)

Hence inside the summation we have the term

(−1)l+1

kr
Sl (β )

[
eikr +

(−1)l+1 e−ikr

Sl (β )

]
. (33)

Again, the reader should note that several possible contexts can be considered here.
The modified partial wave number λ = l + 1/2 is in general considered to be com-
plex, with k being a real quantity, but here we consider k to be a complex quantity
also. Thus, so-called bound states (of interest in quantum mechanics) are charac-
terized by a pure imaginary wave number k = iki, ki > 0 corresponding to energy
E = k2 < 0. In order for such a solution to be square integrable in (a,∞), it is nec-
essary that the second term vanish in Eq. (33) above. Formally, this will be the case
if β = ka is a pole of Sl (β ). This is the essential significance of the poles of the
S-matrix in what follows.

For a spherical square well or barrier, corresponding to a transparent sphere with
constant refractive index n, the form of the scattering matrix elements for scalar
waves is more complicated than (31). In fact [8]; see also [26] in terms of spherical
Bessel functions ( jl) and spherical Hankel functions, the S-matrix is

Sl (β ) =−β jl (α)h
′(2)
l (β )−α j′l (α)h(2)l (β )

β jl (α)h
′(1)
l (β )−α j′l (α)h(1)l (β )

. (34)

Equation (34) is an expression of the matching at the finite boundary of the po-
tential of the regular internal solution with the appropriate external solution of the
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Schrödinger equation. Using the notation of Nussenzveig [8], the expression (34) is
equivalent to

Sl (β ) =−h(2)l (β )

h(1)l (β )

[
ln′ h(2)l (β )− n ln′ jl (α)

ln′ h(1)l (β )− n ln′ jl (α)

]
(35)

where ln′ represents the logarithmic derivative operator, jl is a spherical Bessel func-
tion. The “size parameter” β = ka plays the role of a dimensionless external wave
number, and α = nβ is the corresponding internalwave number. Not surprisingly,
Sl (β ) may be equivalently expressed in terms of cylindrical Bessel and Hankel
functions of half-integer order (see Eq. (39)). Note that for l = 0 the S-matrix ele-
ment takes the simpler form [27]

S0 (β ) = e−2iβ α cotα+ iβ
α cotα− iβ

. (36)

The lth “partial wave” in the series solution (23) (or (30)) is associated with an im-
pact parameter b(l) = (l + 1/2)/k, i.e., only rays “hitting” the sphere (b ≤ a) are
significantly scattered, and the number of terms that must be retained in the series to
get an accurate result is slightly larger than β . Unfortunately, for visible light scat-
tered by water droplets in the atmosphere, β is approximately several thousand, and
the partial-wave series converges very slowly. This is certainly a nontrivial problem!
In the next section, we examine the resolution of this difficulty for both the scalar
and the vector wave problem.

Introduction to Complex Angular Momentum (CAM) Theory:
The Watson Transform

In the early twentieth century there was a significant mathematical development that
eventually had a profound impact on the study of scalar and vector scattering, and
the present problem in particular. The Watson transform, originally introduced in
1918 by Watson in connection with the diffraction of radio waves around the earth,
is a method for transforming the slowly converging partial-wave series (e.g., (30))
into a rapidly convergent expression involving an integral in the complex angular
momentum plane. This allows the above transformation to effectively “redistribute”
the contributions to the partial-wave series into a few points in the complex plane—
specifically the Regge poles and saddle points. Such decomposition means that in-
stead of identifying angular momentum with certain discrete real numbers, it is now
permitted to vary continuously through complex values. However, despite this mod-
ification, the poles and saddle points have profound physical interpretations in the
rainbow problem.

The Watson transform was subsequently modified by several mathematical physi-
cists, including Nussenzveig [10, 12], in studies of the rainbow problem. It is inti-
mately related to the Poisson sum formula
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∞

∑
l=0

g

(
l +

1
2
,x

)
=

∞

∑
m=−∞

e−imπ
∫ ∞

0
g(λ ,x)e2π imλdλ , (37)

given an “interpolating function” g(λ ,x), where x denotes a set of parameters and
λ = l+1/2 is again considered to be the complex angular momentum variable. The
function g is introduced to generate poles at the “physical” values of λ (or l) so that
the corresponding residues account for the original partial-wave series. By means of
this conversion of a series to an integral in the complex plane, one is free to deform
the path appropriately. The path can be chosen in such a way that the dominant high-
frequency contributions to the radiation field come from a small number of “critical
points” (such as saddle points or complex poles). This avoids the complexity of
summing these contributions over β (= ka) partial waves (where β�1).

It transpires that certain poles in the complex λ -plane are associated with sur-
face waves (Regge poles; see below) and others are associated with morphology-
dependent resonances in a particular partial wave. The latter are determined by the
poles of the S-function in Eq. (34). But why is angular momentum the relevant pa-
rameter? A little physics helps us here. Although they possess zero rest mass, in
terms of their associated de Broglie wavelength λ̂ , photons have energy E = hc/λ̂
and momentum E/c = h/λ̂ , where h is Planck’s constant and c is the speed of light
in vacuo. (Note that the standard notation for wavelength is of course the Greek letter
λ ; here λ̂ is used instead to avoid confusion with the complex angular momentum
variable.) Thus, for a nonzero impact parameter bi, a photon will carry an angular
momentum bih/λ̂ (bi being the perpendicular distance of the incident ray from the
axis of symmetry of the sun-raindrop system). Each of these discrete values can
be identified with a term in the partial-wave series expansion. Furthermore, as the
photon undergoes repeated internal reflections, it can be thought of as orbiting the
center of the raindrop. As will be reemphasized below, the complex (Regge) poles
mentioned above are associated with so-called creeping rays, generated by tangen-
tial incidence and propagating around the surface, shedding energy exponentially in
a tangential direction. The damping is a result of the increasingly large imaginary
part of these poles, leading to a rapidly convergent residue series in the shadow re-
gion (inhabited, not by real rays, but by diffracted rays). This approach works well
for the impenetrable sphere discussed earlier. In the illuminated region, the primary
contributions come, not surprisingly, from real rays—stationary optical paths deter-
mined by Fermat’s principle of least time. These rays are associated with stationary
phase points on the real λ -axis (real saddle points).

Unfortunately, for a penetrable (or transparent, or dielectric) sphere, the Regge
poles are situated much closer to the real λ -axis, and the convergence is com-
promised. To remedy this, the solution must be “unfolded” in terms of surface-
to-center reflections (and vice versa)—resulting in the so-called Debye series (see
Appendix 1). The scattering amplitudes can then be expanded in a series, each term
of which represents a surface interaction. When the modified Watson transform is
applied to each term, one set of the resulting Regge–Debye poles, as they are called,
are associated with rapidly damped surface waves (see below), and rapidly conver-
gent asymptotic expansions are obtained for each term in the Debye series. In this
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Fig. 3.7 (Redrawn from [11]): The ‘collision’ of two real saddle points in the complex λ -plane
as the rainbow angle (θR) is approached from below (i.e., from the illuminated side). At θR the
points collide and subsequently move away from each other along complex conjugate directions
as θ increases away from θR into the shadow region. It is the lower complex saddle point that
contributes to the wave field in this region

case, the critical points in the λ -plane are exactly those poles and (possibly com-
plex) saddle points. There is a significant difference between the surface waves in
this case and the case for the impenetrable sphere; however, they can also take a
shortcut through the sphere (critical refraction) and reemerge tangentially as surface
waves.

For a Debye term of a given order, p (where p−1, p ≥ 1) is the number of internal
reflections at the surface, and a primary rainbow (in particular) is associated in the
λ -plane with the existence of two real saddle points that move towards each other
as the “rainbow scattering angle” is approached (see Fig. 3.7), merging together at
this angle and beyond which (i.e., in the shadow region) the saddle points become
complex and move away from the real axis in complex conjugate directions. Thus,
as described in [7, 8, 10], from a mathematical point of view, a rainbow can be
defined as a collision between two saddle points in the complex angular momentum
plane.

As will be shown in section “The Partial-Wave Scattering Phase Shift δl (k)”, the
scattering amplitude f (k,θ ) is a quantity of fundamental importance in scattering
theory; see section “The Partial-Wave Scattering Phase Shift δl(k)” (see Eqs. (50)
and (51)). It is defined in terms of the scattering matrix elements Sl(k), and using
the Poisson summation formula it may be recast as

f (k,θ ) =
i

ka

∞

∑
m=−∞

(−1)m
∫ ∞

0
(1−Sl (λ ,k))Pλ−1/2 (cosθ )e2π imλ λdλ . (38)

For fixed β , Sl (λ ,β ) is a meromorphic function of the complex variable λ =
l + 1/2, and again it is the poles of this function that are of interest. In terms of
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cylindrical Bessel and Hankel functions, they are defined by the condition

ln′ H(1)
λ (β ) = n ln′ Jλ (α) . (39)

As already noted, they are called Regge poles in the scattering theory literature
[7, 8]. For the transparent sphere, two types of Regge poles arise. Nussenzveig’s
class I poles [9], located near the real λ -axis, are associated with resonances, via the
internal structure of the potential, which is now of course accessible. These are char-
acterized by an effective radial wave number within the potential well. Typically,
class II poles are associated with surface waves for the impenetrable sphere prob-
lem mentioned above—and lead to a rapidly convergent residue series, representing
the surface wave (or diffracted or creeping ray) contributions to the scattering am-
plitude. Seeking poles of the S-matrix in the complex angular momentum plane and
their Regge trajectories as the energy E (or wave number k) is varied is in fact equiv-
alent to analyzing these singularities and their trajectories in the complex k-plane as
the angular momentum l is varied continuously through real values. In [26] it is
pointed out that these two approaches—Regge trajectories and k-trajectories—are
two different but complementary mathematical descriptions of the same physical
phenomena, and that each one can provide insight into the other.

In the next section we examine another fundamental concept in scattering theory:
the phase shift. This will prove to be crucial to understanding the changes induced
on an incident wave on encountering a potential, be it of finite range or not.

The Partial-Wave Scattering Phase Shift δl(k)

We return to the radial equation (24) in order to introduce this fundamental entity.
The boundary conditions are that ul(r) and u′

l (r) are continuous at the surface. We
seek a solution satisfying the boundary condition at the origin

ul (r)r→0 ∼ rl+1. (40)

In the absence of a potential, the solutions ul (r) can be expressed in terms of
Riccati–Bessel functions of the first and second kind (which are in turn related to
the spherical Bessel functions of the first and second kind, jl(kr) and yl(kr), respec-
tively):

ψl(kr) = krjl (kr) =

(
πkr
2

)1/2

Jl+1/2 (kr)∼ sin(kr− lπ/2) as r → ∞, and (41)

ξl(kr) = kryl (kr) = (−1)l−1
(
πkr
2

)1/2

Y(l+1/2) (kr)∼ cos(kr− lπ/2)as r → ∞.

(42)

(Note that some definitions of ξl(kr) use the negative of the above expression, al-
though χl(kr) is commonly used in the literature instead of ξl(kr).) Based on the
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asymptotic forms of the Riccati–Bessel functions, we expect the solution of (24) to
have the following property involving a k- and l-dependent phase shift:

ul (r)r→∞ ∼ sin (kr− lπ/2+ δl (k)) . (43)

In fact, if V (r) can be neglected for r > r0, say, the solution of Eq.(24) can be written
in terms of the phase shift δl (k) as [28–30]

ul (r) = kr [ jl (kr)cosδl (k)− yl (kr)sinδl (k)] . (44)

In particular, for a spherical well or barrier of radius a, the potential is zero for r > a.
The k- or energy-dependent partial-wave phase shifts δl (k) represent the effect the
potential V (r) on the partial waves comprising the incident plane wave. The quan-
tities δl (k) are real functions of the wave number k when the potential V (r), energy
E(= k2), and angular momentum l are all real. Shortly we shall reintroduce the S-
matrix, this time with matrix elements defined in terms of the phase shifts δl (k).
Particle scattering in a potential field is completely determined by these elements.
The physical interpretation of the phase shifts can be understood as follows. The in-
coming plane wave is broken up into an infinite number of parts of differing angular
momentum (these are the partial waves). Each partial wave interacts individually
with the potential to produce a scattered outgoing partial wave. The phase of the
outgoing wave is “pushed out” by an amount delta by a repulsive potential, and the
phase is “pulled in” by an amount delta for an attractive potential. In optical terms
for a sphere of refractive index n > 1, it is the latter case that applies: the potential
is attractive.

Although it is the poles of the S-matrix that are of interest in this chapter, it is
valuable to reflect on the significance of several other concepts introduced here and
below. As noted earlier, the phase shift is a measure of the departure of the radial
wave function from the form it has when the potential V (r) is zero. It follows from
the definition below of the K-matrix that this too is a related measure of the distortion
induced by a nonzero potential. The K-matrix is especially useful if the interaction is
in some sense “weak.” The differential cross section (Eq. (52b)) is useful because it
is the quantity that is directly measured in scattering experiments. The Jost functions
are useful because they help express the pole structure and associated zero structure
of the S-matrix in a very straightforward way.

Returning to the asymptotic result (43), it is also of interest to note that it can be
expressed in two other equivalent ways. They are

(i)ul (r)r→∞ ∼ cosδl [sin(kr− lπ/2)+Kl cos(kr− lπ/2)] , (45)

and(ii)ul (r)r→∞ ∼ e−iδl

2i

[
e−i(kr−lπ/2)−Sl (k)ei(kr−lπ/2)

]
. (46)

The first of these equations defines the elements of the K-matrix, i.e., Kl = tanδl ,
and the second (re)defines the S-matrix elements, i.e., Sl (k) = e2iδl . In fact,



78 John A. Adam

Sl (k) = exp [2iδl (k)] =
1+ i tanδl (k)
1− i tanδl (k)

≡ 1+ iKl (k)
1− iKl (k)

. (47)

The integral equation satisfied by the radial wave function ul (r) can also be written
in terms of the Riccati–Bessel functions as follows:

ul (r) = ψl (kr)− k−1
∫ r

0

[
ψl (kr)ξl

(
kr′
)−ψl

(
kr′
)
ξl (kr)

]
V (r′)ul

(
r′
)

dr′. (48)

This may be verified by direct substitution into Eq. (24), where now

lim
r→0

ul (r) = lim
r→0

ψl (kr)→ (kr)l+1

(2l + 1)!!
. (49)

At large distances from the sphere (r >> a) the complete wave field ψ(r) can be
decomposed into an (axially symmetric) incident wave + scattered field, i.e.,

ψ (r,θ )∼ eikr cosθ +
f (k,θ )

r
eikr. (50)

In terms of the scattering matrix element for a given l, and therefore Sl(k), the
scattering amplitude is defined as

f (k,θ ) = (2ik)−1
∞

∑
l=0

(2l+ 1) (Sl (k)− 1)Pl (cosθ ) . (51)

Pl (cosθ ) is a Legendre polynomial of degree l. In terms of the phase shift δl , the
scattering amplitude can be written as

f (k,θ ) = k−1
∞

∑
l=0

(2l + 1)eiδl sinδlPl (cosθ ) ; (52a)

For completeness, in the scattering literature, the differential scattering cross section
is defined by

dσ
dΩ

=
scattered flux/unit solid angle

incident flux/unit area
= | f (θ )|2 , (52b)

and the total (elastic) cross section σ is obtained by integrating the differential cross
section over all scattering angles, i.e.,

σ =

∫ 2π

0
dφ
∫ π

0
| f (θ )|2 sinθdθ = 2π

∫ π

0
| f (θ )|2 sinθdθ . (52c)

The quantity

pl
(
k2)= k−1eiδl sinδl = (2ik)−1

(
e2iδl − 1

)
(53)

is often referred to as the partial-wave scattering amplitude.
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Analytic Properties of the S-Matrix: The Jost Functions

We now consider in more detail the analytic properties of the partial-wave S-matrix,
with elements defined by Eqs. (34) or (35), for example, in the complex momentum
plane. We can show that the poles of the S-matrix lying on the positive imaginary k-
axis correspond to bound states, while poles lying in the lower half k-plane close to
the positive real k-axis correspond to the resonances discussed above (see Appendix
4). We may also derive an expression for the behavior of the phase shift and the cross
section when the energy of the scattered particle is in the neighborhood of these
poles. Consider again the solution ul (r) of the radial Schrödinger equation (24)
describing the scattering of a particle by a spherically symmetric potential V (r).
Implicit in the results to be stated here are certain requirements on the potential
V (r). It must be a real, almost everywhere continuous function vanishing at infinity.
Furthermore [31, 32], it must be the case that

(i)
∫ ∞

c
|V (r)|dr = M(c)< ∞ and

(ii)
∫ c′

0
r |V (r)|dr = N(c′)< ∞,

where c and c′ are positive constants (but otherwise arbitrary). The first of these
conditions is equivalent to V ∼ r−(1+ε) as r → ∞, ε > 0 (i.e., rV(r)→ 0 as r → ∞),

and the second implies that V ∼ r−(2+ε ′) as r → 0,ε ′ > 0 (i.e., r2V (r) → 0 as r →
0). (Note that Burke [28] places more stringent conditions on the potential for the
existence of bound states; instead of (i) he requires that

∫ ∞
0 r2 |V (r)|dr <∞.) We also

introduce two (normalized) Jost solutions fl (±k,r) of (24), defined by the relations

lim
r→∞

fl (±k,r)e±i(kr∓lπ/2) = 1. (54)

This condition at infinity defines fl (k,r) uniquely in the lower half k-plane, where it
is analytic. In the upper half plane, fl (k,r) is no longer unique because it is always
possible to add to it a term proportional to the other Jost solution fl (−k,r) . If the
potential vanishes identically beyond a certain distance a then fl (±k,r) are analytic
functions of k in the open k-plane for all fixed values of r, that is, they are entire
functions of k. We can express the physical solution of (24), defined by the boundary
conditions as a linear combination of fl (±k,r), in keeping with the form (44). Thus,

ul (r) ∝
[

fl (k,r)+ (−1)l+1 fl (−k,r)Sl (k)
]
. (55)

From a theorem proved by Poincaré, the absence of a k-dependence in this boundary
condition implies that this solution is an entire function of k. The Jost functions are
then defined by

f̃l (±k) =W [ fl (±k,r) ,ul (r)] , (56)
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where the Wronskian W is independent of r. It is also convenient to introduce a
normalized Jost function fl (±k) by

fl (±k) =
kl exp(±ilπ/2)

(2l+ 1)!!
f̃l (±k) . (57)

(Note that the notation for these functions should not be confused with the definition
of the scattering amplitude in Eqs. (51) and (52a).) The functions fl (+k) and fl (−k)
are continuous at k = 0 and approach unity at large |k| for Im k ≤ 0 and Im k ≥ 0,
respectively.

Since

W [ fl(±k,r), fl(∓k,r)] =±2ik, (58)

ul(r) may be written in the form

ul (r) =
1

2ik
[ f̃l(k) fl(−k,r)− f̃l(−k) fl(k,r)]. (59)

Comparing this equation with the asymptotic form (44) and using (54) then yields
the following expression for the S-matrix elements:

Sl (k) = eiπ l f̃l (k)

f̃l (−k)
=

fl (k)
fl (−k)

. (60)

This equation relates the analytic properties of the S-matrix with the simpler an-
alytic properties of the Jost functions [29]. Since, in particular, fl(−k,r) satisfies
Eq. (24), i.e., (

d2

dr2 + k2 −V(r)− l (l + 1)
r2

)
fl(−k,r) = 0. (61)

It follows that if we now take the complex conjugate of this equation, we obtain (for
real l and V (r))

(
d2

dr2 + k̄2 −V(r)− l (l + 1)
r2

)
f̄l(−k,r) = 0. (62)

If we also let k → −k̄ in (61), we also have that

(
d2

dr2 + k̄2 −V(r)− l (l + 1)
r2

)
fl(k̄,r) = 0. (63)

Furthermore,

f̄l (−k,r)r→∞ ∼ exp
(−ik̄r

)
and fl

(
k̄,r
)

r→∞ ∼ exp
(−ik̄r

)
, (64a, b)

i.e., they satisfy the same boundary conditions at infinity. Since these functions also
satisfy the same differential equation, namely, (62) and (63), respectively, they are
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equal for all r for all points in the upper half k-plane and for all other points which
admit an analytic continuation from the upper half k-plane. Hence in this region
f̄l (−k,r) = fl

(
k̄,r
)
, and hence, from (56), ¯̃fl (−k) = f̃l

(
k̄
)
. Therefore, from (60)

we find that

Sl (k)Sl (−k) = e2π il f̃l (k)

f̃l (−k)

f̃l (−k)

f̃l (k)
= 1. (65)

We also have the unitarity condition

Sl (k)S̄l
(
k̄
)
=

f̃l (k)

f̃l (−k)

¯̃fl
(
k̄
)

¯̃fl (−k)
= 1. (66)

These relations give in turn the reflection property

Sl (k) = e2π ilS̄l
(−k̄
)
. (67)

It follows from (66) that if k is real then |Sl (k)| = 1 and in terms of the real phase
shift δl (k),

Sl (k) = exp [2iδl (k)] . (68)

This is a result already noted above. The poles and zeros of the S-matrix are sym-
metrically situated with respect to the imaginary k-axis, because it follows from (67)
that if the S-matrix has a pole at the point k, then it also has a pole at the point −k̄,
and from (65) and (6) it has zeros at the points −k and k̄. For potentials satisfying
the conditions stated at the beginning of this section, only a finite number of bound
states can be supported, and these give rise to the poles lying on the positive imag-
inary axis in Fig. 3.8. However, an infinite number of poles can occur in the lower
half k-plane. If they do not lie on the negative imaginary k-axis, they occur in pairs
symmetric with respect to this axis, as discussed above. If they lie on the negative
imaginary k-axis, they are often referred to as virtual state poles; the wave functions
corresponding to these states cannot be normalized. Poles lying in the lower half k-
plane and close to the real positive k-axis give rise to resonance effects in the cross
section equation (52c). Poles lying in the lower half k-plane and far away from the
real positive k-axis contribute to the smooth “background” or “nonresonant” scat-
tering. The distribution of poles in the complex k-plane has been discussed in detail
in a few cases, (see, e.g., [27]) for scattering by a square well potential.

The Breit-Wigner Form

Consider an isolated pole in the S-matrix which lies in the lower half k-plane close
to the positive real k-axis. This pole gives rise to resonance scattering at the nearby
real energy. We note (by virtue of Appendix 5) that the pole occurs at the complex
energy

E = Er − i
2
Γ , (69)
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Fig. 3.8 (Redrawn from [28]): A generic distribution of poles for the S-matrix. Crosses correspond
to bound-state poles, circles to resonance poles, squares to their conjugate poles, and triangles to
virtual states

where Er is the resonance position and Γ is the resonance width and both are real
positive numbers. From the unitarity relation (66), we see that corresponding to this
pole there is a zero in the S-matrix (at a complex energy given by E = Er + iΓ /2)
in the upper half k-plane. For energies E on the real axis in the neighborhood of
this pole, the S-matrix can be written in a form which is both unitary and explicitly
contains the pole and zero:

Sl (k) = exp
[
2iδ 0

l (k)
] E −Er − iΓ/2

E −Er + iΓ/2
. (70)

The quantity δ 0
l (k) in this equation is called the “background” or “nonresonant”

phase shift. Provided that the energy Er is not close to threshold, E = 0, nor to
another resonance, then the background phase shift is slowly varying with energy.
Comparing (68) and (70), we obtain the following expression for the phase shift:

δl (k) = δ 0
l (k)+ δ r

l (k) . (71)

The quantity

δ r
l (k) = arctan

(
Γ /2

Er −E

)
(72)

is called the “resonant” phase shift which is seen to increase through π radians as
the energy E increases from well below to well above the resonance position Er.

Further Comments on Jost Functions and Bound States

It can be seen from Eq. (46) that Sl (β ) is proportional to the ratio of the coeffi-
cients of the outgoing and incoming waves (recall that the harmonic factor e−iωt has
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been suppressed). According to the theorem of Poincaré mentioned earlier, if the
boundary conditions on a differential equation are independent of the parameters in
the equation, the solutions will be analytic functions of those parameters. Therefore,
the solutions ul (r) of Eq. (24) will be analytic functions of energy E = k2 if the nor-
malization condition on the behavior of r−(l+1)ul (r) as r → 0 is also independent
of k2 [33, 34]. For small values of k it can be shown that tanδl ∼ k2l+1 = (k2)l+1/2;
in other words, δl is an analytic function of k (as opposed to k2) near zero energy.
Since exp(2iδl) is an analytic function of δl , the Jost functions will share the branch
points of δl . As noted earlier, it is customary to divide the k2-plane into two Riemann
sheets by requiring that the “physical” sheet corresponds to Im k = Im(k2)1/2 > 0
on that sheet. The positive k2-axis is a branch cut [35].

From Eq. (60), poles of Sl(k) occur when fl(−k) = 0. In the neighborhood of
such a zero, we see from Eqs. (54) and (59) that asymptotically

ul (r) ∝ fl (k)eikr. (73)

Recalling that on the physical sheet Im k = ki > 0, it follows that ul(r) ∝ eikrre−kir

so that it is a square integrable and hence normalizable solution; this means it rep-
resents a bound state. But such a state for an attractive potential (such as a spherical
square well) implies that k2 < 0, that is, k = iki. Poles on the physical sheet pro-
duce an exponentially decaying wave function, so the zeros of fl(−k) for ki > 0
are bound states. In particular, for the case l = 0 it can be shown that Sl(k) can
have poles only where either Re(k) = 0 or Im(k) < 0 [27, 36, 37] (this is proved in
Appendix 4). Furthermore, since the partial-wave amplitude pl(k2) can be expressed
in terms of the Jost functions, this means that poles of pl(k2) (Eq. (53)) on the phys-
ical sheet are also associated with bound states.

In summary at this point, the scattering matrix elements Sl(k), regarded as func-
tions of the complex variable k, have several valuable physical interpretations. If
k is real, the scattering is defined in terms of real phase shifts δl which in turn
determine the scattering cross section. Poles of the elements which are pure imagi-
nary with (i) Im(k) > 0 correspond to bound states of the potential, those with (ii)
Im(k)< 0 correspond to “virtual” or non-normalizable states (or “antibound” states
[27]). If the poles are complex with Im(k) < 0, they are sometimes referred to as
“quasi-stationary states,” and if Re(k) > 0 and |Im(k)| � 1, they are called reso-
nance poles. In the complex E-plane, poles associated with quasi-stationary states
are on the second sheet of the Riemann energy surface.

Regge Poles and Regge Trajectories

Following directly from the previous sentence, the “unphysical” Riemann sheet (but
close to the branch cut) and poles of the S-matrix elements (now written as Sl(k2)),
i.e., at E = k2 = k2

r − iΓ /2 (whereΓ is “small” and positive), give rise to the familiar
Breit–Wigner expression examined above for the phase shift δl . Each such pole on
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the unphysical sheet corresponds to a resonance with energy k2
r and “half-width”

Γ /2. What happens as l varies in the radial Schrödinger equation? Again, from
Poincaré’s theorem, the Jost functions will be analytic functions of l as well as k2,
and we know that the bound states of V (r) are found as the zeros of fl(−k). This
criterion can be regarded as an implicit function in l and k (or indeed, l and E = k2),
i.e., l = g(E) (this is a generic function, not the same one as in Eq. (37)). Again,
Eqs. (54) and (59) imply that for k2 < 0,

ul (r)r→∞ ∝
(

fl (k)e−kir − fl (−k)ekir
)
. (74)

Since the radial Schrödinger equation is expressed in terms of real quantities only,
the solution ul (r) is real and so are the Jost functions by virtue of (74); therefore, (in
particular) fl (−k) is also real. Hence the zeros l = g(E) of this function must also be
real functions. On the other hand, if k2 > 0, ul (r) is still real, but the complex expo-
nential factors imply that fl (−k) will be a complex function, whence in general, the
Regge pole trajectories l = G(E) (say) will be complex. However, bound states of
angular momentum l exist when a trajectory intersects the line l =m,m = 0,1,2, . . .,
with corresponding energy k2 = k2 (l).

By contrast, in the complex k-plane for real and positive values of λ = l + 1/2,
all poles in the upper half plane must lie on the imaginary axis. Both complex and
pure imaginary poles can be present in the lower half plane [27], and for physical
(half-integer) values of λ , the symmetry of these poles with respect to the imag-
inary axis is established from the following property for the generalized S-matrix
element S (λ ,k), namely, that S (λ ,k) = S̄

(
λ̄ ,−k̄

)
. Note that, according to [26],

this relation is no longer valid for unphysical values of λ . In summary, there are
two infinite families of “k-poles” (corresponding to the two classes of Regge poles
discussed by Nussenzveig [9, 10]; see also section “Introduction to Complex Angu-
lar Momentum (CAM) Theory: The Watson Transform” above). Class I poles, we
recall, are determined by the interior of the potential and are located in the fourth
quadrant near the positive real semiaxis. By contrast, class II poles correspond to
surface modes on the “spherical potential” and are located in the third and fourth
quadrants. More details can be found in [26].

The Vector Problem: The Mie Solution of Electromagnetic
Scattering Theory

The quantum mechanical scalar analysis in previous sections is appropriate primar-
ily for nonrelativistic scattering of a projectile “particle” of mass m. In this section
a very different phenomenon is discussed: scattering of zero rest-mass photons. The
crucial point to note here is that both of these very different physical systems share
the same mathematical structure, namely, the properties of the scalar wave equation.

So having made considerable reference to the scalar problem and its connection
with the potential scattering theory, we now turn to the vector problem which for



3 “Rainbows” in Homogeneous and Radially Inhomogeneous Spheres 85

electromagnetic waves possesses two polarizations (the TE and TM modes); each
radial equation can be examined in turn as a scalar problem. Mie theory is based on
the solution of Maxwell’s equations of electromagnetic theory for a monochromatic
plane wave from infinity incident upon a homogeneous isotropic sphere of radius
a. The surrounding medium is transparent (as the sphere may be), homogeneous,
and isotropic. The incident wave induces forced oscillations of both free and bound
charges in synchrony with the applied field, and this induces a secondary electric and
magnetic field, each of which has components inside and outside the sphere [17].

In this section reference will be made to the intensity functions i1, i2, the Mie
coefficients al , bl , and the angular functions πl , τl . The intensity functions are pro-
portional to the square of the magnitude of two incoherent, plane-polarized com-
ponents scattered by a single particle; they are related to the scattering amplitudes
S1 and S2 in the notation of Nussenzveig [11]. The function i1(β ,n,θ) is associated
with the electric oscillations perpendicular to the plane of scattering (sometimes
called horizontally polarized), and i2 (β ,n,θ) is associated with the electric oscilla-
tions parallel to the plane of scattering (vertically polarized). The scattered spherical
wave is composed of an infinite number of partial waves, the amplitudes of which
depend on al (β ,n) and bl (β ,n). In physical terms, these may be interpreted as the
lth electrical and magnetic multipole waves, respectively. The first set is that part of
the solution for which the radial component of the magnetic vector in the incident
wave is zero; in the second set the corresponding radial component of the electric
vector is zero. A given partial wave can be thought of as coming from an electric
or a magnetic multipole field, the first wave coming from a dipole field, the second
from a quadrupole, and so on [17]. The angular functions πl (cosθ ) and τl (cosθ)
are, as their name implies, independent of size (β ) and refractive index (n).

For a point P located at distance r from the origin of coordinates, at polar angle
θ and azimuthal angle φ , the scattered intensities Iθ and Iφ are, respectively,

Iθ = i2

(
1
kr

)2

cos2 φ and Iφ = i1

(
1
kr

)2

sin2 φ , (75a, b)

where i j =
∣∣S j
∣∣2 , j = 1,2 and the amplitude functions S j are given by

S1 =
∞

∑
l=1

2l+ 1
l (l + 1)

[alπl (cosθ )+ blτl (cosθ )] ,and

S2 =
∞

∑
l=1

2l+ 1
l (l+ 1)

[alτl (cosθ )+ blπl (cosθ )] . (76a, b)

l is the order of the induced electric or magnetic multipole. The Mie angular func-
tions πl (cosθ) and τl (cosθ ) are defined in terms of the associated Legendre func-
tions of the first kind, P1

l (cosθ ) as

πl (cosθ ) =
P1

l (cosθ )
sinθ

and τl (cosθ) =
d

dθ
P1

l (cosθ ) . (77a, b)
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The scattering coefficients al and bl are defined in terms of the previously en-
countered Riccati-Bessel functions of the first and second kinds, respectively. al

and bl can be written in terms of the Riccati–Hankel function of the first kind,
ζ (1)

l (z) = zh(1)l (z) = ψl (z)+ iξl (z), i.e.,

al =
ψl (β )ψ ′

l (α)− nψl (α)ψ ′
l (β )

ζ (1)
l (β )ψ ′

l (α)− nψl (α)ζ
(1)′
l (β )

and

bl =
ψl (α)ψ ′

l (β )− nψl (β )ψ ′
l (α)

ζ (1)′
l (β )ψl (α)− nψ ′

l (α)ζ
(1)
l (β )

. (78a, b)

For future reference, the Riccati–Hankel function of the second kind is defined by

ζ (2)
l (z) = zh(2)l (z) = ψl (z)− iξl (z). The dimensionless size parameters β = ka and
α = nβ are again used in Eqs. (78a, b). These expressions can be simplified by
the introduction of phase shift angles and result in considerable simplification if the
refractive index is real [38]. In [38] it is demonstrated that the Mie formulae lead,
for large values of β , to a principle for localizing rays and separating diffracted, re-
fracted, and reflected light (in the sense of geometrical optics). The principle asserts
that the term of order l in the partial-wave expansion corresponds approximately to
a ray of distance (l + 1/2)/k from the center of the particle (this is just the impact
parameter). When β >> 1, the expansions for the S j ( j = 1,2) may be truncated at
l + 1/2 ≈ β (in practice, lmax ∼ β + 4β 1/3 + 2; see [8, 9, 39]), and the remaining
sum is separated into two parts: a diffracted light field component independent of
the nature of the particle and reflected and refracted rays dependent on the particle
(see also [40]).

From (78a, ba, b) above, we can define the new quantities [7]

Pe
l ≡ ψl (β )ψ ′

l (α)− nψl (α)ψ ′
l (β ) ,

Qe
l ≡ ξl (β )ψ ′

l (α)− nψl (α)ξ ′
l (β ) ,

Pm
l ≡ ψl (α)ψ ′

l (β )− nψl (β )ψ ′
l (α) ,

Qm
l ≡ ξ ′

l (β )ψl (α)− nψ ′
l (α)ξl (β ) . (79a–d)

The notation of Grandy [7] is followed here (but a common alternative notation
is N/D rather than P/Q). These quantities are real if n is real. Then the external
coefficients (in particular) may be written as

al =
Pe

l

Pe
l + iQe

l
,bl =

Pm
l

Pm
l + iQm

l
. (80a, b)

Furthermore, we may define (for real n) the real phase shifts δl in terms of the K-
matrix elements

tanδ e
l ≡ Pe

l

Qe
l

and tanδm
l ≡ Pm

l

Qm
l
. (81a, b)
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Hence,

al =
1
2
[1− exp(2iδ e

l )] ,bl =
1
2
[1− exp(2iδm

l )] . (82a, b)

Also it is readily shown that

al =

(
Pe

l

)2
(
Pe

l

)2
+
(
Qe

l

)2 − i
Pe

l Qe
l(

Pe
l

)2
+
(
Qe

l

)2 , (83)

from which it follows that for no absorption (i.e., elastic scattering),

Re (al) = |al |2 = sin2 δ e
l ∈ [0,1] , and Im(al) =

1
2

sin2δ e
l ∈
[
−1

2
,

1
2

]
. (84a, b)

A similar set of equations can be deduced for bl . It is interesting to note that the locus
of al and bl in the complex δl-plane is a circle of radius 1/2 with center at (1/2,0).
The scalar partial scattering amplitudes fl (k) can be defined using Eq. (51) as

fl (k) =
e−ilπ/2

2ik
[Sl (k)− 1] , (85)

(on reverting to the former notation for Sl (k)), where Sl (k)= exp(2iδl), the vector
problem can be characterized by (for real n) the unitary matrix

Sl =

(
S e

l 0
0 S m

l

)
. (86)

If we now write

al =
1
2
[1−S e

l (k)] ,bl =
1
2
[1−S m

l (k)] . (87a, b)

Substitution into (82a, b) yields the expressions in terms of α and β

S e
l (k) =−ζ (2)

l (β )

ζ (1)
l (β )

[
ln′ ζ (2)

l (β )− n−1 ln′ψl (α)

ln′ ζ (1)
l (β )− n−1 ln′ψl (α)

]
,

S m
l (k) =−ζ (2)

l (β )

ζ (1)
l (β )

[
ln′ ζ (2)

l (β )− n ln′ψl (α)

ln′ ζ (1)
l (β )− n ln′ψl (α)

]
. (88a, b)

In these expressions, the notation ln′ f (z) = d (ln f (z))/dz has been used. As we
have seen, Re (al) reaches its maximum value (unity) when Qe

l = 0 (for the TM
modes), and similarly, a maximum occurs for Re(bl) when Qm

l = 0 (TE modes).
These conditions correspond to Johnson’s condition for resonance [25], and as
Grandy [7] shows in some detail, they are also equivalent to the poles of the Mie
coefficients al and bl in the complex β -plane, which are in turn equivalent to the
poles of the scattering matrix elements S m

l (λ ,β ) and S e
l (λ ,β ) in the complex

λ -plane. A valuable examination of the formal analogies between Mie theory and
time-independent quantum scattering by a radial potential for both transparent and
absorbing “particles” has been carried out in [41].
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Solutions of the radial (Debye) equation (24) are linear combinations of the
Riccati–Bessel functions ψl (kr) and ξl (kr) which vanish at the origin and match
appropriately at r = a, i.e.,

uνl (r) ∝ ψl (nkr) ,0 ≤ r ≤ a,and

uνl (r) ∝
(
ξl (kr)− Qν

l

Pν
l
ψl (kr)

)
,r ≥ a. (89a, b)

The superscript ν = e or m refers to the electric or magnetic multipole modes, re-
spectively. Within the barrier, the solution uνl (r) must be exponentially increasing
with r, from which we infer that Qe

l = 0 for the TM modes and Qm
l = 0 for the

TE modes. As pointed out in [7], these conditions determining the discrete “energy
levels” of a resonance are precisely the conditions mentioned above.

Conclusion

This article attempts to categorize and summarize some of the many and various
connections that exist between ray theory, wave theory, and potential scattering the-
ory. By “meandering” through these related areas in the broader field of mathemat-
ical physics, it is hoped that the reader will recognize how each of the levels of
description can inform the others, resulting (it is to be hoped) in a greater appreci-
ation for the whole. More specifically, the mechanism of rainbow formation by the
scattering of light from a transparent sphere is examined from a ray-theoretic view-
point, for both homogeneous and radially inhomogeneous spheres. By examining
the complementary approach of wave scattering theory, the resulting radial equa-
tions (for scalar and vector wave equations) can be regarded as time-independent
Schrödinger-like equations. Consequently it is possible to exploit some of the math-
ematical techniques in potential scattering theory because every refractive index
profile n(r) defines a (wave number-dependent) scattering potential V (k;r) for the
problem. This is significantly different from the case of time-independent potential
scattering in quantum mechanics because it ensures that there are no bound states
of the system (this result is established in Appendix 2). The close correspondence
between the resonant modes in scattering by a potential of the “well-barrier” type
and the behavior of electromagnetic “rays” in a transparent (or dielectric) sphere is
discussed in some detail.
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Appendix 1: The Debye Series

In [8, 13]; see references therein it is shown that, in terms of cylindrical Hankel
functions of the first and second kinds,

Sl (λ ,β) =
H(2)
λ (β )

H(1)
λ (β )

R22 (λ ,β )+T21 (λ ,β )T12 (λ ,β )
H(1)
λ (α)

H(2)
λ (α)

∞

∑
p=1

[ρ (λ ,β)]p−1

(A1)

where

ρ (λ ,β ) = R11 (λ ,β)
H(1)
λ (α)

H(2)
λ (α)

. (A2)

This is the Debye expansion, arrived at by expanding the expression [1−ρ (λ ,β )]−1

as an infinite geometric series. The quantities R22, R11, T21, and T12 are, respectively,
the external/internal reflection and internal/external transmission coefficients for the
problem. This procedure transforms the interaction of “wave + sphere” into a series
of surface interactions. In so doing it “unfolds” the stationary points of the integrand
so that a given integral in the Poisson summation contains a few stationary points.
This permits a ready identification of the many terms in accordance with ray theory.
The first term represents direct reflection from the surface. The term p = 1 has one
such point (the transmitted ray), whereas p = 2 has either two or zero stationary
points (the former corresponding to the two supernumerary rays of the first-order
rainbow). The pth term in the summation represents transmission into the sphere,
via the term T21 subsequently “bouncing” back and forth between r = a and r = 0
a total of p times with p − 1 internal reflections at the surface (this time via the
R11 term in ρ). The final factor in the second term, T12, corresponds to transmission
to the outside medium. In general, therefore, the pth term of the Debye expansion
represents the effect of p+1 surface interactions. Now f (β ,θ) can be expressed as

f (β ,θ ) = f0 (β ,θ )+
∞

∑
p=1

fp (β ,θ ), (A3)

where

f0 (β ,θ ) =
i
β

∞

∑
m=−∞

(−1)m
∫ ∞

0

(
1− H(2)

λ (β )

H(1)
λ (β )

R22

)
Pλ−1/2 (cosθ)e2π imλλdλ .

(A4)

This is the direct reflection term. The expression for fp (β ,θ ) involves a similar
type of integral for p ≥ 1. The direct transmission term is the one of interest for
zero-order bows, but the analysis of Nussenveig and coworkers deals with constant
n, for which no such bow exists. As noted earlier, Lock [4] identified the existence
of a zero bow for a Luneberg lens with focal length exceeding its radius. In general
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however, further work is necessary to determine the nature of direct transmission
bows in other radially inhomogeneous transparent (or dielectric) spheres [19].

Returning to the constant n case, the application of the modified Watson trans-
form to the third term (p = 2) in the Debye expansion of the scattering amplitude
shows that it is this term which is associated with the phenomena of the primary
rainbow. More generally, for a Debye term of given order p, a rainbow is character-
ized in the λ -plane by the occurrence of two real saddle points λ and λ ′ between
0 and β in some domain of scattering angles θ , corresponding to the two scattered
rays on the illuminated side. As θ → θ+

R (θR being the rainbow angle), the two sad-
dle points move towards each other along the real axis (Fig. 3.7), merging together
at θ = θR. As θ moves into the dark side, the two saddle points become complex,
moving away from the real axis in complex conjugate directions. Therefore, as noted
earlier, from a mathematical point of view, a rainbow can be defined as a collision
of two saddle points in the complex angular momentum plane. The primary bow
light/shadow transition region is thus associated physically with the confluence of a
pair of geometrical rays and their transformation into “complex rays.”

Appendix 2: Radially Inhomogeneous Media

In electromagnetic scattering, for radially symmetric media, the electric field vector
E must satisfy the scattering boundary conditions and the vector wave equation

∇×∇×E− k2n2 (r)E = 0. (A5)

By expanding E in terms of vector spherical harmonics, the following radial equa-
tions are obtained for the transverse electric (TE) and transverse magnetic (TM)
modes, respectively [25]:

d2Sl (r)
dr2 +

[
k2n2 (r)− l (l + 1)

r2

]
Sl (r) = 0; (A6)

d2Tl (r)
dr2 − 2n′ (r)

n(r)
dTl (r)

dr
+

[
k2n2 (r)− l (l + 1)

r2

]
Tl (r) = 0. (A7)

Each of these equations can be reworked into a time-independent Schrödinger equa-
tion form, with ψ(r) now being a generic-dependent variable for the two modes
above. Thus,

d2ψ (r)
dr2 +

[
k2 −V(r)− l(l + 1)

r2

]
ψ (r) = 0, (A8a)

or equivalently, as indicated earlier,

d2ψ (r)
dr2 +

[
k2 −V(r)− λ 2 − 1/4

r2

]
ψ (r) = 0, (A8b)
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where k2 = E is the energy of the ’particle’, λ = l+1/2. The “scattering potential”
is now

V (r) = k2 [1− n2 (r)
]

(A9)

for the TE mode and (by eliminating the first derivative term in (A7); see (A13)
below)

V (r) = k2
[

1− n2 (r)+ k−2n(r)
d2

dr2 (n(r))
−1
]

(A10)

for the TM mode. Thus, for scattering by a dielectric sphere, the corresponding
potential has finite range. Note that for constant refractive index, these two equations
are identical in form. We examine one property of the Eqs. (A8a, b) above in more
detail. Although they are formally identical to the radial Schrödinger equation, there
are important differences for both the scalar and the vector problems. Pure “bound-
state” solutions, that is, real, regular, and square-integrable solutions, corresponding
to k2 < 0(Im k > 0) do not in general exist in the “non-QM case.” To see this, assume
that Sl (r) is a square-integrable solution of Eq. (A6). On multiplying by S̄l (r) (the
complex conjugate of Sl (r)) and integrating by parts, we obtain

S̄l (r)S
′

l (r)
∣∣∞
0 −
∫ ∞

0

[∣∣S ′
l (r)
∣∣2 +
{

l (l+ 1)
r2 − k2n2 (r)

}
|Sl (r)|2 dr

]
= 0. (A11)

The integrated term vanishes because to be square integrable, S(r) must vanish at
infinity, and we have noted already that near the origin, Sl(r)∼ rl+1. Hence,

∫ ∞

0

[∣∣S ′
l (r)
∣∣2 + l (l + 1)

r2 |Sl (r)|2
]

dr =
∫ ∞

0
k2n2 (r) |Sl (r)|2 dr. (A12)

Clearly, this cannot be satisfied for k2 < 0 unless n2(r)< 0 in some interval or set of
intervals. This actually “opens the door” for some insight into properties of “meta-
materials” for which the refractive index may be pure imaginary [42]. Regarding the
second of the two potentials (A10), if we write Tl(r) = Ul(r)n(r), then from (A7),
Ul (r) satisfies the equation

d2Ul (r)
dr2 +

[
k2n2 (r)− n(r)

d2

dr2

[
1

n(r)

]
− l (l + 1)

r2

]
Ul (r) = 0. (A13)

A similar procedure to that above yields the less useful form:

∫ ∞

0

[∣∣U ′
l (r)
∣∣2 +
{

l (l + 1)
r2 + n(r)

d2

dr2

(
1

n(r)

)}
|Sl (r)|2

]
dr

=

∫ ∞

0
k2n2 (r) |Ul (r)|2 dr. (A14)
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Clearly, this expression places some conditions on the concavity of n−1 (r), but with
the Liouville transformation [43] r �→ s : s =

∫ r
0 n2 (t)dt, and Ul �→ Wl : Wl (s) =

m(s)Wl (s) , where m(s) = n(r(s)), it follows that

d2Ul (r)
dr2 = m2 (s)

[
m(s)

d2Wl (s)
ds2 −Wl (s)

d2m(s)
ds2

]
, (A15)

and

and
d2

dr2

(
1

n(r)

)
=−m2 (s)

d2m(s)
ds2 . (A16)

Therefore, Eq. (A13) simplifies to the form

d2Wl (s)
ds2 +

[
k2

m2 (s)
− l (l + 1)

m4 (s) r2 (s)

]
Wl (s) = 0. (A17)

The transformation r �→ s is monotonic (and linear for r > 1), and s ∼ r in the neigh-
borhood of the origin, so the previous analysis carries over, and we can conclude
that for n2 > 0, no bound states are possible.

Appendix 3: Connection with Classical Scattering

In the theory of classical scattering of a nonrelativistic projectile particle of mass m
by a central force with potential V (r), the total deflection angle θ is given by [8, 44]

θ = π− 2b
∫ ∞

a

dr

r2 [1− b2/r2 −V (r)/E]1/2
, (A18)

where b is the impact parameter, a is the distance of closest approach, and E is
the particle energy. The integral can be recast to the optical case (using Eq. (9)) by
setting b = sin i and

n(r) =

[
1− V (r)

E

]1/2

, (A19)

with V (r) < 0 corresponding to an attractive potential with refractive index n > 1.
This justifies the notion of a refracting sphere having the characteristics of a po-
tential well, with implications, as we have noted, for morphology-dependent reso-
nances.

Appendix 4: The Location of the S-Matrix Poles

From Eqs. (23) and (46), noting the implicit time-dependence exp(−iωt), we may
write the asymptotic form of the solution for ψl (r, t) as



3 “Rainbows” in Homogeneous and Radially Inhomogeneous Spheres 93

ψl (r, t) = O

(
1
r

{
e−ikr −Sl (k)eikr

}
e−iωt
)
. (A20)

The scattering matrix elements Sl (k) are given in terms of the Jost functions by
Eq. (60), and since both functions f̃l (±k) are defined for complex values of k, (60)
defines Sl (k) throughout the complex k-plane [37]. Using the probability conser-
vation law (derived from the time-dependent Schrödinger equation)

∂
∂ t

∫
V

|ψ |2dV =−
∫
S

j ·dS, (A21)

where j is the probability flux density (in units for which m = h̄ = 1),

j =
i
2
(ψ∇ψ̄− ψ̄∇ψ) . (A22)

The integration in (A21) is carried out on the surface of a large sphere of radius R
such that the asymptotic solution (A20) may be used. Furthermore, if Sl (k) has a
pole at the complex k-value k= kr+ iki, then the first term in (A20) may be neglected
in the neighborhood of this point, and we may write

ψl (r, t) =
ul (r)

r
e−iωt = O

(
−Sl (k)

r
ei(kr−ωt)

)
,r → ∞ (A23)

near the pole k. From (A22) we then find that

krki

∫ R

0
u2

l (r)dr =−kr

2
|Sl (k)|2 e−2kiR < 0. (A24)

Therefore, it follows that either kr = 0 (the poles of Sl (k) lie on the imaginary
axis) or if kr �= 0, then ki < 0 (i.e., the poles of Sl (k) lie in the lower half plane).
Equivalently, the only poles in the upper half plane must lie on the imaginary axis.

Note that in the above discussion, we have tacitly assumed that the angular fre-
quency can be identified with the energy of the “particle.” This is justified by virtue
of the famous relation E = hν ∝ ω . Without loss of generality here we make set the
constant of proportionality to be unity, whence ω = E = k2, so that

ω = (kr + iki)
2 =
(
k2

r − k2
i

)
+ 2ikrki ≡ Er − iΓ

2
,Γ =−4krki. (A25)

Appendix 5: Poles and Resonances on the k-Plane and E-Plane

For algebraic simplicity, we consider the (simple) poles of the S-matrix for the one-
dimensional scalar problem [30, 45]. In this approach, the analysis is based on
a slightly different formulation of the governing time-independent “Schrödinger”
equation, namely,
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1
2

d2u(x)
dx2 +

[
k2 −V(x)

]
u(x) = 0. (A26)

For a square well of depth V0 > 0 (i.e., V (r) =−V0, |x|< a/2 and is zero elsewhere),
the incident “wave” is represented by

u(x) = Aeikx,x <−a/2, (A27)

and a transmitted wave

u(x) = Aeik(x−a)S(E),x > a/2. (A28)

The transmission coefficient S(E) is the one-dimensional scattering matrix in this
problem. It can be shown that [45]

S(E) =

{
cosKa− i

2

(
k
K
+

K
k

)
sinKa

}−1

, (A29)

where now k =
√

2E and K =
√

2(E +V0). Note the similarity of this expression
with the denominator of the S-matrix in Eq. (36). The transmissivity of the well is
defined as

T (E) = |S(E)|2 =
{

1+
V 2

0 sin2 Ka

4E(E +V0)

}−1

. (A30)

This expression has maxima equal to one whenever sinKa = 0, i.e., when Ka =
nπ , n = 1,2,3, . . . Equivalently, E = n2π2/2a2 −V0 > 0. These maxima correspond
to resonances—perfect transmission—in this system. The well contains an integral
number of half wavelengths when this condition is satisfied.

We examine S(E) as an analytic function of the energy E in what follows. For
E > 0,0 < T (E) ≤ 1. Therefore, poles of T (E) (and S(E)) can only occur when
−V0 < E < 0. In fact S(E) has a pole whenever

cosKa− i
2

(
k
K
+

K
k

)
sinKa = 0, (A31)

i.e., when

cotKa =
1
2

(
K
k
− k

K

)
. (A32)

Furthermore, from the identity 2cot2θ = (cotθ − tanθ), the solutions of (A32) can
be recast in terms of odd and even parity bound-state solutions, i.e.,

K cot

(
Ka
2

)
= ik, and K tan

(
Ka
2

)
=−ik. (A.33a, b)

(Again, notice the similarity of (A.33a, b) with α cotα = iβ from Eq. (36).) Suppose
now that a resonance occurs at E = Er ≡ k2

r/2 > 0. In the vicinity of such value of
the resonance energy, we may expand the expression

(
k
K + K

k

)
tanKa as
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(
k
K
+

K
k

)
tanKa =

d
dE

[(
k
K
+

K
k

)
tanKa

]
Er

(E −Er)+O(E −Er)
2 . (A33)

To first order in (E −Er), on simplifying, we find that
(

k
K
+

K
k

)
tanKa ≈ a

[
dK
dE

(
k
K
+

K
k

)]
Er

(E −Er)≡ 4
Γ
(E −Er) . (A34)

We can rewrite Eq. (A29) as

S(E) = secKa

{
1− i

2

(
k
K
+

K
k

)
tanKa

}−1

≈ secKa

{
1− i

2
Γ
(E −Er)

}−1

= secKa

(
iΓ /2

E −Er + iΓ/2

)
≈
(

iΓ /2
E −Er + iΓ/2

)
. (A35)

To this order of approximation, then, the pole of S(E) lies in the fourth quadrant of
the complex E-plane. There is a branch cut along the real axis, E > 0 since if E =

|E|eiθ , and E1/2 = |E|1/2 eiθ/2, in the limit θ → 2π−,
√

E =−|E|1/2, and for E < 0,
k = i |2E|1/2 . As can be seen from the term exp(ikx) in Eq. (A28), therefore, E < 0
corresponds to a decaying transmitted wave, and (A26) then defines the conditions
for the bound states to exist within the potential well. These conditions are exactly
the Eqs. (A.33a, b) above.

Similarly, for the more general three-dimensional case we would expect that,
near a resonance, Sl (E) also has a pole in the fourth quadrant. This pole is in the
analytic continuation of Sl (E) from above to below the positive real axis and lies
on the second Riemann sheet of Sl (E). The bound states of the well correspond
to poles of Sl (E) on the negative real energy axis. The closer the resonances are
to the real axis, the “stronger” they become, that is, the more they behave like very
long-lived bound states [45].

Finally, a nice connection can be made to the phase shift from Eq. (A30). Retain-
ing E as the independent variable, we can write

S(E) = eiδ (E) |T (E)|1/2 . (A36)

For notational convenience, we write Eq. (A29) as S(E) = [A(E)− iB(E)]−1 , with
obvious choices for A and B. Then it follows that

tanδ (E) =
B(E)
A(E)

=
1
2

(
k
K
+

K
k

)
tanKa ≈ 2

Γ
(E −Er) (A37)

on using Eq. (A34). Hence,

δ (E)≈ arctan

[
2
Γ
(E −Er)

]
. (A38)
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Note also that

dδ (E)
dE

=
2Γ

Γ 2 + 4(E −Er)
2 . (A39)

And this derivative has a maximum value when E = Er, that is, at a resonance, so
δ (E) varies rapidly there.
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Chapter 4
Understanding the Dynamics of Collision
and Near-Collision Motions in the N-Body
Problem

Lennard F. Bakker

Introduction

For ages, humankind has observed the regular and predicable motion of the planets
and other bodies in the solar system and asked, will the motion of the bodies in
the solar system continue forever as they are currently observed? This philosophical
question is the object of the mathematical notion of stability. A difficulty in applying
the notion of stability to the motion of the solar system is that of collision and near-
collision motions of bodies in the solar system. Collision and near-collision motions
do occur in the solar system. Section “Phenomenon” recounts a few of these that
have been observed or predicted.

The standard mathematical model for understanding the motion of planets and
other bodies in the solar system is the Newtonian N-Body problem, presented in
section “The N-Body Problem”. Included here are some of the basic features and
mathematical theory of the Newtonian N-Body Problem, its integrals or constants
of motion, special solutions such as periodic solutions, and the notions of stability
and linear stability of periodic solutions and their relationship.

The notions and basic theory of collisions and singularities in the Newtonian
N-Body Problem is presented in section “Collisions”. This includes a discussion of
the probabilities of collisions, and the regularization or the lack thereof for colli-
sions. A collision motion is rare in that is has a probability of zero of occurring,
whereas a near-collision motion has a positive probability of occurring. Regulariza-
tion is a mathematical technique that removes the collision singularities from the
Newtonian N-body problem and enables an analysis of near-collision motions in
terms of collision motions through the continuous dependence of motions on ini-
tial conditions. This regularization is illustrated in the collinear 2-body problem, the
simplest of all the N-body problems.
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Recent results are presented in section “Results” on the analytic and numerical
existence and numerical stability and linear stability of periodic motions with reg-
ularizable collisions in various N-body problems with N = 3 and N = 4. Although
fictitious, these periodic motions with regularizable collisions provide a view of
their near-collision motions which could be motions of the bodies in the N-body
problem that are collision-free and bounded for all time.

Phenomenon

Collisions and near-collisions of two or more solar system bodies are apparent
obstacles at which Newton’s law of gravity becomes problematic. Velocities of
colliding bodies become infinite at the moment of collision, while velocities of
near-colliding bodies become very large as they pass by each other. Both of these
situations present problems for numerical estimates of the motion of such bodies.

Although collisions are rare, historical evidence of collisions of solar system
bodies is viewable on the surface of the Earth and the Moon [8]. Only recently have
collisions of solar systems bodies actually been observed. As the comet Shoemaker-
Levy 9 approached Jupiter it was torn apart into fragments by tidal forces. In July of
1994, at least 21 discernible fragments of Shoemaker-Levy 9 collided with Jupiter.
These were the first ever observed collisions of solar system bodies. An animation
of some of the fragments of Shoemaker-Levy 9 colliding with Jupiter can be found
at www2.jpl.nasa.gov/sl9/anim.html.

Near-collision motion are less rare than collisions. As of March 2012, there are
nearly 9,000 known near-Earth asteroids,1 of which 1,306 are potentially hazardous
to Earth.2 One of these potentially hazardous asteroids, named 2012 DA14, was
discovered in 2012. This asteroid will pass by Earth on February 15, 2013, coming
closer to the Earth than satellites in geostationary orbit.3 How close will 2012 DA14
pass by Earth? A mere 17,000 miles (27,000 km).4 In cosmic terms, this close shave
of 2012 DA14 with Earth in 2013 is a near-collision motion.

The N-Body Problem

To model collision and near-collision motions we make some simplifying assump-
tions and use Newton’s inverse square law of gravity. We assume that all the bodies
are idealized as particles with zero volume (i.e., as points), that no particle is torn
apart by tidal forces, that the mass of each particle never changes, and that besides

1 See http://neo.jpl.nasa.gov/stats/.
2 See http://neo.jpl.nasa.gov/neo/groups.html.
3 See article about 2012 DA14 posted March 6, 2012 on MSNBC.com.
4 See article about 2012 DA14 posted March 8, 2012 on Earthsky.org.

www2.jpl.nasa.gov/sl9/anim.html
http://neo.jpl.nasa.gov/stats/
http://neo.jpl.nasa.gov/neo/groups.html
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Newton’s law of gravity there are no other forces acting on the bodies. Under these
assumptions we would think of Shoemaker-Levy 9 as not being torn apart by tidal
forces, but as colliding with Jupiter as a whole.

The Equations

The particles modeling the bodies move in three-dimensional Euclidean space
which we denote by R3. For a positive integer N ≥ 2, suppose there are N parti-
cles with positions q j ∈ R3 and masses m j > 0, j = 1, . . . ,N. The distance between
two of the particles is denoted by

r jk = |q j −qk|, j �= k,

which is the standard Euclidean distance between two points in R3. The Newtonian
N-body problem is the system of second-order nonlinear differential equations

m jq′′
j = ∑

k �= j

Gm jmk(qk −q j)

r3
jk

, j = 1, . . . ,N,

where ′ = d/dt for a time variable t and G = 6.6732×10−11 m2/s2kg. By an appro-
priate choice of units of the q j , we will assume that G = 1 because we are investi-
gating the qualitative or geometric, rather than the quantitative, behavior of collision
and near-collision motions.

By the standard existence, uniqueness, and extension theory in differential equa-
tions (see [9], for example), the initial value problem

m jq′′
j = ∑

k �= j

m jmk(qk −q j)

r3
jk

, q j(t0) = q0
j , q′

j(t0) = q′0
j (1)

has a unique solution
q(t) = (q1(t), . . . ,qN(t))

defined on a maximal interval of definition (t−, t+) as long as r jk �= 0 for all j �= k
at t = t0. Such a solution q(t) describes a motion of the N particles.

Not every initial value problem (1) will have a solution q(t) with t− = −∞ and
t+ = ∞. A solution with either t− > −∞ or t+ < ∞ experiences a singularity at the
finite endpoint of its maximal interval of definition. The notion of a singularity is
addressed in section “Singularities”.

Integrals

An integral of motion of the Newtonian N-body problem is a differentiable function
F of the position q and/or the velocity q′ and/or the masses m = (m1, . . . ,mN) such
that
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d
dt

F(q(t),q′(t),m) = 0, t ∈ (t−, t+).

Along a solution q(t), an integral F of motion satisfies

F(q(t),q′(t),m) = F(q(t0),q′(t0),m), t− < t < t+,

i.e., the value of F is constant along the solution. The Newtonian N-body problem
has ten known integrals of motion.

The translation invariance of the equations of the Newtonian N-body problem
gives rise to 6 integrals of motion. With M = ∑N

j=1 m j, three of these are given by
the components of the center of mass vector

C =
1
M

m

∑
j=1

m jq j,

and three more are given by the components of the linear momentum vector

L =
1
M

N

∑
j=1

m jq′
j.

Typically, both of these are set to 0 so that the relative motion of the N particles is
emphasized.

The rotational symmetry of the equations of the Newtonian N-body problem
gives rise to 3 more integrals of motion. These integrals are given by the components
of the angular momentum vector

A =
N

∑
j=1

m jq j ×q′
j.

The angular momentum plays a key role in understanding collisions in the N-body
problem, as we will see later on.

There is one more integral of motion of the Newtonian N-body problem. The
self-potential (or negative of the potential energy) is

U = ∑
j<k

m jmk

rik
.

The kinetic energy is

K =
1
2

N

∑
j=1

m jq′
j ·q′

j.

The total energy
H = K −U

is an integral of motion for the Newtonian N-body problem.
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In the late 1800s, the mathematical strategy for “solving” the Newtonian N-body
problem was to find enough “independent” integrals of motion [25]. This would
implicitly give each solution as the curve of intersection of the hypersurfaces cor-
responding to the integrals of motion. Each solution q(t) is a curve in R6N . How-
ever, the intersection of the hypersurfaces of the ten integrals of motion gives a
6N − 10 > 1 dimension hypersurface in R6N , which is not a curve! The ten known
integrals of motion are independent of each other (one is not a function of the others)
and are algebraic functions of positions, velocities, and masses. Are there any more
algebraic integrals of motion? This was answered a long time ago in 1887–1888 by
Bruns [7].

Theorem 1. There are no algebraic integrals of motion independent of the ten
known integrals of motion.

Consequently, new integrals of motion, if any, cannot be algebraic! In 1893, New-
comb [20] lamented that no additional integrals had been found to enable the im-
plicit solution of the 3-body problem. It is well-known that the Newtonian 2-body
problem can be solved implicitly,5 but all attempts to solve the N-body problem
with N ≥ 3 have been futile.6

Typically then the solution q(t) of the initial value problem (1) is estimated nu-
merically. From the constant total energy H along a solution q(t), we observe that
if any of the distances r jk get close to 0, i.e., at least two of the particles are near
collision, the self-potential becomes large, and the kinetic energy becomes large too.
The latter implies that the velocity of at least one of the particles becomes large, and
the linear momentum L along q(t) implies that the velocity of at least two particles
becomes large. In particular, from the equations of the Newtonian N-body problem,
the particles that are near collision are the one with the large velocities. These large
velocities present problems for the numerical estimates of such a solution.

Special Solutions

Rather than solving the N-body problem for all of its solutions by finding enough
independent integrals of motion, it is better to examine special solutions with par-
ticular features. The simplest solutions to find are equilibrium solutions, where the
position q j(t) of each particle is constant for all time. But the Newtonian N-body
problem has none of these (see p. 29 in [18]). The next simplest solutions are peri-
odic solutions, i.e., there exist T > 0 such that q(t +T ) = q(t) for all t ∈ R. These
are part of the larger collection of solutions q(t) with t− = −∞ and t+ = ∞ that are
bounded. Such solutions must have a particular total energy (see p. 160 in [25]).

5 See en.wikipedia.org/wiki/Gravitational two-body problem.
6 Karl Sundman did solve the 3-Body Problem when A �= 0 by convergent power series defined for
all time, but the series converge too slowly to be of any theoretic or numerical use [25].
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Theorem 2. If a solution q(t) of the Newtonian N-body problem exists for all time
and is bounded, then the total energy H < 0.

Consequently, any periodic solution q(t) of the Newtonian N-body problem must
have negative total energy. This is why in the search for periodic solutions, the total
energy is always assigned a negative value.

Stability

A periodic solution q(t) of the Newtonian N-body problem gives a predictable
future: we know with certainty what the positions of the N particles will be at any
time t > 0. But what if our measurements of the initial conditions q(0) and q′(0)
are slightly off? A solution q̃(t) with initial conditions near q(0) and q′(0) will stay
close to q(t) for a time, by a property of solutions of initial value problems called
continuity of solutions with respect to initial conditions (see [9]). But if it stays close
for all t > 0, we think of q(t) as being stable.

To quantify this notion of stability for a periodic solution, we use a Poincaré
section which is a hyperplane S containing the point (q(0),q′(0)) that is transverse
to the curve (q(t),q′(t)). If x = (q̃(0), q̃′(0)) is a point on S near the (q(0),q′(0)),
then P(x) is the next point where the curve (q̃(t), q̃′(t)) intersects S,7 and P2(x) is
the next point, and so on. The initial condition x0 = (q(0),q′(0)) is a fixed point of
this Poincaré map P from S to S, i.e., P(x0) = x0.

Definition 1. The periodic solution q(t) is stable if for every real ε > 0, there exist
a real δ > 0 such that |Pk(x)−x0|< ε for all k = 1,2,3, . . . , whenever |x−x0|< δ .

When q(t) is not stable, there are solutions which start nearby but eventually move
away from q(t), and we say that q(t) is unstable.

Showing directly that q(t) is stable or unstable is very difficult. Instead, the
related concept of linearized stability is investigated, at least numerically. The deriva-
tive of the Poincaré map at the fixed point x0 is a square matrix DP(x0).

Definition 2. A periodic solution q(t) is:

1. Spectrally stable8 if all the eigenvalues of DP(x0) have modulus one
2. Linearly unstable if any eigenvalue of DP(x0) has modulus bigger than one

In 1907, Liapunov [15] established a connection between the stability of Definition 1
and the linearized stability of Definition 2.

7 For an illustration of this, see en.wikipedia.org/wiki/Poincaré map.
8 There is a more restrictive notion of spectral stability known as linear stability that requires
additional technical conditions on the square matrix DP(x0).
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Theorem 3. If a periodic solution q(t) is stable, then it is spectrally stable, and if
q(t) is linearly unstable, then it is unstable.

If a periodic solution is shown numerically to be linearly unstable, then by
Theorem 3, the periodic solution is unstable. On the other hand, if a periodic so-
lution is shown numerically to be spectrally stable, it may be stable or unstable.
Examples exist with spectrally stable fixed points of maps like P that are unstable
(see [28]).

The notion of stability for a nonperiodic solution, such as the motion of the sun
and planets in the solar system, is harder to grasp. Here is a sampling of the his-
tory and opinions on this stability problem. In 1891, Poincaré commented that the
stability of the solar system had at that time already preoccupied much time and
attention of researchers (see p. 147 in [10]). In 1971, Siegel and Moser lamented
that a resolution of the stability problem for the N-body problem would probably be
in the distant future (see p. 219 in [28]). In 1978, Moser noted that the answer to the
stability of the solar system was still not known (see p. 127 in [10]). In 2005, Saari
stated that a still unresolved problem for the N-body problem is that of stability (see
p. 132 in [25]). Meyer, Hall, and Offin commented how little is known about the
stability problem and how difficult it was to get (see p. 229 in [18]).

In 1996, Diacu and Holmes suggested that the solar system should be considered
stable (in a weak sense) if no collisions occur among the sun and the planets, and
no planet ever escape from the solar system (see. p.129 in [10]). In this weak sense
of stability, the solar system is stable for the next few billion years according to
numerical work of Hayes [11] in 2007. Much longer-term numerical studies of the
solar system by Batygin and Laughlin [6] in 2008 using small changes in the initial
conditions suggest that Mercury could fall into the sun in 1.261 Gyr9 or that Mer-
cury and Venus could collide in 862 Myr10 and Mars could escape from the solar
system in 822 Myr. The Newtonian N-body problem thus suggests that in the near
future, the Solar System should be free of collisions of planets and the Sun, with
no planets escaping the solar system. But this still leaves open the possibility that
smaller objects, such as asteroids and comets, could collide with any of the planets
in the short and long term. Recall that there are nearly 9,000 of those near-Earth as-
teroids to consider, with 2012 DA14 making its near-collision approach with Earth
on February 15 of 2013.

Collisions

Either in the short term or the long term, collisions put a wrench into the question
of any notion of stability. Why should a solution or any nearby solution of the New-
tonian N-body problem be defined for all time? Remember that Shoemaker-Levy 9
has t+ < ∞!

9 Gyr means giga-year or 1,000,000,000 years.
10 Myr means mega-year or 1,000,000 years.



106 Lennard F. Bakker

Singularities

Collisions are one of the two kinds of singularities in the Newtonian N-body prob-
lem. The solution q(t) of initial value problem (1) is real analytic (i.e., a convergent
power series) on an interval (t0 − δ , t0 + δ ) for some δ > 0, as long as r jk �= 0 for
all j �= k at t0. By a process called analytic continuation (see, e.g., [16]), the interval
(t0 − δ , t0 + δ ) can be extended to the maximal interval (t−, t+).

Definition 3. A singularity of the Newtonian N-body problem is a time t = t+ or t−
when t+ < ∞ or t− >−∞.

In 1897, Painlevé [22] characterized a singularity of the Newtonian N-body prob-
lem, using the quantity

rmin(t) = min
j �=k

r jk(t)

determined by a solution q(t).

Theorem 4. A singularity for the Newtonian N-body problem occurs at time t = t∗
if and only if rmin(t)→ 0 as t → t∗.

An understanding of what this means is obtained by considering the collision set

Δ =
⋃
j �=k

{q : q j = qk} ⊂ (R3)N ,

which is the set of points where two or more of the N-particles occupy the same
position. Painlevé’s characterization means that q(t) approaches the collison set,
i.e.,

q(t)→ Δ as t → t∗

when t∗ is a singularity of the Newtonian N-body problem. Painlevé’s characteriza-
tion introduces two classes of singularities.

Definition 4. A singularity t∗ of the Newtonian N-body problem is a collision singu-
larity when q(t) approaches a specific point of Δ as t → t∗. Otherwise the singularity
t∗ is a non-collision singularity.

Only collision singularities can occur in the Newtonian 2-body problem because
it can be implicitly solved. In 1897, Painlevé [22] showed that only one other New-
tonian N-body problem has only collision singularities.

Theorem 5. In the 3-body problem, all singularities are collision singularities.

Unable to extend his result to more than 3 bodies, Painlevé conjectured that there
exist non-collision singularities in the Newtonian 4 or larger body problem. In 1992,
Xia [34] mostly confirmed Painlevé’s conjecture, giving an example in the Newto-
nian 5-body problem.

Theorem 6. There exist non-collision singularities in the N-body problem for N≥5.
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That leaves unresolved the question of the existence of non-collision singularities in
the Newtonian 4-body problem.

An understanding of what a non-collision singular looks like is obtained by con-
sidering one-half of the polar moment of inertia of the Newtonian N-body problem:

I =
1
2

N

∑
j=1

m jq j ·q j.

This scalar quantity measures the “diameter” of the N particles in the Newtonian
N-body problem. In 1908, von Zeipel [37] characterized a collision singularity in
terms of the polar moment of inertia.

Theorem 7. A singularity of the Newtonian N-body problem at t = t∗ is a collision
if and only if I is bounded as t → t∗.

This implies that for a non-collision singularity, at least one of the N-particles has
to achieve an infinite distance from the origin in just a finite time. This is a rather
strange thing for Newton’s law of gravity to predict. On the other hand, by The-
orem 7, for a collision singularity, all of the positions of the N particles remain
bounded at the moment of the singularity.

A total collapse is an example of a collision singularity in the N-body problem
for which all N particles collide at the same point at the singularity t∗. For a solution
q(t), the quantity

rmax = max
j �=k

r jk(t)

characterizes a total collapse: a total collapse occurs at t∗ if and only if

rmax(t)→ 0 as t → t∗.

There is a relationship between total collapse and the angular momentum that was
known by Weierstrass and established by Sundman (see [25]).

Theorem 8. If A �= 0, then rmax(t) is bounded away from zero.

This does not preclude the collision of less than N particles when A �= 0, as will be
illustrated for certain Newtonian N-body problems in section “Results”.

Improbability

Recall that there are 1,306 potentially hazardous near-Earth asteroids. What are the
chances that Earth will be hit by a near-Earth asteroid or Jupiter will be hit by
another comet? Well, it depends on the arrangement of the particles.

Definition 5. A solution q(t) is called collinear if the N particles always move on
the same fixed line in R3. Otherwise it is called noncollinear.
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Every collinear solution has zero angular momentum because q j(t) is parallel with
q′

j(t) for all t ∈ (t−, t+). In 1971 and 1973, Saari [23, 24] established the probability
of collisions.

Theorem 9. The probability that a noncollinear solution q(t) will have a collision
is zero. Every collinear solution q(t) has a collision.

With collision singularities being rare for a noncollinear N-body problem, why
bother to study them? Diacu and Holmes (see p. 84 and p. 103 in [10]) argue for
the study of collision singularities because without such a study, a complete under-
standing of the Newtonian N-body problem could not be achieved. In particular,
solutions near collision singularities could behave strangely, and the probability of
a solution coming close to a collision singularity is positive and thus cannot be ig-
nored. Understanding then the collision singularities enables an understanding of
the near-collision solutions.

Regularization

Regularization is one method by which we can get an understanding of a collision
singularity. To regularize a collision means to extend the solution beyond the col-
lision through an elastic bounce without loss or gain of total energy in such a way
that all of the solutions nearby have continuity with respect to initial conditions, i.e.,
they look like the extended collision solution for a time (see p. 104 and p. 107 in
[10]). Regularization is typically done by a Levi–Civita-type change of the depen-
dent variables and a Sundman-type change of the independent variable (see [8]),
that together removes the collision singularity from the equations. We illustrate this
regularization in the simplest of the N-body problems.

In the collinear 2-body problem (or Col2BP for short), the positions of the two
particles are the scalar quantities q1 and q2. If x = q2 − q1 is the distance between
the particle with mass m1 at q1 and the particle with mass m2 at q2 > q1, then the
Col2BP takes the form

x′′ =−m1 +m2

x2 , x > 0, (2)

and the total energy takes the form

H =
m1m2

2(m1 +m2)
(x′)2 − m1m2

x
. (3)

As x → 0 the two particles approach collision, and the total energy implies that the
two particles collide with an infinite velocity,

(x′)2 → ∞.

To regularize the binary collision (or total collapse) in this problem, define a new
independent variable s and a new dependent variable w by
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ds
dt

=
1
x
, w2 = x,

where the former is the Sundman-type change of the independent variable, and the
latter is the Levi–Civita-type change of the dependent variable. If ˙= d/ds, the
second-order equation (2) becomes

w2[2wẅ− 2ẇ2 +(m1 +m2)
]
= 0, (4)

and the total energy (3) becomes

Hw2 =
2m1m2

m1 +m2
ẇ2 −m1m2. (5)

As w → 0, the second-order equation (4) makes sense (no dividing by zero), and the
total energy (5) implies that

(ẇ)2 → m1 +m2

2
,

which is a finite nonzero velocity! The collision singularity has been regularized.
The regularized nonlinear second-order equation (4) can actually be solved!

Solving the total energy (5) for 2(ẇ)2 and substituting this into the second-order
equation (4) gives

2w3
[

ẅ− (m1 +m2)H
2m1m2

w

]
= 0. (6)

This makes sense when w = 0, i.e., the moment of collision! For negative H, the
linear second-order equation11 inside the square brackets in (6) solves to give a
real analytic stable periodic solution w(s) which experiences a collision every half
period in terms of the regularized time variable s. The corresponding solution x(t)
is periodic and experiences a collision once a period in terms of the original time
variable t. This doubling of the number of collisions per period is because the change
of dependent variable w2 = x has w(s) “doubling” x(t) in that w(s) passes through 0
twice a period, going from positive to negative and then negative to positive, while
x(t) is positive except at collision where it is zero.

The binary collision singularity in the Newtonian 2-body problem can be regu-
larized in a similar but more complicated way than what was done above for the
Col2BP (see [25]). By Theorem 8, a solution of the 2-body problem with nonzero
angular momentum does not experience a collision or total collapse. A nonzero
angular momentum near-collision solution looks like the zero angular momentum
collision solution.12 The regularized 2-body problem provides good numerical esti-
mates of the motion because there are no infinite velocities!

11 This is a simple harmonic oscillator for H < 0 whose solutions are in terms of cosine and sine.
12 Binary star systems are known to exist in the Universe. The Newtonian 2-body problem predicts
stability for a binary star system, a collision-free solution that is bounded for all time.



110 Lennard F. Bakker

McGehee

What about regularization of a triple collision, when three of the particles meet? In
1974, McGehee [17] showed that regularization of a triple collision is in general
not possible.13 Starting close together, two solutions that approach a near-triple col-
lision can describe radically different motions after the near-triple collision. This
kind of behavior is known as “sensitive dependence on initial conditions” and is
an antithesis of stability. Triple collisions present a numerical nightmare! By exten-
sion, collisions with four or more particles present the same nightmare! So the only
regularizable collisions are those that are essentially a binary collision.

Results

Spectrally stable periodic solutions have been found in Newtonian N-body problems
with regularizable collisions for N ≥ 3. Three of these situations discussed here are
the collinear 3-body problem (or Col3BP), the collinear symmetric 4-body problem
(or ColS4BP), and the planar pairwise symmetric 4-body problem (or PPS4BP).
There are other Newtonian N-body problems where periodic solutions with regu-
larizable collisions whose existence has been given analytically [27, 35, 36], some
of whose stability (in the sense of Definition 1) and linear stability (as defined in
Definition 2) has been numerically determined [5, 33, 35, 36].

Col3BP

As a subproblem of the Newtonian 3-body problem, the Col3BP requires that the
three particles always lie on the same line through the origin. The positions of the
three particles in the Col3BP are the scalars q1, q2, and q3 which can be assumed to
satisfy

q1 ≤ q2 ≤ q3.

By Theorem 9, collisions always occur in the Col3BP. Because the three particles
are collinear for all time, their angular is zero, and by Theorem 8 a total collapse
is possible14 in the Col3BP. In 1974, S.J. Aareth and Zare [1] showed that any two
of the three possible binary collisions in the 3-body problem are regularizable.15

13 This is achieved by “blowing-up” the triple collision singularity and slowing down the motion
as the particles approach a triple collision. This setting does allow for good numerical estimates of
near-triple collisions.
14 Initial conditions leading to total collapse in the equal mass Col3BP are easy to realize: set
q1 =−1, q2 = 0, and q3 = 1 with the initial velocity of each particle set to 0.
15 A good numerical model for the Sun–Jupiter–Shoemaker-Levy 9 or Earth–Moon-2012DA14
situation is regularized 3-body problem of Aarseth and Zare.
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In 1993, Hietarinta and Mikkola [13] used Aarseth and Zare’s regularization [1] to
regularize the binary collisions q1 = q2 and q2 = q3 in the Col3BP.

In 1956, Schubart [26] numerically found a periodic orbit in the equal mass
Col3BP of negative total energy in which the inner particle oscillates between bi-
nary collisions with the outer particles. In 1977, Hénon [12] numerically extended
Schubart’s periodic solution to arbitrary masses and investigated their linear stabil-
ity. In 1993, Hietarinta and Mikkola [13] also numerically investigated the linear sta-
bility of Schubart’s periodic solution for arbitrary masses. Together they showed that
Schubart’s periodic solution is spectrally stable for certain masses and linearly un-
stable for the remaining masses. Hietarinta and Mikkola [13] further numerically in-
vestigated the Poincaré section for Schubart’s periodic solution for arbitrary masses,
showing when there is stability as described in Definition 1. In 2008, Moeckel [19]
and Venturelli [32] separately proved the analytic existence of Schubart’s solution
when m1 = m3 and m2 is arbitrary. Only recently, in 2011, did Shibayama [27] ana-
lytically prove the existence of Schubart’s periodic solution for arbitrary masses in
the Col3BP.

Schubart’s periodic solution for the Col3BP is also a periodic solution of the 3-
body problem, where in the latter the continuity with respect to initial conditions
can be seen for near-collision solutions. For example, Schubart’s periodic solution
for the nearly equal masses

m1 = 0.333333, m2 = 0.333334, m3 = 0.333333

is spectrally stable. Considered in 3-body problem, Schubart’s periodic solution for
these mass values remains spectrally stable [12], and numerically the near-collision
solutions in the Newtonian 3-body problem behave like Schubart’s periodic solu-
tion. It is therefore possible that in the 3-body problem, there are solutions near
Schubart’s periodic solution that are free of collisions and bounded for all time.
Imagine, as did Hénon [12], of Newton’s law of gravity predicting a triple star sys-
tem that is free of collisions and bounded for all time!

ColS4BP

As a subproblem of the Newtonian 4-body problem, the ColS4BP requires that the
four particles always lie on the same line through the origin. The positions of the
four particles are the scalars q1, q2, q3, and q4 that satisfy

q4 =−q1, q3 =−q2, q1 ≥ 0, q2 ≥ 0

and
−q1 ≤ −q2 ≤ 0 ≤ q2 ≤ q1

with masses
m1 = 1, m2 = m > 0, m3 = m, m4 = 1.
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The angular momentum for all solutions of the ColS4BP is zero because of the
collinearity, and so by Theorem 8 a total collapse is possible. There are two kinds of
non-total collapse collisions in the ColS4BP: the binary collision of the inner pair
of particles of mass m each, i.e., q2 = 0, and the simultaneous binary collision of the
two outer pairs of particles, i.e., q1 = q2 > 0. In 2002 and 2006, Sweatman [30, 31]
showed, by adapting the regularization of Aarseth and Zare [1], that these non-total
collapse collisions in the ColS4BP are regularizable.

Sweatman [30, 31] numerically found a Schubart-like periodic solution in the
ColS4BP with negative total energy for arbitrary m where the outer pairs collide in
a simultaneous binary collision at one moment and then the inner pair collides at
another moment. He determined numerically that this Schubart-like periodic solu-
tion is spectrally stable when

0 < m < 2.83 and m > 35.4

and is otherwise linearly unstable. In 2010, Bakker et al. [2] verified Sweatman’s
linear stability for the Schubart-like periodic solution using a different technique. In
2011–2012, Ouyang and Yan [21], Shibayama [27], and Huang [14] proved sepa-
rately the analytic existence of the Schubart-like periodic solution in the ColS4BP.

PPS4BP

The PPS4BP has two particles of mass 1 located at the planar locations

q1 and q3 =−q1,

and two particles of mass 0 < m ≤ 1 located at the planar locations

q2 and q4 =−q2.

The four particles in the PPS4BP need not be collinear, so that the angular
momentum need not be zero. Unlike the ColS4BP, total collapse can be avoided
in the PPS4BP by Theorem 8 when the angular momentum is not zero. Like the
ColS4BP, there are two kinds of non-total collapse collisions in the PPS4BP: simul-
taneous binary collisions when q1 = q2 and q3 = q4 or when q1 = q4 and q2 = q3

and binary collisions when q1 = 0 or when q2 = 0. In 2010, Sivasankaran, Steves,
and Sweatman [29] showed that these non-total collapse collisions in the PPS4BP
are regularizable.

The Schubart-like periodic solution in the ColS4BP is also a periodic solution of
the PPS4BP, where in the latter the continuity with respect to initial conditions can
be observed for near-collision solutions. However, as shown by Sweatman [31], in
the PPS4BP the Schubart-like periodic solution of the ColS4BP becomes linearly
unstable for

0 < m < 0.406 and 0.569 < m < 1.02
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as well as 2.83 < m < 35.4, while it remains spectrally stable for

0.407 < m < 0.567 and m > 35.4.

By long-term numerical integrations for the Schubart-like periodic solution as a
solution of the PPS4BP, Sweatman [31] showed that stability in the sense of
Definition 1 is possible when 0.407 < m < 0.567 and when m > 35.4. It is there-
fore possible for these values of m that near Schubart’s periodic solution, there are
collision-free solutions of the PPS4BP that are bounded for all time.

In 2011, adapting the regularization of Aarseth and Zare [1] to simultaneous
binary collisions, Bakker, Ouyang, Yan, and Simmons [3] proved the analytic exis-
tence of a noncollinear periodic solution in the equal mass PPS4BP. This periodic
solution has zero angular momentum, negative total energy, and alternates between
a simultaneous binary collision of the symmetric pairs in the first and third quadrant
where q1 = q2 and q3 = q4 and the simultaneous binary collision of the symmet-
ric pairs in the second and fourth quadrants where q1 = q4 and q2 = q3. Bakker,
Ouyang, Yan, and Simmons [3] then numerically extended this noncollinear peri-
odic simultaneous binary collision solution to unequal masses 0 < m < 1. In 2012,
Bakker, Mancuso, and Simmons [4] have numerically determined that the non-
collinear periodic simultaneous binary collision solution is spectrally stable when

0.199 < m < 0.264 and 0.538 < m ≤ 1

and is linearly unstable for the remaining values of m. Long-term numerical integra-
tions of the regularized equations done by Bakker, Ouyang, Yan, and Simmons [3]
suggest instability when 0.199<m < 0.264 and stability when 0.538<m ≤ 1 in the
sense of Definition 1. For these latter values of m could the near-collision solutions
in the PPS4BP that look like the noncollinear periodic simultaneous binary collision
solution be collision-free and bounded for all time?

Future Work

Both the ColS4BP and the PPS4BP are subproblems of the Newtonian 4-body prob-
lem, where the non-total collapse collisions in the former two problems are regular-
izable. What is not known is how to, if possible, regularize binary collisions and
simultaneous binary collisions in the Newtonian 4-body problem within one coordi-
nate system.16 If such a regularization is possible, then all of the periodic solutions

16 During the special session on Celestial Mechanics at the American Mathematical Society’s
Sectional Conference in April 2011 at the College of the Holy Cross, Worcester, Massachusetts,
Rick Moeckel put forth the problem of finding an elegant coordinate system for the Newtonian
4-body problem in which regularizes binary collisions and simultaneous binary collisions and
blows up all triple collisions and total collapse. The regularization of binary collisions and simul-
taneous binary collisions can be achieved within multiple coordinate systems, with one coordinate
system for each regularizable collision.
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thus known in the ColS4BP and PPS4BP would also be periodic solutions of the
Newtonian 4-body problem, and the investigation of their stability and linear sta-
bility in the Newtonian 4-body problem could begin. With more possible perturba-
tions of initial conditions in the Newtonian 4-body problem as compared with the
PPS4BP, a loss of spectral stability could indeed happen as it did with going from
the ColS4BP to the PPS4BP. But some of the spectral stability might survive pas-
sage from the PPS4BP to the Newtonian 4-body problem, giving the possibility of
near-collision solutions that are collision-free and bounded for all time.
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7. Bruns, H.: Über die integrale des vielkörper-problems. Acta Math. 11, pp. 25–96 (1887–1888)
8. Celletti, A.: Singularities, collisions and regularization theory. In: Benest, D., Froeschlé, C.
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Chapter 5
Absolute Stability and Conditional Stability
in General Delayed Differential Equations

Junping Shi

Introduction

Delay differential equations are a class of mathematical models describing various
natural and engineered phenomena with delayed feedbacks in the system. Math-
ematical theory of delay differential equations or functional-differential equations
have been developed in the second half of twentieth century to study mathematical
questions from models of population biology, biochemical reactions, neural conduc-
tion, and other applications [4, 6, 10, 17, 20].

A basic delay differential equation was proposed by renowned biologist George
Evelyn Hutchinson in 1948 (see [8]):

du(t)
dt

= ru(t)(1− u(t − τ)) , (1)

where u(t) is the population as a function of time t, r is growth rate per capita
parameter, and the system carrying capacity is assumed to be rescaled to 1. When
τ = 0, the Eq. (1) is reduced to the classical logistic equation, and it is well-known
that the equilibrium u = 1 is globally asymptotically stable for all positive initial
values. On the other hand, when τ is larger, then u = 1 becomes unstable, and there
exists a periodic orbit of (1) which attracts all positive initial values except u = 1.
To illustrate the cause of instability, we linearize the Eq. (1) at u = 1 to obtain

v′(t) =−rv(t − τ). (2)
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If an exponential function v(t) = exp(λ t) is a solution of (2), then the exponent λ
satisfies a characteristic equation in form

λ + re−λτ = 0. (3)

While the exponent λ in the Eq. (3) cannot be explicitly solved, one can observe
that λ = 0 is not a root of (3), and also the root λ of (3) varies continuously with
respect to parameters r and τ . Since when τ = 0, the only root of (3) is λ =−r < 0,
then (3) can only have a root with positive real part if λ = ω i is a root of (3) for
some (r,τ). Thus one can assume the “neutral stability” condition λ = ω i for some
ω > 0 (as λ =−ω i is also a root), which implies

ω i+ re−ωτi = 0

and
cos(ωτ) = 0, r sin(ωτ) = ω . (4)

Solving (4) we obtain that only when

τn =
(2n+ 1)π

2r
, n ∈ N∪{0}, (5)

the neutral stability condition holds with ω = r. This simple example demonstrates
that an equilibrium in delay differential equation can lose the stability with a larger
delay value τ > 0. In this case, we call the equilibrium u = 1 conditionally stable
for the delay differential equation (1).

In general, for a delay differential equation with k different delays and variable
x ∈ R

n:

ẋ(t) = f (x(t),x(t − τ1), · · · ,x(t − τk)), (6)

A steady state x= x∗ of system (6) is said to be absolutely stable (i.e., asymptotically
stable independent of the delays) if it is locally asymptotically stable for all delays
τ j ≥ 0 (1 ≤ j ≤ k), and x = x∗ is said to be conditionally stable (i.e., asymptotically
stable depending on the delays) if it is locally asymptotically stable for τ j (1 ≤ j ≤ k)
in some intervals, but not necessarily for all delays (see [13]).

A variation of (1) can demonstrate the absolute stability of an equilibrium.
Consider

du
dt

= ru(t)[1− au(t)− bu(t− τ)]. (7)

Here a and b represent the portions of instantaneous and delayed dependence of
the growth rate on the population, respectively, and we assume that a,b ∈ (0,1) and
a+b= 1 (see [14]). Then u∗ = 1 is an equilibrium. Following [14], we use the same
procedure as above, then the linearized equation is now:

v′(t) =−arv(t)− brv(t − τ), (8)

and the characteristic equation becomes



5 Absolute Stability and Conditional Stability 119

λ + ar+ bre−λτ = 0. (9)

By substituting the neutral stability condition λ =ω i into (9) and separating the real
and imaginary parts, we obtain

cos(ωτ) =−a
b
, sin(ωτ) =

ω
br

. (10)

If a< b, then one can find that the neutral stability condition λ =ω i can be achieved
when τ = τn as defined by

τn =
1

r
√

b2 − a2

(
arccos

(
−a

b

)
+ 2nπ

)
, (11)

with
ω = r

√
b2 − a2.

In this case, similar to (1), the equilibrium u∗ = 1 is conditionally stable. However,
if a ≥ b, then the neutral stability condition cannot be achieved for any τ > 0; hence
it is absolutely stable, that is, the equilibrium u∗ = 1 is locally asymptotically stable
for any τ ≥ 0. Indeed one can prove that u∗ = 1 is globally asymptotically stable by
using a Lyapunov function argument (see [9, 11, 14]).

Biologically the phenomenon described above has the following meaning: if the
instantaneous feedback of the population dominates the delayed feedback, then the
system has a globally asymptotically stable equilibrium; but if the delayed feedback
is more dominant, then the equilibrium is conditionally stable, and it loses the stabil-
ity for a larger value of delay. It is the aim of this notes to show that this phenomenon
occurs for a wider class of delayed differential equations, including some systems
from biology or physics. Some recent results by the author and his collaborators in
this direction will be reviewed in section “Main Results”, while the proof of these
results can be found in references given below. In section “Concluding Remarks”
some concluding remarks and open questions will be given.

Main Results

Scalar Equations

First we state a result for scalar equation which generalizes the example of instan-
taneous and delayed feedback given in the Introduction. Consider a general delayed
differential equation:

du
dt

= f (u(t),u(t − τ)). (12)

Here f = f (u,w) is a smooth function, and we assume that u = u∗ is an equilibrium.
Then the linearization of (12) at u = u∗ is
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v′(t) = fu(u∗,u∗)v(t)+ fw(u∗,u∗)v(t − τ), (13)

where fu(u∗,u∗) and fw(u∗,u∗) are the partial derivatives of f with respect to the
variables u and w, respectively. In the following when there is no confusion, we will
simply write fu and fw, with the understanding of evaluation at (u∗,u∗). Then the
corresponding characteristic equation is

λ − fu − fwe−λτ = 0. (14)

We assume that when τ = 0, the equilibrium u = u∗ is stable; hence the following
condition is satisfied:

fu(u∗,u∗)+ fw(u∗,u∗)< 0. (15)

Substituting the neutral stability condition λ = ω i into (14), we get

cos(ωτ) =− fu

fw
, sin(ωτ) =− ω

fw
. (16)

Squaring each equation in (16) and taking the sum, we obtain

ω2 = f 2
w − f 2

u . (17)

By using the well-known stability result, we obtain the following general criterion.

Theorem 1. Suppose that u = u∗ is an equilibrium of (12), and (15) is satisfied.

1. If | fu(u∗,u∗)| ≥ | fw(u∗,u∗)| (or equivalently fu(u∗,u∗) ≤ fw(u∗,u∗)), then the
neutral stability condition cannot be achieved for any τ ≥ 0. Hence u∗ is abso-
lutely stable.

2. If | fu(u∗,u∗)|< | fw(u∗,u∗)| (or equivalently fu(u∗,u∗)> fw(u∗,u∗)), then u = u∗
is locally asymptotically stable when 0 ≤ τ < τ0, and it is unstable when τ > τ0,
where

τ0 =
1√

f 2
w(u∗,u∗)− f 2

u (u∗,u∗)
arccos

(
− fu(u∗,u∗)

fw(u∗,u∗)

)
. (18)

Moreover the characteristic equation (14) has a pair of purely imaginary root λ =
±ω i for ω > 0 if and only if | fu(u∗,u∗)|< | fw(u∗,u∗)|, τ = τn which is defined by

τn =
1√

f 2
w(u∗,u∗)− f 2

u (u∗,u∗)
arccos

(
− fu(u∗,u∗)

fw(u∗,u∗)
+ 2nπ

)
(19)

for n ∈ N∪{0}, and

ω =
√

f 2
w(u∗,u∗)− f 2

u (u∗,u∗). (20)

An obvious example of Theorem 1 is the instantaneous and delayed feedback given
in the Introduction in which fu < 0 and fw < 0. Note that Theorem 1 can also be
applied to the case (i) fu > 0 and fw < 0 (conditionally stable), and (ii) fu < 0 and
fw > 0 (absolutely stable).
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Planar Systems with One Transcendental Term

It is common that in a system of differential equations, there are delayed feedbacks
on one of the variables. A general form of such equations can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = f (u,v,uτ), t > 0,

vt = g(u,v,uτ), t > 0,

u(t) = φ1(t), t ∈ [−τ,0],
v(0) = φ2,

(21)

where u = u(t), v = v(t), and uτ = u(t − τ). The functions f (u,v,w) and g(u,v,w)
are continuously differentiable in R

3. We assume that there exist u∗,v∗ ∈ R such
that

f (u∗,v∗,u∗) = 0, g(u∗,v∗,u∗) = 0.

Then (u∗,v∗) is a constant equilibrium of system (21). Linearizing system (21) at
(u∗,v∗), we obtain

d
dt

(
φ
ψ

)
=

(
fu fv

gu gv

)(
φ
ψ

)
+

(
fwφ(t − τ)
gwφ(t − τ)

)
. (22)

And the characteristic equation can be derived from

Det

(
λ − fu − fwe−λτ − fv

−gu − gwe−λτ λ − gv

)
= 0, (23)

and it is in a form
λ 2 + aλ + b+(cλ + d)e−λτ = 0, (24)

where

a =−( fu + gv), b = fugv − fvgu, c =− fw, and d = fwgv − fvgw. (25)

Note that if we define

L1 =

(
fu fv

gu gv

)
, L2 =

(
fw 0
gw 0

)
, (26)

then

a =−Tr(L1), b = Det(L1), c =−Tr(L2),

b+ d = Det(L1 +L2), b− d = Det(L1 −L2).
(27)

Similar to before, we substitute the neutral stability condition λ =ω i into (24), then
we obtain

−ω2 + aω i+ b+(cω i+d)e−iωτ = 0, (28)
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or equivalently

−d cos(ωτ)+ cω sin(ωτ) = b−ω2,

−cω cos(ωτ)− d sin(ωτ) = aω .
(29)

Squaring each equation in (29) and taking the sum, we obtain an equation of ω2 in
the form

ω4 − (c2 − a2 + 2b)ω2 +(b2 − d2) = 0. (30)

The existence of a positive root ω2 to (30) determines the stability of equilibrium
(u∗,v∗). Again, we assume that the equilibrium (u∗,v∗) is stable when τ = 0; hence
the following condition is satisfied (partial derivatives are evaluated at (u∗,v∗,u∗)):

a+ c =−Tr(L1 +L2) =−( fu + fw + gv)> 0,

b+ d = Det(L1 +L2) = ( fu + fw)gv − (gu + gw) fv > 0.
(31)

We first state a result for the characteristic equation (24), which was proved in Ruan
[13] (see also references therein for earlier results).

Theorem 2. Suppose that a,b,c,d ∈ R satisfy

a+ c > 0, b+ d > 0. (32)

1. If (i) c2 − a2 + 2b < 0 and b− d > 0 or (ii) (c2 − a2 + 2b)2 − 4(b2 − d2) < 0 is
satisfied, then all roots of (24) have negative real parts for any τ ≥ 0.

2. If (iii) b−d < 0 or (iv) c2 −a2+2b > 0, b−d > 0, and (c2 −a2 +2b)2 −4(b2 −
d2) ≥ 0 are satisfied, then (24) has purely imaginary roots ±ω i if and only if
(30) has a positive root ω+ or ω− where

ω = ω± =

√
c2 − a2 + 2b±

√
(c2 − a2 + 2b)2 − 4(b2 − d2)

2
, (33)

and for n ∈ N∪{0},

τ = τn =
1
ω±

(
arccos

(
(d − ac)ω2±− bd

d2 + c2ω2±

)
+ 2nπ

)
. (34)

Applying Theorem 2 to the stability of equilibrium of (21), we have

Theorem 3. Suppose that (u,v) = (u∗,v∗) is an equilibrium of (21), and (31) is
satisfied.

1. If the matrices L1 and L2 satisfy either

(i) Det(L1)+Tr(L1 +L2)Tr(L1 −L2)< 0 and Det(L1 −L2)> 0 or
(ii) [Det(L1)+Tr(L1 +L2)Tr(L1 −L2)]

2 − 4Det(L1+L2)Det(L1 +L2)< 0,

then the neutral stability condition cannot be achieved for any τ ≥ 0. Hence
(u∗,v∗) is absolutely stable.
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2. If the matrices L1 and L2 satisfy either

(iii) Det(L1 −L2)< 0 or
(iv) Det(L1 −L2)> 0 and

Det(L1)+Tr(L1 +L2)Tr(L1 −L2)> 2
√

Det(L1 +L2)Det(L1 +L2),

then there exists τ0 > 0 such that (u∗,v∗) is locally asymptotically stable when
0 ≤ τ < τ0, and it is unstable when τ > τ0.

In the second case of Theorem 3, the critical value τ0 and (ω±,τn) can all be cal-
culated from the formulas in Theorem 2, and we omit the long formulas due to
their long expression. We remark that results in Theorem 3 again demonstrate the
phenomenon that if the instantaneous feedback dominates the delayed one, then
the equilibrium is absolutely stable; but if the delayed feedback is more dominant,
then it is conditionally stable. This is best seen in the scenario (iii) in Theorem 3 as
Det(L1 −L2) provides a measure of the difference of the two feedbacks.

There are numerous examples from applications in which the above absolute or
conditional stability can be determined. Here we show two examples. First one is a
Rosenzweig–MacArthur predator–prey model with a delay effect (see [2]):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′(t) = u(t)

(
1− u(t)

k

)
− mu(t)v(t)

u(t)+ 1
, t > 0,

v′(t) =−rv(t)+
mu(t − τ)v(t)
u(t − τ)+ 1

, t > 0,

u(t) = u0(t)≥ 0,v(t) = v0(t)≥ 0, t ∈ [−τ,0],

(35)

From well-known results (see, e.g., [21]), (35) has a unique positive equilibrium

(β ,vβ ) where β =
r

m− r
and vβ =

(K −β )(1+β )
Km

. To consider the stability of

(β ,vβ ), we find that

L1 =

⎛
⎝ β (k− 1− 2β )

k(1+β )
−r

0 0

⎞
⎠ , L2 =

⎛
⎝ 0 0

(k−β )
k(β + 1)

0

⎞
⎠ . (36)

Hence the characteristic equation is in form (24) with

a =−β (k− 1− 2β )
k(1+β )

, b = c = 0, d =
r(k−β )
k(β + 1)

. (37)

Then for (k−1)/2< β < k, a+c> 0 and b+d > 0; hence (31) is satisfied; it is also
obvious that b < d. Therefore case (iii) in Theorem 3 occurs, and the coexistence
equilibrium (β ,vβ ) is conditionally stable.

The second example is a Leslie–Gower predator–prey system with delay
effect [3].
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′(t) = u(t)(p−αu(t)−βv(t− τ1)), t > 0,

v′(t) = μv(t)

(
1− v(t)

u(t − τ2)

)
, t > 0,

u(t) = u0(t)≥ 0, t ∈ [−τ2,0].

v(t) = v0(t)≥ 0, t ∈ [−τ1,0].

(38)

A unique positive equilibrium of (38) is (u∗,v∗) =
(

p
α+β

,
p

α+β

)
. Note that (38)

is not in the form of (21), but the characteristic equation is still (24) with

a =
α p

α+β
+ μ , b =

μα p
α+β

, c = 0, d =
μβ p
α+β

, and τ = τ1 + τ2. (39)

Thus a+ c > 0 and b+ d > 0; hence (31) is satisfied. If α > β , then

b− d =
μ(α−β )p
α+β

> 0,

c2 − a2 + 2b =−
(

α p
α+β

)2

− μ2 < 0.

(40)

Thus case (i) in Theorem 2 is applicable, and (u∗,v∗) is absolutely stable. Indeed, in
[3], it is proved that (u∗,v∗) is globally asymptotically stable for any τ1 ≥ 0, τ2 ≥ 0.
On the other hand, if α < β , then b− d < 0, then again case (iii) in Theorem 2 is
applicable. Hence there exists τ0 > 0 such that (u∗,v∗) is stable for τ1+τ2 < τ0, and
it is unstable for τ1 + τ2 > τ0.

We remark that for many planar systems not in the form of (21), one can still use
Theorem 2 to consider the stability of equilibrium in such systems, as long as the
characteristic equation is still (24). For example, planar systems in form of

{
u̇(t) = f (u(t),v(t − τ1)),

v̇(t) = g(u(t − τ2),v(t)),
(41)

and planar systems in form of
{

u̇(t) = f (u(t),u(t))± k1g(u(t − τ),v(t − τ)),
v̇(t) = h(u(t),v(t))± k2g(u(t − τ),v(t − τ)).

(42)

Notice that Eq. (41) includes the case of Kolmogorov-type predator–prey systems
with two delays [13, 15], and Eq. (42) includes the cases of competitive, mutualistic,
and predator–prey models with symmetric delayed interaction terms. Yet another
example is the second-order delayed feedback system in form

u′′+ au′+ bu = F(u(t − τ)). (43)
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A discussion of this system by comparing the delayed feedback and the instanta-
neous one is given in Smith [17, Sect. 6.4].

General Planar Systems with One Delay

For a general planar system
{

ẋ(t) = f (x(t),y(t),x(t − τ),y(t − τ)),
ẏ(t) = g(x(t),y(t),x(t − τ),y(t − τ)),

(44)

the corresponding characteristic equation is in a form

λ 2 + aλ + b+(cλ + d)e−λτ + he−2λτ = 0. (45)

Here τ > 0 and a,b,c,d,h ∈ R. Notice that (45) has an additional transcendental
term he−2λτ compared with (24). The characteristic equation (45) was considered
recently in [1]. Here we will briefly describe the results in [1] and refer all the details
and proofs to [1].

If ±iω , (ω > 0), is a pair of roots of (45), then we have

−ω2 + aω i+ b+(cω i+ d)e−iωτ+ he−2iωτ = 0. (46)

If
ωτ
2

�= π
2
+ jπ , j ∈ Z, then let θ = tan

ωτ
2

, and we have e−iωτ =
1− iθ
1+ iθ

. Separat-

ing the real and imaginary parts, we obtain that θ satisfies
{
(ω2 − b+ d− h)θ 2 − 2aωθ = ω2 − b− d− h,

(cω− aω)θ 2 +(−2ω2+ 2b− 2h)θ =−(aω+ cω).
(47)

Denote

M1 =

(
ω2 − b+ d− h −2aω

(c− a)ω −2ω2 + 2b− 2h

)
,

M2 =

(
ω2 − b− d− h −2aω
−(c+ a)ω −2ω2 + 2b− 2h

)
,

and

M3 =

(
ω2 − b+ d− h ω2 − b− d− h

(c− a)ω −(c+ a)ω

)
.

And define

D(ω) = det(M1), E(ω) = det(M2), and F(ω) = det(M3). (48)

If D(ω) �= 0, then we can solve from (47) that
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θ 2 =
E(ω)

D(ω)
, θ =

F(ω)

D(ω)
, (49)

and from Eq. (49), we have that ω satisfies

D(ω)E(ω) = F(ω)2, (50)

which is a polynomial equation for ω with degree 8:

ω8 + s1ω6 + s2ω4 + s3ω2 + s4 = 0, (51)

where

s1 = 2a2 − 4b− c2,

s2 = 6b2 − 2h2 − 4ba2 − d2 + a4 − a2c2 + 2c2b+ 2hc2,

s3 = 2d2b− a2d2 − 4b3 + 2b2a2 − c2b2 − 2bc2h

+ 4acdh− 2d2h+ 4bh2− 2h2a2 − c2h2,

s4 = b4 − d2b2 − 2b2h2 + 2bd2h− d2h2 + h4 = (b− h)2[−d2 +(b+ h)2],

(52)

and ω2 is a positive root of

z4 + s1z3 + s2z2 + s3z+ s4 = 0. (53)

The following lemma gives the algorithm of solving the critical delay values for
purely imaginary roots of (45).

Lemma 4. If (53) has a positive root ω2
N (ωN > 0) and D(ωN) �= 0, then Eq. (47)

has a unique real root θN =
F(ωN)

D(ωN)
when ω = ωN. Hence Eq. (45) has a pair of

purely imaginary roots ±iωN when

τ = τ j
N =

2arctanθN + 2 jπ
ωN

, j ∈ Z. (54)

The nondegeneracy condition D(ωN) �= 0 can be verified in certain situations, and
the tranversality condition for the roots moving across the imaginary axis can also be
formulated for (45). The analysis of the quartic polynomial (53) is more complicated
than (30), and a complete solution would be cumbersome to present. In [1], several
different ways of solving the characteristic equation were presented. Here we only
state one of them:

Theorem 5. Suppose that a,b,c,d,h ∈ R satisfy

(i) c �= 0 and h �= 0.
(ii) b �= h and d2 > (b+ h)2.

(iii) b+ h ≤ ad
c

or

(
d
c

(
2h− ad

c

)
− a

(
b+ h− ad

c

))
· (a− c) �= 0.
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Recall that D(ω) and F(ω) are defined as in (48). Then

1. The quartic equation (53) has a positive root ω2
N for some ωN > 0 satisfying

D(ωN) �= 0.
2. Let

θN =
F(ωN)

D(ωN)
and τ = τ j

N =
2arctanθN + 2 jπ

ωN
,

where j ∈Z. Then the characteristic equation (45) has a pair of purely imaginary
eigenvalues ±iωN when τ = τ j

N .

Moreover if a,b,c,d,h ∈ R also satisfy

(iv) a+ c > 0 and b+ d+ h > 0,

then there exists τ∗ > 0 such that when τ ∈ [0,τ∗), all the roots of Eq. (45) have
negative real parts; if a nondegeneracy condition holds, then when τ = τ∗, all the
roots of Eq. (45) have nonpositive real parts, but Eq. (45) has at least one pair of
simple purely imaginary roots ±iω0, and for τ ∈ (τ∗,τ∗+ε) with some small ε > 0,
Eq. (45) has at least one pair of conjugate complex roots with positive real parts.

We refer to [1] for the detail of the nondegeneracy condition. We remark that all
the conditions (i), (ii), and (iii) except d2 > (b+ h)2 hold for all parameter values
except a zero measure set. Combining with the condition (iv), we have the following
observation for the appearance of roots of Eq. (45) with positive real parts for τ > 0.

Corollary 6. Define a subset in the parameter space

P = {(a,b,c,d,h) ∈ R
5 : a+ c > 0, b+ d+ h > 0, b− d+ h < 0}. (55)

Then for almost every (a,b,c,d,h)∈ P, there exists τ∗ > 0 such that when τ ∈ [0,τ∗),
all the roots of Eq. (45) have negative real parts; when τ = τ∗, Eq. (45) has at least
one pair of simple purely imaginary roots ±iω∗, and for τ ∈ (τ∗,τ∗ + ε) with some
small ε > 0, Eq. (45) has at least one pair of conjugate complex roots with positive
real parts.

Now we apply these results to (44). We assume that the functions f (u,v,w,z) and
g(u,v,w,z) are continuously differentiable in R

4, and there exist u∗,v∗ ∈R such that

f (u∗,v∗,u∗,v∗) = 0, g(u∗,v∗,u∗,v∗) = 0.

The linearized equation is

d
dt

(
φ(t)
ψ(t)

)
= L1

(
φ(t)
ψ(t)

)
+L2

(
φ(t − τ)
ψ(t − τ)

)
, (56)

where

L1 =

(
fu fv

gu gv

)
, L2 =

(
fw fz

gw gz

)
, (57)
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Then the characteristic equation at (u∗,v∗) is

Det

(
λ − fu − fwe−λτ − fv − fze−λτ

−gu − gwe−λτ λ − gv − gze−λτ

)
= 0, (58)

which becomes (45) with

a =− ( fu + gv), b = fugv − fvgu, c =−( fw + gz),

d =( fugz − fzgu)+ ( fwgv − fvgw), h = fwgz − fzgw,
(59)

or equivalently

a =−Tr(L1), b = Det(L1), c =−Tr(L2),

d =
1
2
[Det(L1 +L2)−Det(L1 −L2)] , h = Det(L2).

(60)

Then we can state a general delay-induced instability result based on Theorem 5:

Theorem 7. Suppose that f ,g ∈ C1(R4), and (u∗,v∗) is an equilibrium of (44). Let
L1 and L2 be the Jacobian matrices defined as in (57). Assume that

Tr(L2) �= 0, Tr(L2) �= Tr(L1), Det(L2) �= 0, Det(L2) �= Det(L1), (61)

and for a,b,c,d,h defined in (59), we have

b+ h ≤ ad
c

or
d
c

(
2h− ad

c

)
− a

(
b+ h− ad

c

)
�= 0. (62)

If L1 and L2 satisfy

Tr(L1 +L2)< 0, Det(L1 +L2)> 0, and Det(L1 −L2)< 0, (63)

then there exists τ0 > 0, the equilibrium (u∗,v∗) is stable for (44) when 0 ≤ τ < τ0,
but it is unstable when τ ∈ (τ0,τ0 + ε) for ε > 0 and small.

Similarly Corollary 6 implies the following observation:

Corollary 8. Suppose that f ,g, (u∗,v∗), L1 and L2 are same as in Theorem 7.
Let M2×2 be the set of all real-valued 2 × 2 matrices, and let M1 be a subset
of (M2×2)

2 consisting of all matrix pairs (L1,L2) satisfying (63). Then for almost
every (L1,L2) ∈ M1, the conclusions in Theorem 7 hold.

We remark that the results in [1] are mainly about under what conditions, con-
ditional stability is achieved. Only in a very special case, we find a condition for
absolute stability. Hence more general condition on a,b,c,d,h for absolute stability
is still largely open.

We apply the result above to another Leslie–Gower predator–prey system with
delays:
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⎧⎨
⎩

u′(t) = u(t)(p−αu(t)−βv(t− τ)), t > 0,

v′(t) = μv(t)

(
1− v(t − τ)

u(t − τ)

)
, t > 0,

(64)

where p, α , β , and μ are positive parameters, and τ ≥ 0 is the delay. System (64)
has a unique positive equilibrium

(u∗,v∗) =
(

p
α+β

,
p

α+β

)
, (65)

and the Jacobian matrices at (u∗,v∗) are

L1 =

(
− α p
α+β

0

0 0

)
and L2 =

⎛
⎝ 0 − β p

α+β
μ −μ

⎞
⎠ .

Hence the characteristic equation of system (64) is in the same form as (45) with

a =
α p

α+β
, b = 0, c = μ , d =

μα p
α+β

, and h =
μβ p
α+β

. (66)

Since a+c> 0 and b+d+h> 0 hold for any parameter α,β , p,μ > 0, then (u∗,v∗)
is always locally asymptotically stable when τ = 0. If α > β , then b− d + h < 0,
and one can apply Theorem 7 to show that there exists a τ0 > 0, such that (u∗,v∗) is
locally asymptotically stable when 0 ≤ τ < τ0, and it is unstable when τ ∈ (τ∗,τ∗+
ε) for small ε > 0.

Concluding Remarks

For the simplicity of presentation, we only state our results for delayed differen-
tial equations without spatial variables. The results in section “Main Results” also
hold for the stability of a constant equilibrium of reaction-diffusion systems with
Neumann boundary condition; see details in [1] and also [2, 3] for the examples
in Section “Planar Systems with One Transcendental Term”. For reaction-diffusion
systems, the interaction between diffusion and delay can also produce more com-
plex spatiotemporal pattern formation; see [1, 5, 16]. On the other hand, for the
reaction-diffusion equation with Dirichlet boundary condition, the positive equilib-
rium is spatially nonhomogenous, and the corresponding characteristic equation is
also nonhomogenous. Thus the stability analysis for Dirichlet boundary PDE mod-
els is much more involved. For the instantaneous and delayed feedback model (7),
the corresponding PDE model is
{

ut(x, t) = dΔxu(x, t)+ ru(x, t)(1− au(x, t)− bu(x, t− τ)), x ∈Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0.

(67)
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It is known that when a ≥ b and r > dλ1, then the unique positive equilibrium ur(x)
is globally asymptotically stable for any τ≥0 (see [7, 12]); on the other hand, when
a < b, and assume r > dλ1 but r− dλ1 is small, then there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
1

r
√

b2 − a2
arccos

(
−a

b

)
such that the unique positive equi-

librium ur(x) is stable when τ < τ0(r), and it is unstable when τ > τ0(r) (see [18]).
For a planar system with two variables and two equations, we have shown here

that a general stability/instability criterion can be formulated in terms of Jacobian
matrices at the equilibrium point. This delay-induced instability can be compared to
the Turing’s diffusion-induced instability for planar reaction-diffusion systems [19].
See [1] for more in that direction. It would be interesting to extend such notion for
systems with three or more variables. Another interesting question is to prove the
stability or instability for distributed delay instead of discrete delays.

Acknowledgements Partially supported by NSF grant DMS-1022648 and Shanxi 100-talent
program.
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Chapter 6
Existence of Antiperiodic Solutions
to Semilinear Evolution Equations
in Intermediate Banach Spaces

Gisèle Mophou and Gaston M. N’Guérékata

Introduction

We consider semilinear evolution equations of the form

x′(t) = Ax(t)+ f (t,x(t)), t ∈ R, (1)

where A is an unbounded sectorial operator with not necessarily dense domain in
a Banach space X and f : R× Xα → X , where Xα , α ∈ (0,1), is any intermedi-
ate Banach space between D(A) and X . Concrete examples of Xα are the fractional
power spaces D((−A)α), 0 < α < 1, the real interpolation spaces DA(α,∞), intro-
duced by J. L. Lions and J. Peetre, and the Hölder spaces DA(α) which coincide
with the continuous interpolation spaces due to G. Da Prato and P. Grisvard; see
section “Preliminaries”.

We are concerned in this paper with the existence of antiperiodic mild solutions
of the following semilinear integro-differential equation in a Banach space X

u′(t) = Au(t)+
∫ t

−∞
a(t − s)Au(s)ds+ f (t,Cu(t)), (2)

where C : X → X is a bounded linear operator, A is a closed linear (not necessarily
bounded) operator defined in a Banach space X , and a ∈ L1

loc(R
+) is a scalar-valued

kernel.
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We are interested in finding conditions under which Eq. (1) has an antiperiodic
mild solution.

Our paper is motivated by the recent work [5] where the authors studied the exis-
tence of antiperiodic mild solutions of the following semilinear integro-differential
equation in a Banach space X

u′(t) = Au(t)+
∫ t

−∞
a(t − s)Au(s)ds+ f (t,Cu(t)), (3)

where C : X → X is a bounded linear operator, A is a closed linear (not necessarily
bounded) operator defined in a Banach space X , and a ∈ L1

loc(R
+) is a scalar-valued

kernel.
Our main result is Theorem 4.

Preliminaries

In this section we recall some definitions and fix notations which will be used in
the sequel. Throughout this paper, X is a Banach space and A is a sectorial operator
with not necessarily dense domain, i.e., there are constants ω ∈R, θ ∈]π2 ,π [, M > 0
such that

(i) ρ(A)⊃ Sθ ,ω := {λ ∈ C : λ �= ω , |arg(λ −ω)|< θ}. (4)

(ii) ‖R(λ ,A)‖ ≤ M
|λ −ω | , λ ∈ Sθ ,ω . (5)

Hence, A generates an analytic semigroup T := (T (t))t≥0 on (0,∞) to L (X)
satisfying

‖T (t)‖ ≤ M0eωt , t > 0, (6)

‖t(A−ω)T(t)‖ ≤ M1eωt , t > 0. (7)

The semigroup T is assumed to be hyperbolic, i.e., there exist a projection P and
constants M,δ > 0 such that each T (t) commutes with P, kerP is invariant with
respect to T (t), T (t) : ImQ −→ ImQ is invertible and

‖T (t)Px‖ ≤ Me−δ t‖x‖ for t ≥ 0, (8)

‖T (t)Qx‖ ≤ Meδ t‖x‖ for t ≤ 0, (9)

where Q := I −P and, for t ≤ 0, T (t) := (T (−t))−1.
We recall that if T is analytic, then T is hyperbolic if and only if

σ(A)∩ iR = /0;

see, for instance, [3, Prop 1.15, p.305].
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For α ∈ (0,1), a Banach space Xα with norm ‖ · ‖α is said to be an intermediate
space between D(A) and X , or a space of class Jα , if D(A)⊂ Xα ⊂ X and there is
a constant c > 0 such that

‖x‖α ≤ c‖x‖1−α‖x‖αA , x ∈ D(A), (10)

where ‖ · ‖A is the graph norm associated to A. Concrete examples of Xα are
D((−A)α), α ∈ (0,1), the domains of the fractional powers of −A, the real
interpolation spaces DA(α,∞), α ∈ (0,1), defined as follows:

{
DA(α,∞) := {x ∈ X : [x]α = sup0<t≤1 ‖t1−α(A−ω)e−ωtT (t)x‖<+∞}
‖x‖α = ‖x‖+[x]α ,

and the abstract Hölder spaces DA(α) := D(A)
‖.‖α . A very important property of

these last two spaces is given by the fact that they depend only on D(A) and X
(in contrast with the fractional power spaces of −A). That is, for another sectorial
operator B with D(B) = D(A), their interpolation and Hölder spaces coincide. For
more details about intermediate spaces, see, for instance, [3, Chap. II, Sect. 5.b] and
[4].

For the hyperbolic analytic semigroup T , we can easily check that estimations
similar to (8) and (9) hold also with norms ‖ · ‖α . In fact, as the part of A in ImQ is
bounded, it follows from the inequality (9) that

‖AT (t)Qx‖ ≤ c′eδ t‖x‖ for t ≤ 0.

Hence, from (10) there exists a constant c(α)> 0 such that

‖T (t)Qx‖α ≤ c(α)eδ t‖x‖ for t ≤ 0. (11)

We have also

‖T (t)Px‖α ≤ ‖T (1)‖L (X ,Xα )‖T (t − 1)Px‖ for t ≥ 1,

and then from (8), we obtain

‖T (t)Px‖α ≤ M′e−δ t‖x‖, t ≥ 1,

where M′ depends on α . For t ∈ (0,1], by (7) and (10)

‖T (t)Px‖α ≤ M′′t−α‖x‖.

Hence, there exist constants M(α) > 0 and γ > 0 such that

‖T (t)Px‖α ≤ M(α)t−αe−γt‖x‖ for t > 0. (12)
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Antiperiodic Functions

Definition 1. A function f ∈ BC(R,X) is said to be ω-antiperiodic (or simply an-
tiperiodic) if there exists ω > 0 such that f (t +ω) = − f (t) for all t ∈ R. The least
such ω will be called the antiperiod of f .

We will denote by Pωap(X) the space of all ω-antiperiodic functions R→ X .

Theorem 2. [5] Let f , f1, f2 ∈ Pωap(X). Then the following also are in Pωap(X):

• f1 + f2,c f , c is an arbitrary real number.
• g(t) := ( 1

f )(t), provided f �= 0 on R. (Here X = R).
• fa(t) := f (t + a) a is an arbitrary real number.

Remark 3. It is clear that every ω-antiperiodic function is 2ω-periodic.

Remark 4. If A ∈ B(X), the space of all bounded linear operators X → X , and f is
an ω-antiperiodic X-valued function, then A f is also ω-antiperiodic.

A classical example of such function is

f (t) =
∞

∑
n=1

cos[(2n+ 1)t]
n2 , t ∈ R

which is π-antiperiodic. See also [2, 5] for more examples.

Theorem 5 ([5]). Let fn ∈ Pωap(X), such that fn → f uniformly on R. Then f ∈
Pωap(X). Thus, Pωap(X) is a Banach space equipped with the supnorm.

Now let X ,Y be Banach spaces. Then we have the following which is slightly
more general than Definition 2.13 [5].

Definition 6. A function F ∈ BC(R×Y,X) is said to be ω-antiperiodic with an-
tiperiod ω if F(t +ω ,x) =−F(t,x) for all t ∈R uniformly in x ∈ Y .

Define the Nemytskii’s superposition operator

N (ϕ)(·) := F(·,ϕ(·)), ϕ ∈ Pωap(Xα).

We state here a slight generalization of Theorem 2.16 [5].

Theorem 7. Let F ∈ BC(R×Xα ,X). The following properties are equivalent:

i) For every ϕ ∈ Pωap(Xα), N (ϕ) ∈ Pωap(X).
ii) ∀(t,x) ∈ R×Xα ,F(t +ω ,−x) =−F(t,x).

Proof. The proof is similar to the one of Theorem 2.16 [5]. ��
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Existence of Anti-periodic Solutions

Let’s first consider the following inhomogeneous problem:

d
dt

x(t) = Ax(t)+ h(t), t ∈R. (13)

Definition 1. A mild solution of (13) is a continuous function x : R→ Xα satisfying

x(t) = T (t − s)x(s)+
∫ t

s
T (t −σ)h(σ ,)dσ (14)

for all t ≥ s and all s ∈ R.

Remark 2. [1] If h ∈ BC(R,X), then there is a unique mild solution x(·) of Eq. (13)
in BC(R,Xα) given by

x(t) =
∫ t

−∞
T (t − s)Ph(s)ds−

∫ +∞

t
T (t − s)Qh(s)ds, t ∈ R. (15)

Theorem 3. If h ∈ Pωap(X), then the unique bounded and continuous mild solution
of Eq. (13) is also in Pωap(X).

Proof. It is well-known that such a mild solution x(t) of Eq. (13) is represented by

x(t) =
∫ t

−∞
T (t − s)Ph(s)ds−

∫ +∞

t
T (t − s)Qh(s)ds, t ∈ R.

So

x(t +ω) =
∫ t+ω

−∞
T (t +ω− s)Ph(s)ds−

∫ +∞

t+ω
T (t +ω− s)Qh(s)ds.

Letting s−ω = σ , we obtain

x(t +ω) =

∫ t

−∞
T (t −σ)Ph(σ+ω)dσ −

∫ +∞

t
T (t −σ)Qh(σ +ω)dσ

=−
∫ t

−∞
T (t −σ)Ph(σ)dσ+

∫ +∞

t
T (t −σ)Qh(σ+)dσ

=−x(t).

The proof is complete. ��
Theorem 4. Suppose that

• H1. ∀(t,x) ∈ R×Xα , f (t +ω ,−x) =− f (t,x).
• H2. f satisfies the condition

‖ f (t,x)− f (t,y)‖ ≤ k(t)‖x− y‖α
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for every t ∈R and x,y ∈ Xα and some function k ∈ Lp(R,R+) with p ∈ ( 1
1−α ;∞],

such that [
M(α)(γq)α (Γ(1−αq))1/q +

c(α)
(γq)1/q

]
‖k‖p < 1 (16)

where q is the conjugate of p (note that 1− qα > 0 since p > 1
1−α ).

Then Eq. (1) has a unique mild solution in Pωap(X).

Proof. Note that mild solutions of Eq. (1) are of the form

x(t) =
∫ t

−∞
T (t − s)P f (s,x(s))ds−

∫ +∞

t
T (t − s)Q f (s,x(s))ds, t ∈R.

By Theorem 3 above, f ∈ Pωap(Xα). Then by Theorem 7, we deduce that x(t) ∈
Pωap(X).

So the mapping G : Pωap(Xα)→ Pωap(Xα) given by

(G x)(t) :=
∫ t

−∞
T (t − s)P f (s,x(s))ds−

∫ +∞

t
T (t − s)Q f (s,x(s))ds, t ∈ R

is well-defined.
Now let u,v ∈ Pωap(Xα). Then we have

‖(G u)(t)− (G v)(t)‖α ≤
∫ t

−∞
‖T (t − s)P[ f (s,u(s))− f (s,v(s))]‖αds

+

∫ +∞

t
‖T (t − s)Q[ f (s,u(s))− f (s,v(s))]‖αds

≤ M(α)
∫ t

−∞
(t − s)−αe−γ(t−s)‖[ f (s,u(s))− f (s,v(s))]‖ds

+ c(α)
∫ +∞

t
eδ (t−s)‖[ f (s,u(s))− f (s,v(s))]‖ds

≤ M(α)
∫ t

−∞
(t − s)−αe−γ(t−s)k(s) ‖u(s)− v(s)]‖αds

+ c(α)
∫ +∞

t
eδ (t−s)k(s)‖u(s)− v(s)]‖αds

≤
[
M(α)

∫ t

−∞
(t−s)−αe−γ(t−s)k(s)ds+c(α)

∫ +∞

t
eδ (t−s)k(s)ds

]
sup

t
‖u(t)−v(t)]‖α .
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Now we use Hölder’s inequality. Assume first that p is finite. We can write

‖(G u)(t)− (G v)(t)‖α ≤
[

M(α)
(∫ t

−∞
(t − s)−qαe−qγ(t−s)ds

) 1
q
(∫ t

−∞
(k(s))pds

) 1
p

+c(α)
(∫ +∞

t
eqδ (t−s)ds

) 1
q
(∫ ∞

t
(k(s))pds

) 1
p

ds

]
sup

t
‖u(t)− v(t)]‖α

≤
[

M(α)(γq)α (Γ(1−αq))1/q +
c(α)
(γq)1/q

]
‖k‖p sup

t
‖u(t)− v(t)]‖α .

When p = ∞, we obtain directly the same result (with q = 1). So, it is true for
any p. And so

sup
t

‖(G u)(t)− (G v)(t)‖α

≤
[

M(α)(γq)α (Γ(1−αq))1/q+
c(α)

(γq)1/q

]
‖k‖p sup

t
‖u(t)− v(t)]‖α.

The proof is completed, by using Banach’s fixed-point theorem. ��
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Chapter 7
Signal, Image Processing, and Machine
Learning: The Key to Complex Problems
in Medicine and Biology

Mahsa Zahery and Kayvan Najarian

Introduction

Computer-aided decision-making systems have been introduced into many fields,
such as economics, medicine, architecture, and agriculture. The increasing demand
and rapid pace of development of such computer-aided decision-making systems
displays their popularity and success in aiding and enhancing various fields. In the
field of medicine, the advantage of having such systems is in the expense, labor, en-
ergy, and budget savings they provide to the health care environments. In the follow-
ing sections, a brief description of the application of such systems in hemorrhagic
shock, attention detection, traumatic brain injuries, and pelvic fracture detection has
been provided. A flowchart of the procedure of developing such systems is repre-
sented in Fig. 7.1.

Hemorrhage Detection

An example of using a computer-aided decision-making system is in dealing with
traumatic injuries (injuries caused by an accident, a battle, or an illness) wherein
the effective decisions produced by a computer-aided system can be very handy in
controlling the situation and quickly assessing the patient’s health condition. Such
systems are typically designed to detect the type of illness, assess the severity, and
thereby help in the allocation of resources.

In [11], a computational system is proposed, which is designed to estimate
the severity of blood volume loss. Severe hemorrhage is the event of losing large
volumes of blood which leads to reduced blood and oxygen perfusion to vital
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Raw Data (EEG, 
EKG, Image, etc)

Integrated Processed
Feature Database

Recommendations &
Predictions (in Rule form)

Signal/Image processing
techniques are applied to

extract key features

Rule extraction using
feature database

(analyzed for accuracy)

Fig. 7.1 Procedure of developing a computer-assisted system using signal processing and machine
learning [3]

organs. This can be life-threatening and hence requires immediate care and atten-
tion. Depending on the severity, hemorrhage can be categorized into different levels,
such as mild, moderate, and severe. The proposed system is capable of estimat-
ing and incorporating the severity of blood volume loss and hemorrhage knowl-
edge. This is very efficient not only in saving lives but also in reducing the cost of
treatments.

The methodology can be introduced in three steps, each of which contains novel
and transformative concepts. Preprocessing of the raw signals is the first step which
includes algorithms to detect QRS complex and systolic/diastolic waveforms along
with the usage of an adaptive filtering method to filter the noise in the signals.
The second step involves combining the features which are extracted from time
domain, frequency domain, nonlinear analysis, and multi-model analysis (feature
extraction step). This way, a better representation of the hemorrhage patterns is pro-
vided. The last step uses a machine learning algorithm for high-accuracy and real-
time decision-making. At this stage, a new version of error-correcting output code
(ECOC) has been developed. Accuracy obtained by the proposed system is much
higher compared to the accuracy from the United States Army Institute of Surgical
Research lower body negative pressure (USAISR LBNP) dataset thereby justifying
the reliability of the proposed system (an accuracy of 99.89% in case of QRS detec-
tion and 99.95% in case of systole and diastole detection). In the following section,
the conventional ECOC algorithm, as well as the properties of its improved version,
is explained briefly.

Error-Correcting Output Codes (ECOC)

Combining the output of binary classifiers, ECOC [8] solves multiclass learning
problems by using an error-correcting output code matrix. The framework of this
method is given in Fig. 7.2.

A matrix of k rows and n columns is generated, with k representing the number
of classes and n not being limited to any value as long as it satisfies the n > log2 k.
Matrix elements are either 1 or −1 which are the binary codes adjusted to each class
label.

The training stage of an ECOC classifier builds the coding matrix of size k by
nfollowing the steps provided below:
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Fig. 7.2 Framework of ECOC algorithm [10]

• A coding matrix of values 1/−1 is generated.
• For each column j of this matrix:

– Two superclasses are made. One has all the labels i(the row numbers) for
which the (ij)th element of the matrix is 1, and the other consists of the labels
for −1 elements of the matrix.

– A binary classifier is generated to differentiate between the superclasses made
in the previous step.

The testing stage of the algorithm classifies a new example, given the matrix con-
structed at the training stage, using the following steps:

• For each column j of the matrix:

– The probability with which the binary classifier for column j allocates the
new example to label 1 superclass is calculated.

• The proximity (according to Hamming distance) of the vector containing the
probabilities from all the binary classifiers (each column has one binary classi-
fier) to each row of the matrix is calculated.

• The row giving the minimum value is the class label for the new example.

The proposed framework for ECOC in [11] improves the conventional ECOC algo-
rithm in the following areas:

– It changes the code matrix to BCH [15] which is a specific type of error-correcting
output code and is one of the most common used approaches. The choice of
the code matrix is avoided in BCH, but this does not affect its error-correcting
capability.

– It makes use of support vector machine (SVM) as binary classifier. SVM can
handle data/sample imbalance and small sample size problems more effectively.
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– It decomposes the learning problem, in the sense that by assuming a normal
distribution for the data, data points in one class form several normal distributions
with different expectations and standard deviations, distinguishing them from
each other, while these different subclasses are still under the coverage of the
same class. Afterwards, the data is allocated to different layers in each of which
the region is decomposed to two subregions: one with high confidence on the
prediction result and the other with low confidence. Next, the dataset is sent to
the next layer for classification.

For the details on the framework of the improved ECOC algorithm, the reader is
encouraged to refer to [11].

Attention Detection

With the stressful environments, extended work hours, and high workload, the high-
paced life of most people has made sleep disorders a more commonplace in soci-
eties. In addition, there are certain daily tasks which are repetitive and tedious in
nature, thus leading to fluctuations in people’s attention spans and capacity. This is
a very critical problem since losing attention during certain activities or profession
can be very dangerous and deadly.

Using ECG (electrocardiograph) which is a fundamental physiological signal, a
real-time monitoring system has been developed in [3] to predict whether an individ-
ual is paying attention during a task execution or not. The aim of this study is to find
the effect of the body’s physiological parameters on the individuals’ attention level.
Using noninvasive portable monitors, these signals are collected to predict an indi-
vidual’s inclination to sleep or loss of attention well ahead of time. With advanced
signal processing techniques, informative features are extracted. Specific features
related to heart’s rhythm are extracted using a QRS complex detection algorithm.
Next, using dual-tree complex wavelet transform (DT-CWT) and Stockwell trans-
form, the ECG signal is decomposed to extract more features which are informative
in differentiating the subtle changes in the acquired ECG signal [2] and [4]. The next
step involves using machine learning algorithms to categorize these extracted fea-
tures between cases of attention and non-attention. Finally, EEG (electroencephalo-
graph) signals are analyzed and classified to act as a benchmark for comparison with
ECG classification, since EEG signals are fundamentally more informative in pro-
viding information regarding human cognitive activity [5]. However, typically EEG
signal collection devices are cumbersome and many times non-portable thereby lim-
iting its usability in real-world scenarios.

ECG and EEG signals of around 15 subjects are collected. The volunteers are
asked to view videos for 40 min, consisting of 20 min of interesting clips and 20 min
of clips that are not interesting. After decomposing the acquired data and analyzing
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it for feature extraction and classification, a fairly reasonable accuracy of 78.27%
shows that with only the ECG signals of the volunteers, it is possible to distinguish
between the presence and lack of attention in the subjects [5].

Dual-Tree Complex Wavelet Transform

Wavelet transform was developed to overcome the deficiencies of short-time Fourier
transform (STFT). Regular Fourier transform is not always able to represent a sig-
nal’s time-dependent nature. The problem is that Fourier transform does not reflect
the time at which a frequency exists. This is not a problem for stationary signals.
However, for nonstationary signals, STFT was introduced. STFT moves a window
throughout the signal. Fourier transform is then applied to each window to obtain the
frequency information of each window. The problem with STFT is that it considers
the same resolution for all frequencies.

To tackle this problem, wavelet transform was developed. Wavelet transform
considers different resolutions for different frequencies. Discrete wavelet trans-
form (DWT) substitutes the infinitely fluctuating sinusoidal basis functions of
Fourier transform with locally fluctuating basis functions referred to as wavelets.
Wavelets are basis functions with concentrated energy using which the signals are
decomposed.

Dual-tree complex wavelet transform (DT-CWT) was proposed by [9] to come
up with solutions to the constraints of DWT. DWT operates a decimation task while
transforming a signal. This makes DWT a shift variant transformation which creates
various output wavelet coefficients in response to a small shift in the analyzed signal.
The other deficiencies of DWT are susceptibility to aliasing, oscillations, and lack
of directionality [7, 9], and [12].

Providing directional wavelets, shift-invariant property, as well as amending an-
gular resolution, DT-CWT uses a dual tree of real filters to achieve the real and
imaginary parts of the generated complex coefficients [13]. Figures 7.3 and 7.4 il-
lustrate the analysis and synthesis filter banks, respectively.

Consisting of two parallel wavelet transforms, DT-CWT calculates the wavelet
coefficients and scaling coefficients of the first tree in the following manner:

dRe
l (k) = 2l/2

∫ +∞

−∞
x(t)ψh(2

lt − k)dt, l = 1, . . . , j (1)

cRe
j (k) = 2 j/2

∫ +∞

−∞
x(t)φh(2

jt − k)dt (2)

where l is the scaling factor and jis the maximum scale. The coefficients of the
second tree are calculated in similar manner:

dIm
l (k) = 2l/2

∫ +∞

−∞
x(t)ψg(2lt − k)dt, l = 1, . . . , j (3)

cIm
j (k) = 2 j/2

∫ +∞

−∞
x(t)φg(2

jt − k)dt (4)
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Fig. 7.3 H0(n) and H1(n) are, respectively, representatives of high-pass and low-pass filters for tree
A. G0(n) and G1(n) are high- and low-pass filters for tree B, similarly. The input signal is down
sampled to approximately half its original size at each level of decomposition. The output of each
level is the detailed and approximation coefficient of the input signal [1]

The coefficients of DT-CWT are calculated as provided below:

dC
l (k) = dRe

l (k)+ jdIm
l (k), l = 1, . . . , j (5)

cC
j (k) = cRe

j (k)+ jcIm
j (k) (6)

Feature Extraction in DT-CWT

The real and imaginary coefficients from the DT-CWT decomposition and the real
part of the approximation coefficient are used to extract features. Five levels of DT-
CWT are performed on the ECG signal for windows of length 10 s. For each level,
real and complex detailed coefficients as well as the real parts of the level 5 approx-
imate coefficient are considered.

Having x1,x2, · · · ,xn as the values of each coefficient obtained from each 10 s
window, several statistical features such as standard deviation, median, minimum
and maximum, energy, power, entropy, skewness, kurtosis, range, signal complexity,
signal mobility, log of variance, mean of frequencies, variance of probability distri-
bution, sum of autocorrelation, mean of auto-covariance, and entropy of frequency
are calculated. Below a brief description of skewness and kurtosis, two statistical
features affecting the shape of a signal, is provided.
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Fig. 7.4 Ḣ0(n) and Ḣ1(n) are, respectively, representatives of high-pass and low-pass filters for tree
A. Ḡ0(n) and Ḡ1(n) are high- and low-pass filters for tree B. The input signal is down sampled to
roughly half its original size at each level of decomposition [1]

Skewness and Kurtosis

Shape parameters are considered as parameters affecting the shape of a distribution
as opposed to its location and scale. Skewness and kurtosis are shape parameters
measuring the degree of asymmetry and peakedness of the probability distributions,
respectively.

Mathematically speaking, skewness gives the third moment of a random variable
as shown in (7):

Skewness =
1
n ∑

n
i=1(xi − x̄)3

[√
1
n ∑

n
i=1 (xi − x̄)2

]3 (7)

Negative value for skewness represents a probability distribution skewed to the left
tail (left of the mean), and positive value demonstrates a distribution skewed more
to the right tail (right of the mean).

With kurtosis, the fourth moment of a random variable is provided, as given
in (8):

Kurtosis =
1
n ∑

n
i=1(xi − x̄)4

[
1
n ∑

n
i=1 (xi − x̄)2

]2 (8)
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A distribution concentrated around the mean has a high, sharp peak with a kurto-
sis value of greater than 3. In contrast, a kurtosis value of less than 3 portrays a
flat distribution with low, less obvious peak. Value of 3 is the kurtosis of a normal
distribution used as a reference standard.

In the attention detection decision-making computer system by [3], the feature
selection process resulted in selecting skewness for all levels of the imaginary parts
of the detailed coefficients and levels 1, 3, and 5 of real parts of the detailed coeffi-
cients. For kurtosis, level 5 of the approximate coefficient along with levels 4 and 5
of the imaginary part of the detailed coefficient was selected.

Traumatic Brain Injury

Each year, over 1.4 million people in the United States suffer from traumatic brain
injury (TBI) [6]. Over 50,000 of these victims do not survive, out of which 50% die
in the first two hours after the injury. Hence, it is vital to be able to diagnose the
injury quickly. Here, computer tomography (CT) imaging, a fast and economical
medical scan, comes handy as the gold standard for initial TBI assessment. Another
advantage of CT is that it is capable of uncovering fractures or hematomas.

Increased intracranial pressure (ICP) is a common cause of death and a major
complication of TBI which results in deformation of brain tissue. Cranial trepana-
tion is the current method of ICP assessment which can result in patients’ bleeding
and infection due to its highly invasive nature. Therefore, a noninvasive approach as
a preliminary step to perform trepanation would be more preferred.

Changes in the location and size of the ventricles can be helpful in deciding
whether to perform cranial trepanation, and these changes are detectable by CT
scan. The solution proposed by [6] focuses on automatic processing of CT images of
brain for segmentation and identification of the ventricular systems. Segmentation
of the ventricles helps in providing vital diagnosis knowledge through measuring
the changes in the location and size of the ventricles.

Key features are extracted from CT ventricular images via image processing.
The features include the extent of midline shift (a normal midline shift is defined
according to the skull symmetry and anatomical features of a normal subject) in the
brain and the size of the lateral ventricles.

An ideal midline detection algorithm proposed in [6] consists of the following
three steps:

– Approximate midline detection based on the symmetry of the skull
– Falx cerebri and anterior bone protrusion detection
– Midline position refinement using these features

This algorithm resulted in 90% accuracy in midline detection.
A two-step approach is taken for segmentation of the ventricles. The first step

is a low-level segmentation on each pixel of the CT images. Iterated conditional
mode (ICM) and maximum A posteriori spatial probability (MASP) are the two
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algorithms used in this step. Comparing the results of these algorithms, ICM with
K-means as the initial segmentation method resulted in smoother segmentation,
although some small parts were missing. MASP resulted in more noise than ICM.
A modified version of MASP is used which speeds up the segmentation process for
each slice by dealing only with each pixel’s current estimated neighborhood. The
comparison is illustrated in Fig. 7.5. In the next step, template matching algorithm
is used to isolate the ventricles. The CT dataset used for ventricle segmentation
contains mild and severe TBI subjects. In all the cases, the ventricles are detected
successfully in all CT slices (100% accuracy).

Pelvic Fracture Detection

One of the most severe types of injuries suffered by trauma patients is traumatic
pelvic injuries. Traumatic pelvic injuries along with the associated complications,
specifically, hemorrhage and infected hematomas account for 8.6% to 50% of the
mortalities. A computer-aided system is required to accelerate the decision-making
procedure by analyzing large datasets of patients’ information.

The computer-assisted decision-making system proposed in [14] allows for
detection of fracture and hemorrhage through processing of CT images to assess
the severity of a pelvic injury. A hierarchal procedure, capable of combining image
enhancement and segmentation approaches, is proposed which results in accurate
bone segmentation.

The procedure starts with detecting the bone regions and applying histogram
equalization to the area for achieving a better contrast. To enhance the favorable
features in the area, speckle reducing anisotropic diffusion (SRAD) is performed.
Finally, with the aid of automated seeded region growing, the initial bone segmen-
tation is refined. In 83% of the cases, the detected contours were acceptably accu-
rate. Figure 7.6 represents the performance of the proposed approach compared to
the actual image.

Conclusion

Nowadays, signal processing and machine learning techniques play a major role
in dealing with biomedical problems. The noninvasive and computerized solutions
these techniques provide to health care environments have increased their popularity
and made them reliable tools for addressing medical issues.

In this chapter, two medical problems, hemorrhage detection in traumatic
injuries and attention detection using ECG and EEG analysis, have been discussed.
Error-correcting output codes (ECOC) and dual-tree complex wavelet transform
(DT-CWT) are explained as two machine learning and signal processing techniques,
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Fig. 7.5 Comparing segmentation methods. (a) Actual CT image. (b) CT image without the skull.
(c) Result of K-means algorithm. Four clusters are identified with initial seeds. Noise and uneven
intensity distribution have created some holes in the segmentation. (d) ICM segmentation with
K-means as initial result. ICM gives smoother segmentation, although some small parts are miss-
ing. (e) MASP segmentation. MASP has resulted in more noise compared to ICM (the right upper
corner is labeled wrongly as part of ventricles). (f) Modified MASP segmentation which is not as
smooth as ICP, but resulted in less noise than MASP [6]



7 Signal, Image Processing, and Machine Learning. . . 151

Fig. 7.6 The actual image can be seen in the upper left corner. The upper right corner represents
the region where bone is detected after histogram equalization. The lower left corner image shows
the image after SRAD filtering. In the lower right corner, the segmentation results are provided.
The bone contour and shape of the segmented image match with those of the actual image [14]

respectively. Finally, the role of skewness and kurtosis as two statistical parameters
for extracting features from DT-CWT has also been discussed.

Traumatic brain and pelvic injuries are investigated using image processing tech-
niques on CT images. Segmentation methods such as ICP and MASP are used to
address low-level segmentation on each pixel of the brain CT slices. In the next
step, ventricles are detected using template matching algorithm. For pelvic images,
a hierarchical procedure merging filtering and histogram equalization is proposed to
enhance segmentation quality of the CT images.
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Chapter 8
Real-Time Noise Cancellation Using Wavelet
Transforms

Ehsan Sheybani

Introduction

Noise from different sources can have dramatic effects on the performance and
decision-making process of the systems. As such, total elimination of the noise
could also be damaging to the final outcome, as it may result in removing useful
information that can benefit the decision-making process. Several efforts have been
made to find the optimal balance between noise and data parameters. For the most
part, experts in the field agree that it is more beneficial to remove noise at the node
level where data is collected [1–3]. This is mainly stressed so that the low-power,
low bandwidth, and low computational overhead constraints are met while fused
datasets can still be used to make reliable decisions [4–6].

Digital signal processing algorithms, based on advanced mathematical concepts,
have long served to manipulate data to be a good fit for analysis and synthesis of any
kind. For the noise removal application, a special wavelet-based approach has been
considered to suppress the effect of noise in data. The proposed technique uses the
orthogonality properties of wavelets to decompose the dataset into spaces of coarse
and detailed signals. With the filter banks being designed from special bases for
this specific application, the output signal in this case would be components of the
original signal represented at different time and frequency scales and translations.
A detailed description of the techniques follows in the next section.
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Wavelet-Based Transforms

Traditionally, Fourier transform (FT) has been applied to time-domain signals for
signal processing tasks such as noise removal. The shortcoming of the FT is in its
dependence on time averaging over entire duration of the signal. Due to its short
time span, analysis of dataset requires resolution in particular time and frequency
rather than frequency alone. Wavelets are the result of translation and scaling of
a finite-length waveform known as mother wavelet. A wavelet divides a function
into its frequency components such that its resolution matches the frequency scale
and translation. To represent a signal in this fashion, it would have to go through
a wavelet transform. Application of the wavelet transform to a function results in
a set of orthogonal basis functions which are the time-frequency components of
the signal. Due to its resolution in both time and frequency, wavelet transform is
the best tool for detection and classification of signals that are nonstationary or have
discontinuities and sharp peaks. Depending on whether a given function is analyzed
in all scales and translations or a subset of them, the continuous (CWT), discrete
(DWT), or multi-resolution wavelet transform (MWT) can be applied.

An example of the generating function (mother wavelet) based on the sinc func-
tion for the CWT is

ψ(t) = 2Sinc(2t)− Sinc(t) =
Sin(2πt)− Sin(πt)

πt
(1)

normalized with scale one frequency band [1, 2]. The subspaces of this function are
generated by translation and scaling. For instance, the subspace of scale (dilation) a
and translation (shift) b of the above function is

ψa,b(t) =
1√
a
ψ
(

t − b
a

)
(2)

a > 0 defines the scale and frequency band [1/a, 2/a], whereas b ε R is any real
number defining the shift. When a function x is projected into this subspace, an
integral would have to be evaluated to calculate the wavelet coefficients in that scale:

WTψ{x}(a,b) = 〈x,ψa,b
〉
=

∫
R

x(t)ψa,b(t)dt (3)

whereψa,b(t) indicates the conjugate of functionψa,b and 〈x,ψa,b〉 is the inner prod-
uct of L2(R), the space of square-integrable function over R. And therefore, the
function x can be shown in term of its components:

xa(t) =
∫
R

WTψ{x}(a,b).ψa,b(t)db (4)
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projection of x onto the subspace of scale a. Due to computational and time
constraints, it is impossible to analyze a function using all wavelet coefficients.
Therefore, usually a subset of the discrete coefficients is used to reconstruct the
best approximation of the signal. This subset is generated from the discrete version
of the generating function with the corresponding wavelet coefficients:

ψm,n(t) = a−m/2ψ
(
a−mt − nb

)
. (5)

with integers m, n ε Z. Applying this subset to a function x representing a signal
with finite energy will result in DWT coefficients from which one can closely ap-
proximate (reconstruct) x using the coarse coefficients of this sequence:

x(t) = ∑
m∈Z

∑
n∈Z

〈x,ψm,n〉.ψm,n(t). (6)

The MWT is obtained by choosing a finite number of wavelet coefficients from a set
of DWT coefficients. However, to avoid computational complexity, two generating
functions φ and ψ are used to create the subspaces restricting a to a = 2 and b to
b = 1. As a result, we have the subspace Vm = span(φm,n, nεZ) generated by the
coefficients

φm,n(t) = 2−m/2φ
(
2−mt − n

)
(7)

and the subspace Wm = span(ψm,n, nεZ) generated by the coefficients

ψm,n(t) = 2−m/2ψ
(
2−mt − n

)
. (8)

The subspace Vm forms a decreasing sequence in L2(R), with Wm its orthogonal
complement from which the two (fast) wavelet transform pairs (MWT) can be gen-
erated:

φ(t) =
√

2∑
n∈Z

hnφ(2t − n) (9)

and

ψ(t) =
√

2∑
n∈Z

gnφ(2t − n) (10)

with hn =< φ0,0, φ−1,n >, and gn =< ψ0,0, ψ−1,n >.
In this paper the DWT has been used to suppress noise in a dataset. Due to its abil-

ity to extract information in both time and frequency domain, DWT is considered a
very powerful tool. The approach consists of decomposing the signal of interest into
its detailed and smoothed components (high- and low-frequency). The detailed com-
ponents of the signal at different levels of resolution localize the time and frequency
of the event. Therefore, the DWT can extract the coarse features of the signal (com-
pression) and filter out details at high frequency (noise). DWT has been successfully
applied to system analysis for removal of noise [7, 8]. In this paper we present how
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DWT can be applied to detect and filter out noise. A detailed discussion of theory
and design methodology for the special-purpose filters for this application follows.

Theory of DWT-Based Filters for Noise Suppression

DWT-based filters can be used to localize abrupt changes in signals in time and
frequency. Creative techniques have been implemented to suppress noise in datasets
using this approach [7–12]. These techniques range in their approach from calcu-
lating the wavelet transforms for all circular shifts and selecting the “best” one that
minimizes a cost function [9] to using the entropy criterion [10] and adaptively
decomposing a signal in a tree structure so as to minimize the entropy of the rep-
resentation. In this paper a new approach to cancellation of noise in data has been
proposed. The discrete Meyer adaptive wavelet (DMAW) is both translation- and
scale-invariant and can represent a signal in a multi-scale format. While DMAW is
not the best fit for entropy criterion, it is well suited for the proposed noise cancel-
lation purposes [12].

The process to implement DMAW filters starts with discretizing the Meyer
wavelets defined by wavelet and scaling functions as

φ(t) =
√

2∑
n∈Z

hnφ(2t − n) (11)

and

ψ(t) =
√

2∑
n∈Z

gnφ(2t − n). (12)

The masks for these functions are obtained as{
φ(0),φ

(
1

2m

)
, · · · ,φ(M − 1

2m )

}
(13)

and {
0,0, . . . ,0,ψ(0),ψ

(
1
σ

)
, · · · ,ψ

(
N
σ

)}
(14)

As these two masks are convolved, the generating function (mother wavelet) mask
(F) can be obtained as

F

(
k

2m

)
(−M ≤ k ≤ N) (15)

where for every integer k, integers nk
1,n

k
2, . . . ..,n

k
q can be found to satisfy the

inequality

− 3 < μ− nk
i +

kσ
2m <

3σ
2m (1 ≤ i ≤ q). (16)
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The corresponding values from mother wavelet mask can then be taken to calculate

αk
i =

2m/2

σ
F

(
ρk

i

2m

)
,

where ρk
i =
[
(μ− nk

i )2
m + kσ

]
(1 ≤ i ≤ q) and

c−m,k√
α

−
q

∑
i=1

cniαk
i . (17)

Decomposing the re-normalized signal
c−m,k√

α (k ∈ Z) according to the conventional
DWT will result in the entire DMAW filter basis for different scales:

c−m+1,k√
α

,
d−m+1,k√

α
,

c−m+2,k√
α

,
d−m+2,k√

α
, · · · , c0,k√

α
,

d0,k√
α
. (18)

Experimental Results

Noisy Sinusoidal Signal

Figures 8.1, 8.2, and 8.3 show the experimental results for the application of the
proposed filter banks to a noisy sinusoidal signal. As is evident from these figures,
a signal can be decomposed in as many levels as desired by the application and al-
lowed by the computational constraints. Levels shown from top to bottom represent
the coarse to detailed components of the original signal. Once the signal is decom-
posed to its components, it is easy to do away with pieces that are not needed. For
instance, noise, which is the lowermost signal in Fig. 8.1, can be totally discarded.
The reconstructed signal is a fairly good approximation of the original signal. Fig-
ure 8.2 shows the thresholds and coefficients of the signal being filtered. Figure 8.3
shows the histogram (frequency of components distribution) of the signal.

Comparison to Other Noisy Signals

For comparison purposes, the same filter banks have also been applied to a quad-
chirp signal with noise, and the results are shown in Figs. 8.4–8.9. The versions of
the signal have been computed and plotted. In each case the coefficients that have
remained intact have also been displayed. Finally, in Figs. 8.7–8.16, the histogram
for the denoised quad-chirp, auto-regressive, and white noise has been compared to
the original signal. The effectiveness of the proposed filter banks and their capabil-
ity to maintain the important components of the original signal is evident in these
figures.
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Fig. 8.1 Decomposed signal showing all the components of a mixed sine wave with noise

Fig. 8.2 Threshold and coefficients of the decomposed signal
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Fig. 8.3 Histogram and cumulative histogram of the signal

Fig. 8.4 Decomposed signal showing all the components of a quad-chirp wave with noise
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Fig. 8.5 Original and denoised signal with original and thresholded coefficients

Fig. 8.6 Threshold and coefficients of the decomposed signal showing retained energy and number
of zeros
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Fig. 8.7 Histogram and cumulative histogram of the original quad-chirp signal

Fig. 8.8 Histogram and cumulative histogram of the denoised quad-chirp signal

Conclusions and Future Work

As expected from the theory, the DMAW filters performed well under noisy con-
ditions. The decomposed signal could be easily freed up from noise. Future plans
include the application of these filters to fused datasets and comparison between the
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Fig. 8.9 Decomposed signal showing all the components of an auto-regressive wave with noise

Fig. 8.10 Histogram and cumulative histogram of the original auto-regressive signal

two approaches. Additionally, the results of this study can be used in the decision-
making stage to realize the difference this approach can make in accuracy of this
process.
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Fig. 8.11 Threshold and coefficients of the decomposed signal showing retained energy and num-
ber of zeros

Fig. 8.12 Original and denoised signal with original and thresholded coefficients
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Fig. 8.13 Decomposed signal showing all the components of white noise

Fig. 8.14 Histogram and cumulative histogram of the original white noise signal

Future work will address issues such as characterizing the parameters for sim-
ulation and modeling of the proposed filter for wireless sensor networks, showing
how complex examples with correlated sensor data will be filtered for redundancy,
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Fig. 8.15 Threshold and coefficients of the decomposed signal showing retained energy and num-
ber of zeros

Fig. 8.16 Original and denoised signal with original and thresholded coefficients
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and comparing the proposed approach with other similar approaches and giving
comparative results to support the claimed advantages, both theoretically and exper-
imentally.

Acknowledgements This is to thank all of the anonymous reviewers and referees who with their
constructive comments made this a better chapter for publication.
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Chapter 9
Null Controllability of the Heat Equation
with Two Constraints on the Control:
Application to a Discriminating Sentinel
with Given Sensitivity

Sadou Tao and Ousseynou Nakoulima

Introduction

For N ∈ N
∗, let Ω be an open bounded subset of RN of boundary Γ of class C 2.

Let also ω be an nonempty open bounded subset of Ω . For a time T > 0, we set
Q = Ω × (0,T ), Σ = Γ × (0,T ) and U = ω × (0,T ). We consider the following
parabolic equation:⎧⎪⎨

⎪⎩
−∂q
∂ t

−Δq+ a0q = h+ vχω+wχω in Q

q = 0 on Σ
q(T ) = 0 in Ω

(1)

where a0 ∈ L∞(Q), h ∈ L2(Q). The controls v and w belong to L2(U); χω denotes
the characteristic function of ω . In referring to [15, 21], the problem (1) admits a
unique solution in the space

H2,1(Q) = {ϕ , ∂ϕ
∂xi

,
∂ 2ϕ
∂xi∂x j

,
∂ϕ
∂ t

∈ L2(Q)}

equipped with the norm
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‖ϕ‖H2,1(Q) =

{∫
Q

[
|ϕ |2 + ∑

1≤i, j≤N

∣∣∣∣∂ϕ∂xi

∣∣∣∣
2

+ ∑
1≤i, j≤N

∣∣∣∣ ∂ 2ϕ
∂xi∂x j

∣∣∣∣
2

+

∣∣∣∣∂ϕ∂ t

∣∣∣∣
2
]

dxdt

} 1
2

.

Let
Yλ and M be two real closed vector subspaces o f L2(U). (2)

Y⊥
λ and M⊥ represent, respectively, the orthogonal subspaces of Yλ and M in

L2(U).
We use the following notation:

q = q(x, t; (v,w)).

This means that the solution q of (1) depends on two controls v and w.
The problem is as follows

Let a function h be in L2(Q), a0∈ L∞(Q); find two controls v̂ and ŵ in L2(U)
with

v̂ ∈Y⊥
λ and ŵ ∈ M⊥ (3)

such that if q = q(x, t;(v̂, ŵ)) ∈ H2,1(Q) is the unique solution of

⎧⎪⎨
⎪⎩

−∂q
∂ t

−Δq+ a0q = h+ v̂χω + ŵχω in Q

q = 0 on Σ
q(T ) = 0 in Ω

(4)

then
q(., 0; (v̂, ŵ)) = 0 in Q (5)

and the couple (v̂, ŵ) is the minimal norm in L2(U), i.e.

||(v̂, ŵ)||= min
(v,w)∈E

||(v,w)|| (6)

where

||(v,w)||= (||v||2L2(U) + ||w||2L2(U))
1
2

and

E =

{
(v,w) ∈Y⊥

λ ×M⊥, such that the pair ((v,w), q(x, t,(v,w)))
satisfies (3), (4) and (5)

}
.

Problems (3)–(6) are null-controllability problems with constraint on the control.

– If Y⊥
λ = {0} and M⊥ = {0}, this problem becomes a null-controllability prob-

lem without constraints on the control. There exists a large literature on this prob-
lem. In [13] G. Lebeau and L. Robbiano solved this problem for the heat equa-
tion. E. Fernandez-Cara, M. González-Burgos, S. Guerrero et al. and J.P. Puel
in [7] used the Carleman estimate for the weak solution of heat equation with
nonhomogeneous Neumann boundary conditions to prove the null controllability
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of the heat equation. In the nonlinear case, A. Fursikov and O. Yu. Imanuvilov
in [11] showed using a Carleman’s estimate that, when the control acts on
the boundary, null-controllability holds for bounded continuous and sufficiently
small initial data. One can also see [3, 6, 8, 9, 20] and the references therein.

– If Y⊥
λ = {0} and M⊥ �= {0} or if M⊥ = {0} and Y⊥

λ �= {0}, this problem be-
comes a null-controllability problem with one constraint on the control; one can
see [17, 18].
In this paper we are interested in the case Y⊥

λ �= {0} and M⊥ �= {0}, in other
words, the case where two constraints act on the state q. The main result of this
paper is the following:

We assume that the subspaces

Y⊥
λ and M⊥ are finite dimensional (7)

and⎧⎪⎨
⎪⎩

(∀ρ ∈ Yλ ),(
∂ρ
∂ t

−Δρ+ a0 = 0 in ω× (0,T ) =⇒ ρ = 0 in ω× (0,T))

(∀ρ ∈ M ),(
∂ρ
∂ t

−Δρ+ a0 = 0 in ω× (0,T) =⇒ ρ = 0 in ω× (0,T )).
(8)

Theorem 1. We assume that (7), (8) are satisfied. Then there exists a weight func-

tion θ (which does not vanish in θ its domain with
1
θ

bounded) such that for any

function h ∈ L2(Q) with θh ∈ L2(Q), the null-controllability problems (3)–(6) admit
a solution (v̂θ , ŵθ ). Moreover, the pair (v̂θ , ŵθ ) is such that

v̂θ = −(ρ̂θ χω −P1ρ̂θ ) in ω× (0,T ) (9)

ŵθ = −(ρ̂θ χω −P2ρ̂θ ) in ω× (0,T ),

where P1 and P2 are, respectively, the orthogonal projection operator from L2(ω×
(0,T )) into Yλ and into M and ρ̂θ satisfies

⎧⎨
⎩

∂ ρ̂θ
∂ t

−Δρ̂θ + a0ρ̂θ = 0 in Q

ρ̂θ = 0 on Σ .
(10)

The rest of this article is organized as follows. In section “Preliminaries” we
prove Theorem 1 after establishing a Carleman inequality adapted to (3). In sec-
tion “Antiperiodic Functions”, we show by the penalization method an approxima-
tion of solution of the controllability problems (3)–(5) of Theorem 1. In the end,
in section “Existence of Anti-periodic Solutions” we give an application of these
results at a sentinel that will be defined.
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Null Controllability with Two Constraints on the Control

Adapted Carleman Inequality

It is well known that the analysis of the null-controllability problem is asso-
ciated to the Carleman appropriate inequality. The main contributions are due
to O. Yu. Emanuvilov, who developed the use of Carleman inequality to the null-
controllability problem in [12].

To establish the Carleman inequality we adopt the following notations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L0 =
∂
∂ t

−Δ

L =
∂
∂ t

−Δ + a0I

V =
{
ρ ∈ C∞(Q)/ ρ = 0 on Σ

}
(11)

where a0 ∈ L∞(Q) is defined in (1). The classical Carleman inequality can be for-
mulated by the following.

Proposition 1.

There exists a weight function θ , θ ∈ C2(Q), and
1
θ

is bounded; there exists a

constant c = c(Ω ,a0, T ) such as for any ρ ∈ V , the following inequality holds:

∫ T

0

∫
Ω

1
θ 2 |ρ |2 dxdt ≤ C

(∫ T

0

∫
Ω
|Lρ |2 dxdt +

∫ T

0

∫
ω
|ρ |2 dxdt

)
. (12)

All these results are well known. We refer to E. Fernández-Cara and E. Zuazua
in [10] and O. Nakoulima in [18].

To handle the constraint (3), we use the Carleman inequality adapted to the spaces
Yλ and M defined in (2). The following lemma is key to our results.

Lemma 1. Assume that (7) and (8) hold, then there exists a positive constant
C=C(Ω ,ω , a0) such that for any ρ ∈ V

∫ T

0

∫
Ω

1
θ 2 |ρ |2 dxdt (13)

≤ C

(∫ T

0

∫
Ω
|Lρ |2 dxdt +

∫ T

0

∫
ω
|ρ−P1ρ |2 dxdt +

∫ T

0

∫
ω
|ρ−P2ρ |2 dxdt

)

where P1 and P2 are, respectively, the orthogonal projections from L2(ω × (0,T ))
into Yλ and into M .

Proof. The proof uses a well-known compactness-uniqueness argument and the in-
equality (12). Indeed, suppose that (13) does not hold;
then
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀n ∈N
∗, ∃ρn ∈ V ,

∫ T
0

∫
Ω

1
θ 2 |ρn|2 dxdt = 1,

∫ T
0

∫
Ω |Lρn|2 dxdt ≤ 1

n
,
∫ T

0

∫
ω |ρn −P1ρn|2 dxdt ≤ 1

n
and
∫ T

0

∫
ω |ρn −P2ρn|2 dxdt ≤ 1

n
.

(14)

The proof consists in showing that (14) yields a contradiction. We proceed in
four steps:
Step 1. We have

∫ T

0

∫
ω

1
θ 2 |P1ρn|2 dxdt ≤ 2(

∫ T

0

∫
ω

1
θ 2 |ρn|2 dxdt +

∫ T

0

∫
ω

1
θ 2 |ρn −P1ρn|2 dxdt)

∫ T

0

∫
ω

1
θ 2 |P2ρn|2 dxdt ≤ 2(

∫ T

0

∫
ω

1
θ 2 |ρn|2 dxdt +

∫ T

0

∫
ω

1
θ 2 |ρn −P2ρn|2 dxdt).

Since
1
θ 2 is bounded, it follows from (14) that

∫ T

0

∫
ω

1
θ 2 |P1ρn|2 dxdt ≤ C (15)

∫ T

0

∫
ω

1
θ 2 |P2ρn|2 dxdt ≤ C.

Since P1ρn ∈ Yλ and P2ρn ∈ M and that Yλ and M are finite dimensional,

(P1ρn)n, (P2ρn)n are bounded in L2(ω×(0,T )) and so (ρn)n because
∫ T

0

∫
ω

1
θ 2 |ρn|2

dxdt ≤ ∫ T
0

∫
ω

1
θ2 |ρn −Piρn|2 dxdt +

∫ T
0

∫
ω

1
θ 2 |Piρn|2 dxdt, i = 1,2.

Step 2. We can extract a subsequence, still denoted (ρn)n, such that on the one hand,

ρn ⇀ g weakly in L2(ω× (0,T)), (16)

and on the other hand,

ρn −P1ρn → 0 strongly in L2(ω× (0,T)) (17)

and

ρn −P2ρn → 0 strongly in L2(ω× (0,T)).

Next we deduce from the compactness of P1 and of P2 (because Yλ and M are of
finite dimensional) that there exist σ ∈ Yλ and δ ∈ M such that

P1ρn → σ strongly in L2(ω× (0,T)) (18)

and

P2ρn → δ strongly in L2(ω× (0,T)).
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We deduce from (17) and (18) that ρn → g = σ and ρn → g = δ strongly in
L2(ω× (0,T)). Due to the continuity of P1 and of P2, we have P1ρn → P1g and
P2ρn → P2g strongly in L2(ω× (0,T)). Therefore, P1g= g, P2g= g and g ∈Yλ ∩M .
Step 3. In fact, we have g = 0. Indeed, from (14), we also have Lρn → 0 strongly
in L2(Q). Thus, Lρn → 0 strongly in L2(ω× (0,T)). We deduce Lρn ⇀ 0 weakly in
D′(ω× (0,T)) and so Lg = 0. The assumption (8) implies that g = 0 on ω× (0,T).
Finally, ρn → 0 strongly in L2(ω× (0,T)).
Step 4. Since ρn ∈ V , it follows from the observability inequality (12) that

∫ T

0

∫
Ω

1
θ 2 |ρn|2 dxdt ≤ C

(∫ T

0

∫
Ω
|Lρn|2 dxdt +

∫ T

0

∫
ω
|ρn|2 dxdt

)
.

Then, from the conclusions in the third step, we deduce that∫ T
0

∫
Ω

1
θ 2 |ρn|2 dxdt → 0 when n →+∞. The contradiction occurs because of the

first condition in (14), where
∫ T

0

∫
Ω

1
θ 2 |ρn|2 dxdt = 1. The proof of (13) is complete.

Proof of Theorem 1

The main tool is the observability inequality (13) adapted to the constraints.
Consider now the following symmetric bilinear form:

a(ρ , ρ̂) =
∫

Q
LρLρ̂dxdt +

∫
L2(ω×(0,T))

(ρ−P1ρ)(ρ̂−P1ρ̂)dxdt (19)

+
∫

L2(ω×(0,T))
(ρ−P2ρ)(ρ̂−P2ρ̂)dxdt.

Due to Lemma 1, this bilinear form is a scalar product on V . Let V be the Hilbert
space obtained from taking the closure of V under the norm

ρ �−→ ||ρ ||V =
√

a(ρ ,ρ). (20)

Remark 1. Observe that the norm ‖.‖V is related to the right-hand side of inequality
(13). Similarly, the left-hand side of (13) leads to the norm

||ρ ||θ = (

∫
Q

1
θ 2 |ρ |2dxdt)

1
2 . (21)

The completion of V is the weighted Hilbert space usually denoted by L2
1
θ
(Q).

The inequality (13) shows that

||ρ ||θ ≤ C||ρ ||V . (22)
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This inequality extends to ρ ∈V. This shows that V is continuously imbedded in
L2

1
θ
(Q). Let us now consider h ∈ L2(Q) such that θh ∈ L2(Q). Then due to (13) and

the Cauchy–Schwartz inequality, we deduce that the linear form defined on V by

ρ �−→
∫
Q

hρdxdt

is continuous. By the Lax–Milgram theorem, for any h ∈ L2(Q) such that θh ∈
L2(Q), there exists one and only one solution ρθ ∈ V to the variational problem:

∀ρ ∈ V a(ρθ ,ρ) =
∫
Q

hρdxdt. (23)

Proposition 2. Assume that (7) and (8) hold. Let h be in L2(Q) such that θh ∈
L2(Q). Let ρθ be the unique solution of (23), P1ρθ the projection from ρθ χω into
Yλ and P2ρθ the projection from ρθ χω into M . Set

vθ =−(ρθ χω −P1ρθ ) (24)

wθ =−(ρθχω −P2ρθ ) (25)

and
qθ = Lρθ . (26)

The pair ((vθ ,wθ );qθ ) is such that (3)–(5) hold. Moreover, we have

||ρθ ||V ≤ C||θh||L2(Q), (27)

||vθ ||L2(ω×(0,T)) ≤ C||θh||L2(Q), (28)

||wθ ||L2(ω×(0,T)) ≤ C||θh||L2(Q), (29)

||qθ ||H2,1(Q) ≤ C||θh||L2(Q), (30)

where C is a positive constant depending only for Ω , ω , a0, T , Yλ and M .

Proof. Since ρθ ∈ V it follows that vθ = −(ρθ χω −P1ρθ ) ∈ L2(ω×]0,T [), wθ =
−(ρθχω −P2ρθ ) ∈ L2(ω×]0,T [) and qθ ∈ L2(Q). Since P1ρθ ∈Yλ and P2ρθ ∈ M ,
we have vθ =−(ρθχω −Pρθ ) ∈Y⊥

λ and wθ =−(ρθ χω −P2ρθ ) ∈ M⊥. Substitute
−(ρθχω −P1ρθ ), −(ρθ χω −P2ρθ ) and Lρθ , respectively, by vθ , wθ and qθ in the
formula (23), it follows that

∫
Q

qθLρdxdt −
∫ T

0

∫
ω

vθ (ρ−P1ρ)dxdt

−
∫ T

0

∫
ω

wθ (ρ−P2ρ)dxdt =
∫
Q

hρdxdt, ∀ρ ∈V.
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Taking into account that P1ρ ∈ Yλ and P2ρ ∈ M , the above identity reduces to

∫
Q

qθLρdxdt =
∫
Q

hρdxdt +
∫ T

0

∫
ω

vθρdxdt +
∫ T

0

∫
ω

wθ ρdxdt ∀ρ ∈ V. (31)

We show now that qθ is in fact the weak solution by transposition of a backward
heat problem. More precisely, if f ∈ L2(Q), let z be the solution of

⎧⎪⎨
⎪⎩

∂ z
∂ t

−Δz+ a0 = f in Q

z = 0 on Σ
z(0) = 0 in Ω .

(32)

Then z ∈ V , and so ∫
Q

qθ f dxdt =
∫
Q

hρdxdt +
∫ T

0

∫
ω

vθρdxdt (33)

+
∫ T

0

∫
ω

wθρdxdt ∀ρ ∈ V.

Thus, qθ is the weak solution by transposition of problem (4) with v = vθ and w =
wθ (see J. L. Lions [15]). We know that the solution of this equation is in H2,1(Q).

In other words qθ is the solution of the following problem:

⎧⎪⎨
⎪⎩

−∂qθ
∂ t

−Δqθ + a0qθ = h0 + vθ χω +wθ χω in Q,

qθ = 0 on Σ ,
qθ (T ) = 0 in Ω .

(34)

Multiplying the first equation of (34) by ρ ∈ V and integrating by parts over Q,
it follows that

−
∫
Ω

qθ (T )ρ(T )dx+
∫
Ω

qθ (0)ρ(0)dx+
∫

Q
qθLρdxdt

=

∫
Q

hρdxdt +
∫ T

0

∫
ω

vθρdxdt +
∫ T

0

∫
ω

wθρdxdt ∀ρ ∈ V .

Since ρ ∈ V we deduce from (31) that

∫
Ω

qθ (0)ρ(0)dx = 0 ρ ∈ V .

Therefore, qθ (0) = 0 in Ω . Hence the first statement of Proposition 2 is proved. It
remains to prove the estimates (27)–(30). We set ρ = ρθ in (23). It follows from
(23) that
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a(ρθ ,ρθ ) = ||qθ ||2L2(Q) + ||vθ ||2L2(ω×(0,T)) + ||wθ ||2L2(ω×(0,T))

≤ ||θh||L2(Q)||ρθ ||θ
≤ C||θh||L2(Q)||ρθ ||V . (35)

From (20) we obtain (27) and thus (28) and (29). Finally, (30) is a consequence of
(28), (29) and classical properties of the heat equation.

The adapted observability inequality (13) shows that the choice of the scalar
product on V is not unique. Thus there exist infinitely many control functions
(vθ ,wθ ) such that (3)–(5) hold.

Let consider the set of control variables

(vθ ,wθ ) ∈ L2(ω× (0,T))×L2(ω× (0,T))

such that (3)–(5) hold. By Proposition 2, this set is nonempty, and it is clearly con-
vex and closed in L2(ω× (0,T))×L2(ω× (0,T)). Therefore, there exists a unique
pair of variable controls (vθ ,wθ ) of minimal norm in L2(ω× (0,T)) such that
(v̂θ , ŵθ , q̂θ = q̂θ (x, t;(v̂θ , ŵθ ))) is the solution of (3)–(6).

Optimality System for the Optimal Solution

Penalization

The optimal solution (v̂θ ,wθ , q̂θ ) can be approximated considering the penalization
method by J. L. Lions [16]. Let ε > 0. Define the functional

Jε(v,w,q) =
1
2
‖v‖2

L2(ω×(0,T)) +
1
2
‖w‖2

L2(ω×(0,T)) (36)

+
1

2ε
‖− ∂q

∂ t
−Δq+ a0q− h0 − vχω −wχω‖2

L2(Q),

for any (v,w,q) such that

⎧⎪⎨
⎪⎩

v ∈ Y⊥
λ , w ∈ M⊥

−∂q
∂ t

−Δq+ a0q ∈ L2(Q)

q = 0 on Σ , q(0) = q(T ) = 0 in Ω .

(37)

Consider the minimization problem

minJε(v,w,q),(v,w,q) subject to (37). (38)
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We show the following result:

Proposition 3. Under the assumptions of Proposition 2, the minimization problem
(38) has an optimal solution. In other words, there exists (vε ,wε , qε) such that

Jε(vε ,wε ,qε) = min{Jε(v,w,q)|(v,w,q)subject to 37}. (39)

Proposition 4. Under the assumptions of Proposition 2, the triplet (vε ,wε ,qε) is
the optimal solution (39) if and only if there exists a function ρε such that triplet
((vε ,wε ),qε ,ρε ) satisfies the following approximate optimality condition:⎧⎪⎨

⎪⎩
−∂qε

∂ t
−Δqε + a0qε = hχO + vεχω +wεχω + ερε in Q

qε = 0 on Σ
qε(T ) = 0 in Ω

(40)

qε(0) = 0 in Ω (41)

{ ∂ρε
∂ t

−Δρε + a0ρε = 0 in Q

ρε = 0 on Σ
(42)

vε = −(ρεχω −P1ρε) in ω×]0,T [, (43)

wε = −(ρεχω −P2ρε) in ω×]0,T [. (44)

Proof. Express the Euler–Lagrange optimality conditions which characterize
(vε ,wε ,qε) :

d
dλ

Jε(vε ,wε ,qε +λϕ)|λ=0 = 0

for any ϕ ∈ C∞(Q) such that ϕ = 0 on Σ , ϕ(0) = ϕ(T ) = 0 in Ω ,

d
dλ

Jε(vε +λv,wε ,qε)|λ=0 = 0 ∀ v ∈ Y⊥
λ ,

d
dλ

Jε(vε ,wε +λw,qε)|λ=0 = 0 ∀w ∈ M⊥.

After some calculations, we have∫
Q

1
ε
(−∂qε

∂ t
−Δqε+a0qε −h0−vεχω −wε χω)(−∂ϕ

∂ t
−Δϕ+a0ϕ)dxdt = 0 (45)

for any ϕ ∈ C∞(Q) such that ϕ = 0 on Σ , ϕ(0) = ϕ(T ) = 0 in Ω ,

∫ T

0

∫
ω

vεvdxdt −
∫
Q

1
ε
(−∂qε

∂ t
−Δqε + a0qε − h0 − vε χω −wε χω)vdxdt = 0 (46)
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∀v ∈ Y⊥
λ and

∫ T

0

∫
ω

wεwdxdt −
∫
Q

1
ε
(−∂qε

∂ t
−Δqε+a0qε −h0−vε χω −wε χω)wdxdt = 0 (47)

∀w ∈ M⊥.
We set

ρε =−1
ε
(−∂qε

∂ t
−Δqε + a0qε − h0 − vεχω −wε χω).

Then (45), (46), and (47) become, respectively,∫
Q

ρε(−∂ϕ
∂ t

−Δϕ+ a0ϕ)dxdt = 0 (48)

for any ϕ ∈ C∞(Q) such that ϕ = 0 on Σ , ϕ(0) = ϕ(T ) = 0 in Ω ,

∫ T

0

∫
ω

vεvdxdt +
∫
Q

ρεvdxdt = 0, ∀v ∈ Y⊥
λ (49)

and ∫ T

0

∫
ω

wεwdxdt +
∫
Q

ρεwdxdt = 0, ∀w ∈ M⊥. (50)

Consider the first part of (48), we deduce that

∂ρε
∂ t

−Δρε + a0ρε = 0 in Q

so ρε ∈ L2(Q) with Lρε ∈ L2(Q). Then we can define on the one hand ρ on Γ and
on the other hand we prove that ρε = 0 on Σ .

Now, we consider (49)

∫ T

0

∫
ω
(vε +ρε)vdxdt = 0 ∀v ∈ Y⊥

λ .

Thus vε +ρεχω ∈ Yλ . Since vε ∈ Y⊥
λ , we have vε +ρεχω = P1(vε +ρεχω) = P1ρε

and therefore vε =−(ρεχω −P1ρε).
Finally we consider (50)

∫ T

0

∫
ω
(wε +ρε)wdxdt = 0 ∀w ∈ M⊥;

we have therefore vε + ρεχω ∈ M⊥. Since wε ∈ M⊥, we have wε + ρεχω =
P2(wε +ρεχω) = P2ρε and thus wε =−(ρεχω −P2ρε). The proposition is proved.

Remark 2. There is no information available for ρε(0) and ρε(T ).
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Proposition 5. Let vε ,wε , qε and ρε be the functions defined in Proposition 4. Then
for ε → 0, we have the following limits:

vε ⇀ v̂θ weakly in L2(ω× (0,T)), (51)

wε ⇀ ŵθ weakly in L2(ω× (0,T)) (52)

qε ⇀ q̂θ weakly in H2,1(Q), (53)

ρε ⇀ ρ̂θ weakly in V. (54)

Proof. We show the proposition in three steps.
Step 1. We now look for a priori estimates for the approximate controls and state

vε , wε , qε and ρε .
From Proposition 3 we have

||− ∂qε
∂ t

−Δqε + a0qε − h− vεχω ||L2(Q) ≤ C
√
ε , (55)

||vε ||L2(ω×(0,T)) ≤ C, (56)

||wε ||L2(ω×(0,T)) ≤ C. (57)

Since qε satisfies (37), we obtain from (55), (56) and (57) the following estimate:

||qε ||H2,1(Q) ≤ C. (58)

From (43) and (56), we obtain

||−ρε +P1ρε ||L2(ω×(0,T)) ≤ C. (59)

In the same way, from (44) and (57), we have

||−ρε +P2ρε ||L2(ω×(0,T)) ≤ C. (60)

Since Lρε = 0, using the definition of the norm on V given by (20), we have

||ρε ||V ≤C. (61)

Since ρε ∈ V , applying the observability inequality (13) to ρε , we have∥∥∥∥ 1
θ
ρε
∥∥∥∥

L2(ω×(0,T))
≤ C. Then, using (59), (60) and the fact that

1
θ

is in L∞(Q), we

deduce that ∥∥∥∥ 1
θ

P1ρε
∥∥∥∥

L2(ω×(0,T))
≤ C and

∥∥∥∥ 1
θ

P2ρε
∥∥∥∥

L2(ω×(0,T))
≤C.

Since P1ρε ∈ Yλ and P2ρε ∈ M with Yλ and M finite dimensional, we have
‖P1ρε‖L2(ω×(0,T)) ≤ C, ‖P2ρε‖L2(ω×(0,T)) ≤ C. Thus using again (59) et (60), we
obtain

||ρε ||L2(ω×(0,T)) ≤ C, (62)
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Step 2. We study the convergence of (vε ,wε ,qε).
From (56), (57) and (58) we can extract some subsequences still denoted (qε)ε ,
(vε)ε and (wε )ε such that

vε ⇀ v0 weakly in L2(ω× (0,T)), (63)

wε ⇀ w0 weakly in L2(ω× (0,T)), (64)

qε ⇀ q0 weakly in H2,1(Q). (65)

Since vε ∈ Y⊥
λ and wε ∈ M⊥ with Yλ and M the real closed subspaces of

L2(ω× (0,T)), we have

v0 ∈Y⊥
λ and w0 ∈ M⊥. (66)

Since the injection from H2,1(Q) into L2(Q) is compact, the pair (v0,w0,q0) is such
that ⎧⎪⎨

⎪⎩
−∂q0

∂ t
−Δq0 + a0q0 = h0 + v0χω +w0χω in Q,

q0 = 0 on Σ ,
q0(T ) = 0 in Ω ,

(67)

q0(0) = 0 in Ω .

Step 3. We show that (v0,w0,q0=q0(x, t;(v0,w0)))=(v̂θ ,wθ , q̂θ=q̂θ (x, t;(v̂θ , ŵθ ))).
From the expression of Jε given by (36), we can write

1
2
||vε | |2L2(ω×(0,T)) +

1
2
||wε | |2L2(ω×(0,T)) ≤ Jε(vε ,qε).

Since (v̂θ , ŵθ , q̂θ ) satisfies (3)–(5), we have

1
2
||vε | |2L2(ω×(0,T)) +

1
2
||wε | |2L2(ω×(0,T)) ≤ Jε(vε ,qε) (68)

≤ 1
2
‖v̂θ‖2

L2(ω×(0,T)) +
1
2
‖ŵθ‖2

L2(ω×(0,T)) .

Thus using (63) and (64) and taking the limit in (68), we obtain

1
2
||v0| |2L2(ω×(0,T)) +

1
2
||w0| |2L2(ω×(0,T)) ≤ lim inf

ε→0
Jε(vε ,qε)

≤ 1
2
‖v̂θ‖2

L2(ω×(0,T)) +
1
2
‖ŵθ‖2

L2(ω×(0,T)) ,

consequently,

||v0| |2L2(ω×(0,T)) + ||w0| |2L2(ω×(0,T)) ≤ ‖v̂θ‖2
L2(ω×(0,T)) + ‖ŵθ‖2

L2(ω×(0,T))
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since the triplet (v̂θ ,wθ , q̂θ ) is the optimal solution, we have

||v0| |2L2(ω×(0,T)) + ||w0| |2L2(ω×(0,T)) = ‖v̂θ‖2
L2(ω×(0,T)) + ‖ŵθ‖2

L2(ω×(0,T)) ,

||(v0,w0)| |2L2(ω×(0,T)) = ||(v̂θ , ŵθ )| |2L2(ω×(0,T)),

||(v0,w0)| |L2(ω×(0,T)) = ||(v̂θ , ŵθ )| |L2(ω×(0,T)).

From the uniqueness of v̂θ and ŵθ , we have v0 = v̂θ and w = ŵθ .
Step 4. From (62) et (61), there exists a subsequence, still denoted (ρε)ε and ρ̂θ ∈V
such that

ρε ⇀ ρ̂θ weakly in V (69)

ρε ⇀ ρ̂θ weakly in L2(ω× (0,T)). (70)

Since P is the compact operator, we deduce from (70) that

P1ρε → P1ρ̂θ weakly in L2(ω× (0,T)), (71)

P2ρε → P2ρ̂θ weakly in L2(ω× (0,T)).

Combining (70) and (71), we obtain

vε = ρεχω −Pρε ⇀ v̂θ = ρ̂θ χω −P1ρ̂θ weakly in L2(ω× (0,T)),

wε = ρεχω −P2ρε ⇀ ŵθ = ρ̂θ χω −P2ρ̂θ weakly in L2(ω× (0,T)).

This achieves the proof of existence.

Discriminating Sentinels with Given Sensitivity

In this section, we use the previous results to identify some pollution parameters in
a problem governed by the semi-linear parabolic equation.

More precisely, let N, M1 ∈ N\{0} and Ω be a bounded subset of R
N with

boundaryΓ of class C2. For any T > 0, we set Q=Ω×(0,T ) and Σ = ∂Ω×]0,T [=
Γ×]0,T ). We consider now the system modelling the following pollution problem:

⎧⎪⎪⎨
⎪⎪⎩

∂y
∂ t

−Δy+ f (y) = ξ +
M1

∑
i=1

λiξ̂i in Q

y = 0 on Σ
y(0) = y0 + τ ŷ0 in Ω

(72)

where

– y : Q −→R is an unknown function which represents, for example, the pollutant
concentration.

– f is a real-valued given function of class C1, globally Lipschitz.
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– The source term is unknown and represents pollution source of the form ξ +
M1

∑
i=1

λiξ̂i. The functions ξ and {ξ̂i}M1
i=1 are known whereas the real coefficients

{λi}M1
i=1 are unknown.

– The initial condition is of the form y0+τ ŷ0 where the function y0 is known while
τ real is unknown.
We assume that:

– y0 and ŷ0 belong to L2(Ω); ξ and ξi belong to L2(Q).
– The functions ξi, 1 ≤ i ≤ M1 are linearly independent.
– The real τ is sufficiently small.
– The function f verifies

f (0) = 0 (73)

and satisfies the growth condition:

| f (s1)− f (s2)− f ′(0)(s1 − s2) |
≤ c( |s1|P−1 + |s2|P−1)|s1 − s2| ∀s1,s2 ∈ R

(74)

for some c > 0 and p > 1 such that p <
N + 4

N
.

We assume without loss generality of the problem that

ξ = 0 in Q and y0 = 0 in Ω . (75)

Under the above conditions on the data, it is proved in [5, 20] that there exists
α > 0 such that if

||τ ŷ0||L2(Ω) + ||
M1

∑
i=1

λiξ̂i ||L2(Q) ≤ α

the problem (72) admits a unique solution in C([0,T ]; L2(Ω))∩L2(0,T ;H1
0 (Ω)).

Moreover, if we denote by I a neighbourhood of 0, the applications

τ → y(λi,τ) and λi → y(λi,τ), (1 ≤ i ≤ M1) (76)

are in C
(
I,L2(0,T ;L2(Ω))

)
.

for simplicity, we denote

y(x, t;λ ,τ) = y(λ ,τ).

the unique solution to (72).
We need to obtain by observation of (72) some information on the pollution term

M1

∑
i=1

λiξ̂i without calculating the missing term τ ŷ0.

In the model (72), we are interested in identifying the parameters λi without any
attempt of computing the missing term τ ŷ0. To identify these parameters, we use the
method of sentinels due to J.L. Lions dans [14]. It was revisited by O. Nakoulima
in [18].
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The theory of sentinels introduced by J.L. Lions relies on three considerations:

1. A state equation represented here by (72) whose solution y = y(x, t,λ ,τ) =
y(λ ,τ) depends on two families of parameters λ = {λ1, . . . .λM1} and τ.

2. An observation

yobs = m0 +
M2

∑
i=1

βimi, (77)

where M2 ∈N; m0, m1,m2, · · · ,mM2 ∈ L2(O× (O,T )) are given by measurement
of y in L2(O×(O,T )). The real-valued βi are unknown, and we suppose that they
are small enough. The terms βimi are the interference terms. m0 is a measurement
of y if there is no noise. The functions mi are linearly independent on O× (0,T ).
O is nonempty open subset of Ω it’s called observatory.

3. A function S = S(λ ,τ) called “sentinel” defined for h ∈ L2(O×]0,T [) and a
nonempty open subset ω of O ( ω ⊂ ω ⊂ O) by

S(λ ,τ)(u) =
∫ T

0

∫
O

hy(λ ,τ)dxdt +
∫ T

0

∫
ω

uy(λ ,τ)dxdt (78)

where the control function u is to be found with minimal norm in L2(ω×]0,T [)
among functions S defined in (78) and satisfying the following conditions:

– S is stationary to the first order with respect to the missing term τ ŷ0, i.e.

∂S
∂τ

(0,0) = 0 ∀ŷ0. (79)

– S is stationary to the first order with respect to the interference terms βimi, i.e.

∫ T

0

∫
O

h0midxdt +
∫ T

0

∫
ω

umidxdt = 0, 1 ≤ i ≤ M2. (80)

– S is sensitive to the first order with respect to the pollution terms λiξ̂i:

∂S
∂λi

(0,0) = ci, 1 ≤ i ≤ M1 (81)

where ci, (1 ≤ i ≤ M1), are some given constants not all identically null.

At this step, several remarks are indispensable.

Remark 3. One of the purposes of this work is to show that the set of u satisfying
(78)–(81) is nonempty and has a infinitely many solutions. The problem is then to
propose a criterion which permits to select one of them.

Remark 4. For a sentinel without noise and without a given sensitivity, one chooses
the control of minimal norm in L2(U); see J. L. Lions [14]. One proceeds simi-
larly for a discriminating sentinel studied by O. Nakoulima [18] or a discriminating
sentinel studied by G. Massengo Mophou and O. Nakoulima in [17].
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In the case of a discriminating sentinel with given sensitivity, it seems natural to
look for a criterion in the product space. We proceed then as follows:

– We look for the control u in the form:

u = u0 + v̂+ ŵ (82)

with

u0 ∈ Yλ +M , v̂ ∈Y⊥
λ and ŵ ∈ M⊥.

where Yλ and M are defined in (2). We then choose u among the controls called
“admissibles”, i.e. the controls for which the function S defined in (78) satisfying
(79)–(81), with

||(v̂, ŵ)||= min
(v,w)∈E

{||(v,w)||} (83)

where

E = {(v,w) ∈ Yλ ×M , such that (u,S(u)) satisfies (79)–(81)} .

Using the adjoint problem, one shows that the existence of these sentinels is
reduced to the solution of null-controllability problem with two constraints on the
control. These types of controllability problems were the subject of many numerical
methods which in fact reduce them to an approximate controllability problem with
constraints on the state. It is in this context, for instance, that J.P. Kernevez et al.
use these sentinels in [1, 2] to identify parameters of pollution in a river. O. Bodart
applies them in [4] to identify an unknown boundary.

O. Nakoulima in [18] studied the null-controllability problem with Dirichlet con-
dition using a discriminating sentinel. G.Massengo Mophou and O. Nakoulima in
[17] studied this problem given a sensitivity sentinel. In this paper we propose to
study a null-controllability problem for Dirichlet boundary condition using a dis-
criminating sentinel with given sensitivity.

Remark 5. To estimate the parameter λi, one proceeds as follows.
Assume that the solution of the state equation (72) when λ = 0 and τ = 0 is

known. Then one has the following information:

S(λ ,τ)− s(0,0)≈
M1

∑
i=1

λi
∂S
∂λi

(0,0).

Therefore, fixing i0 ∈ {1, . . . ,M1} and choosing j such that

∂S
∂λ j

(0,0) = 0 for i0 �= j and
∂S
∂λi0

(0,0) = 1,

one obtains the following estimate of the parameter λi0 :

λi0 ≈ S(λ ,τ)− s(0,0).
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Remark 6. Notice that for the J.L. Lions’s sentinel, one has ω = O.

Remark 7. Since y ∈ L2(0,T ;H1(Ω)), h ∈ L2 (O× (0,T)) and u ∈ L2 (ω× (0,T )) ,
the relation (78) is well defined. Furthermore, in view of (76), the derivatives of y
with respect to τ denoted by

yτ =
d

dτ
y(λ ,τ)|τ=0 (84)

and with respect to λi denoted by

yλi
=

d
dλi

y(λ ,τ)|λi=0 (85)

exist. Thus the conditions (79)–(81) are well defined.

Remark 8. In the sensitivity condition (81), the ci are chosen according to the
importance associated with the component ξ̂i of the pollution source.

Remark 9. If the function S defined by (78)–(81) exists, then it is unique since u
verifies (83). In this case, proceeding as in Remark 5, we get

λi ≈ 1
ci
(S(λ ,τ)− S(0,0)).

Definition 1. We will refer to the function S given by (78)–(81) as a discriminating
sentinel with given {ci} sensitivity.

Let y0 be the solution of (72) when λ = 0 and τ = 0. Then, in view of (75), we
have

y0 = 0 in Q. (86)

From (84) and (85), yτ and yλi
are, respectively, solution of⎧⎪⎨

⎪⎩
∂yτ
∂ t

−Δyτ + f ′(0)yτ = 0 in Q,

yτ = 0 on Σ ,
yτ(0) = ŷ0 in Ω

(87)

and ⎧⎪⎨
⎪⎩

∂yλi

∂ t
−Δyλi

+ f ′(0)yλi
= ξ̂i in Q,

yλi
= 0 on Σ ,

yλi
(0) = 0 in Ω

(88)

where f ′(0) denotes the derivative of f at y0 = 0. From condition (74), the prob-
lems (87) and (88) admit, respectively, unique solutions yτ ∈ C([0,T ]; L2(Ω))∩
L2(0,T ;H1

0 (Ω)) and yλi
∈ H2,1(Q) = L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)).

Let χω be the characteristic function of the set ω . We set

Yλ = vect(yλ1
χω , · · · ,yλM1

χω) (89)

M = vect(m1χω , · · · ,mM2χω) (90)
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the vector subspace of L2 (ω× (0,T)) generated by the M1-independent functions
yλi

χω (1 ≤ i ≤ M1) and the M2-independent functions miχω (1 ≤ i ≤ M2).
We also set

a0 = f ′(0). (91)

Equivalence to the Null-Controllability Problem

Since yτ and yλi
are, respectively, solutions of (87) and (88), the stationary condi-

tions (79)–(80) and, respectively, the sensitivity conditions (81) hold if and only if

∫ T

0

∫
O

h0yτdxdt +
∫ T

0

∫
ω

uyτdxdt = 0 ŷ0 ∈ L2(Ω), (92)

∫ T

0

∫
O

hmidxdt +
∫ T

0

∫
ω

umidxdt = 0, 1 ≤ i ≤ M2, (93)

and ∫ T

0

∫
O

h0yλi
dxdt +

∫ T

0

∫
ω

uyλi
dxdt = ci, 1 ≤ i ≤ M1. (94)

In order to transform equation (92) we introduce the classical adjoint state.
More precisely, we consider the solution q = q(x, t,u) of the linear problem

⎧⎪⎨
⎪⎩

−∂q
∂ t

−Δq+ a0q = hχO + uχω in Q

q = 0 = 0 Σ
q(T ) = 0 Ω

(95)

where χO the characteristic function of the open set O. It is well known that the
problem (95) admits a unique solution q in H2,1(Q) (see [5]).

First, multiplying both sides of the differential equation in (95) by yτ ∈ C([0,T ],
L2(Ω))∩L2(0,T ;H1

0 (Ω)) which is solution of (87) and integrating by parts in Q,
we get

∫ T

0

∫
O

h0yτdxdt +
∫ T

0

∫
ω

uyτdxdt =
∫
Ω

q(0)ŷ0dx ∀ŷ0 ∈ L2(Ω).

Thus, condition (79) or (92) holds if and only if

q(0) = 0 in Ω . (96)

Then, multiplying both sides of the differential equation in (95) by yλi
∈ H2,1(Q)

which is solution of (88) and integrating by parts in Q, we have
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∫ T

0

∫
Ω

qξ̂idxdt =
∫ T

0

∫
O

h0yλi
dxdt +

∫ T

0

∫
ω

uyλi
dxdt 1 ≤ i ≤ M1.

Thus, condition (81) or (94) is equivalent to

∫ T

0

∫
Ω

qξ̂idxdt = ci 1 ≤ i ≤ M1. (97)

Let Yλ be a real closed vector subspace defined in (89). Since Yλ is a vector subspace
L2(ω× (0,T )) generated by the independent functions and Yλ is finite dimensional,
there exists a unique u1 ∈ Yλ such that

ci −
∫ T

0

∫
O

h0yλi
dxdt =

∫ T

0

∫
ω

u1yλi
dxdt 1 ≤ i ≤ M2.

Therefore, condition (94) or (97) holds if and only if

u− u1 ∈ Y⊥
λ .

Therefore there exists k1 ∈ Y⊥
λ such that

u = u1 + k1. (98)

We consider now (93). Let M be a real closed vector subspace defined in (90).
Since M is a vector subspace L2(ω×(0,T )) generated by the independent functions
and M is finite dimensional, there exists a unique u2 ∈ M such that

∫ T

0

∫
O

h0midxdt =−
∫ T

0

∫
ω

u2midxdt, 1 ≤ i ≤ M1.

Therefore, condition (93) holds if and only if

u− u2 ∈ M⊥;

therefore, there exists k2 ∈ M⊥ such that

u = u2 + k2. (99)

In (98) and (99) we do the sum member to member

2u = (u1 + k1)+ (u2 + k2)

which gives

u =
1
2
(u1 + u2)+

1
2

k1 +
1
2

k2.
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Setting u0 =
1
2 (u1 + u2), v1 =

1
2 k1, v2 =

1
2 k2, we have

u = u0 + v1 + v2; (100)

we replace u by u0 + v1 + v2 in (95)1, and we set

h = h0χO + u0χω ∈ L2(Q). (101)

One can state the following proposition:

Proposition 6. Let u be in L2(ω×]0,T [) and u0 ∈Yλ +M

S(λ ,τ)(u) =
∫ T

0

∫
O

hy(λ ,τ)dxdt +
∫ T

0

∫
ω

uy(λ ,τ)dxdt;

then the following are equivalent:

1. Find u such that S satisfies (79)–(81).
2. Find (v1,v2) ∈Y⊥

λ ×M⊥ such that if u = u0 + v1 + v2 and if q is the solution of
(95), then q satisfies (96).

Detection of Parameters

We are now able to give the expression of the sentinel S defined by (78)–(81) and
identify the parameter λi.

Expression of the Discriminating Sentinel with Given Sensitivity

We consider the results obtained in section “Antiperiodic Functions” and we assume
that h given by (101) and θ given by Theorem 1 are such that θh ∈ L2(O× (0,T)).
Let (v̂θ , ŵθ , q̂θ ) as in Theorem 2. Since (v̂θ , ŵθ ) = (−(ρ̂θ χω − P1ρ̂θ ),−(ρ̂θ χω −
P2ρ̂θ )) realizes the minimum in L2(O× (0,T)) among all controls (v,w) such that
the pair ((v,w); q) satisfies (3)–(6), using (100), we deduce that u = u0 + v̂θ + ŵθ =
u0 − (ρ̂θ χω −P1ρ̂θ )− (ρ̂θ χω −P2ρ̂θ ). Consequently, replacing u by its expression
in (78), the function S becomes:

S(λ ,τ)(u) =
∫ T

0

∫
O

h0y(λ ,τ)dxdt (102)

+

∫ T

0

∫
ω
(u0 − (ρ̂θ χω −P1ρ̂θ )− (ρ̂θ χω −P2ρ̂θ ))y(λ ,τ)dxdt

and (u,S(u)) is such that (78)–(81) holds.
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Identification of Parameter λi

Let us show now how the sentinel permits to detect the pollution λi. Let y0 be the
solution of (72) for λ = 0,τ = 0. One obtains from (75) that y0 = 0 in Q. Then
taking λ = 0,τ = 0 in (102), we can calculate

S(0,0)(u) =
∫ T

0

∫
O

h0y0dxdt +
∫ T

0

∫
ω
(u0 + v̂θ + ŵθ )y0dxdt = 0. (103)

From (79), we have

S(λ ,τ)(u)� S(0,0)+
M2

∑
i=1

λi
S
∂λi

(0,0), f or λi et τ petit. (104)

If yobs is known, its follows from (77) and (80) that

S(λ ,τ)(u) =
∫ T

0

∫
O

h0m0dxdt +
∫ T

0

∫
ω
(u0 + v̂θ + ŵθ )m0dxdt. (105)

Thus,

S(λ ,τ)− S(0,0) =
∫ T

0

∫
O

h0(m0 − y0)dxdt +
∫ T

0

∫
ω
(u0 + v̂θ + ŵθ )(m0 − y0)dxdt.

We have also the following information:

M1

∑
i=1

λi
S
∂λi

(0,0) =
∫ T

0

∫
O

h0(m0 − y0)dxdt +
∫ T

0

∫
ω
(u0 + v̂θ + ŵθ )(m0 − y0)dxdt

which gives (80) using

M1

∑
i=1

λici ≈
∫ T

0

∫
O

h0(m0 − y0)dxdt +
∫ T

0

∫
ω
(u0 + v̂θ + ŵθ )(m0 − y0)dxdt.

Now, fixing i0 ∈ {1,M1} and choosing ci0 �= 0 and c j = 0, for all j ∈ {1,M1} with
j �= i0, we obtain of this estimation the parameter λi0

λi0 ≈ 1
ci0

{
∫ T

0

∫
O

h0(m0 − y0)dxdt +
∫ T

0

∫
ω
(u0 + v̂θ + ŵθ )(m0 − y0)dxdt}

≈ 1
ci0

{
∫ T

0

∫
O

h0m0dxdt +
∫ T

0

∫
ω
(u0 + v̂θ + ŵθ )m0dxdt}

because y0 = 0 in Q.
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lution dans une rivière. M2AN Math. Model. Numer. Anal. 28(3), 297–312 (1994)

2. Ainseba, B.E., Kernevez, J.P., Luce, R.: Identification de paramètres dans les problèmes non
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Chapter 10
A Galerkin Method Solution of Heat
Transfer Problems in Closed Channels:
Fluid Flow Analysis

Nasser Ghariban

Introduction

The study of conventional forced convection in channels is a requirement for well-
designed heat transfer equipment. A channel is a configuration for studying internal
flows. Being well informed or having knowledge of the structure of flow in a channel
is of great engineering interest since it can be applied in many applications. Chan-
nels contain flows that are considered Newtonian fluid. The traditional application of
this study is in heat transfer equipment, such as heat exchangers; the friction factor
and heat transfer coefficient are important parameters for evaluating design perfor-
mance of these equipment. Recently, the growth in microfluidic systems with needs
of transporting of liquids or gases in channels with micro cross-sectional dimensions
is of great importance in many applications. These applications in microelectronic
cooling, MEMS, fuel cell technology, and medical and biomedical devices moti-
vated researchers to investigate on simple solutions for channel flow. Microchan-
nels have specific characteristics such as high surface area per unit volume and high
heat transfer coefficient that will provide further application in the future. A study
of velocity and temperature distribution in these channels will help investigators
to understand the pressure drop and heat transfer rate at the boundaries. Although
the behavior of fluid in microchannels is laminar in larger-scale equipment such as
heat exchangers, the designer usually deals with turbulent flow. When flow is turbu-
lent, the computations are difficult. Often, the experimental studies of shear stress
and heat transfer in turbulent flow guide researchers toward theoretical predictions.
However, the experimental data are not universally available for all possible shapes
and flow conditions.
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Numerical computation has served engineers well and is a powerful tool. This
work seeks a simple mathematical model that can produce relatively accurate results
with little computational effort. The Galerkin-based method of solution given by
Haji-Sheikh et al. [4] and Beck et al. [1] is modified to solve laminar flow in closed
channels as well as study of turbulent flow. This method provided a simple and
effective method for calculating laminar flow characteristics in various shape chan-
nels. It is also shown that this method can also be used for turbulent flow; how-
ever, major modifications are needed. A set of basis functions that are markedly
different from the basis functions for laminar flow must be selected. Improved
accuracy and rapid convergence are realized when the basis functions include the
dependence of turbulent viscosity on the velocity gradient. From several differ-
ent turbulent viscosity models, the Van Driest model is chosen for this solution
method. It was determined that a modified Van Driest model provides computed
data that agree well with experimental data of other investigators, e.g., Laufer [7]
and Nikuradse [9].

Analysis

The objective of this paper is to develop a simple and computationally efficient
method for finding flow properties such as pressure drop. The Galerkin method is
selected because it is equally applicable to circular and noncircular ducts. The same
method has been extended for soling thermal characteristics of the channels that will
be address in second part of this publication.

Governing Equations

The Galerkin-based method is a simple technique for finding the velocity field in
ducts with arbitrary cross-section areas. For convenience, the Cartesian coordinates
are used to describe the method of solution. The cylindrical coordinates are used for
study of pipe flow as demonstrated in example 1 and 3 of this study. The momentum
equations for fully developed channel flow are

ρ
Du
Dt

= ρ . f −∇P+ μ∇2u (1)

In the absence of external forces and steady-state condition, the equation for a lam-
inar flow will simplify to

− ∂P
∂Z

+ μ(
∂ 2w
∂x2 +

∂ 2w
∂y2 ) = 0 (2a)

where w is the velocity of the flow along channel axis (z).
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For turbulent flow the equation will have an extra term due to fluctuation of
velocity along x,y, and z axis as

− ∂P
∂ z

+ μ(
∂ 2w
∂x2 +

∂ 2w
∂y2 )−ρ(

∂u′w′

∂x
+
∂v′w′

∂y
) = 0 (2b)

The Boussinesq’s eddy-diffusivity coefficients for momentum are defined as

−ρu′w′ = μt
∂w
∂x

−ρv′w′ = μt
∂w
∂y

(3)

The following equation is given by substituting the above expressions into Eq. (2b)

− ∂P
∂ z

+
∂
∂x

(μe
∂w
∂x

)+
∂
∂y

(μe
∂w
∂y

) = 0 (4)

where μe is the effective viscosity given as

μe = μ+ μt

If the vector notation is used, the turbulent momentum equation is shortened to

− ∂P
∂ z

+∇ · (μe∇w) = 0 (5)

This equation can be written in nondimensional form as

1+∇1 · (μ∗
e∇1W ) = 0 (6)

where μ∗
e = 1+(μt/μ) = 1+ μ∗

t for laminar flow in absence of eddy-diffusivity
μ∗

e = 1 and Eq. (6) will be simplified to 1+∇2
1W = 0

W =
μw

−a2 ∂P
∂ z

where a is a characteristic length

and

∇1 =
∂
∂X

i+
∂
∂Y

j where X = x/a and Y = y/a

Turbulent Viscosity

Equation (6) indicates that the momentum equations contain turbulent viscosity that
is a function of the surface sheer stress. Because of the appearance of this term, the
mean flow equations are not complete; a turbulent model is necessary to determine
the turbulent diffusivity terms before the equations can be solved.
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Fig. 10.1 Nondimensional velocity profile for turbulent boundary layer

Kakac et al. [5] has summarized different models of turbulent viscosity for pre-
dicting velocity profile inside the turbulent boundary layer. Figure 10.1 shows the
velocity distribution from the wall with the nondimensional parameters u+ and y+,

u+ =
u√
τw/ρ

, y+ =
y
√
τw/ρ
ν

where τw is the wall shear stress.
The circular and the triangular symbols are the results of an experimental study

for Reynolds number of 1.5 × 106 and 1.0 × 106, respectively, conducted by the
author. As Fig. 10.1 illustrates, the Van Driest model is smooth and continuous in
the near wall region and follows experimental data with a good agreement. The
good prediction of turbulence near the wall by the Van Driest model is the primary
reason for its selection. This model is solely a function of y+; therefore, it would
considerably simplify the numerical calculations and increase the accuracy of the
results. According to the Van Driest [11] model, the effective viscosity is given as

μe = μ
1+ {1+ 4κ2(y+)2[1− exp(−y+/A+)]2}1/2

2
(7)

Researchers who have used the Van Driest model to study turbulent flow inside
ducts report that an additional modification is necessary to remove certain inaccura-
cies. Malhotra and Kang [8] used Eq.(7) with an additional correction factor which
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emerged as a result of studies on a two-equation model of turbulence for pipe flow.
The turbulence viscosity then becomes

μt = ρκ2y2[1− exp(y+/A+)]

∣∣∣∣∂u
∂y

∣∣∣∣/(1+ 3y
R

+
3y2

R2 )

where R is the radius of the pipe and y is the distance from the wall. Richman and
Azad [10] assumed a constant turbulence viscosity in the range 0.158 ≤ y/R ≤ 1 as

μt = μ
{1+ 4κ2(y+)2[1− exp(−y+/A+)]2}1/2 − 1

2
(8)

for 0 ≤ y/R ≤ 0.158 and μt = (μt)y/R=0.158 for 0.158 ≤ y/R ≤ 1
In the present study, the second modification yields a closer agreement with the

experimental data.

Calculation of Fluid Flow Properties and Pressure Drop

A Galerkin-based integral (GBI) method [1] is used to solve momentum and energy
equations. This is based on weighted residual methods. The method can be used for
any ordinary differential equation such as L[y(x)]+ f (x) = 0 over interval a ≤ x ≤ b
where L denotes a linear differential equation.

Multiplying this equation with any arbitrary function w(x) and integrating over
the interval [a,b] provide

∫ b

a
w(x){L [y(x)]+ f (x)}dx = 0

Weighted residual method provides solution to this equation by introducing a trial
solution of u(x) as

u(x) = φ0(x)+
n

∑
j=1

c jφ j(x)

Replacing y(x) with u(x) on the left side of original differential equation, the residual
is defined as follows:

r(x) = L [u(x)]+ f (x)

The goal of this method is to construct u(x) so that the integral of the residual will be
zero for some choices of weighted functions. This means the following condition,
zero residual, must be satisfied for some choices of w(x):

∫ b

a
w(x){L [u(x)]+ f (x)}dx = 0
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Galerkin Method

Galerkin method is one of the most commonly used weighted residual methods.
This method chooses the weight function, w(x), as a function of basis functions,
w(x) ∈ φi(x)|ni=1∫ b

a
φi(x){L [u(x)]+ f (x)}dx = 0 for i = 1,2, . . . . . . ,n

Introducing trial function, u(x) = φ0(x)+
n
∑
j=1

c jφ j(x), into this equation provides a

set of n equations that must be solved to find the coefficients of basis functions Cj:

∫ b

a
φi(x)

{
L

[
n

∑
j=1

c jφ j(x)

]
+L [φo(x)]+ f (x)

}
dx = 0 for i = 1,2, . . . . . . ,n (9)

Solution of the Momentum Equation

Equation (6) is the momentum equation in nondimensional space with the boundary
condition V = 0 on the wall. According to the Galerkin-based integral method, the
solution is approximated as a linear combination of a set of basis functions

V (X ,Y ) =
N

∑
i=1

ci fi(X ,Y ) (10)

The basis functions, fi, are linearly independent and satisfy the same homogeneous
boundary conditions as V ; thus, V (X ,Y ), axial velocity in Z direction, satisfies the
given boundary conditions for all choices of the ci’s. Next, if the error or residual is
formed and the di’s are chosen so that the weighted integral of the residual is zero
for each i = 1, . . . ,N, a linear algebraic system is obtained as

A · c = b (11)

where d is the vector of coefficients which has the elements d1,d2, . . . ,dN and it is
the solution of the above system of N linear equations. The vector g has elements

bi =− 1
A

∫
A

fidA (12)

and the matrix A has the elements

ai j =
1
A

∫
A

fi∇1 · (μ∗
e∇1 f j) for turbulent flow (13a)

ai j =
1
A

∫
A

fi∇1 · (∇1 f j) for laminar flow (13b)



10 A Galerkin Method Solution of Heat Transfer Problems in Closed Channels. . . 197

The solution of Eq. (11) results in the evaluation of coefficients, c1,c2, . . . .,cN , and
their substitution in Eq. (10) yields the solution for velocity V .

Haji-Sheikh et al. [4] derived the following equations for skin friction and
dimensionless velocity by this method:

Cf Re =
2D2

e

a2Vav
=

2D2
e

Vav
(14)

V
Vav

=
V

Vav
=

Cf Re

2De2

N

∑
i=1

di fi (15)

where Cf = −(∂P/∂Z)De/(ρvav/2) = 4τw/(ρvav/2), Re = ρDevav/μ , and De/a is
designated as the nondimensional hydraulic diameter.

The solution for laminar flow has simple steps of defining suitable basis func-
tions, solving array b and matrix a Eqs. (12) and (13b), and then solving for array c
to find velocity profile from Eq. (10).

The momentum equation for turbulent flow to solve is more complex. The turbu-
lent viscosity (μ∗

e ) is a function of wall shear stress (τw) that must be determined.
An iterative method is used to solve this equation for turbulent flow. Figure 10.2
demonstrates the flow chart for this solution.

Example 1: Laminar Pipe Flow

The momentum equation in cylindrical coordinate can be written as − dP
dz

+ μ
[

1
r

d
dr

(
r dv

dr

)]
= 0 with boundary condition of v = 0 at r = R0. (R0 is the radius

of the pipe.)
Introducing nondimensional velocity as

V =− μv
R2

o(dP/dz)
and R =

r
Ro

the equation reduces to
[

1
R

d
dr

(
R

dV
dR

)]
+ 1 = 0 with boundary condition of V = 0 at R = 1

The exact solution for this equation is

V =
1
4
(1−R2)

Dividing it by average velocity, it can be normalized to U∗ = V
Vave

= 2(1−R2)
And the exact solution for skin friction using Eq. (9) can be evaluated as

Cf Re = 64.



198 N. Ghariban

Fig. 10.2 Calculation procedure for turbulent flow

The Galerkin solution can be found by writing Eq. (9) for cylindrical coordinates
as Galerkin’s solution to this differential equation will be in the form of

∫ 1

0
φi(R)

{
1
R

d
dR

(
R

d
dR

n

∑
j=1

c jφ j(R)

)
+ 1

}
dR = 0

That can be written in form of a set of linear equations as

Ai j ·Cj = Bi

where

Ai j =

∫ 1

0
φi(R)

{
1
R

d
dR

(
R

d
dR

φ j(R)

)}
dR and Bi =

∫ 1

0
φi(R)dR
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Fig. 10.3 Basis function for a flow in a cylindrical pipe

The Galerkin method starts with selecting the basis functions. The basis functions
must satisfy the same boundary condition as governing equation. A suitable basis
function can be in the form of φi(R)|=

[
cos(π2 R)

]i
. Figure 10.3 illustrates the basis

functions for n = 1,2,3.
A program in MATHLab was developed to evaluate matrics Ai j, Bi, Cj, and f for

different value of n. Following is calculation for n = 4:

Ai j =

⎡
⎢⎢⎣
−2.6882 −3.3870 −3.9424 −4.4201
−2.2171 −3.2451 −3.9434 −4.4945
−1.9310 −3.0478 −3.8335 −4.4488
−1.7334 −2.8641 −3.6957 −4.3559

⎤
⎥⎥⎦ ,

Bi = [−0.6366 − 0.5000 − 0.4244 − 0.3750],

and Cj =

⎡
⎢⎢⎣

0.3180
−0.0974

0.0385
−0.0091

⎤
⎥⎥⎦

The result for skin friction is given in the following table for different value of n:

n 1 2 3 4 5 6
Cf ·Re 73.0132 63.7913 64.0286 63.9969 64.0004 63.9999

As the table indicates with only two terms the resistance coefficient can be eval-
uated with an error of 0.3%.
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Fig. 10.4 Comparison of analytical and exact solution velocity profile

The velocity profile can be evaluated from

v =
n

∑
i=1

Ci ·φi

For example, for n = 4 velocity profile will be

v = 0.3180cos(π/2R)− 0.0974cos2(π/2R)+ 0.0385cos3(π/2R)

− 0.0091cos4(π/2R)

As this figure indicates analytical and exact solutions are in excellent agreement
with each other even with two-term solution (n = 2) for the velocity (Fig. 10.4).
Another basis function that satisfies boundary condition and provides great accuracy
is in the form of

fi = (1−R2)R2(i−1) (16)

The first basis function in this set ( f1 = 1−R2) matches with the exact solution, and
the method and one-term solution will match perfectly with exact solution.

Example 2: Laminar Flow Inside Square Duct

The governing equations in general for pipe flow are Navier–Stokes equations for
incompressible laminar steady-state flow and can be written as
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−dP
dz

+ μ
(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
= 0

where u(x,y) is velocity in two dimensions with boundary condition of u(x,y) = 0
at the wall and dP/dz is pressure drop and μ is viscosity.

For a square channel with side “a,” assuming X = x
a and Y = y

a the equation can
be written in nondimensional form

1+
∂ 2U
∂X2 +

∂ 2U
∂Y 2 = 0 (17)

where U =− μ/a2

dP/dz u with the boundary condition of U = 0 for X = 0, Y = 0, X = 1,
and Y = 1.

The following figure illustrates the geometry of such a channel:
Galerkin method starts with assuming a set of basis function then

U =
k

∑
i=1

Ciφi

where φi is the basis function that should satisfy the boundary condition (zero
velocity on walls). One satisfactory expression for this function can be in the form of

φi = cosm(πX) · cosn(πY )

where m and n are any set of integer numbers greater than zero. The following table
can represent one set of such numbers that has been used in this study:

i m n
1 1 1
2 1 2
3 2 1
4 2 2
5 3 1
6 3 2
· · ·
· · ·

The following figures illustrate the shape of basis functions (φ1 and φ3) along X
axis and Y = 0.3 (Fig. 10.5).

Multiplying both sides of Eq. (17) with the basis function and integrating over
the domain, the governing equation will be changed to integral equation as

∫ 1/2

−1/2

∫ 1/2

−1/2
φi(x)

{
1+(

∂ 2

∂X2 +
∂ 2

∂Y 2 )

[
n

∑
j=1

c jφ j(x)

]}
dx = 0

And this integral equation can be converted to a set of linear equation as

Ai j ·Cj = Bi
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Fig. 10.5 Basis function for a flow in a square closed channel

where

Ai j =

∫ 1/2

−1/2

∫ 1/2

−1/2
φi(x)

{
(
∂ 2

∂X2 +
∂ 2

∂Y 2 )φ j(x)

}
dXdY

Bi =

∫ 1/2

−1/2

∫ 1/2

−1/2
φi(x)dXdY

To solve the problem Bi and Ai j must be evaluated. Following is a sample of calcu-
lation for i = j = 1 where φ1 = cos(πX) · cos(πY ):

B1 =

∫ 1/2

−1/2

∫ 1/2

−1/2
φ1dXdY =

∫ 1/2

−1/2

∫ 1/2

−1/2
cos(πX)cos(πY )dXdY

=
1
π

sin(πX)|1/2
−1/2 ·

1
π

sin(πY )|1/2
−1/2

B1 =
4
π2

For A11 second partial derivative of basis functions must be calculated first before
integrating over the area:

∂φ1

∂X
=−π sin(πX) · cos(πY ) and

∂ 2φ1

∂X2 =−π2 cos(πX) · cos(πY )

∂φ1

∂X
=−π cos(πX) · sin(πX) and

∂ 2φ1

∂X2 =−π2 cos(πX) · cos(πX)

and
∂ 2φ1

∂X2 +
∂ 2φ1

∂Y 2 =−2π2 cos(πX) · cos(πX)

then

Ai j =

∫ 1/2

−1/2

∫ 1/2

−1/2
cos(πX) · cos(πY ) · (−2π2 cos(πX) · cos(πY ))dXdY
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Ai j = −2π2
∫ 1/2

−1/2
cos2(πX)dX

∫ 1/2

−1/2
cos2(πY )dY

Ai j = −2π2
∫ 1/2

−1/2

1
2
(1− cos(2πX))dX

∫ 1/2

−1/2

1
2
(1− cos(2πY ))dY

Ai j = −π2

2

Velocity coefficient will be calculated from A11 ·C1 = B1

C1 = B1/A11 =
8
π4 = .08213

The result for six terms is as follows:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.4053
−0.3183
−0.3183
−0.2500
−0.2702
−0.2122

⎤
⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4.9348 −4.1888 −4.1888 −3.5556 −3.7011 −3.1416
−4.1888 −4.3180 −3.5556 −3.6652 −3.1416 −3.2385
−4.1888 −3.5556 −4.3180 −3.6652 −4.1888 −3.5556
−3.5556 −3.6652 −3.6652 −3.7011 −3.5556 −3.5605
−3.7011 −3.1416 −4.1888 −3.5556 −4.3180 −3.6652
−3.1416 −3.2385 −3.5556 −3.5605 −3.6652 −3.6240

⎤
⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.188037
−0.083799
−0.131458

0.091192
0.045730

−0.036434

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 10.6 illustrates the velocity profile in different locations from the center of
the channel. The maximum velocity will be at location X = 0 and Y = 0 with a
value of Umax = 0.0735.

Figure 10.7 illustrates the same data in three-dimensional format.
The normalized velocity can be evaluated from Eq. (15) to be compared with

other studies and experimental values. The normalized velocity at the center of the
channel with this study is s

umax

uave
= 2.093

This result was compared to an experimental study by Kakac et al. [5] and a finite
difference method by the author. The experimental method is given for rectangular
channels as

u
umax

=

(
m+ 1

m

)(
n+ 1

n

)

m = 1.7+ 0.5α∗−1.4

n =

{
2 f or α∗ ≤ 1

3
2+ 0.3

(
α∗ − 1

3

)
f or α∗ ≥ 1

3
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Fig. 10.6 Velocity profile inside a square channel
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Fig. 10.7 Velocity profile inside a square channel

where α∗ = 1 for square channel; as a result m = n = 2.2 and the maximum velocity
will be

umax

uave
= 2.115

This is in good agreement with result evaluated by Galerkin-based solution.
The finite difference method yields this value as 2.099 using 101×101 elements.

Finite difference method takes significant computational time for converging results.
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Fig. 10.8 Convergence of skin friction using polynomial basis function

Example 3: Turbulent Pipe Flow

The same procedure as example 1 is used for studying the turbulent flow in a circular
pipe. The initial attempt is to use the same basis polynomial functions as introduced
in example 1, Eq. (16). Although fi in Eq. (16) is a simple function of R, the a matrix
cannot be calculated analytically because of the existence of μ∗

e in Eq. (9) which is a
function of r. Numerical integration is used to evaluate the members of the a matrix.
The array g, however, is the same as that given for laminar flow.

Having matrix a and array b available, the skin friction and the velocity profile
are calculated by an iterative procedure as shown in Fig. 10.8. The calculations show
that the convergence of the results for skin friction requires a large number of the
basis functions. This is the initial difficulty encountered when calculating pressure
drop in turbulent flow by the standard GBI method. In contrast, the laminar flow
requires as few as two basis functions for an accurate solution.

Figure 10.8 shows the convergence of the results for Reynolds numbers 5 ×
104,105, and 106 using a different number of terms. This figure confirms that a
higher Reynolds number requires more terms to have convergence. It is also noticed
that the upper limit for N is 16. For values of N greater than 16, the matrix inversion
routine fails, and convergence never happens. According to Fig. 10.8, solutions for
a Reynolds number of 106 or higher cannot be obtained.

The velocity profile for Reynolds number 105 and for different values of N is
given in Fig. 10.9. The computed results are compared with the experimental data
given by Nikuradse [9] for the same Reynolds number. This figure shows that, as
the number of terms increases, the calculated velocity profile gets closer to the ex-
perimental data. For N=16, which satisfies the convergence, the calculated velocity
is in agreement with the experimental data within 3%.
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Fig. 10.9 Predicted velocity profile by using polynomial basis functions

The calculated values of skin friction and velocity profile, Figs. 10.8 and 10.9,
require a large number of terms to achieve convergence. Increasing the number of
terms increases the computer time and reduces the accuracy of the results. For these
reasons, selecting a set of basis functions that describes the behavior of the turbu-
lent velocity profile is necessary. The following basis functions have the necessary
characteristics to describe the turbulent velocity profile:

fi = {1− e[−β (1−R2)]}R2(i−1) (18)

The factor 1 − e[−β (1−R2) in Eq. (18) is a turbulence factor that depends on the
Reynolds number. It provides a sharp slope for the velocity profile at the wall and
disappears far from the wall. The factor B is a constant that depends on the turbu-
lence similar to A in the turbulent viscosity equation of Van Driest. The value of β
is arbitrarily selected equal to one for laminar flow.

The computed results for three different Reynolds numbers are given in Fig. 10.10.
This figure illustrates that the calculated skin friction decreases by increasing the co-
efficient β , then begins to increase as β increases. A value of β that makes the skin
friction minimum is the proper choice. A justification of selecting β at minimum
skin friction is given in the Appendix. The calculated skin friction at the optimum
β provides the best agreement with the experimental values.

The optimum values of β , for different Reynolds numbers, were calculated, and
method of least square was used to find correlation for β and skin friction as given
in the following equation:

B =
Cf Re

19
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Fig. 10.11 Convergence of the result by using new basis functions

Once a correlation for β is available, one can proceed to solve for velocity profile
and skin friction at any Reynolds number. Figure 10.11 shows the convergence of
skin friction for three different Reynolds numbers versus the number of terms, N. A
comparison between the data in Figs. 10.8 and 10.11shows that the new basis func-
tions provide convergence with fewer terms. In fact, for a small Reynolds number
(Re = 50,000), two terms in the series give the skin friction that has a satisfactory
agreement with the experimental values.

The analysis also shows a good agreement with the experimental velocity profile
given by Laufer [7]. The experimental data of Laufer [7] are given in Fig. 10.12
and compared with the analytical results for this study when N = 2,4, and 8. The
figure shows the agreement between analytical and experimental velocity profiles to
within 6% using as few as 2 terms in the series.
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Fig. 10.12 Velocity profiles for 2, 4, and 8 terms in series

The velocity profiles, using 8 terms, and the experimental data of Laufer[7] for
Re= 5×104 and 5×105 and Nikuradse [9] are shown in Fig. 10.13. Both calculated
velocity profiles agree with the experimental measurements to within 3%. For more
than 8 terms, no significant improvement is observed.
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Fig. 10.13 Comparison of predicted velocity profile and experimental data

Conclusions

A simple Galerkin-based solution has been presented that predicts the skin friction
and velocity flow field in fully developed duct flow. The analytical steps, described
in this study, apply to both laminar and turbulent flow in ducts with various cross-
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sectional shapes. A comparison of the calculated values with the experimental data
shows satisfactory agreement leading to the following major conclusions.

The solution for turbulent flow shows that special care must be taken in selecting
basis functions. A suitable set of basis functions reduces the number of terms in the
series, N, and consequently decreases computing time and increases the accuracy of
the results. The value of N = 8 provides data with good accuracy over a rather large
range of the Reynolds number, 4× 104 < Re < 106. Even for Re < 105 the method
provides an accurate solution with as few as two terms.

It is shown that the modified Van Driest model for effective viscosity given by
Richman and Azad [10] is a sufficiently accurate model for predicting turbulence.
The calculated Nusselt numbers based on this model show good agreement with the
correlation of Gnielinski [2].

Appendix

Highlights of the Variational Steps

The details of the minimization principle are provided by Ghariban [3]; only a brief
description is given here. The Galerkin method is based on minimization of the
integral

I =
∫
A

{
1
2
μ∗

e (X ,Y )

[(
∂W
∂X

)2

+

(
∂W
∂Y

)2
]
+W

}
dA (19)

In the minimization of Eq. (19), it is assumed that μ∗
e is a known function of X and

Y. The variational steps begin by replacing W by W and then setting W(X,Y) =
W(X,Y)+εη(X,Y). The calculation of (∂ I/∂ε) as ε → 0 leads to the equation [6],∫

A

η(X ,Y ) 1−∇1 · (μ∗
e∇1W )!]dA = 0 (20)

where η(X,Y) is an arbitrarily selected function. The Galerkin method uses Eq. (20)
to compute W(X,Y). For example, one substitutes for W(X,Y) in Eq. (20) a quan-
tity

W (X ,Y ) =
N

∑
i=1

di fi(X ,Y ) (21)

and replaces the arbitrary function η(X ,Y ) by fJ(X ,Y ) for j = 1,2, . . .,N. It is to
be noted that μe is assumed to be a known function of X and Y. This yields the
Galerkin solution described by Eq. (8). For turbulent flow, μ∗

e (X ,Y ) is a function
of shear stress at the wall, and shear stress is unknown. One must provide a value
for the shear stress and then solve for velocity field. The subsequent calculation of
shear stress from computed velocity field should be followed by recalculation of the
velocity field. The continuation of this iterative procedure leads to a Galerkin-type
solution.
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For turbulent flow, the numerical studies show that the number of terms using
fi(X ,Y ) functions with simple forms, Eq. (20), can be prohibitively large. It is sug-
gested, in this paper, to introduce a new form for fi(X ,Y ), Eq. (21), that changes as
the shear stress changes. The iterative minimization procedure, using this latter form
of fi(X ,Y,B) with an additional parameter B, needs some modifications. The first
step of iteration is to consider a known value for B and solve for W (X ,Y ) using the
standard Galerkin solution method. A selected value of B influences the value of the
calculated average shear stress, and B represents the effect of the turbulence inten-
sity on the velocity profile. The minimization of function I, following some algebra
[3], leads to an additional equation

∫
A

∂μ∗
e (X ,Y )
∂B

dA

[(
∂W
∂X

)2

+

(
∂W
∂Y

)2
]

dA = 0 (22)

Because (∂W/∂X)2 + (∂W/∂Y )2 > 0, the integral given by Eq. (22) is zero if
(∂μ∗

e /∂B) = 0. For turbulent flow, it is assumed that B in Eq. (21) depends
on the average shear stress, τw . Therefore, the minimization of I requires that
(∂μ∗

e /∂τw)(∂τw/∂B) = 0 in addition to Eq. (20). For turbulent flow, the effective
viscosity coefficient, μ∗

e , increases as τw increases, indicating ∂μ∗
e /∂τw > 0; then

I is minimum if ∂τw/∂B = 0. The dimensionless form of this condition is used in
subsequent calculations; that is, B is computed so that

∂Cf

∂B
= 0
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Nomenclature

A Characteristic length
ai j,bi j,ci j Element of matrices A,B,C
A Flow area of duct
A+ Damping constant
A,B,C Matrices
β Constant in Eq. (12)
ci Element of the array c
c Array of velocity coefficient
Cf Friction factor
Cn Temperature profile coefficient
De Hydraulic diameter
De Hydraulic diameter, dimensionless
fi Basis function
gi Element of the array g
g Auxiliary array
i, j Indices
N Number of terms in series
P Static pressure
r Cylindrical coordinate, dimensionless
R Cylindrical coordinate
Ro Pipe radius
T Local temperature
T ′ Fluctuating temperature
u′,v′,w′ Fluctuating velocity components
u+ Velocity parameter
w Axial velocity
W Axial velocity, dimensionless
wav Average velocity
Wav Average velocity, dimensionless
X ,Y,Z Coordinates
X ,Y,Z Coordinates, dimensionless
y+ Wall distance parameter
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κ Von Karman constant
μ Molecular viscosity
μe Effective viscosity
μ∗

e Effective viscosity, dimensionless
μt Turbulent viscosity
μ∗

t Turbulent viscosity, dimensionless
ρ Fluid density
τw Wall shear stress



Chapter 11
Optimal Control for Distributed Linear
Systems Subjected to Null Controllability
with Constraints on the State

Michelle Mercan

Introduction

Let d ∈ N
∗ and Ω be a bounded open subset of Rd with boundary Γ of class C2,

T >0. Let also ω be an open nonempty subset of Ω. Set Q = Ω× (0,T ), Σ = Γ×
(0,T ), and G = ω× (0,T). We consider the parabolic evolution equation⎧⎨

⎩
y′ −Δy+ a0y = h+ kχω in Q,

y = 0 on Σ,
y(0) = 0 in Ω,

(1)

where (.)′ is the partial derivative with respect to time t, a0 ∈ L∞(Q), (h,k) ∈
L2(Q)× L2(G), and χω denotes the characteristic function of the control set ω .
It is well known that problem (1) admits a unique solution y in the following Hilbert
space

Ξ1,2(Q) = H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)∩H1
0 (Ω)).

Let {ei, 1 ≤ i ≤ M} be a set of functions of L2(Q) such that

eiχω 1 ≤ i ≤ M are linearly independent. (2)

From now on, we use the notation

y = y(h,k)

to mean that each source term h and k plays a particular role. More precisely, we
would like to choose the control pair (h,k) in order to achieve two objectives that
we present under the form (in the cascade sense) of two problems.
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Problem 1. Let H ⊂ L2(Q) be a Hilbert space and {ei, 1 ≤ i ≤ M} be a set of func-
tions of L2(Q) and assume that (2) holds. Fix h ∈ H. Then the Follower’s problem
can be stated as follows: Given a0 ∈ L∞(Q), find a control k ∈ L2(G) such that if y
is solution of ⎧⎨

⎩
y′ −Δy+ a0y = h+ kχω in Q,

y = 0 on Σ,
y(0) = 0 in Ω,

(3)

then, ∫
Q

yei dxdt = 0, (4)

and

y(T ) = 0, in Ω. (5)

The role of k is to insure the null-controllability property (5) in the presence of
the forcing term h and under the constraint (4).

In the sequel, we introduce a suitable nonnegative weight function θ , which will
be defined below, and consider the Hilbert space

H = {h|h ∈ L2(Q),θh ∈ L2(Q)} (6)

endowed with the scalar product and the norm

(h, l)θ =

∫
Q
θ 2hl dxdt, ‖h‖H = ‖θh‖L2(Q).

For fixed h ∈ H, we will see that there exists several controls k such that (3), (4),
and (5) are satisfied. Thus, we need to add some criteria to select k. More precisely,
we will see that k is of the form k = k0(h)+ v. We consider then the maps F and
F1 defined, respectively, by

F : H → L2(G)
h �→ v = F (h)

(7)

and

F1 : H → L2(G)
h �→ F1(h) = k0(h).

(8)

We will see below (see section “Optimal Strategy for the Leader”) that these maps
are linear and continuous from H into L2(G).

In addition to the null-controllability problem (5) subject to the constraint (4),
the second objective is to choose the forcing term h such that

y(h,k) is not too far from zd

where zd is given in L2(Q).
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In order to achieve this objective, we introduce the cost function J defined by

J(h) =
1
2
‖y(h,k)− zd‖2

L2(Q) +
N
2
‖h‖2

H

where zd ∈ L2(Q) and Uad is a nonempty closed convex subset of H. Then, we con-
sider the following minimization problem:

Problem 2. Find ĥ ∈ Uad such that

J(ĥ) = min
h∈Uad

J(h). (9)

Problem 1 is a null-controllability problem with state constraints. Few results are
known for such problem. Indeed, recently O. Nakoulima [6] gave a result of null
controllability for the linear heat equation with constraints on a distributed control.
His result was based on an observability inequality adapted to the constraint. In
[4], G. Mophou and O. Nakoulima proved the existence of sentinels with given
sensitivity by solving a problem of null controllability with constraint on the control.
In [3], O. Nakoulima and G. Mophou studied a null controllability with constraints
on the state for a semilinear heat equation by proving that the considering problem
was equivalent to null controllability with constraint on the control. G. Mophou
[5] generalizes these results to the case where the nonlinear term contains gradient
terms.

Problem 2 is an optimal control problem. Such problem has been widely studied
by J.L. Lions [2].

In this paper, we extend the works of G. Mophou and O. Nakoulima [3, 4] to a
problem of control with two controls that we have to determine successively under
some constraints. This is done by solving the combination of Problems 1 and 2,
called Stackelberg problem. In this case, the controls h and k are, respectively, called
Leader and Follower.

The main results of this paper are the following theorems.

Theorem 1. Existence, uniqueness, and characterization of the Follower.
Let Ω be a bounded open subset of Rn with boundary Γ of class C2, and let H be
the Hilbert space defined by (6). Then, for every ei ∈ L2(Q), 1 ≤ i ≤ M verifying
(2) and every h ∈ H, there exists a unique control k = k(h) ∈ L2(Q) such that the
solution y = y(h,k(h)) of (3) satisfies (4) and (5). Moreover, the control k can be
selected such that

‖k‖ ≤ C‖h‖H (10)

where C =C

(
Ω,ω ,a0,T,

M

∑
i=1

‖ei‖L2(Q)

)
> 0.

Theorem 2. Existence, uniqueness, and characterization of the Leader.
Let Ω be a bounded open subset of Rn with boundary Γ of class C2. Let also θ be de-
fined as previously, and F and F1 be the linear and continuous maps, respectively,
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defined by (7) and (8). Then, the minimization problem (9) admits a unique solution
ĥ characterized by the following optimality condition

(
Λ−1(

1
θ

I+F ∗
1 +F )(p)+Nĥ,h− ĥ

)
H
≥ 0, ∀h ∈ Uad (11)

where Λ−1 is the isometric isomorphism from H ′ into H, I is the identity operator
of L2(Q), and p is solution of

⎧⎨
⎩

−p′ −Δp+ a0p = y(ĥ,k)− zd in Q,
p = 0 on Σ,

p(T ) = 0 in Ω.

The rest of this paper is organized as follows. Section “Equivalence Between the
Null-Controllability Problem with Constraints on the State and a Null- Controllabil-
ity Problem with Constraint on the Control” is devoted to proving the equivalence
between the null-controllability problem with constraints on the state and a null-
controllability problem with constraint on the control. In section “Optimal Strategy
for the Follower”, we solve the null-controllability problem with constraint on the
control. Finally, in section “Optimal Strategy for the Leader”, we solve the Leader’s
problem.

Equivalence Between the Null-Controllability Problem
with Constraints on the State and a Null-Controllability
Problem with Constraint on the Control

Proposition 1. Let Ω be a bounded open subset of Rn with boundary Γ of class
C2. Then, there exists a positive real weight function θ (a precise definition of θ
will be given later on), two finite dimensional subspaces M and Mθ such that for
any h ∈ H, there exists k0 = k0(h) ∈ Mθ such that the null-controllability problem
with constraints on the state (3), (4), and (5) is equivalent to the following null-
controllability problem with constraint on the control: Given a0 ∈ L∞(Q) and k0 ∈
Mθ , find v ∈ L2(G) such that

v ∈ M⊥ (12)

k = k0 + v (13)

and the solution y of
⎧⎨
⎩

y′ −Δy+ a0y = h+(k0+ v)χω in Q,
y = 0 on Σ,

y(0) = 0 in Ω,
(14)
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satisfies
y(T ) = 0 in Q. (15)

Proof. We interpret the constraint (4) by using the adjoint state. More precisely, for
any ei, 1 ≤ i ≤ M, we consider the adjoint system

⎧⎨
⎩

−q′
i −Δqi+ a0qi = ei in Q,

qi = 0 on Σ,
qi(T ) = 0 in Ω.

(16)

Since a0 ∈ L∞(Q) and ei ∈ L2(Q), problem (16) admits a unique solution

qi = qi(z) ∈ Ξ1,2(Q).

We multiply both sides of the differential equation (3) by qi solution of (16) and we
integrate over Q. By applying the Green formula, we obtain

∫
Q

yei dxdt =
∫

Q
(h+ kχω)qi dxdt.

From (4), we have

0 =
∫

Q
(h+ kχω)qi dxdt.

Thus, ∫
G

kqi dxdt =−
∫

Q
hqi dxdt. (17)

Let
M = Span{qiχω , 1 ≤ i ≤ M}

be the vector subspace of L2(G) generated by the M functions qiχω , 1 ≤ i ≤ M.
We denote M⊥ the orthogonal of M in L2(G). We set

Mθ =
1
θ

M

the vector subspace of L2(G) generated by the M functions
1
θ

qiχω , 1 ≤ i ≤ M.

Since the matrix

(∫ T

0

∫
ω

1
θ

qiq j dxdt

)
1≤i, j≤M

is symmetric positive definite (cf.

Lemma 3), there exists a unique k0 = k0(h) ∈ Mθ such that
∫

G
k0qi dxdt =−

∫
Q

hqi dxdt, 1 ≤ i ≤ M. (18)

Thus, combining (17) and (18), we deduce that
∫

G
(k− k0)qi dxdt = 0 1 ≤ i ≤ M.



218 Michelle Mercan

Consequently

k− k0 ∈ M⊥.

Then k = k0 + v with v ∈ M⊥. Therefore, replacing kχω by (k0 + v)χω in (3), we
obtain (14).

Conversely, fix h ∈ L2(Q). For every ei ∈ L2(Q), 1 ≤ i ≤ M, assume that (v,y)
is the solution of (12), (13), (14), and (15). Then, by solving (16), we obtain the
functions qi, 1 ≤ i ≤ M. Let M and Mθ be defined as previously. Let also M⊥ be
the orthogonal of M in L2(G), v ∈ M⊥ and k0 verifying (18).

Multiplying both sides of Eq. (14) by qi and integrating by parts over Q, we obtain
∫

Q
y′qi dxdt −

∫
Q
Δyqi dxdt +

∫
Q

a0qi dxdt =
∫

Q
[h+(k0 + v)χω ]qi dxdt,

i.e.,

−
∫

Q
hqi dxdt +

∫
Q

yei dxdt =
∫

Q
(k0 + v)χωqi dxdt.

Since v ∈ M⊥ and k0 verifies (18), the previous identity is reduced to (4). Thus,
(k,y) is solution of (3), (4), and (5). �
Lemma 1. Assume that (2) holds. Then, the functions qiχω , 1 ≤ i ≤ M are linearly

independent. Moreover, the functions
1
θ

qiχω , 1 ≤ i ≤ M are also linearly indepen-

dent.

Proof.

For γi ∈ R, 1 ≤ i ≤ M, let k̃ =
M

∑
i=1

γiqi on Q such that k̃|G = 0. Since qi is solution of

(16), we have

− ∂ k̃
∂ t

−Δk̃+ a0k̃ =
M

∑
i=1

γiei, in Q, (19)

k̃ = 0, on Σ. (20)

Then, k̃ being identically zero on G, we deduce that k̃ = 0 in Q. This means that
M

∑
i=1

γiei = 0 in Q. Thus,

M

∑
i=1

γiei = 0, in G.

Since the functions eiχω , i ∈ {1, . . . ,M} satisfy (2), we conclude that γi = 0, 1 ≤
i ≤ M.

The second assertion of the lemma follows immediately. �
In order to obtain a priori estimates on k0(h), we need the following result which

is proved in [3].
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Lemma 2. Let qi be defined by (16) and θ be a positive function defined below by

relation (31). Let also Aθ =

(∫
G

1
θ

qiq j dxdt

)
i, j
, 1 ≤ i, j ≤ M. Then, there exists

δ > 0 such that

(AθX ,X)
RM ≥ δ‖X‖2

RM

where

(AθX ,X)
RM =

∫
G

1
θ

(
M

∑
i=1

Xi pi

)(
M

∑
j=1

Xj p j

)
dxdt

and

X = (X1, . . . ,XM) ∈ R
M.

Proposition 2. Let θ be defined below by relation (31) and h be in H. Let also
qi and k0(h) be defined, respectively, by (16) and (18). Then, there exists C =

C(Ω,a0,T,
M

∑
i=1

‖ei‖L2(Q))> 0 such that

‖θk0(h)‖L2(G) ≤ C‖h‖H (21)

‖k0(h)‖L2(G) ≤ C‖h‖H. (22)

Proof. From (18), we have
∫

G
k0(h)qi dxdt =−

∫
Q

hqi dxdt, 1 ≤ i ≤ M. (23)

Since k0(h) ∈ Span{ 1
θ

q1χω , . . . ,
1
θ

qMχω}, there exists

α = (α1, . . . ,αM) ∈ R
M

such that

k0(h) =
M

∑
j=1

α j
1
θ

q jχω . (24)

Thus, replacing k0(h) by
M

∑
j=1

α j
1
θ

q jχω in (23), we obtain

∫
G

M

∑
j=1

α j
1
θ

q jqi dxdt =−
∫

Q
hqi dxdt, 1 ≤ i ≤ M

and consequently,

∫
G

M

∑
j=1

α j
1
θ

q jχω
M

∑
i=1

αiqi dxdt =−
∫

Q
θh

M

∑
i=1

αi
1
θ

qi dxdt.
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Applying to this latter identity Lemma 2 with X = α to the left-hand side and to the
right-hand side and using Cauchy–Schwartz inequality, we obtain

δ‖α‖2 ≤ ‖h‖H

M

∑
i=1

|αi|‖qi‖L2(Q). (25)

From the energy inequality for qi solution of (16), it follows that for 1 ≤ i ≤ M,

‖qi‖L2(Q) ≤ C(Ω,a0,T )‖ei‖L2(Q)

which, combined with (25) and the fact that δ > 0 gives

‖α‖2 ≤ δ−1C(Ω,a0,T )‖h‖H‖α‖RM

√
M

∑
i=1

‖ei‖2
L2(Q)

,

i.e.,

‖α‖ ≤ δ−1C(Ω,a0,T )‖h‖H

√
M

∑
i=1

‖ei‖2
L2(Q)

. (26)

Finally, from (24), we have

‖θk0(h)‖L2(G) ≤
M

∑
j=1

|α j|‖q j‖L2(G),

≤ C(Ω,a0,T )
M

∑
j=1

|α j|‖e j‖L2(Q),

≤ C(Ω,a0,T )‖α‖
(

M

∑
i=1

‖ei‖L2(Q)

) 1
2

,

and

‖k0(h)‖L2(G) ≤ C(Ω,a0,T )‖α‖
(

M

∑
i=1

‖ei‖L2(Q)

) 1
2

.

Hence, using (26) and the fact that
1
θ

is bounded in L∞(Q), and setting

C =C(Ω,a0,T,
M

∑
i=1

‖ei‖L2(Q)) = δ−1C(Ω,a0,T )
2

M

∑
i=1

‖ei‖2
L2(Q),

we deduce (21) and (22). �
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Optimal Strategy for the Follower

Controllability Problem with Constraint on the Control

We consider a auxiliary functionψ ∈C2(Ω) which satisfies the following conditions:

ψ(x)> 0 ∀x ∈Ω,

ψ(x) = 0 ∀x ∈ Γ, (27)

|ψ(x)| �= 0 ∀x ∈Ω−ω.

Such a function exists according to A. Fursikov and O. Yu. Imanuvilov [1]. Then,
for any λ > 0, we define the following weight functions:

ϕ(x, t) =
eλ (ψ(x)+m1)

t(T − t)
, (28)

η(x, t) =
eλ (|ψ(x)|∞+m2) + eλ (ψ(x)+m1)

t(T − t)
, (29)

for (x, t) ∈ Q and m > 1 and we adopt the following notations:

L =
∂
∂ t

−Δ+ a0I,

L∗ =− ∂
∂ t

−Δ+ a0I,

V = {ρ ∈ C∞(Q) | ρ = 0 on Σ}.
Then, we have the following Carleman inequality (see [1, 3]).

Proposition 3. Let ψ , ϕ , and η be defined by (27), (28), and (29). Then, there exists
λ0 = λ0(Ω,ω ,a0), s0 = s0(Ω,ω ,a0,T ) and C = C(Ω,ω ,a0,T ) such that for any
λ ≥ λ0, any s ≥ s0 and any ρ ∈ V , we have

∫
Q

e−2sη

sϕ

(
|∂ρ
∂ t

|2 + |Δρ |2
)

dxdt + sλ 2
∫

Q
ϕe−2sη |∇ρ |2 dxdt+

s3λ 4
∫

Q
ϕ3e−2sη |ρ |2 dxdt ≤ C

(∫
Q

e−2sη |L∗ρ |2 dxdt + s3λ 4
∫

G
ϕ3e−2sη |ρ |2 dxdt

)
.

(30)

As ϕ does not vanish over Q, we set

θ = ϕ− 3
2 esη . (31)

From the definition of ϕ and η given by (28) and (29), the function θ is positive

and
1
θ

is bounded. Since
1
ϕ

is also bounded, taking λ ≥ λ0 > 1 and s ≥ s0 > 1, we

obtain the following observability inequality:
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∫
Q

1
θ 2 |ρ |2 dxdt ≤ C

(∫
Q
|L∗ρ |2 dxdt +

∫
G
|ρ |2 dxdt

)
, ∀ρ ∈ V . (32)

Denote by:

• P the orthogonal projection operator from L2(G) into M .
• Pρ the orthogonal projection of ρχω for ρ ∈ L2(Q).

From (32), we derive the following adapted Carleman estimate which is proved in
[3, 4, 6].

Proposition 4. Assume that (2) holds. Let θ be defined by (31). Then, there exists
λ0 = λ0(Ω,ω ,a0) > 1, s0 = s0(Ω,ω ,a0,T ) > 1 and C = C(Ω,ω ,a0,T ) > 0 such
that for any λ ≥ λ0 and s ≥ s0 and for any ρ ∈ V , we have

∫
Q

1
θ 2 |ρ |2 dxdt ≤ C

(∫
Q
|L∗ρ |2 dxdt +

∫
G
|ρ−Pρ |2 dxdt

)
. (33)

Now, we consider the following symmetric bilinear form:

a(ρ , ρ̂) =
∫

Q
L∗ρL∗ρ̂ dxdt +

∫
G
(ρ−Pρ)(ρ̂−Pρ̂)dxdt. (34)

According to Proposition 4, this symmetric bilinear form is a scalar product over V .
Let V = V the completion of V with respect to the norm

ρ �→ ‖ρ‖V =
√

a(ρ ,ρ). (35)

Then, V is a Hilbert space.

Assume that (2) holds. Let H be a Hilbert space defined by (6) and h ∈ H. Let
also θ and k0(h) be, respectively, defined by (31) and (18). Then, thanks to the
estimation of θk0(h) given by (21) and the Cauchy–Schwartz inequality, the linear
form defined on V by

ρ �→
∫

Q
hρ dxdt +

∫
G

k0(h)ρ dxdt

is continuous on V . Thus, Lax–Milgram theorem allows us to say that for any h ∈ H,
there exists a unique ρθ = ρθ (h) ∈ V solution of the variational equation

a(ρθ ,ρ) =
∫

Q
L∗ρθL∗ρ dxdt +

∫
G
(ρθ −Pρθ )(ρ−Pρ)dxdt, ∀ρ ∈ V,

a(ρθ ,ρ) =
∫

Q
(h+ k0(h)χω)ρ dxdt, ∀ρ ∈V. (36)

Proposition 5. Assume that (2) holds. Let h ∈ H, and let ρθ be the unique solution
of (36). Set
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vθ =−(ρθχω −Pρθ) (37)

and

yθ = L∗ρθ . (38)

Then, the pair (vθ ,yθ ) is such that (12)–(15) hold.

Moreover, there exists C =C(Ω,ω ,a0,T,
M

∑
i=1

‖ei‖L2(Q))> 0 such that

‖ρθ‖V ≤ C‖h‖H, (39)

‖vθ‖L2(G) ≤ C‖h‖H, (40)

‖yθ‖Ξ1,2(Q) ≤ C‖h‖H. (41)

Proof. We proceed in two steps.
Step 1. We prove that (vθ ,yθ ) is solution of (12)–(15).

Since ρθ ∈V , then vθ =−(ρθ χω −Pρθ)∈ L2(G) and yθ ∈ L2(Q). As Pρθ ∈M ,
the function vθ ∈ M⊥. Replacing −(ρθχω −Pρθ ) by vθ and L∗ρθ by yθ in (36),
we have

∫
Q

yθL∗ρ dxdt +
∫

G
(ρθ −Pρθ)(ρ −Pρ)dxdt =

∫
Q
(h+ k0χω)ρ dxdt.

As Pρ ∈ M , then
∫

Q
yθL∗ρ dxdt

∫
G
(ρθ −Pρθ )ρ dxdt =

∫
Q
(h+ k0χω)ρ dxdt ∀ρ ∈ V.

This means that
∫

Q
yθL∗ρ dxdt =

∫
Q
(h+ k0χω)ρ dxdt +

∫
G

vθρ dxdt, ∀ρ ∈V. (42)

Actually, yθ is the weak solution of a heat equation. Indeed, for φ ∈ L2(Q), let p
be the solution of ⎧⎨

⎩
−p′ −Δp+ a0p = φ in Q,

p = 0 on Σ,
p(0) = 0 in Ω.

Thus, p ∈ V , and replacing ρ in (42) by p, we obtain
∫

Q
yθφ dxdt =

∫
Q
(h+ k0χω)pdxdt +

∫
G

vθpdxdt.

Consequently, yθ is the weak solution, by transposition of the system (14) with
k = vθ (see [2]). And we know that the solution of this equation is in Ξ1,2(Q).
Hence, yθ ∈ C([0,T ],L2(Ω)). Then, multiplying the first equation of (3) by ϕ ∈ V
and integrating by parts over Q, it follows that for any ϕ ∈ V ,
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∫
Ω

yθ (T )ϕ(T )dx−
∫
Ω

yθ (0)ϕ(0)dx+
∫

Q
yθL∗ϕ dxdt =

∫
Q
(h+ k0χω)ϕ dxdt

+

∫
G

vθϕ dxdt.

As ϕ ∈ V , we deduce from (42) that
∫
Ω

yθ (T )ϕ(T )dx = 0, ∀ϕ ∈ V .

Therefore, yθ (T ) = 0 in Ω. Consequently, the pair (vθ ,yθ ) is solution of the prob-
lem (12)–(15).

Step 2. Let us prove the estimates (39)–(41).
Replacing ϕ by ρθ in (36), it follows from (33) and (21) that

a(ρθ ,ρθ ) = ‖yθ‖2
L2(Q) + ‖vθ‖2

L2(G),

≤ ‖θ (h+ k0)‖L2(Q)‖
1
θ
ρθ‖L2(Q),

≤ C‖h‖H‖ρθ‖V .

From the definition of the norm on V given by (35), we obtain (39) and then (40).
Finally, (41) is a consequence of (40) and the classic properties of heat equations.�

Proposition 6. Assume that the assumptions of Proposition 5 hold. Then there exists
a unique control v such that

v = min
ṽ∈E

‖ṽ‖ (43)

where E = {ṽ ∈ M⊥ | (ṽ, ỹ) satisfies (12)− (15)}.

Furthermore, there exists C =C(Ω,ω ,a0,T,
M

∑
i=1

‖ei‖L2(Q))> 0 such that

‖v‖L2(G) ≤ C‖h‖H . (44)

Proof. According to Proposition 5, the pair (vθ ,yθ ) satisfies (12)–(15). Conse-
quently, E is nonempty. Since E is also a closed convex subset of L2(G), we deduce
that there exists a unique control v of minimal norm in L2(G). Particularly,

‖v‖L2(G) ≤ ‖vθ‖L2(G).

Hence, using (40), we obtain (44). �

From now on, we denote by v = F (h) the optimal control verifying (43) and by
y(h,k(h)) the optimal state with k(h) = k0(h)+F (h).
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Penalization Method

In this subsection, we characterize the optimal solution. To this end, we use a penal-
ization method of Lions (see [2]).
Let ⎧⎨

⎩
u ∈ M⊥, z ∈ L2(Q),
z′ −Δz ∈ L2(Q), z = 0 on Σ,
z(0) = 0, z(T ) = 0.

(45)

We define for any h ∈ H and for any (u,z) verifying (45),

Iε(u,z) =
1
2
‖u‖2

L2(G) +
1

2ε
‖Lz− h− k0− uχω‖2

L2(Q) (46)

and we consider the following problem

inf{Iε(u,z), (u,z) verifying (45)}. (47)

Since Iε is coercive, continuous, and strictly convex, Problem (47) admits a
unique solution (vε = vε(h),yε = yε(h)), i.e.,

Iε(vε ,yε)≤ Iε(u,z).

We give now the optimality system verified by (vε ,yε).

Proposition 7. Assume that the assumptions of Proposition 5 hold. Then, the fol-
lowing assertions are equivalent:

(i) (vε ,yε ) ∈ M⊥×Ξ1,2(Q) is an optimal solution of Problem (47).
(ii) There exists ρε ∈ V such that the triplet (vε ,yε ,ρε) is solution of the following

optimality system:

vε =−(ρεχω −Pρε) ∈ M⊥ (48)⎧⎨
⎩

y′ε −Δyε + a0yε = h+ k0χω + vε χω − ερε in Q,
yε = 0 on Σ,

yε(0) = 0 on Ω,
(49)

yε(T ) = 0 in Ω, (50){−ρ ′
ε −Δρε + a0ρε = 0 in Q,

ρε = 0 on Σ. (51)

Proof. We express the Euler–Lagrange optimality conditions which characterize
(vε ,yε).

{ d
dλ

Iε(vε ,yε +λϕ)|λ=0
= 0, ∀ϕ ∈ C∞(Q) such that

ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω,

d
dλ

Iε(vε +λv,yε)|λ=0
= 0, ∀v ∈ M⊥.
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After calculations, we have⎧⎨
⎩
∫

Q

1
ε
(Lyε − h− k0χω − vεχω)Lϕ dxdt = 0,

∀ϕ ∈C∞(Q) such that , ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω
(52)

and
∫

G
vεvdxdt −

∫
Q

1
ε
(Lyε − h− k0χω − vεχω)vdxdt = 0, ∀v ∈ M⊥. (53)

Then we define the adjoint state

ρε = ρε(h) =−1
ε
(Lyε − h− k0χω − vεχω). (54)

Hence, we deduce that Lyε = h+k0χω+vε χω −ερε ∈ L2(Q). And, since (vε ,yε)
verifies (45), we have yε = 0 on Σ, yε(0) = 0 in Ω,and yε(T ) = 0 in Ω. Thus,
(vε ,yε ,ρε) is such that (49)–(50) hold. Since h+ k0χω + vε − ερε ∈ L2(Q), we ob-

tain that yε ∈ Ξ1,2(Q). Now, replacing −1
ε
(Lyε − h− k0χω − vε χω) by ρε , in (52)

and (53), we, respectively, obtain
⎧⎨
⎩
∫

Q
ρεLϕ dxdt = 0,

∀ϕ ∈C∞(Q) such that , ϕ = 0 on Σ, ϕ(0) = ϕ(T ) = 0 in Ω
(55)

and ∫
G

vεvdxdt +
∫

Q
ρεvdxdt = 0, ∀v ∈ M⊥. (56)

Therefore, from (55), we derive

L∗ρε =−ρ ′
ε −Δρε + a0ρε = 0 in Q.

Thus, ρε ∈ L2(Q) and L∗ρε ∈ L2(Q). Consequently, we can define ρε on Σ and
show that ρε = 0 on Σ.
From (56), we have

∫
G
(vε +ρεχω)vdxdt = 0, ∀v ∈ M⊥.

Hence, vε +ρεχω ∈ M⊥. Since vε ∈ M⊥, we have vε +ρεχω = P(vε +ρεχω) =
Pρε . Thus, vε =−(ρεχω −Pρε) ∈ M⊥. �

Furthermore, we have the following estimates:

Proposition 8. Let (vε ,yε ,ρε) be defined as in Proposition 7. Then, there exists a
positive constant C, independent on ε such that

‖vε‖L2(G) ≤ C, (57)
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‖yε‖Ξ1,2(Q) ≤ C, (58)

‖ρεχω‖L2(G) ≤ C, (59)

‖ρε‖V ≤ C. (60)

Proof. The structure of Iε , on the one hand, and the existence of (vθ ,yθ ) on the
other hand show that

0 ≤ Iε(vε ,yε )≤ Iε(vθ ,yθ ) =
1
2
‖vθ‖2

L2(Q) ≤ C.

Thus, we have (57) and

‖Lyε − h− k0χω − vεχω‖L2(Q) ≤ C
√
ε. (61)

Consequently, (54) and (61) give ‖ερε‖L2(Q) ≤ C
√
ε , and yε being solution of

(49), we obtain (58), thanks to the regularity properties of heat equations.

Furthermore, since L∗ρε = 0 and (57) holds, using the definition of the norm on
V given by (35), we obtain (60).

On the other hand, since ρε ∈ V , applying the observability inequality (33) to

ρε , we have ‖ 1
θ
ρε‖L2(G) ≤ C. Thus, using (48), (57), and the fact that

1
θ

∈ L∞(Q),

we deduce that ‖ 1
θ

Pρε‖L2(G) ≤ C. Since Pρε ∈ M which is finite dimensional, we

have ‖Pρε‖L2(G) ≤ C. Hence, using again (48) and (57), we obtain estimate (59). �

Now, we can pass to the limit when ε tends to zero to obtain the singular opti-
mality system associated to Problem 1.

Proposition 9. Let v = F (h) be the unique solution of (43). Let also P be the or-
thogonal projection operator from L2(G) into M . Then

F (h) =−(ρχω −Pρ) (62)

where ρ ∈ V is solution of

L∗ρ = 0 in Q, (63)

ρ = 0 on Σ. (64)

Proof. We proceed in three steps.
Step 1. We study the convergence of (vε ,yε).

According to (57) and (58), we can extract two subsequences, still denoted (vε)ε
and (yε )ε such that

vε ⇀ v0(h) weakly in L2(G), (65)

yε ⇀ y0(h) weakly in Ξ1,2(Q). (66)
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And, as vε ∈ M⊥ which is a closed vector subspace of L2(G), we have

v0(h) ∈ M⊥. (67)

Since the injection of Ξ1,2(Q) into L2(Q) is compact, the pair (v0 = v0(h),y0 =
y0(h)) is such that

⎧⎨
⎩

y′0 −Δy0 + a0y0 = h+ k0χω + v0χω in Q,
y0 = 0 on Σ,

y0(0) = 0 in Ω.
(68)

y0(T ) = 0 in Ω. (69)

Step 2. We show that (v0, y0) = (F (h),y(h,k(h))).
From the expression of Iε given by (46), we can write

1
2
‖vε‖2

L2(G) ≤ Iε(vε ,yε ).

Since (F (h),y(h,k(h))) satisfies (12)–(15) and (43), this latter inequality becomes

1
2
‖vε‖2

L2(G) ≤ Iε(vε ,yε)≤ 1
2
‖F (h)‖2

L2(G). (70)

Then, using (65) while passing to the limit in (70), we obtain

1
2
‖v0‖2

L2(G) ≤ liminf
ε→0

Iε(vε ,yε)≤ 1
2
‖F (h)‖2

L2(G).

Consequently

‖v0‖L2(G) ≤ ‖F (h)‖L2(G),

and thus,

‖v0‖L2(G) = ‖F (h)‖L2(G).

Hence,

v0 = F (h), (71)

and since (68) admits a unique solution, it follows that y0 = y(h,k(h)).

Remark 1. Note that ‖F (h)‖L2(G) ≤ C‖h‖H. Indeed, as (vθ ,yθ ) satisfies (45), we
can write

Iε(vε ,yε )≤ Iε(vθ ,yθ ) =
1
2
‖vθ‖L2(G).

Threfore, using the fact that vθ verifies (40) and the definition of Iε given by (46),
we obtain that ‖vε‖L2(G) ≤ C‖h‖H. Hence, in view of (65) and (71), we have
‖F (h)‖L2(G) ≤ C‖h‖H.
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Step 3. According to estimates (59) and (60), we can extract a subsequence, still
denoted (ρε)ε such that

ρεχω ⇀ ρ(h)χω weakly in L2(G), (72)

ρεχω ⇀ ρ(h)χω weakly in V, (73)

and it follows from (51) that ρ(h) is solution of
{

L∗ρ = 0 in Q,
ρ = 0 on Σ.

As P is a compact operator, we deduce from (72) that

Pρε → Pρ(h) strongly in L2(G). (74)

Therefore, combining (72) and (74), we obtain

vε =−(ρεχω −Pρε)⇀ F (h) =−(ρ(h)χω −Pρ(h)) weakly in L2(G).

Thus, we have showed that for any h ∈ H, the unique pair (F (h),y(h,k(h))) satisfies
(12)–(15) where F (h) =−(ρ(h)χω −Pρ(h)) and ρ = ρ(h) is solution of (63). �

Proof of Theorem 1
We have proven that there exists a unique control v= v(h)∈M⊥ solution of (43)

such that the pair (v,y) verifies (14) and (15). Therefore, Proposition 1 allows us to
say that the control k = k(h) = (k0(h)+v(h)) with k0 ∈Mθ is such that (k,y(k)) sat-
isfies the null-controllability problem with constraints on the state (3), (4), and (5).
Therefore, using (22) and (44), we deduce (10).

Optimal Strategy for the Leader

Properties of F

Lemma 3. For any h ∈ H, let ρ = ρ(h) be the solution of (63). Then, the map F
defined by

F (h) =−(ρ−Pρ)χω (75)

is linear and continuous from H into L2(G).

Proof. Consider the vector subspace V0 from V defined by

V0 = {ϕ ∈ V |L∗ϕ = 0}.
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Since F (h) is solution of problem (12)–(15) and verifies (62), we multiply the first
equation of (14) by ϕ ∈V0 and we integrate by parts. Then, we obtain∫

Q
hϕ dxdt +

∫
Q

k0(h)ϕ dxdt +
∫

Q
vχωϕ dxdt = 0 ∀ϕ ∈ V0,

i.e., ∫
Q

hϕ dxdt +
∫

Q
k0(h)ϕ dxdt −

∫
Q
(ρ−Pρ)χωϕ dxdt = 0 ∀ϕ ∈ V0,

or equivalently,∫
Q

hϕ dxdt +
∫

Q
k0(h)ϕ dxdt +

∫
Q

F (h)χωϕ dxdt = 0 ∀ϕ ∈V0.

Using the fact that the map ϕ �→
∫

Q
hϕ dxdt +

∫
Q

k0(h)ϕ dxdt is linear and continu-

ous on V and

−
∫

G
F (h)ϕ dxdt =

∫
G
(ρ(h)−Pρ(h))ϕ dxdt,

=

∫
G
(ρ(h)−Pρ(h))(ϕ−Pϕ)dxdt,

= a(ρ(h),ϕ),

we deduce that ρ = ρ(h) is solution of the variational problem

a(ρ ,ϕ) =
∫

Q
hϕ dxdt +

∫
Q

k0(h)ϕ dxdt ∀ϕ ∈ V0. (76)

Hence, the map h �→ ρ = ρ(h)χω is linear from H to L2(G). And since the projection
operator I−P which is defined from L2(G) to M⊥ ⊂ L2(G) is also linear, we deduce
that the map F is linear from H to L2(G). Hence, it follows from Remark 1 that F
is continuous on H since ‖F (h)‖L2(G) ≤ C‖h‖H . �

Remark 2. Let k0 be defined as in (18) . Then

1. k0 ∈ H. Indeed, since k0 ∈ Mθ , we have on the one hand, k0 ∈ L2(G), and on the
other hand, θk0 ∈ M ⊂ L2(G).

2. In view of (18), the map F1 : h �→ k0(h) is linear, and since (22) holds, this map
is continuous on H.

From now on, we denote k0(h) = F1(h).

Proof of Theorem 2

We consider the cost function J defined by

J(h) =
1
2
‖y(h,k(h))− zd‖2

L2(Q) +
N
2
‖h‖2

H (77)
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from which we associate the minimization problem

inf
h∈Uad

J(h) (78)

where Uad is a nonempty closed convex subspace of L2(Q).
Using the properties of the maps F given by Lemma 3 and F1 given by Remark 1,
we have that J is strictly convex, continuous, and coercive. Thus, we have the fol-
lowing classic result:

Proposition 10. Problem (78) has a unique control ĥ ∈ Uad.

Observing that k(h) = k0(h)+ v(h) = F1(h)+F (h), we will denote, now and in
the sequel, by ŷ = y(ĥ, k̂ = k̂(ĥ)) the state associated to the optimal control ĥ. Let us
characterize ĥ.

Writing the Euler–Lagrange condition, we obtain

d
dλ

J(ĥ+λ (h− ĥ))|λ=0
≥ 0, ∀h ∈ Uad

which after calculations gives

d
dλ

J(ĥ+λ (h− ĥ))|λ=0
= (ŷ− zd ,y(h− ĥ,k(h− ĥ))L2(Q) + (Nĥ,h− ĥ)H .

Thus,

(ŷ− zd,y(h− ĥ,k(h− ĥ))L2(Q) + (Nĥ,h− ĥ)H ≥ 0, ∀h ∈ Uad .

We interpret this condition using the adjoint state notion. To make our calcula-
tions easier, we set w = h− ĥ and we denote y = y(w,k(w)). Let p be the solution of
the following system:

⎧⎨
⎩

−p′ −Δp+ a0p = ŷ− zd in Q,
p = 0 on Σ,

p(T ) = 0 in Ω.
(79)

Since ŷ− zd ∈ L2(Q), we know that p ∈ Ξ1,2(Q). Multiply the first equation of (79)
by y and integrate by parts over Q, we obtain

∫
Q

p(w+(F1(w)+F(w))χω )dxdt =
∫

Q
y(ŷ− zd)dxdt.

This means that,
∫

Q
pwdxdt +

∫
Q

pF1(w)χω dxdt +
∫

Q
pF (w)χω dxdt =

∫
Q

y(ŷ− zd)dxdt.
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Let H ′ be the dual of the Hilbert space H. Let alsoΛ−1 be the isometric isomorphism
from H ′ to H. Observing on the one hand that F =F ∗ because of the symmetry of
the operator a(., .), and on the other hand that we can write

∫
Q

pwdxdt =
∫

Q

1
θ

pθw = 〈 1
θ

p,w〉H′ ,H ,

∫
G

pF1(w)dxdt = 〈F ∗
1 (p),w〉H′ ,H ,

and ∫
G

pF (w)dxdt = 〈F ∗(p),w〉H′ ,H ,

we have ∫
Q

pwdxdt = (Λ−1(
1
θ

p),w)H ,

∫
G

pF1(w)dxdt = (Λ−1F ∗
1 (p),w)H ,

and ∫
G

pF (w)dxdt = (Λ−1F (p),w)H .

Therefore, the Euler–Lagrange condition gives
(
Λ−1 1

θ
(p)+Λ−1F ∗

1 (p)+Λ−1F (p)+Nĥ,h− ĥ

)
H
≥ 0, ∀h ∈ Uad

or (
Λ−1(

1
θ

I +F ∗
1 +F )(p)+Nĥ,h− ĥ

)
H
≥ 0, ∀h ∈ Uad

where I is the identity operator of L2(Q).
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Chapter 12
Almost and Pseudo-Almost Limit Cycles with
Applications to Quasiperiodic Solitary Waves

Bourama Toni and Melissa Watts

Introduction

Periodicity plays an essential role in several natural and man-made systems and
is apparent, for example, in simple models of the solar system, in the circadian
rhythms by which basic biological functions are regulated, and in electronic devices
producing stable periodic signals such as in wireless communications. Periodic tra-
jectories, isolated or otherwise, are crucial in the mathematics of dynamical systems
and its applications to science and engineering by virtue of the importance of pe-
riodic phenomena as well as by the formidable intellectual challenges in detecting
and predicting periodicity.

One important aspect of periodicity is described by the so-called limit cycles,
isolated periodic orbits in the phase space, stable or attractive when the neighboring
solutions tend to them in an asymptotic sense or unstable if the neighboring solu-
tions unwind from them. As such they can be seen as a set of accumulation points
of either the forward or backward trajectory.

Limit cycles, when stable, actually model the dynamical state of self-sustained
oscillations found very often in nature, with examples in biology, chemistry, me-
chanics, electronics, fluid dynamics, etc. See, for example, [3, 4, 8, 19, 21]. They
often arise in many physical systems around a state at which energy generation and
dissipation balance. One of the most important limit cycles of our lives is the heart-
beat. A spectacular example is the Tacoma Narrows Bridge and its 1940 dramatic
collapse, where the limit cycle drew its energy from the wind and involved torsional
oscillations of the roadbed of about 70◦. Dynamic walking in Robotics is another
practical example; the stable gait to which the repeated walking pattern converges
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is modeled as a stable limit cycle, stability easily lost to even small disturbances,
evidence of a narrow basin of attraction of the limit cycle.

Planar limit cycles were defined by Poincaré in the famous paper Mémoire sur les
courbes définies par une équation différentielle [28], using his so-called Method of
Sections, described in section “Overview of Limit Cycles”. However, much atten-
tion in this century has been drawn to the determination of the number, amplitude,
and configuration of limit cycles in a general nonlinear system, which is still an un-
solved problem. This is part of the so-called Hilbert’s 16th Problem. A weakened
version by Arnold called the tangential Hilbert’s problem concerns the bound on
the number of limit cycles which can bifurcate from a first-order perturbation of a
Hamiltonian system

ẋ =−Hy + εP(x,y), ẏ = Hx + εQ(x,y), (1)

P(x,y) and Q(x,y) are polynomials of degree deg(P,Q) ≤ n, and H(x,y) is the
Hamiltonian of degree degH(x,y) = n+ 1. The limit cycles appearing in the per-
turbed system are given by the isolated zeros of the abelian integral (integral of a
rational one form along an algebraic oval)

I(c) :=
∮
γc:H=c

P(x,y)dy−Q(x,y)dx. (2)

If I(c0) = 0, I′(c0) �= 0, then there is a unique hyperbolic (defined below) limit
cycle bifurcating from the level set γc0 : H = c0 [4, 11, 15, 16]. Similar analysis was
used by Toni for explicitly linearizable polynomial systems [32].

Existence/Nonexistence of Periodicity

The existence or nonexistence of periodic orbits, in particular limit cycles, is in-
vestigated in various ways. The possibility of a limit cycle on a plane or a two-
dimensional manifold is restricted to nonlinear dynamical systems, due to the fact
that, for linear systems, kx(t) is also a solution for any constant k if x(t) is a solution.
Therefore, the phase space will contain an infinite number of closed trajectories en-
circling the origin, with none of them isolated. Conservative and gradient systems
do not have limit cycles, though these systems may exhibit almost or pseudo-almost
limit cycles [13]. We overview here the most common techniques for predicting the
absence or existence of periodicity and limit cycles.

1. Index Theory: The interested reader may find definitions and more details in [4,
12, 15, 21]. The index of a limit cycle is 1. If all equilibria inside the periodic orbit
(isolated or not) are hyperbolic, there must be an odd number 2n+1 of equilibria,
n saddle points, and n+ 1 sinks or sources. So if the appropriate equilibria are
not present in a region of the phase space, a periodic orbit cannot exist. And if
the sum of the indices of the equilibria enclosed in a region does not equal unity,
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then a closed path cannot exist in such a region. Moreover, a closed path cannot
surround a region containing no equilibrium nor one containing only a saddle
point. However, the relationship between equilibria and periodic orbits does not
immediately generalize to higher dimensions. The system

ẋ1 = x2, ẋ2 =−x1, ẋ3 = 1− (x2
1 + x2

2) (3)

has no equilibria but has periodic phase paths given by the helices x2
1 + x2

2=1,
x3 = b (b constant). See, for instance, [3].

2. Dulac’s Criterion: There are no periodic orbits lying entirely in a simply con-
nected region D where the divergence of BX is not identically zero and does not
change sign, with B a scalar function defined on D and X the planar vector field.
For instance, the system

ẋ = y, ẏ =−x− y+ x2+ y2 (4)

is actually a perturbation of the linear center or linear isochrone, with a contin-
uum of periodic orbits around the origin. But it has no periodic orbits by the
Dulac test using B = e−2x. All periodic orbits were therefore destroyed by the
perturbation. See, for example, [4, 7, 12, 21].

3. Poincaré–Bendixson Test. If a trajectory enters and does not leave a closed and
bounded region of phase space with no equilibria, then the trajectory must ap-
proach a limit cycle for increasing time. See, for example, [4, 7, 12, 16, 21].

4. Bifurcation theory. A bifurcation, qualitative change in the behavior of the sys-
tem as the system parameter is varied, could involve a change of stability of the
periodic orbit and/or the creation/destruction of periodic orbits. See the above
example of Hamiltonian system. For example, it is known that at most k, limit
cycles (of small amplitude) bifurcate out of a weak focus of order k under a
perturbation of the coefficients [4].
More importantly, Melnikov’s theory is a powerful tool for predicting the num-
ber, positions, and multiplicities of limit cycles that bifurcate from homoclinic
and heteroclinic orbits under perturbations, by associating to a given dynamical
system a function whose roots are related to the existence and location of limit
cycles. It has been developed for the analysis of planar systems

u̇(t) = f (u)+ εg(u), (5)

for u ∈ R2, ε � 1 and f , and g sufficiently smooth functions, assuming that
the unperturbed system at ε = 0 has a one-parameter family of τr-periodic
solutions γr. Then the Melnikov function is given by

M (r) =
∫ τr

0
e
∫ t

0 ∇ f (γr(s))ds f ∧g(γr(t))dt, (6)

where the wedge product of u = (u1,u2) and v = (v1,v2) in R2 is u ∧ v =
u1v2 − u2v1. Therefore, if there exist r j j = 1, . . .,n such that M (r j) = 0, with
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M ′(r j) �= 0, then the system has n hyperbolic limit cycles in an O(ε) neighbor-
hood of γr j that bifurcate from the periodic orbits γr j (t). And if M (r0) �= 0, then
the system has no limit cycles in an O(ε) neighborhood of γr0 . See, for instance,
[11, 15, 16, 32].

5. Configuration of limit cycles. Any configuration C of closed curves, that is, any
finite set of mutually disjoint closed curves, is realizable as a configuration of
limit cycles by a polynomial vector field of degree n, as well as a configuration
of algebraic limit cycles by a polynomial vector field of degree ≤ 2(n+ r)− 1
where r is the number of its primary curves (containing no other curves). By real-
izable we mean topologically equivalent with the existence of a homeomorphism
between the set of closed curves and the set of limit cycles. An algebraic closed
curve is a connected component of the zero set of some polynomial function. See
for instance [11, 15].

6. The Toroidal Principle. If a smooth vector field X leaves a toroidal region
(a submanifold M in Rn diffeomorphic to Dn−1 × S1) positively invariant and
has a section S diffeomorphic to the closed unit disk Dn−1, then X has a peri-
odic orbit in M by Brouwer’s fixed point theorem. (Dn is the closed unit disk in
Rn.) See [8].

Remarks

The nonlinear character of isolated periodic oscillations renders their detection and
construction challenging. In mechanical terms the appraisal of the regions of the
phase plane where energy loss and energy gain occur might reveal a limit cycle, for
example, in the family of equations of the form

ẍ+ εh(x, ẋ)+ x = 0, (7)

with a small nonlinearity for ε � 1. In particular we have the well-known case of
h(x, ẋ) = (x2 − 1)ẋ for the Van del Pol equation. In the absence of a forcing term, it
has a single, self-excited oscillation approached from all nonzero initial conditions,
that is, a stable limit cycle [18, 19, 21].

Let us emphasize that even though in most studies periodicity has been illustrated
more frequently, the occurrence of almost and pseudo-almost periodic oscillations
or waves is actually much more common than that of periodic ones. For instance, in
the simplest model of harmonic oscillator or mathematical pendulum, as well as for
the one-dimensional wave equation, diverse kinds of oscillatory trajectories can be
displayed, both periodic and more generally nonperiodic.

The theory of almost periodic functions introduced by H. Bohr [6] is connected
with problems in differential equations, stability theory, dynamical systems, par-
tial differential equations, or equations in Banach spaces. There are several results
concerning the existence and uniqueness of almost periodic solutions for first-order
differential equations, for example, in [13, 14, 16, 25, 26, 29]. But in most of these
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works the authors derived almost periodic solutions from the existence of bounded
solutions.

We extend the theory of limit cycles to that of almost and pseudo-almost limit
cycles, isolated almost/pseudo-almost periodic orbits, and we discuss in the cur-
rent and future work the usual questions of conditions of existence and uniqueness,
stability and asymptotic stability, bifurcation and perturbation, the coexistence of
limit cycles and almost/pseudo-almost limit cycles, and introduce the idea of al-
most isochrons and pseudo-almost isochrons. Section “Overview of Limit Cycles”
overviews the theory of limit cycles with some examples and presents the con-
cept of isochrons. Section “Almost Limit Cycles” is devoted to almost limit cycles
and includes definition, properties, examples, and the main existence theorem for
Liénard systems. In Section “Pseudo-Almost Limit Cycles”, we present the concept
of pseudo-almost limit cycle, its properties, several illustrative examples including
the so-called linear pseudo-center, and existence theorem in the case of Liénard
systems. The section shows the applications of the existence theorems for Liénard
systems to obtain almost and pseudo-almost periodic waves for some hyperbolic
and parabolic partial differential equations. Finally in Section “Almost and Pseudo-
Almost Periodic Waves” we discuss some directions for future research, and state
several open problems, defining in the process the concept of almost isochrons and
pseudo-almost isochrons. One important question is the requirements for transition
from almost or pseudo-almost periodic behavior to a chaotic behavior.

Overview of Limit Cycles

Let the multidimensional space Rn represents all the possible states of a system
modeling nonlinear phenomena. The dynamics of the system are determined by the
values in Rn in terms of the time. That is to say we define an evolution map or
flow Φ, smooth on the smooth manifold Rn :

Φ : Rn ×R −→ Rn, (8)

such that Φ(x, t) = y indicates that the state x ∈ Rn evolved into the state y ∈ Rn

after t units of time, together with the usual flow properties

Φ(x,0) = x, Φ(x, t1 + t2) =Φ(Φ(x, t1), t2). (9)

The flow Φ then determines a vector field X (conversely as well) such that, for
x ∈ M

X (x) :=
∂Φ
∂ t

(x,0). (10)
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The orbit or trajectory of the flow through x ∈ Rn is given by

O(x) := {Φx(t) :=Φ(x, t)|t ∈ R}. (11)

Definition 1. The orbit γ = O(x) based at x is called a limit cycle if there is a neigh-
borhood V of γ such that γ is the only periodic orbit contained in V. The limit cycle
is stable (unstable) if ω(s) = γ (α(s) = γ) for any s ∈ V that is, γ is the ω-limit set
(α-limit set) of any point in V.

In other words, a limit cycle is an isolated periodic orbit of some period τ , that
is stable (resp. unstable) if it has a neighborhood U such that, for some distance
function d on Rn, d(Φ(y, t),γ) −→ 0, as t → ∞ (resp. t →−∞), for any y ∈ U.

Note that the phase ϕ of a limit cycle refers to the relative position on the orbit,
which is measured by the elapsed time (modulo the period) to go from a reference
point to the current position on the limit cycle.

Examples: Linear Center and Its Perturbations

Example 1

The linear center or linear isochrone

ẋ =−y, ẏ = x, (12)

where the origin of the plane is surrounded by a continuum of periodic orbits (not
isolated) given by x2 + y2 = c > 0, is perturbed into the following system, in polar
coordinates (r,θ )

ṙ = r(1− r2), θ̇ = 1. (13)

The circle r = 1 is a 2π-periodic orbit and is unique. It is therefore a limit cycle.
Moreover r is a monotone function on each orbit (ṙ > 0 inside and < 0 outside)
so that all nonconstant orbits tend towards the limit cycle which is therefore stable.
This system is the so-called Poincaré Oscillator as in the figure below (Fig. 12.1).

Example 2

The linear center could also be perturbed into a system to generate several limit
cycles as in the following example. The C∞-system

ẋ =−y+ x f (x,y), ẏ = x+ y f (x,y), (14)

where

f (x,y) = sin(
1

x2 + y2 e
− 1

x2+y2 ),
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Fig. 12.1 ṙ = r(1− r), θ̇ = 1

Fig. 12.2 ẋ =−y+ x f (x,y), ẏ = x+ y f (x,y) where f (x,y) = sin( 1
x2+y2 )e

− 1
x2+y2

has an infinite number of limit cycles

γn : x2 + y2 =
1

nπ
, n ∈ Z (15)

accumulating at the origin. The phase portrait appears below in Fig. 12.2.
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Fig. 12.3 Poincaré section

Poincaré’s Method of Sections

Poincaré first observed that if a τ-periodic orbit γ exists for a smooth vector field
X , and if x0 ∈ γ, and H is a hyperplane complementary to the tangent line Tx0(γ)
to x0 at γ , then there is a sufficiently small neighborhood, called a local section or
cross section, Σ ⊂ H on which the implicit function theorem provides for each
x ∈ Σ a least positive time tx for the solution based at x to first return to Σ , defining
the so-called smooth Poincaré or “first return” map (monodromy operator) P on Σ .
In other words, we have

1. x0 ∈ Σ , and Σ̄ ∩ γ = {x0}. (Σ̄ denotes the closure of Σ .)
2. Tx0Σ +Tx0γ = Tx0H . (Σ is transverse to γ at x0.)

By continuity of the flow, and the implicit function theorem, the time τx of first
return exists and is near the period τ for a point x near x0. Therefore, in practice,
P(y) =Φτx(x), where τx is the time taken by the orbitΦx(t) to first return to Σ . And
τx → τ as x → x0. Of course, P(x0) = x0, that is, x0 is a fixed point for the map P .
And the existence of fixed points for P implies the existence of periodic orbits for
the flow, allowing for the use of powerful topological fixed point theorems. But the
existence of such a section is itself one of the standard paradigms of the existence
of nonlinear oscillations (Fig. 12.3).

Next consider the monodromy operator given by the matrix Dx0P = [ ∂P
∂x (x0)]

of partial derivatives of P at x0. The limit cycle is said to be hyperbolic or elemen-
tary if Dx0P has no eigenvalue of modulus one. The eigenvalues are the so-called
characteristic (Floquet) multipliers of γ and are independent of the choice of x0

and Σ . A hyperbolic limit cycle is stable (resp. unstable) if it has all the multipliers
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with modulus less than one (resp. greater than one). Each orbit in the neighbor-
hood of γ tends toward (resp. away from) γ exponentially fast. For a planar vector
field X (x,y) = P(x,y)∂x+Q(x,y)∂y, with P and Q at least C1, sufficient condi-
tions for stability are given by the following: for τ the period of the limit cycle γ,
I(τ) =

∫ τ
0 (

∂P(x,y)
∂x + ∂Q(x,y)

∂y )dt is negative for stable limit cycle and positive for un-
stable limit cycle; such limit cycles are said to be hyperbolic. A multiple limit cycle
is obtained for I(τ) = 0 [11, 15, 28].

The idea of a constant first return time identical to the period of the limit cycle
leads to the description of isochrons which we introduce next.

Isochrons

Winfree in [33, 34] introduced the isochrons of limit cycles in biosciences, in par-
ticular in relation to biological rhythms. Then Guckenheimer showed that they are
in fact the stable manifolds of a point on an attractive hyperbolic limit cycles. Their
existence for nonhyperbolic limit cycles was proved by Chicone in [10].

Definition 2. For a hyperbolic stable limit cycle γ of period τ and for x0 ∈ γ , the
isochron at x0, denoted by Is(x0), is defined as a cross section of γ at x0 for which
the time of first return is identically the period τ.

In other words, the isochrons of a limit cycle is the set of points from which
state trajectories evolve to the same phase as the limit cycle. That is, a set of initial
conditions resulting in oscillations having the same phase. The limit cycle itself, like
the unit circle, can be parameterized by one variable called its phase ϕ .

The existence of isochrons is ensured by the Invariant Manifold Theorem as the
leaves of the invariant foliation of the stable manifold of a hyperbolic periodic orbit.
In a 2-state system the foliation is visualized as lines traversing the limit cycle.
They are used extensively in investigating the dynamics of neural oscillators and to
qualitatively illustrate phase resetting in circadian rhythms.

In practice, for a hyperbolic limit cycle γ , there exists a unique ϑ(x) for any x /∈ γ
such that

lim
t←∞

|Φ(t)− γ(t +ϑ(x))|= 0, (16)

where Φ(t) is the trajectory based at x. The value ϑ(x), bounded by the period T (1
or 2π after normalization), is called the asymptotic (or latent) phase of x.

A level set ϑ(x) = c or ϑ−1(c) defines an isochron. And it is an (n − 1)-
dimensional hyperplane. In fact all points of an isochron are points of the sequence
{x(kT )}k≥0. That is, points on the forward orbit Φ(t) observed only at times integer
multiple of the period of the limit cycle, thereby defined by a Poincaré map. There-
fore, an isochron is a special Poincaré section with the time of first return equals the
period of the limit cycle. A phaseless set is formed by those points where isochrons
cannot be defined. See, for example, [3, 19, 33, 34].
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Example

Consider the planar differential equations in polar coordinates (r,θ )

ṙ = (r− 1)r2, θ̇ = r, (17)

with a limit cycle γ : r = 1. Looking for a function f such that the asymptotic
phase is defined by ϑ(r,θ ) = θ − f (r) leads to each isochron ϑ−1(c) being defined
by θ = c+ 1

r −1.Therefore, isochrons exist everywhere in the plane, with the phase-
less set reduced to the singleton containing the origin, whose every neighborhood
intersects all isochrons. Consequently, using the asymptotic phase as the new phase
coordinate allows the dynamics of the phase to be decoupled from the other coordi-
nate, thereby effectively reducing the dimension of the equation in the neighborhood
of the limit cycle.

Remarks

Note that the concept of isochrons extends the notion of phase of a periodic orbit to
a neighborhood of that orbit. The phase difference between two points in the basin
of attraction of a limit cycle can be directly computed as the time difference be-
tween the isochrons to which they belong. Computation of isochrons is usually quite
difficult, requiring sometimes the coordinate transformation to phase variables, or
backward integration of the system from the limit cycle, and collection of points at
time interval of the period. The configuration of the isochrons in a given region also
determines how fast or slow trajectories are moving in that region. The convergence
(resp. divergence) of isochrons indicates a slow (resp. fast) synchronization region.
A numerical resolution of isochrons could be found in [3].

Almost Limit Cycles

Definition 3. The orbit O(x0) based at x0 as defined above is called an almost limit
cycle if it is isolated and the functionΦ(.) :=Φx0(.) : R −→ Rn is almost periodic
in the following sense (Bohr): ∀ε > 0, ∃lε > 0 such that every interval (a,a+ lε) in
R of length lε contains a number τε such that

||Φx0(t + τε)−Φx0(t)||< ε. (18)

The number τε is called the ε-almost period of Φx0(.), or ε-translation number.
The following properties are derived from those of almost periodic functions which
could be found for instance in [6, 13, 16]. Denote AP(R,Rn) the Banach space of
almost periodic functions from R to Rn.
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Properties of Almost Limit Cycles

1. The set Tε of the ε-translation numbers is relatively dense in R.
2. The orbit O(x0) is bounded, relatively compact in Rn, and the map Φx0(.) is uni-

formly continuous. Moreover there is a sequence of trigonometric polynomials
Pn(t) = ΣN

k=1akeiλkt converging to Φ(t) uniformly in R.
3. The family of translates F := {TτΦ(.) = Φ(.+ τ); τ ∈ R} is relatively com-

pact in the space of almost periodic functions from R to Rn.
4. For a sequence of almost periodic solutions Φk(t), k = 1, . . .,n and ∀ε > 0,

there exist common ε-translation numbers.
5. For Φ ∈ AP(R,Rn) the time mean or mean value of Φ(t) exists and is defined by

M(Φ) := lim
T→∞

1
2T

∫ T

−T
f (t)dt. (19)

6. The Fourier exponent λ and the related Fourier-Bohr coefficient c(λ ) of Φ ∈
AP(R,Rn) are defined by c(λ ) = M(Φ(t)e−iλ t) �= 0. The module mod(Φ)
of Φ is the additive group generated by the set Λ(Φ) = {λ ∈ R|c(Φ) �= 0}.
The almost periodic function is said to be quasi-periodic with frequency ω =
(ω1, · · · ,ωm) ∈ Rm if its module is contained in the additive group generated
by ω .

7. Any Φ ∈ AP(R,Rn) satisfies the so-called recurrence property, that is, there
exists a real sequence {τn} with limn−→±∞ τn =±∞ such that limn−→∞ ||TτnΦ−
Φ||= 0.

Example of Linear Almost Center

Let p(t) ∈ AP(R,C), and consider the differential equation

ẋ(t) =−αx(t)+ p(t), α > 0. (20)

Define a kernel

K(t) =
{

0, f or t < 0, and e−αt , f or t ≥ 0
}
. (21)

Therefore, K∈L1(R,C). Thus, the convolution xα(t)=(K∗p)(t)=e−αt∫ t
−∞ eαsp(s)ds

is also in AP(R,C). Moreover this convolution is an almost periodic solution, not
isolated; therefore it is not an almost limit cycle. Indeed the equation being linear,
we derive a continuum of parameterized family of almost periodic solutions. Such
a continuum is called a linear almost center. This example also appears in [13]. We
represent below the solution for the almost periodic function p(t) = sin t + sin

√
2t

(Fig. 12.4).
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Fig. 12.4 ẋ(t) = αx(t)+(sint + sin
√

2t), α = 1,2,3,4

We introduce here an efficient technique of investigating almost periodic solu-
tions and consequently almost limit cycles.

Hull and Method of Auxiliary Systems

Consider the nonlinear system

ẋ(t) = f (x(t), t), (S)

where the function f is continuous on the open set O = R× I, I ⊂ Rn, and almost
periodic in t uniformly with respect to x ∈ K ⊂ I, for K a compact subset of I.

Therefore, f (R,K) is bounded. And the function f (t, .) is uniformly continu-
ous on K. A function g is said to be in the hull H( f ) of f if there exists a se-
quence {τn;n ≥ 1} in R with limn→∞ f (t + τn,x) = g(t,x) uniformly on any set
R×K, K ⊂ I. That is, g is in the closure of the set { f (t + τ,x), τ ∈ R}.

Then consider the auxiliary system

ẋ(t) = g(t,x(t)), g ∈ H( f ). (Sa)

Let D be a region of R × Rn given by D = R × K, K the above compact set. A
solution x(t) of the system (S) whose graph is in D is separated in D if it is either the
only solution with its graph in D or there is a number δ > 0 such that |x(t)−y(t)| ≥
δ , t ∈ R, where y(t) is another solution with its graph in D. From Amerio [2, 13] we
obtain the following two theorems:
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Theorem 1. Consider the systems (S) and (Sa):

1. The number of separated solutions with the graph in D is finite.
2. If the system (S) has a solution with graph in D, then each of the auxiliary system

has also a solution with its graph in D.
3. If x(t), t ≥ t0, is a solution of the system (S) such that x(t) ∈ K for t ≥ t0, then the

auxiliary system (Sa) has a solution defined on R whose graph is in D.

Consequently it results:

Theorem 2. Assuming the auxiliary system has its solutions in D separated, then
all these solutions are almost periodic.

Therefore, we are allowed to conclude that bounded separated solutions of sys-
tem (S) are almost periodic. Corduneanu in [13] has effectively used this method to
prove the existence of an asymptotically stable almost periodic solution to a Liénard-
type second-order differential equation.

Next we illustrate the concept of almost limit cycle with several examples.

Almost Periodic Perturbations of the Harmonic Oscillator

Consider the forced oscillations of the harmonic oscillator given by

ẍ(t)+ω0x(t) = f (t) (22a)

or equivalently for ẋ = y

ẋ = y, ẏ =−ω0x+ f (t) (22b)

where the external forcing term is f (t) = k sinω1t with ω1 such that the ratio ω1
ω0

is
irrational. From the Lagrange’s method the general solution is computed as

x(t) = Acos(ω0t +α)+ k(ω2
0 −ω2

1)
−1 sinω1t. (22c)

This solution certainly represents an oscillatory motion, but due to the fact that the
ratio is irrational, the solution x(t) is not periodic in t but is indeed one of the sim-
plest examples of an almost periodic trajectory in an explicit form. The periodic
perturbation has indeed destroyed the free harmonic oscillations. Setting the pa-
rameters A, α, ω0 k, and ω1 to numerical values provides an example of a unique
asymptotically almost periodic orbit, thus isolated. It is therefore a unique stable
almost limit cycle.

We further illustrate the theory of almost and pseudo-almost limit cycles with the
well-known Liénard systems.
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Liénard Systems

Why the Liénard Systems?

Liénard equation, which also generalizes the famous Van der Pol oscillator, is ubiq-
uitous in the study of nonlinear systems [1, 2, 7, 12, 22, 23]. We here recall some by
now classical results about Liénard-type systems.

Consider the one-parameter family of forced Liénard systems

ẍ+ f (x)ẋ+ g(x) = μh(t), (23)

or equivalently

ẋ = y−F(x), ẏ =−g(x)+ μh(t), (24)

where f , g, and h are continuous functions on R, μ a small real parameter, and
F(x) :=

∫ x
0 f (s)ds.

Setting the parameter μ = 0, that is, for homogeneous Liénard systems, we obtain
the following well-known Liénard theorems. See more details in, for example, [7,
9, 12].

Theorem 3. Consider the system

ẍ(t)+ f (x)ẋ(t)+ g(x) = 0 (25)

where f (x) and g(x) are two functions generally nonlinear, assumed continuous,
and differentiable from R to R, together with the following conditions:

(L1) : xg(x)> 0, for x �= 0.
(L2) : lim|x|→∞ |F(x)|= ∞.
(L3) : There exist real numbers α and β such that F(x) < 0, for x < −α or
0 < x < β , and F(x)> 0, for −α < x < 0 or x > β .
(L4) : f (x) is symmetric, while g(x) is antisymmetric.

Then there exists a unique nontrivial periodic solution to the equation.

Theorem 4. If the Liénard’s equations satisfies the following conditions:

1. f (x) is continuous, even and f (0)< 0.
2. g(x) is locally Lipschitz, odd, and such that xg(x)> 0 for x �= 0.
3. f (x) has a unique positive zero at x = b, and it increases at ∞ for x > b.

Then there a unique stable limit cycle.

Therefore, these theorems provide conditions under which there exist, for the un-
perturbed Liénard systems, respectively, a unique periodic solution and a unique
limit cycle, isolated periodic orbit controlling the behavior of neighboring trajecto-
ries. We next subject some classes of Liénard systems to perturbations that, in fact,
destroy the limit cycles to give birth to almost limit cycles or pseudo-almost limit
cycles under suitable conditions.
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Liénard Almost Limit Cycles

We study system (21) or its equivalent form (23) under the following additional
assumptions:

(A1) f (x) > 0, in R, with F(x)sgnx → ∞ as |x| → ∞.
(A2) xg(x)> 0 for x �= 0, G(x)→ ∞ as |x| → ∞.
(A3) |h(t)| ≤ K, and |H(t)| ≤ K, with H(t) =

∫ t
0 h(s)ds, t ∈ R, and K a positive

constant.
(A4) g′(x)> 0, and g′′(x) exists and is bounded.

It is known that, under such assumptions, for 0 < μ � 1, there exists in the
xy-plane a set E bounded by a regular simple curve (C1 except possibly at a finite
number of points) such that:

1. For every solution γ(t) = (x(t),y(t)) of system (21), there is a value t0 such that
γ(t0) ∈ E.

2. If, for a value t0 of t, we have γ(t0) ∈ E, then we have also γ(t) ∈ E, for t ≥ t0.
That is, solutions entering the set cannot leave it for increasing time.

Moreover the set E depends only on the functions f (x), g(x), h(t), the parameter
μ , and the constant K. Equivalently, the set E may be described by the inequalities
|x(t)| ≤ x0 |ẋ(t)| ≤ v0, for a solution x(t) of Eq. (20), and where x0 and v0 are
constants independent of μ . See, for example, [9, 26, 29]. In other words, under the
above conditions the solutions ultimately settle in a C1-bounded set E in R2.

The main theorem here states:

Theorem 5. Assume the function h(t) is an almost periodic function, then under
the conditions (A1), . . .,(A4), the almost periodically forced Liénard system has a
unique stable almost limit cycle.

This theorem was first presented by the Toni in [31]. We present here an improved
and self-contained proof for the sake of clarity.

Proof. Let γ(t) = (x(t),y(t)) a solution of the system, and γ̃(t) = (x̃(t), ỹ(t)) either
another solution of the system or a solution of an associated system with a suffi-
ciently small perturbation h̄(t) of the forcing term h(t). We have then

lim
t→∞

|γ̃(t)− γ(t)|= 0,

that is,

lim
t→∞

|x̃(t)− x(t)|= 0 = lim
t→∞

|ỹ(t)− y(t)|. (26)

Indeed, upon the change of variables u(t) = x̃(t)− x(t), v(t) = x̃(t)− y(t), we
obtain the system

u̇(t) = v(t)−ϕ(t)u(t)v̇(t) =−ψ(t)u(t)+ μΔh(t), (27)
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where

ϕ(t) =
F(x2)−F(x1)

x2 − x1
, ψ(t) =

g(x2)− g(x1)

x2 − x1
. (28)

Note that the functions f , g′, and g′′ are bounded on the compact set E. For
sufficiently small values of the parameter μ � 1, we can construct the quadratic
form

Q(t,u,v) = ψ(t)u2 + v2 − 2cuv, (29)

with c > 0 chosen small enough for Q(t,u,v) to be positive definite such that

Q(t,u,v)≥ c(u2 + v2), (30)

c a positive constant, and such that

Q̇(t,u,v)+ cQ(t,u,v)< 0. (31)

Actually we have

dQ
dt

(t,u,v) =−2(ϕψ− ψ̇− 2cψ)u2 − 2cv2 + 2cϕuv, (32)

yielding

Q̃(t,u,v) := Q̇(t,u,v)+ cQ(t,u,v) =−(2ϕψ− ψ̇− 3cψ)u2+ 2c(ϕ− c)uv− cv2.

(33)

The quadratic form Q̃(t,u,v) can be made negative definite by taking the constant c
such that

c <
2ϕψ− ψ̇

3ψ
, c(3ψ+(ϕ− c)2)< 2ϕψ− ψ̇, (34)

which entails

Q̇(t,u,v)< Q(t0)e
−c(t−t0). (35)

Therefore, Q(t) → 0 as t → ∞, implying that u → 0 and v → 0. The constant c
is appropriately chosen so that, when |Δh(t)| = |h̃(t)− h(t)| → 0, we can make
Q(t) → 0 for t → ∞. That is, the solutions of the system of the perturbed forcing
term ultimately converge to the solutions of the original system.

Next let γ(t) = (x(t),y(t)) be one of these solutions which settled in E for t ≥ t0.
We then define the sequence of solutions γn(t) = γ(t + n) = (xn(t),yn(t)), t ≥
t0 − n. The sequence is therefore equicontinuous and uniformly bounded. Con-
sequently we can extract a subsequence γnk(t) converging uniformly to a solu-
tion γ̄(t) = (x̄(t), ȳ(t)) lying completely in E for all t ∈ R. (limn→∞(t0 + n,∞) =
(−∞,∞)). And of course γ̄(t) is unique. Therefore, the forced Liénard system has a
unique solution γ̄(t) = (x(t),y(t)) defined on the whole real line R in the set E.
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Now h(t) almost periodic implies there is an ε-almost period τ such that

‖Tτh(t)− h(t)‖< ε

for any arbitrary ε. For such an ε-period consider the function γ̄(t+τ)=(x̄(t+τ),
ȳ(t + τ)). It is readily a solution of the following system (Eτ):

ẋ = y−F(x)ẏ =−g(x)+ μh(t+ τ). (36)

Take h(t + τ) as a sufficiently small perturbation of h(t) as above. Therefore,
we obtain

‖γ̃(t + τ)− γ̃(t)‖< ε, (37)

which entails that the unique solution γ(t) is also almost periodic with the same
ε-almost period as the forcing term h(t).

Moreover all other solutions of the system that ultimately settle in E con-
verge to the unique almost periodic solution γ(t) ∈ E. Therefore, the system has
a unique (isolated) almost periodic solution to which any other solution unwinds
in the C1-bounded set E. It is a stable almost limit cycle as defined above. Hence
the claim. ��

Remarks

Note that the proof of the theorem actually accomplishes more. That is, under the
assumptions above, only one solution of the system settles in the bounded region
E for all time; that solution will be of the same nature as the forcing term, almost
periodic for an almost periodic forcing in this case. It has been proven also, for
example, in [9, 26, 29], that it is periodic under a periodic forcing. In addition,
we prove in the next section that this single solution becomes as well pseudo-almost
periodic under such a forcing term. Indeed the next section discusses the concept
of pseudo-almost limit cycles from the dual concepts of limit cycles and pseudo-
almost periodicity.

Pseudo-Almost Limit Cycles

Introductory Concepts

Let C (R ×Ω ,Rn), Ω ⊂ Rn open, be the Banach space of bounded continu-
ous functions φ(t,x) endowed with the norm ||φ || = supt∈R,x∈Ω |φ(t,x)|. The set
C (R×Ω ,Rn) is a subset of the more general space Lb(R×Ω ,Rn) of all Lebesgue
measurable and bounded functions.
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Fig. 12.5 f (t) = 1− t2, for |t|< 1, and sin(log( 1
t2 )), for |t| ≥ 1

Definition 4. A function f in Lb(R×Ω ,Rn) is said to be ergodic if for every com-
pact subset K ⊂Ω , the mean defined by

M ( f ) := lim
T→∞

1
2T

∫ T

−T
f (t,x)dt (38)

exists uniformly for x ∈ K.

We say that the function has a vanishing mean if M ( f ) = 0. Let E (R×Ω ,Rn)
denote the space of all ergodic functions on R ×Ω . Note in passing that not all
uniformly continuous bounded functions on R are ergodic. For instance the function

f (t) = {1− t2, f or |t|< 1, and sin(log(1/t2)), f or |t| ≥ 1,} (39)

is uniformly continuous in R, but not ergodic (Fig. 12.5). In the space L (R×Ω ,Rn)
of all Lebesgue measurable functions on R ×Ω , we consider next the following
subspace L0 of all {φ ∈ L : R ×Ω → Rn such that ∀x ∈ Ω , φ̃ (.) := φ(.,x) is
Lebesgue measurable on R with M (|φ̃ |) = 0, and M (|φ |) = 0.

For example, the function

φ(t) = t|sinπt|tN
, N > 6, (40)

is unbounded, Lebesgue measurable with vanishing mean M .
The unbounded and discontinuous function

φ(t) := {√n, n ≤ t ≤ n+ 1/n, and 0, otherwise} (41)
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is also an element of L0. Indeed we have limT→∞
1

2T

∫ T
−T |φ(t)|dt = limn→∞

1
n ∑

n
k=1

1√
k
= 0.

Definition 5. The orbit O(x0) based at x0 as defined above is called a pseudo-almost
limit cycle if it is isolated, and more importantly if the function Φ(.) := Φx0(.) :
R −→ Rn defining the orbit is pseudo-almost periodic in the following sense, ∀ε >
0, ∃δ = δε > 0, a relatively dense subset Dε ⊂ R, a subset Cε ⊂ R, such that:

1. For m the Lebesgue measure on R,

lim
t→∞

m(Cε ∩ [−t, t])
2t

= 0, (Cε is called an ergodic zero set). (42)

2. Let TτΦ denotes the translate of Φ by τ, that is, (TτΦ(t)) :=Φ(t + τ). Then

||(TτΦ)(t)−Φ(t)||< ε, τ ∈ Dε , t, t + τ ∈ R−Cε . (43)

3. Finally

|t1 − t2|< δ =⇒ ||Φ(t1)−Φ(t2)||< ε, t1, t2 ∈ R−Cε . (44)

Denote PA the space of pseudo-almost periodic functions. These functions satisfy
the following properties widely available in the relevant literature [13, 14, 35].

Some Properties of Pseudo-Almost Periodicity

We first give an equivalent definition of a pseudo-almost periodic function, in partic-
ular in the space C (R×Ω ,Rn), with the restriction of L0 to the space E0 containing
all functions φ ∈ C (R×Ω) such that

lim
T→∞

1
2T

∫ T

−T
|φ(t,x)|dt = 0, (45)

uniformly in x ∈Ω .

Definition 6. A function f : R ×Ω −→ Rn is called pseudo-almost periodic in t
uniformly on compact subsets K of Ω if it has a unique decomposition in the form

f (t,x) = a(t,x)+ e(t,x), (46)

where a is almost periodic and e ∈ E ⊂ L0. Recall that a is almost periodic if
it satisfies the so-called Bohr’s property. That is, ∀ε > 0 ∃l = l(ε) such that any
interval (t, t + l)⊂ R contains a number τ such that

|| f (t + τ,x)− f (t,x)||< ε, t ∈ R,x ∈Ω . (47)
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The functions a and e are called, respectively, the almost periodic component and
the ergodic perturbation of f . Moreover we have the following properties [14, 35]:

1. For f ∈ PA , the set f (R,K) := { f (t,x)|t ∈ R,x ∈ K} is bounded for every
bounded subset K ⊂Ω .

2. The function f (t, .) is uniformly continuous in each bounded subset of Ω uni-
formly in t.

3. When the ergodic zero set Cε = /0, the space PA coincides with the space A P
of almost periodic functions.

4. If both functions f and its derivative f ′ are pseudo-almost periodic, with f = a+e
and f ′ = a′+ e′, where a and a′ in PA and e and e′ in L0, then the functions a
and e are differentiable with a′ = a and e′ = e.

Some Illustrative Examples of Pseudo-Almost Periodic Functions

We present some by now classic examples of pseudo-almost periodic functions. See
also [14, 35]. We include here their graphic requirements.

Example 1

We consider the function

φ1(t) = sin t + sin
√

2t +
e−|t|

1+ t2 (48)

and represent, respectively,

1. The almost periodic component a(t) = sin t + sin
√

2t and the ergodic perturba-

tion e(t) = e−|t|
1+t2 (Fig. 12.6)

2. The pseudo-almost periodic function φ1(t) = a(t)+ e(t) (Fig. 12.7)

Example 2

We consider the function

φ2(t) = sin t + sinπt + t|sinπt|tN
, N > 6, (49)

with the graphic representations given below:
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Fig. 12.6 a(t) = sint + sin
√

2t, and e(t) = e−|t|
1+t2

Fig. 12.7 φ1(t) = a(t)+ e(t) = sint + sin
√

2t + e−|t|
1+t2

1. The almost periodic component a(t) = sin t + sinπt and the ergodic perturbation
e(t) = t|sinπt|tN

for N = 8 (Fig. 12.8)
2. The pseudo-almost periodic function φ2(t) = a(t)+ e(t) (Fig. 12.9)

Example 3

We finally consider the function

φω (t) = I1(t)+ I2(t), ω �= 0, (50)

where

I1(t) =
∫ ∞

−∞
h(t − s)(sins+ sin

√
2s)ds, h ∈ L1(R) (51)
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Fig. 12.8 a(t) = sint + sinπt and e(t) = t| sinπt|t8

Fig. 12.9 φ2(t) = a(t)+ e(t) = sint + sin
√

2t + e−|t|
1+t2

and

I2(t) =
∫ ∞

−∞
h(t − s)
s2 +ω2 ds. (52)

We take h(t) = t2, in L1(R), ω = 1, and represent in figure below:

1. The almost periodic component I1(t) and the ergodic perturbation I2(t) (Fig. 12.10)
2. The pseudo-almost periodic function φ1(t) = I1(t)+ I2(t) (Fig. 12.11)

As in the previous section we now present some examples of existence of pseudo-
almost limit cycles. First we mention the case of the linear pseudo-almost center.
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Fig. 12.10 I1(t) =
∫ ∞
−∞ h(t − s)(sin s+ sin

√
2s)ds and I2(t) =

∫ ∞
−∞

h(t−s)
s2+ω2 ds

Fig. 12.11 φω(t) = I1(t)+ I2(t)

Linear Pseudo-Almost Center: An Example

Let p(t) ∈ PA (R,C), that is, a complex-value pseudo-almost periodic function
defined on the real numbers, and consider the differential equation (see also [13])

ẋ(t) =−αx(t)+ p(t), α > 0. (53)

Define a kernel

K(t) =
{

0, t < 0, and e−αt , t ≥ 0}. (54)

Therefore, K ∈ L1(R,C). Thus, the convolution xα =(K∗ p)(t)=e−αt ∫ t
−∞ eαs p(s)ds

is also in PA (R,C), for every α . Indeed the space PA is convolution invariant
by L1. The equation being linear, it results in the existence of a continuum of pa-
rameterized pseudo-almost periodic solutions which we called linear pseudo-almost
center. Therefore, these solutions are not isolated and are not pseudo-almost limit
cycles.
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Fig. 12.12 x(t) = sint + sin
√

2t + 1
t2+1

and ẋ = y, ẏ =−x+(−sin
√

2t + t2(t2+4)
(t2+1)3 )

Pseudo-Almost Periodic Perturbations of the Harmonic Oscillator

Consider the forced oscillations of the harmonic oscillator given by

ẍ(t)+ x(t) = f (t) (55)

where the forcing term is

f (t) =−sin
√

2t +
t2(t2 + 4)
(t2 + 1)3 (56)

equivalently, for ẋ = y

ẋ = y, ẏ =−x+ f (t). (57)

Clearly the function explicitly given by

x(t) = sin t + sin
√

2t +
1

t2 + 1
(58)

is the unique solution of the equation, and it is one of the classic examples of pseudo-
almost periodic function that is not periodic. (See also [11].) Therefore, we obtain an
explicit and simple example of pseudo-almost limit cycle. The figure below gives the
phase portrait of (57) and the graph of the pseudo-almost periodic function in (58)
(Fig. 12.12).

Liénard Pseudo-Almost Limit Cycles

We now reconsider the above Liénard systems (20) and (21) under a forcing term
that is now assumed to be a pseudo-almost function. As stated above in the case of
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an almost periodic forcing, the assumptions entail the existence of a unique solution
that settles in the bounded region E for all time. Moreover the proof of Theorem 5
leads to the following:

Proposition 7. Assume the conditions A1, . . .,A4. Let γ(t) = (x(t),y(t)) be a solu-
tion of the system, and γ̃(t) = (x̃(t), ỹ(t)) either another solution of the system or
a solution of an associated system with a sufficiently small perturbation h̄(t) of the
forcing term h(t). Then we have

lim
t→∞

|γ̃(t)− γ(t)|= 0,

that is,

lim
t→∞

|x̃(t)− x(t)|= 0 = lim
t→∞

|ỹ(t)− y(t)|. (59)

Proof. It is a direct consequence of the lines of proof for theorem (cite here). That
is, the solutions of the system associated to the perturbed forcing term ultimately
converge to the solutions of the original system. ��

We now state and prove the main result of this section.

Theorem 6. Assume the forcing term h(t) is a pseudo-almost periodic function.
Then under the conditions (A1), . . .,(A4), the pseudo-almost periodically forced
Liénard system has a unique stable pseudo-almost limit cycle.

Proof. The proof is based on the previous proposition, including the existence of a
unique solution enclosed in E for all time. First assuming the forcing term h(t) is
pseudo-almost periodic entails from the definition above that, for any arbitrary ε,
there exists δ = δ (ε), an ε-pseudo-almost period τ ∈ Dε , a relatively dense set in
R such that

‖h(t + τ)− h(t)‖< ε, t, t + τ ∈ R−Cε (60)

and

|t1 − t2|< δ =⇒ ||h(t1)− h(t2)||< ε, t1, t2 ∈ R−Cε , (61)

where Cε is the ergodic zero set defined above. For such an ε-pseudo-almost period,
consider the unique solution γ̄(t) given in the previous lemma that settles in E for
all time t ∈ (−∞,∞), and the associated function γ̄(t+τ) = (x̄(t+τ), ȳ(t+τ)). This
function is readily a solution of the following system (Eτ)

ẋ = y−F(x, ẏ =−g(x)+ μh(t+ τ). (62)

Take h(t + τ) as a sufficiently small perturbation of h(t) as above. Therefore, ac-
cording to the previous propositions, the solutions γ̄(t) and γ̄(t +τ) converge. Thus,
we obtain

‖γ̄(t + τ)− γ̄(t)‖< ε, t, t + τ ∈ R−Cε . (63)
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Moreover we also have, for t1, t2 ∈ R−Cε ,

|γ̄(t2)− γ̄(t1)| ≤ |t2 − t1|supE | ˙̄γ|,

which ensures the existence of δ such that

|t1 − t2|< δ =⇒ ||γ̄(t1)− γ̄(t2)||< ε, t1, t2 ∈ R−Cε . (64)

Therefore, we conclude that the unique solution γ̄(t) is pseudo-almost periodic.
Moreover, from the previous proposition, all other solutions of the system that

ultimately settle in E converge to this unique pseudo-almost periodic solution γ̄(t)∈
E. Therefore, the system has a unique (isolated) almost periodic solution to which
any other solution unwinds in the C1-bounded set E. It is a stable almost limit cycle
as defined above. Hence the claim. ��

Remarks

For a Liénard system under the assumptions stated above, a forcing term, respec-
tively, periodic, almost periodic, and pseudo-almost periodic leads to the emergence,
respectively, of a unique stable limit cycle, stable almost limit cycles, and pseudo-
almost limit cycles. Such characteristics, if need be, add to the “mathematical beauty
and richness” of the Liénard systems. We derive the following natural question as
an open problem.

Open Problem

Re-parameterize the Liénard system if necessary and determine conditions under
which the phase space could be partitioned in regions of limit cycles, almost limit
cycles, and pseudo-almost limit cycles.

Almost and Pseudo-Almost Periodic Waves

The importance of Liénard systems among nonlinear systems also comes from
the fact that several systems can be transformed into Liénard systems and solved
[1, 17, 19, 20]. We present next some partial differential equations solvable first
by reducing them to some Liénard-type equations, then by applying the previous
theorems.
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Illustrative Example 1

Consider systems described by the time-perturbed nonlinear hyperbolic equation

utt = uxx + f0(u)ux + g0(u)+ p(t) (H ).

The search of special solutions of the form

u(x, t) = y(x+ ct), c ∈ R (65)

defining the wave with speed |c| yields the Liénard-type equation

(1− c2)ÿ+ f0(y)ẏ+ g0(y) =−p(t). (66)

Define f (y) = f0(y)
1−c2 , g(y) = g0(y)

1−c2)
, and h(t) = −p(t)

1−c2 . The functions f0 and g0 are

continuously differentiable chosen together with the speed |c| of the waves u(t,x)
such that the functions f , g, and h satisfy the assumptions (A1), . . .,(A4). Obviously
p(t) almost periodic or pseudo-almost periodic implies h(t), respectively, almost or
pseudo-almost periodic. Therefore, we conclude under these assumptions:

Theorem 7. For an almost periodic perturbation p(t), the nonlinear hyperbolic
equation (H ) has an almost periodic solitary wave u(x, t) = y(x+ ct), where y(x)
is an almost limit cycle of the perturbed Liénard-type equation (25).

Proof. The proof is immediate and is adapted from Theorems 5 and 6. ��
In the same lines we prove:

Theorem 8. For a pseudo-almost periodic perturbation p(t), the nonlinear hyper-
bolic equation (H ) has a pseudo-almost periodic solitary wave u(x, t) = y(x+ ct),
where y(x) is a pseudo-almost limit cycle of the perturbed Liénard-type equa-
tion (25).

We next consider a parabolic partial differential equation describing a reaction-
diffusion equation.

Reaction-Diffusion Model

Consider now the time-perturbed parabolic equation describing a reaction-diffusion
model

ut = uxx + f0(u)ux + g0(u)+ p(t) (RD).
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Looking again for special solutions of the form (24) leads to the Liénard-type
equation

ÿ+[ f0(y)− c]ẏ+ g0(y) = 0. (67)

As in the previous case we set f (y) = f0(y)− c, g(y) = g0(y), and h(t) = −p(t).
The functions f0 and g0 are continuously differentiable are determined together with
the speed |c| of the waves u(t,x) such that the functions f , g, and h satisfy the as-
sumptions (A1), . . .,(A4). Obviously p(t) almost periodic or pseudo-almost periodic
implies h(t), respectively, almost or pseudo-almost periodic. We therefore obtain the
equivalent theorems of existence of almost and pseudo-almost solitary waves to the
reaction-diffusion equation as functions of the corresponding Liénard almost and
pseudo-almost limit cycles, as in Theorems 7 and 8.

Outlook and Open Problems

Arnold in [5] states

Une trajectoire fermée nondégénérée ne disparait pas par une petite déformation du système,
mais se déforme légèrement. Donc le système des trajectoires est structurellement stable
dans le voisinage de la trajectoire fermée générique.

That is, periodic orbits do not just disappear under small perturbation, but they
may be slightly deformed, due to the fact that the system of trajectories is struc-
turally stable in the neighborhood of a periodic orbit.

Many forced systems such as the Liénard ones are actually small perturbations
of systems having periodic orbits (limit cycles) in their unperturbed form, and many
results such as the above ones are about the existence and uniqueness of almost peri-
odic solution with no mention of the fate of the periodic orbit(s) existing before per-
turbation. The appearing of almost or pseudo-almost periodic solutions could only
results from the bifurcation of the generic orbits for a parameterized system. There-
fore, one must investigate the relation between the “new” almost periodic solutions
appearing upon perturbation and the periodic orbits of the unperturbed system. For
instance, to uncover the existence of the so-called limit periodic almost limit cycles,
where a sequence of periodic orbits such as in the linear isochrone ẋ = −y ẏ = x
accumulate on the new almost/pseudo-almost limit cycle.

The following open problems should be of interest to the community of pure and
applied mathematicians including graduate students. Note first that a periodic func-
tion is also almost periodic and pseudo-almost periodic, as an almost periodic func-
tion is also pseudo-almost periodic with a zero ergodic perturbation. Consequently
a limit cycle is also an almost or a pseudo-almost limit cycle, but not inversely. To
make the distinction, we will call strictly almost limit cycles and strictly pseudo-
almost limit cycles, respectively, those almost or pseudo-almost limit cycles that are
not limit cycles.



12 Almost and Pseudo-Almost Limit Cycles 261

Open Problem 1

Complete a full study of the bifurcation of strictly almost/pseudo-almost limit cycles
in the above forced Liénard systems when the parameter value μ varies in order to
investigate conditions on the functions f and g for which the strictly almost/pseudo-
almost limit cycles that exist for μ � 1 could persist for μ = 1, and eventually
accumulate when μ → 1.

Open Problem 2: Linear Almost and Pseudo-almost Center

Determine the conditions of existence for a continuum of parameterized families
of strictly almost and pseudo-almost trajectories possibly surrounding a critical
point. Such continuum defines, respectively, the linear almost center and the lin-
ear pseudo-almost center.

Open Problem 3: Multiple Almost and Pseudo-almost Limit Cycles

Find parameterized systems and determine conditions under which exist in the same
phase space multiple strictly almost or pseudo-almost limit cycles, similar to several
examples in the case of the usual normal limit cycles.

Open Problem 4: Coexistence of Limit Cycles and Almost and/or
Pseudo-Almost Limit Cycles

Find parameterized systems and determine conditions under which coexist in the
phase space limit cycles and strictly almost or pseudo-almost limit cycles.

Open Problem 5: Isochronous Almost and Pseudo-almost Limit
Cycles

Let γ be a strictly almost or pseudo-almost limit cycle of a flow φ on Rn as in
Section “Overview of limit cycles”. A point x1 in Rn has asymptotic phase with
respect to γ if there is a point x0 ∈ γ such that limt−→±∞ |φt(x1)− φt(x0)| = 0. We
say that x1 is in phase with x0.

It is well known that a hyperbolic limit cycle has some neighborhood where every
point has asymptotic phase with respect to the limit cycle, due to the existence of
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Fig. 12.13 ṙ =−(r−1)2 , θ̇ = 2π+(r−1)

invariant foliation. Similar question needs to be addressed as well in case of strictly
almost or pseudo-almost limit cycles.

Definition 7. A strictly almost or pseudo-almost limit cycle is said to be isochronous
if there is a neighborhood of γ in which every point is in phase with a point on γ.

In the case of limit cycles, we have, for instance, the following examples.

1. The system

ṙ =−(r− 1)2, θ̇ = 2π+(r− 1) (68)

in polar coordinate (r,θ ) has a nonhyperbolic limit cycle γ at r = 1, attracting for
r > 1 and repelling for r < 1, but nonisochronous. Indeed no point (r0,θ0), r0 >
0 has asymptotic phase with γ. For more details, see [10]. The nonisochronous
limit cycle is represented below (Fig. 12.13).

2. The system

ṙ =−1
3
(r− 1)4e|r−1|−3

, θ̇ = 2π (69)

has a nonhyperbolic limit cycle at the unit cycle with period 1, attracting for r>1.
The asymptotic phase of any point (r0,θ0) in its neighborhood is (1,θ0). The
limit cycle is therefore isochronous. For more details, see [10]. The isochronous
limit cycle is represented below (Fig. 12.14).
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Fig. 12.14 ṙ =− 1
3 (r−1)4e|r−1|−3

, θ̇ = 2π

It would be interesting to:

1. Perturb systems (68) and (69), in particular in the angle variable, and study the
conditions of appearance of strictly almost and/or pseudo-almost limit cycles

2. Investigate the conditions of existence of isochronous strictly almost or pseudo-
almost limit cycles, in particular for the forced Liénard systems

Open Problem 6: Almost and Pseudo-almost Isochrons

Following the previous open problem, we further define:

Definition 8. Given x0 ∈ γ where γ is a strictly almost or pseudo-almost limit cycle,
an almost or pseudo-almost isochron I(x0) based at x0 is the set of all point x ∈ Rn

in phase with x0.

As in the case of limit cycles we conjecture the existence of almost or pseudo-almost
isochrons and that they will foliate the neighborhood of almost or pseudo-almost
limit cycles. Their determination is definitely an interesting but difficult question of
research. One line of attack might be similar to Guckenheimer and Winfree investi-
gation of isochrons of limit cycles [3, 19, 33, 34].
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Open Problem 7: Transition to Chaos

It would be interesting to investigate the possibility for a strictly almost or pseudo-
almost behavior to transition to a chaotic behavior. Such study could initiate with
coupling of forced Liénard oscillators, as in the following example. Consider two
almost or pseudo-almost self-sustained oscillators given by forced Liénard systems
under the coupling described as follows:

ẍ(t)+ fα(x)ẋ+ gβ (x) = h(t) (70)

ÿ(t)+ fα(y)ẏ+ gβ (y) = h(t)−K(y− x)H(t− t0) (71)

where h(t) is almost or pseudo-almost periodic, K is the feedback coupling coeffi-
cient, t0 the onset time of synchronization process, and H(z) the Heaviside function
defined as

H(z) = {0, f or z < 0, 1, f or z ≥ 0}. (72)

Introduce the new variable z(t) = y(t)− x(t) to measure the closeness between so-
lutions of (70) and (71) and then analyze the resulting second-order equation. The
question is to find the appropriate coupling coefficients and conditions on fα and gβ
which enable (70) to adjust its oscillations and to synchronize with (71).

To fix ideas one may start with fα and gβ such as the systems are two driven
chaotic Van der Pol-Duffing systems, paradigm for relaxation oscillations and
chaotic behavior in small ranges of control parameter, and also systems well
known to be generalized by the Liénard systems. The relevant references include
[3, 10, 24, 27, 30].

Acknowledgements The authors express appreciation for the referees’ time and efforts and for
their valuable suggestions and corrections that help improve the quality of this chapter.
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Chapter 13
On Almost Periodic Stochastic Difference
Equations

Paul H. Bezandry

Introduction

The study of almost periodicity which generalizes the notion of periodicity is an area
of interest in its own right and has sundry applications in fields like Physics. For a
study of almost periodic sequences, we refer the reader to Bezandry and Diagana
[2], Bezandry et al. [3], Corduneanu [4], Diagana et al. [5], Han and Hong [7], Hong
and Nunez [8], and references therein. Almost periodicity is also of importance in
the study of stochastic processes.

In Bezandry et al. [3], the notion of almost periodicity in mean was introduced
and used to study the existence and uniqueness of almost periodic solutions to the
stochastic Beverton–Holt equation.

In this paper, we study the existence and uniqueness of almost periodic solutions
to a semi-linear system of stochastic difference equations of the form:

X(ω ,n+ 1) = A(ω ,n)X(ω ,n)+ f (n,X(ω ,n)), n ∈ Z+, ω ∈Ω, (1)

on Rk, where A(n) is an invertible almost periodic k × k random matrix function
defined on Z+ and f : Z+×Rk → Rk is a function to be specified later. We assume
that the A(n)’s are independent and independent of X(0). This assumption together
with Eq. (1) imply that the sequence {A(n)}n∈Z+ is independent of the sequences
{X(n)}n∈Z+ .

The paper is organized as follows. In section “Preliminaries”, we recall a basic
theory of almost periodic random sequences on Z+. In section “Almost Periodic
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Stochastic Difference Equations”, we apply the techniques developed in section
“Preliminaries” to find some sufficient conditions for the existence and uniqueness
of the almost periodic solution to some semi-linear system of stochastic difference
equations. In section “Application”, we study the stochastic Beverton–Holt differ-
ence equation to illustrate our main result.

Preliminaries

In this section we establish a basic theory for almost periodic random sequences. To
facilitate our task, we first introduce the notations needed in the sequel.

Let (B,‖ · ‖) be a Banach space, and let (Ω,F ,P) be a complete probability
space. Throughout the rest of the paper, Z+ denotes the set of all nonnegative in-
tegers. Define L1(Ω;B) to be the space of all B-valued random variables V such
that

E‖V‖ :=
(∫

Ω
‖V (ω)‖dP(ω)

)
< ∞. (2)

It is then routine to check that L1(Ω;B) is a Banach space when it is equipped with
its natural norm ‖ · ‖1 defined by, ‖V‖1 := E‖V‖ for each V ∈ L1(Ω,B).

Let X = {Xn}n∈Z+ be a sequence of B-valued random variables satisfying
E‖Xn‖ < ∞ for each n ∈ Z+. Thus, interchangeably we can, and do, speak of such
a sequence as a function, which goes from Z+ into L1(Ω;B).

This setting requires the following preliminary definitions.

Definition 1. An L1(Ω;B)-valued random sequence X = {X(n)}n∈Z+ is said to be
Bohr almost periodic in mean if for each ε > 0 there exists N0(ε) > 0 such that
among any N0 consecutive integers, there exists at least an integer p > 0 for which

E‖X(n+ p)−X(n)‖< ε, ∀n ∈ Z+.

An integer p > 0 with the above-mentioned property is called an ε-almost period
for X . The collection of all B-valued random sequences X = {X(n)}n∈Z+ which are
Bohr almost periodic in mean is then denoted by AP(Z+;L1(Ω;B)).

Similarly, one defines the Bochner almost periodicity in mean as follows:

Definition 2. An L1(Ω;B)-valued random sequence X = {X(n)}n∈Z+ is called mean
Bochner almost periodic if for every sequence {mk}k∈Z+

⊂Z+, there exists a subse-
quence

{
m′

k

}
k∈Z+

such that
{

X(n+m′
k))
}

k∈Z+
converges (in the mean) uniformly

in n ∈ Z+.

Following along the same arguments as in the proof of [5, Theorem 2.4, p. 241],
one can show that those two notions of almost periodicity coincide.

Theorem 1. An L1(Ω;B)-valued random sequence X = {X(n)}n∈Z+ is Bochner al-
most periodic in mean if and only if it is Bohr almost periodic in mean.



13 On Almost Periodic Stochastic Difference Equations 269

An important and straightforward consequence of Theorem 1 is the next corollary,
which pays a key role in the proof of Theorem 9.

Corollary 1. If X1 = {X1(n)}n∈Z+ ,X2 = {X1(n)}n∈Z+ , . . ., and XN = {XN(n)}n∈Z+

are N random sequences, which belong to AP(Z+;L1(Ω,B)), then for each ε > 0
there exists N0(ε) > 0 such that among any N0(ε) consecutive integers, there exists
an integer p > 0 for which

E‖X j(n+ p)−X(n)‖< ε

for n ∈ Z+ and for j = 1,2, . . . ,N.

Definition 3. A B-valued random sequence X = {X(n)}n∈Z+ is said to be almost
periodic in probability if for each ε > 0 and η > 0, there exists N0(ε,η) > 0 such
that among any N0 consecutive integers, there exists at least an integer p > 0 for
which

P
{
ω ∈Ω : ‖X(ω ,n+ p)−X(ω ,n)‖> ε

}
< η , ∀n ∈ Z+.

Theorem 2. If X is almost periodic in mean, then it is almost periodic in probability
and there also exists a constant M > 0 such that E‖X(n)‖ ≤ M for all n ∈ Z+.
Conversely, if X is almost periodic in probability and the sequence

{‖X(n)‖, n ∈
Z+

}
is uniformly integrable, then X is almost periodic in mean.

Let k = {k(i)}i∈Z+ , and denote TkX(ω ,n) := limi→∞ X(ω ,n+k(i)) for each ω ∈
Ω and each n ∈ Z+ if it exists.

Definition 4. A B-valued random sequence X = {X(n)}n∈Z+ satisfies Bochner’s al-
most sure uniform double sequence criterion if, for every pair of sequences (k′i) and
(l′i), there exists a measurable subset Ω1 ⊂ Ω with P(Ω1) = 1 and there exist sub-
sequences k = (ki) ⊂ (k′i) and l = (li) ⊂ (l′i), respectively, with the same indexes
(independent of ω) such that, for every n ∈ Z+,

TkTlX(ω ,n) = Tk+lX(ω ,n), ∀ω ∈Ω1 .

(In this case, Ω1 depends on the pair of sequences (k′i) and (l′i).)

Theorem 3. The following properties of X are equivalent:

(i) X satisfies Bochner’s almost sure uniform double sequence criterion.
(ii) X is almost periodic in probability.

The proof of the theorem can be seen in Bedouhene et al. [1], for instance.

Theorem 4. If X satisfies Bochner’s almost sure uniform double sequence criterion
and the sequence

{‖X(n)‖, n ∈ Z+

}
is uniformly integrable, then X is almost peri-

odic in mean.

Let (B1,‖ · ‖1) and (B2,‖ · ‖2) be Banach spaces, and let L1(Ω;B1) and L1(Ω;B2)
be their corresponding L1-spaces, respectively.
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Definition 5. A function F : Z+×L1(Ω;B1) �→ L1(Ω;B2), (n,U) �→ F(n,U) is said
to be almost periodic in mean in n ∈Z+ uniformly in U ∈K where K⊂ L1(Ω;B1) is
a compact if for any ε > 0, there exists a positive integer l(ε,K) such that among any
l consecutive integers, there exists at least an integer p with the following property:

E‖F(n+ p,U)−F(n,U)‖< ε

for each random variable U ∈ L1(Ω;B1) and n ∈ Z
+.

Here again, the number p will be called an ε-translation of F , and the set of all
ε-translations of F is denoted by E (ε,F,K).

Let UB(Z+; L1(Ω;B)) denote the collection of all uniformly bounded L1(Ω;B)-
valued random sequences X = {X(n)}n∈Z+ . It is then easy to check that the space
UB(Z+; L1(Ω;B)) is a Banach space when it is equipped with the norm:

‖X‖∞ = sup
n∈Z+

E‖X(n)‖.

Lemma 1. AP(Z+;L1(Ω;B)) ⊂ UB(Z+;L1(Ω;B)) is a closed space.

In view of the above, the space AP(Z+;L1(Ω;B)) of almost periodic random
sequences equipped with the sup norm ‖ · ‖∞ is also a Banach space.

We now state the following composition result.

Theorem 5. Let F : Z+ ×L1(Ω;B1) �→ L1(Ω;B2), (n,U) �→ F(n,U) be almost pe-
riodic in mean in n ∈ Z+ uniformly in U ∈ L1(Ω;B1). If in addition, F is Lipschitz
in U ∈K, where K⊂ L1(Ω;B1) is compact (i.e., there exists L > 0 such that

E‖F(t,U)−F(t,V )‖2 ≤ M E‖U −V‖1 ∀U,V ∈ L1(Ω;B1), n ∈ Z+),

then for any almost periodic random sequence X = {X(n)}n∈Z+, then the L1(Ω;B1)-
valued random sequence Y (n) = F(n,X(n)) is almost periodic in mean.

Almost Periodic Stochastic Difference Equations

Let
(
R, | · |), (Rk, | · |) be the field of real numbers equipped with its absolute value,

the k-dimensional space of real numbers equipped with Euclidean topology, respec-
tively.

Our main objective in this paper is to find sufficient conditions for the existence
the existence of an almost periodic solution of the stochastic semi-linear systems of
difference equations of type (1).

To study solutions of Eq. (1), we use the fundamental solutions of the system

X(ω ,n+ 1) = A(ω ,n)X(ω ,n), n ∈ Z+ , ω ∈Ω (3)

to examine almost periodic solutions of the system of difference equations
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X(ω ,n+ 1) = A(ω ,n)X(ω ,n)+ g(ω ,n), n ∈ Z+ , ω ∈Ω (4)

where g : Ω×Z+ →R
k is almost periodic in mean. Here, we assume that g satisfies

the following property: There exists a random variable Y with E[Y ] < ∞ such that
|g(n)| ≤ Y for all n ∈ Z+.

For n, m ∈ Z+, we define the transition matrix

Φ(n,m) =
n−1

∏
r=m

A(r) .

Definition 6. Equation (3) is said to have a regular exponential dichotomy if there
exists k × k projection matrices P(n) with n ∈ Z+ and positive constants M and
β ∈ (0,1) such that the following four conditions are satisfied:

(i) A(n)P(n) = P(n+ 1)A(n).
(ii) The matrix A(n)|R(I−P(n)) is an isomorphism from R(I−P(n)) onto R(I−P(n+

1).
(iii) ‖Φ(n,m)P(m)X‖ ≤ Mβ n−m‖X‖, for 0 ≤ m ≤ n, X ∈ L1(Ω,Rk).
(iv) ‖Φ(m,n)(I −P(n))X‖ ≤ Mβ n−m‖X‖, for 0 ≤ m ≤ n, X ∈ L1(Ω,Rk).

By repeated application of [(i), Definition 6], we obtain

P(n)Φ(n,m) =Φ(n,m)P(m) .

Define the hull H(X) of a random sequence X as follows:

Definition 7. The set

H(X) =
{

X̃ | there exists a sequencek ⊂ Z+with TkX = X̃
}
.

Similarly, for a matrix function A(n), we define

H(A) =
{

Ã | there exists a sequencek ⊂ Z+with TkA = Ã
}
,

where TkA = Ã means that lim
i→∞

A(n+ l(i)) = Ã(n).

Theorem 6. Suppose that Eq. (3) has a regular exponential dichotomy and Ã(n) ∈
H(A(n)). Then the system

X(n+ 1) = Ã(n)X(n)

satisfies a regular exponential dichotomy with same projections and constants.

Let us now state the main results of this paper. For linear stochastic difference
equations, we obtain the following theorem.

Theorem 7. Let {A(n)}n∈Z+ be a sequence of invertible random matrices satisfying
Bochner’s almost sure uniform double sequence criterion. Suppose that Eq. (3) has
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a regular exponential dichotomy and Ã(n) ∈ H(A(n)). Then Eq. (4) has an almost
periodic solution given by

X̄(n) =
n−1

∑
r=−∞

Φ(n,r+ 1)P(r+ 1)g(r)−
∞

∑
r=n

Φ(n,r+ 1)(I −P(r+ 1))g(r) , (5)

where Φ(n,r)P(r) = 0 for r > n and g(r) = 0 for r < 0.

Proof. It is not hard to show that X̄(n) defined by Eq. (5) is a solution of Eq. (3).
Moreover,

‖X̄(n)‖ ≤
n−1

∑
r=−∞

‖Φ(n,r+ 1)P(r+ 1)g(r)‖+
∞

∑
r=n

‖Φ(n,r+ 1)(I −P(r+ 1))g(r)‖

≤
n−1

∑
r=0

Mβ n−r−1‖g(r)‖+
∞

∑
r=n

Mβ n−r−1‖g(r)‖

≤
{ n−1

∑
r=0

Mβ n−r−1 +
∞

∑
r=n

Mβ n−r−1
}

Y

≤ M
1+β
1−β

Y .

This implies that
{‖X̄(n)‖,n ∈ Z+

}
is uniformly integrable. Now, to prove the

almost periodicity of X̄(·), it suffices by Theorem 4 to show that X̄(·) satisfies
Bochner’s almost sure uniform double sequence criterion. To this end, let k′ = (k′i)
and l′ = (l′i) be arbitrary sequences of nonnegative integers, and then choose a
measurable set Ω1 ⊂ Ω with P(Ω1) = 1. Let (ki) ⊂ (k′i) and (l′i) ⊂ (l′i) be their
common subsequences such that for each ω ∈ Ω1, (Tk+lA(ω) = (TlTkA)(ω) and
(Tk+lg(ω) = (TlTkg)(ω). For simplicity, we omit ω in what follows. Then we have

X̄(n+ ki) =
n+ki−1

∑
r=−∞

Φ(n+ ki,r+ 1)P(r+ 1)g(r)

−
∞

∑
r=n+ki

Φ(n+ ki,r+ 1)[I −P(r+ 1)]g(r)

=
n−1

∑
r=−∞

Φ(n+ ki,s+ ki + 1)P(s+ ki+ 1)g(s+ ki)

−
∞

∑
r=n

Φ(n+ ki,s+ ki + 1)[I−P(s+ ki+ 1)]g(s+ ki)

=
n−1

∑
r=−∞

A(n+ ki− 1) · · ·A(s+ ki+ 1)P(s+ ki+ 1)g(s+ ki)

−
∞

∑
r=n

A(n+ ki− 1) · · ·A(s+ ki+ 1)[I−P(s+ ki+ 1)]g(s+ ki) .
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Thus, taking the limit of the above expression as i → ∞ and recalling the fact that
limi→∞ X̄(n+ ki) = (TkX̄)(n), we can then write

(TkX̄)(n) =
n−1

∑
r=−∞

Ã(n− 1) · · · Ã(s+ 1)P̃(s+ 1)g̃(s)

−
∞

∑
r=n

Ã(n− 1) · · · Ã(s+ 1)[I− P̃(s+ 1)]g̃(s)

=
n−1

∑
r=−∞

(TkA)(n− 1) · · ·(TkA)(s+ 1)(TkP)(s+ 1)(Tkg)(s)

−
∞

∑
r=n

(TkA)(n− 1) · · ·(TkA)(s+ 1)[I− (TkP)(s+ 1)](Tkg)(s) .

Moreover,

(TlTkX̄)(n) =
n−1

∑
r=−∞

(TlTkA)(n− 1) · · ·(TlTkA)(s+ 1)(TlTkP)(s+ 1)(TlTkg)(s)

−
∞

∑
r=n

(TlTkA)(n− 1) · · ·(TlTkA)(s+ 1)[I− (TlTkP)(s+ 1)](TlTkg)(s)

= (Tl+kX̄)(n) ,

as desired. �

From now on, we assume that the random evolution operator Φ(n,m) generated
by A(n) is uniformly exponentially stable. That is, there exist constants M > 0 and
β ∈ (0,1) such that

∥∥Φ(n,m)
∥∥≤ Mβ n−m for all n ≥ m. This implies that the projec-

tion matrix P(n) used in the definition of the regular exponential dichotomy is the
identity.

In order to state similar results for the nonlinear case, we set O =
{

y ∈R
k : |y| ≤

δ
}

for a fixed δ > 0 and take a function f : Z+×L1(Ω,O) → L1(Ω,Rk), (n,X) �→
f (n,X) with f (n,0) = 0 for which there exists a constant L > 0 such that

E‖ f (n,U)− f (n,V)‖ ≤ L ·E‖U −V‖, ∀U, V ∈ L1(Ω,O), n ∈ Z+ .

In addition, we assume that there exists a random variable Y with E[Y ] < ∞ such
that | f (n,U)| ≤ Y for all n ∈ Z+ and U ∈ L1(Ω,Rk).

Under these conditions on A and f , we have the following theorem.

Theorem 8. Let {A(n)}n∈Z+ be a sequence of invertible random matrices satisfying
Bochner’s almost sure uniform double sequence criterion. Suppose that the linear
stochastic difference equation Eq. (3) corresponding to Eq. (1) is uniformly expo-
nentially stable and that f = { f (n,X)}n∈Z+,X∈L1(Ω,Rk) is almost periodic in mean.
Then Eq. (1) has a unique almost periodic solution
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X̄(n) =
n−1

∑
r=0

(
n−1

∏
s=r

A(s)

)
f (r,X(r))

provided that
MβL
1−β

< 1 . (6)

Proof. Note that

∥∥X̄(n)
∥∥ ≤

n−1

∑
r=0

‖Φ(n,r)|| ‖ f (r,X(r))‖

≤
{

n−1

∑
r=0

Mβ n−r

}
Y ≤ Mβ

1−β
Y .

Consider the Banach space AP(Z+;L1(Ω,Rk)) with the super norm. By Theo-
rem 5, if ϕ ∈ AP(Z+;L1(Ω,Rk)), then f (·,ϕ(·)) ∈ AP(Z+;L1(Ω,Rk)). Now, define

Γ : AP(Z+;L1(Ω,Rk))→ AP(Z+;L1(Ω,Rk))

be the nonlinear operator defined by

(Γϕ)(n) :=
n−1

∑
r=0

Φ(n,r) f (r,ϕ(r)) .

By Theorem 7, Γ is well defined. Now, let ϕ , ψ ∈ AP(Z+;L1(Ω,Rk)) having the
same property as X defined in Eq. (1). We can easily see that

E‖(Γϕ)(n)− (Γψ)(n)‖ ≤
n−1

∑
r=0

(
Mβ n−rE‖ f (r,ϕ(r))− f (r,ψ(r))‖)

≤ MβL
1−β

sup
r∈Z+

E‖ϕ(r)−ψ(r)‖ .

Thus,

‖Γϕ−Γψ‖∞ ≤ MβL
(1−β )

‖ϕ−ψ‖∞ .

Γ is a contraction provided that MβL
1−β < 1. Using the Banach fixed point theorem,

we obtain that Γ has a unique fixed point X̄ , which is the unique almost periodic
solution of Eq. (1). �

Application

In constant environments, theoretical discrete-time population models are usually
formulated under the assumption that the dynamics of the total population size in
generation n, denoted by X(n), are governed by equations of the form
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X(n+ 1) = γX(n)+ f (X(n)) , (7)

where γ ∈ (0,1) is the constant “probability” of surviving per generation and f :
R+ → R+ models the recruitment process.

Almost periodic effects can be introduced into Eq. (7) by writing the recruitment
function or the survival probability as almost periodic random sequences. This is
model with the equation

X(n+ 1) = γnX(n)+ f (n,X(n)) , (8)

where either {γn}n∈Z+ or f (n,X(n)) ∈ AP(Z+;L1(Ω,R)) and each γn ∈ (0,1).
In their paper, Franke and Yakubu [6] studied (8) with the periodic Beverton–Holt

recruitment function

f (n,X(n)) =
(1− γn)μKnX(n)

(1− γn)Kn +(μ− 1+ γn)X(n) ,
(9)

where the carrying capacity Kn is p-periodic, Kn+p = Kn for all nZ+, and μ > 1.
In this section, we assume that both carrying capacity Kn and the survival rate γn

are random and that {γn, n ∈ Z+} are independent and independent of the sequence
Kn, n ∈ Z+.

We have the following theorem:

Theorem 9. Suppose that both {γn}n∈Z+ and {Kn}n∈Z+ are almost periodic in
mean. Then Eqs. (8)–(9) has a unique almost periodic solution whenever

sup
n∈Z+

E[γn]<
1

μ+ 1
.

Proof. Equation (8) is in the form of Eq. (1), where

A(n) = γn

and

f (n,X(n)) =
(1− γn)μKnX(n)

(1− γn)Kn +(μ− 1+ γn)X(n)
.

It is a routine to show that

| f (n,U)− f (n,V )| ≤ μ |U −V | ,

and hence
E| f (n,U)− f (n,V )| ≤ μE|U −V | .

To prove the almost periodicity of n → f (n,X(n)), set An = (1 − γn)Kn and Bn =
μ− 1+ γn. Then f can be written as follows:

f (n,X(n)) = μ
AnX(n)

An +BnX(n)
for each n ∈ Z+.
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Using the fact that {γn} and {Kn} are almost periodic in mean and making use of,
respectively, Theorem 2 and Corollary 1, we can choose a constant K > 0 such that
E|Kn| < K for all n ∈ Z+ and for each ε > 0 there exists a positive integer N0(ε)
such that among any N0(ε) consecutive integers, there exists an integer p > 0, a
common ε-almost period for {γn} and {Kn} for which

E|γn+p − γn| ≤ ε(μ− 1)2

2μ2K
,and E|Kn+p −Kn| ≤ ε(μ− 1)

4μ2 .

Observe that

E| f (n+ p,U)− f (n,U)| = μE

∣∣∣∣ An+pU
An+p +Bn+pU

− AnU
An +BnU

∣∣∣∣
≤ μE

∣∣∣∣ (An+pBn −AnBn+p)U2

Bn+pBnU2

∣∣∣∣= μE

∣∣∣∣An+p

Bn+p
− An

Bn

∣∣∣∣ .

To evaluate E

∣∣∣∣An+p

Bn+p
− An

Bn

∣∣∣∣, we borrow a calculation from [3]. Using the hypothesis

of independence of the random sequences {γn}n∈Z+ and {Kn}n∈Z+ , we have

E

∣∣∣∣An+p

Bn+p
− An

Bn

∣∣∣∣= E

∣∣∣∣ (1− γn+p)Kn+p

μ− 1+ γn+p
− (1− γn)Kn

μ− 1+ γn

∣∣∣∣
= E
[

1
(μ− 1+ γn+p)(μ− 1+ γn)

∣∣∣(μ− 1)[Kn+p −Kn]− γnγn+p[Kn+p −Kn]

−(μ− 1)[γn+pKn+p − γnKn]+ [γnKn+p − γn+pKn]
∣∣∣
]

= E
[

1
(μ− 1+ γn+p)(μ− 1+ γn)

∣∣∣(μ− 1)[Kn+p −Kn]− γnγn+p[Kn+p −Kn]

−(μ− 1)Kn+p [γn+p − γn]+ γn [Kn+p −Kn]+ γn [Kn+p −Kn]− [γn+p − γn]
∣∣∣
]

= E

∣∣∣∣ μ− 1
(μ− 1+ γn+p)(μ− 1+ γn)

[Kn+p −Kn]

− γnγn+p

(μ− 1+ γn+p)(μ− 1+ γn)
[Kn+p −Kn]

− μ− 1
(μ− 1+ γn+p)(μ− 1+ γn)

Kn+p [γn+p − γn]

+
(μ− 1)γn

(μ− 1+ γn+p)(μ− 1+ γn)
[Kn+p −Kn]

− γn

(μ− 1+ γn+p)(μ− 1+ γn)
[Kn+p −Kn]
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− 1
(μ− 1+ γn+p)(μ− 1+ γn)

Kn [γn+p − γn]

∣∣∣∣
≤ 1

μ− 1
E|Kn+p −Kn|+E|Kn+p −Kn|+ 1

μ− 1
E|Kn+p|E|γn+p − γn|

+E|Kn+p −Kn|+ 1
μ− 1

E|Kn+p −Kn|+ 1
(μ− 1)2 E|Kn|E|γn+p − γn|

≤ 2μ
μ− 1

E|Kn+p −Kn|]+ μ
(μ− 1)2 K ·E|γn+p − γn| .

Thus, we obtain

E | f (n+ p,U)− f (n,U)| ≤ ε
2
+
ε
2
= ε .

By Theorem 5, we can conclude that n → f (n,X(n)) is almost periodic in mean.
Now, let M = 1 and β = supn∈Z+ E[γn]. Then supn∈Z+ E[γn]<

1
μ+1 implies that

MβL
1−β

=
μ supn∈Z+

E[γn]

1− supn∈Z+
E[γn]

< 1,

and Eq. (6) is satisfied. Applying Theorem 8 yields the result. �
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Stackelberg problem, 213–215
State constraints, null controllability. See Null

controllability
STFT. See Short-time Fourier transform

(STFT)
Stress-strain behavior, of aluminum material,

14, 15
Strictly almost/pseudo-almost limit cycles

bifurcation study, 261
coexistence, 261
isochronous, 261–263
isochrons, 263
linear, 261
multiple almost/pseudo-almost limit cycles,

261
transition to chaotic behavior, 264

Superposition operator, 136

T
TBI. See Traumatic brain injury (TBI)
Toroidal principle, 236

Transparent sphere scattering
ray description

deviation functions, 61, 62
ray path integral, 61–65
Snel’s law of refraction, 60

scalar wave description, 68–71
Traumatic brain injury (TBI)

computed tomography, 148–150
ICM segmentation, 148–150
increased intracranial pressure, 148
MASP segmentation, 148–150
midline detection algorithm, 148

Tunneling ray phenomenon, 59
Turbulent pipe flow, 205–208
Turbulent viscosity, 193–195

V
Van Driest model, for turbulent viscosity,

194–195
VCCT. See Virtual crack closure technique

(VCCT)
Virtual crack closure technique (VCCT),

18–19
Vitali’s convergence theorem, 40–42

W
Watson transform, 73–76
Wavelet-based transforms, 153

CWT, 154, 155
DWT, 155–156
Fourier transform, 154
MWT, 154, 155

Wave-optics theory. See Airy’s wave-optics
theory

Weighted residual method. See Galerkin
method

White noise, 157, 164

Z
Z-pin

composite laminates, fiber misalignment
effect, 22–23

reinforced laminates, delamination growth
in, 20–22


	Preface
	Acknowledgements
	Contents
	Contributors
	Chapter
1 An Overview of Durability and Damage Tolerance Methodology at NASA Langley Research Center
	Introduction
	Fracture Mechanics of Metallic Materials
	Residual Strength Predictions for Friction Stir Weld Panels
	Fatigue Crack Growth and Crack Closure
	Damage Accumulation in Aluminum Microstructures
	Experimental Investigations at the Microscale
	Discrete Dislocation Simulation
	Atomistic Simulation of Crack Growth

	Fracture Mechanics of Composite Materials
	Mode I Fatigue Delamination Round Robin
	Analysis Benchmarking
	Predicting Delamination Growth in Z-Pin-Reinforced Laminates
	Influence of Fiber Misalignment Due to Z-Pins on the Compressive Response of Composite Laminates
	Designing Specimens for Characterizing Facesheet-Core Debonding in Sandwich Structure
	Predicting the Residual Compressive Strength of Impact-Damaged Sandwich Panels
	Fractographic Analysis

	Outlook
	References

	Chapter 2 On the Γ-Convergence Theory and Its Application to Block Copolymer Morphology

	Introduction
	The Ohta–Kawasaki Theory of Diblock Copolymers
	The Γ-Convergence Theory

	Global and Local Minimizers
	The Lamellar Phase of Diblock Copolymers
	Discussion
	Appendix: Interface Profile and Surface Tension
	References

	Chapter
3 ``Rainbows'' in Homogeneous and Radially Inhomogeneous Spheres: Connections with Ray, Wave, and Potential Scattering Theory
	Introduction: The Rainbow, Its Scientificand Mathematical Beauty
	Complementary Domains of Description

	Scattering by a Transparent Sphere: Ray Description
	The Ray Path Integral
	Properties of η(r) and Interpretation of the Ray Path Integral


	Analysis of Specific Profiles
	Scattering by a Transparent Sphere: Scalar Wave Description
	Morphology-Dependent Resonances: The EffectivePotential Ul(r) (Constant n)

	Introduction to the Scattering Matrix
	Introduction to Complex Angular Momentum (CAM) Theory: The Watson Transform

	The Partial-Wave Scattering Phase Shift δl(k)

	Analytic Properties of the S-Matrix: The Jost Functions
	The Breit-Wigner Form
	Further Comments on Jost Functions and Bound States
	Regge Poles and Regge Trajectories

	The Vector Problem: The Mie Solution of Electromagnetic Scattering Theory
	Conclusion
	Appendix 1: The Debye Series
	Appendix 2: Radially Inhomogeneous Media
	Appendix 3: Connection with Classical Scattering
	Appendix 4: The Location of the S-Matrix Poles
	Appendix 5: Poles and Resonances on the k-Plane and E-Plane
	References

	Chapter
4 Understanding the Dynamics of Collision and Near-Collision Motions in the N-Body Problem
	Introduction
	Phenomenon
	The N-Body Problem
	The Equations
	Integrals
	Special Solutions
	Stability

	Collisions
	Singularities
	Improbability
	Regularization
	McGehee

	Results
	Col3BP
	ColS4BP
	PPS4BP

	Future Work
	References

	Chapter
5 Absolute Stability and Conditional Stability in General Delayed Differential Equations
	Introduction
	Main Results
	Scalar Equations
	Planar Systems with One Transcendental Term
	General Planar Systems with One Delay

	Concluding Remarks
	References

	Chapter
6 Existence of Antiperiodic Solutions to Semilinear Evolution Equations in Intermediate Banach Spaces
	Introduction
	Preliminaries
	Antiperiodic Functions
	Existence of Anti-periodic Solutions
	References

	Chapter
7 Signal, Image Processing, and Machine Learning: The Key to Complex Problems in Medicine and Biology
	Introduction
	Hemorrhage Detection
	Error-Correcting Output Codes (ECOC)

	Attention Detection
	Dual-Tree Complex Wavelet Transform
	Feature Extraction in DT-CWT
	Skewness and Kurtosis

	Traumatic Brain Injury
	Pelvic Fracture Detection
	Conclusion
	References

	Chapter
8 Real-Time Noise Cancellation Using Wavelet Transforms
	Introduction
	Wavelet-Based Transforms
	Theory of DWT-Based Filters for Noise Suppression
	Experimental Results
	Noisy Sinusoidal Signal
	Comparison to Other Noisy Signals

	Conclusions and Future Work
	References

	Chapter
9 Null Controllability of the Heat Equation with Two Constraintson the Control: Application to a Discriminating Sentinelwith Given Sensitivity
	Introduction
	Null Controllability with Two Constraints on the Control
	Adapted Carleman Inequality
	Proof of Theorem 1

	Optimality System for the Optimal Solution
	Penalization

	Discriminating Sentinels with Given Sensitivity
	Equivalence to the Null-Controllability Problem

	Detection of Parameters
	Expression of the Discriminating Sentinel with Given Sensitivity
	Identification of Parameter λi


	References

	Chapter
10 A Galerkin Method Solution of Heat Transfer Problems in Closed Channels: Fluid Flow Analysis
	Introduction
	Analysis
	Governing Equations

	Turbulent Viscosity
	Calculation of Fluid Flow Properties and Pressure Drop
	Galerkin Method
	Solution of the Momentum Equation
	Example 1: Laminar Pipe Flow
	Example 2: Laminar Flow Inside Square Duct
	Example 3: Turbulent Pipe Flow

	Conclusions
	Appendix
	Highlights of the Variational Steps
	References
	Nomenclature

	Chapter
11 Optimal Control for Distributed Linear Systems Subjected to Null Controllability with Constraints on the State
	Introduction
	Equivalence Between the Null-Controllability Problem with Constraints on the State and a Null-Controllability Problem with Constraint on the Control
	Optimal Strategy for the Follower
	Controllability Problem with Constraint on the Control
	Penalization Method

	Optimal Strategy for the Leader
	Properties of F
	Proof of Theorem 2

	References

	Chapter
12 Almost and Pseudo-Almost Limit Cycles with Applications to Quasiperiodic Solitary Waves
	Introduction
	Existence/Nonexistence of Periodicity
	Remarks

	Overview of Limit Cycles
	Examples: Linear Center and Its Perturbations
	Poincaré's Method of Sections
	Isochrons

	Almost Limit Cycles
	Properties of Almost Limit Cycles
	Example of Linear Almost Center
	Hull and Method of Auxiliary Systems
	Almost Periodic Perturbations of the Harmonic Oscillator
	Liénard Systems

	Pseudo-Almost Limit Cycles
	Introductory Concepts
	Some Properties of Pseudo-Almost Periodicity
	Some Illustrative Examples of Pseudo-Almost Periodic Functions
	Liénard Pseudo-Almost Limit Cycles
	Remarks

	Almost and Pseudo-Almost Periodic Waves
	Illustrative Example 1
	Reaction-Diffusion Model

	Outlook and Open Problems
	Open Problem 1
	Open Problem 2: Linear Almost and Pseudo-almost Center
	Open Problem 3: Multiple Almost and Pseudo-almost Limit Cycles
	Open Problem 4: Coexistence of Limit Cycles and Almost and/or Pseudo-Almost Limit Cycles
	Open Problem 5: Isochronous Almost and Pseudo-almost Limit Cycles
	Open Problem 6: Almost and Pseudo-almost Isochrons
	Open Problem 7: Transition to Chaos

	References

	Chapter
13 On Almost Periodic Stochastic Difference Equations
	Introduction
	Preliminaries
	Almost Periodic Stochastic Difference Equations
	Application
	References

	Index

