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Abstract The proliferation of Wireless Sensor Networks (WSNs) in the past
decade has provided the bridge between the physical and digital worlds,
enabling the monitoring and study of physical phenomena at a granu-
larity and level of detail that was never before possible. In this study,
we review the efforts of the research community with respect to two
important problems in the context of WSNs: real-time collection of the
sensed data, and real-time processing of these data series.
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1. Introduction

In the past decade, we have witnessed the proliferation of Wireless
Sensor Networks (WSNs), fueled by advances in processor technologies
and wireless communications that led to the development of small, low
cost and power efficient sensor nodes [100, 50, 74]. The great benefit they
provide is that they serve as the bridge between the physical and digital
worlds, and they enable us to monitor and study physical phenomena at
a granularity and level of detail that was never before possible.

Collecting the data sensed by the WSN to a centralized server (the
sink), or being able to directly query the WSN are probably the most
important functionalities that a WSN has to support. Lots of work has
been directed to how to efficiently achieve these goals, where the primary
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objective is to extend the WSN lifetime, while fulfilling the application
requirements (collecting the required data, or answering the queries).

There are two main ideas that researchers have explored: first, data
are correlated (both across time and over space), and second, several ap-
plications accept small errors in the data values they operate on. These
ideas have led to the development of a multitude of techniques that trade
accuracy for time performance and energy savings.

In this study, we review the efforts of the research community with
respect to the problems of real-time collection of the sensed data, and
real-time processing of these data series in the context of a WSN. Fur-
thermore, we examine the interplay between such data management
techniques and network protocols.

We note that the aim of this study is not an exhaustive enumeration
and discussion of all the related works, but rather, the description of
prominent research problems that have been studied so far with regards
to the sensor data processing and analysis, as well as of promising future
research directions.

2. Data Collection

The availability and use of sensor networks have generated a lot of
research interest. A major part of this effort has concentrated on how to
collect the sensed data at the sink (where they will be further processed
and analyzed), using the least amount of energy1 possible. The challenge
arises from the special characteristics of WSNs and the nature of the
data they produce, namely: limited resources, intermittent connections,
and spatio-temporal correlation of the sensed values [60, 56, 101].

Several frameworks for the efficient execution of queries and collection
of data in a sensor network have been developed in the last years [60,
59, 103]. The focus in these works was to propose data processing and
optimization methods geared specifically toward sensor networks (we de-
scribe those in detail later on). The early studies described in-network
aggregation techniques for reducing the amount of data transmitted by
the nodes, while subsequent research focused on model-driven [32] and
data-driven [87] data acquisition techniques. Other works have proposed
techniques that take into account missing values, outliers, and intermit-
tent connections [44, 30, 101, 88].

A different approach is based on Kalman filters [51], with the same
goal of reducing the required communication among nodes and the sink.

1Given that radio communication inWSNs is much more expensive than CPU processing,
this translates to reducing communication and data transfer.
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Other techniques offer solutions for efficient spatio-temporal data sup-
pression [56, 113, 99, 52, 47, 73], where in addition to the temporal
correlations present in the sensor network data, they aim at identifying
and exploiting the spatial correlations of the data, as well. Furthermore,
previous works have proposed algorithms that help in the selection of
representative nodes when we want to monitor large-scale phenomena
(i.e., phenomena that evolve over days, or months, and involve several
sensor nodes) [6], or when we want to take into account the remaining
energy of each individual node [63]. The above techniques help to fur-
ther reduce the communication cost of the sensor network, and could be
applied on top of the model-driven, or data-driven techniques.

In the rest of this section, we will discuss techniques in the areas
of model-driven and data-driven data acquisition, as well as in spatio-
temporal data suppression.

2.1 Model-Driven Data Acquisition

The aim of the model-driven approach is to (conceptually) collect,
or process queries on all the data sensed by the WSN, based on prob-
abilistic models that capture the correlations that exist in these data.
We note that sensor readings exhibit such correlations in a wide range
of domains and applications. This is true, because often times sensors
are monitoring slow-changing phenomena with high temporal resolu-
tion and/or high spatial resolution. Moreover, correlations may also be
present among different types of readings coming from the same sensor
node (e.g., it has been shown that temperature and voltage readings are
correlated [32]; at the same time it is much less expensive to take voltage
readings than temperature).

The model-driven approach works as follows. During an initial train-
ing phase, all the sensed data are collected from the nodes in the net-
work, in order to train the probabilistic models that are stored in the
sink. Then, these models are used in order to estimate the sensed values,
and additionally provide probabilistic guarantees on the correctness of
these estimates. Therefore, instead of querying the sensors, we operate
on the data produced by the models. If the guarantees produced by the
models for these data do not satisfy the accuracy requirements of the
application, then we can request additional real data values from the
sensors, in order to refine the models to the point that the probabilistic
guarantees satisfy the application requirements.

We can now formally define the model-driven data acquisition prob-
lem.
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Problem 2.1 (Model-Driven Data Acquisition) Given a sensor
network, and a sink that needs to collect all the sensed values within
ε of the real value with confidence (probability) at least 1 − δ, design a
data collection protocol such that the energy used by the sensor network
is minimized.

In order to solve this problem, we need to decide on the probabilistic
models to use for approximating the distributions of the sensed values,
and also on the communication strategies among the sensors and the
sink. Both these aspects of the problem are addressed by the studies
that we discuss in the next paragraphs.

2.1.1 Proposed Techniques. The BBQ system [32] proposes
sensor data acquisition techniques based on time-varying multivariate
Gaussian probabilistic models, but other models can alternatively be
used, such as probabilistic graphical models [31]. Using the above ap-
proach, the produced models capture correlations both among sensed
values from the same sensor across time, and among different sensors
across space. We note that the above approach requires some knowledge
of the special characteristics of the data distribution, such as periodic
drifts, which should be encoded in the space of models considered. This
means that some minimum amount of domain knowledge is required, in
order to make effective use of these techniques.

A similar framework for modeling sensor network data is proposed
by Guestrin et al. [45]. The goal is for groups of nodes in the net-
work to collaborate in order to fit a global function to each of their
local measurements. This approach employs kernel linear regression in
order to model the sensed values, by capturing spatio-temporal correla-
tions. Once again, we observe that this is a parametric approximation
technique, and as such, requires the user to make an assumption about
the number of estimators required to fit the data. Moreover, there is a
need for a training phase (where the models are built, evaluated, and
adjusted), which in practice can be rather lengthy and expensive.

Even though the domain knowledge requirement that the above tech-
niques have may be prohibitive for some applications, we note that a
large number of applications (where the measured phenomena are known
or understood, or when a domain expert is available) can still benefit
from such techniques.

2.2 Data-Driven Data Acquisition

The model-driven approach described earlier can lead to significant
energy savings for the data acquisition task. However, by the nature
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of their techniques, they can only provide probabilistic guarantees on
the accuracy of the data that the sink collects, and hence no absolute
bound on the error. While this may be sufficient for certain applications
(e.g., temperature and humidity monitoring for Heating, Ventilation and
Air Conditioning systems), there exists a class of applications, for which
hard accuracy guarantees are essential (e.g., scientific applications that
need accurate, fine-grained monitoring of some phenomenon).

In several scientific applications, it may also be the case that the
domain experts do not already have a model of the data distribution
they are sampling using the WSN, but are rather interested in collecting
accurate measurements in order to build such a model [19]. Indeed,
WSNs offer a unique opportunity to scientists to observe phenomena
and develop models for them at a scale and granularity that were never
before possible. Nevertheless, in order to so, they need to have accuracy
guarantees on the sensor measurements.

In data-driven data acquisition, we make the assumption that the ap-
plication running at the sink allows for a small tolerance in the accuracy
of the reported data. In contrast with the ideal requirements of the sink
obtaining exact values in all data reports, the correctness of these ap-
plications is unaffected as long as i) the reported values match closely
the exact ones; ii) inaccurate values occur only occasionally. In other
words, deviations from the exact reports are acceptable, as long as their
extent in terms of difference in value and time interval during which
the deviation occurs are small enough. We capture these assumptions,
common to many applications, with the following definitions on value
tolerance, εV , and time tolerance, εT (refer to Figure 7.1). We use the
term error tolerance, εV T to refer to both of them together.

Definition 7.1 (Value Tolerance) Let Vi be an exact measurement
taken at time ti. The value tolerance is defined by the maximum relative
and absolute errors acceptable, εV = (εrel , εabs). From the application

perspective, reading a value Vi becomes equivalent to reading any value V̂i

in the range RV defined by the maximum error, V̂i ∈ RV = [Vi−ε, Vi+ε],
where ε = max{ Vi

100ε
rel , εabs}. In other words, the application considers

a value V̂i ∈ RV as correct.

Note that the value tolerance includes both an absolute and a relative
component. This is useful for applications that involve sensor readings
with wide ranges of values.

Definition 7.2 (Time Tolerance) Let T = |tj − tk| be a time inter-

val, and V̂T = {V̂j , . . . , V̂k} the set of values reported to the application
during T . The time tolerance εT is the maximum acceptable value of
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Figure 7.1. Value and time tolerance, assuming a linear model (depicted by the thick
dashed line) for the sensed data [79].

T such that all the values reported in this interval are incorrect, i.e.,
V̂i /∈ RV , ∀ V̂i ∈ V̂T .

Similarly to the model-driven approach, each node (or group of nodes)
in the WSN generates a model for the sensed data. This model is then
sent to the sink, along with the last reading. From that point on, the
sink can predict the readings of the node based on this shared model.
The node is also checking whether its model can accurately describe its
own readings (within the error tolerance agreed with the sink), and if
this is not true then it computes a new model and transmits it to the
sink. Evidently, the sink always records accurate data (i.e., within εV T ),
regardless of the quality of the model. The model quality affects only
the effectiveness of the proposed scheme in terms of energy savings.

We can now formally define the problem of data-driven data acquisi-
tion.

Problem 2.2 (Data-Driven Data Acquisition) Given a sensor
network, and a sink that needs to collect all the sensed values within
εV T , design a data collection protocol such that the energy used by the
sensor network is minimized.

This problem statement is deliberately vague on the specificities of
the design of such a protocol. In the following paragraphs we review
several techniques that solve this problem, each one focusing on different
aspects of the problem. Some studies focus on the selection of the sensed
data model (shared among sensors and sink), others concentrate on the
effective identification of temporal and/or spatial correlations among the
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sensed data, while others explicitly aim at maximizing the lifetime of the
entire sensor network2.

2.2.1 Proposed Techniques. The KEN technique [25] builds
and maintains dynamic probabilistic models over the sensor readings,
taking into account the spatio-temporal correlations that exist in the sen-
sor readings. These models organize the sensor nodes in non-overlapping
groups, and are shared by the sensor nodes and the sink. The expected
values of the probabilistic models are the values that are recorded by the
sink. If the sensors observe that these values are more than εV T away
from the sensed values, then a model update is triggered.

The PAQ [98] and SAF [97] methods employ linear regression and
autoregressive models, respectively, for modeling the measurements pro-
duced by the nodes, with SAF leading to a more accurate model than
PAQ.

Silberstein et al. [86, 87] describe for providing continuous data with-
out continuous reporting, but with checks against the actual data. To
achieve this goal, this approach introduces temporal and spatio-temporal
suppression schemes, which use the in-network monitoring to reduce the
communication rate to the central server. Based on these schemes, data
is routed over a chain architecture. At the end of this chain, the nodes
that are most near to central server send the aggregate change of the
data to it. Since in this scheme (and in data-driven approaches in gen-
eral) the loss of a model update is crucial3, special provision is taken for
handling network failures [87], so as to ensure correctness.

A recent study proposes a new linear model, DBP [79]. The model
is trained using m data points, where the first and the last l points are
called edge points, and is computed as the slope δ of the segment that
connects the average values over the l edge points at the beginning and
end of the training phase. This model mitigates the problem of noise
and outliers: instead of trying to reduce the approximation error to the
data points in the recent past, DBP aims at producing models that are
consistent with the trends in the recently-observed data. Consequently,
it leads to improved performance, especially in noisy settings. Moreover,
the computation of this model is very simple, and therefore appealing
for implementation on resource-scarce nodes.

2Note that by minimizing the energy consumption of the network, it is possible that the
energy of a few specific sensor nodes is depleted much faster than the average. Obviously,
this is not desirable, since it may jeopardize the correct operation of the entire network.

3Losing a single model-update message has the potential to introduce large errors at the
sink, as the latter will continue to predict sensor values with an out-of-date model until the
next one is received.
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Another idea that has been studied is to select a set of representative
nodes, and use only those for transmitting measurements to the sink.
The premise is that each representative node has measurements similar
to the measurements of the nodes in its neighborhood. Then, it is only
the representative nodes that need to communicate the sensed values to
the sink, thus, significantly reducing the energy spent by the WSN.

Data mining approaches contributed to this problem, by providing
techniques for clustering and selecting representatives [46, 80, 62, 108].
Inside each cluster, the node with the most similar readings to the mea-
surements of all nodes inside that cluster is selected as a cluster rep-
resentative. Many algorithms were developed to deal with the online
distributed clustering of data.

SERENE [9] is a framework for SElecting REpresentatives in a sensor
NEtwork. It uses clustering techniques to select the subset of nodes that
can best represent the rest of sensors in the network. In order to select an
appropriate set of representative sensors, SERENE performs an analysis
of the historical readings of sensor nodes, identifies the spatio-temporal
correlations among sensors (based on their readings), and groups sen-
sors into clusters according to these correlations. Then, each cluster
performs further analysis in order to select the sensors with the highest
representation quality. We note that the analysis of the historical data,
which has to be repeated when the distribution of the sensor readings
changes, may take place in the sensors or in the sink, according to the
amount of resources required.

Snapshot Queries [56] is another approach that introduces a platform
for energy efficient data collection in sensor networks. By selecting a
small set of representative nodes, this approach provides responses to
user queries and reduces the energy consumption in the network. In
order to select representatives, each sensor node in this approach builds
a data model of the distribution of measurement values of its neighbors
for each attribute. After a node decides which of its neighbors it can
effectively represent, it broadcasts its list of candidate cluster members
to all its neighbors. Each node selects as its representative the neigh-
bor that can represent it, and that additionally has the longest list of
candidate cluster members.

In ECLUN [47], nodes do not continuously communicate with the rep-
resentatives, but communication is established only when a state change
is detected in the monitored phenomena. This communication is further
reduced through the careful construction of clusters, which considers
similarity in sub-spaces of the full-dimensional sensor readings space.
This makes the above approach suitable to deployments of sensor node
that produce multi-dimensional readings (i.e., monitor several phenom-
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ena simultaneously). ECLUN also tries to uniformly distribute the en-
ergy usage among the nodes, resulting in a longer lifetime for the entire
sensor network, since the variance of the lifetime of individual nodes is
minimized.

A more recent study [4] focuses on the problem of identifying func-
tional dependencies among sensor data streams, in order to determine a
small number of sensors from which data are actively collected. The rest
of the sensors collect data at lower rates, with the purpose of detecting
changes in the discovered dependencies and taking actions to reorganize
the sensor data collection process. The dependencies identified in this
work are based on regression analysis that takes into account possible
lags among the streams.

The above studies use different ways of calculating the correlation
among the sensor streams in the network. For this part of the problem,
other techniques for identifying correlations in multiple data streams [107,
114, 72, 26, 82] could be used as well. The work by Aggarwal et al. [3] de-
scribes a method that additionally considers and exploits domain-specific
knowledge on the information network of the sensors (i.e., relating to
links among the sensors). Another approach for the same problem has
proposed a technique for selecting sensors that is based on feedback on
the utility of the selected sensors [43].

2.3 Data Series Summarization

Many sensor network applications in diverse domains produce volumi-
nous amounts of data series, such as in meteorology (e.g., temperature
measurements [1]), oceanography (e.g., water level measurements [90]),
and other domains. The sheer number and size of the data series we need
to manipulate in many of the real-world applications mentioned above
dictates in several cases the need for a more compact representation of
data series than the raw data itself, and a plethora of representations
have been proposed to that effect4.

Even though most data series representations treat every point of
the data series equally, there exist WSN applications for which the time
position of a point makes a difference in the fidelity of its approximation.
Then we would represent the most recent data with low error, and would

4Several techniques have been proposed in the literature for the approximation of
data series, including Discrete Fourier Transform (DFT) [76, 36], Discrete Cosine Trans-
form (DCT), Piecewise Aggregate Approximation (PAA) [106], Discrete Wavelet Transform
(DWT) [75, 21], Adaptive Piecewise Constant Approximation (APCA) [20, 58], Piecewise
Linear Approximation (PLA) [54], Piecewise Quadratic Approximation (PQA) [48], and
others. Most of them are amenable to incremental, online operation.
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Figure 7.2. Depiction of an amnesic approximation, using the piecewise linear ap-
proximation technique (the most recent values of the data series are on the left; the
oldest values are on the right) [70].

be more forgiving of error in older data. We call this kind of time series
approximation amnesic, since the fidelity of approximation decreases
with time, and it therefore requires less memory for the events further
in the past (see Figure 7.2).

For example, the Environmental Observation and Forecasting Sys-
tem5 [90] operates in a way that allows for some sensors only intermittent
connections to the sink (through a repeater station that is not always
available). Since the station does not know how long it will be offline,
and has a finite buffer, amnesic approximation is an effective way to
record the data.

We need a way to specify for each point in time the amount of error
allowed for the approximation of the time series. In order to achieve
this goal, we use the amnesic function A(x), which returns the accept-
able approximation error for every point of the data series. We define
two forms of amnesic functions, namely, the relative and the absolute
amnesic functions. A relative amnesic function determines the relative
approximation error we can tolerate for every point in the time series
(e.g., we can specify that when we approximate a point that is twice as
old, we will accept twice as much error). When we use relative amnesic
functions, we fix the amount of memory that we are allowed to use for
the approximation of the data. On the other hand, an absolute am-

5This is a large-scale distributed system designed to monitor, model, and forecast wide-
area physical processes, such as river systems.
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nesic function specifies, for every point in the data series, the maximum
allowable error for the approximation, which is useful when the applica-
tion requires quality guarantees for the approximation of the data series.
When we use absolute amnesic functions, we allow the approximation
to use as much memory as necessary in order to meet the error bounds.

More formally, we define the following two problems in the context of
landmark windows. The landmark window is the window that contains
all the values of the data series (from a given time point) up to now.

Problem 2.3 (Land. Win. with Relative Amnesic (URA))
Given a memory budget M and a relative amnesic function RA(x), con-
struct an amnesic approximation using memory at most M that mini-
mizes the approximation error of the data points inside the window.

Problem 2.4 (Land. Win. with Absolute Amnesic (UAA))
Given an absolute amnesic function AA(x), construct an amnesic ap-
proximation that minimizes the required memory M .

Note that in the URA and UAA problems, the optimization objective
is different. In the URA problem we seek to minimize the approximation
error given the memory space used by the data series approximation,
while in the UAA problem we want to minimize the space used in the
approximation given the maximum error allowed.

Following the definition of the problems for the landmark window, we
now define the corresponding problems for the case where we consider
the sliding window model.

Problem 2.5 (Sliding window with Relative Amnesic (SRA))
Given a sliding window W , a memory budget M , and a relative amnesic
function RA(x), construct an amnesic approximation using memory M
that minimizes the approximation error of the data series within the
sliding window.

Problem 2.6 (Sliding window with Absolute Amnesic (SAA))
Given a sliding window W , and an absolute amnesic function AA(x),
construct an amnesic approximation that minimizes the required memory
M .

2.3.1 Proposed Techniques. Bulut and Singh propose the
use of wavelets to represent data streams, which are biased towards the
more recent values [16], and describe an efficient, online method for
incrementally maintaining this representation. The bias to the most
recent values can be seen as a special case of an amnesic function, whose
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form in this particular case is dictated by the hierarchical nature of the
wavelet transform.

A subsequent study [111] generalizes on these ideas, by decoupling the
approximation of the time series from a particular dimension-reduction
algorithm, and employs user-input to specify how the available memory
will be used for the approximation. There has also been relevant work
in machine learning, and more specifically, in the neural network com-
munity, where the main goal is to model time-varying patterns in data
series [10, 29].

A general and efficient solution to the amnesic summarization prob-
lems defined earlier is presented in [70]. This study describes solutions
for the four variations of the problem, based on online algorithms that
use a piecewise linear approximation model. When a new point arrives,
the algorithms update the approximation model in sub-linear time on
the number of linear segments.

It has been shown that the techniques mentioned above can be im-
plemented in a very efficient manner in sensor nodes [89]. Moreover,
amnesic summarization has been studied in the context of flash memo-
ries [67], which offer significant benefits that can be exploited by WSN
deployments.

3. Data Processing

Another interesting and important research direction in the context of
WSN data management is that of efficient data processing and analysis,
and a significant amount of effort has been devoted to it. In this case,
we are interested in supporting different types of complex queries in the
specific, resource-constrained environment of a WSN.

Several frameworks for the efficient execution of queries in a sensor
network have been developed in the past years [60, 59, 103]. The focus
in these works was to propose data processing and optimization meth-
ods geared specifically towards sensor networks, with the early studies
describing in-network aggregation techniques for reducing the amount
of data transmitted by the nodes. Ali et al. [7] propose an interesting
approach to detect and track discrete phenomena (PDT) in sensor net-
works. Hellerstein et al. [49] propose algorithms to partition the sensors
into isobars, i.e., groups of neighboring sensors with approximately equal
values during an epoch. Other works have proposed techniques that take
into account missing values, outliers, and intermittent connections [44,
30, 101]. We note that some of the techniques we discussed earlier are
applicable here (e.g., either to answer adhoc queries [31], or SELECT*
queries [87]).
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In the following paragraphs, we present a framework that enables the
development of a variety of complex processing applications in a sensor
network. These are applications with high processing requirements over
a significant portion of the data generated by the entireWSN. Examples
of such applications are the identification and tracking of homogeneous
regions, and outlier detection. The identification and tracking of ho-
mogeneous regions is used for environmental monitoring (e.g., around
oil-drill, or chemical plant sites). In outlier detection, we are interested
in discovering exceptional situations that may require the attention of a
human analyst: when some of the values of some sensor are not normal,
when the number of abnormal values exceeds a given threshold, or when
the values of a given sensor are significantly different from the values of
its neighbors. We further discuss these applications below.

3.1 Enabling Complex Analytics

The way that streaming applications are able to efficiently process
continuous data arriving at high rates, such as those generated byWSNs,
is by computing succinct summaries of the data, and operating on these
summaries [41, 32].

The framework we describe below aims to approximate in an online
fashion multi-dimensional data series distributions [69]. This framework
is adaptive and does not require any a priori knowledge about the dis-
tributions of the sensed values. Moreover, it operates in a distributed
fashion, thus, exploiting all the available resources of the WSN, and
reusing any processing that has already taken place.

3.1.1 Data Distribution Approximation Framework.
The proposed framework for estimating the underlying distribution of
a streaming data series works both for the sliding time window and
the landmark window models [69]. This framework estimates the distri-
bution of the values generated by the sensors using the kernel density
estimators [84], which offer the following desirable properties: (i) they
are efficient to compute and maintain in a streaming environment; (ii)
they can very accurately approximate an unknown data distribution,
with no a priori knowledge and (effectively) no parameters; (iii) they
can easily be combined and (iv) they scale well in multiple dimensions.
The above properties make the framework applicable to large sensor
networks, organized in a hierarchical way6 [104].

6The hierarchical decomposition of the sensor network, as well as the selection of the
leaders for each level of the hierarchy, can be achieved using any of the energy-efficient
techniques proposed in the literature [38, 61, 110].
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Figure 7.3. Estimation of data distribution in sliding window for two time instances
(1-d data) [69].

In such an online setting, we require that each sensor maintains a
model for the distribution of values it generates within a sliding window
W (see Figure 7.3). Such a model can be efficiently and effectively main-
tained over time. Then, we need to ensure that this mechanism operates
in a distributed fashion. Through a model composition mechanism, we
are able to take the data distribution models of two (or more) streams,
and construct a single model that describes their combined behavior.
The framework also proposes mechanisms for incrementally maintaining
the models across all levels of the (conceptual) hierarchy, as well as for
comparing them in order to determine the similarity of the sensed val-
ues. All the above operations can be efficiently supported in real-time
by a sensor node [69].

3.2 Detection and Tracking of Homogeneous
Regions

The first application is identification and tracking of homogeneous
regions [7, 49], which are defined as spatial divisions of the field under
observation that exhibit similar measured values over time, such as an
oil spill detected in the ocean (see Figure 7.4). The sensors deployed
around the origin of the spill can organize themselves into a network
and communicate the measurements, to detect regions of varying oil
concentrations.

Recent studies propose methods for delineating homogeneous regions
by a boundary [24, 68]. However, in several situations we need a more
generalized grouping of the sensors, based on the sensed values over a
time interval. In general, we would like to solve the problems of detecting
and tracking such homogeneous regions in real-time when the definition
of the phenomenon is not known in advance.

Using the framework described in Section 3.1.1, we can efficiently
identify sensors with similar readings, by comparing their models of the
densities of the sensed values [92]. Sensors with very similar models (i.e.,
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Figure 7.4. Spread of an oil spill detected in the water over time [92].

data distributions) are grouped together, using the hierarchical organi-
zation of the WSN. Each group corresponds to a homogeneous region in
space, whose boundaries can be effectively approximated. Then, we can
track the movements of these regions over time in a distributed manner,
keeping awake only the sensors that are close to the regions that are
being tracked. This process is efficiently implemented by tracking the
movement of the boundaries of each region.

3.3 Outlier Detection

The second application, which we examine in more detail, is dis-
tributed deviation detection in a sensor network. The goal is to identify
values (or the corresponding sensor nodes) that look very different from
their spatio-temporal neighbors (i.e., the values in the recent history of
the sensor stream, or the values in the streams of spatially close sensors).
We note that this is a challenging problem, even for static datasets.

This problem is important in a WSN setting because it can be used
to identify faulty sensors, and to filter spurious reports from different
sensors. Even if we are certain of the quality of measurements reported
by the sensors, the identification of outliers provides an efficient way to
focus on the interesting events in the sensor network.

In the following subsections, we describe the approaches that have
been proposed in the literature, separating them in approximate and
exact, according to whether they provide guarantees on the detection of
all the outliers.

3.3.1 Approximate Approaches. We first examine outlier
identification techniques that cannot provide any hard guarantees on the
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correctness of the results they produce. Consequently, these techniques
may fail to report some of the outliers in the data.

Classification-based
A method based on Bayesian classifiers is described by Elnahrawy et

al. [34]. This is a method for modeling and learning statistical contextual
information in WSNs, which can also be applied for the task of outlier
identification. The employed model assumes that the current reading
of each sensor is only influenced by the preceding reading of the same
sensor, and the readings of its immediate neighbors. This model is then
used to predict the highest probability class of the subsequent reading. If
the probability of this class is significantly different from the probability
(according to the model) of the actual reading, then this reading is
deemed an outlier.

Rajasegarar et al. [77] propose an alternative approach that uses a
Support Vector Machine (SVM) classifier. In this case the classification
model uses only the information from the past readings of the same
sensor node, and ignores the readings from the neighboring nodes.

A drawback of the classification-based approaches is the time and
computational effort required in order to train the model that can then
be used for outlier detection. This effort can in certain cases be rather
high. Note also that for non-stationary data this effort will be continu-
ous.

Data Distribution-based
A technique for outlier detection, based on learning statistical prop-

erties of the spatio-temporal correlations of the sensor readings, is pro-
posed by Bettencourt et al. [12]. This technique is geared towards eco-
logical applications, where the sensed pheonomena evolve slowly over
time, and are spatio-temporally coherent. According to this technique,
sensors learn the distributions of differences among their own readings
(over time), as well as the distributions of differences between their read-
ings and the readings of their neighbors. Then, comparing the current
readings to these distributions, allows sensors to identify local outliers
using a significance test, and a user-specified threshold.

Subramaniam et al. [93] study the case where we wish to identify
(among all sensor readings in a sliding window) those values that have
very few near neighbors [55], namely, distance-based outliers; or those
values whose near neighborhood is significantly less dense than their
extended neighborhood [71], namely, density-based outliers. Note that
these definitions do not require any prior knowledge of the underlying
data distributions. In order to solve the problem (for both definitions



Real-Time Data Analytics in Sensor Networks 189

of outliers mentioned above), we need to count the number of sensed
values that fall in different regions of the data space. This operation
can be efficiently supported by the framework outlined in Section 3.1.1,
and the overall task can be distributed in the entire WSN. Especially
for the distance-based outliers, the following observation holds [93]. In
a (conceptual) hierarchical organization of the sensor network, a parent
node combines in a single pool all the data that its children process.
Consequently, outliers have to be identified with respect to this new pool
of data. Nevertheless, it is not necessary that the parent node reads in
all the data from its children’s input data streams, and for each data
value determine whether it is an outlier or not. It suffices for the parent
node to examine only the values that have been marked as outliers by
its children. All the other data values can be safely ignored, since they
cannot possibly be outliers. The above approach allows for the effective
distribution of the outlier detection task to the entire WSN, resulting
in significant savings in terms of communication messages.

A recent study [64] proposes the use of the hyperellipsoidal model in
order to model the normal behavior of sensor nodes. Sensor readings
that significant deviate from this model are then declared outliers. The
focus of this study is on devising an iterative approach for building and
maintaining hyperellipsoidal models, which makes them suitable for non-
stationary data distributions.

Node Similarity-based
Zhuang et al. [115] describe an approach for identifying (and cleaning)

outliers in a sensor network. They focus on two kinds of outliers: short
simple outliers, usually represented as an abnormal, sudden burst and
depression; and long segmental outliers, which represents erroneous sen-
sor readings that last for a certain time period. Their approach works as
follows. The Discrete Wavelet Transform (DWT) is applied on the se-
ries of sensor readings. The high-frequency coefficients are omitted from
the resulting DWT representation, which is subsequently compared to
the original data series. Data points that are further away than a dis-
tance threshold, d1, from their DWT representation are deemed short
outliers. Then, the data series is compared to the series obtained from
other sensors that are geographically close. If no other series is within
some distance threshold, d2, then this data series is deemed a long out-
lier (similarity between data series is measured using the dynamic time
warping distance [11]).

A similar problem is addressed by a subsequent study [102], which
targets the identification of outlying sensors. The main observation is
that sensors observing the same phenomenon are spatially correlated,
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but outlying sensor readings are geographically independent. The algo-
rithm described in this study has each sensor compute the difference of
its reading to the median reading of its neighboring sensors. Then the
sensor collects all these differences from its neighborhood and standard-
izes them. If the absolute value of its standardized difference is larger
than a threshold, d, then this sensor is deemed an outlier.

The TACO framework [40] was recently proposed by Giatrakos et al.
to operate in a WSN. In order to identify outliers, TACO takes into
account both the history of measurements of a given sensor, as well
as the spatial correlations with measurements of other sensors in the
vicinity. The outlier detection scheme is based on a two-level hashing
mechanism. The first level of hashing takes place locally in each sensor,
and is based on Locality Sensitive Hashing [23]. This is used for dimen-
sionality reduction, since the recent history of sensor data readings can
be succinctly represented in a space of much smaller dimensionality. As-
suming a clustered organization of the sensor network (i.e., hierarchical
organization with just two levels), each node communicates this reduced
representation of its history to the corresponding cluster-head, which
subsequently checks for similar representations among the other nodes
in the cluster. Similarity measures such as cosine similarity, Jaccard co-
efficient and correlation coefficient, are supported. The representations
that do not find any similar matches make part of a list of potential
outliers that is further communicated to all the cluster-heads of the sen-
sor network. This communication step is efficiently implemented using
a second hashing mechanism based on the hamming weight of the repre-
sentations. Overall, the approach has the advantage that it can provide
probabilistic guarantees on the accuracy of the results.

Giatrakos et al. [39] proposed a similar technique, only based on the
trends of the sensed data series.

3.3.2 Exact Approaches. Unlike the works above, some stud-
ies have proposed techniques for outlier detection that guarantee no false
negatives (i.e., they identify all outliers). This is a desirable property
for several critical applications (e.g., structural integrity monitoring).

The work by Branch et al. [13] describes a technique for distributed
outlier detection, where the goal is to identify global outliers (i.e., with
respect to the data collected by all sensors). This technique supports
definitions of outliers that conform to certain anti-monotonicity and
smoothness properties (e.g., it supports the distance to kth nearest neigh-
bor [78], but not the density-based LOF outliers [15]). According to the
proposed algorithm, each node maintains a local list of outliers, along
with additional information on the data it has transmitted to its neigh-
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bors and the data it has received. Following some rounds of peer-to-peer
communications, all the nodes in the network converge to the final list of
global outliers. This technique guarantees that it will correctly identify
all outliers, but only under the assumptions that each node has accurate
knowledge of its nearest neighbors, the communications are reliable, and
that the data remains static long enough for the algorithm to converge.

In a similar setting, Zhang et al. [109] describe a technique for iden-
tification of global outliers, where outliers are defined as the n points
with the largest distance to their kth nearest neighbor. This technique
assumes the existence of an aggregation tree, which is used as the com-
munication structure among the nodes in the network. The nodes use
the aggregation tree to send local outliers and supporting information to
their parents, with the root node eventually collecting all the informa-
tion. At this point the sink is able to calculate the top-n global outlier
candidates, which transmits back to all the nodes in the network for
verification. If corrections need to be made, these have to be sent to
the sink, which will then adjust the candidate outlier list and repeat the
verification process. The end result is guaranteed to be correct as long
as the network topology does not change, and the algorithm converges
to the solution faster than the data gets updated (which implies the need
for a rather slow update rate).

A subsequent study [85] takes a more pragmatic approach, removing
the assumptions mentioned in the previous approaches. The goal is still
to find global outliers. An outlier is defined as a point whose distance
from its kth nearest neighbor is more than a distance threshold d; or
alternatively, as a point p, such that there exist no more than n other
points with distance to their kth nearest neighbors larger than the dis-
tance of p to its kth nearest neighbor. This approach is based on the use
of an equi-width histogram that can effectively aggregate and summarize
the sensor data readings. The histogram is built in the sink, after the
sink agrees with all the sensor nodes on the boundaries of the histogram
and its buckets. The histogram is then used by the sink in order to
prune the search space of outliers, by eliminating all points that can-
not possibly be outliers, as well as identifying points that are certainly
outliers. For the points for which no definite answer can be given, the
sink will explicitly ask the sensor nodes in the network, in an additional
round of computations.

Burdakis et al. [17] present an outlier detection framework that can
provide hard guarantees on the results. It is based on the Geometric Ap-
proach [81], which allows the development of much more efficient meth-
ods (in terms of communication cost) than the ones presented above.
The Geometric Approach enables the monitoring of complex (poten-
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tially non-linear) functions computed over the average of vectors the
describe the local behavior at each sensor node, and the handling of dif-
ferent similarity functions (useful for the outlier detection task) in the
distributed setting of a WSN: each sensor is assigned a zone, which
is locally monitored, and if no sensor identifies a threshold violation in
their corresponding zones, then the overall monitored function will not
have exceeded the threshold either. Under the proposed framework, we
can identify sensor nodes that involve sensed data values (either the re-
cent history of readings, or the vector of the currently sensed values)
that are not similar to the corresponding values of other similar nodes
in the network. Several different similarity measures can be efficiently
supported, including L1, L2, L∞, cosine similarity, extended Jaccard
coefficient, and correlation coefficient.

3.4 Processing Uncertain Data Series

In several different domains, such as manufacturing plants and en-
gineering facilities, sensor networks are being deployed to ensure effi-
ciency, product quality and safety [57]: unexpected vibration patterns
in production machines, or changes in the composition of chemicals in
industrial processes, are used to identify in advance possible failures, sug-
gesting repairs or replacements. However, sensor readings are inherently
imprecise because of the noise introduced by the equipment itself [18].

Previous work has shown that treating value uncertainty as a first class
citizen can lead to better results in terms of quality and efficiency [57,
91, 94, 96]. Since value uncertainty is inherent in WSN data, in the
following paragraphs we discuss some recent works on processing data
series with uncertain values. The focus of these works is on similarity
matching, which serves as the basis for developing various more complex
analysis and mining algorithms (e.g., classification, clustering, outlier
detection, etc.).

Two main approaches have emerged for modeling uncertain data se-
ries. In the first, a Probability Density Function (PDF) over the uncer-
tain values is estimated by using some a priori knowledge [112, 105, 83].
In the second, the uncertain data distribution is summarized by repeated
measurements (i.e., samples) [8]. We discuss those in more detail below.

3.4.1 Similarity Matching for Uncertain Data Series.
Formally, an uncertain data series T is defined as a sequence of random
variables < t1, t2, ..., tn >, where ti is the random variable modeling the
real valued number at timestamp i. All the three models we review and
compare fit under this general definition.
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The problem of similarity matching has been extensively studied in
the past [5, 35, 53, 22]: given a user-supplied query sequence, a sim-
ilarity search returns the most similar data series according to some
distance function. More formally, given a collection of data series C =
{S1, ..., SN}, where N is the number of data series, we are interested in
evaluating the range query function RQ(Q,C, ε):

RQ(Q,C, ε) = {S|S ∈ C ∧ distance(Q,S) ≤ ε} (7.1)

In the above equation, ε is a user-defined distance threshold. A survey
of representation and distance measures for data series can be found
elsewhere [33].

A similar problem arises also in the case of uncertain data series, and
the problem of probabilistic similarity matching has been introduced
in the last years. Formally, given a collection of uncertain data series
C = {T1, ..., TN}, we are interested in evaluation the probabilistic range
query function PRQ(Q,C, ε, τ):

PRQ(Q,C, ε, τ) = {T |T ∈ C|Pr(distance(Q,S) ≤ ε) ≥ τ} (7.2)

In the above equation, ε and τ are the user-defined distance threshold
and the probabilistic threshold, respectively.

In the recent years three techniques have been proposed to evaluate
PRQ queries, namely MUNICH7 [8], PROUD [105], and DUST [83]. We
discuss each one of these three techniques below, and offer some insights
in Section 4.2.

3.4.2 Proposed Techniques. MUNICH: In [8], uncer-
tainty is modeled by means of repeated observations at each times-
tamp, as depicted in Figure 7.5(a). Assuming two uncertain data se-
ries, X and Y , MUNICH proceeds as follows. First, the two uncer-
tain sequences X,Y are materialized to all possible certain sequences:
TSX = {< v11, ..., vn1 >, ..., < v1s, ..., vns >} (where vij is the j-th ob-
servation in timestamp i), and similarly for Y with TSY . The set of all
possible distances between X and Y is then defined as follows:

dists(X,Y ) = {Lp(x, y)|x ∈ TSX , y ∈ TSY } (7.3)

The uncertain Lp distance is formulated by means of counting the
feasible distances:

7We will refer to this method as MUNICH (it was not explicitly named in the original
paper), since all the authors were affiliated with the University of Munich.
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Pr(distance(X,Y ) ≤ ε) =
|{d ∈ dists(X,Y )|d ≤ ε}|

|dists(X,Y )| (7.4)

v1
v2

…

x1 x2 … xn

time

v1
v2

…

x1

x2

…

xn

time

(a) (b)

Figure 7.5. Example of an uncertain data series X = {x1, ..., xn} [27], modeled by
means of repeated observations (a), and pdf estimation (b).

Once we compute this probability, we can determine the result set of
PRQs similarity queries by filtering all uncertain sequences using Equa-
tion 7.4. Note that the naive computation of the result set is infeasible,
because of the exponential computational cost, |dists(X,Y )| = snXsnX ,
where sX , sY are the number of samples at each timestamp of X,Y ,
respectively, and n is the length of the sequences. Efficiency can be en-
sured by upper and lower bounding the distances, and summarizing the
repeated samples using minimal bounding intervals [8]. This framework
has been applied to Euclidean and DTW distances and guarantees no
false dismissals in the original space.
PROUD: In [105], an approach for processing queries over PROb-
abilistic Uncertain Data streams (PROUD) is presented. Inspired by
the Euclidean distance, the PROUD distance is modeled as the sum
of the differences of the streaming data series random variables, where
each random variable represents the uncertainty of the value in the cor-
responding timestamp (see Figure 7.5(b)). Given two uncertain data
series X,Y , their distance is defined as:

distance(X,Y ) =
∑
i

Di
2 (7.5)

where Di = (xi − yi) are random variables, as shown in Figure 7.6.
According to the central limit theorem, we have that the cumulative

distribution of the distances approaches a normal distribution, and the
normalized distance follows a standard normal distribution. Therefore,
we can obtain the normal distribution of the original distance as follows:

distance(X,Y ) ∝ N(
∑
i

E[D2
i ],

∑
i

V ar[D2
i ]) (7.6)
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Figure 7.6. The probabilistic distance model [27].

The interesting result here is that, regardless of the data distribution
of the random variables composing the uncertain data series, the cu-
mulative distribution of their distances (1) is defined similarly to their
euclidean distance and (2) approaches a normal distribution. Recall that
we want to answer PRQs similarity queries. First, given a probability
threshold τ and the Cumulative Distribution Function (CDF) of the
normal distribution, we compute εlimit such that:

Pr(distance(X,Y )norm ≤ εlimit) ≥ τ (7.7)

The CDF of the normal distribution can be formulated in terms of the
well known error-function, and εlimit can be determined by looking up
the statistics tables. Once we have εlimit, we proceed by computing also
the normalized εnorm. Then, if a candidate uncertain series Y satisfies
the inequality εnorm(X,Y ) ≥ εlimit, the following equation holds:

Pr(distance(X,Y )norm ≤ εnorm(X,Y )) ≥ τ (7.8)

Therefore, Y can be added to the result set. Otherwise, it is pruned
away. This distance formulation is statistically sound and only requires
knowledge of the general characteristics of the data distribution, namely,
its mean and variance.
DUST: In [83], the authors propose a new distance measure, DUST,
that compared to MUNICH, does not depend on the existence of mul-
tiple observations and is computationally more efficient. Similarly to
[105], DUST is inspired by the Euclidean distance, but works under the
assumption that all the data series values follow some specific distribu-
tion. Given two uncertain data series X,Y , the distance between two
uncertain values xi, yi is defined as the distance between their true (un-
known) values r(xi), r(yi): dist(xi, yi) = L1(r(xi), r(yi)). This distance
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can then be used to define a function φ that measures the similarity of
two uncertain values:

φ(|xi − yi|) = Pr(dist(0, |r(xi)− r(yi)|) = 0) (7.9)

This basic similarity function is then used inside the dissimilarity func-
tion between two uncertain data values x and y, and we have dust(x, y) =√− log(φ(|x− y|))− k, where k = − log(φ(0)), and for entire uncertain
sequences takes the following form:

DUST (X,Y ) =

√∑
i

dust(xi, yi)2 (7.10)

The handling of uncertainty has been isolated inside the φ function,
and its evaluation requires to know exactly the data distribution. In
contrast to the techniques we reviewed earlier, the DUST distance is
a real number that measures the dissimilarity between uncertain data
series. Thus, it can be used in the place of the existing distance function
in mining techniques that have been developed for certain data series.

4. Discussion

In this section, we offer some insights on the approaches and tech-
niques we described earlier. This discussion is also useful for determining
promising future research directions.

4.1 Data-Aware Network Protocols

In Section 2, we described several techniques for the efficient collec-
tion of the sensed data in a WSN. All these techniques invariably claim
considerable savings in terms of required communication messages. Ex-
periments have demonstrated savings of up to 2−3 orders of magnitude,
which is very promising news for the energy savings as well, and con-
sequently the lifetime of the WSN. However, these works have not
undertaken a careful study of how the communication savings translate
to network lifetime prolongation in real deployments.

A recent study [79] focused on exactly this problem: it examined
how DBP (similar results can be obtained for other data-driven data
acquisition techniques, as well) affected the WSN lifetime, motivated by
a real-world WSN-based application deployment in an operational road
tunnel. The performance of DBP was studied in conjunction with the
commonly-used network stack composed of CTP [42], BoX-MAC [65],
and TinyOS v2.1.1. The experimental evaluation used two settings: an
operational road tunnel, and an indoor testbed (fed with the same real
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(a) Testbed (2 hours). (b) Tunnel (23 hours).

Figure 7.7. Average duty cycle [79]. (Note the difference in the y-axis scale.)

data), representative of scenarios with different connectivity. Based on
a 47-day, 40-node dataset gathered in this deployment, the study shows
that DBP suppresses 99% of the message reports (w.r.t. the baseline,
where all nodes send data every 30 sec).

This study examined how data delivery to the application, network
lifetime, and routing costs are affected by DBP. To study the impact
on lifetime, the study measured the duty cycle of the radio, which is
the most power-consuming component. Figure 7.7 clearly shows that
DBP enables significant savings at any sleep interval, while the best
sleep interval without DBP is 1500 ms . When using DBP, longer sleep
intervals can be used to increase lifetime without affecting data delivery.

Figure 7.7(a) shows that in the testbed, with a sleep interval of 1500 ms
the WSN running DBP lasts twice as long as with no DBP (with the
same MAC settings). Using the best sleep interval in both cases (i.e.,
1500 and 3000 ms, respectively) yields a three-fold lifetime improve-
ment8.

A natural question arises at this point: if DBP suppresses over 99%
of the messages, why does the network lifetime increase “only” three-
fold? This is due to the costs of the network stack, in particular the
idle listening and average transmission times of the MAC protocol, and
to the overhead of the routing protocol to build and maintain the data
collection tree.

To isolate the inherent costs (e.g., tree maintenance) of CTP, experi-
ments were ran with no application traffic. Figure 7.7 shows the corre-
sponding duty cycle (as Only CTP). We observe that the DBP cost is

8The energy savings in the tunnel (see Figure 7.7(b)) are less remarkable, although still
significant, because the network diameter in the tunnel is much smaller w.r.t. the testbed
(due to the waveguide effect [66] many direct, 1-hop links to the sink exist, leaving less room
for improvement).
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(a) Without DBP. (b) With DBP.

Figure 7.8. Tunnel: total link-level transmissions for a sleep interval of 1500 ms [79].
(Note the difference in the y-axis scale.)

very close to the cost of CTP tree maintenance, regardless of the sleep
interval. A finer-grained view is provided by Figure 7.8, which shows
the different components of traffic in the network. Without DBP, the
dominate component is message transmission and forwarding; signifi-
cant retransmissions are present for some nodes, while the component
ascribed to CTP (i.e., the beacons probing for link quality) is negligible.
When DBP is active, the number of CTP beacons remains basically un-
changed. However, because the application-level traffic is dramatically
reduced, CTP beacons become the dominant component of the network
traffic.

These last observations suggest that further reductions in data traffic
would have little practical impact on the system lifetime, as routing costs
are dominated by topology maintenance rather than data forwarding.
Therefore, improvements are more likely to come from radical changes
at the routing and MAC layers: new, data-aware protocols need to be
designed, which will take into account the traffic patterns with extremely
low data rates that emerge when data-driven data acquisition techniques
are employed.

4.2 Uncertain Data Processing

Given the fact that sensors produce values with an inherent uncer-
tainty, and that we are increasingly relying on applications that are
driven by sensor data, it becomes evident that efficient and effective
processing of uncertain WSN data series is a relevant research direc-
tion.

Turning our attention to the three techniques we presented for un-
certain data series similarity matching (see Section 3.4), we observe
that an important factor for choosing among them is the information
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that is available about the distribution of the data series and its errors.
PROUD requires to know the standard deviation of the uncertainty er-
ror and a single observed value for each timestamp, and assumes that
the standard deviation of the uncertainty error remains constant across
all timestamps. DUST takes as input a single observed value of the data
series for each timestamp, and in addition, needs to know the distri-
bution of the uncertainty error for each single time stamp, as well as
the distribution of the values of the data series. This means that, in
contrast to PROUD, DUST can take into account mixed distributions
for the uncertainty errors (albeit, they have to be explicitly provided
in the input). MUNICH does not need to know the distribution of the
data series values, or the distribution of the value errors: it simply oper-
ates on the observations available at each timestamp. When we do not
have enough, or accurate information on the distribution of the errors,
PROUD and DUST do not offer an advantage in terms of accuracy when
compared to Euclidean [27].

All three techniques are based on the simplifying assumption that
the values of the data series are independent from one another, which
is not true for WSN measurements. A recent study [28] demonstrates
that removing this assumption is beneficial: it proposes the UMA and
UEMA filters (based on the weighted moving average technique), that
in combination with Euclidean distance lead to more accurate results.
These results suggest that more work is needed on techniques that take
into account the temporal correlations that exist in data series.

The time complexity of these techniques is another important factor.
We note that MUNICH is applicable only in the cases where the standard
deviation of the error is relatively small, and the length of the data
series is also small (otherwise the computational cost is prohibitive),
which makes this technique applicable in cases where the sink can do
the processing. To a (much) lesser extent, this is also true for PROUD
and DUST. On the other hand, UMA and UEMA have significantly
lower resource requirements, and could be efficiently implemented in a
sensor node.

4.3 Ubiquitous Sensor Networks

Lots of work and research effort has been devoted in the past years
in the study of various problems related to WSNs. Several efficient
techniques have been developed for the acquisition, management, pro-
cessing, and analysis of the sensed data, and at the same time (different
forms of) WSNs are being deployed in increasingly more domains and
situations.
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The next frontier in this line of research is the development of very
large, ubiquitous WSNs, with increased capabilities for complex, in-
network analytics. This vision includes various wireless devices with
different specifications (ranging from simple sensor motes to state of the
art smartphones), involves advanced, yet efficient, data management and
processing techniques, and calls for new breakthroughs in several of the
problems and research directions we discussed in the previous sections.

Consider a largeWSN deployment, such as SmartSantander [2], which
comprises of more than 20, 000 sensors in an urban setting. This sys-
tem has already started to be installed, and can drive the development
of powerful applications with a big environmental and societal impact
(e.g., environment-aware traffic and transportation monitoring and man-
agement, where traffic is managed in real-time, according to levels of
pollutants, noise, local events, emergency situations, etc.).

As these WSNs grow larger, covering more space and involving more
devices, it makes sense to increase their ability to ingest and process
more data in real-time, and to run complex queries in a distributed
manner more effectively. This will allow large numbers of queries to run
within the WSN, sharing and exchanging results, and with the goal to
minimize the need for centralized processing and human intervention (or
opportunistically seek human intervention, as in crowdsourcing environ-
ments). In order to achieve these goals, methodologies and techniques
from other domains could be exploited and adapted (apart from what
we have already described here), such as distributed complex event pro-
cessing [14, 95], and distributed publish/subscribe systems [37].

5. Conclusions

The development of WSN during the past decade helped advance the
state of art in several scientific communities that exploited the new op-
portunities for fine-granularity data-gathering. The popularity of WSNs
has also provoked the interest of the research community, and a mul-
titude of studies have been published on techniques and methodologies
for the effective and efficient use of the data produced by WSNs, across
the networks and data management communities.

As we are now going through the second decade of the WSNs lifetime,
we are witnessing a widening and increasing interest in their potential ap-
plications, finding their way in new domains and also including new types
of devices (e.g., smartphones). In this context, old problems re-emerge,
such as the design of novel network protocols that are data-aware, and
new challenging problems appear, such as the effective management of
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uncertainty in sensed data series, and techniques that will scale the in-
network complex analytics to very large WSNs.
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