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Abstract

In this thesis we present an implementation theory approach to decentralized
resource allocation problems with strategic agents in communication networks.
For wired networks we study the unicast and multi-rate multicast service provi-
sioning problem. For wireless networks we study the problem of power allocation
and spectrum sharing where each user’s transmissions create interference to all (or
subset of) network users, and each user has only partial information about the
network. We investigate these problems under the implementation theory scenario
where agents/users are strategic, self-utility maximizing. We present key concepts
and ideas from implementation theory that are relevant to the problems. We for-
mulate the unicast service provisioning problem as a market allocation problem,
the power allocation and spectrum sharing problem as a public goods allocation
problem, and the multi-rate multicast service provisioning problem as the com-
bination of a market and a public goods allocation problems. For each problem, we
develop a game form that (i) implements in Nash equilibria the optimal allocations
of the corresponding centralized problem; (ii) is individually rational; and
(iii) results in budget balance at all Nash equilibria and feasible off-equilibrium.

xvii



Chapter 1
Introduction

1.1 Motivation

Networks exist in a vast variety of real world systems. They have played an important
role in the social and technological growth of our society. Some prominent exam-
ples of networked systems are urban and transportation systems, military systems,
political/social networks, production and consumer markets, supply-chains, energy
markets, internet, web data centers, electronic commerce systems, sensor networks
and telecommunication systems. Because of the diversity of network applications,
networks are studied in a wide range of professional and academic domains including
engineering, business management and social science.

Irrespective of the diversity of applications, a fundamental similarity in all of the
above networks is that, (i) the network consists of multiple agents that interact with
and influence each other; (ii) each agent has different characteristics and a different
individual role in the network; and (iii) the actions of individual agents together with
their interactions determine the function/performance of the network.1

Apart from the fundamental similarities in the structure and function of networks
described by the above mentioned features, an identical objective in their design is
their efficient operation. This requires optimization of network performance mea-
sures. As mentioned above, a network’s performance is determined by the collective
actions of network agents. Actions that are critical in determining a network perfor-
mance are consumption/generation of resources by network agents and their deci-
sions regarding network tasks. Therefore, for a network to achieve its performance
objective, proper allocation of the network’s resources and coordination of the net-
work agents’ decisions are extremely important. With the technological and social
advancement, many networks such as the internet, energy markets and e-commerce
systems are expanding at a very fast pace. The resources that are required for the
operation of these networks, e.g. bandwidth, fossil fuels, and web server resources

1 An alternative term for networks that captures the above characteristics is multi-agent systems.
In many applications such as electronic commerce, artificial intelligence and social networks, the
use of the term multi-agent system is more common.

A. Kakhbod, Resource Allocation in Decentralized Systems with Strategic 1
Agents, Springer Theses, DOI: 10.1007/978-1-4614-6319-1_1,
© Springer Science+Business Media New York 2013
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often do not increase at the same rate. Therefore, in these cases resource allocation
and utilization become even more crucial for efficient network operation.

In the context of communication networks some of the important resources are
bandwidth, energy, coding schemes, relay routes, and the physical space available
for the network. The important performance measures are data communication rate,
probability of error, communication delay, battery life, interference, mobility of
agents, ability to dynamically adjust to varying channel conditions, etc. The require-
ment to efficiently utilize the above resources to achieve desirable performance gives
rise to several challenging resource allocation problems in communication networks.
Examples of such problems are spectrum/rate/code allocation that govern throughput
and delay, power and code allocation that govern interference and battery life, admis-
sion control that governs the number of agents in the network, topology control that
governs the placement and interconnections of network agents, and dynamic resource
allocation that looks at the above aspects under dynamic situations. The numerous
applications and the technical challenge of these resource allocation problems make
them an important and exciting area of communication networks research. This moti-
vated us to investigate some of these problems in this thesis.

1.2 Key Issues and Challenges in Resource Allocation

The challenge in resource allocation comes from: (1) the fact that the network is
an informationally decentralized system; (2) the network’s users/agents may behave
strategically (i.e. they may behave selfishly). Networks are informationally decen-
tralized systems. Each user’s utility is its own private information. Users are unaware
of each others’ utilities and of the resources (e.g. bandwidth, buffers, spectrum) avail-
able to the network. The network (network manager) knows the network’s topology
and its resources but is unaware of the users’ utilities. If information were centralized,
the resource allocation problem could be formulated and solved as a mathematical
programming problem or as a dynamic programming problem. Since information
is not centralized such formulations are not possible. The users’ strategic behavior
along with the decentralization of information lead to problems that are conceptually
difficult and computationally formidable.

The challenge is: (1) To determine a message exchange process among the network
and users, and an allocation rule (based on the outcome of the message exchange
process) that eventually lead to a resource allocation that is optimal for the centralized
problem. (2) To take into account, in the determination of the allocation mechanism,
the possible strategic (selfish) behavior of the networks users.

As is evident from the above, addressing decentralized resource allocation prob-
lems requires a framework that can provide a systematic methodology for the design
of decentralized resource allocation mechanisms by harnessing the decentralized
information characteristics of the networks and the behavioral characteristics of
the agents. One such framework for the systematic study of decentralized resource
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allocation problems with strategic agents is provided by implementation theory which
is a branch of mathematical economics.

1.3 Contribution of the Thesis

In this thesis we investigate decentralized resource allocation problems with strategic
users. The main contributions of the thesis are:

• The formulation and solution of decentralized resource allocation problems that
arise in communication networks (wired and wireless) within the context of imple-
mentation theory.

• The construction and analysis of game forms for decentralized resource alloca-
tion problems that have not been previously investigated within the context of
implementation theory.

Thus, this thesis contributes not only to the solution of important technological
problems but also to the state of the art of implementation theory.

We have investigated three classes of decentralized resource allocation prob-
lems motivated by communication networks. (i) Market problems; (ii) public goods
problems; and (iii) problems that are a combination of markets and public goods.
For all these classes of problems we developed game forms/mechanisms which
have the following desirable properties. (P1) They implement in Nash equilibria
(NE) either the social welfare maximizing correspondence or the Pareto correspon-
dence. That is, the allocations corresponding to all NE of the game induced by the
game form/mechanism are either optimal solutions of the corresponding centralized
resource allocation problem or Pareto optimal; conversely, to every optimal solu-
tion of the centralized resource allocation problem there corresponds a NE of the
game induced by the mechanism. (P2) They are individually rational. That is, users
voluntarily participate in the allocation process, as their utility at the allocations
corresponding to all NE of the game induced by the mechanism is larger than the
utility they obtain by not participating in the allocation process. (P3) They are budget
balanced at the allocations corresponding to all NE as well as all feasible allocations
corresponding to off equilibrium strategies.

We proceed now to describe our contribution to each of the aforementioned
problems.

In Chap. 3 we address the unicast service provisioning problem with strategic
users that arises in wired networks. This is a market problem. When the users’
utilities are concave, we propose a mechanism that possesses properties (P2), (P3)
and implements in NE the social welfare maximizing correspondence. When the
users’ utilities are quasi-concave, the allocations corresponding to all NE of the
game induced by the mechanism are Pareto optimal. The game form proposed in this
thesis for unicast service provisioning problem with strategic users is currently the
only existing mechanism that possesses properties (P1)–(P3).

http://dx.doi.org/10.1007/978-1-4614-6319-1_3
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In Chap. 4 we investigate power allocation and spectrum sharing in multi-user
multi-channel systems arising in wireless networks. This is a public goods problem.
We propose a mechanism that possesses properties (P2), (P3) and implements in NE
the Pareto correspondence. The game form proposed for this problem is currently
the only existing mechanism that possesses properties (P1)–(P3). Two key features
of our problem formulation are: (F1) The allocation space is discrete. (F2) There are
no assumptions about concavity, monotonicity, or quasi-linearity of the users’ utility
functions. Decentralized resource allocation problems with features (F1)–(F2) have
not been previously investigated within the context of implementation theory. Thus,
the results of Chap. 4 are a contribution to the state of the art of implementation
theory.

In Chap. 5 we address the multi-rate multicast service provisioning problem. This
is the combination of a market and a public goods problem. We present a mechanism
which possesses properties (P2), (P3) and implements in NE the social welfare max-
imizing correspondence. To the best of our knowledge this work is the first to address
multi-rate multicast service provisioning with strategic users; in all previously exist-
ing literature on multi-rate multicast service provisioning, users were assumed to be
non-strategic. Problems that are a combination of a market and public goods were
not previously investigated within the context of implementation theory. Thus, the
results of Chap. 5 are also a contribution to the state of the art of implementation
theory.

1.4 Organization of the Thesis

This thesis is organized as follows: In Chap. 2 we present a brief introduction to
the key ideas and results of implementation theory that are relevant to the problems
we investigate in this thesis. In Chap. 3 we present the unicast service provisioning
problem with strategic agents arising in wired networks. In Chap. 4 we present the
problem of power allocation and spectrum sharing in multi-user, multi-channel sys-
tems with strategic agents arising in wireless networks. In Chap. 5 we present the
multi-rate multicast service provisioning problem with strategic agents arising in
wired networks. We conclude in Chap. 6.

http://dx.doi.org/10.1007/978-1-4614-6319-1_4
http://dx.doi.org/10.1007/978-1-4614-6319-1_4
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_2
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_4
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_6


Chapter 2
Implementation Theory

In this section we present key ideas and results from implementation theory that are
relevant to the topics of the thesis.

2.1 What is Implementation Theory?

2.1.1 Preliminaries

Implementation theory is a component of mechanism design. It provides an analytical
framework for situations where resources have to be allocated among agents/users but
the information needed to make these allocation decisions is dispersed and privately
held, and the agents/users possessing the private information behave strategically
and are self-utility maximizers. In any situation where the information needed to
make decisions is dispersed, it is necessary to have information exchange among
the agents/users possessing the information. Allocation decisions are made after the
information exchange process terminates. Implementation theory provides a sys-
tematic methodology for designing an information exchange process followed by an
allocation rule that leads to allocation decisions that are “optimal” with respect to
some pre-specified performance metric.

The objectives of implementation theory are:

(1) To determine, for any given performance metric, whether or not there exists
an information exchange process and an allocation rule that achieve optimal
allocations with respect to that metric when the users possess private information
and are strategic.

(2) To determine systematic methodologies for designing information exchange
processes and allocation rules that achieve optimal allocations with respect to
performance metrics for which the answer to (1) is positive.

A. Kakhbod, Resource Allocation in Decentralized Systems with Strategic 5
Agents, Springer Theses, DOI: 10.1007/978-1-4614-6319-1_2,
© Springer Science+Business Media New York 2013



6 2 Implementation Theory

(3) To determine alternative criteria for the design of information exchange processes
and allocation rules that lead to “satisfactory” allocations for situations where
the answer to (1) is negative.

The key concept in the development of implementation theory is that of game form
or mechanism. A game form/mechanism consists of two components: (1) A mes-
sage/strategy space, that is, a communication alphabet through which the agents/users
exchange information with one another. (2) An allocation rule (called outcome
function) that determines the allocations after the communication and informa-
tion exchange process terminates. Most mechanisms employ monetary incentives
and payments to achieve desirable resource allocations. In such cases, the outcome
function specifies the resource allocations as well as the monetary incentives and
payments.

A game form along with the agents’/users’ utilities defines a game. The allocations
made (through the outcome function) at the equilibria of the game determine the result
of the decentralized allocation problem. The key objectives in the design of a game
form/mechanism are:

1. To provide incentives to the strategic agents/users so that they prefer to participate
in the allocation process rather than abstain from it.

2. To obtain, at all equilibria of the game induced by the mechanism, allocations
that are optimal with respect to some pre-specified performance metric (crite-
rion). For example, it may be desirable that the allocations obtained by the game
form/mechanism are the same as those obtained by the solution of the correspond-
ing centralized allocation problem.

3. To obtain a balanced budget at all equilibria of the game induced by the mech-
anism. That is, at all equilibria, the money received by some of the system’s
agents/users as part of the incentives provided by the mechanism must be equal
to the money paid by the rest of the agents/users.

2.1.2 Game Forms/Mechanisms

In the implementation theory/mechanism design framework, a centralized resource
allocation problem is described by the triple (E,A,π): the environment space E ,
the action/allocation space A and the goal correspondence/social choice correspon-
dence/social choice rule π. Below, we briefly describe each component separately.
Let N = {1, 2, . . . , N } be the set of agents/users.

Environment Space (E): We define the environment space E of an allocation
problem to be the set of individual preferences (or the set of utilities), endowments
and the technology taken together. The environment E is the set of circumstances
that can not be changed either by the designer of the allocation mechanism or by the
agents/users that participate in the allocation mechanism.

The environment space E is the cartesian product of the users’ individual environ-
ment spaces Ei , i.e., E := E1 ×E2 ×· · ·×EN . A realization e ∈ E of the environment
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is a collection of the users’ individual realizations ei , ei ∈ Ei , i = 1, 2, . . . , N , that
is, e = (e1, e2, . . . , eN ).

Action Space (A): We define the action space A of a resource allocation problem
to be the set of all possible actions/resource allocations.

Goal Correspondence/Social Choice Rule/Social Choice Correspondence (π):
Goal correspondence is a map from E to A which assigns to every environment
e ∈ E the set of actions/allocations which are solutions to the centralized resource
allocation problem associated with/ corresponding to the decentralized resource allo-
cation problem under consideration. That is,

π : E → A.

The setting described above corresponds to the case where one of the agents (e.g. a
network manager) has enough information about the environment so as to determine
the actions according to the goal correspondence π. Generally this is not the case.
Usually, different agents have different information about the environment. For this
reason it is desired to devise a mechanism for information exchange and resource
allocation that leads, for every instance e of the resource allocation problem, to an
allocation in π(e).

When the system’s agents are strategic the resource allocation mechanism is
described by a N -user/agent game form (M, f ), where M = �N

i=1Mi is the mes-
sage space, specifying for each user i , i = 1, 2, . . . , N , the set of messages Mi

that user/agent i can communicate to other users, and f is an outcome function that
describes the actions that are taken for every m := (m1, m2, . . . , m N ) ∈ M; that is

f : M → A.

The game form (M, f ) is common knowledge [1, 2] among all the N agents/users.
Note that a game form is different from a game, as the consequence of a profile m of
messages is an allocation (or a set of allocations if f is a correspondence) rather than
a vector of utility payoffs. Once a realization e ∈ E of the environment is specified,
a game form induces a game.

Within the context of implementation theory, a decentralized resource allocation
process proceeds in three steps:

1. The mechanism designer announces the game form (M, f ).
2. An instance e ∈ E of the environment is realized. The realization of environment

e specifies, among other things, the utilities ui , i ∈ N , of all agents. Depending
on its utilities and the specified mechanism, each agent decides whether or not
to participate in the mechanism. The agents that choose not to participate in the
allocation process get some exogenously specified “reservation utility”, which is
usually a number independent of the environment e; we set this number to be
zero.

3. The agents who choose to participate in the allocation process play the game
induced by the mechanism. In this game, Mi is the strategy space of player i ,
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and for every strategy profile m ∈ M, ui ( f (m)) is the utility payoff of player i .
We denote this game by (M, f, e).

The mechanism designer is interested in the outcomes that occur at the equilibria of
the game induced by the game form.

2.1.3 Implementation in an Appropriate Equilibrium Concept

A solution/equilibrium concept specifies the strategic behavior of the agents/users
faced with a game (M, f, e) induced by the game form (M, f ). Consequently, an
equilibrium concept is a correspondence � that identifies a subset of M for any
given specification (M, f, e). We define for every environment e ∈ E ,

A�(m, f, e) := {a ∈ A : ∃m ∈ �(M, f, e) : f (m) = a} (2.1)

as the set of outcomes associated with the solution concept �, when the environment
is e.

The solution/equilibrium concept appropriate for a decentralized resource alloca-
tion problem depends on the information that is available to the agents/users about
the environment. For example, if agent i , i ∈ N , knows ei ∈ Ei and has a prob-
ability mass function on E−i = �N

j=1, j �=iE j , then an appropriate solution concept
is a Baysian Nash equilibrium (BNE) [3]. On the other hand, if agent i , i ∈ N
knows ei ∈ Ei , and E j , for all j �= i , then an appropriate solution concept is a Nash
equilibrium (NE) [4], or a sub-game perfect NE or a sequential NE [5].

Definition 2.1 A goal correspondence π : E �→ A is implemented (respectively,
weakly implemented) by the game form (M, f ) in the equilibrium concept � if
A�(M, f, e) = π(e) (respectively, A�(M, f, e) ⊂ π(e)) for all e ∈ E .

Definition 2.2 A goal correspondence π : E → A is said to be implementable
(respectively, weakly implementable) in solution/equilibrium concept � if there
exists a game form (M, f ) that implements (respectively, weakly implements) it.

Within the context of implementation theory there have been significant devel-
opments in the characterization of goal correspondences that can be implemented in
the following solution concepts: dominant strategies [6, 7]; Nash equilibria [8–11];
refined Nash equilibria, such as sub-game perfect equilibria [12, 13], undominated
Nash equilibria [14–17], trembling hand perfect Nash equilibria [18]; Bayesian Nash
equilibria [19–22].

2.1.4 Implementation in Nash Equilibrium and Maskin’s
Mechanism

In the problems investigated in this thesis we consider Nash equilibrium (NE) as the
solution/equilibrium concept. For any (M, f, e), a pure NE is a message/strategy
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profile m∗ := (m∗
1, m∗

2, . . . , m∗
N ) ∈ M such that for all i ∈ N ,

ui ( f (m∗
i , m∗−i )) ≥ ui ( f (mi , m∗−i )), (2.2)

for all mi ∈ Mi , where m∗−i := (m∗
1, m∗

2, . . . , m∗
i−1, m∗

i+1, . . . , m∗
N ) and ui , i ∈ N ,

are the utility functions of the agents under the realization e of the environment. Let
NE(M, f, e) be the set of NE of the game (M, f, e) and

ANE := ANE(M, f, e) := {a ∈ A|∃m ∈ NE(M, f, e) s.t. f (m) = a}. (2.3)

The game form (M, f ) implements (respectively, weakly implements) a social
choice rule π in Nash equilibrium if

ANE(M, f, e) = π(e)

(respectively, ANE(M, f, e) ⊂ π(e)) for all e ∈ E .

In his seminal paper [4], Maskin characterized social choice rules that can be
implemented in NE, and constructed a mechanism that achieves implementation in
NE. To state and discuss the main result in [4] we need to define the concepts of
weak no-veto power and monotonicity.

Definition 2.3 A goal correspondence/social choice rule π : E → A satisfies weak
no-veto power if for any e ∈ E , any outcome a ∈ A that is the top ranked alternative
of at least N − 1 agents under the given environment e (that is, a simultaneously
maximizes individual utilities of at least N − 1 agents) belongs to π(e).

In words, a social choice rule satisfies weak no-veto power if, whenever all agents
except possibly one agree that an alternative is top-ranked, (i.e. no other outcome is
higher in their preference orderings), then that alternative is in the social choice set;
the remaining agent can not veto it.

Definition 2.4 A social choice rule π : E → A is monotonic if for all e :=
(e1, e2, . . . , eN ), ê := (ê1, ê2, . . . , êN ) and a ∈ A, a ∈ π(ê1, ê2, . . . , êN ) when-
ever:

(i) a ∈ π(e1, e2, . . . , eN ),
(ii) for all b ∈ A and i ∈ N , ui (a) ≥ ui (b) implies ûi (a) ≥ ûi (b),

where ui , ûi are utilities of agent i under ei and êi , respectively.
In words, monotonicity of π says the following: Suppose that under a profile of

utility functions u1, u2, . . . , uN , ui ∈ ei , ∀ i ∈ N , the outcome a is in the choice
set π(e). Furthermore, suppose that the environment e is altered to ê so that under the
new profile û := (û1, û2, . . . , ûN ), ûi ∈ êi for all i ∈ N , the outcome a does not fall
in any agent’s preference ordering relative to any outcome in A. Then, the outcome
a must be in the choice set π(ê). Monotonicity is satisfied by many social choice
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rules including the “social welfare maximizing correspondence” and the “Pareto
correspondence” [8, 23–25].1

We can now state Maskin’s fundamental result on Nash implementation.

Theorem 2.5 ([4]) If a social choice rule π : E → A is implementable in NE then
it is monotonic. Furthermore, if the number of agents is at least 3 and π is monotonic
and satisfies the weak no-veto power condition, then π is implementable in NE.

The proof of the above theorem is constructive. Given a social choice rule π
that satisfies monotonicity and weak no-veto power, Maskin constructs a game form
that implements π. We present the construction of the game form in words. Such a
presentation reveals the complexity of the mechanism and provides a justification as
to why we pursue alternative approaches in this thesis. Before we proceed with the
description of the game form we need to define the lower contour set of ui , i ∈ N ,
at outcome a ∈ A.

Definition 2.6 For each a ∈ A and ui ∈ Ui , i ∈ N , let

LC(a, ui ) := {b ∈ A s.t. ui (a) ≥ ui (b)} (2.4)

LC(a, ui ) is the lower contour set of ui at a ∈ A.

In words, the lower contour set of ui at a ∈ A is the set of outcomes in A that
someone with utility function ui does not prefer to a.

We now proceed with the description of Maskin’s game form. The message space
for each agent i ∈ N is Mi := U1 × U2 × · · · × UN × A × Z++, where Z++ is the
space of positive integers. That is, each agent’s message/strategy is a profile of the
agents’ utilities, an outcome a ∈ A, and a positive integer. The outcome function is
defined as follows:

(i) If all agents announce the same message/strategy mi = (u1, u2, . . . , uN , a, K ),
i ∈ N , and a ∈ π(e1, e2, . . . , eN ), (ui ∈ ei ∀ i ∈ N ), then f (m1, m2, . . . , m N )

= a. That is, if all agents are unanimous in their strategy, and their proposed
outcome is in the choice set π(e), then the outcome is a.

(ii) Suppose all agents j �= i announce the same strategy m j = (u1, u2, . . . , uN ,

a, K ) and a ∈ π(e1, e2, . . . , eN ). Let mi = (u′
1, u′

2, . . . , u′
N , a′, K ′) be the i th

agent’s message/strategy. Then,

f (m1, m2, . . . , m N ) =
{

a′ if a′ ∈ LC(a, ui )

a if a′ /∈ LC(a, ui ).
(2.5)

That is, suppose all players but one propose the same strategy and the proposed
outcome a ∈ π(e1, e2, . . . , eN ). Then, agent i , the odd-agent out, gets his pro-

1 In Chaps. 3 and 5, the social choice rule/goal correspondence is the social welfare maximizing
correspondence and in Chap. 4 the goal correspondence is the Pareto correspondence.

http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_4
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posal a′, provided that a′ is in the lower contour set of a of the ordering that the
other agents proposed for him. Otherwise, the outcome is a.

(iii) If neither (i) nor (ii) applies, then f (m1, m2, . . . , m N ) = ai , where i := max{i |
ki = max j∈N k j }. In words, when neither (i) nor (ii) applies, the outcome is
the one proposed by the agent that has the highest index among those whose
proposed integer is maximal.

Maskin proved in [4] that the above-described game form/mechanism implements
π in NE.

From the above description it is clear that Maskin’s mechanism requires, in gen-
eral, an infinite dimensional message space. That is why in this thesis we do not
follow Maskin’s approach. We follow a different approach, outlined in Chaps. 3–5,
which requires a finite dimensional message space and a particular interpretation
of NE. Below we present this interpretation of NE.

2.1.5 Interpreting Nash Equilibrium

We present two interpretations of Nash equilibrium which appear in Nash’s original
work [24]. The first is the “mass-action” interpretation of NE points. According to
this interpretation, it is unnecessary to assume that agents participating in the game
have full knowledge of the structure of the game, or the ability to go through any
complex reasoning process. But it is assumed that the participants have the ability to
accumulate empirical information, obtained through repeated plays of the game and
to evaluate, using this empirical information, the relative advantage of the various
pure strategies they have at their disposal. The evaluation of empirical information
determines, as the number of repeated plays of the game increases, the agents’ NE
strategies. Quoting Nash,

It is unnecessary to assume that participants have full knowledge of the total structure of
the game. . . but the participants are supposed to accumulate empirical information on the
relative advantages of the various pure strategies at their proposal, J. Nash, PhD thesis ([24]
p. 21).

Implicit in this interpretation of NE is the assumption that the game’s environ-
ment e is stable, that is, it does not change before the agents reach their equilib-
rium strategies. Nash’s “mass-action” interpretation of NE has also been adopted
by Reichelstein and Reiter [26], and Groves and Ledyard [27]. The authors of
[26, 27] consider resource allocation problems with strategic agents who have private
information, adopt NE as the solution concept and state,

We interpret our analysis as applying to an unspecified (message exchange) process in which
users grope their way to a stationary message and in which the Nash property is a necessary
condition for stationarity, Reichelstein and Reiter ([26] p. 664).

http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
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and,

We do not suggest that each agent knows e when he computes m, . . . We do suggest, however,
that the ‘complete information’ Nash equilibrium game-theoretic equilibrium messages may
be the possible equilibrium of the iterative process—that is, the stationary messages—just
as the demand–equal–supply price is thought of the equilibrium of some unspecified market
dynamic process, Groves and Ledyard ([27] pp. 69–70).

In the second interpretation of NE, it is assumed that the agents know the full
structure of the game in order to be able to predict the equilibrium strategies. This
interpretation of NE is rationalistic and idealizing.

In this thesis, we will adopt the “mass-action” interpretation of NE. In the problems
we investigate in Chaps. 3 and 5 the environment is stable (as the network where the
network is wireless, the environment is assumed to be stable (i.e. it does not change)
during the allocation process.

2.1.6 Desirable Properties of Game Forms

In addition to implementation in an appropriate equilibrium concept, the mechanism
designer should try to achieve the other objectives mentioned in Sect. 2.1.1. We
formally define the properties of a mechanism associated with those objectives in
this section.

2.1.6.1 Individual Rationality

One of the objectives in the design of a game form is to incentivize all the agents
to voluntarily participate in the allocation process under any possible environment.
Consider any environment e ∈ E . If under e, agent i decides not to participate, its
overall utility is zero (see Sect. 2.1.2). If agent i decides to participate in the game
induced by the mechanism, its utility is ui ( f (m∗)) where m∗ is an equilibrium of the
game (M, f, e) induced by the mechanism. Under e ∈ E , an agent participates in
the allocation process if at all equilibria m∗ of the game (M, f, e), ui ( f (m∗)) ≥ 0.
We can now define individually rational mechanisms as follows:

Definition 2.7 A mechanism/game form (M, f ) is individually rational if for all
e ∈ E , for all equilibria m∗ of the game (M, f, e) and for all i ∈ N , ui ( f (m∗)) ≥ 0,
where ui is the utility function of agent i in the environment e, and 0 is the reservation
utility a user receives if it decides not to participate in the allocation process (cf.
Sect. 2.1.2).

2.1.6.2 Budget Balance

Strategic agents are often incentivized to follow the rules of the mechanism through
monetary tax or subsidy. Some agents are induced to accept allocations that may

http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_5


2.1 What is Implementation Theory? 13

not be their most preferred ones (under the realization e of the environment) by
receiving money (subsidy). Conversely, some agents are induced to pay money (tax)
for receiving their most preferred allocations. It is desirable that for any environment
e ∈ E , at every equilibrium of the game (M, f, e) the sum of taxes paid by some
agents should be equal to the sum of subsidies received by the rest of the agents. Any
mechanism (M, f ) that possesses the above property is said to be budget balanced at
equilibrium. Budget balance is also desirable at all out of equilibrium messages that
result in feasible allocations (i.e. allocations that satisfy the problem’s constraints) for
the following practical reason. Suppose the mechanism designer specifies, along with
the mechanism, an iterative message exchange process (tâtonnement process) which
for any environment e ∈ E is guaranteed to converge to an equilibrium of the game
induced by the mechanism. In practice, the message exchange process may terminate
when it reaches sufficiently close to the equilibrium (but not the equilibrium). If the
mechanism is not budget balanced at these out of equilibrium terminal messages,
then possible large amounts of unclaimed money may be left.
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Chapter 3
Unicast Service Provisioning

3.1 Introduction

Most of today’s networks, called integrated services networks support the delivery
of a variety of services to their users each with its own quality of service (QoS)
requirements (e.g. delay, percentage of packet loss, jitter, etc.). As the number of
services offered by the network and the demand for the services increase, the need
for efficient network operation increases. One of the key factors that contributes to
efficient network operation is the efficient utilization of the network’s resources.

In this chapter we investigate the unicast service provisioning problem in wired
networks with arbitrary topology and strategic users. We formulate the problem as
a market allocation with strategic users. The key issues and challenges associated
with this problem have been discussed in Sect. 1.2 of the thesis. Here we propose
a game form/mechanism for the solution of the problem, we analyze the mecha-
nism’s properties and compare our results to the existing literature on unicast service
provisioning with strategic users.

3.1.1 Contribution of the Chapter

We investigate the unicast service provisioning problem in wired networks with
arbitrary topology and strategic users. The main contribution of this chapter of the
thesis is the discovery of a decentralized rate allocation mechanism for unicast service
provisioning in networks with arbitrary/general topology and strategic users, which
possesses the following properties.
When each user’s utility is concave, then:

(P1) The mechanism implements the solution of the centralized unicast service pro-
visioning problem in Nash equilibria.

A. Kakhbod, Resource Allocation in Decentralized Systems with Strategic 15
Agents, Springer Theses, DOI: 10.1007/978-1-4614-6319-1_3,
© Springer Science+Business Media New York 2013
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(P2) The mechanism is individually rational, that is, the network users voluntarily
participate in the rate allocation process.

(P3) The mechanism is budget-balanced at all the feasible allocations (cf. Sect.
2.1.6.2), that is, at all the allocations that correspond to NE messages/strategies
as well as at all the feasible allocations that correspond to off-equilibrium
messages/strategies.

When each user’s utility is quasi-concave but differentiable, then:

The mechanism possesses properties (P2) and (P3).

(P4) Every NE of the game induced by the mechanism results in a Walrasian equi-
librium ([1] Ch. 15), consequently, a Pareto optimal allocation.

To the best of our knowledge, none of the decentralized resource allocation mecha-
nisms proposed so far for the unicast service provisioning problem in communication
networks possesses simultaneously all three properties (P1–P3) when the network’s
topology is general/arbitrary, the users are strategic and their utilities are concave.
Furthermore, we are not aware of the existence of any publications in unicast service
provisioning containing the analysis of a decentralized rate allocation mechanism
when the users are strategic and their utilities are quasi-concave.

We now compare in more detail our contributions with the existing literature.

3.1.2 Comparison with Related Work

Recently, within the context of communication networks, researchers have investi-
gated decentralized resource allocation problems under the assumption that users
behave strategically (i.e. they are not price-takers, they do not necessarily obey the
rules of the mechanism but have to be induced to follow the rules). Within the con-
text of wired networks, decentralized resource allocation mechanisms have been
proposed and analyzed in [2–15].

We now explain why the proposed mechanism and the above results are distinctly
different from all game forms/mechanisms proposed so far for the unicast service
provisioning problem with strategic users.

Most of the previous work on the unicast service provisioning problem in networks
with general topology is based on Vickrey-Clark-Groves(VCG)-type mechanisms,
[9–11, 15–19]. The game forms/mechanisms proposed in [15] and [9] induce games
that establish the existence of a unique Nash equilibrium at which the allocation
is globally optimal under some conditions; but these mechanisms are not budget-
balanced even at equilibrium. The mechanisms/game forms proposed in [10, 11,
16] induce games that have multiple NE; these mechanisms are not budget-balanced
even at equilibrium, and the allocations corresponding to the Nash equilibria are
not always globally optimal (that is these mechanisms do not implement in Nash
equilibria the solution of the centralized unicast service provisioning problem). Our

http://dx.doi.org/10.1007/978-1-4614-6319-1_2
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mechanism is not of the VCG-type, thus, it is philosophically different from those
of [9–11, 15, 16].

The work in [12, 13] and [20] deals with single link networks. For these single-
link networks the authors of [13] proposed a class of efficient (optimal) allocation
mechanisms, called ESPA, for the allocation of a single divisible good. ESPA mech-
anisms were further developed in [12]. It is not currently known whether ESPA
mechanisms implement in Nash equilibria the optimal solution of the unicast ser-
vice provisioning problem in networks with arbitrary/general topology. The network
model considered in this chapter has arbitrary/general topology.

In [7, 8] the authors show that when the resource allocation mechanism proposed
in [5] is considered under the assumption that the users are strategic and NE is the
equilibrium concept, the allocations corresponding to any NE are different from
any allocations that are optimal solutions of the corresponding centralized unicast
service provisioning problem; that is, the allocation corresponding to any NE suffer
from a certain efficiency loss. Particularly, in [8] it is shown that there exists a lower
bound on the efficiency loss. The mechanism we propose in this chapter is distinctly
different from those of [7, 8]. Our mechanism results in the same performance as
optimal centralized allocations, that is, the allocations corresponding to any NE of
the game induced by our mechanism are efficient.

Philosophically, our work is most closely related to [14], but it is distinctly different
from [14] for the following reasons: (1) The game form proposed in this chapter is
distinctly different from that of [14]. (2) The mechanism of [14] is not balanced off
equilibrium. (3) In the mechanism of [14] there is no coupling among the games
that are being played at different links. In our mechanism such a coupling exists (see
Sect. 3.3), and results in a balanced-budget off equilibrium.

Finally, we are not aware of any publication, other than the mechanism we propose
in this chapter, containing the analysis of a decentralized rate allocation mechanism
for unicast service provisioning when the users are strategic and their utilities are
quasi-concave.

3.1.3 Organization of the Chapter

The rest of the chapter is organized as follows. In Sect. 3.2 we formulate the uni-
cast service provisioning problem with strategic users. In Sect. 3.3 we describe the
allocation mechanism/game form we propose for the solution of the unicast ser-
vice provisioning problem. In Sect. 3.4 we analyze the properties of the proposed
mechanism. In Sect. 3.5 we discuss how the game form/mechanism presented in this
chapter can be implemented in a network. In Sect. 3.6 we investigate the properties
of the game form proposed in this chapter when the users’ utilities ui , i ∈ N , are
quasi-concave. The proofs of all the results established in this chapter appear in
Appendix A.
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3.2 The Unicast Problem with Strategic Network Users,
Problem Formulation

In this section we present the formulation of the unicast problem in wired com-
munication networks with strategic users. We proceed as follows, In Sect. 3.2.1 we
formulate the centralized unicast service provisioning problem the solution of which
we want to implement in Nash equilibria. In Sect. 3.2.2 we formulate the decentral-
ized unicast service provisioning problem with strategic network users and, state our
assumptions and our objective.

3.2.1 The Centralized Problem

We consider a wired network with N , N > 3, users. The set of these users is denoted
by N , i.e. N = {1, 2, . . . , N }. The network topology, the capacity of the network
links, and the routes assigned to users’ services are fixed and given. The users’ utility
functions have the form

Vi (xi , ti ) = ui (xi ) − ti , i = 1, 2, . . . , N . (3.1)

The term ui (xi ) expresses user i’s satisfaction from the service xi it receives. The
term ti represents the tax (money) user i pays for the services it receives. We assume
that ui is a concave and increasing function of the service xi user i receives, and
ti ∈ R. When ti > 0 user i pays money for the services it receives; this money is
paid to other network users. When ti < 0 user i receives money from other users.
Overall, the amount of money paid by some of the network users must be equal to
the amount of money received by the rest of the users so that

∑
i∈N ti = 0. Denote

by L the set of links of the network, by cl the capacity of link l, and by Ri the set of
links l, l ∈ L, that form the route of user i , i = 1, 2, . . . , N (as pointed out above
each user’s route is fixed). We assume that a central authority (the network manager)
has access to all of the above information. The objective of this authority is to solve
the following centralized optimization problem that we call Max.

Max max
xi

N∑
i=1

ui (xi ) (3.2)

subject to ∑
i :l∈Ri

xi ≤ cl , ∀ l ∈ L, (3.3)

xi ≥ 0, ∀i ∈ N , (3.4)
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N∑
i=1

ti = 0, ti ∈ R, ∀i ∈ N . (3.5)

The inequalities in (3.3) express the capacity constraints that must be satisfied at
each network link. The inequalities in (3.4) express the fact that the users’ received
services xi , i ∈ N must be nonnegative. The equality in (3.5) express the fact that
the budget must be balanced, i.e. the total amount of money paid by some of the
users must be equal to the amount of money received by the rest of the users.

Let U denote the set of functions

u : R+ ∪ {0} → R+ ∪ {0}

where u is concave and increasing. Let T denote the set of all possible network
topologies, network resources and user routes. Consider problem Max for all possible
realizations

(u1, . . . , uN , T ) ∈ U N × T

of the users’ utilities, the network topology, its resources and the users’ routes. Then,
the solution of Max for each (u1, u2 · · · , uN , T ) ∈ U N × T defines a map

π : U N × T → A

where A ∈ R
n+ × R

N is the set of all possible rate/bandwidth allocations to the
network’s users and the taxes (resp. subsidies) paid (resp. received) by the users. We
call π the solution of the centralized unicast service provisioning problem.

3.2.2 The Decentralized Problem with Strategic Users

We consider the network model of the previous section with the following assump-
tions on its information structure.

(A1) Each user knows only his own utility; this utility is his own private information.
(A2) Each user behaves strategically, that is, each user is not a price-taker. The

users’s objective is to maximize its own utility function.
(A3) The network manager knows the topology and resources of the network. This

knowledge is the manager’s private information. The network manager is not
a profit-maker (i.e. he does not have a utility function).

(A4) The network manager receives requests for service from the network users.
Based on these requests, he announces to each user i, i ∈ N :

(i) The set of links that form user i’s route, Ri ; that is, the network manager
chooses the route for each user and this route remains fixed throughout the
user’s service.

(ii) The capacity of each link in Ri .
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(A5) Based on the network manager’s announcement, each strategic user competes
for resources (bandwidth) at each link of his route with the other users in that
link.1

From the above description it is clear that the information in the network is decentral-
ized. Every user knows his own utility but does not know the other users’ utilities or
the network’s topology and its resources. The network manager knows the network’s
topology and its resources, but does not know the users’ utilities. It is also clear that
the network manager (which is not profit maker) acts like an accountant who sets
up the users’ routes, specifies the users competing for resources/bandwidth at each
link, collects the money from the users i that pay tax (i.e. ti > 0) and distributes it
to those users j that receive money (i.e. t j < 0).

As a consequence of assumptions (A1–A5) we have at each link of the network a
decentralized resource allocation problem which can be studied/analyzed within the
context of implementation theory. These decentralized resource allocation problems
are not independent/decoupled, as the rate that each user receives at any link of
his own route must be the same. This constraint is dictated by the nature of the
unicast service provisioning problem and has a direct implication on the nature of
the mechanism/game form we present in Sect. 3.3.

Under the above assumptions the objective is to determine a game form/mechanism
which has the following properties,

(P1) It implements in NE the social welfare maximizing correspondence defined
by the centralized problem Max. (Note that the social welfare maximizing
correspondence is implementable in NE, cf. Sect. 2.1.4).

(P2) It is individually rational, that is, for every realization

(u1, u2, . . . , uN , T ) ∈ U N × T,

the network users voluntarily participate in the bandwidth allocation process.
(P3) For every realization (u1, u2, . . . , uN , T ) ∈ U N × T it is budget balanced at

every NE of the game it induces, as well as at all off equilibrium messages that
result in feasible allocations.

In the following two sections we present a mechanism/game form for the problem
formulated in this section and prove that it possess properties (P1–P3) stated above.

3.3 A Mechanism for Rate Allocation

In Sect. 3.3.1, we specify a mechanism/game form for the decentralized rate allo-
cation problem formulated in Sect. 3.2. In Sect. 3.3.2, we discuss and interpret the
components of the mechanism.

1 During the play of the game at each link l ∈ L, each user of link l learns the set of the other users
competing for bandwidth at l.

http://dx.doi.org/10.1007/978-1-4614-6319-1_2
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3.3.1 Specification of the Mechanism

A game form/mechanism (cf. Sect. 2.1.2) consists of two components M and f . The
component M denotes the users’ message/strategy space. The component f is the
outcome function; f defines for every message/strategy profile, the bandwidth/rate
allocated to each user and the tax (subsidy) each user pays (receives).

For the decentralized resource allocation problem formulated in Sect. 3.2 we pro-
pose a game form/mechanism the components of which we describe below.

Message space: The message/strategy space for user i , i = 1, 2, ..., N , is given
by Mi ⊂ R|Ri |+1

+ . Specifically, a message of user i is of the form

mi = (xi , p
li1
i , p

li2
i , · · · , p

li|Ri |
i )

where 0 ≤ xi ≤ minl∈Ri cl and 0 ≤ p
lik
i ≤ M, k = 1, 2, , . . . , |Ri |, 0 < M < ∞,

M is large, and |Ri | denotes the number of links along route Ri , i ∈ N . The
component xi denotes the bandwidth/rate user i requests at all the links of his route.

The component p
li j
i , j = 1, 2, . . . , |Ri |, denotes the price per unit of bandwidth

user i is willing to pay at link li j of his route.
As noted in Sect. 3.2.2, the nature of the unicast service provisioning problem

dictates/requires that the bandwidth/rate allocated to any user i , i ∈ N , must be the
same at all links of his route. Thus, the nature of message mi is a consequence of the
above requirement.

Outcome Function: The outcome function f is given by

f : M1 × M2 × · · · × MN → (RN+ × R × R · · · × R)

and is defined as follows. For any m := (m1, m2, . . . , m N ) ∈ M := M1 × M2 ×
· · · × MN ,

f (m) = f (m1, m2, · · · , m N ) = (x1, x2, . . . , xN , t1, t2, · · · , tN )

where xi , i ∈ N , is the amount of bandwidth/rate allocated to user i (this is equal to
the amount of bandwidth user i , i ∈ N , requests), and ti , i ∈ N , is determined by
t l
i , the tax (subsidy) user i pays (receives) for link l, l ∈ Ri , and by other additional

subsidies Qi that user i may receive. We proceed now to specify t l
i , l ∈ Ri , and Qi

for every user i ∈ N .

The tax t
li j
i , j = 1, 2, . . . , |Ri |, i ∈ N , is defined according to the number of

users using link l. Let Gl denotes the set of users using link l and let |Gl | denote the
cardinality of Gl . We consider three cases2

2 We consider only the cases where |Gl | ≥ 2. If |Gl | = 1 and i ∈ Gl , then t l
i = 0 · 1{xi ≤

cl } + 1{xi >cl }
1−1{xi >cl } .

http://dx.doi.org/10.1007/978-1-4614-6319-1_2
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• Case 1 ,
∣∣Gl

∣∣ = 2
Let i, j ∈ Gl . Then,

t l
i = pl

j xi + (pl
i − pl

j )
2

α
− 2pl

j (pl
i − pl

j )

(
xi + x j − cl

γ

)

+ 1{xi > 0}1{xi + x j − cl > 0}
1 − 1{xi > 0}1{xi + x j − cl > 0} (3.6)

t l
j = pl

i xl
j + (pl

j − pl
i )

2

α
− 2pl

i (pl
j − pl

i )

(
xi + x j − cl

γ

)

+ 1{x j > 0}1{xi + x j − cl > 0}
1 − 1{x j > 0}1{xi + x j − cl > 0} (3.7)

where α and γ are positive constants that are sufficiently large and, the function
1{A}, used throughout the chapter, is defined as follows

1{A} =
{

1 − ε if A holds;
0 otherwise.

where ε is bigger than zero and sufficiently small3; ε is chosen by the mechanism
designer.

• Case 2,
∣∣Gl

∣∣ = 3
Let i, j and k ∈ Gl . Then

t l
i = Pl−i xi + (pl

i − Pl−i )
2 − 2Pl−i (pl

i − Pl−i )

(
E l−i + xi

γ

)

+ 1{xi > 0}1{xi + x j + xk − cl > 0}
1 − 1{xi > 0}1{xi + x j + xk − cl > 0} + �l

i (3.8)

t l
j = Pl− j x j + (pl

j − Pl− j )
2 − 2Pl− j (pl

j − Pl− j )

(E l− j + x j

γ

)

+ 1{x j > 0}1{xi + x j + xk − cl > 0}
1 − 1{x j > 0}1{xi + x j + xk − cl > 0} + �l

j (3.9)

t l
k = Pl−k xk + (pl

k − Pl−k)
2 − 2Pl−k(pl

k − Pl−k)

(
E l−k + xk

γ

)

+ 1{xk > 0}1{xi + x j + xk − cl > 0}
1 − 1{xk > 0}1{xi + x j + xk − cl > 0} + �l

k (3.10)

3 Therefore, when A and B (both) hold, then 1{A}1{B}
1−1{A}1{B} ≈ 1

0+ is well defined and it becomes a
large number.
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where,

Pl−i = pl
j + pl

k

2
, Pl− j = pl

k + pl
i

2
, Pl−k = pl

j + pl
i

2
,

E l−i = x j + xk − cl , E l− j = xi + xk − cl , E l
−k = xi + x j − cl

E l
i = 2xi − cl , E l

j = 2x j − cl , E l
k = 2xk − cl , (3.11)

and �l
i is defined as

�l
i =

∑
r∈Gl

r �=i

∑
s∈Gl

s �=i,r

(
2pl

r pl
s(1 + xr

γ ) − xr pl
s

)

(
∣∣Gl

∣∣ − 1)(
∣∣Gl

∣∣ − 2)
−

∑
j∈Gl

r �=i

pl 2
r

∣∣Gl
∣∣ − 1

− Pl 2
−i

− 2
E l

−i Pl 2
−i

γ
. (3.12)

The terms �l
j and �l

k are defined in a way similar to �l
i .

• Case 3,
∣∣Gl

∣∣ > 3
Let i ∈ Gl ⊆ N . Then,

t l
i = Pl

−i xi + (pl
i − Pl

−i )
2 − 2Pl

−i (pl
i − Pl

−i )

(
E l

−i + xi

γ

)

+ 1{xi > 0}1{E l
−i + xi > 0}

1 − 1{xi > 0}1{E l
−i + xi > 0} + �l

i (3.13)

where,

Pl−i =

∑
j∈Gl

j �=i

pl
j

∣∣Gl
∣∣ − 1

, E l
−i =

∑
j∈Gl

j �=i

x j − cl , E l
i = (

∣∣∣Gl
∣∣∣ − 1)xi − cl ,

and

�l
i =

∑
j∈Gl

j �=i

∑
k∈Gl

k �=i, j

(
2pl

j pl
k(1 + x j

γ ) − x j pl
k

)

(
∣∣Gl

∣∣ − 1)(
∣∣Gl

∣∣ − 2)

+

∑
j∈Gl

j �=i

∑
k∈Gl

k �=i, j

∑
r∈Gl

r �=i, j,k
2pl

k(pl
jE l

r − x j pl
r )

γ(
∣∣Gl

∣∣ − 1)2(
∣∣Gl

∣∣ − 3)



24 3 Unicast Service Provisioning

+

∑
j∈Gl

j �=i

∑
k∈Gl

k �=i, j
2pl

k(pl
jE l

k − x j pl
k)

γ(
∣∣Gl

∣∣ − 1)2(
∣∣Gl

∣∣ − 2)

−

∑
j∈Gl

j �=i

pl 2
j

∣∣Gl
∣∣ − 1

− Pl 2
−i − 2

E l
−i Pl 2

−i

γ
. (3.14)

Next we specify additional subsidies Qi that user i, i ∈ N , may receive. For that
matter we consider all links l ∈ L such that |Gl | = 2 or |Gl | = 3. For each link l,
with |Gl | = 2 we define the quantity

Q{l:|Gl |=2} : = −2
(pl

i − pl
j )

2

α
− pl

j xi − pl
i + x j

×
[
2pl

j (pl
i − pl

j ) + 2pl
i (pl

j − pl
i )

] (
xi + x j − cl

γ

)

= o(1) − pl
j xi − pl

i x j ; (3.15)

for each link with |Gl | = 3 we define

Q{l:|Gl |=3} := 1

γ

(
−2Pl

−i
2
x−i + 2Pl

−i pl
iE l

−i − 2Pl
− j

2
x− j

)

+ 1

γ

(
2Pl

− j pl
jE l

− j − 2Pl
−k

2
x−k + 2Pl

−k pl
kE l

−k

)
. (3.16)

Furthermore for each link l ∈ L where |Gl | = 2 or |Gl | = 3 the network man-
ager chooses at random a user kl /∈ Gl and assigns the subsidy Ql to user kl . Let
l1, l2, . . . , lr be the set of links such that |Gli | = 2 or 3, i = 1, 2, . . . , r , and let kli ,
i = 1, 2, . . . , r, be the corresponding users that receive Qli .

Based on the above, the tax (subsidy) paid (received) by user j, j ∈ N , is the
following. If j �= kl1, kl2 , · · · klr then

t j =
∑

l∈R j

t l
j , (3.17)

where for each l ∈ R j , t l
j is determined according to the cardinality of Gl . If j =

kli , i = 1, 2, . . . , r , then

tkli
=

∑
l∈Rkli

t l
kli

+ Qli . (3.18)

where Qli is defined by (3.15) and (3.16).
Note that Qli is not controlled by user kli , that is, Qli does not depend on user

kli ’s message/strategy. Thus, the presence (or absence) of Qli does not influence the
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strategic behavior of user kli . We have assumed here that the users kl1 , kl2 , . . . , klr ,
are distinct. Expressions similar to the above hold when the users kl1, kl2 , . . . , klr are
not distinct.

Remark For each link l ∈ L with |Gl | = 2 or 3 the network manager could equally
divide the subsidy Ql among all users not in Gl instead of randomly choosing one
user k /∈ Gl . Any other division of the subsidy Ql among users not in Gl would also
work.

3.3.2 Discussion/Interpretation of the Mechanism

As pointed out in Sect. 3.2.2, the design of a decentralized resource allocation mech-
anism has to achieve the following goals. (1) It must induce strategic users to vol-
untarily participate in the allocation process. (2) It must induce strategic users to
follow its operational rules. (3) It must result in optimal allocations at all equilibria
of the induced game. (4) It must result in a balanced budget at all equilibria and off
equilibrium.

Since the designer of the mechanism can not alter the users’ utility functions,
ui , i ∈ N , the only way it can achieve the aforementioned objectives is through the
use of appropriate tax incentives/tax functions. At each link l, the tax incentive of
our mechanism for user i consists of three components �l

1(i), �l
2(i) and �l

3(i). We
specify and interpret these components for Case 3 (Eq. (3.13)). Similar interpretations
hold for Case 1 and Case 2.

For Case 3 we have,

t l
i := �l

1(i) + �l
2(i) + �l

3(i) (3.19)

where

�l
1(i) := Pl

−i xi (3.20)

�l
2(i) := (pl

i − Pl
−i )

2 − 2Pl
−i (pl

i − Pl
−i )

(
E l

−i + xi

γ

)

+ 1{xi > 0}1{E l
−i + xi > 0}

1 − 1{xi > 0}1{E l
−i + xi > 0} (3.21)

�l
3(i) := �l

i (3.22)

• �l
1(i) specifies the amount user i has to pay for the bandwidth it gets at link l. It is

important to note that the price per unit of bandwidth that a user pays is determined
by the message/proposal of the other users using the same link. Thus, a user does
not control the price it pays per unit of the service it receives.
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• �l
2(i) provides the following incentives to the users of a link: (1) To bid/propose

the same price per unit of bandwidth at that link (2) To collectively request a total
bandwidth that does not exceed the capacity of the link. The incentive provided
to all users to bid the same price per unit of bandwidth is described by the term
(pl

i − Pl
−i )

2. The incentive provided to all users to collectively request a total
bandwidth that does not exceed the link’s capacity is captured by the term

1{xi > 0}1{E l
−i + xi > 0}

1 − 1{xi > 0}1{E l
−i + xi > 0} . (3.23)

Note that a user is very heavily penalized if it requests a nonzero bandwidth, and,
collectively, all the users of the link request a total bandwidth that exceeds the
link’s capacity. A joint incentive provided to all users to bid the same price per
unit of bandwidth and to utilize the total capacity of the link is captured by the
term

2P−i (pl
i − Pl

−i )

(
E l−i + xi

γ

)
(3.24)

• �l
3(i), The goal of this component is to lead to a balanced budget. That is,

∑
i∈Gl

[
�l

1(i) + �l
2(i)

]
�= 0, (3.25)

but, ∑
i∈Gl

[
�l

1(i) + �l
2(i) + �l

3(i)
]

= 0. (3.26)

Note that, �l
3(i) is not controlled by user i’s messages (simply because there is no

term in �l
3(i) under the control of user i), so �l

3(i) does not have any influence
on the strategic behavior of the user.

As indicated in (3.26), when the number of users at link l ∈ L is larger than three,
i.e. |Gl | > 3, the mechanism is budget-balanced at that link, that is

∑
i∈Gl t l

i = 0.
When |Gl | = 2, 3 the mechanism is not budget balanced at link l. The amount
Ql = −∑

i∈Gl

|Gl |=2,3

t l
i , is given as subsidy to a randomly chosen user, say j , that

does not compete for resources at link l. Such money transfers results in an overall
balanced budget, and are always possible whenever N > 3. Furthermore, the money
transfered to user j does not alter j ′s strategic behavior since Ql does not depend
on user j ′s strategy. The existence of the term Ql j in the tax function couples the
games that are taking place at various links of the network. The presence of Ql j

implies that the designer of the mechanism must not consider links individually; for
the allocation of resources at certain links (specially those links l with |Gl | = 2, 3)
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the designer must consider network users that do not compete for resources in those
links.

3.4 Properties of the Mechanism

We prove that the mechanism proposed in Sect. 3.3 has the following properties: (P1)
It implements the solution of Problem Max in Nash equilibria. (P2) It is individually
rational. (P3) It is budget-balanced at every feasible allocation, that is the mechanism
is budget-balanced at allocations corresponding to all NE messages as well as those
corresponding to off-equilibrium messages. We also prove the existence of NE of
the game induced by the mechanism and characterize all of them.

We establish the above properties by proceeding as follows. First we prove that all
Nash equilibria of the game induced by the game form/mechanism of Sect. 3.3 result
in feasible solutions of the centralized problem Max, (Theorem 3.1). Then, we show
that network users voluntarily participate in the allocation process. We do this by
showing that the allocations they receive at all Nash equilibria of the game induced by
the game form of Sect. 3.3 are weakly preferred to the (0, 0) allocation they receive
when they do not participate in the allocation process (Theorem 3.4). Afterwards, we
establish that the mechanism is budget-balanced at all Nash equilibria; we also prove
that the mechanism is budget-balanced off equilibrium (Lemma 3.2). Finally, we
show that the mechanism implements in Nash equilibria the solution of the centralized
allocation problem Max (Theorem 3.5).

We present the proofs of the following theorems and lemmas in Appendix A.

Theorem 3.1 (Feasibility): If m∗ = (x∗,p∗) is a NE point of the game induced
by the game form and the users’ utility (outcome) functions presented in Sect. 3.3,
then the allocation x∗ is a feasible solution of Problem Max.

The following lemma presents some key properties of NE prices and rates.

Lemma 3.2 Let m∗ = (x∗,p∗) be a NE. Then for every l ∈ L and i ∈ Gl , we have,

p∗l
i = p∗l

j = P∗l
−i := p∗l , (3.27)

p∗l
(E∗l

γ

)
= 0, (3.28)

∂t l
i

∂xi

∣∣∣∣
m=m∗

= p∗l , (3.29)

where E∗l = ∑
i∈Gl x∗

i − cl .



28 3 Unicast Service Provisioning

An immediate consequence of Lemma 3.2 is the following. At every NE point
m∗ of the game induced by the mechanism the tax function has the following form,

t l
i (m

∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∗l x∗
i if |Gl | = 2;

p∗l(x∗
i − x∗−i ) + (p∗l )2(cl−E∗l−i )

γ if |Gl | = 3;
p∗l(x∗

i − x∗−i ) if |Gl | > 3.

(3.30)

Thus, by (3.15–3.18) and Lemma 3.2 we have,

ti (m
∗) =

∑
l∈Ri

t l
i (m

∗), (3.31)

for i �= kl1, kl2 , . . . , klr , (cf Sect. 3.3), and for i = kl j , j = 1, 2, . . . , r ,

tkl j
(m∗) = Q∗l j +

∑
l∈Rkl j

t l
kl j

(m∗). (3.32)

In the following lemma, we prove that the proposed mechanism is always budget
balanced.

Lemma 3.3 The proposed mechanism/game form is always budget balanced at
every feasible allocation. That is, the mechanism is budget-balanced at all alloca-
tions corresponding to NE messages as well as at messages that are off equilibrium.

The next result asserts that the mechanism/game form proposed in Sect. 3.3 is
individually rational.

Theorem 3.4 (Individual Rationality): The game form specified in Sect.3.3 is
individually rational, that is at every NE of the game induced by the mechanism
the corresponding allocation (x∗, t∗) is weakly preferred by all users to the initial
allocation (0, 0).

Finally, we prove that the mechanism of Sect. 3.3 implements in NE the corre-
spondence π defined by the solution of Problem Max.

Theorem 3.5 (Nash Implementation): Consider any NE m∗ of the game induced
by the mechanism of Sect.3.3. Then, the allocation (x∗, t∗) corresponding to m∗ is
an optimal solution of the centralized problem Max.

Existence and Characterization of the Nash Equilibria:
So far, we have assumed the existence of NE of the game induced by the proposed
game form/mechanism. In the following theorem, we prove that NE exist and char-
acterize all of them.
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Theorem 3.6 Let (x∗
1 , x∗

2 , · · · , x∗
N ) be an optimal solution of Problem Max and λ∗l ,

l ∈ L, be the corresponding Lagrange multipliers of the Karush-Kuhn-Tucker (KKT)
conditions. Then

m∗ := (x∗
1 , x∗

2 , · · · , x∗
N , p∗l1 , p∗l2 , · · · , p∗lL )

with p∗l = λ∗l , l ∈ L is a NE of the game induced by the proposed game form.

3.5 Implementation of the Decentralized Mechanism

We present one way of implementing the proposed mechanism at equilibrium. Con-
sider an arbitrary link l of the network. The users of that link communicate their
equilibrium messages to one another and to the network manager. The network
manager determines the rate and tax (or subsidy) of each user and announces this
information to the user. The users i, i ∈ N with tax t l

i > 0 pay the amount t l
i to the

network manager; the network manager redistributes the amount of money it receives
to the users j ∈ N with t l

j < 0. In the situation where the number of users in the
link is equal to two (resp. three) the network manager chooses randomly a user not
using that link to whom it gives the subsidy Q∗{l:|Gl |=2} (resp. Q∗{l:|Gl |=3}) defined
by (3.15) (resp. (3.16)). The above described process is repeated/takes place at every
network link. This process implements the mechanism described in the chapter at
equilibrium.

3.6 An Extension

So far we required that the users’ utility functions to be concave. We now weaken this
requirement; we assume that the users’ utilities are quasi-concave. We consider the
game form proposed in Sect. 3.3. By repeating the arguments of Theorem 3.1, Lemma
3.2, Lemma 3.3 and Theorem 3.4 we can show that: every NE of the game induced
by the game form is feasible; the game form/mechanism is individually rational and
budget-balanced at all feasible allocations, i.e. at every NE and off equilibrium. In
the following theorem we prove that every NE of the game induced by the proposed
game form results in a Walrasian Equilibrium (WE), [1].

Theorem 3.7 Consider the game (M, f,Vi , i = 1, 2, . . . , N ), induced by the game
form of Sect.3.3, with continuous and quasi-concave utilities ui , i ∈ N . Then, every
NE, m∗, of this game results in a Walrasian equilibrium, hence a Pareto optimal
allocation (x∗, t∗).
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Chapter 4
Power Allocation and Spectrum Sharing
in Multi-User, Multi-Channel Systems

4.1 Introduction

As wireless communication devices become more pervasive, the demand for the
frequency spectrum that serves as the underlying medium grows. Traditionally, the
problem of allocating the resource of the frequency spectrum has been handled by
granting organizations and companies licenses to broadcast at certain frequencies.
This rigid approach leads to significant under-utilization of this scarce resource.
Moreover, frequency utilization varies significantly with time and location. A cog-
nitive radio is a wireless communication device that is aware of its capabilities,
environment, and intended use, and can also learn new waveforms, models, or oper-
ational scenarios [1]. Recently, the Federal Communications Commission (FCC)
has established rules (see [2]) that describes how cognitive radios can lead to more
efficient use of the frequency spectrum. These rules along with the cognitive radio’s
features and the fact that information in the wireless network is decentralized and
users may be strategic give rise to a wealth of important and challenging research
issues associated with power allocation and spectrum sharing.

In this chapter we investigate a power allocation and spectrum sharing prob-
lem arising in multi-user, multi-channel systems with decentralized information and
strategic users. The key issues and challenges associated with this problem have
been discussed in Sect. 1.2 of the thesis. Here we formulate the problem as a public
goods allocation with strategic users. We propose a game form/mechanism for the
solution of the problem, we analyze the mechanism’s properties and compare our
results to the existing literature on power allocation and spectrum sharing problem
with strategic users.

A. Kakhbod, Resource Allocation in Decentralized Systems with Strategic 31
Agents, Springer Theses, DOI: 10.1007/978-1-4614-6319-1_4,
© Springer Science+Business Media New York 2013
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4.1.1 Contribution of the Chapter

The main contribution of this chapter in power allocation and spectrum sharing is
the discovery of a mechanism/game form which possesses the following properties.

(P1) The allocation corresponding to every NE of the game induced by the game
form/mechanism results in a Lindahl equilibrium, that is, it is Pareto optimal.
Conversely, every Lindahl equilibrium results in a NE of the game induced by
the proposed game form/mechanism.

(P2) It is individually rational, i.e., every user participates voluntarily in the game
induced by the mechanism.

(P3) It is budget balanced at every NE of the game induced by it as well as at all off
equilibrium messages that result in feasible allocations.

All the above desirable properties are achieved without any assumption about,
concavity, monotonicity or quasi-linearity of the users’ utility functions.

4.1.2 Comparison with Related Work

The results presented in this chapter are distinctly different from those currently
existing in the literature for the reasons we explain below.

Most of previous work within the context of competitive power allocation games
has investigated Gaussian interference games [3, 4], that is, situations where the users
operate in a Gaussian noise environment. In a Gaussian interference game, every user
can spread a fixed amount of power arbitrarily across a continuous bandwidth, and
attempts to maximize its total rate over all possible power allocation strategies. In
[4], the authors proved the existence and uniqueness of a NE for a two-player version
of the game, and provided an iterative water-filling algorithm to obtain the NE. This
work was extended in [3], where it was shown that the aforementioned pure NE can
be quite inefficient, but by playing an infinitely repeated game system performance
can be improved. Our results are different from those in [3, 4] because: (i) The users
are allowed to transmit at a discrete set of frequencies, and the power allocated at
each frequency most be chosen from a discrete set. (ii) The unique pure NE of the
one-stage game in [3, 4] does not necessarily result in a Pareto optimal allocation.
(iii) Most of the NE of the repeated game in [3] result in allocations that are not
Pareto optimal.

In [5], the authors presented a market-based model for situations where every user
can only use one or more than one frequency bands, and the game induced by their
proposed game form is super modular. They developed/presented a distributed best
response algorithm that converges to a NE. However, in general the Nash equilibria
of the game induced by their mechanism are not efficient, that is, they do not always
result in optimal centralized power allocations, or Pareto optimal allocations.

In [6] the authors investigated the case where all users have the same utility
function and each user can only use one frequency band. They proved the existence
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of a NE in the game resulting from the above assumptions. The NE is, in general,
not efficient. The results in [6] critically depend on the fact that the users’ utilities
are identical and monotonic; these constraints are not present in our model.

The game form/mechanism we have proposed/analyzed in this chapter is in the
category of the mechanisms that economists created for public good problems [7–9],
but it is distinctly different form all of them because the allocation spaces in our
formulation are discrete. To the best of our knowledge, the game form we presented
in this chapter is the first mechanism for power allocation and spectrum sharing in
multi-user, multi-channel systems with strategic users that achieves all three desir-
able properties (P1)–(P3). Furthermore, we do not impose any assumption about,
concavity, differentiability, monotonicity or quasi-linearity of the users’ utility func-
tions.

4.1.3 Organization of the Chapter

The rest of the chapter is organized as follows. In Sect. 4.2 we present our model,
describe the assumptions on the model’s information structure and state our objective.
In Sect. 4.3 we describe the allocation game form/mechanism we propose for the
solution of our problem. In Sect. 4.4 we interpret the components of the proposed
game form/mechanism. In Sect. 4.5 we investigate the properties of the proposed
game form.

4.2 The Model and Objective

4.2.1 The Model

We consider N users/agents communicating over f frequency bands. Let N :=
{1, . . . , N } be the set of users, and F := {1, 2, . . . , f } the set of frequency bands.
Each user i, i ∈N , is a communicating pair consisting of one transmitter and one
receiver. There is one additional agent, the (N + 1)th agent, who is different from
all the other N agents/users and whose role will be described below. Each user has
a fixed total power W̄ which he can allocate over the set F of frequency bands.
Let p j

i , i ∈N , j ∈ F denote the power user i allocates to frequency band j . The

power p j
i , i ∈ N , j ∈ F must be chosen from the set Q := {∅, Q1, Q2, . . . , Ql}

where Qk > 0, 1 ≤ k ≤ l, and ∅ means that user i does not use frequency band
j ∈ F to communicate information. In other words, Q is a set of quantization lev-
els that a user can use when he allocates power in a certain frequency band. Let
p̄i := (p1

i , p2
i , . . . , p f

i ), i ∈ N , denote a feasible bundle of power user i allocates

over the frequency bands in F. That is, p j
i ∈ Q, ∀ j ∈ F, and

∑
j ∈ F p j

i ≤ W̄ . Let
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P := ( p̄1, p̄2, . . . , p̄N ) be a profile of feasible bundles of powers allocated by the N
users over the frequency bands in F; let � denote the set of all feasible profiles P.
Since the sets, N , F and Q are finite, � is finite. Let |�| = G N ; we represent every
feasible power profile by a number between 1 and G N . Thus, � = {1, 2, . . . , G N }. If
user i allocates positive power in frequency band j , he may experience interference
from those users who also allocate positive power in that frequency band. The inten-
sity of the interference experienced by user i, i ∈ N , depends on the power profiles
used by the other users and the ‘channel gains’ h ji between the other users j, j �= i,
and i . The satisfaction that user i, i ∈ N , obtains during the communication process
depends on his transmission power and the intensity of the interference he expe-
riences. Consequently, user i’s, i ∈ N , satisfaction depends on the whole feasible
bundle k, k ∈ �, of power and is described by his utility function Vi (k, ti ), i ∈ N ,
where ti ∈ R represents the tax (subsidy) user i pays (receives) for communicating.
One example of such a utility function is presented in the discussion following the
assumptions. All taxes are paid to the (N + 1)th agent who is not a profit maker; this
agent acts like an accountant, collects the money from all users who pay taxes and
redistributes it to all users who receive subsidies.

We now state our assumptions about the model, the users’ utility functions, and the
nature of the problem we investigate. Some of these assumptions are restrictions we
impose, some others are a consequence of the nature of the problem we investigate.
We comment on each of the assumptions we make after we state all of them.

(A1) We consider a static power allocation and spectrum sharing problem.
(A2) Each agent/user is aware of all the other users present in the system. Users talk

to each other and exchange messages in a broadcast setting. That is, each user
hears every other user’s message; the (N +1)th agent hears all the other users’
messages. After the message exchange process ends/converges, decision about
power allocations at various frequency bands are made.

(A3) Each user’s transmission at a particular frequency band creates interference to
every user transmitting in the same frequency band.

(A4) The channel gains h ji ( f̂ ), j, i ∈ N , f̂ ∈ F are known to user i, i ∈ N . The gains
h ji ( f̂ ), j, i ∈ N , f̂ ∈ F, do not change during the communication process.

(A5) Each user’s utility Vi (x, ti ), x ∈ � ∪ {0},1 is decreasing in ti , ti ∈ R, i ∈ N .
Furthermore, Vi (x, ti ) ≥ Vi (0, ti ) for any ti ∈ R and x ∈ �.

(A6) The utility function Vi , i ∈ N , is user i’s private information.
(A7) The quantization set Q is selected from Q; the parameter W̄ is selected from

W , and Vi is selected from V for all i, i ∈ N . Q,Q, W̄ ,W and V are common
knowledge among all users.

(A8) Each user behaves strategically, that is, each user is selfish and attempts to
maximize his own utility function under the constraints on the total power
available to him, and on the set Q of quantization levels.

(A9) The representation/association of every feasible power profile by a number in
the set � is common knowledge among all users.

1 The number zero denotes every non-feasible allocation.
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We now briefly discuss each of the above assumptions. We restrict attention to the
static power allocation and spectrum sharing problem (A1). The dynamic problem is
a major open problem that we intend to address in the future. We assume that all users
are in a relatively small area, so they can hear each other, are aware of the presence of
one another, interfere with one another and exchange messages in a broadcast setting
((A2),(A3)). Since each user’s satisfaction depends on his transmission power and the
interference he experiences, his utility will depend on the whole power profile x ∈�;
furthermore, the higher the tax a user pays, the lower is his satisfaction; moreover
any feasible power allocation x , (i.e. x ∈�) is preferred to any non-feasible power
allocation denoted by 0. All these considerations justify (A5). An example of Vi (x, ti )
is

Ui

⎛
⎝ hii (1)p1

i
N0
2 +∑

j, j �=i h ji (1)p1
j

, . . . ,
hii ( f )p f

i
N0
2 +∑

j, j �=i h ji ( f )p f
j

⎞
⎠− ti ,

where
hii (k)pk

i
N0
2 +∑

j, j �=i h ji (k)pk
j

is the Signal to Interference Ratio (SIR) in frequency

band k. This example illustrates the following: (1) A user’s utility function may
explicitly depend on the channel gains h ji , j, i ∈ N ; (2) User i, i ∈ N , must know
h ji , j ∈N , so that he can be able to evaluate the impact of any feasible power profile
x ∈ � that he proposes on his own utility. Thus, we assume that the channel gains h ji ,
j ∈ N , are known to user i , and this is true for every user i (A4). These channel gains
have to be measured before the communication process starts. In the situation where
users are cooperative h ji can easily be determined; user j sends a pilot signal of a
fixed power to user i , user i measures the received power and determines h ji . When
users are strategic/selfish, the measurement of h ji can not be achieved according to
the process described above, because user j may have an incentive to use a pilot
signal other than the one agreed beforehand so that he can obtain an advantage over
user i . In this situation procedures similar to ones described in [3] (Sect. 5) can be
used to measure h ji ; we present a method, different from those proposed in [3], for
measuring h ji ( f̂ ), j, i ∈ N , f̂ ∈ F, after we discuss all the assumptions. In (A4) we
further assume that h ji do not change during the communication process. Such an
assumption is reasonable when the mobile users move slowly and the variation of
the channel is considerably slower than the duration of the communication process.
Assumption (A8) is a behavioral one not a restriction on the model. Since according
to (A8) users are strategic, each user may not want to reveal his own preference
over the set of feasible power allocations, thus assumption (A6) is reasonable. It is
also reasonable to assume that the function space where each user’s utility comes
from is the same for all users and common knowledge among all users (A7). The
fact that a user’s utility is his private information along with assumption (A8) have
an immediate impact on the solution/equilibrium concepts that can be used in the
game induced by any mechanism. We will address this issue when we define the
objective of our problem. Assumption (A7) also ensures that each user uses the same
quantization set. Furthermore, it states that each user knows the power available to
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every other user. The solution methodology presented in this chapter works also for
the case where every user knows his total available power, has an upper bound on the
power available to all other users, and this upper bound is common knowledge among
all users. Assumption (A9) is necessary for the proposed game form/mechanism in
this chapter; it ensures that each user interprets consistently the messages he receives
from all other users.

In addition to the method described in [3], another method for determining the
gains h ji ( f̂ ), j, i ∈N , f̂ ∈ F is the following. We assume that the gain hi j ( f̂ ) from
the transmitter of pair i to the receiver of pair j is the same as h̄ j i ( f̂ ), the gain from
the receiver of pair j to the transmitter of pair i for all i, j ∈ N and f̂ ∈ F. Before
the power allocation and spectrum sharing process starts, the (N + 1)th agent asks

transmitter i and receiver j to communicate with one another at frequency f̂ by using
a fixed power p̄, and to report to him their received powers. This communication
process takes place as follows: First transmitter i sends a message with power p̄ at
frequency f̂ to receiver j ; then receiver j sends a message with power p̄ at frequency
f̂ to transmitter i ; finally transmitter i and receiver j report their received power to
the (N + 1)th agent. This process is sequentially repeated between transmitter i and
receiver j for all frequencies f̂ ∈ F. After transmitter i and receiver j complete the
above-described communication process, the same process is repeated sequentially
for all transmitter-receiver pairs (k, l), k, l ∈ N , at all frequencies f̂ ∈ F. The (N +
1)th agents collects all the reports generated by the process described above. If the
reports of any transmitter i and receiver j (i �= j, i, j ∈N ) differ at any frequency
f̂ ∈ F, then user i and user j are not allowed to participate in the power allocation
and spectrum sharing process.

The above-described method for determining h ji ( f̂ ), i, j ∈N , f̂ ∈ F, provides
an incentive to user i, i ∈ N , to follow/obey its rules if user i does better by partici-
pating in the power allocation and spectrum sharing process than by not participating

in it. Consequently, the method proposed for determining h ji ( f̂ ), i, j ∈ N , f̂ ∈ F,
will work if the game form we propose is individually rational. In this chapter we
prove that individual rationality is one of the properties of the proposed game form.

4.2.2 Objective

The objective is to determine a game form/mechanism that, for any realization
(V1, V2, . . . , VN , Q, W̄ )∈ V N × Q × W , possesses the following features:

(P1) It implements in NE the Pareto correspondence.
(P2) It is individually rational, i.e., the users voluntarily participate in the game

induced by it.
(P3) It is budget balanced at all NE of the game it induces, as well as at all off

equilibrium messages that result in feasible allocations.
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We follow the philosophy of implementation theory (cf. Sect. 2.1.1) for the specifi-
cation of our game form. We note (cf. Sect. 2.1.4) that the Pareto correspondence is
implementable in NE. In the next section we present a game form/mechanism that
achieves the above objective.

4.3 A Mechanism for Power Allocation and Spectrum
Sharing

For the decentralized problem formulated in Sect. 4.2 we propose a game form the
components of which are described as follows.

Message space M := M1 × M2 × · · · MN : The message/strategy space for
user i, i = 1, 2, . . . , N , is given by Mi ⊆ Z × R+, where Z and R+ are the sets of
integers and non-negative real numbers, respectively. Specifically, a message of user
i is of the form, mi = (ni ,πi ) where ni ∈ Z and πi ∈ R+.

The meaning of the message space is the following. The component ni represents
the power profile proposed by user i ; the component πi denotes the price per unit
of power user i is willing to pay per unit of the power profile ni . The message ni

belongs to an extended set Z of power profiles. Every element/integer in Z − �

corresponds to a power profile that is non-feasible. Working with such an extended
set of power profiles does not alter the solution of the original problem since, as we
show in Sect. 4.5, all Nash equilibria of the game induced by the proposed mechanism
correspond to feasible power allocations.
Outcome function �: The outcome function � is given by, � : M → N × R

N . and
is defined as follows. For any m := (m1, m2, . . . , m N )∈ M,

�(m) = �(m1, m2, . . . , m N )

=
([

I

(∑N
i=1 ni

N

)]
, t1(m), . . . , tN (m)

)
,

where I

(∑N
i=1 ni
N

)
is the integer number closest (from above) to

(∑N
i=1 ni
N

)
and

[
I

(∑N
i=1 ni

N

)]
=
⎧⎨
⎩

I

(∑N
i=1 ni
N

)
, if I

(∑N
i=1 ni
N

)
∈ �;

0, otherwise.

The component ti , i = 1, 2, . . . , N , describes the tax (subsidy) that user i pays
(receives). The tax(subsidy) for every user is defined as follows,

ti (m) =
{

I

(∑N
i=1 ni

N

)[
πi+1 − πi+2

N

]
+ (ni − ni+1)

2πi − (ni+1 − ni+2)
2πi+1

}

http://dx.doi.org/10.1007/978-1-4614-6319-1_2
http://dx.doi.org/10.1007/978-1-4614-6319-1_2
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× 1

{
I

(∑N
i=1 ni

N

)
∈�

}
(4.1)

where 1{A} denotes the indicator function of event A, that is, 1{A} = 1 if A is true
and 1{A} = 0 otherwise, and N + 1 and N + 2 are to be interpreted as 1 and 2,
respectively.

4.4 Interpretation of the Mechanism

As pointed out in Sect. 4.2, the design of an efficient resource allocation mechanism
has to achieve the following goals. (i) It must induce strategic users to voluntarily
participate in the allocation process. (ii) It must induce strategic users to follow its
operational rules. (iii) It must result in Pareto optimal allocations at all equilibria of
the induced game. (iv) It must result in a balanced budget at all equilibria and off
equilibrium.
To achieve these goals we propose the tax incentive function described by Eq. (4.1).
This function consists of three components, �1, �2 and �3, that is,

ti (m) = I

(∑N
i=1 ni

N

)[
πi+1 − πi+2

N

]

︸ ︷︷ ︸
�1

+ (ni − ni+1)
2πi︸ ︷︷ ︸

�2

−(ni+1 − ni+2)
2πi+1︸ ︷︷ ︸

�3

(4.2)
The term �1 specifies the amount that each user must pay for the power profile which

is determined by the mechanism. The price per unit of power,
πi+1 − πi+2

N
, paid by

user i, i = 1, 2, . . . , N , is not controlled by that user. The terms �2 considered
collectively provide an incentive to all users to propose the same power profile. The
term �3 is not controlled by user i , its goal is to lead to a balanced budget.

4.5 Properties of the Mechanism

We prove the mechanism proposed in Sect. 4.3 has the properties (P1), (P2) and (P3)
stated in Sect. 4.2.2 by proceeding as follows. First, we derive a property of every NE
of the game induced by the mechanism proposed in Sect. 4.2, (Lemma 4.1); based
on this result we determine the form of the tax (subsidy) at all Nash equilibria. Then,
we show that every NE of the game induced by the proposed mechanism results in a
feasible allocation, (Lemma 4.2). Afterward, we prove that the proposed mechanism
is always budget balanced, (Lemma 4.3). Subsequently we show that users voluntarily
participate in the game, by proving that the utility they receive at all NE is greater
than or equal to zero, which is the utility they receive by not participating in the
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power allocation and spectrum sharing process, (Lemma 4.4). Finally, we show that
every NE of the game induced by the mechanism proposed in Sect. 4.3 results in a
Lindahl equilibrium ([10] Sect. 12.4.2); that is, every NE results in a Pareto optimal
allocation (Theorem 4.5). Furthermore, we prove that every Lindahl equilibrium can
be associated with a NE of the game induced by the proposed mechanism in Sect. 4.3,
(Theorem 4.6).

We now proceed to prove the above-stated properties.

Lemma 4.1 Let m∗ be a NE of the game induced by the proposed mechanism. Then
for every i, i = 1, 2, . . . , N, we have

(n∗
i − n∗

i+1)
2π∗

i = 0. (4.3)

Proof Since m∗ = ((n∗
1,π

∗
1), (n∗

2,π
∗
2), . . . , (n∗

N ,π∗
N )) is a NE, the following holds

for every i, i = 1, 2, . . . , N , and ∀ mi ∈ Mi ,

Vi

([
I

(∑N
k=1 n∗

k

N

)]
, ti (m

∗)
)

≥ Vi

⎛
⎜⎝
⎡
⎢⎣I

⎛
⎜⎝
∑N

k=1
k �=i

n∗
k + ni

N

⎞
⎟⎠
⎤
⎥⎦ , ti (mi , m∗−i )

⎞
⎟⎠ ,

(4.4)

where m−i := (m1, m2, . . . , mi−1, mi+1, . . . , m N ).
Set ni equal to n∗

i ; then for every πi ≥ 0 Eq. (4.4) along with (4.1) imply

Vi

([
I

(∑N
k=1 n∗

k

N

)]
, ti (m

∗)
)

≥ Vi

([
I

(∑N
k=1 n∗

k

N

)]
, ti (mi , m∗−i )

)
(4.5)

where

ti (m
∗) =

{
I

(∑N
k=1 n∗

k
N

)[
π∗

i+1 − π∗
i+2

N

]
+ (n∗

i − n∗
i+1)2π∗

i − (n∗
i+1 − n∗

i+2)2π∗
i+1

}

× 1

{
I

(∑N
i=1 n∗

i
N

)
∈ �

}
(4.6)

ti ((n
∗
i , πi ), m∗−i ) =

{
I

(∑N
k=1 n∗

k
N

)[
π∗

i+1 − π∗
i+2

N

]
+ (n∗

i − n∗
i+1)2πi − (n∗

i+1 − n∗
i+2)2π∗

i+1

}

× 1

{
I

(∑N
i=1 n∗

i
N

)
∈ �

}
(4.7)

Since Vi is decreasing in ti Eq. (4.5) along with (4.6) and (4.7) yield

π∗
i (n∗

i − n∗
i+1)

2 ≤ πi (n
∗
i − n∗

i+1)
2 ∀ πi ≥ 0. (4.8)
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Therefore, π∗
i (n∗

i − n∗
i+1)

2 = 0 for every i, i = 1, 2, . . . , N , at every NE m∗. �

An immediate consequence of Lemma 4.1 is the following. At every NE m∗ of
the game induced by the mechanism the tax function t (m∗) has the form

ti (m
∗) = I

(∑N
k=1 n∗

k

N

)[
π∗

i+1 − π∗
i+2

N

]
× 1

{
I

(∑N
i=1 n∗

i

N

)
∈ �

}
. (4.9)

In the following lemma, we show that every NE of the game induced by the proposed
mechanism is feasible.

Lemma 4.2 Every NE of the game induced by the proposed mechanism results in a
feasible allocation.

Proof We prove the assertion of the lemma by contradiction. Let m∗ be a NE
for the game induced by the mechanism. Suppose m∗ does not result in a feasi-

ble allocation, i.e., I

(∑N
i=1 n∗

i
N

)
/∈ {1, 2, 3, . . . , G N }. Then

[
I

(∑N
j=1 n∗

j
N

)]
= 0.

Since
∑N

j=1(π
∗
j+1 − π∗

j+2) = 0, there exists i, i ∈ {1, 2, . . . , N }, such that

π∗
i+1 − π∗

i+2 ≤ 0. (4.10)

Keep m∗−i fixed and define mi = (ni ,πi ) as follows; set πi = 0, and choose ni such

that I

(∑N
j=1, j �=i n∗

j +ni

N

)
∈�. Now, Eq. (4.1) yield that

ti (mi , m∗−i ) ≤ 0. (4.11)

Equation (4.11) along with Lemma 4.1 and assumption (A5) result in

Vi (0, 0) = Vi

([
I

(∑N
j=1 n∗

j

N

)]
, ti (m

∗)
)

< Vi

([
I

(∑N
j=1, j �=i n∗

j + ni

N

)]
, ti (mi , m∗−i )

)
. (4.12)

But (4.12) is in contradiction with the fact that m∗ is a NE. Therefore, every NE of
the game induced by the proposed mechanism results in a feasible allocation. �

In the following lemma, we show that the proposed mechanism is always budget
balanced.

Lemma 4.3 The proposed mechanism is always budget balanced.

Proof To have a balanced budget it is necessary and sufficient to satisfy∑N
i=1 ti (mi ) = 0. It is easy to see that budget balance always holds since from
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(4.1) we have

N∑
i=1

ti (m) =
N∑

i=1

I

(∑N
i=1 ni

N

)[
πi+1 − πi+2

N

]

+
N∑

i=1

(
(ni − ni+1)

2πi − (ni+1 − ni+2)
2πi+1

)
= 0. (4.13)

The last equality in (4.13) holds, because

N∑
i=1

(πi+1 − πi+2) =
N∑

i=1

(
(ni − ni+1)

2πi − (ni+1 − ni+2)
2πi+1

)
= 0.

�

The next result asserts that the mechanism/game form proposed in Sect. 4.3 is
individually rational.

Lemma 4.4 The game form specified in Sect. 4.3 is individually rational, i.e.,

at every NE m∗ the corresponding allocation

(
I

(∑N
i=1 n∗

i
N

)
, t1(m∗), t2(m∗), . . . ,

tN (m∗)
)

is weakly preferred by all users to their initial endowment (∅, 0).

Proof We need to show that Vi

(
I

(∑N
i=1 n∗

i
N

)
, ti (m∗)

)
≥ Vi (∅, 0) = 0 for every

i, i = 1, 2, . . . , N . By the property of every NE, it follows that for every i ∈ N and
(ni ,πi )∈ Mi ,

Vi

(
I

(∑N
k=1 n∗

k

N

)
, ti (m

∗)
)

≥ Vi

⎛
⎜⎝
⎡
⎢⎣I

⎛
⎜⎝
∑N

k=1
k �=i

n∗
k + ni

N

⎞
⎟⎠
⎤
⎥⎦ , ti ((ni ,πi ), m∗−i )

⎞
⎟⎠ .

(4.14)

Choosing ni sufficiently large so that I

⎛
⎝
∑N

k=1
k �=i

n∗
k+ni

N

⎞
⎠ /∈ {1, 2, . . . , G N }, gives

⎡
⎢⎣I

⎛
⎜⎝
∑N

k=1
k �=i

n∗
k + n̂i

N

⎞
⎟⎠
⎤
⎥⎦ = 0, (4.15)
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and
ti ((ni ,πi ), m∗−i ) = 0. (4.16)

because of (4.1). Consequently, (4.15) and (4.16) establish that

Vi

(
I

(∑N
k=1 n∗

k

N

)
, ti (m

∗)
)

≥ Vi (∅, 0) = 0. (4.17)

�

In the following theorem, we show that every NE of the game induced by the mech-
anism proposed in Sect. 4.3 results in a Lindahl equilibrium.

Theorem 4.5 Suppose that an allocation �m, for any m ∈ M, is determined as
follows

�m := (�(m), t1(m), . . . , tN (m), L1, . . . , L N )

where �(m) :=
[
I

(∑N
k=1 nk
N

)]
, for each i, i = 1, 2, . . . , N , ti (m) is defined by

(4.1), and

Li := πi+1 − πi+2

N
. (4.18)

Then �m∗ is a Lindahl equilibrium corresponding to the NE

m∗ = (
(n∗

1,π
∗
1), (n∗

2,π
∗
2), . . . , (n∗

N ,π∗
N )
)

of the game induced by the proposed mechanism.

Proof �m∗ defines a Lindahl equilibrium if it satisfies the following three conditions
([10] Sect. 12.4.2)

1. (C1):
∑N

i=1 L∗
i = 0.

2. (C2):
∑N

i=1 ti (m∗) = 0.

3. (C3): For all i, i = 1, 2, . . . , N ,

(
I

(∑N
k=1 n∗

k
N

)
, ti (m∗)

)
is a solution of the

following optimization problem:

maxx,ti Vi (x, ti )
subject to x L∗

i = ti
x ∈ �.

(4.19)

By simple algebra we can show that conditions 1 and 2 are satisfied. We need
to prove that condition 3 is also satisfied. We do this by contradiction. Suppose(

I

(∑N
k=1 n∗

k
N

)
, ti (m∗)

)
is not a solution of the optimization problem defined by

(4.19) for all i . Then, for some user i, i ∈ {1, 2, . . . , N }, there is a power profile
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ζ ∈ � and ζ �= I

(∑N
k=1 n∗

k
N

)
such that

Vi

(
I

(∑N
k=1 n∗

k

N

)
,

[
I

(∑N
k=1 n∗

k

N

)]
L∗

i

)
< Vi (ζ, ζ L∗

i ). (4.20)

Now choose π̄i = 0 and n̄i = I

(
Nζ −∑N

j=1
j �=i

n∗
j

)
. Using Eqs. (4.1) and (4.3)

together with the fact that π̄i = 0 we obtain

ti ((n̄i , π̄i ), m∗−i ) = ζ

[
π∗

i+1 − π∗
i+2

N

]
= ζ L∗

i . (4.21)

Then, because of (4.20) and (4.21) we get

Vi (ζ, ζ L∗
i )Z = Vi

⎛
⎜⎝
⎡
⎢⎣I

⎛
⎜⎝
∑N

j=1
j �=i

n∗
j + n̄i

N

⎞
⎟⎠
⎤
⎥⎦ , ti ((n̄i , π̄i ), m∗−i )

⎞
⎟⎠

≥ Vi

⎛
⎜⎝
⎡
⎢⎣I

⎛
⎜⎝
∑N

j=1
j �=i

n∗
j + n∗

i

N

⎞
⎟⎠
⎤
⎥⎦ , ti (m

∗)

⎞
⎟⎠

which is a contradiction, because

m∗ = (
(n∗

1,π
∗
1), (n∗

2,π
∗
2), . . . , (n∗

N ,π∗
N )s

)

is a NE of the game induced by the proposed game form. Consequently,(
I

(∑N
k=1 n∗

k
N

)
, ti (m∗)

)
is a solution of the optimization problem defined by (4.19)

for all i . Since �m∗ satisfies (C1)–(C3) it defines a Lindahl equilibrium. The alloca-
tion {

I

(∑N
k=1 n∗

k

N

)
, t1(m

∗), t2(m
∗), . . . , tN (m∗)

}

is also Pareto optimal ([10] Theorem (12.4.1)). �

Finally, we establish that any Lindahl equilibrium can be associated with a NE of
the game induced by the proposed mechanism.
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Theorem 4.6 Let � = (
��, t�1 , t�2 , . . . , t�N , L�

1, L�
2, . . . , L�

N

)
be a Lindahl equilib-

rium. Then, there does exist a NE m∗ of the game induced by the proposed mechanism
so that

�(m∗) =
(
��, t�1 , t�2 , . . . , t�N

)
(4.22)

where for every i, i = 1, 2, . . . , N, ti (m∗) = �� L�
i .

Proof Consider the message profile m∗ such that for every i, i = 1, 2, . . . , N , m∗
i =

(n∗
i ,π

∗
i ) and, ∀i, i = 1, 2, . . . , N , n∗

i = (��) and π∗
i ’s are the solution of the fol-

lowing system of equations,

L�
1 = π∗

2 − π∗
3

N
, L�

2 = π∗
3 − π∗

4

N
, . . . , L�

N = π∗
1 − π∗

2

N
. (4.23)

Choosing π∗
1 sufficiently large guarantees that the following is a feasible solution to

(4.23), i.e., πi ≥ 0,∀ i , π∗
1 = sufficiently large,π∗

2 = π∗
1 − L�

N and

π∗
i = (i − 1)π∗

1 −
⎛
⎝L�

N +
i−2∑
j=1

L�
j

⎞
⎠ i, 3 ≤ i ≤ N .

Furthermore,

�� =
[

I

(∑N
k=1 n∗

k

N

)]
. (4.24)

To complete the proof, we need to prove that m∗ is a NE of the game induced by the
mechanism. For that matter, it is enough to show that, for every i, i = 1, 2, . . . , N ,
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I

(∑N
k=1 n∗

k

N

)]
, ti (m

∗)
)

≥ Vi

⎛
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⎡
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⎜⎝
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n∗
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N

⎞
⎟⎠
⎤
⎥⎦ , ti (m

∗−i , mi )

⎞
⎟⎠

∀ mi ∈M. (4.25)

Equation (4.9) along with Eq. (4.23) imply ti (m∗) = L�
i

[
I

(∑N
k=1 n∗

k
N

)]
. Further-

more, positivity of (n∗
i+1 − ni )

2πi together with fact that Vi is decreasing in ti give
that

Vi

(
ξ, L�

i ξ
)

≥ Vi

(
ξ, L�

i ξ + (n∗
i+1 − ni )

2πi

)
∀ξ, ξ ∈ �.

Moreover, since � is a Lindahl equilibrium, (C3) implies that the following holds
for every i, i = 1, 2, . . . , N ,

Vi

(
��, L�

i �
�
)

≥ Vi

(
ξ, L�

i ξ
)

∀ξ ∈ �, (4.26)
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Consequently, the fact that ti (m∗) = L�
i

[
I

(∑N
k=1 n∗

k
N

)]
along with (4.25) and (4.26)

result in

Vi

([
I

(∑N
k=1 n∗

k

N

)]
, ti (m∗)

)
= Vi

([
I
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k=1 n∗

k

N

)]
, L�

i

[
I

(∑N
k=1 n∗

k

N

)])

≥ Vi

(
ξ, L�

i ξ
)

≥ Vi

(
ξ, L�

i ξ + (n∗
i+1 − ni )

2πi

)
∀ ξ, ξ ∈�

= Vi

⎛
⎜⎝
⎡
⎢⎣I

⎛
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∑N

j=1
j �=i

n∗
j + ni

N

⎞
⎟⎠
⎤
⎥⎦ , ti (mi , m∗−i )

⎞
⎟⎠

∀mi ∈ M.

Therefore m∗ is a NE of the game induced by the proposed mechanism. �
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Chapter 5
Multi-Rate Multicast Service Provisioning

5.1 Introduction

5.1.1 Motivation and Challenges

Multicasting provides an efficient method of transmitting data in real time applications
from one source to many users. The source sends one copy of a message to its users
and this copy is replicated only at the branching points of a multicast tree. Real life
examples of such multicast applications are audio/video broadcasting, teleconfer-
encing, distributed databases, financial information, electronic newspapers, weather
maps and experimental data. Conventional multicast studies the problem in which
the rate received by all the users of the same multicast group is constant. The inher-
ent problem with such a formulation is that a constant rate will overwhelm the slow
receivers while starving the fast ones. Multi-rate multicast transmissions can be used
to address this problem by allowing a receiver to obtain data at a rate that satisfies
its requirements.

In this chapter we investigate the multi-rate multicast service provisioning prob-
lem in wired networks with arbitrary topology and strategic users. We formulate the
problem as the combination of a market and a public goods allocations with strategic
users. All existing literature on multi-rate multicast assumes non-strategic users. As
we explain in Sect. 5.1.2 below, the nature of the problem suggests that strategic
behavior may be beneficial to the users. Strategic behavior results in new challenges
(conceptual and technical) in multi-rate multicast. The key issues and challenges
associated with this problem have been discussed in Sect. 1.2 of the thesis. Here we
propose a game form/mechanism for the solution of the problem, and analyze the
mechanism’s properties.

A. Kakhbod, Resource Allocation in Decentralized Systems with Strategic 47
Agents, Springer Theses, DOI: 10.1007/978-1-4614-6319-1_5,
© Springer Science+Business Media New York 2013
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5.1.2 Why is Strategic Behavior Justified?

Strategic behavior in multi-rate multicast can be justified as follows. The literature
on multi-rate multicast with non-strategic users reveals that the problem has char-
acteristics of the free-rider problem. That is, at any network link, a member of a
multicast group is charged only if it requests the maximum rate/bandwidth within
the group at that link. As a result of this feature of the problem, users are incentivized
to misrepresent their demand for bandwidth; by slightly reducing its demand, a user
can increase its overall utility because it slightly reduces its own satisfaction from the
quality of service it receives, but pays considerably less tax. Thus, strategic behavior
may result in higher overall utility for a user than non-strategic behavior.

5.1.3 Contribution of the Chapter

The main contributions of this chapter are:

1. The formulation of the multi-rate multicast service provisioning problem in wired
networks with arbitrary topology and strategic users.

2. The discovery of a decentralized rate allocation mechanism for multi-rate multi-
cast service provisioning in networks with arbitrary/general topology and strategic
users, which possesses the following properties.

(P1) It implements weakly the solution of the centralized multi-rate multicast
service provisioning problem in Nash equilibria. That is, the allocation cor-
responding to each NE of the game induced by it, is a globally optimal
solution of the corresponding centralized multi-rate multicast service pro-
visioning problem.

(P2) It is individually rational, that is, the network users/users voluntarily partic-
ipate in the rate allocation process.

(P3) It is budget balanced at all feasible allocations, that is, at all the alloca-
tions that correspond to NE messages/strategies as well as at all the feasible
allocations that correspond to off-equilibrium messages/strategies.

The results of this chapter are also a contribution to the theory of mechanism design.
In Sect. 5.2 we show that the multi-rate multicast problem with strategic users is
the combination of a market and a public goods problem with strategic users. Such
problems have not been previously investigated within the context of mechanism
design.

5.1.4 Comparison with Related Work

Within the context of single rate and multi-rate multicast problems, studies have
addressed issues of bandwidth/rate allocation [1–12], routing [8, 13–15] and reli-
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ability [16, 17]. Most of the literature on rate allocation is done via the notion of
fairness [1, 2, 6, 7, 9], specifically max-min fairness [18] and proportional fairness
[19]. The authors of [1] develop a unified framework for diverse fairness objectives
via the notion of fair allocation of utilities. A more general approach to rate alloca-
tion is via utility maximization. Utility maximization is more general because rate
allocation with the fairness property is utility maximizing when the utility has a spe-
cial form. The authors of [10–12] investigated multi-rate multicast problems with a
utility maximization objective.

In all the aforementioned papers, it is assumed the agents/users are not strategic,
that is, they are price-takers who are willing to follow/obey the rules of the resource
allocation mechanism.

In contrast to all the above papers, our work considers the multi-rate multicast
problems with strategic users, that is, users which are self-utility maximizers, and do
not necessarily obey the rules of the resource allocation mechanism, but have to be
incentivized/induced to follow them. To the best of our knowledge, the mechanism,
proposed in this chapter, is the first to present a mechanism possessing properties
(P1)–(P3) for the multi-rate multicast service provisioning problem with strategic
users.

5.1.5 Organization of the Chapter

The rest of the chapter is organized as follows. In Sect. 5.2 we formulate the multi-rate
multicast service provisioning problem with strategic users. In Sect. 5.3 we describe
the allocation mechanism/game form we propose for the solution of the multi-rate
multicast service provisioning problem. In Sect. 5.4 we analyze the properties of the
proposed mechanism. The proofs of all the results established in this chapter appear
in Appendix B.

5.2 The Multi-Rate Multicast Problem with Strategic
Network Users, Problem Formulation

In this Section we present the formulation of the multi-rate multicast problem in wired
communication networks with strategic users. We proceed as follows, In Sect. 5.2.1
we formulate the centralized multi-rate multicast problem the solution of which we
want to implement in Nash equilibria. In Sect. 5.2.2 we formulate the decentralized
multi-rate multicast problem with strategic network users, and state our assumptions
and objectives.
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5.2.1 The Centralized Problem

We consider a wired network with N disjoint groups of strategic users; we denote
the set of groups by N = {G1, G2, . . . , G N }. The network topology, the capacity of
the network links, and the routes assigned to users’ services are fixed and given. We
denote user j in group Gi by ( j, Gi ). The utility function of user ( j, Gi ), Gi ∈ N ,
has the form

V( j,Gi )(x( j,Gi ), t( j,Gi )) = U( j,Gi )(x( j,Gi )) − t( j,Gi ). (5.1)

The term U( j,Gi )(x( j,Gi )) expresses user ( j, Gi )’s satisfaction from the service
x( j,Gi ) it receives. The term t( j,Gi ) represents the tax (money) user ( j, Gi ) pays for
the services it receives. We assume that U( j,Gi ) is a concave and increasing function
of the service x( j,Gi ) user ( j, Gi ) receives, and t( j,Gi ) ∈ R. When t( j,Gi ) > 0 user
( j, Gi ) pays money for the services it receives; this money is paid to other network
users. When t( j,Gi ) < 0 user ( j, Gi ) receives money from other users. Overall, the
amount of money paid by some of the network users must be equal to the amount of
money received by the rest of the users so that

∑
Gi ∈N

∑
j∈Gi

t( j,Gi ) = 0.

Denote: by L the set of links of the network; by cl the capacity of link l; by
R( j,Gi ) the set of links l, l ∈ L, that form the route of user ( j, Gi ), (as pointed out
above each user’s route is fixed); by Gi (l) the set of users in Gi who use link l,
i.e., Gi (l) = { j : j ∈ Gi and l ∈ R( j,Gi )}; by xGi (l) the maximum amount of
bandwidth requested by group Gi at link l, i.e., xGi (l) := max j∈Gi (l){x( j,Gi )}; by
Gi

max(l) the set of users in Gi using link l and request xGi (l) amount of bandwidth,
i.e., Gi

max(l) := {( j, Gi ) : x( j,Gi ) = xGi (l)}; by ( j, Gmax
i (l)) a user in Gmax

i (l); by
LGi the set of links used by users in group Gi , i.e., LGi := {l : ∃( j, Gi ) s.t. l ∈
R( j,Gi )}; by Rmax

( j,Gi )
the set of links l, l ∈ R( j,Gi ), such that x( j,Gi ) = xGi (l), i.e.

Rmax
( j,Gi )

= {l : l ∈ R( j,Gi ) s.t. ( j, Gi ) = ( j, Gmax
i (l))}; by Ql the set of groups that

include at least one user using link l, i.e., Ql := {Gi : l ∈ LGi }.
We assume that a central authority (the network manager) has access to all of the

above information. The objective of this authority is to solve the following centralized
optimization problem that we call Max.0

max
x,t

∑
Gi ∈N

∑
j∈Gi

[
U( j,Gi )(x( j,Gi )) − t( j,Gi )

]
Max.0 (5.2)

subject to ∑
Gi ∈Ql

max
j∈Gi (l)

x( j,Gi ) ≤ cl , ∀ l ∈ L, (5.3)

∑
Gi ∈N

∑
j∈Gi

t( j,Gi ) = 0, (5.4)

x( j,Gi ) ≥ 0, ∀ j ∈ Gi , Gi ∈ N , (5.5)
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where (x, t) = (x( j,Gi ), t( j,Gi ), j ∈ Gi , Gi ∈ N ). The inequalities in (5.3) express
the capacity constraints that must be satisfied at each network link. The equality in
(5.4) expresses the fact that the budget must be balanced, i.e., the total amount of
money paid by some of the users must be equal to the amount of money received by
the rest of the users. The inequalities in (5.5) express the fact that the users’ received
rates x( j,Gi ), Gi ∈ N , must be nonnegative. Every (x, t) that satisfies Eqs. (5.3)–
(5.5) is called a feasible allocation/solution.

Problem Max.0 is equivalent to problem Max.1 below,

max
x

∑
Gi ∈N

∑
j∈Gi

U( j,Gi )(x( j,Gi )) Max.1 (5.6)

subject to ∑
Gi ∈Ql

∑
( j,Gi )∈Gi (l)

x( j,Gi ) ≤ cl , ∀ j ∈ Gi (l), ∀ l ∈ L, (5.7)

x( j,Gi ) ≥ 0,∀ j ∈ Gi , Gi ∈ N , (5.8)

in the following sense. The set of inequalities in (5.7) and (5.8) result in the same
domain of solutions x as the set of inequalities in (5.3) and (5.5). Thus, any
optimal solution (x( j,Gi ), j ∈ Gi , Gi ∈ N ) of problem Max.1 along with any
t = {t( j,Gi ), j ∈ Gi , Gi ∈ N } such that

∑
Gi ∈N

∑
j∈Gi

t( j,Gi ) = 0 is also an opti-
mal solution (x∗

( j,Gi )
, t∗( j,Gi )

, j ∈ Gi , Gi ∈ N ) of Max.0. We will refer to Max.1 as
the centralized multi-rate multicast problem.

Let E(l) be the set of inequalities defined by (5.7) for link l. Every element of
E(l) is denoted by e(l), e(l) ∈ E(l). Define E(l, ( j, Gi )) ⊆ E(l) by

E(l, ( j, Gi )) := {e(l) ⊆ E(l) : x( j,Gi ) appears in e(l)}. (5.9)

Let U denote the set of functions

U : R+ ∪ {0} → R+ ∪ {0} (5.10)

where U is concave and increasing, and R+ denotes the set of non-negative real
numbers. Let T denote the set of all possible network topologies, network resources
and user routes. Consider problem Max.1 for all possible realizations

×Gi ∈N × j∈Gi U( j,Gi ) × T ∈ U
∑

Gi ∈N |Gi | × T, (5.11)

of the users’ utilities, the network topology, its resources and the users’ routes. Then

the solution of Max.1 for each (U, T ) ∈ U
∑

Gi ∈N |Gi | × T defines a map

� : U
∑

Gi ∈N |Gi | × T → A, (5.12)
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where A ∈ R

∑
Gi ∈N |Gi |

+ is the set of all possible rate/bandwidth allocations to the
network’s users. We call � the solution of the centralized problem.

5.2.2 The Decentralized Problem with Strategic Users

We consider the network model of the previous section with the following assump-
tions on its information structure.

(A1) Each user knows only his own utility; this utility is his own private information.
Each user also knows the function space U to which the utilities of all other
users belong.

(A2) Each user behaves strategically, that is, each user is not a price-taker. The
users’s objective is to maximize his own utility function.

(A3) The network manager knows the topology and resources of the network. This
knowledge is the manager’s private information. The network manager is not
a profit-maker (i.e. he does not have a utility function).

(A4) The network manager receives requests for service from the network users.
Based on these requests, he announces to each user ( j, Gi ),

1. The multicast group to which the user belongs.
2. The set of links that form user ( j, Gi )’s route, R( j,Gi ).
3. The capacity of each link in R( j,Gi ).

(A5) Based on the network manager’s announcement, each strategic user competes
for resources (bandwidth) at each link of his route with the other users in that
link.1

From the above description it is clear that the information in the network is decen-
tralized. Every user in each group only knows his own utility but does not know the
other users’ utilities or the network’s topology and its resources. The network man-
ager knows the network’s topology and its resources, but does not know the users’
utilities. It is also clear that the network manager (which is not profit maker) acts
like an accountant who sets up the users’ routes, specifies the users competing for
resources/bandwidth at each link, collects the money from the users ( j, Gi ) that pay
tax (i.e. t( j,Gi ) > 0) and distributes it to those users who receive money.

As a consequence of assumptions (A1)–(A5) we have at each link of the network a
decentralized resource allocation problem which can be studied/analyzed within the
context of implementation theory. These decentralized resource allocation problems
are not independent/decoupled, as the rate that each user receives at any link of his
own route must be the same. This constraint is dictated by the nature of the multi-rate

1 Since in this chapter we present decentralized resource allocation mechanisms in equilibrium
form, it is reasonable to assume that during the play of the game at each link l ∈ L, each user of
link l learns the set of the other users competing for bandwidth at l.
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multicast service provisioning problem and has a direct implication on the nature of
the mechanism/game form we present in Sect. 5.3.

Under the above assumptions the objective is to determine a game form/mechanism
which has the following properties for each realization

(
T, U( j,Gi ), j ∈ Gi , Gi ∈ N ):

(P1) It implements weakly in NE the social welfare maximizing correspondence
defined by the centralized problem Max.1. (We note the social welfare maxi-
mizing correspondence is implementable in NE, cf. Sect. 2.1.4.)

(P2) It is individually rational, that is, the network users voluntarily participate in
the decentralized bandwidth allocation process.

(P3) It is budget balanced at every NE of the game it induces, as well as at all off
equilibrium messages/strategies that result in feasible allocations.

5.2.3 Key Features/Natures of the Problem

Multi-rate multicast service provisioning with strategic users is the combination of
a market problem and a public goods problem. Thus, the model as well as the
allocation problem are new, even within the context of the mechanism design. Specif-
ically, resource allocation among groups is a market problem; resource allocation
among the users of the same group is a public goods problem.
The market component: One can see that bandwidth allocation among groups is a
market problem as follows. One can consider a group as a single agent. The demand
of this group at each link of the network is the maximum of demands of the users of the
group on that link. So, with each group considered a single agent/singleton the multi-
rate multicast service provisioning problem with strategic users becomes equivalent
to the unicast service provisioning problem with strategic users. It is shown, Chap. 3
of the thesis, that the unicast service provisioning problem with strategic users is a
market problem. At each link, the price per unit of bandwidth paid collectively by
each group2 using the link is the same.
The public goods component: One can see that the resource allocation problem
among the users of the same group is a public goods problem as follows. At equi-
librium, the group receives at each link of the network a bandwidth/rate equal to the
maximum requested by a user in the group. Each user of the group receives, in gen-
eral, a different rate, and the members of the group that use the link must collectively
pay the price per unit of bandwidth charged at the link. At each link, each user of a
group using the link contributes, in general, a different percentage of the price per
of unit of bandwidth charged at that link; this percentage depends on the amount of
bandwidth received by the user, the user’s utility, and the number of users that are
present in the group and use the link. Consequently, the resource allocation problem
along users of the same group is a public goods problem.

2 The price per unit of bandwidth paid collectively by each multicast group at a link l is equal to
the sum of the prices paid by the members’ of the group who use the link l.

http://dx.doi.org/10.1007/978-1-4614-6319-1_2
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
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In the following two sections we present a mechanism/game form for the problem
formulated in this section and prove that it possess properties (P1–P3) stated in
Sect. 5.2.2.

5.3 A Mechanism for Rate Allocation

Based on the characteristics of the multi-rate multicast problem, we present guide-
lines for the design of rate allocation mechanisms in Sect. 5.3.1. In Sect. 5.3.2, we
specify a mechanism/game form for the decentralized rate allocation problem for-
mulated in Sect. 5.2. In Sect. 5.3.3, we discuss and interpret the components of the
mechanism.

5.3.1 Guidelines for the Design of the Mechanism

In Sect. 5.2.3 we pointed out that the multi-rate multicast problem with strategic users
is the combination of a market problem and a public goods problem. Therefore, the
mechanism for rate allocation must capture both aspects/components of the problems.
We now discuss the attributes a mechanism must have so that it can capture the market
component and the public goods component of the multi-rate multicast problem.

To address the market characteristics of the problem the mechanism must be such
that:

1. All groups that use a particular link must pay the same price per unit of bandwidth
at the link.

2. The bandwidth allocation to groups at each link must satisfy the link’s capacity
constraint.

3. The budget must be balanced, that is the sum of payments of all the groups that
use the network must be equal to zero at equilibrium and off equilibrium.

To address the public goods characteristics of the problem the mechanism must be
such that:

4. At any link l, different users of the same group that use the link pay, in general,
different prices per unit of bandwidth at link l. Specifically: if user a of group G
requires more bandwidth than user b of group G at link l, user a must not pay less
per unit of bandwidth at link l than user b. In general, if users a and b require the
same amount of bandwidth at link l, they do not necessarily pay the same price
per unit of bandwidth at l because they may have different utility functions.

5. The price that user i of group G pays per unit of bandwidth at a particular link
that he uses must not be under his control; that is, the price must be determined
by the messages/strategies of the other users that use the same link. This feature
of the mechanism is a consequence of the users’ strategic behavior.

With these considerations in mind we proceed to specify our mechanism.
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5.3.2 Specification of the Mechanism

A game form/mechanism (c.f. Sect. 2.1.2) consists of two components M, f . The
component M denotes the users’ message/strategy space, M defines the informa-
tion the users are allowed to communicate with one another during the message
exchange process. The component f is the outcome function; f defines for every
message/strategy profile, the bandwidth/rate allocated to each user and the tax (sub-
sidy) each user pays (receives).

For the decentralized resource allocation problem formulated in Sect. 5.2 we pro-
pose a game form/mechanism the components of which we describe below.
Message space: The message/strategy space for user ( j, Gi ), j ∈ Gi , Gi ∈ N , is

given by M( j,Gi ) = R
|R( j,Gi )|+1
+ . Specifically, a message of user j is of the form

m( j,Gi ) =
[

x( j,Gi ),π
l j1
( j,Gi )

,π
l j2
( j,Gi )

, . . . ,π
l j|R( j,Gi )

|
( j,Gi )

]
,

where |R( j,Gi )| denotes the number of links along the route R( j,Gi ). The component
x( j,Gi ) denotes the bandwidth/rate user ( j, Gi ) requests at all the links of his route.

The component π
l jk
( j,Gi )

∈ [0, ϒ],3 0 ≤ ϒ < ∞, k = 1, 2, . . . , |R( j,Gi )|, denotes
the price per unit of bandwidth user ( j, Gi ) is willing to pay at link l jk of his route.

Remark 5.1 Due to the nature of the multi-rate multicast service provisioning prob-
lem (see Sect. 5.2) the bandwidth/rate allocated to any user ( j, Gi ), j ∈ Gi , Gi ∈ N ,
must be the same at all links of his route. Thus, the nature of message m( j,Gi ) is a
consequence of the above requirement.

Outcome Function: The outcome function f

f : ×Gi ∈N × j∈Gi M( j,Gi ) → R

∑
Gi ∈N |Gi |

+ × R

∑
Gi ∈N

∑
j∈Gi

|R( j,Gi )| (5.13)

is defined as follows: for any

m := (mi∈G1 , m j∈G2 , . . . , mk∈G N ) ∈ M := ×Gi ∈N × j∈Gi M( j,Gi ),

f (m) = f (mi∈G1 , m j∈G2 , . . . , mk∈G N ) (5.14)

= ((x(i,G1), t(i,G1))i∈G1 , (x( j,G2), t( j,G2)) j∈G2 , . . . , (x(k,G N ), t(k,G N ))k∈G N

)
,

where t( j,Gi ) := (t
l j1
j , t

l j2
j , . . . , t

l j|R j,Gi
|

j ), for every ( j, Gi ), j ∈ Gi , Gi ∈ N , is
the tax (subsidy) that user ( j, Gi ) pays (receives) to (from) the other users, through

3 For technical reasons (cf. Theorem 5) we choose ϒ to be arbitrary and large but finite.

http://dx.doi.org/10.1007/978-1-4614-6319-1_2
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the network manager, for each link l jk ∈ R( j,Gi ), and x( j,Gi ), j ∈ Gi , Gi ∈ N ,

represents the amount of bandwidth/rate allocated to user ( j, Gi ).

The tax t
l jk
j , k = 1, 2, . . . , |R( j,Gi )|,∀ j ∈ Gi , Gi ∈ N , is defined in accordance

with the number of multicast groups using link l. We consider four cases.

• Case A. |Ql | = 1

Let Ql = {Gζ}. Then, for any j ∈ Gζ(l),

t l
( j,Gζ )

= I
{

x( j,Gζ ) = xGζ (l)
}{

0 · I{xGζ (l) ≤ cl} + 1{xGζ (l) > cl}
1 − 1{xGζ (l) > cl}

}
. (5.15)

The function I{·} denotes the indicator function, i.e.,

I{A} =
{

1 if A holds;
0 otherwise.

The function 1{A}, used throughout the chapter, is defined as follows

1{A} =
{

1 − ε if A holds;
0 otherwise.

where ε is bigger than zero and sufficiently small;4 ε is chosen by the mechanism
designer.

• Case B. |Ql | = 2

Let Ql = {Gζ , Gζ+1}. We consider two subcases, |Gζ
max(l)| ≥ 2 and |Gζ

max(l)|=1.
Part BI: |Gζ

max(l)| ≥ 2.
Let the label of ( j, Gζ) in Gmax

ζ (l) be (k, Gmax
ζ (l)). Then:

If ( j, Gζ) ∈ Gmax
ζ (l),

t l
(k,Gζ )

= π(k+1,Gζ
max(l))x( j,Gζ ) +

(
PGζ

max(l) − PGζ+1
max(l)

)2

α|Gζ
max(l)|

− 2
PGζ+1(l)

max

|Gζ
max(l)|

[
PGζ

max(l) − PGζ+1
max(l)

][
xGζ+1(l) + x( j,Gζ ) − cl

γ

]

+ 1{x( j,Gζ ) > 0}1{xGζ+1(l) + x( j,Gζ ) − cl > 0}
1 − 1{x( j,Gζ ) > 0}1{xGζ+1(l) + x( j,Gζ ) − cl > 0} (5.16)

If (k, Gζ) /∈ Gmax
ζ (l) then

t l
(k,Gζ )

= 0, (5.17)

4 Therefore, when A and B (both) hold, then 1{A}1{B}
1−1{A}1{B} ≈ 1

0+ is well defined and it becomes a
large number.
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where α and γ are sufficiently large constants, PGmax
ζ (l) = ∑ j∈Gζ

max(l) π( j,Gζ
max(l)),

and k + 1 is defined mod (|Gmax
ζ |).

Part BII: If |Gζ
max(l)| = 1. Then:

If ( j, Gζ) ∈ Gmax
ζ (l),

t l
( j,Gζ )

= PGmax
ζ+1(l)

x( j,Gζ ) +
(

PGζ
max(l) − PGζ+1

max(l)

)2

α

− 2PGζ+1
max(l)

[
PGζ

max(l) − PGζ+1
max(l)

][
xGζ+1(l) + x( j,Gζ ) − cl

γ

]

+ 1{x( j,Gζ ) > 0}1{xGζ+1(l) + x( j,Gζ ) − cl > 0}
1 − 1{x( j,Gζ ) > 0}1{xGζ+1(l) + x( j,Gζ ) − cl > 0} (5.18)

If ( j, Gζ) /∈ Gmax
ζ (l) then

t l
( j,Gζ )

= 0. (5.19)

• Case C. |Ql | = 3

Let Ql = {Gζ , Gζ+1, Gζ+2}. We consider two subcases,|Gζ
max(l)| ≥ 2 and

|Gζ
max(l)| = 1.

Part CI: |Gζ
max(l)| ≥ 2. Then:

Let the label of ( j, Gζ) in Gmax
ζ (l) be (k, Gmax

ζ (l)). Then:
If ( j, Gζ) ∈ Gmax

ζ (l),

t l
( j,Gζ )

= π(k+1,Gζ
max(l))x( j,Gζ ) +

(
PGζ

max(l) − P−Gζ
max(l)

)2

α |Gζ
max(l)|

− 2
P−Gζ

max(l)

|Gζ
max(l)|

[
PGζ

max(l) − P−Gζ
max(l)

][E−Gζ
max(l) + x( j,Gζ )

γ

]

+
1{x( j,Gζ ) > 0}1{E−Gmax

ζ (l) + x( j,Gζ ) > 0}
1 − 1{x( j,Gζ ) > 0}1{E−Gmax

ζ (l) + x( j,Gζ ) > 0} (5.20)

If ( j, Gζ) /∈ Gmax
ζ (l) then

t l
( j,Gζ )

= 0. (5.21)

Part CII: |Gζ
max(l)| = 1.

If ( j, Gζ) ∈ Gmax
ζ (l),
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t l
( j,Gζ )

= P−Gζ
max(l)x( j,Gζ ) − 2P−Gζ

max

[
π( j,Gζ

max(l)) − P−Gζ
max

]

×
[E−Gζ

max(l) + x( j,Gζ )

γ

]
+
(
π( j,Gζ

max(l)) − P−Gζ
max(l)

)2

α

+
1{x( j,Gζ ) > 0}1{E−Gmax

ζ (l) + x( j,Gζ ) > 0}
1 − 1{x( j,Gζ ) > 0}1{E l

−Gmax
ζ (l) + x( j,Gζ ) > 0}

(5.22)

If ( j, Gζ) /∈ Gmax
ζ (l) then

t l
( j,Gζ )

= 0, (5.23)

where

E−Gζ
max(l) := xGζ+1(l) + xGζ+2(l) − cl ,

PGζ
max(l) :=

∑
j∈Gζ

max(l)

π( j,Gζ
max(l)),

P−Gζ
max(l) := PGζ+1

max(l) + PGζ+2
max(l)

2
.

• Case D. |Ql | > 3

Let Gi ∈ Ql . We consider two subcases, |Gi
max(l)| ≥ 2 and |Gi

max(l)| = 1.
Part DI: |Gi

max(l)| ≥ 2.
Let the label of ( j, Gζ) in Gmax

ζ (l) be (k, Gmax
ζ (l)). Then:

If ( j, Gζ) ∈ Gmax
ζ (l),

t l
( j,Gi )

= π(k+1,Gi
max(l))x( j,Gζ ) +

(
PGi

max(l) − P−Gi
max(l)

)2
|Gi

max(l)|
− 2

P−Gi
max

|Gi
max(l)|

[
PGi

max(l) − P−Gi
max(l)

][E−Gi
max(l) + x( j,Gi )

γ

]

+ 1{x( j,Gi ) > 0}1{E−Gmax
i (l) + x( j,Gi ) > 0}

1 − 1{x( j,Gi ) > 0}1{E−Gmax
i (l) + x( j,Gi ) > 0}

+ �l
Gi

|Gmax
i (l)| (5.24)

If ( j, Gζ) /∈ Gmax
ζ (l) then

t l
( j,Gζ )

= 0. (5.25)



5.3 A Mechanism for Rate Allocation 59

where E−Gi
max(l), PGi

max(l), and P−Gi
max(l) are defined by equations similar to (5.28)–

(5.30).
Part DII: |Gi

max(l)| = 1.
If ( j, Gζ) ∈ Gmax

ζ (l),

t l
( j,Gi )

= P−Gi
max x j,Gi + (π( j,Gi

max(l)) − P−Gi
max(l)

)2
− 2P−Gi

max

[
π( j,Gi

max(l)) − P−Gi
max

][E−Gi
max(l) + x( j,Gi )

γ

]

+ 1{x( j,Gi ) > 0}1{E−Gmax
i (l) + x( j,Gi ) > 0}

1 − 1{x( j,Gi ) > 0}1{E−Gmax
i (l) + x( j,Gi ) > 0} + �l

Gi
(5.26)

If ( j, Gζ) /∈ Gmax
ζ (l) then

t l
( j,Gζ )

= 0, (5.27)

where,

E−Gi
max(l) :=

{ ∑
Gk∈Ql
Gk =Gi

xGk (l)
}

− cl , (5.28)

PGi
max(l) :=

∑
j∈Gi

max(l)

π( j,Gi
max(l)), (5.29)

P−Gi
max(l) :=

∑
Gk∈Ql
Gk =Gi

PGk
max(l)

|Ql | − 1
=
∑

Gk∈Ql
Gk =Gi

∑
j∈Gk

max(l) π( j,Gk
max(l))

|Ql | − 1
, (5.30)

�l
Gi

:=

∑
Gs∈Ql
Gs =Gi

∑
Gr ∈Ql

Gr =Gi ,Gs

(
2PGs max(l) PGr max(l)

(
1 + xGs (l)

γ

))

(|Ql | − 1)(|Ql | − 2)

+
2
∑

Gs∈Ql
Gs =Gi

∑
Gr ∈Ql

Gr =Gi ,Gs

∑
Gt ∈Ql

Gt =Gi ,Gs ,Gr

PGr max(l)

(
PGs max(l)EGt max(l) − PGt max(l)xGs (l)

)

(|Ql | − 1)2(|Ql | − 3)γ

+
2
∑

Gs∈Ql
Gs =Gi

∑
Gr ∈Ql

Gr =Gi ,Gs

PGr max(l)

(
PGs max(l)EGr max(l) − PGr max(l)xGs (l)

)

(|Ql | − 1)2(|Ql | − 2)γ

−
2P2

−Gi
max(l) E−Gi

max(l)

γ
−

∑
Gs∈Ql
G =Gi

PGs max(l)
2

(|Ql | − 1)
− P2

−Gi
max(l). (5.31)

Next we specify additional subsidies Sl that user ( j, Gi ), j ∈ Gi , Gi ∈ N , may
receive. For that matter we consider all links l ∈ L where |Ql | ≤ 3. For each such
link l, we define the quantity
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Sl :=
∑

Gζ∈Ql

∑
( j,Gζ )∈Gζ

max(l)

−t l
( j,Gζ )

[
I{Case B} + I{Case C}

]
. (5.32)

Since α and γ are sufficiently large,

Sl = o(1) −
∑

Gζ ,Gζ∈Ql

PGmax
ζ (l)xGζ (l)

[
I{Case B(Part BI)} + I{Case C(Part CI)}

]

−
∑

Gζ ,Gζ∈Ql

P−Gmax
ζ (l)xGζ (l)

[
I{Case B(Part BII)} + I{Case C(Part CII)}

]

:= o(1) − Sl+. (5.33)

For each l ∈ L where |Ql | ≤ 3 the network manager chooses at random a
user kl /∈ ⋃Gi ∈Ql

Gi and assigns the subsidy Sl to user kl . Let l1, l2, . . . , lr be the
set of links such that |Qli | ≤ 3, and let kli be the corresponding users that receive Sli .

Based on the above, the tax (subsidy) paid (received) by user ( j, Gi ), j ∈ Gi , Gi ∈
N , is the following. If ( j, Gi ) = kl1, kl2 , . . . klr then

t( j,Gi ) =
∑

l∈R( j,Gi )

t l
( j,Gi )

, (5.34)

where for each l ∈ R( j,Gi ), t l
( j,Gi )

is determined in accordance with |Ql |. If ( j, Gi ) =
kln for some kln ∈⋃r

m=1 klm , then

tkli
=
∑

l∈Rkli

t l
kli

+ Sli , (5.35)

where Sli is defined by (5.32) and Rkli
is the set of links used by user kli .

Note that Sli is not controlled by user kli . Thus, the presence (or absence) of Sli

does not influence the strategic behavior of user kli . We have assumed here that the
users kl1, kl2 , · · · , klr , are distinct. Expressions similar to the above hold when the
users kl1 , kl2 , · · · , klr are not distinct.

5.3.3 Discussion/Interpretation of the Mechanism

We now interpret the mechanism presented in Sect. 5.3.2, based on the guidelines for
its design, presented in Sect. 5.3.1. We focus on Case D (Part DI). The mechanism’s
interpretation is similar in all other cases. To proceed with the interpretation we
define:
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�
( j,Gi )
1 (l) := π( j+1,Gi

max(l))x( j,Gi ),

�
( j,Gi )
2 (l) :=

(
PGi

max(l) − P−Gi
max(l)

)2
|Gi

max(l)|
− 2

P−Gi
max(l)

|Gi
max(l)|

[
PGi

max(l) − P−Gi
max(l)

][E−Gi
max(l) + x( j,Gi )

γ

]

+ 1{x( j,Gi ) > 0}1{E−Gmax
i (l) + x( j,Gi ) > 0}

1 − 1{x( j,Gi ) > 0}1{E−Gmax
i (l) + x( j,Gi ) > 0}

�
( j,Gi )
3 (l) := �l

Gi

|Gmax
i (l)|

�
( j,Gi )
4 (l) := I

{
x( j,Gi ) = xGi (l)

}
.

Note that (5.24) and (5.25) can be collectively rewritten as follows,

t l
( j,Gi )

=
[
�

( j,Gi )
1 (l) + �

( j,Gi )
2 (l) + �

( j,Gi )
3 (l)

]
× �

( j,Gi )
4 (l). (5.36)

�
( j,Gi )
1 (l),�( j,Gi )

2 (l),�( j,Gi )
3 (l), and �

( j,Gi )
4 (l) collectively represent the tax (sub-

sidy) user ( j, Gi ) pays (receives) for using link l. The terms �
( j,Gi )
1 (l) and �

( j,Gi )
4 (l)

(respectively, �
( j,Gi )
2 (l) and �

( j,Gi )
3 (l)) capture/describe the public goods (respec-

tively, market) component of the problem.
We begin with the interpretation of the public goods terms. Note that user ( j, Gi )

pays taxes (receives subsidies) at link l only if his bandwidth demand is the maxi-
mum among the users of group Gi at link l. This is expressed by the term �

( j,Gi )
4 (l).

By assumption that the cardinality of the set of users from Gi who have maximum
bandwidth demand at link l is greater than one. Assume now that ( j, Gi ) is one
of the users of group Gi that have maximum bandwidth demand at link l, and let
(k, Gmax

i (l)) be the index of this user in Gmax
i (l). The price per unit of bandwidth

at link l that this user pays is not under his control; it is determined by the mes-
sage/strategy (π(k+1,Gi

max(l))) of user (k +1, Gmax
i (l)), that is user k +1 of the group

Gmax
i (l).5 This is reflected in the term �

( j,Gi )
1 (l) which represents the amount of

tax user ( j, Gi ) pays for the bandwidth he receives at link l. The two terms are
consistent with the design guidelines associated with the public goods features of
the mechanism presented in Sect. 5.3.1. Specifically, terms �

( j,Gi )
1 (l) and �

( j,Gi )
4 (l)

demonstrate that: (i) at any link l, if user a of group Gi receives more bandwidth than
user b of the same group, then user a pays no less for this bandwidth than user b;
(ii) if two users a and b of the same group require maximum amount of bandwidth
at link l they do not necessarily pay the same price per unit of bandwidth at that link.

5 The situation where ( j, Gi ) is the only user of group Gi with the maximum demand at link l is
discussed in other cases (e.g. Case D (Part DII)), where it is shown again that the price user ( j, Gi )

pays per unit of bandwidth at link l is not controlled by him.
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As a result of the specification and interpretation of the terms �
( j,Gi )
1 (l) and

�
( j,Gi )
4 (l), the price group Gi pays per unit of bandwidth at link l is the sum of the

prices its users with maximum demand at link l pay. That is,

PGmax
i (l) =

∑
( j,Gmax

i (l))∈Gmax
i (l)

π( j,Gmax
i (l)).

We continue with interpretation of the market terms of the tax function. The
term �

( j,Gi )
2 (l) provides the following incentives to the groups using link l: (1) To

bid/propose the same price per unit of bandwidth at that link. (2) To collectively
request a total bandwidth that does not exceed the capacity of the link. The incentive
provided to all groups to bid the same price per unit of bandwidth is described by the

term

(
PGi

max −P−Gi
max
)2

|Gi
max(l)| . The incentive provided to all users to collectively request a

total bandwidth that does not exceed the link’s capacity is captured by the term

1{x( j,Gi ) > 0}1{E−Gmax
i (l) + x( j,Gi ) > 0}

1 − 1{x( j,Gi ) > 0}1{E l
−Gmax

i (l) + x( j,Gi ) > 0} .

Note that each group is very heavily penalized if it requests a nonzero bandwidth at
l, and, collectively, all the groups using l request a total bandwidth that exceeds the
link’s capacity cl . A joint incentive provided to all users to bid the same price per
unit of bandwidth and to utilize the total capacity of the link is captured by the term

−2
P−Gi

max(l)

|Gi
max(l)|

[
PGi

max(l) − P−Gi
max(l)

][E−Gi
max(l) + x( j,Gi )

γ

]
.

The goal of the term �
( j,Gi )
3 (l) is to lead to a balanced budget. It is important to

note that the term �
( j,Gi )
3 (l) is not controlled by group Gi , consequently, by any

user in group Gi . Therefore, the presence of �
( j,Gi )
3 (l) does not affect the behavior

of any user of group Gi . The terms �
( j,Gi )
2 (l) and �

( j,Gi )
3 (l) are consistent with the

guidelines that were presented in Sect. 5.3.1 concerning the market features of the
mechanism.

5.4 Properties of the Mechanism

We prove that the mechanism proposed in Sect. 5.3 has the following properties.
(P1) It implements the solution of problem Max.0 in Nash equilibria. (P2) It is
individually rational. (P3) It is budget-balanced at every feasible allocation.

We establish the above properties by proceeding as follows. First, we prove that
the game induced by the mechanism proposed in Sect. 5.3 has at least one pure NE
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(Theorem 5.2), and that all NE of the game induced by the game form/mechanism of
Sect. 5.3 result in feasible solutions of the centralized problem Max.0 (Theorem 5.3).
Afterwards, we establish that the mechanism is budget-balanced at all feasible allo-
cations. (Lemma 5.6). Then, we show that network users voluntarily participate in
the allocation process. We do this by showing that each user’s utility/payoff resulting
from the allocations corresponding to all NE of the game induced by the mecha-
nism is greater than or equal to zero, the payoff each user receives when he does
not participate in the allocation process (Theorem 5.7). Finally, we show that the
mechanism implements in Nash equilibria the solution of the centralized allocation
problem Max.0 (Theorem 5.8).

We present the proofs of the following theorems and lemmas in Appendix B.

Theorem 5.2 (Existence of NE) The game induced by the mechanism of Sect.5.3
has at least one pure NE.

Theorem 5.3 (Feasibility) If m∗ = (x∗,π∗) is a NE of the game induced by the
game form of Sect.5.3, then the allocation x∗ is a feasible solution of problem Max.0.

The following lemma presents some key properties of NE prices and rates.

Lemma 5.4 Let m∗ = (x∗,π∗) be a NE of the game induced by game form of
Sect.5.3. Then for every l ∈ L and Gi ∈ Ql, we have,

P∗
−Gi

max(l) = P∗
Gi

max(l) =: P∗
Gmax(l) ∀ Gi ∈ Ql (5.37)

P∗
Gmax(l)

[E∗
−Gi

max(l) + x∗
Gi

(l)

γ

]
= 0. (5.38)

For every user ( j, Gi
max(l)) where Gi ∈ Ql, we have,

∂t l
( j,Gmax

i (l))

∂xGi (l)

∣∣∣
m=m∗ =

{
π∗

( j+1,Gi
max(l)), if |Gi

max(l)| ≥ 2 and Gi ∈ Ql ,

P∗
Gmax(l), otherwise,

(5.39)

and
⎡
⎢⎣∂U( j,Gmax

i (l))(x( j,Gmax
i (l)))

∂x( j,Gmax
i (l))

−
∑

l∈Rmax
( j,Gi )

∂t l
( j,Gmax

i (l))

∂x( j,Gmax
i (l))

⎤
⎥⎦

m=m∗

= 0. (5.40)

An immediate consequence of Lemma 5.4 and the specification of the tax for each
user, defined by Eqs. (5.16)–(5.35), is the following.

Corollary 5.5 At every NE m∗ of the mechanism the tax function has the following
form,
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t l
( j,Gmax

i (l))(m∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π∗
( j+1,Gmax

i (l))x
∗
Gi

(l) Case B, Part BI;
P∗

Gmax x∗
Gi

(l) Case B, Part BII;
π∗

( j+1,Gmax
i (l))x

∗
Gi

(l) Case C, Part CI;
P∗

Gmax x∗
Gi

(l) Case C, Part CII;
π∗

( j+1,Gmax
i (l))x

∗
Gi

(l) − P∗
Gmax(l)x∗−Gi

(l)

|Gmax
i | Case D, Part DI;

P∗
Gmax(l)

(
x∗

Gi
(l) − x∗−Gi

(l)
)

Case D, Part DII

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.41)

where

x∗−Gi
(l) =

∑
G j

G j =Gi
G j ∈Ql

x∗
G j

(l)

|Ql | − 1
.

When ( j, Gi ) /∈ Gmax
i (l), t l

( j,Gi )
(m∗) = 0. Therefore,

t( j,Gi )(m∗) =
∑

l∈Rmax
( j,Gi )

t l
( j,Gi )

(m∗), (5.42)

for ( j, Gi ) = kl1, kl2 , . . . , klr , (cf. Sect.5.3), and for j = kls , s = 1, 2, . . . , r ,

t( j,Gi )(m∗) =
∑

l∈Rmax
( j,Gi )

t l
( j,Gi )

(m∗) − S∗ j
+ (5.43)

In the following lemma, we prove that the proposed mechanism is always budget
balanced.

Lemma 5.6 The proposed mechanism/game form is budget balanced at every fea-
sible allocation. That is, the mechanism is budget-balanced at all allocations corre-
sponding to NE messages as well as to all off-equilibrium messages/strategies that
result in feasible allocations.

The next result asserts that the mechanism/game form proposed in Sect. 5.3 is
individually rational.

Theorem 5.7 (Individual Rationality): The game form specified in Sect.5.3
is individually rational, i.e., at every NE the corresponding allocation (x∗, t∗) is
weakly preferred by all users to zero, the payoff each user receives when he does not
participate in the allocation process.

In the following theorem we show that every NE of the game induced by the game
form proposed in Sect. 5.3 is efficient.
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Theorem 5.8 (Nash Implementation): The allocation ( f (m∗) = (x∗, t∗)) cor-
responding to a NE message m∗ is an optimal solution of the centralized problem
Max.0.
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Chapter 6
Summary and Future Directions

6.1 Summary

In this thesis we investigated static decentralized resource allocation problems with
strategic users. Unicast service provisioning and multi-rate multicast service pro-
visioning problems arise in wired communication networks; power allocation and
spectrum sharing arise in wireless communication networks. The models associ-
ated with unicast service provisioning, power allocation and spectrum sharing, and
multi-rate multicast service provisioning capture generic issues that arise in market
problems, public goods problems, and problems that are a combination of markets
and public goods, respectively.

For each of the problems arising in wired networks we developed game
forms/mechanisms and analyzed them in equilibrium. We proved that the proposed
game forms possess the following properties. (P1) They implement in NE the social
welfare maximizing correspondence. (P2) They are budget balanced at the alloca-
tions corresponding to all NE of the game induced by the mechanism, as well as
at all feasible allocations corresponding to off equilibrium messages. (P3) They are
individually rational, that is users voluntarily participate in the allocation process
specified by the mechanism. For the problem arising in wireless networks we devel-
oped a game form that possesses properties (P2) and (P3), and implements in NE the
Pareto correspondence.

Within the context of the above mentioned network problems, the game forms
developed in this thesis are the only currently existing mechanisms that possess all
the above-stated properties. The results on power allocation and spectrum sharing, as
well as the results on multi-rate multicast service provisioning are also a contribution
to the state of the art of implementation theory.

There are several problems of paramount importance that remain unsolved and
are worthy of investigation. Below we discuss some of these problems.
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6.2 Future Directions

6.2.1 Algorithmic Issues

Currently, we do not have algorithms (tâtonnement processes/iterative processes) for
the computation of the NE of the games induced by the game forms we developed.
The lack of algorithms for decentralized resource allocation problems where strategic
users posses private information is a major open problems in implementation theory.
The major difficulty in constructive algorithms that guarantee to converge to NE is
the following. Consider an algorithm for a decentralized resource allocation problem
where strategic users possess private information. At each stage of the algorithm
each user updates his strategy/message. Since the users’ utilities are not common
knowledge, after each update a strategic user, say user i , can report any strategy
he deems to be advantageous for himself; that is, user i can misreport/misrepresent
his update and the other users can not check whether or not user i is following
the rules of the algorithm. Consequently, the algorithm must provide incentives to
the users/agents to follow its rules at each one of its stages. Such a provision of
incentives must be based on all the information available at the current stage, and
must, in general, take the whole future into account. We have not been able to discover
an algorithm with the above feature. To the best of our knowledge, algorithms with
the above feature are not currently available.

6.2.2 Dynamic Environments

In this thesis we focused on static decentralized resource allocation problems where
the system characteristics (e.g. the network topology, the number of users, the users’
utilities) do not change with time. The development of mechanisms (that is, situations
where the network topology and resources, and/or the number of users, and/or the
users’ utilities vary with time) is an important open problem. The dynamic mecha-
nisms currently available in the literature [1–3] are direct game forms/direct revela-
tion mechanisms, and the existing results are on truthful implementation, which does
not guarantee that for any environment all NE of the game induced by the direct rev-
elation mechanism result in allocations that are in the choice set of the social choice
rule/goal correspondence (see [4]). In our opinion, progress in the design of decentral-
ized resource allocation mechanisms for dynamic environments will require a better
understanding of the interplay between implementation theory and dynamic game
theory. We also believe that resolving the key issues associated with the development
of algorithms for static decentralized resource allocation problems (cf. Sect. 6.2.1)
will help us understand better the nature of dynamic decentralized resource allocation
problems where strategic users possess private information.
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6.2.3 Beyond Quasi-Linear Forms

In this thesis, within the context of unicast and multi-rate multicast service
provisioning we addressed resource allocation problems where the users’ utilities
are quasi-linear. In many real systems the network objective or the users’ utilities are
not separable in money (tax). Problems with non-quasi-linear objectives are harder
to solve as they do not have a general structure or methodology for their solution,
and have not received much attention in the mechanism design literature. Develop-
ing game forms/mechanisms that implement in some equilibrium concept non-quasi
linear network objectives is a problem of fundamental importance. A step in this
direction are the results reported in the power allocation and spectrum sharing prob-
lem we investigated in Chap. 4.
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Appendix for Unicast Service Provisioning

Proof of Theorem 3.1. By the construction of the mechanism x∗
i ≥ 0 for all

i ∈ N . Suppose that x∗ = (x∗
1 , . . . , x∗

N ) is such that the capacity constraint
is violated at some link l and x∗

j > 0 (i.e. user j will be heavily charged

because
1{x∗

j >0}1{E∗l− j +x∗
j >0}

1−1{x∗
j >0}1{E∗l− j +x∗

j >0} ≈ 1
0+ which is a large number). Now, Consider x j

such that: (i) either x j > 0 and
∑

k∈Gl

k �= j
x∗

k + x j ≤ cl ; or (ii) x j = 0. Then,

1{x j >0}1{E∗l− j +x j >0}
1−1{x j >0}1{E∗l− j +x j >0} = 0, therefore,

V j (m j , m∗− j ) > V j (m
∗
j , m∗− j ), (A.1)

and (A.1) contradicts the fact that m∗ = (m∗
j , m∗− j ) is a NE. Consequently, x∗ is a

feasible allocation of problem Max. �

Proof of Lemma 3.2. We prove this lemma by considering the case |Gl | > 3. The
cases |Gl | = 2 and |Gl | = 3 can be proved similarly.
Consider user i ∈ Gl (|Gl | > 3). Since user i does not control �l

i defined by (3.14),
(i.e. �l

i does not depend on xi and pl
i ),

∂�l
i

∂xi
= ∂�l

i

∂ pl
i

= 0. (A.2)

Equation (3.13) along with (A.2) imply

∂t l
i

∂ pl
i

|m=m∗ = 2

[
(p∗l

i − P∗l−i ) − P∗l−i

(E∗l−i + x∗
i

γ

)]
= 0. (A.3)
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Summing Eq. (A.3) over all i ∈ Gl, we get,

∑
i∈Gl

∂t l
i

∂ pl
i

|m=m∗ =
∑
i∈Gl

[
(p∗l

i − P∗l−i ) − P∗l−i

(E∗l−i + x∗
i

γ

)]

=
∑
i∈Gl

−P∗l−i

(E∗l−i + x∗
i

γ

)
= 0, (A.4)

which, because of Theorem 3.1 and the positivity of prices, implies

− P∗l−i

(E∗l−i + x∗
i

γ

)
= 0. (A.5)

for every i ∈ Gl. Then Eq. (A.5) gives

p∗l
i = P∗l−i . (A.6)

for all i ∈ Gl . From Eqs. (A.5) and (A.6) it follows that,

p∗l
(E∗l

γ

)
= 0, (A.7)

p∗l
i = p∗l

j = P∗l−i = p∗l. (A.8)

Equations (A.7) and (A.8) along with (3.13) give

∂t l
i

∂xi
|m=m∗ = p∗l. (A.9)

By (A.7)–(A.9)1 the proof is complete. �

Proof of Lemma 3.3. Equation (3.30) together with (3.31) and (3.32) imply that∑
l∈L
∑

i∈Gl t∗l
i = 0. Now, we prove that the proposed mechanism is also budget

balanced off equilibrium. First we show that, for every l ∈ L where |Gl | > 3

∑
i∈Gl ,|Gl |>3

t l
i = 0. (A.10)

1 Note that, since the derivative of an indicator function is a Dirac delta function ([1], p. 94), to
have a well defined derivative of ti with respect to xi at the boundary, i.e., when

∑
i∈Gl xi = cl ,

the differentiation is from the left. This observation holds throughout the proofs appearing in this
Appendix.
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By a little algebra we can show the following equalities,

∑
i∈Gl

pl
i
2 =

∑
i∈Gl

⎡
⎢⎣
∑

j∈Gl

j �=i

pl 2
j

∣∣Gl
∣∣− 1

⎤
⎥⎦ ,

∑
i∈Gl

(
2pl

i Pl
−i + 2Pl

−i pl
i
xi

γ
− Pl

−i xi

)
=
∑
i∈Gl

⎡
⎢⎢⎣
∑

j∈Gl

j �=i

∑
k∈Gl

k �=i, j

(
2pl

j pl
k(1 + x j

γ ) − x j pl
k

)

(
∣∣Gl
∣∣− 1)(

∣∣Gl
∣∣− 2)

⎤
⎥⎥⎦ ,

∑
i∈Gl

Pl
−i pl

i

E l
−i

γ
=
∑
i∈Gl

⎡
⎢⎣
∑

j∈Gl

j �=i

∑
k∈Gl

k �=i, j

∑
r∈Gl

r �=i, j,k
2pl

k pl
j E l

r

γ(
∣∣Gl
∣∣− 1)2(

∣∣Gl
∣∣− 3)

+

∑
j∈Gl

j �=i

∑
k∈Gl

k �=i, j
2pl

k pl
j E l

k

γ(
∣∣Gl
∣∣− 1)2(

∣∣Gl
∣∣− 2)

⎤
⎥⎦ ,

∑
i∈Gl

Pl
−i

2 xi

γ
=
∑
i∈Gl

⎡
⎢⎣
∑

j∈Gl

j �=i

∑
k∈Gl

k �=i, j

∑
r∈Gl

r �=i, j,k
x j pl

r

γ(
∣∣Gl
∣∣− 1)2(

∣∣Gl
∣∣− 3)

+

∑
j∈Gl

j �=i

∑
k∈Gl

k �=i, j
x j pl

k

γ(
∣∣Gl
∣∣− 1)2(

∣∣Gl
∣∣− 2)

⎤
⎥⎦ .

From the above equalities we conclude that

∑
i∈Gl

[
Pl−i xi + (pl

i − Pl−i )
2 − 2Pl−i (pl

i − Pl−i )
(E l−i + xi

γ

)]
= −

∑
i∈Gl

�l
i (A.11)

Equation (A.11) along with Eq. (3.13) imply that
∑

i∈Gl ,|Gl |>3 t l
i = 0.

Next consider all links l ∈ L where |Gl | = 2, 3. In accordance with the notation in
Sect. 3.3, let these links be l1, l2, . . . , lr . Then, by the specification of the tax function
(cf. Sect. 3.3.1, Eqs. (3.6)–(3.10)) we obtain,

r∑
j=1

{[
t
l j
il j,1

+ t
l j
il j,2

]
1{|Gl j | = 2} +

[
t
l j
il j,1

+ t
l j
il j,2

+ t
l j
il j,3

]
1{|Gl j | = 3}

}
+

r∑
j=1

Ql j = 0,

(A.12)
where if |Gl j | = 2 then {il j,1, il j,2} = Gl j and if |Gl j | = 3 then {il j,1, il j,2 , il j,3} = Gl j ,
j = 1, 2, . . . , r .
Finally note that,

N∑
i=1

ti =
∑

l∈L:|Gl |=2

∑
i∈Gl

t l
i +

∑
l∈L:|Gl |=3

∑
i∈Gl

t l
i +

∑
l∈L:|Gl |>3

∑
i∈Gl

t l
i +

r∑
j=1

Ql j = 0.

(A.13)
�
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Proof of Theorem 3.4. We need to show that Vi (x∗, t∗i ) ≥ Vi (0, 0) = 0 for every
i ∈ N . By the property of NE it follows that

Vi (x
∗, t∗) ≥ Vi (x

∗−i , xi , ti , t∗−i ) ∀(xi , ti ). (A.14)

So, it is enough to find (xi ,pi ) ∈ Mi such that

Vi (x
∗−i , xi , ti , t∗−i ) ≥ 0. (A.15)

We set xi = 0 and examine the cases |Gl | = 2, |Gl | = 3 and |Gl | > 3, separately.

• Case 1,
∣∣Gl
∣∣ = 2

With xi = 0, pl
j = p∗l and x j = x∗

j , Eq. (3.6) defines the following function

F2(pl
i ):

F2(pl
i ) := (pl

i − p∗l)2

α
− 2∗l(pl

i − p∗l)

(
x∗

j − cl

γ

)

Clearly, at
pl

i = p∗l (A.16)

F2(p∗l) = 0. Then, from Eq. (3.6) it follows that

t l
i (x

∗−i , 0,p∗−i , p∗l) = 0. (A.17)

• Case 2,
∣∣Gl
∣∣ = 3

Denote by i, j, k the users of link l. With xi = 0, x j = x∗
j , xk = x∗

k and pl
j =

pl
k = p∗l , Eq. (3.8) defines the following function F3(pl

i ):

F3(pl
i ) := (pl

i − p∗l)2 − 2p∗l(pl
i − p∗l)

(
x∗

j + x∗
k − cl

γ

)
+ �∗l

i

= pl
i
2 − 2pl

i p∗l
(

1 + E∗l−i

γ

)
+ p∗l2

(
1 + 2

E∗l−i

γ

)
+ �∗l

i (A.18)

F3(pl
i ) is a quadratic polynomial in pl

i . Setting F3(pl
i ) = 0 we obtain the root

℘l
i,3 = p∗l

(
1 + E∗l−i

γ

)
+
√(

p∗l
E∗l−i

γ

)2 + x∗−i p∗l + p∗l2
(cl − E∗l

−i )

γ
(A.19)

Since by its definition γ is sufficiently large, it follows from Eq. (A.19) that
℘l

i,3 > 0, i.e. ℘l
i,3 is a feasible price. Therefore, from Eq. (3.8) we obtain

t l
i (x

∗−i , 0,p∗−i , ℘
l
i,3) = 0. (A.20)
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• Case 3,
∣∣Gl
∣∣ > 3

With xi = 0, x j = x∗
j ∀ j �= i, j ∈ Gl , pl

j = p∗l , j ∈ Gl , Eqs. (3.13) and (3.14)

define (after a little algebra) the following function F>3(pl
i ),

F>3(pl
i ) := (pl

i − p∗l)2 − 2p∗l(pl
i − p∗l)

(E∗l−i

γ

)
+ �∗l

i

= pl
i
2 − 2pl

i p∗l
(

1 + E∗l−i

γ

)
+ p∗l2

(
1 + 2

E∗l−i

γ

)
− x∗−i p∗l (A.21)

F>3(pl
i ) is a quadratic polynomial in pl

i . Setting F>3(pl
i ) = 0 we obtain the root

℘l
i,>3 = p∗l

(
1 + E∗l−i

γ

)
+
√(

p∗l
E∗l−i

γ

)2 + x∗−i p∗l (A.22)

where

x∗−i :=
∑

j �=i x∗
j

|Gl | − 1
. (A.23)

Since by its definition γ is sufficiently large, it follows from Eq. (A.22) that
℘l

i,>3 > 0 (i.e. ℘l
i,>3 is a feasible price). Therefore, from Eq. (3.13) we get

t l
i (x

∗−i , 0,p∗−i , ℘
l
i,>3) = 0. (A.24)

Consequently, at mi = (xi ,pi ) = (0, p
li1
i , p

li2
i , . . . , p

li|Ri |
i ), (where, p

lik
i , k =

1, 2, . . . , |Ri |, are defined either by (A.16) or (A.19) or (A.22), depending on the
cardinality Glik , k = 1, 2, . . . , |Ri |), we obtain

Vi (x, t)

∣∣∣∣
m=(mi ,m∗−i )

= ui (0) −
|Ri |∑
k=0

t
lik
i (x∗−i , 0,p

∗lik−i , p
lik
i )

= ui (0) = 0. (A.25)

when i �= kl1, kl2 , . . . , klr .

When i = kl j , j = 1, 2, . . . , r ,

Vi (x, t)|m=(mi ,m∗−i )
= ui (0) −

|Ri |∑
k=0

t
lik
i (x∗−i , 0,p

∗lik−i , p
lik
i ) − Q∗l j

= −Q∗l j ≥ 0, (A.26)
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where Q∗l j = Q∗{l j :|Gl j |=2} or Q∗l j = Q∗{l j :|Gl j |=3}. Combining (A.14), (A.25) and
(A.26) we obtain

Vi (x∗
i , t∗) ≥ Vi (x, t)

∣∣∣∣
m=(mi ,m∗−i )

≥ 0 (A.27)

and this establishes (A.15) and completes the proof. �

Proof of Theorem 3.5. Let (x∗,p∗) be an arbitrary NE of the game (M, f,V)

induced by the proposed game form. Then by the properties of NE, we must have
that for every user i ∈ N ,

∂Vi (m)

∂xi
|m=m∗ =

[
∂ui (xi )

∂xi
− ∂ti (m)

∂xi

]
|m=m∗ = 0. (A.28)

By Lemma 3.2, Eq. (A.28) is equivalent to

∂ui (xi )

∂xi
−
∑
l∈Ri

p∗l = 0. (A.29)

Furthermore, by Lemma 3.2 we have p∗lE∗l/γ = 0 and since γ > 0

p∗lE∗l = p∗l
[ ∑

k∈Gl

x∗
k − cl

]
= 0. (A.30)

Equation (A.28) holds for every user i ∈ N ; Eq. (A.30) holds for every link l ∈ L.
Consider now the centralized problem Max. Since the functions ui , i ∈ N are

concave and differentiable and the constraints are linear, Slater’s condition [2] is
satisfied, the duality gap is equal to zero, and the Karush Kuhn Tucker (KKT) con-
ditions are necessary and sufficient to guarantee the optimality of any allocation
x := (x1, x2, . . . , xN ) that satisfies them. Let λl be the Lagrange multiplier cor-
responding to the capacity constraint for link l and νi be the Lagrange multiplier
corresponding to the demand constraint. The Lagrangian for problem Max is

L(x,λ, ν) =
∑
i∈N

ui (xi ) −
∑
l∈L

λl
(∑

i∈Gl

xi − cl

)
+
∑
i∈N

νi xi (A.31)

and the KKT conditions are:

∂L(x∗,λ∗, ν∗)
∂xi

= ∂ui (x∗
i )

∂xi
−
∑
l∈Ri

λ∗l + ν∗
i = 0 (A.32)

λ∗l
(∑

i∈Gl

x∗
i − cl

)
= 0 ∀ l ∈ L (A.33)

ν∗
i x∗

i = 0 ∀i ∈ N (A.34)
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Since the KKT conditions are necessary and sufficient to guarantee the optimality
of any allocation x = (x1, x2, . . . , xN ) that satisfies them, it is enough to find ν∗

i and
λ∗l , l ∈ L, such that Eqs. (A.32)–(A.34) are satisfied.

Set ν∗
i = 0, i ∈ N , and λ∗l = p∗l , l ∈ L. Then (A.34) is satisfied and (A.32) and

(A.33) become,

∂ui (x∗
i )

∂xi
−
∑
l∈Ri

p∗l = 0 (A.35)

p∗l
(∑

i∈Gl

xi − cl

)
= 0 ∀ l ∈ L (A.36)

respectively, and they are satisfied because they are identical to Eqs. (A.28) and
(A.30), respectively. Furthermore, by the construction of the game form

∑N
i=1 t∗i = 0.

Consequently, the solution x∗ = (x∗
1 , x∗

2 , . . . , x∗
N ) of (A.35) and (A.36) along with

the specification of t∗i , i = 1, 2, . . . , N , are an optimal solution of Problem Max.

At the same time (A.35) and (A.36) and
∑N

i=1 t∗i = 0 are satisfied by the allocation
f (m∗) corresponding to the NE m∗. Consequently, the NE m∗ results in allocation
f (m∗) = (x∗

1 , x∗
2 , . . . , x∗

N , t∗1 , t∗2 , . . . , t∗N ) that is an optimal solution of Problem
Max. Since the NE m∗ was arbitrarily chosen, every NE m∗ of the game form
proposed in Sect. 3.3 results in an optimal solution of Problem Max. �

Proof of Theorem 3.6. First we note that an optimal solution

(x∗, t∗) = (x∗
1 , x∗

2 , . . . , x∗
N , t∗i , t∗2 , . . . , t∗N )

(where ti , i = 1, 2, . . . , N , are defined in Sect. 3.3.1) of Problem Max exists. This
follows from: (i) the fact that each ui , i ∈ N , is concave and the space of the
constraints described by Eqs. (3.3) and (3.4) is convex; (ii) the fact that

∑N
i=1 t∗i = 0

by the construction of the game form. The KKT conditions for problem Max result
in the following equations,

∂ui (x∗
i )

∂x∗
i

−
∑
l∈Ri

λ∗l + ν∗
i = 0 (N equations) (A.37)

λ∗l(
∑
i∈Gl

x∗
i − cl) = 0 (L equations) (A.38)

ν∗
i x∗

i = 0 (N equations) (A.39)

We have N + L + N equations in L + N unknowns, λ∗l , l ∈ L and ν∗
i , i ∈ N .

In general we have multiple solutions.
We want to show that for every solution (λ∗l , ν∗

i , l = 1, 2, . . . , L , i = 1, 2,

. . . , N ) of Eqs. (A.37)–(A.39) the message m̄ = (m̄1, m̄2, . . . , m̄ N ), m̄i = (x̄i , p̄l
i :

http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
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l ∈ Ri ) with x̄i = x∗
i and p̄l

i = λ∗l for all i ∈ N and l ∈ Ri , is a Nash equilibrium
of the game induced by the proposed game form.

For that matter we note that by the selection of m̄ we have

p∗l
i = p∗l

j = λ∗l = p∗l (A.40)

for every i and j ∈ Gl . By (A.38) and (A.40)

p∗l
( ∑

j∈Gl

x∗
j − cl

)
= λ∗l

( ∑
j∈Gl

x∗
j − cl

)
= 0 (A.41)

and by (3.30) we obtain
∂t∗l

i

∂x∗
i

= p∗l = λ∗l (A.42)

for every l ∈ Ri and every i ∈ N . Therefore, the message m̄ satisfies all the
conditions of Lemma 3.2.

Next we show that for every i ∈ N , m̄i is a solution of the problem,

max
mi ∈Mi

{
ui (xi ) −

∑
l∈Ri

t l
i (m̄−i , mi )

}

subject to

xi ≥ 0, pl
i ≥ 0 ∀l ∈ Ri . (A.43)

Any maximizing solution of (A.43) must satisfy

∂ui (xi )

∂xi
−
∑
l∈Ri

∂t l
i (m̄−i , mi )

∂xi
+ ri = 0 (A.44)

∂ui (xi )

∂ pl
i

−
∑
l∈Ri

∂t l
i (m̄−i , mi )

∂ pl
i

+ ql
i = 0 (A.45)

∀ l ∈ Ri , where ri and ql
i are the Lagrange multipliers associated with the constraints

xi ≥ 0, and pl
i ≥ 0, l ∈ Ri , respectively. We set ri = ν∗

i and ql
i = 0 for every

l ∈ Ri . At mi = m̄i , Eq. (A.44) is satisfied because of Eq. (A.37).
Furthermore at mi = m̄i Eq. (A.45) is satisfied since

∂Vi

∂ pl
i

|m=m̄ = −
∑
l∈Ri

∂t l
i

∂ pl
i

|m=m̄ (A.46)

http://dx.doi.org/10.1007/978-1-4614-6319-1_3
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and

∂t l
i

∂ pl
i

|m=m̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |Gl | = 2;
−2p∗l

[ x∗
i +x∗

j +x∗
k −cl

γ

]
= 0 if |Gl | = 3;

−2P∗l
−i

[E∗l−i +x∗
i

γ

]
= 0 if |Gl | > 3,

(A.47)

for any l ∈ L because of (A.41). Hence, (x∗
1 , x∗

2 , . . . , x∗
N ,λ∗l1 ,λ∗l2 , . . . ,λ∗lL ) is a

NE point of the game induced by the game form proposed in Sect. 3.3. �

Proof of Theorem 3.7. Since any NE of the game induced by the mechanism pro-
posed in Sect. 3.3, (if such an equilibrium exists), results in a feasible allocation
of Problem Max, (see Theorem 3.1), we restrict attention to the space M′ =
M′

1 × M′
2 · · · M′

N of strategies that result in feasible allocations of Problem
Max. Then, the users’ utilities Vi (xi , ti ) = ui (xi )− ti , i = 1, 2, . . . , N , (where ti is
specified by the game form of Sect. 3.3) are quasi-concave in mi = (xi ,pi ) and con-
tinuous in m = (m1, . . . , m N ) = ((x1,p1), (x2,p2), . . . , (xN ,pN )). Furthermore,
the message/strategy spaces M′

i are compact, convex and non-empty. Therefore, by
Glicksberg’s theorem [3], there exists a pure NE of the game (M, f,Vi , i =
1, 2, . . . , N ) induced by the game form of Sect. 3.3.

Let m∗ be a NE of this game. Then, for every user i ∈ N ,

Vi (m
∗) ≥ Vi (m

∗−i , mi ) for every mi ∈ Mi . (A.48)

That is,

ui (x∗
i ) −

∑
l∈Ri

t∗l
i (m∗) ≥ ui (xi ) −

∑
l∈Ri

t l
i (m

∗−i , mi ) ∀ mi ∈ Mi , (A.49)

where

∑
l∈Ri

t∗l
i (m∗) =

∑
l∈Ri

p∗l x∗
i +

∑
l∈Ri
|Gl |=3

�∗l
i +

∑
l∈Ri
|Gl |>3

�∗l
i +

r∑
j=1

Q∗l j 1{i = kl j }, (A.50)

Q∗l j is given by Q∗{l:|Gl |=2} or Q∗{l:|Gl |=3} and

∑
l∈Ri

t l
i (m

∗−i , mi ) =
∑
l∈Ri
|Gl |=2

�2(m
∗−i , mi ) +

∑
l∈Ri
|Gl |=3

�3(m
∗−i , mi ) +

∑
l∈Ri
|Gl |>3

�>3(m
∗−i , mi )

+
r∑

j=1

Q∗l j 1{i = kl j }, (A.51)

http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
http://dx.doi.org/10.1007/978-1-4614-6319-1_3
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where

�2(m
∗−i , mi ) := p∗l xi + (pl

i − p∗l)2

α
− 2p∗l(pl

i − p∗l)

(
xi + x∗

j − cl

γ

)
,

�3(m
∗−i , mi ) := p∗l xi + (pl

i − p∗l)2 + �∗l
i − 2p∗l(pl

i − p∗l)

(
xi + x∗

j + x∗
k − cl

γ

)
,

�>3(m
∗−i , mi ) := p∗l xi + (pl

i − p∗l)2 + �∗l
i − 2p∗l(pl

i − p∗l)

(
xi + E∗l

−i

γ

)
.

Since (A.49) holds for every feasible (xi , pi ), setting pl
i = p∗l for every l ∈ Ri we

obtain,

Vi (x∗
i , p∗) = ui (x∗

i ) −
∑
l∈Ri

p∗l x∗
i ≥ Vi (xi , p∗) = ui (xi ) −

∑
l∈Ri

p∗l xi (A.52)

for every feasible xi . Therefore, for every i = 1, 2, . . . , N ,

x∗
i = arg maxxi ∈D∗−i

⎧⎨
⎩ui (xi ) −

∑
l∈Ri

p∗l xi

⎫⎬
⎭ (A.53)

where D∗−i :=
{

xi : 0 ≤ xi ≤ minl∈Ri {cl −∑ j∈Gl

j �=i

x∗
j }
}

. Consequently, (x∗,p∗)

is a Walrasian equilibrium, therefore (x∗, t∗) is Pareto optimal ([4] Chap. 15). �



Appendix B
Appendix for Multi-rate Multicast Service
Provisioning

Proof of Theorem 5.2. We prove in Theorem 5.3 that any NE of the game induced
by the mechanism of Sect. 5.3 (if such an equilibrium exists) results in a feasible
allocation of Problem Max.0. Therefore, we restrict to the space

M = ×Gi ∈N × j∈Gi M( j,Gi ) (B.1)

of strategies that result in feasible allocations of problem Max.0. Then, the users’
utilities

V( j,Gi )(x( j,Gi ), t( j,Gi )) = U( j,Gi )(x( j,Gi )) − t( j,Gi ) (B.2)

( j, Gi ) ∈ Gi , Gi ∈ N (where t( j,Gi ) is specified by the game form of Sect. 5.3) are
concave in m( j,Gi ) = (x( j,Gi ),π( j,Gi )) and continuous in m = (m( j,Gi ), ( j, Gi ) ∈
Gi , Gi ∈ N ). Furthermore, the message spaces M( j,Gi ) are compact, convex and
nonempty. Therefore, by Gliksberg’s theorem, [5], there exists a pure NE of the game
(M, f, V( j,Gi ), ( j, Gi ) ∈ Gi , Gi ∈ N ) induced by the game form of Sect. 5.3. �

Proof of Theorem 5.3. By the construction of the mechanism x∗
( j,Gi )

≥ 0 for all
( j, Gi ), Gi ∈ N . Suppose that x∗ is such that the capacity constraint is violated
at some link l and x∗

Gi
(l) > 0. Consider an agent (k, Gi ) ∈ Gmax

i (l) whose index in
Gmax

i (l) is ( j, Gmax
i (l)) and change his strategy to x(k,Gi ) = 0. Then

V(k,Gi )(m(k,Gi ), m∗
−(k,Gi )

) > V( j,Gi )(m∗
(k,Gi )

, m∗
−(k,Gi )

),

and this is in contradiction with the fact that m∗ is a NE. Consequently, every NE
results in a feasible allocation of problem Max.0. �

Proof of Lemma 5.4. We prove this lemma for Case D, Part DI. In a way similar to
the following we can prove the assertion of the lemma for all other cases.

Case D (Part DI): Consider Gi ∈ Ql , and ( j, Gmax
i (l)) ∈ Gmax

i (l).

A. Kakhbod, Resource Allocation in Decentralized Systems with Strategic 81
Agents, Springer Theses, DOI: 10.1007/978-1-4614-6319-1,
© Springer Science+Business Media New York 2013

http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
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Since user ( j, Gmax
i (l)) does not control �( j,Gi ), then

∂�( j,Gmax
i (l))

∂π( j,Gmax
i (l))

= ∂�( j,Gmax
i (l))

∂xGi (l)
= 0.

Therefore, we must have

∂t l
( j,Gmax

i (l))

∂π( j,Gi
max(l))

∣∣∣∣
m=m∗

= −2
P∗

−Gi
max(l)

|Gi
max(l)|

(E∗
−Gi

max(l) + x∗
Gi

(l)

γ

)

+ 2

|Gi
max(l)|

(
P∗

Gi
max(l) − P∗

−Gi
max(l)

)

= 0. (B.3)

Define �( j,Gi
max(l)) as follows,

�( j,Gi
max(l)) := − P∗

−Gi
max(l)

|Gi
max(l)|

(E∗
−Gi

max(l) + x∗
Gi

(l)

γ

)
+

(
P∗

Gi
max(l) − P∗

−Gi
max(l)

)

|Gi
max(l)| .

(B.4)
Summing over all the users in Gmax

i (l) and using (B.3) we obtain

∑
( j,Gmax

i )∈Gi
max(l)

�( j,Gi
max(l)) = − P∗

−Gi
max(l)

(E∗
−Gi

max(l) + x∗
Gi

(l)

γ

)

+
(

P∗
Gi

max(l) − P∗
−Gi

max(l)

)
= 0. (B.5)

Moreover, summing over all |Ql | multicast groups and using (B.3)–(B.5) we get

∑
Gi ∈Ql

∑
( j,Gmax

i (l))∈Gi
max(l)

∂t l
( j,Gmax

i (l))

∂π( j,Gi
max(l))

=
∑

Gi ∈Ql

∑
( j,Gmax

i (l))∈Gi
max(l)

�( j,Gi
max(l)) = 0.

(B.6)
Furthermore we note that

∑
Gi ∈Ql

PGi
max(l) =

∑
Gi ∈Ql

P−Gi
max(l). (B.7)

Equations (B.5)–(B.7) along with Theorem 5.3 and the fact that P∗
−Gi

max(l) ≥ 0 for
every Gi , Gi ∈ Ql , imply that

P∗
−Gi

max(l)

(E∗
−Gi

max(l) + x∗
Gi

(l)

γ

)
= 0, ∀ Gi ∈ Ql . (B.8)
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From Eqs. (B.5) and (B.8) it follows that

P∗
−Gi

max(l) = P∗
Gi

max(l) =: P∗
Gmax(l), ∀ Gi ∈ Ql . (B.9)

Consequently,

P∗
Gmax(l)

(E∗
−Gi

max(l) + x∗
Gi

(l)

γ

)
= 0. (B.10)

Equations (B.9) and (B.10) along with (5.24) give

∂t l
( j,Gmax

i (l))

∂xGi (l)

∣∣∣∣
m=m∗

= π∗
( j+1,Gi

max(l)) − 2
P∗

−Gi
max(l)

γ|Gi
max(l)|

(
P∗

Gi
max(l) − P∗

−Gi
max(l)

)

= π∗
( j+1,Gi

max(l)). (B.11)

�

Proof of Lemma 5.6. Equation (5.41) together with (5.42) and (5.43) imply that∑
( j,Gi )

⋃
Gi ∈N Gi

t∗( j,G)
= ∑

l∈L
∑

Gi ∈Ql

∑
j∈Gi

t∗l
( j,Gi )

= 0. Thus, the mechanism

is budget balanced at allocations corresponding to NE. Now, we prove that the pro-
posed mechanism is also budget balanced off equilibrium.

For that matter, we first consider links l ∈ L where |Ql | > 3. Thus we have,

∑
( j,Gi )∈Gi (l)

t l
( j,Gi )

= PGi
max(l)xGi (l) +

(
PGi

max(l) − P−Gi
max(l)

)2 + �l
Gi

− 2P−Gi
max(l)

(
PGi

max(l) − P−Gi
max(l)

)(E−Gi
max(l) + xGi (l)

γ

)
.

(B.12)

Furthermore, by little algebra, we can show that for every l ∈ L where |Ql | > 3
the following equalities hold,

∑
Gi ∈Ql

P2
Gmax

i (l) =
∑

Gi ∈Ql

⎡
⎢⎣
∑

G j ∈Ql
G j �=Gi

P2
Gmax

i (l)

|Ql | − 1

⎤
⎥⎦ ,

∑
Gi ∈Ql

[
2PGmax

i (l) P−Gmax
i (l) + 2P−Gmax

i (l) PGmax
i (l)

xGi (l)

γ

]

=
∑

Gi ∈Ql

⎡
⎢⎢⎢⎣

∑
G j ∈Ql
G j �=Gi

∑
Gk∈Ql

Gk �=Gi ,G j

(
2PGmax

j (l) PGmax
k (l)(1 + xG j (l)

γ )
)

(|Ql | − 1)(|Ql | − 2)

⎤
⎥⎥⎥⎦ ,

http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
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∑
Gi ∈Ql

P−Gmax
i (l) PGmax

i (l)

E−Gmax
i (l)

γ

=

∑
Gi ∈Ql

∑
G j ∈Ql
G j �=Gi

∑
Gk∈Ql

Gk �=Gi ,G j

2PGmax
k (l) PGmax

j (l)EGmax
k (l)

γ(|Ql | − 1)2(|Ql | − 2)

+

∑
Gi ∈Ql

∑
G j ∈Ql
G j �=Gi

∑
Gk∈Ql

Gk �=Gi ,G j

∑
Gr ∈Ql

Gr �=Gi ,G j ,Gk

2PGmax
k (l) PGmax

j (l)EGmax
r (l)

γ(|Ql | − 1)2(|Ql | − 3)

∑
Gi ∈Ql

P2
−Gmax

i (l)
xGi (l)

γ
=
∑

Gi ∈Ql

⎡
⎢⎢⎢⎢⎢⎣

∑
G j ∈Ql
G j �=Gi

∑
Gk∈Ql

Gk �=Gi ,G j

∑
Gr ∈Ql

Gr �=Gi ,G j ,Gk

xG j (l)PGmax
r (l)

γ(|Ql | − 1)2(|Ql | − 3)

+

∑
G j ∈Ql
G j �=Gi

∑
Gk∈Ql

Gk �=Gi ,G j

xG j (l)PGmax
k (l)

γ(|Ql | − 1)2(|Ql | − 2)

⎤
⎥⎥⎥⎥⎥⎦

(B.13)

Using Eqs. (5.31) and (B.12) –(B.13) we obtain

∑
Gi ∈Ql

[(
PGi

max(l) − P−Gi
max(l)

)2]

−
∑

G∈ Ql

[
2P−Gi

max(l)
(
PGi

max(l) − P−Gi
max(l)

) (E−Gi
max(l) + xGi (l)

γ

)]

+
∑

Gi ∈Ql

�l
Gi

= 0. (B.14)

Next we consider all links l ∈ L where |Ql | ≤ 3; let these link be l1, l2, . . . , lr . Then,
by using (B.14) and the specification of the tax function for the links l1, l2, . . . , lr
(cf. Sect. 5.3, cases B and C) we obtain

∑
( j,Gi )∈⋃Gi ∈N Gi

t( j,Gi ) =
∑
l∈L

∑
Gi ∈Ql

∑
( j,Gi )∈Gi (l)

t l
( j,Gi )

=
∑

l∈L:|Ql |=2

∑
Gi ∈Ql

∑
( j,Gi )∈Gi

max(l)

t l
( j,Gi )

+
∑

l∈L:|Ql |=3

∑
Gi ∈Ql

∑
( j,Gi )∈Gi

max(l)

t l
( j,Gi )

http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
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+
∑

l∈L:|Ql |>3

∑
Gi ∈Ql

∑
( j,Gi )∈Gi

max(l)

t l
( j,Gi )

+
r∑

j=1

Sl j

= 0. (B.15)

The last equality in (B.15) is true for the following reason. By Eq. (B.14) the third
sum on the right hand side of the second equality in (B.15) is equal to zero. The sum
of the three remaining terms is also equal to zero because of Eqs. (5.16)–(5.35). �

Proof of Theorem 5.7. We need to show that

V( j,Gi )(m∗) =
⎡
⎣U( j,Gi )(x( j,Gi )) −

∑
l∈R( j,Gi )

t l
( j,Gi )

⎤
⎦

m=m∗

≥ 0,

for every ( j, Gi ), Gi ∈ N . By the property of NE, it follows that

V( j,Gi )

(
m∗) ≥ V( j,Gi )

(
m∗

−( j,Gi )
, m( j,Gi )

)
. (B.16)

Consequently, it is sufficient to find a m( j,Gi ) ∈ Mi so that V( j,Gi )

(
m∗

−( j,Gi )
,

m( j,Gi )

) ≥ 0. Set x( j,Gi ) equal to 0. We separately examine different cases, as
follows.

• If x∗
Gi

(l) > 0 then, t l
( j,Gi )

|(m∗−( j,Gi )
,m( j,Gi ))

= 0 because j /∈ Gi
max(l).

• If x∗
Gi

(l) = 0, then in accordance to the possible cases we define,

πl
( j,Gi )

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

π∗l
( j,Gi )

, for Case B, Part BI;
P∗

Gmax(l), for Case B, Part BII;
π∗l

( j,Gi )
, for Case C, Part CI;

P∗
Gmax(l), for Case C, Part CII;

�∗
DI (l), for Case D, Part DI;

�∗
DI I (l), for Case D, Part DII.

(B.17)

where

�∗
DI (l) : = 1

|Gmax
i (l)|

[
P∗

Gmax(l) −
∑

j∈Gmax
i

j �=i

π∗
j,Gmax

i
+ E∗

−Gi
max(l)

γ

+

√√√√√
[

P∗
Gmax(l)

E∗
−Gi

max(l)

γ

]2

+
P∗

Gmax(l)

∑
G j ,G j ∈Ql

G j �=Gi

x∗
G j

(l)

|Ql | − 1

]
,

http://dx.doi.org/10.1007/978-1-4614-6319-1_5
http://dx.doi.org/10.1007/978-1-4614-6319-1_5
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�∗
DI I (l) : = P∗

Gmax(l)

[
1 + E∗

−Gi
max(l)

γ

]

+

√√√√√
[

P∗
Gmax(l)

E∗
−Gi

max(l)

γ

]2

+
P∗

Gmax(l)

∑
G j ,G j ∈Ql

G j �=Gi

x∗
G j

(l)

|Ql | − 1
.

We can1 show that t l
( j,Gi )

for every l ∈ R( j,Gi ) is equal to zero at

m( j,Gi ) = (0,πl1
( j,Gi )

, . . . ,π
l|R( j,Gi )

|
( j,Gi )

) when πlk
( j,Gi )

, 1 ≤ k ≤ |R( j,Gi )| is defined by
(B.17).

In the other hand, by m( j,Gi ) where its arguments are defined in the above, we
obtain

V( j,Gi )

(
m∗

−( j,Gi )
, m( j,Gi )

)
= U( j,Gi )(0) −

∑
l∈R( j,Gi )

t l
( j,Gi )

(
m∗

−( j,Gi )
, m( j,Gi )

)

= U( j,Gi )(0)

= 0, (B.18)

when ( j, Gi ) �= kl1 , kl2 , . . . , klr .

When ( j, Gi ) = klq , q = 1, 2, . . . , r ,

V( j,Gi )

(
m∗

−( j,Gi )
, m( j,Gi )

)
= U( j,Gi )(0) −

∑
l∈R( j,Gi )

t l
( j,Gi )

(
m∗

−( j,Gi )
, m( j,Gi )

)
− S∗lq

= −S∗lq

≥ 0, (B.19)

Combining (B.16), (B.18) and (B.19) we obtain

V( j,Gi )(x∗
( j,Gi )

, t∗) ≥ V( j,Gi )(x, t)

∣∣∣∣
m=(m( j,Gi ),m

∗−( j,Gi )
)

≥ 0 (B.20)

�

Proof of Theorem 5.8. Let m∗ be an arbitrary NE of the game (M, f, V ) induced by
the proposed game form. Consider problem Max.1, since the functions U( j,Gi ), j ∈
Gi , Gi ∈ N , are concave and differentiable and the constraints are linear, Slater’s
condition [2] is satisfied, the duality gap is equal to zero, and Karush Kuhn Tucker
(KKT) conditions are necessary and sufficient to guarantee the optimality of any
allocation x that satisfies them. Let λl be the Lagrange multiplier corresponding to
the capacity constraint for link l and νi be the Lagrange multiplier corresponding to

1 Since γ is sufficiently large then it is guaranteed that �DI and �DI I are positive.
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the demand constraint. The Lagrangian for problem Max.1 is

Lx(x,λ, ν) =
∑

Gi ∈N

∑
( j,Gi )∈Gi

U( j,Gi )(x( j,Gi ))

−
∑
l∈L

∑
e(l)∈E(l)

λe(l)

⎡
⎣ ∑

Gi ∈Ql

x( j,Gi )I{( j, Gi ) ∈ Gi (l)} − cl

⎤
⎦

+
∑

Gi ∈N

∑
( j,Gi )∈Gi

ν( j,Gi )x( j,Gi ) (B.21)

and the KKT conditions are:

∂L(x∗,λ∗, ν∗)
∂x( j,Gi )

= ∂U( j,Gi )(x∗
( j,Gi )

)

∂x( j,Gi )

−
∑

l∈R( j,Gi )

∑
e(l,( j,Gi ))∈E(l,( j,Gi ))

λ∗
e(l,( j,Gi ))

+ ν∗
( j,Gi )

= 0

λ∗
e(l)

⎡
⎣ ∑

Gi ∈Ql

x∗
( j,Gi )

I{( j, Gi ) ∈ Gi (l)} − cl

⎤
⎦ = 0, ∀ l ∈ L (B.22)

ν∗
( j,Gi )

x∗
( j,Gi )

= 0 ∀Gi ∈ N and j ∈ Gi . (B.23)

Now, define

λ∗l
( j,Gi )

:=
∑

emax(l,( j,Gi ))∈Emax(l,( j,Gi ))

λ∗
e(l,( j,Gi ))

∀ l ∈ L, Gi ∈ Ql , j ∈ Gi
max(l),

(B.24)
where, Emax(l) is a subset of equations, emax(l) of (5.7), such that every element
x(k,Gs ) ∈ emax(l) is equal to xGs (l), and accordingly, we can define Emax(l, ( j, Gi ))

and emax(l, ( j, Gi )).
Furthermore, (B.22) implies the following

∀ l ∈ L and Gi ∈ Ql , j ∈ Gi (l), if x( j,Gi ) < xGi (l) then λ∗
e(l,( j,G j ))

= 0. (B.25)

Since m∗ is a NE then for every user ( j, Gi ), Gi ∈ N , j ∈ Gi , there exists
at least a link in R( j,Gi ) such that x( j,Gi ) = xGi (l). Now, by using (B.24) and
(B.25) we can reformulate the KKT constraints as follows, suppose that at link
l ∈ R( j,Gi ), x( j,Gi ) = xGi (l), then

∂L(x∗,λ∗, ν∗)
∂x∗

Gi
(l)

= ∂U( j,Gi )(x∗
Gi

(l))

∂xGi (l)
−

∑
l∈Rmax

( j,Gi )

λ∗l
( j,Gi )

+ ν∗
( j,Gi )

= 0 (B.26)

http://dx.doi.org/10.1007/978-1-4614-6319-1_5
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λ∗l

⎡
⎣ ∑

Gi ∈Ql

x∗
Gi

(l) − cl

⎤
⎦ = 0, ∀ l ∈ L (B.27)

ν∗
( j,Gi )

x∗
Gi

(l) = 0 ∀Gi ∈ N and j ∈ Gi . (B.28)

where λ∗l :=∑ j∈Gi
max(l) λ∗l

( j,Gi )
for every Gi ∈ Ql .

Because of the characteristics of problem Max.1, KKT conditions are necessary
and sufficient for any optimal solution of Max.1. Therefore, to show that any arbitrary
NE m∗ of the specified game, induced from the game form presented in Sect. 5.3, is
correspondent to an optimal solution, it is enough to find ν∗

i , λl∗, and λ∗l
( j,Gi )

, for every
Gi ∈ N , j ∈ Gi , l ∈ L, appropriately, such that Eqs. (B.26), (B.27) and (B.28) are
satisfied. If we set ν∗

( j,Gi )
, Gi ∈ N , j ∈ Gi , equal to zero, then (B.28) is satisfied.

In addition, if we set λl∗ = P∗
Gmax(l), l ∈ L and λ∗l

( j,Gi )
equal to (5.39, then the

correctness of (B.27) and (B.28) will be implied from (5.38) and (5.40), respectively.
Furthermore, by the construction of the game form

∑
Gi ∈N

∑
j∈Gi

∑
l∈R( j,Gi )

t∗l
( j,Gi )

is equal to zero. Consequently, the NE m∗ results in an optimal solution of problem
Max.0. Since the NE m∗ was arbitrary chosen, every NE m∗ of the game induced
by the game form proposed in Sect. 5.3 results in an optimal solution of problem
Max.0. �
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