Chapter 6

MINING SENSOR DATA STREAMS

Charu C. Aggarwal

IBM T. J. Watson Research Center
Yorktown Heights, NY

charu@us.ibm.com

Abstract

In recent years, advances in hardware technology have facilitated
new ways of collecting data continuously. One such application is that
of sensor data, which may continuously monitor large amounts of data
for storage and processing. In this paper, we will discuss the general
issues which arise in mining large amounts of sensor data. In many
cases, the data patterns may evolve continuously, as a result of which
it is necessary to design the mining algorithms effectively in order to
account for changes in underlying structure of the data stream. This
makes the solutions of the underlying problems even more difficult from
an algorithmic and computational point of view. In this chapter we
will provide an overview of the problem of data stream mining and the
unique challenges that data stream mining poses to different kinds of
sensor applications.

Keywords: Data Streams, Sensor Data, Sensor Stream Mining

1. Introduction

In recent years, advances in sensor technology have lead to the ability
to collect large amounts of data from sensors in an automated way. When
the volume of the underlying data is very large, it leads to a number of
computational and mining challenges:

With increasing volume of the data, it is no longer possible to
process the data efficiently by using multiple passes. Rather, one

C.C. Aggarwal (ed.), Managing and Mining Sensor Data, DOI 10.1007/978-1-4614-6309-2_6, 143
© Springer Science+Business Media New York 2013


mailto:charu@us.ibm.com

144 MANAGING AND MINING SENSOR DATA

can process a data item at most once. This leads to constraints
on the implementation of the underlying algorithms. Therefore,
stream mining algorithms typically need to be designed so that
the algorithms work with one pass of the data.

In most cases, there is an inherent temporal component to the
stream mining process. This is because the data may evolve over
time. This behavior of data streams is referred to as temporal lo-
cality. Therefore, a straightforward adaptation of one-pass mining
algorithms may not be an effective solution to the task. Stream
mining algorithms need to be carefully designed with a clear focus
on the evolution of the underlying data.

Data which is collected from sensors is often uncertain and error
prone, as a result of which it is critical to be able to reduce the
effects of the uncertainty in the mining process.

Another important characteristic of sensor data streams is that they are
often mined in a distributed fashion. In some cases, intermediate sen-
sor nodes may have limited processing power, and it may be desirable
to perform in-network sensor processing for a variety of mining applica-
tions. In such cases, the application algorithms need to be designed with
such criteria in mind [30, 60]. This chapter will provide an overview of
the key challenges in sensor stream mining algorithms which arise from
the unique setup in which these problems are encountered.

This chapter is organized as follows. In the next section, we will
discuss the generic challenges which arise in the context of storage and
processing of sensor data. The next section deals with several issues
which arise in the context of data stream management. In section 3,
we discuss several mining algorithms on the data stream model. Section
4 discusses various scientific applications of data streams. Section 5
discusses the research directions and conclusions.

2. Sensor Stream Mining Issues

Since data streams are processes which create large volumes of in-
coming data, they lead to several challenges in both processing the data
as well as applying traditional database operations. Therefore, new de-
signs of data streaming systems are required for handling sensor data
[23]. The challenging issues in sensor stream mining may arise during
different phases including data collection, transmission, storage and pro-
cessing. Some of the these key issues are as follows:



Mining Sensor Data Streams 145

2.1 Data Uncertainty and Volume

Typical sensor mining applications collect large amounts of data,
which is often subject to uncertainty and errors. This is because sensors
often have errors in data collection and transmission. In many cases,
where the battery runs out, the data may also be incomplete. There-
fore, methods are required to store and process the uncertainty in the
underlying data. A common technique is to perform model driven data
acquisition [36], which explicitly models the uncertainty during the ac-
quisition process. Furthermore, new methods must be constructed in
order to explicitly use these uncertainty models during data processing.
A detailed discussion of a variety of methods for modeling and mining
uncertain data are proposed in [14].

A variety of techniques may be used in order to handle the large vol-
ume of sensor data. One method may be to simply lower the sampling
rate for capturing or transmitting the data. This reduces the granularity
of the data collection process. Many techniques have also been proposed
[34, 35] in order to reduce or compress the volume of the data in the sen-
sor network. Another approach is to discard parts of the data even after
collection and transmission. For example, when the incoming rate of
the data streams is higher than that can be processed by the system,
techniques are required in order to selectively pick data points from the
stream, without losing accuracy. This technique is known as loadshed-
ding. Since sensor generated data streams are generated by processes
which are extraneous to the stream processing application, it is not pos-
sible to control the incoming stream rate. As a result, it is necessary
for the system to have the ability to quickly adjust to varying incoming
stream processing rates. One particular type of adaptivity is the ability
to gracefully degrade performance via “load shedding” (dropping unpro-
cessed tuples to reduce system load) when the demands placed on the
system cannot be met in full given available resources. The loadshedding
can be tailored to specific kinds of applications such as query process-
ing or data mining. A discussion of several loadshedding techniques are
provided in [4]. Finally, a method for reducing the data volume is that
of sensor selection in which data from only a particular set of sensors is
transmitted at a particular time, so that most of the essential informa-
tion is retained. This is also useful for reducing the power requirements
of transmission. We will discuss this method in the next subsection.



146 MANAGING AND MINING SENSOR DATA

2.2 Power Issues in Sensor Collection and
Transmission

Since sensor nodes have limited battery power, the issue of data col-
lection and transmission is a challenging one for sensor networks. Sensor
nodes have limited battery power, as a result of which it is necessary to
collect and transmit the data on a limited basis. This means that it is
often necessary to collect only a subset of the data for mining purposes.
A classic technique which is often used in order to reduce the amount
of collected data is sensor selection. In data driven sensor selection,
goal-oriented techniques are used in order to reduce the amount of data
collected for mining purposes [19, 2-1, 45, 61]. In most of these methods,
the idea is to use the massive redundancy across the different sensors in
order to reduce the total data which is collected. For example, in an
environmental monitoring applications, two sensors which are located
physically close together may often have very similar readings. In such
cases, the correlations across the different sensors are leveraged in or-
der to select a small number of sensors from which the data is collected.
The values on the other sensors can be predicted from this small set. We
note that this small set may vary over time, as different sensors may be
inoperative at different times, or the correlations among the data may
change. Methods for power-efficient and dynamic sensor selection are
discussed in [1]. Another technique which is often used in order to re-
duce the power transmission costs is a method referred to as in network
processing. We will discuss this technique in the next subsection.

2.3 In-Network Processing

Since sensor networks may use hundreds and thousands of nodes over
a large area, and all the data from the different nodes may be need to
be fused, this can incur significant communication costs, of all the raw
data is directly transmitted to a central server for processing. While
such a naive solution is easy to implement, its energy costs may be too
large to make it practical for very large scale sensor networks which are
distributed over wide regions. Since the cost of transmission is higher
than computation, it is usually advantageous to organize the sensors into
clusters. In such an environment, the data gathered by the sensors is pro-
cessed within the network and only aggregated information is returned to
the central location. This responsibility is typically provided to certain
nodes in the network, which are referred to as aggregators. Numerous
functions can be designed for such nodes, and the corresponding data
sent may depend upon the relevant aggregate queries which are posed
at the central server. Thus, the underlying assumption is that such em-



Mining Sensor Data Streams 147

bedded devices in the network are smart enough to be able to compute
functions of modest complexity. Such an approach results in a reduction
of the transmission costs, both because of the smaller distances of trans-
mission in a clustered environment, and also because only the aggregated
data is transmitted (which has much lower volume than the raw data).
It is possible to design different kinds of cluster hierarchies in order to
optimize the transmission costs in the underlying network. A detailed
discussion of the different aspects of in-network query processing may
be found in [63, 78].

3. Stream Mining Algorithms

In this section, we will discuss the key stream mining problems and
will discuss the challenges associated with each problem. We will also
provide a broad overview of the different directions of research for these
problems.

3.1 Data Stream Clustering

Clustering is a widely studied problem in the data mining literature.
However, it is more difficult to adapt arbitrary clustering algorithms to
data streams because of one-pass constraints on the data set. An inter-
esting adaptation of the k-means algorithm has been discussed in [43]
which uses a partitioning based approach on the entire data set. This
approach uses an adaptation of a k-means technique in order to create
clusters over the entire data stream. However, in practical applications,
it is often desirable to be able to examine clusters over user-specified
time-horizons. For example, an analyst may desire to examine the be-
havior of the clusters in the data stream over the past one week, the
past one month, or the past year. In such cases, it is desirable to store
intermediate cluster statistics, so that it is possible to leverage these in
order to examine the behavior of the underlying data.

One such technique is micro-clustering [10], in which we use cluster
feature vectors [81] in order to perform stream clustering. The cluster
feature vectors keep track of the first-order and second-order moments
of the underlying data in order to perform the clustering. These features
satisfy the following critical properties which are relevant to the stream
clustering process:

Additivity Property: The statistics such as the first- or second-
order moments can be maintained as a simple addition of statistics
over data points. This is critical in being able to maintain the
statistics efficiently over a fast data stream. Furthermore, addi-
tivity also implies subtractivity; thus, it is possible to obtain the



148 MANAGING AND MINING SENSOR DATA

statistics over a particular time horizon, by subtracting out the
statistics at the beginning of the horizon from the statistics at the
end of the horizon.

Computational Convenience: The first and second order statis-
tics can be used to compute a vast array of cluster parameters such
as the cluster centroid and radius. This is useful in order to be
able to compute important cluster characteristics in real time.

It has been shown in [10], that the micro-cluster technique is much more
effective and versatile than the k-means based stream technique dis-
cussed in [43]. This broad technique has also been extended to a variety
of other kinds of data. Some examples of such data are as follows:

High Dimensional Data: The stream clustering method can
also be extended to the concept of projected clustering [5]. A tech-
nique for high dimensional projected clustering of data streams is
discussed in [11]. In this case, the same micro-cluster statistics
are used for maintaining the characteristics of the clusters, except
that we also maintain additional information which keeps track of
the projected dimensions in each cluster. The projected dimen-
sions can be used in conjunction with the cluster statistics to com-
pute the projected distances which are required for intermediate
computations. Another innovation proposed in [11] is the use of
decay-based approach for clustering. The idea in the decay-based
approach is relevant for the case of evolving data stream model,
and is applicable not just to the high dimensional case, but any of
the above variants of the micro-cluster model. In this approach,
the weight of a data point is defined as 2=, where ¢ is the current
time-instant. Thus, each data point has a half-life of 1/\, which is
the time in which the weight of the data point reduces by a factor
of 2. We note that the decay-based approach poses a challenge
because the micro-cluster statistics are affected at each clock tick,
even if no points arrive from the data stream. In order to deal with
this problem, a lazy approach is applied to decay-based updates, in
which we update the decay-behavior for a micro-cluster only if a
data point is added to it. The idea is that as long as we keep track
of the last time ¢4 at which the micro-cluster was updated, we only
need to multiply the micro-cluster statistics by 27*te~ts) where ¢,
is the current time instant. After multiply the decay statistics by
this factor, it is possible to add the micro-cluster statistics of the
current data point. This approach can be used since the statistics
of each micro-cluster decay by the same factor in each track, and it
is therefore possible to implicitly keep track of the decayed values,



Mining Sensor Data Streams 149

as long as a data point is not added to the micro-cluster. In the
latter case, the statistics need to be updated explicitly, while other
counts can still be maintained implicitly.

Uncertain Data: In many cases, such as in sensor networks, the
underlying data may be noisy and uncertain. In such cases, it may
be desirable to incorporate the uncertainty into the clustering pro-
cess. In order to do so, the micro-cluster statistics are appended
with the information about the underlying uncertainty in the data.
This information can be used in order to make more robust clus-
tering computations. The advantages of using the uncertainty into
the clustering process are illustrated in [7].

Text and Categorical Data: A closely related problem is that
of text and categorical data. The main difference with the quan-
titative domain is the nature of the statistics which are stored for
clustering purposes. In this case, we maintain the counts of the
frequencies of the discrete attributes in each cluster. Furthermore,
we also maintain the inter-attribute correlation counts which may
be required in a variety of applications. In [12], an efficient algo-
rithm has been proposed for clustering text and categorical data
streams. This algorithm also allows for a decay-based approach
as in [11]. Text and categorical streams often arise in the context
of social sensors such as micro-blogging sites, or other tagging or
event detection scenarios.

In addition, a number of density-based methods [25, 28] have also been
proposed for the problem of stream clustering.

In the context of sensor networks, the stream data is often available
only in a distributed setting, in which large volumes of data are col-
lected separately at the different sensors. A natural approach for clus-
tering such data is to transmit all of the data to a centralized server.
The clustering can then be performed at the centralized server in or-
der to determine the final results. Unfortunately, such an approach is
extremely expensive in terms of its communication costs. Therefore, it
is important to design a method which can reduce the communication
costs among the different processors. A method proposed in [32] per-
forms local clustering at each node, and merges these different clusters
into a single global clustering at low communication cost. Two different
methods are proposed in this work. The first method determines the
cluster centers by using a furthest point algorithm, on the current set of
data points at the local site. In the furthest point algorithm, the center
of a cluster is picked as a furthest point to the current set of centers.
For any incoming data point, it is assigned to its closest center, as long



150 MANAGING AND MINING SENSOR DATA

the distance is within a certain factor of an optimally computed radius.
Otherwise, a re-clustering is forced by applying the furthest point algo-
rithm on current set of points. After the application of the furthest point
algorithm, the centers are transmitted to the central server, which then
computes a global clustering from these local centers over the different
nodes. These global centers can ten be transmitted to the local nodes if
desired. One attractive feature of the method is that an approximation
bound is proposed on the quality of the clustering. A second method for
distributed clustering proposed in [32] is the parallel guessing algorithm.
Another method for distributed sensor stream clustering which reduces
the dimensionality and communication cost by maintaining an online
discretization may be found in [68].

3.2 Data Stream Classification

The problem of classification is perhaps one of the most widely stud-
ied in the context of data stream mining. The problem of classification
is made more difficult by the evolution of the underlying data stream.
Therefore, effective algorithms need to be designed in order to take tem-
poral locality into account. The concept of stream evolution is sometimes
referred to as concept drift in the stream classification literature. Some
of these algorithms are designed to be purely one-pass adaptations of
conventional classification algorithms [39], whereas others (such as the
methods in [13, 48]) are more effective in accounting for the evolution of
the underlying data stream. The broad methods which are studied for
classification in the data stream scenario are as follows:

VFDT Method: The VFEDT (Very Fast Decision Trees) method has
been adapted to create decision trees which are similar to those con-
structed by a conventional learner with the use of sampling based ap-
proximations. The VFDT method splits a tree using the current best
attribute, taking into consideration the fact that the number of exam-
ples used are sufficient to preserve the Hoeffding bound in a way that
the output is similar to that of a conventional learner. The key question
during the construction of the decision tree is the choice of attributes
to be used for splits. Approximate ties are broken using a user-specified
threshold of acceptable error-measure for the output. It can be shown
that for any small value of §, a particular choice of the split variable is
the correct choice with probability at least 1 — ¢, if a sufficient number
of stream records have been processed. This number has been shown
in [39] to increase at a relatively modest rate of In(1/d). This bound
can then be extended to the entire decision tree, so as to quantify the
probability that the same decision tree as a conventional learner is cre-



Mining Sensor Data Streams 151

ated. The VFDT method has also been extended to the case of evolving
data streams. This framework is referred to as CVFDT [48], and it
runs VFDT over fixed sliding windows in order to always have the most
updated classifier. Jin and Agrawal [50] have extended the VFDT al-
gorithm in order to process numerical attributes and reduce the sample
size which is calculated using the Hoeffding bound. Since this approach
reduces the sample size, it improves efficiency and space requirements
for a given level of accuracy.

On Demand Classification: While most stream classification meth-
ods are focussed on a training stream, the on demand method is focussed
on the case when both the training and the testing stream evolves over
time. In the on demand classification method [13], we create class-
specific micro-clusters from the underlying data. For an incoming record
in the test stream, the class label of the closest micro-cluster is used in
order to determine the class label of the test instance. In order to han-
dle the problem of stream evolution, the micro-clusters from the specific
time-horizon are used for the classification process. A key issue in this
method is the choice of horizon which should be used in order to obtain
the best classification accuracy. In order to determine the best horizon,
a portion of the training stream is separated out and the accuracy is
tested over this portion with different horizons. The optimal horizon is
then used in order to classify the test instance.

Ensemble-based Classification: This technique [74] uses an ensem-
ble of classification methods such as C4.5, RIPPER and naive Bayes in
order to increase the accuracy of the predicted output. The broad idea
is that a data stream may evolve over time, and a different classifier may
work best for a given time period. Therefore, the use of an ensemble
method provides robustness in the concept-drifting case.
Compression-based Methods: An interesting method for real-time
classification of streaming sensor data with the use of compression tech-
niques has been proposed in [57]. In this approach, time-series bitmaps,
which can be updated in constant time are used as efficient classifiers.
Because of the ability of be updated in constant time, these classifiers
are very efficient in practice. The effectiveness of this approach has been
illustrated on a number of insect-tracking data sets.

In the context of sensor networks, data streams may often have a
significant level of errors and uncertainty. Data uncertainty brings a
number of unique challenges with it in terms of the determination of
the important features to be used for the classification process. In this
context, a number of algorithms have been proposed for classification of
uncertain data streams [14, 15]. In particular, the method discussed in



152 MANAGING AND MINING SENSOR DATA

[15] constructs a density-based framework to summarize the uncertain
data stream effectively and use it for classification purposes.

3.3 Frequent Pattern Mining

The problem of frequent pattern mining was first introduced in [16],
and was extensively analyzed for the conventional case of disk resident
data sets. In the case of data streams, one may wish to find the frequent
itemsets either over a sliding window or the entire data stream [44, 53].
In the case of data streams, the problem of frequent pattern mining can
be studied under several models:

Entire Data Stream Model: In this model, the frequent patterns
need to be mined over the entire data stream. Thus, the main difference
from a conventional pattern mining algorithm is that the frequent pat-
terns need to be mined in one pass over the entire data stream. Most
frequent pattern mining algorithms require multiple passes in order to es-
timate the frequency of patterns of different sizes in the data. A natural
method for frequent pattern counting is to use sketch-based algorithms
in order to determine frequent patterns. Sketches are often used in order
to determine heavy-hitters in data streams, and therefore, an extension
of the methodology to the problem of finding frequent patterns is natu-
ral. Along this line, Manku and Motwani [64] proposed the first one lass
algorithm called Lossy Counting, in order to find all frequent itemsets
over a data stream. The algorithm allows false positives, but not false
negatives. Thus, for a given support level s, the algorithm is guaranteed
not to contain all frequent itemsets whose support is greater than s — e.
Another interesting approach in [80] determines all the frequent patterns
whose support is greater than s with probability at least 1 — §, which
the value of § is as small as desired, as long as one is willing to add space
and time complexity proportional to In(1/6).Thus, this model does not
allow false negatives, but may miss some of the frequent patterns. The
main advantage of such a technique is that it is possible to provide a
more concise set of frequent patterns at the expense of losing some of the
patterns with some probability which is quite low for practical purposes.
Sliding Window Model: In many cases, the data stream may evolve
over time, as a result of which it is desirable to determine all the frequent
patterns over a particular sliding window. A method for determining the
frequent patterns over a sliding window is discussed in [29]. The main
assumption of this approach is that the number of frequent patterns are
not very large, and therefore, it is possible to hold the transactions in
each sliding window in main memory. The main focus of this approach
is to determine closed frequent itemsets over the data stream. A new



Mining Sensor Data Streams 153

mining algorithm called MOMENT is proposed, and the main idea is
based on the fact that the boundary between closed frequent itemsets
and frequent itemsets moves very slowly. A closed enumeration tree is
developed in order to keep track of the boundary between closed frequent
itemsets and the rest of the itemsets. Another method which is able to
mine frequent itemsets over arbitrary time granularities is referred to
as FPSTREAM [42]. This method is essentially an adaptation of the
FP-Tree method to data streams.

Damped Window Model: We note that pure sliding windows are
not the only way by which the evolution of data streams can be taken
into account during the mining process. A second way is to introduce
a decay factor into the computation. Specifically, the weight of each
transaction is multiplied by a factor of f < 1, when a new transaction
arrives. The overall effect of such an approach is to create an exponential
decay function on the arrivals in the data stream. Such a model is quite
effective for evolving data stream, since recent transactions are counted
more significantly during the mining process. An algorithm proposed in
[27] maintains a lattice for recording the potentially frequent itemsets
and their counts. While the counts of each lattice may change upon the
arrival of each transaction, a key observation is that it is sufficient to
update the counts in a lazy way. Specifically, the decay factor is applied
only to those itemsets whose counts are affected by the current trans-
action. However, the decay factor will have to be applied in a modified
way by taking into account the last time that the itemset was touched
by an update. In other words, if ¢. be the current transaction index, and
the last time the count for the itemset was updated was at transaction
index ts < t., then we need to multiply the current counts of that item-
set by fts~t before incrementing the count of this modified value. This
approach works because the counts of each itemset reduce by the same
decay factor in each iteration, as long as a transaction count is not added
to it. We note that such a lazy approach is also applicable to other min-
ing problems, where statistics are represented as the sum of decaying
values. For example, in [11], a similar lazy approach is used in order
to maintain decay-based micro-cluster statistics for a high dimensional
projected stream clustering algorithm.

3.4 Change Detection in Data Streams

As discussed earlier, the patterns in a data stream may evolve over
time. In many cases, it is desirable to track and analyze the nature
of these changes over time. In [8, 37, 59], a number of methods have
been discussed for change detection of data streams. In addition, data



154 MANAGING AND MINING SENSOR DATA

stream evolution can also affect the behavior of the underlying data min-
ing algorithms since the results can become stale over time. The broad
algorithms for change diagnosis in data streams are as follows:
Velocity Density Estimation: In velocity density estimation [8], we
compute the rate of change of data density of different points in the
data stream over time. Depending upon the direction of density rate
of change, one may identify regions of dissolution, coagulation and shift.
Spatial profiles can also be constructed in order to determine the direc-
tions of shift in the underlying data. In addition, it is possible to use
the velocity density concept in order to identify those combinations of
dimensions which have a high level of evolution. Another technique for
change quantification is discussed in [37], which uses methods for prob-
ability difference quantification in order to identify the changes in the
underlying data. In [59], a method is discussed in order to determine
statistical changes in the underlying data. Clustering [10] can be used in
order to determine significant evolution in the underlying data. In [10],
micro-clustering is used in order to determine significant clusters which
have evolved in the underlying data.

A separate line of work is the determination of significant changes in
the results of data mining algorithms because of evolution. For example
in [10], it has been shown how to determine significant evolving clusters
in the underlying data. In [13], a similar technique has been used to
keep a refreshed classification model in the presence of evolving data.
In this respect, micro-clustering provides an effective technique, since it
provides a way to store intermediate statistics of the underlying data
in the form of clusters. In [13], a micro-cluster based nearest neighbor
classifier is used in order to classify evolving data streams. The key
idea is to construct class-specific micro-clusters over a variety of time
horizons, and then utilize the time horizon with the greatest accuracy in
order to perform the classification process. The issue of stream evolution
has been extended to many other problems such as synopsis construc-
tion and reservoir sampling [6]. We will discuss some of the synopsis
construction methods later.

3.5 Synopsis Construction in Data Streams

The large volume of data streams poses unique space and time con-
straints on the computation process. Many query processing, database
operations, and mining algorithms require efficient execution which can
be difficult to achieve with a fast data stream. Furthermore, since it is
impossible to fit the entire data stream within the available space, the
space efficiency of the approach is a major concern. In many cases, it



Mining Sensor Data Streams 155

may be acceptable to generate approrimate solutions for many problems
by summarizing the data in a time and space-efficient way. In recent
years a number of synopsis structures have been developed, which can
be used in conjunction with a variety of mining and query processing
techniques [41]. Some key synopsis methods include those of sampling,
wavelets, sketches and histograms. The key challenges which arise in the
context of synopsis construction of data streams are as follows:

Broad Applicability: The synopsis structure is typically used as an
intermediate representation, which is then leveraged for a variety of data
mining and data management problems. Therefore, the synopsis struc-
ture should be cOonstructed in such a way that it has applicability across
a wide range of problems.

One-pass constraint: As in all data stream algorithms, the one-pass
constraint is critical to synopsis construction algorithms. We would like
to design all synopsis construction algorithms in one pass, and this is
not the case for most traditional methods. In fact, even simply methods
such as sampling need to be re-designed in order to handle the one-pass
constraint.

Time and Space Efficiency: Since data streams have a very large vol-
ume, it is essential to create the synopsis in a time- and space-efficient
way. In this sense, some of the probabilistic techniques such as sketches
are extremely effective for counting-based applications, since they re-
quire constant-space for provable probabilistic accuracy. In other words,
the time- and space-efficiency depends only upon the accuracy of the
approach rather than the length of the data stream.

Data Stream Evolution: Since the stream evolves over time, a synop-
sis structure which is constructed from the overall behavior of the data
stream is not quite as effective as one which uses recent history. Con-
sequently, it is often more effective to create synopsis structures which
either work with sliding windows, or use some decay-based approach in
order to weight the data stream points.

One key characteristic of many of the above methods is that while
they work effectively in the 1-dimensional case, they often lose their
effectiveness in the multi-dimensional case either because of data spar-
sity or because of inter-attribute correlations. Next, we will discuss the
broad classes of techniques which are used for synopsis construction in
data streams. FEach of these techniques have their own advantages in
different scenarios, and we will take care to provide an overview of the
different array of methods which are used for synopsis construction in
data streams. The broad techniques which are used for synopsis con-
struction in data streams are as follows:

Reservoir Sampling: Sampling methods are widely used for tradi-



156 MANAGING AND MINING SENSOR DATA

tional database applications, and are extremely popular because of their
broad applicability across a wide array of tasks in data streams. A fur-
ther advantage of sampling methods is that unlike many other synopsis
construction methods, they maintain their inter-attribute correlations
across samples of the data. It is also often possible to use probabilistic
inequalities in order to bound the effectiveness of a variety of applica-
tions with sampling methods.

However, a key problem in extending sampling methods to the data
stream scenario, is that one does not know the total number of data
points to be sampled in advance. Rather, one must maintain the sample
in a dynamic way over the entire course of the computation. A method
called reservoir sampling was first proposed in [72], which maintains such
a sample dynamically. This technique was originally proposed in the con-
text of one-pass access of data from magnetic-storage devices. However,
the techniques also naturally extend to the data stream scenario.

Let us consider the case, where we wish to obtain an unbiased sample
of size n from the data stream. In order to initialize the approach, we
simply add the first n points from the stream to the reservoir. Subse-
quently, when the (¢4 1)th point is received, it is added to the reservoir
with probability n/(t + 1). When the data point is added to the reser-
voir, it replaces a random point from the reservoir. It can be shown that
this simple approach maintains the uniform sampling distribution from
the data stream. We note that the uniform sampling approach may not
be very effective in cases where the data stream evolves significantly. In
such cases, one may either choose to generate the stream sample over
a sliding window, or use a decay-based approach in order to bias the
sample. An approach for sliding window computation over data streams
is discussed in [20].

A second approach [6] uses biased decay functions in order to construct
synopsis from data streams. It has been shown in [6] that the problem
is extremely difficult for arbitrary decay functions. In such cases, there
is no known solution to the problem. However, it is possible to design
very simple algorithms for some important classes of decay functions.
One of these classes of decay functions is the exponential decay function.
The exponential decay function is extremely important because of its
memory less property, which guarantees that the future treatment of a
data point is independent of the past data points which have arrived.
An interesting result is that by making simple implementation modifi-
cations to the algorithm of [72] in terms of modifying the probabilities
of insertion and deletion, it is possible to construct a robust algorithm
for this problem. It has been shown in [6] that the approach is quite



Mining Sensor Data Streams 157

effective in practice, especially when there is significant evolution of the
underlying data stream.

While sampling has several advantages in terms of simplicity and

preservation of multi-dimensional correlations, it loses its effectiveness in
the presence of data sparsity. For example, a query which contains very
few data points is unlikely to be accurate with the use of a sampling ap-
proach. However, this is a general problem with most techniques which
are effective at counting frequent elements, but are not quite as effective
at counting rare or distinct elements in the data stream.
Sketches: Sketches use some properties of random sampling in order
to perform counting tasks in data streams. Sketches are most useful
when the domain size of a data stream is very large. In such cases,
the number of possible distinct elements become very large, and it is no
longer possible to track them in space-constrained scenarios. There are
two broad classes of sketches: projection based and hash based. We will
discuss each of them in turn.

Projection based sketches are constructed on the broad idea of ran-
dom projection [54]. The most well known projection-based sketch is
the AMS sketch [17, 18], which we will discuss below. It has been shown
in [54], that by by randomly sampling subspaces from multi-dimensional
data, it is possible to compute e-accurate projections of the data with
high probability. This broad idea can easily be extended to the mas-
sive domain case, by viewing each distinct item as a dimension, and the
counts on these items as the corresponding values. The main problem is
that the vector for performing the projection cannot be maintained ex-
plicitly since the length of such a vector would be of the same size as the
number of distinct elements. In fact, since the sketch-based method is
most relevant in the distinct element scenario, such an approach defeats
the purpose of keeping a synopsis structure in the first place.

Let us assume that the random projection is performed using k sketch
vectors, and 77 represents the jth vector for the ith item in the domain
being tracked. In order to achieve the goal of efficient synopsis construc-
tion, we store the random vectors implicitly in the form of a seed, and
this can be used to dynamically generate the vector. The main idea
discussed in [49] is that it is possible to generate random vectors with
a seed of size O(log(V)), provided that one is willing to work with the
restriction that r] € {—1,+1} should be 4-wise independent. The sketch

is computed by adding r,{ to the jth component of the sketch for the ith
item. In the event that the incoming item has frequency f, we add the

value f-r’. Let us assume that there are a total of k sketch components
which are denoted by (s1...sg). Some key properties of the pseudo-



158 MANAGING AND MINING SENSOR DATA

random number generator approach and the sketch representation are
as follows:

A given component rlj can be generated in poly-logarithmic time
from the seed. The time for generating the seed is poly-logarithmic
in the domain size of the underlying data.

A variety of approximate aggregate functions on the original data
can be computed using the sketches.

Some example of functions which can be computed from the sketch com-
ponents are as follows:

Dot Product of two streams: If (s; ... sx) be the sketches from
one stream, and (¢ ...t;) be the sketches from the other stream,
then sj;cdott; is a random variable whose expected value of the dot
product.

Second Moment: If (s;...s;) be the sketch components for a
data stream, it can be shown that the expected value of s? is the
second moment. Furthermore, by using Chernoff bounds, it can
be shown that by selecting the median of O(log(1/J) averages of
O(1/€%) copies of sj|cdott;, it is possible to guarantee the accuracy
of the approximation to within 1% with probability at least 1 — 6.

Frequent Items: The frequency of the ith item in the data stream
is computed by by multiplying the sketch component s; by 7.
However, this estimation is accurate only for the case of frequent
items, since the error is estimation is proportional to the overall
frequency of the items in the data stream.

More details of computations which one can perform with the AMS
sketch are discussed in [17, 18].

The second kind of sketch which is used for counting is the count-min
sketch [31]. The count-min sketch is based upon the concept of hashing,
and uses k = In(1/§) pairwise-independent hash functions, which hash
onto integers in the range (0...e/e). For each incoming item, the k hash
functions are applied and the frequency count is incremented by 1. In
the event that the incoming item has frequency f, then the correspond-
ing frequency count is incremented by f. Note that by hashing an item
into the k cells, we are ensuring that we maintain an overestimate on the
corresponding frequency. It can be shown that the minimum of these
cells provides the e-accurate estimate to the frequency with probability
at least 1 — 0. It has been shown in [31] that the method can also be
naturally extended to other problems such as finding the dot product



Mining Sensor Data Streams 159

Table 6.1. An Example of Wavelet Coefficient Computation

-0.25

Granularity (Order k) Averages DWT Coefficients
P values 1 values
k=4 (8, 6,2, 3,4, 6,6,5) -
k=3 (7, 2.5, 5, 5.5) (1, -0.5,-1, 0.5)
k=2 (4.75, 5.25) (2.25, -0.25)
k=1 (5) (-0.25)
(8,6,2,3,4,66,5 ! m
L]
[]
-0.5 u
| Hu
[]
05 U
(7,25,5,5.5) 225

(4.75,5.25) 0.25

5) ’7/4’

Figure 6.1. Illustration of the Wavelet Decomposition

or the second-order moments. The count-min sketch is typically more
effective for problems such as frequency-estimation of individual items
than the projection-based AMS sketch. However, the AMS sketch is
more effective for problems such as second-moment estimation.
Wavelet Decomposition: Another widely known synopsis represen-
tation in data stream computation is that of the wavelet representation.
One of the most widely used representations is the Haar Wavelet. We
will discuss this technique in detail in this section.

This technique is particularly simple to implement, and is widely used
in the literature for hierarchical decomposition and summarization. The
basic idea in the wavelet technique is to create a decomposition of the
data characteristics into a set of wavelet functions and basis functions.
The property of the wavelet method is that the higher order coefficients



160 MANAGING AND MINING SENSOR DATA

of the decomposition illustrate the broad trends in the data, whereas the
more localized trends are captured by the lower order coefficients.

We assume for ease in description that the length ¢ of the series is
a power of 2. This is without loss of generality, because it is always
possible to decompose a series into segments, each of which has a length
that is a power of two. The Haar Wavelet decomposition defines 2F~!
coefficients of order k. Each of these 21 coefficients corresponds to a
contiguous portion of the time series of length ¢/25~!. The ith of these
2k=1 coefficients corresponds to the segment in the series starting from
position (i — 1) - ¢/2¥71 4+ 1 to position i x ¢/2¥71. Let us denote this
coefficient by @Z)}; and the corresponding time series segment by S,i. At
the same time, let us define the average value of the first half of the
S,"c' by ai}:C and the second half by b}c Then, the value of 1 is given by
(aj, — b},)/2. More formally, if ®} denote the average value of the S},
then the value of ¢ can be defined recursively as follows:

U = (Ppy' — 1y)/2 (6.1)

The set of Haar coefficients is defined by the W% coefficients of order 1
to logy(q). In addition, the global average ®1 is required for the purpose
of perfect reconstruction. We note that the coefficients of different order
provide an understanding of the major trends in the data at a particular
level of granularity. For example, the coefficient ¢ is half the quantity
by which the first half of the segment S is larger than the second half of
the same segment. Since larger values of k£ correspond to geometrically
reducing segment sizes, one can obtain an understanding of the basic
trends at different levels of granularity. We note that this definition of
the Haar wavelet makes it very easy to compute by a sequence of av-
eraging and differencing operations. In Table 6.1, we have illustrated
how the wavelet coefficients are computed for the case of the sequence
(8,6,2,3,4,6,6,5). This decomposition is illustrated in graphical form
in Figure 6.1. We also note that each value can be represented as a sum
of logy(8) = 3 linear decomposition components. In general, the entire
decomposition may be represented as a tree of depth 3, which represents
the hierarchical decomposition of the entire series. This is also referred
to as the error tree. In Figure 6.2, we have illustrated the error tree for
the wavelet decomposition illustrated in Table 6.1. The nodes in the tree
contain the values of the wavelet coefficients, except for a special super-
root node which contains the series average. This super-root node is not
necessary if we are only considering the relative values in the series, or
the series values have been normalized so that the average is already
zero. We further note that the number of wavelet coefficients in this
series is 8, which is also the length of the original series. The original



Mining Sensor Data Streams 161

SERIES
[18] AVERAGE
/I
RELEVANT n -
RANSES

(1215 [3/4).
RELEVANT RAN

+ + -\ / +
I 2N DR S A S Y AR
8 6 2 3 4 6 6 5

ORIGINAL SERIES VALUES RECONSTRUCTED FROM TREE PATH

Figure 6.2. The Error Tree from the Wavelet Decomposition

series has been replicated just below the error-tree in Figure 6.2, and it
can be reconstructed by adding or subtracting the values in the nodes
along the path leading to that value. We note that each coefficient in a
node should be added, if we use the left branch below it to reach to the
series values. Otherwise, it should be subtracted. This natural decom-
position means that an entire contiguous range along the series can be
reconstructed by using only the portion of the error-tree which is rele-
vant to it. Furthermore, we only need to retain those coefficients whose
values are significantly large, and therefore affect the values of the un-
derlying series. In general, we would like to minimize the reconstruction
error by retaining only a fixed number of coefficients, as defined by the
space constraints. While wavelet decomposition is easy to perform for
multi-dimensional data sets, it is much more challenging for the case of
data streams. This is because data streams impose a one-pass constraint
on the wavelet construction process. A variety of one-pass algorithms
for wavelet construction are discussed in [41].

Histograms: The technique of histogram construction is closely related
to that of wavelets. In histograms the data is binned into a number of
intervals along an attribute. For any given query, the counts from the
bins can be utilized for query resolution. A simple representation of the
histogram method would simply partition the data into equi-depth or
equi-width intervals. The main inaccuracy with the use of histograms



162 MANAGING AND MINING SENSOR DATA

is that the distribution of data points within a bucket is not retained,
and is therefore assumed to be uniform. This causes inaccuracy because
of extrapolation at the query boundaries. A natural choice is to use
an equal number of counts in each bucket. This minimizes the error
variation across different buckets. However, in the case of data streams,
the boundaries to be used for equi-depth histogram construction are not
known a-priori. We further note that the design of equi-depth buckets
is exactly the problem of quantile estimation, since the equi-depth par-
titions define the quantiles in the data. Another choice of histogram
construction is that of minimizing the variance of frequency variances of
different values in the bucket. This ensures that the uniform distribution
assumption is approximately held, when extrapolating the frequencies
of the buckets at the two ends of a query. Such histograms are referred
to as V-optimal histograms. Algorithms for V-optimal histogram con-
struction are proposed in [51, 52]. A more detailed discussion of several
algorithms for histogram construction may be found in [4].

3.6 Dimensionality Reduction and Forecasting
in Data Streams

Because of the inherent temporal nature of data streams, the problems
of dimensionality reduction and forecasting and particularly important.
When there are a large number of simultaneous data stream, we can use
the correlations between different data streams in order to make effec-
tive predictions [70, 75] on the future behavior of the data stream. In
particular, the well known MUSCLES method [75] is useful in applying
regression analysis to data streams. The regression analysis is helpful
in predicting the future behavior of the data stream. A related tech-
nique is the SPIRIT algorithm, which explores the relationship between
dimensionality reduction and forecasting in data streams. The primary
idea is that a compact number of hidden variables can be used to com-
prehensively describe the data stream. This compact representation can
also be used for effective forecasting of the data streams. A discussion
of different dimensionality reduction and forecasting methods (including
SPIRIT) is provided in [4].

3.7 Distributed Mining of Data Streams

In many instances, streams are generated at multiple distributed com-
puting nodes. An example of such a case would be sensor networks in
which the streams are generated at different sensor nodes. Analyzing and
monitoring data in such environments requires data mining technology
that requires optimization of a variety of criteria such as communication



Mining Sensor Data Streams 163

costs across different nodes, as well as computational, memory or storage
requirements at each node. There are several management and mining
challenges in such cases. When the streams are collected with the use of
sensors, one must take into account the limited storage, computational
power, and battery life of sensor nodes. Furthermore, since the network
may contain a very large number of sensor nodes, the effective aggrega-
tion of the streams becomes a considerable challenge. Furthermore, dis-
tributed streams also pose several challenges to mining problems, since
one must integrate the results of the mining algorithms across different
nodes. A detailed discussion of several distributed mining algorithms
are provided in [4].

4. Sensor Applications of Stream Mining

Data streams have numerous applications in a variety of scientific
scenarios. In this section, we will discuss different applications of data
streams and how they tie in to the techniques discussed earlier.

4.1 Military Applications

Military applications typically collect large amounts of sensor data, for
their use in a variety of applications such as the detection of events and
anomalies in the data. Some classic examples of military applications
are as follows:

4.1.1 Activity Monitoring. Military sensors are used for a
variety of scenarios such as the detection of threats movements, sounds,
or vibrations in the underlying data. For example, the movement of en-
emy tanks in a particular region may result in a particular combination of
signals detected in the sound and activity sensors. Such monitoring may
require the development of heterogeneous mining and fusion techniques
[73], which can combine information from multiple sources in order to
perform more effective mining. Such monitoring requires stream mining
methods for the continuous detection of abnormalities, or for performing
continuous queries in the underlying data [21, 22, 26, 66, 79].

4.1.2 Event Detection. This is related to the problem of
activity monitoring, in that specific events are captured from the stream
with the use of mining techniques. This requires the design of event
detection algorithms from data streams. This typically requires the use
of supervised learning algorithms in which the relationship of the events
to the underlying stream attributes are learned from the training data.
For example, such streams are quite common in social networks, in which



164 MANAGING AND MINING SENSOR DATA

it is possible to determine the key events from the underlying social
network from the patterns in the underlying text stream [11]. Other
general methods for event detection in streams are discussed in [3, 65,
69, 76].

4.2 Cosmological Applications

In recent years, cosmological applications have created large volumes
of data. The installation of large space stations, space telescopes and ob-
servatories result in large streams of data on different stars and clusters
of galaxies. This data can be used in order to mine useful information
about the behavior of different cosmological objects. Similarly, rovers
and sensors on a planet or asteroid may send large amounts of image,
video or audio data. In many cases, it may not be possible to manually
monitor such data continuously. In such cases, it may be desirable to use
stream mining techniques in order to detect the important underlying
properties.

The amount of data received in a single day in such applications can
often exceed several tera-bytes. These data sources are especially chal-
lenging since the underlying applications may be spatial in nature. In
such cases, an attempt to compress the data using standard synopsis
techniques may lose the structure of the underlying data. Furthermore,
the data may often contain imprecision in measurements. Such impre-
cisions may result in the need for techniques which leverage the uncer-
tainty information in the data in order to improve the accuracy of the
underlying results.

4.3 Mobile Applications

Recently, new technologies have emerged which have allowed the con-
struction of wearable sensors in the context of a variety of applications.
For example, mobile phones carry a wide variety of sensors which can
continuously transmit data that can be used for social sensing applica-
tions [62]. Similarly, wearable sensors have been designed for continuous
monitoring in a wide variety of domains such as health-care [46, 71] or ve-
hicular participatory sensing [47]. All vehicles which have been designed
since the mid-nineties carry an OBD Diagnostic System, which collects
a huge amount of information from the underlying vehicle operation. It
is possible to use the information gleaned from on-board sensors in a
vehicle in order to monitor the diagnostic health of the vehicle as well as
driver characterization. Another well known method is the VEDAS sys-
tem [55], and the most well known commercialized system is the OnStar
system designed by General Motors. Such systems require quick analysis



Mining Sensor Data Streams 165

of the underlying data in order to make diagnostic characterizations in
real time. Effective event-detection algorithms are required in order to
perform this task effectively.

The stock market often creates large volumes of data streams which
need to be analyzed in real time in order to make quick decisions about
actions to be taken. An example of such an approach is the MobiMine
approach [56] which monitors the stock market with the use of a PDA.
Such methods can be used for a wide variety of applications such as
knowing human movement trends [24], social image search [77], animal
trends [83] grocery bargain hunting [38], or more general methods for
connecting with other entities in a given neighborhood [82].

4.4 Environmental and Weather Data

Many satellites and other scientific instruments collect environmental
data such as cloud cover, wind speeds, humidity data and ocean currents.
Such data can be used to make predictions about long- and short-term
weather and climate changes. Such data can be especially massive if the
number of parameters measured are very large. The challenge is to be
able to combine these parameters in order to make timely and accurate
predictions about weather driven events. This is another application of
event detection techniques from massive streams of sensor data.

In particular, such methods have found numerous applications in pre-
diction of long-term climate change [40, 58, 67]. For example, one can
use various environmental parameters collected by sensors to predict
changes in sea surface temperatures, indicators specific to global warm-
ing, or the onset of storms and hurricanes. A detailed discussion on the
application of such methods for climate and weather prediction may be
found in [40].

5. Conclusions and Research Directions

Data streams are a computational challenge to data mining problems
because of the additional algorithmic constraints created by the large
volume of data. In addition, the problem of temporal locality leads to a
number of unique mining challenges in the data stream case. This chap-
ter provides an overview to the generic issues in processing data streams,
and the specific issues which arise with different mining algorithms.

While considerable research has already been performed in the data
stream area, there are numerous research directions which remain to
be explored. Most research in the stream area is focussed on the one
pass constraint, and generally does not deal effectively with the issue
of temporal locality. In the stream case, temporal locality remains an



166 MANAGING AND MINING SENSOR DATA

extremely important issue since the data may evolve considerably over
time. Other important topics which need to be explored are as follows:

Streams are often collected by devices such as sensors in which the
data is often noisy and error-driven. Therefore, a key challenge is
to effectively clean the data. This may involve either imputing or
modeling the underlying uncertain data. This can be challenge,
since any modeling needs to be done in real time, as large volumes
of the data stream arrive.

A related area of research is in using the modeled data for data
mining tasks. Since the underlying data is uncertain, the uncer-
tainty should be used in order to improve the quality of the under-
lying results. Some recent research addresses the issue of clustering
uncertain data streams [7].

Many recent applications such as privacy-preserving data mining
have not been studied effectively in the context of data streams. It
is often a challenge to perform privacy-transformations of contin-
uously arriving data, since newly arriving data may compromise
the integrity of earlier data. The data stream domain provides a
number of unique challenges in the context of the privacy problem.

References

[1] Aggarwal C., Xie Y., Yu P. (2011) On Dynamic Data-driven Selection
of Sensor Streams, ACM KDD Conference.

[2] Aggarwal C., Bar-Noy A., Shamoun S. (2011) On Sensor Selection
in Linked Information Networks, DCOSS Conference.

[3] Abadi D., Madden S., Lindner W. (2005) REED: robust, efficient
filtering and online event detection in sensor networks, VLDB Con-
ference.

[4] Aggarwal C. (2007) Data Streams: Models and Algorithms, Springer.

[5] Aggarwal C., Procopiuc C, Wolf J. Yu P., Park J.-S. (1999) Fast
Algorithms for Projected Clustering. ACM SIGMOD Conference.

[6] Aggarwal C. (2006) On Biased Reservoir Sampling in the presence
of Stream Evolution. VLDB Conference.

[7] Aggarwal C., Yu P. (2008) A Framework for Clustering Uncertain
Data Streams. ICDE Conference.

[8] Aggarwal C. (2003) A Framework for Diagnosing Changes in Evolv-
ing Data Streams. ACM SIGMOD Conference.



Mining Sensor Data Streams 167

9] Aggarwal C. (2002) An Intuitive Framework for understanding
Changes in Evolving Data Streams. IEEE ICDE Conference.

[10] Aggarwal C., Han J., Wang J., Yu P (2003). A Framework for Clus-
tering Evolving Data Streams. VLDB Conference.

[11] Aggarwal C., Han J., Wang J., Yu P (2004). A Framework for High
Dimensional Projected Clustering of Data Streams. VLDB Confer-
ence.

[12] Aggarwal C., Yu P. (2006) A Framework for Clustering Massive
Text and Categorical Data Streams. SIAM Data Mining Conference.

[13] Aggarwal C, Han J., Wang J., Yu P. (2004). On-Demand Classifi-
cation of Data Streams. ACM KDD Conference.

[14] Aggarwal C. (2009). Managing and Mining Sensor Data, Springer.

[15] Aggarwal C., Yu P. (2007). On Density-based Transforms for Un-
certain Data Mining, ICDE Conference, 2007.

[16] Agrawal R., Imielinski T., Swami A. (1993) Mining Association
Rules between Sets of items in Large Databases. ACM SIGMOD
Conference.

[17] Alon N., Gibbons P., Matias Y., Szegedy M. (1999) Tracking Joins
and Self-Joins in Limited Storage. ACM PODS Conference.

[18] Alon N., Matias Y., Szegedy M. (1996) The Space Complexity of
Approximating Frequency Moments. The Space Complexity of Ap-
proximating Frequency Moments, pp. 20—29.

[19] Arici T., Akgun T., Altunbasak Y. (2006) A prediction error-based
hypothesis testing method for sensor data acquisition. ACM Trans-
actions on Sensor Networks (TOSN), Vol. 2, pp. 529-556.

[20] Babcock B., Datar M., Motwani R. (2002) Sampling from a Moving
Window over Streaming Data. SIAM Symposium on Discrete Algo-
rithms (SODA).

[21] Babcock B., Olston C. (2003) Distributed top-k monitoring, ACM
SIGMOD Conference.

[22] Babu S., Widom J. (2001) Continuous queries over data streams.
SIGMOD Record, 30(3), pp. 109-120.

[23] Bonnet P, Gehrke J., Seshadri P. (2001) Towards sensor database
systems, International Conference on Mobile Data Management.

[24] Calabrese F., Kloeckl K., Ratti C. (2007) Wikicity: Real-Time Ur-
ban Environments. IEEE Pervasive Computing, 6(3), pp. 52-53.
http://senseable.mit.edu/wikicity/rome/


http://senseable.mit.edu/wikicity/rome/

168 MANAGING AND MINING SENSOR DATA

[25] Cao F., Ester M., Qian W., Zhou W. (2006) Density-based Clus-
tering of an Evolving Data Stream with Noise. SIAM Data Mining
Conference.

[26] Chandrasekaran S., Franklin M. (2002) Streaming queries over
streaming data. VLDB Conference.

[27] Chang J. H., Lee W. S. (2003) Finding recent frequent itemsets
adaptively over online data streams. ACM KDD Conference.

[28] Chen Y., Tu L. (2007) Density-based Clustering for Real Time
Stream Data, ACM KDD Conference.

[29] Chi Y., Wang H., Yu P., Muntz R. (2004) Moment: Maintaining
closed frequent itemsets over a stream sliding window. ICDM Con-
ference.

[30] Cormode G., Garofalakis M. (2005) Sketching Streams Through the
Net: Distributed Approximate Query Tracking. VLDB Conference.

[31] Cormode G., Muthukrishnan S. (2004) An Improved Data Stream
Summary: The Count-Min Sketch and its Applications. LATIN, pp.
29-38.

[32] Cormode, G., Muthukrishnan, S., Zhuang, W. (2007) Conquering
the divide: Continuous clustering of distributed data streams. ICDFE
Conference.

[33] Datar M., Gionis A., Indyk P., Motwani R. (2002) Maintaining
stream statistics over sliding windows. SIAM Journal on Comput-
ing, 31(6):1794-1813.

[34] Deligiannakis A., Kotidis Y., Roussopoulos N. (2004) Compressing
Historical Information in Sensor Networks. ACM SIGMOD Confer-
ence.

[35] Deligiannakis A., Kotidis Y. (2005) Data Reduction Techniques in
Sensor Networks. IEEE Data Engineering Bulletin 28(1): pp. 19-25.

[36] Deshpande A., Guestrin C., Madden S, Hellerstein J., Hong W.
Model-driven data acquisition in sensor networks, VLDB Conference,
2004.

[37] Dasu T., Krishnan S., Venkatasubramaniam S., Yi K. (2005). An
Information-Theoretic Approach to Detecting Changes in Multi-
dimensional data Streams. Duke University Technical Report CS-
2005-06.

[38] Deng L., Cox L. (2009) Livecompare: grocery bargain hunting
through participatory sensing. HotMobile.

[39] Domingos P., Hulten G. (2000) Mining High-Speed Data Streams.
In Proceedings of the ACM KDD Conference.



Mining Sensor Data Streams 169

[40] Garg A. et al (2011) Gopher: Global observation of Planetary
Health and Ecosystem Resources. IGARSS, pp. 1449-1452.

[41] Garofalakis M., Gehrke J., Rastogi R. (2002) Querying and mining
data streams: you only get one look (a tutorial). SIGMOD Confer-
ence.

[42] Gianella C., Han J., Pei J., Yan X., Yu P. (2002) Mining Fre-
quent Patterns in Data Streams at Multiple Time Granularities. NSF'
Workshop on Next Generation data Mining.

[43] Guha S., Mishra N., Motwani R., O’Callaghan L. (2000). Clustering
Data Streams. IEEE FOCS Conference.

[44] Giannella C., Han J., Pei J., Yan X., and Yu P. (2002) Mining
Frequent Patterns in Data Streams at Multiple Time Granularities.
Proceedings of the NSF Workshop on Next Generation Data Mining.

[45] Golovin D., Faulkner M., Krause A. (2010) Online distributed sen-
sor selection. IPSN Conference.

[46] Holter N., Generelli J. (1949) Remote recording of physiologic data
by radio. Rocky Mountain Medical Journal, pp. 747-751.

[47] Hull B., Bychkovsky V., Chen K., Goraczko M., Miu A., Shih E.,
Zhang Y., Balakrishnan H., Madden S. (2006) CarTel: A Distributed
Mobile Sensor Computing System, ACM SenSys.

[48] Hulten G., Spencer L., Domingos P. (2001) Mining Time Changing
Data Streams. ACM KDD Conference.

[49] Indyk P. (2000) Stable Distributions, Pseudorandom Generators,
Embeddings and Data Stream Computation. IEEE FOCS.

[50] Jin R., Agrawal G. (2003) Efficient Decision Tree Construction on
Streaming Data. ACM KDD Conference.

[51] Ioannidis Y., Poosala V. (1995) Balancing Histogram Optimality
and Practicality for Query Set Size Estimation. ACM SIGMOD Con-
ference.

[52] Jagadish H., Koudas N., Muthukrishnan S.,Poosala V. ,Sevcik K.,
Suel T. (1998) Optimal Histograms with Quality Guarantees. VLDB
Conference.

[53] Jin R., Agrawal G. (2005) An algorithm for in-core frequent itemset
mining on streaming data. I[CDM Conference.

[54] Johnson W., Lindenstrauss J. (1984) Extensions of Lipshitz map-
ping onto Hilbert Space. Contemporary Mathematics, Vol 26, pp.
189-206.

[55] Kargupta H. et al VEDAS: A Mobile and Distributed Data Stream
Mining System for Vehicle Monitoring. SDM Conference, 2004.



170 MANAGING AND MINING SENSOR DATA

[56] Kargupta H. et al MobiMine: Monitoring the stock market using a
PDA, ACM SIGKDD Ezxplorations, January 2002.

[57] Kasetty S., Stafford C., Walker G., Wang X., Keogh E. (2008) Real-
Time Classification of Streaming Sensor Data, ICTAI Conference.

[58] Kawale J., Steinbach M., Kumar V. (2011) Discovering Dynamic
Dipoles in Climate Data. SDM Conference.

[59] Kifer D., David S.-B., Gehrke J. (2004). Detecting Change in Data
Streams. VLDB Conference, 2004.

[60] Kollios G., Byers J., Considine J., Hadjielefttheriou M., Li F. (2005)
Robust Aggregation in Sensor Networks. IEEE Data Engineering
Bulletin.

[61] Krause A., Guestrin C. (2007) Near-optimal observation selection
using submodular functions. AAAI Conference.

[62] Krause A., Horvitz E., Kansal A., Zhao F. (2008) Toward Commu-
nity Sensing. IPSN, pp. 481-492.

[63] Madden S., Franklin M., Hellerstein J. (2005) TinyDB: an acquisi-
tional query processing system for sensor networks, ACM Transac-
tions on Database Systems, 30(1), pp. 122-173.

[64] Manku G., Motwani R. (2002) Approximate Frequency Counts over
Data Streams. VLDB Conference.

[65] Medioni G., Cohen I., Bremond F., Hogeng S., Nevatia R. (2001)
Event Detection and Analysis from Video Streams, IEEE TPAMI,
23(8).

[66] Olston C., Jiang J., Widom J. (2003) Adaptive Filters for Contin-
uous Queries over Distributed Data Streams. SIGMOD Conference.

[67] Race C., Steinbach M., Ganguly A., Semazzi F., Kumar V. (2010)
A Knowledge Discovery Strategy for Relating Sea Surface Tempera-
tures to Frequencies of Tropical Storms and Generating Predictions
of Hurricanes Under 21st century Global Warming Scenarios, CIDU,
pp- 204-212.

[68] Rodrigues P., Gama J., Lopes L. (2008) Clustering Distributed Sen-
sor Data Streams, PKDD Conference.

[69] Sakaki T., Okazaki M., Matsuo Y. (2010) Earthquake shakes Twit-
ter users: real-time event detection by social sensors, WWW Confer-
ence.

[70] Sakurai Y., Papadimitriou S., Faloutsos C. (2005). BRAID: Stream
mining through group lag correlations. ACM SIGMOD Conference.

[71] Sung M., Marci C., Pentland A. (2005) Wearable Feedback Systems

for Rehabilitation, Journal of Neuroengineering and Rehabilitation,
2:17.



Mining Sensor Data Streams 171

[72] Vitter J. S. (1985) Random Sampling with a Reservoir. ACM Trans-
actions on Mathematical Software, Vol 11(1), pp. 37-57.

[73] Waltz E., Llinas J. (1990) Multi-Sensor Data Fusion, Artech House
Radar Library.

[74] Wang H., Fan W., Yu P., Han J. (2003) Mining Concept-Drifting
Data Streams using Ensemble Classifiers. ACM KDD Conference.
[75] Yi B.-K., Sidiropoulos N.D., Johnson T., Jagadish, H. V., Falout-
sos C., Biliris A. (2000). Online data mining for co-evolving time

sequences. ICDE Conference.

[76] Xue W., Luo Q., Chen L., Liu Y. (2006) Contour Map Matching for
Event Detection in Sensor Networks, ACM SIGMOD Conference.

[77] Yan T., Kumar V., Ganesan D. (2010) Crowdsearch: Exploiting
crowds for accurate real-time image search on mobile phones, Mo-
biSys.

[78] Yao Y., Gehrke J. (2003) Query processing in sensors networks,

First Biennial Conference on Innovative Data Systems Research
(CIDR 2003).

[79] Yin J., Yang Q., Pan J. (2008) Sensor-based Abnormal Human Ac-
tivity Detection, IEEE TKDE, 20(8), pp 1082-1090.

[80] Yu J. X., Chong Z., Lu H., Zhou A. (2004) False positive or false
negative: Mining frequent itemsets from high speed transaction data
streams. VLDB Conference.

[81] Zhang T., Ramakrishnan R., Livny M. (1996) BIRCH: An Efficient
Data Clustering Method for Very Large Databases. ACM SIGMOD
Conference.

[82] http;//www.wikitude.com
[83] http://www.movebank.org


http://www.wikitude.com
http://www.movebank.org

	Chapter 6 MINING SENSOR DATA STREAMS
	1. Introduction
	2. Sensor Stream Mining Issues
	2.1 Data Uncertainty and Volume
	2.2 Power Issues in Sensor Collection and Transmission
	2.3 In-Network Processing

	3. Stream Mining Algorithms
	3.1 Data Stream Clustering
	3.2 Data Stream Classification
	3.3 Frequent Pattern Mining
	3.4 Change Detection in Data Streams
	3.5 Synopsis Construction in Data Streams
	3.6 Dimensionality Reduction and Forecasting in Data Streams
	3.7 Distributed Mining of Data Streams

	4. Sensor Applications of Stream Mining
	4.1 Military Applications
	4.1.1 Activity Monitoring.
	4.1.2 Event Detection.

	4.2 Cosmological Applications
	4.3 Mobile Applications
	4.4 Environmental and Weather Data

	5. Conclusions and Research Directions
	References


