Chapter 2

A SURVEY OF MODEL-BASED
SENSOR DATA ACQUISITION
AND MANAGEMENT

Saket Sathe

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

saket.sathe@epfl.ch

Thanasis G. Papaioannou
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

thanasis.papaioannou@epfl.ch

Hoyoung Jeung
SAP Research
Brisbane, Australia

hoyoung.jeung@sap.com

Karl Aberer

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

karl.aberer@epfl.ch

Abstract In recent years, due to the proliferation of sensor networks, there has
been a genuine need of researching techniques for sensor data acquisi-
tion and management. To this end, a large number of techniques have
emerged that advocate model-based sensor data acquisition and manage-
ment. These techniques use mathematical models for performing vari-
ous, day-to-day tasks involved in managing sensor data. In this chapter,
we survey the state-of-the-art techniques for model-based sensor data
acquisition and management. We start by discussing the techniques for

C.C. Aggarwal (ed.), Managing and Mining Sensor Data, DOI 10.1007/978-1-4614-6309-2_2, 9
© Springer Science+Business Media New York 2013

mailto:saket.sathe@epfl.ch
mailto:thanasis.papaioannou@epfl.ch
mailto:hoyoung.jeung@sap.com
mailto:karl.aberer@epfl.ch

10 MANAGING AND MINING SENSOR DATA

acquiring sensor data. We, then, discuss the application of models in
sensor data cleaning; followed by a discussion on model-based meth-
ods for querying sensor data. Lastly, we survey model-based methods
proposed for data compression and synopsis generation.

Keywords: model-based techniques, data acquisition, query processing, data clean-
ing, data compression.

1. Introduction

In recent years, there has been tremendous growth in the data gen-
erated by sensor networks. Equivalently, there are pertinent techniques
proposed in recent literature for efficiently acquiring and managing sen-
sor data. One important category of techniques that have received sig-
nificant attention are the model-based techniques. These techniques use
mathematical models for solving various problems pertaining to sensor
data acquisition and management. In this chapter, we survey a large
number of state-of-the-art model-based techniques for sensor data ac-
quisition and management. Model-based techniques use various types of
models: statistical, signal processing, regression-based, machine learn-
ing, probabilistic, or time series. These models serve various purposes
in sensor data acquisition and management.

It is well-known that many physical attributes, like, ambient tempera-
ture or relative humidity, vary smoothly. As a result of this smoothness,
sensor data typically exhibits the following properties: (a) it is continu-
ous (although we only have a finite number of samples), (b) it has finite
energy or it is band-limited, (c) it exhibits Markovian behavior or the
value at a time instant depends only on the value at a previous time
instant. Most model-based techniques exploit these properties for effi-
ciently performing various tasks related to sensor data acquisition and
management.

In this chapter, we consider four broad categories of sensor data man-
agement tasks: data acquisition, data cleaning, query processing, and
data compression. These tasks are pictorially summarized in the toy
example shown in Figure 2.1. From Figure 2.1, it is interesting to note
how a single type of model (linear) can be used for performing these
various tasks. For each task considered in this chapter, we extensively
discuss various, well-researched model-based solutions. Following is the
detailed discussion on the sensor data management tasks covered in this
chapter:

A Survey of Model-based Sensor Data Acquisition and Management 11

t o t t store t
v [f() v | outlier ef() . { /0 v \(f()
%/ o /O/ S /0/ 5 o 6
o7 e o % 9 ®
o Cg e _s ivalue s
o 02 i
T —>f T —>f T T 1 —>1
/) LoV T A t>
data acquisition data cleaning query processing data compression
(a) (b) (©) (d)

Figure 2.1. Various tasks performed by models-based techniques. (a) to improve
acquisitional efficiency, a function is fitted to the first three sensor values, and the
remaining values (shown dotted) are not acquired, since they are within a threshold
d, (b) data is cleaned by identifying outliers after fitting a linear model, (¢) a query
requesting the value at time ¢’ can be answered using interpolation, (d) only the first
and the last sensor value can be stored as compressed representation of the sensor
values.

Data Acquisition: Sensor data acquisition is the task responsi-
ble for efficiently acquiring samples from the sensors in a sensor
network. The primary objective of the sensor data acquisition
task is to attain energy efficiency. This objective is driven by
the fact that most sensors are battery-powered and are located in
inaccessible locations (e.g., environmental monitoring sensors are
sometimes located at high altitudes and are surrounded by highly
inaccessible terrains). In the literature, there are two major types
of acquisition approaches: pull-based and push-based. In the pull-
based approach, data is only acquired at a user-defined frequency
of acquisition. On the other hand, in the push-based approach, the
sensors and the base station agree on an expected behavior; sensors
only send data to the base station if the sensor values deviate from
such expected behavior. In this chapter, we cover a representative
collection of model-based sensor data acquisition approaches [2,
12, 17, 16, 18, 27, 28, 41, 66].

Data Cleaning: The data obtained from the sensors is often er-
roneous. Erroneous sensor values are mainly generated due to the
following reasons: (a) intermittent loss of communication with the
sensor, (b) sensor’s battery is discharged, (c) other types of sensor
failures, for example, snow accumulation on the sensor, etc. Model-
based approaches for data cleaning often use a model to infer the
most probable sensor value. Then the raw sensor value is marked
erroneous or outlier if the raw sensor value deviates significantly
from the inferred sensor value. Another important approach for
data cleaning is known as declarative data cleaning [32, 46, 54].

12 MANAGING AND MINING SENSOR DATA

In this approach, the user registers SQL-like queries that define
constraints over the sensor values. Sensor values are marked as
outliers when these constraints are violated. In addition to these
methods, we also discuss many other data cleaning approaches [31,
73, 23, 21, 52, 65]

Query Processing: Obtaining desired answers, by processing
queries is another important aspect in sensor data management.
In this chapter, we discuss the most significant model-based tech-
niques for query processing. One of the objectives of these tech-
niques is to process queries by accessing or generating minimal
amount of data [64, 5]. Model-based methods that access/generate
minimal data, and also handle missing values in data, use models
for creating an abstraction layer over the sensor network [18, 33].
Other approaches model the sensor values by a hidden Markov
model (HMM), associating state variables to the sensor values. It,
then, becomes efficient to process queries over the state variables,
which are less in number as compared to the sensor values [5].
Furthermore, there are approaches that use dynamic probabilistic
models (DPMs) for modeling spatio-temporal evolution of the sen-
sor data [33, 29]. In these approaches, the estimated DPMs are
used for query processing.

Data Compression: It is well-known that large quantity of sen-
sor data is being generated by every hour. Therefore, eliminating
redundancy by compressing sensor data for various purposes (like,
storage, query processing, etc.) becomes one of the most challeng-
ing tasks. Model-based sensor data compression proposes a large
number of techniques, mainly from the signal processing literature,
for this task [1, 72, 22, 53, 7]. Many approaches assume that the
user provides an accuracy bound, and based on this bound the sen-
sor data is approximated, resulting in compressed representations
of the data [24]. A large number of other techniques exploit the
fact that sensor data is often correlated; thus, this correlation can
be used for approximating one data stream with another [24, 67,
49, 3].

This chapter is organized as follows. In Section 2, we define the pre-
liminaries that are assumed in the rest of the chapter, followed by a
discussion of important techniques for sensor data acquisition. In Sec-
tion 3, we survey model-based sensor data cleaning techniques, both
on-line and archival. Model-based query processing techniques are dis-
cussed in Section 4. In Section 5, model-based compression techniques

A Survey of Model-based Sensor Data Acquisition and Management 13

are surveyed. At the end, Section 6 contains a summary of the chapter
along with conclusions.

2. Model-Based Sensor Data Acquisition

In this section, we discuss various techniques for model-based! sensor
data acquisition. Particularly, we discuss pull- and push-based sensor
data acquisition methods. In general, model-based sensor data acquisi-
tion techniques are designed for tackling the following challenges:

Energy Consumption: Obtaining values from a sensor requires high
amount of energy. In contrast, since most sensors are battery-powered,
they have limited energy resources. Thus, a challenging task is to mini-
mize the number of samples obtained from the sensors. Here, models are
used for selecting sensors, such that user queries can be answered with
reasonable accuracy using the data acquired from the selected sensors
[2, 17, 16, 27, 28).

Communication Cost: Another energy-intensive task is to communi-
cate the sensed values to the base station. There are, therefore, several
model-based techniques proposed in the literature for reducing the com-
munication cost, and maintaining the accuracy of the sensed values [41,
18, 66, 12].

Table 2.1. Summary of notations.
Symbol Description

S Sensor network consisting of sensors s;, where j = (1,...,m).
S Sensor identifier for a sensor in S.
Vij Sensor value observed by the sensor s; at time ¢;, such that v;; € R.
v; Row vector of all sensor values observed at time ¢;, such that v; € R™.
Vij Random variable associated with the sensor value v;;.

2.1 Preliminaries

We start by describing our model of a sensor network and establish-
ing the notation that is utilized in the rest of the chapter. The sensor
network considered in this chapter consists of a set of stationary sensors
S = {sj|1 < j < m}. The value sensed by a sensor s; at time t; is
denoted as v;j, which is a real number. In addition, note that we use s;,
where j = (1,...,m), as sensor identifiers. In certain cases the sampling
interval could be uniform, that is, ¢;11 — ¢; is same for all the values of

IWe use model-based and model-driven interchangeably.

14 MANAGING AND MINING SENSOR DATA

i > 1. In such cases, the time stamps t; become irrelevant, and it is
sufficient to use only the index i for denoting the time axis.

/\
i e Si | X |V | Vi
1 [01:00| 1 |34 (72|01
1 [01:00| 2 |52 (85|08
1 |01:00| 3 |7.1|22|0.2
2 |01:05| 1 |34|7.2|07
2 |01:05| 2 |5.2(85|0.9
2 |01:05| 3 |71(22|1.0

sensor_values

Figure 2.2. Database table containing the sensor values. The position of the sensor
s;j is denoted as (x;,y;). Since the sensors are assumed to be stationary, the position
can also be stored using a foreign-key relationship between s; and (zj,y;). But, for
simplicity, we assume that the sensor values table is in a denormalized form.

In this chapter, we assume a scenario where the sensors are used for
environmental monitoring. We assume that all the sensors are monitor-
ing/sensing only one environmental attribute, such as, ambient temper-
ature?. As discussed in Section 1, we assume that the environmental
attribute we monitor is sufficiently smooth and continuous. If necessary
for rendering the discussion complete and convenient, we will introduce
other attributes being monitored by the sensors. But, in most cases, we
restrict ourselves to using only ambient temperature. Figure 2.2 shows
a conceptual representation of the sensor values in a form of a database
table, denoted as sensor values.

2.2 The Sensor Data Acquisition Query

Sensor data acquisition can be defined as the processes of creating
and continuously maintaining the sensor values table. In existing lit-
erature, naturally, many techniques have been proposed for creating and
maintaining the sensor values table. We shall discuss these techniques
briefly, describing their important characteristics and differences with
other techniques. We use the sensor data acquisition query shown in
Query 2.1 for discussing how different sensor data acquisition approaches
process such a query. Query 2.1 is a query that triggers the acquisition
of ten sensor values v;; from the sensors s; at a sampling interval of
one second. Moreover, Query 2.1, is the typical sensor data acquisition
query that is used by many methods for collecting sensor data.

2We use ambient temperature and temperature interchangeably.

A Survey of Model-based Sensor Data Acquisition and Management 15

SELECT s;, v;; FROM sensor values SAMPLE INTERVAL 1s FOR 10s

Query 2.1: Sensor data acquisition query.

—— push-based > os
------ pull-based L7 genSOT e

/
\%

SO
geviated "

sensor network base station user

Figure 2.3. Push- and pull-based methods for sensor data acquisition.

2.3 Pull-Based Data Acquisition

Broadly, there are two major approaches for data acquisition: pull-
based and push-based (refer Figure 2.3). In the pull-based sensor data
acquisition approach, the user defines the interval and frequency of data
acquisition. Pull-based systems only follow the user’s requirements, and
pull sensor values as defined by the queries. For example, using the
SAMPLE INTERVAL clause of Query 2.1, users can specify the number of
samples and the frequency at which the samples should be acquired.

2.3.1 In-Network Data Acquisition. This approach of sen-
sor data acquisition is proposed by TinyDB [45, 44, 43], Cougar [69] and
TiNA [58]. These approaches tightly link query processing and sensor
data acquisition. Due to the lack of space, we shall only discuss TinyDB
in this subsection.

TinyDB refers to its in-network query processing paradigm as Acquisi-
tional Query Processing (ACQP). Let us start by discussing how ACQP
processes Query 2.1. The result of Query 2.1 is similar to the table
shown in Figure 2.2. The only difference, as compared to Figure 2.2, is
that the result of Query 2.1 contains 10 x m rows. The naive method of
executing Query 2.1 is to simultaneously poll each sensor for its value at
the sampling interval and for the duration specified by the query. This
method may not work due to limited range of radio communication be-
tween individual sensors and the base station.

Data Acquisition using Semantic Overlays: TinyDB proposes a
tree-based overlay that is constructed using the sensors S. This tree-
based overlay is used for aggregating the query results from the leaf
nodes to the root node. The overlay network is especially built for
efficient data acquisition and query processing. TinyDB refers to its

16 MANAGING AND MINING SENSOR DATA

tree-based overlay network as Semantic Routing Trees (SRTs). A SRT
is constructed by flooding the sensor network with the SRT build request.
This request includes the attribute (ambient temperature), over which
the SRT should be constructed. Each sensor s;, which receives the build
request, has several choices for choosing its parent: (a) if s; has no
children, which is equivalent to saying that no other sensor has chosen
sj as its parent, then s; chooses another sensor as its parent and sends
its current value v;; to the chosen parent in a parent selection message,
or (b) if s; has children, it sends a parent selection message to its parent
indicating the range of ambient temperature values that its children are
covering. In addition, it locally stores the ambient temperature values
from its children along with their sensor identifiers.

Next, when Query 2.1 is presented to the root node of the SRT, it
forwards the query to its children and prepares for receiving the results.
At the same time, the root node also starts processing the query locally
(refer Figure 2.4). The same procedure is followed by all the intermediate
sensors in the SRT. A sensor that does not have any children, processes
the query and forwards the value of v;; to its parent. All the collected
sensor values v;; are finally forwarded to the root node, and then to
the user, as a result of the query. This completes the processing of the
sensor data acquisition query (Query 2.1). The SRT, moreover, can also
be used for optimally processing aggregation, threshold, and event based
queries. We shall return to this point later in Section 4.1.

SELECT s;, v;
FROM sensor values [S7[Vi
S5 | Vis
S3 | Vis
Sq | Vig
S2 | Vi

Figure 2.4. Toy example of a Semantic Routing Tree (SRT) and Acquisitional Query
Processing (ACQP) over a sensor network with five sensors. Dotted arrows indicate
the direction of query response. A given sensor appends its identifier s; and value v;;
to the partial result, which is available from its sub-tree.

2.3.2 Multi-Dimensional Gaussian Distributions. The
Barbie-Q (BBQ) system [17, 16], on the other hand, employs multi-
variate Gaussian distributions for sensor data acquisition. BB(Q main-
tains a multi-dimensional Gaussian probability distribution over all the

A Survey of Model-based Sensor Data Acquisition and Management 17

sensors in S. Data is acquired only as much as it is required to main-
tain such a distribution. Sensor data acquisition queries specify certain
confidence that they require in the acquired data. If the confidence
requirement cannot be satisfied, then more data is acquired from the
sensors, and the Gaussian distribution is updated to satisfy the confi-
dence requirements. The BBQ system models the sensor values using
a multi-variate Gaussian probability density function (pdf) denoted as
p(Vi1, Via, ..., Vi), where V;1, Via, ..., Vi, are the random variables as-
sociated with the sensor values v;1,v;9,.. ., vy, respectively. This pdf
assigns a probability for each possible assignment of the sensor values
v;j. Now, let us discuss how the BBQ system processes Query 2.1.

In BBQ), the inferred sensor value of sensor s;, at each time ¢;, is
defined as the mean value of V;;, and is denoted as #;;. For example,
at time t1, the inferred sensor values of the ambient temperature are
V11, V12, - - -, U1m- The BBQ system assumes that queries, like Query 2.1,
provide two additional constraints: (i) error bound e, for the values
v;;, and (ii) the confidence 1 — ¢ with which the error bound should be
satisfied. Admittedly, these additional constraints are for controlling the
quality of the query response.

Suppose, we already have a pdf before the first time instance t;, then
the confidence of the sensor value vy; is defined as the probability of
the random variable Vi; lying in between v1; — € and v1; + €, and is
denoted as P(Vy; € [v1; — €,01; + €]). If the confidence is greater than
1 — 4, then we can provide a probably approximately correct value for
the temperature, without spending energy in obtaining a sample from
sensor s;. On the other hand, if a sensor’s confidence is less than 1 — 4,
then we should obtain one or more samples from the sensor (or other
correlated sensors), such that the confidence bound is satisfied. In fact,
it is clear that there could be potentially many sensors for which the
confidence bound may not hold.

As a solution to this problem, the BBQ system proposes a procedure
to chose the sensors for obtaining sensor values, such that the confidence
bound specified by the query is satisfied. First, the BBQ system samples
from all the sensors S at time ¢, then it computes the confidence B;(S)
that it has in a sensor s; as follows:

B;(S) = P(Vij € [v1 — €,015 + €]|v1), (2.1)

where v1 = (v11, v12, - .., V1m) is the row vector of all the sensor values at
time t1. Second, for choosing sensors to sample, the BBQ system poses
an optimization problem of the following form:

' C(So), 2.2
S,CS anéné?so)a_a, (So) (2:2)

18 MANAGING AND MINING SENSOR DATA

where S, is the subset of sensors that will be chosen for sampling, C(S,)
and B(S,) = \slo\ Zj:sjeso B;(S) are respectively the total cost (or energy
required) and average confidence for sampling sensors S,. Since the
problem in Eq. (2.2) is NP-hard, BBQ proposes a greedy solution to
solve this problem. Details of this greedy algorithm can be found in [17].
By executing the proposed greedy algorithm, BBQ selects the sensors
for sampling, then it updates the Gaussian distribution, and returns the
mean values v11, 012, ...,01m. Lhese mean values represent the inferred
values of the sensors at time t;. This operation when performed ten
times at an interval of one second generates the result of the sensor data
acquisition query (Query 2.1).

2.4 Push-Based Data Acquisition

Both, TinyDB and BBQ, are pull-based in nature: in these systems
the central server/base station decides when to acquire sensor values
from the sensors. On the other hand, in push-based approaches, the
sensors autonomously decide when to communicate sensor values to the
base station (refer Figure 2.3). Here, the base station and the sensors
agree on an expected behavior of the sensor values, which is expressed as
a model. If the sensor values deviate from their expected behavior, then
the sensors communicate only the deviated values to the base station.

2.4.1 PRESTO. The Predictive Storage (PRESTO) [41] sys-
tem is an example of the push-based data acquisition approach. One of
the main arguments that PRESTO makes against pull-based approaches
is that due to the pull strategy, such approaches will be unable to ob-
serve any unusual or interesting patterns between any two pull requests.
Moreover, increasing the pull frequency for better detection of such pat-
terns, increases the overall energy consumption of the system.

The PRESTO system contains two main components: PRESTO prox-
ies and PRESTO sensors. As compared to the PRESTO sensors, the
PRESTO proxies have higher computational capability and storage re-
sources. The task of the proxies is to gather data from the PRESTO
sensors and to answer queries posed by the user. The PRESTO sensors
are assumed to be battery-powered and remotely located. Their task is
to sense the data and transmit it to PRESTO proxies, while archiving
some of it locally on flash memory.

Now, let us discuss how PRESTO processes the sensor data acqui-
sition query (Query 2.1). For answering such a query, the PRESTO
proxies always maintain a time-series prediction model. Specifically,
PRESTO maintains a seasonal ARIMA (SARIMA) model [60] of the

A Survey of Model-based Sensor Data Acquisition and Management 19

following form for each sensor:
Vij = U(i—1)j T V(i-L)j — V(i—L-1)j T Oe;—1 —Oe;— +00e;_1 1, (2.3)

where 6§ and © are parameters of the SARIMA model, e; are the predic-
tion errors and L is known as the seasonal period. For example, while
monitoring temperature, L could be set to one day, indicating that the
current temperature (v;;) is related to the temperature yesterday at the
same time (v(;_r);) and a previous time instant (v(;_p_1);). In short,
the seasonal period L allows us to model the periodicity that is inherent
in certain types of data.

In the PRESTO system the proxies estimate the parameters of the
model given in Eq. (2.3), and then transmit these parameters to in-
dividual PRESTO sensors. The PRESTO sensors use these models to
predict the sensor value 9;;, and only transmit the raw sensor value v;;
to the proxies when the absolute difference between the predicted sensor
value and the raw sensor value is greater than a user-defined threshold
0. This task can be summarized as follows:

|vij — 0i] > 0, transmit v;; to proxy. (2.4)

The PRESTO proxy also provides a confidence interval for each pre-
dicted value it computes using the SARIMA model. Like BBQ (refer
Section 2.3.2), this confidence interval can also be used for query pro-
cessing, since it represents an error bound on the predicted sensor value.
Similar to BBQ, the PRESTO proxy queries the PRESTO sensors only
when the desired confidence interval, specified by the query, could not
be satisfied with the values stored at the PRESTO proxy. In most cases,
the values stored at the proxy can be used for query processing, with-
out acquiring any further values from the PRESTO sensors. The only
difference between PRESTO and BBQ is that, PRESTO uses a differ-
ent measure of confidence as compared to BBQ. Further details of this
confidence interval can be found in [41].

2.4.2 Ken. For reducing the communication cost, the Ken [12]
framework employs a similar strategy as PRESTO. Although there is a
key difference between Ken and PRESTO. PRESTO uses a SARIMA
model; this model only takes into account temporal correlations. On
the other hand, Ken uses a dynamic probabilistic model that takes into
account spatial and temporal correlations in the data. Since a large
quantity of sensor data is correlated spatially, and not only temporally,
Ken derives advantage from such spatio-temporal correlation.

The Ken framework has two types of entities, sink and source. Their
functionalities and capabilities are similar to the PRESTO proxy and the

20 MANAGING AND MINING SENSOR DATA

PRESTO sensor respectively. The only difference is that the PRESTO
sensor only represents a single sensor, but a source could include more
than one sensor or a sensor network. The sink is the base station to which
the sensor values v;; are communicated by the source (refer Figure 2.3).

The fundamental idea behind Ken is that both, source and sink, main-
tain the same dynamic probabilistic model of data evolution. The source
only communicates with the sink when the raw sensor values deviate be-
yond a certain bound, as compared to the predictions from the dynamic
probabilistic model. In the meantime, the sink uses the sensor values
predicted by the model.

As discussed before, Ken uses a dynamic probabilistic model that
considers spatio-temporal correlations. Particularly, its dynamic proba-
bilistic model computes the following pdf at the source:

p(V(H-l)lv"'a‘/(i+1)m’1}1?"'avi) = /p(‘/(i-&-l)la-~~7V(i+l)m|Vila"'a‘/im)

p(Vit, -, Vimlvr, -, 01)dVis ... dVigy.
(2.5)

This pdf is computed using the observations that have been communi-
cated to the sink; the values that are not communicated to the sink are
ignored by the source, since they do not affect the model at the sink.
Next, each sensor contained in the source computes the expected sensor
value using Eq. (2.5) as follows:

U(i+1); :/V(i+1)jP(V(i+1)1»---»V(i+1)m)dV(i+1)1---dV(i+1)m- (2.6)

The source does not communicate with the sink if |0(;1.1); — v(1);] <6,
where ¢ is a user-defined threshold. If this condition is not satisfied, the
source communicates to the sink the smallest number of sensor values,
such that the § threshold would be satisfied. Similarly, if the sink does
not receive any sensor values from the source, it computes the expected
sensor values 0(;;1); and uses them as an approximation to the raw sensor
values. If the sink receives a few sensor values form the source, then,
before computing the expected values, the sink updates its dynamic
probabilistic model.

2.4.3 A Generic Push-Based Approach. The last push-
based approach that we will survey is a generalized version of other
push-based approaches [38]. This approach is proposed by Silberstein
et al. [61]. Like other push-based approaches, the base station and the
sensor network agree on an expected behavior, and, as usual, the sensor
network reports values only when there is a substantial deviation from

A Survey of Model-based Sensor Data Acquisition and Management 21

the agreed behavior. But, unlike other approaches, the definition of
expected behavior proposed in [61] is more generic, and is not limited
to a threshold 9.

In this approach a sensor can either be an updater (one who acquires
or forwards sensor values) or an observer (one who receives sensor val-
ues). A sensor node can be both, updater and observer, depending on
whether it is on the boundary of the sensor network or an intermediate
node. The updaters and the observers maintain a model encoding func-
tion fene and a decoding function fge.. These model encoding/decoding
functions define the agreed behavior of the sensor values. The updater
uses the encoding function to encode the sensor value v;; into a trans-
mission message g;;, and transmits it to the observer.

The observer, then, uses the decoding function fy.. to decode the
message g;; and construct 9;;. If the observer finds that v;; has not
changed significantly, as defined by the encoding function, then the ob-
server transmits a null symbol. A null symbol indicates that the sensor
value is suppressed by the observer. Following is an example of the en-
coding and decoding functions [61]:

9ij = vij = Virj, f [vij —virj > ;
Vi vg) = 2.7
fenc(vij z]) {gij =null, otherwise. 27

ooy + Gy if gig # ull;
fdec(gija@(i—l)j) = {U(z—l)J + gij, if gij # nu (2.8)

@(i—l)ja if 9i5 = null.

In the above example, the encoding function f.,. computes the difference
between the model predicted sensor value vy; and the raw sensor value
v;j. Then, this difference is transmitted to the observer only if it is
greater than J, otherwise the null symbol is transmitted. The decoding
function fge. decodes the sensor value 9(;_1); using the message g;;.

The encoding and decoding functions in the above example are pur-
posefully chosen to demonstrate how the ¢ threshold approach can be
replicated by these functions. More elaborate definitions of these func-
tions, which are used for encoding complicated behavior, can be found
in [61].

3. Model-Based Sensor Data Cleaning

A well-known characteristic of sensor data is that it is uncertain and
erroneous. This is due to the fact that sensors often operate with dis-
charged batteries, network failures, and imprecision. Other factors, such
as low-cost sensors, freezing or heating of the casing or measurement
device, accumulation of dirt, mechanical failure or vandalism (from hu-

22 MANAGING AND MINING SENSOR DATA

mans or animals) heavily affect the quality of the sensor data [31, 73,
23]. This may cause a significant problem with respect to data utiliza-
tion, since applications using erroneous data may yield unsound results.
For example, scientific applications that perform prediction tasks us-
ing observation data obtained from cheap and less-reliable sensors may
produce inaccurate prediction results.

To address this problem, it is essential to detect and correct erroneous
values in sensor data by employing data cleaning. The data cleaning task
typically involves complex processing of data [71, 30]. In particular, it
becomes more difficult for sensor data, since true sensor values corre-
sponding to erroneous data values are generally unobservable. This has
led to a new approach — model-based data cleaning. In this approach,
the most probable sensor values are inferred using well-established mod-
els, and then anomalies are detected by comparing raw sensor values
with the corresponding inferred sensor values. In the literature there
are a variety of suggestions for model-based approaches for sensor data
cleaning. This section describes the key mechanisms proposed by these
approaches, particularly focusing on the models used in the data cleaning
process.

3.1 Overview of Sensor Data Cleaning System

A system for cleaning sensor data generally consists of four major
components: user interface, stream processing engine, anomaly detector,
and data storage (refer Figure 2.5). In the following, we describe each
component.

A

stream processing engine

N
N
~
o
7,
2N
2N

sensors e

v
anomaly detector

] ===

~

[user interface]

PR

v ~
i L | vi | oY i i | vy
/
2 10:2| 10.1 ,7’7777, 2 10:2 | fixed
1 11:2] 10.9 1 11:2| 10.9
raw sensor data cleaned data

(materialized views)
~—_datastorage

Figure 2.5. Architecture of sensor data cleaning system.

A Survey of Model-based Sensor Data Acquisition and Management 23

User Interface: The user interface plays two roles in the data cleaning
process. First, it takes all necessary inputs from users to perform data
cleaning, e.g., name of sensor data and parameter settings for models.
Second, the results of data cleaning, such as ‘dirty’ sensor values cap-
tured by the anomaly detector, are presented using graphs and tables,
so that users can confirm whether each candidate of such dirty values is
an actual error. The confirmed results are then stored to (or removed
from) the underlying data storage or materialized views.

Anomaly Detector: The anomaly detector is a core component in
sensor data cleaning. It uses models for detecting abnormal data values.
The anomaly detector works in online as well as offline mode. In the
online mode, whenever a new sensor value is delivered to the stream
processing engine, the dirtiness of this value is investigated and the er-
rors are filtered out instantly. In the offline mode, the data is cleaned
periodically, for instance, once per day. In the following subsections, we
will review popular models used for online anomaly detection.

Stream Processing Engine: The stream processing engine main-
tains streaming sensor data, while serving as a main platform where
the other system components can cooperatively perform data cleaning.
The anomaly detector is typically embedded into the stream processing
engine, it may also be implemented as a built-in function on database
Systems.

Data Storage: The data storage maintains not only sensor values,
but also the corresponding cleaned data, typically in materialized views.
This is because applications on sensor networks often need to repeat-
edly perform data cleaning over the same data using different parameter
settings for the models, especially when the previous parameter settings
turn out to be inappropriate later. Therefore, it is important for the
system to store cleaned data in database views without changing the
original data, so that data cleaning can be performed again at any point
of time (or time interval) as necessary.

3.2 Models for Sensor Data Cleaning

This subsection reviews popular models that are widely used in the
sensor data cleaning process.

3.2.1 Regression Models. As sensor values are a representa-
tion of physical processes, it is naturally possible to uncover the follow-
ing properties: continuity of the sampling processes and correlations be-
tween different sampling processes. In principle, regression-based models

24 MANAGING AND MINING SENSOR DATA

exploit either or both of these properties. Specifically, they first compute
the dependency from one variable (e.g., time) to another (e.g., sensor
value), and then consider the regression curves as standards over which
the inferred sensor values reside. The two most popular regression-based
approaches use polynomial and Chebyshev regression for cleaning sensor
values.

Polynomial Regression: Polynomial regression finds the best-fitting
curve that minimizes the total difference between the curve and each
raw sensor value v;; at time ¢;. Given a degree d, polynomial regression
is formally defined as:

vij:c+a1-t¢—|—---+ad't§l, (2.9)

where c is a constant and a7, ..., aq are regression coefficients.

Polynomial regression with high degrees approximate given time series
with more sophisticated curves, resulting in theoretically more accurate
description of the raw sensor values. Practically, however, low-degree
polynomials, such as constant (d = 0) and linear (d = 1), also perform
satisfactorily. In addition, low-degree polynomials can be more efficiently
constructed as compared to high-degree polynomials. A (weighted) mov-
ing average model [73] is also regarded as a polynomial regression.

Chebyshev Regression: Chebyshev regression is a popular model
class for fitting sensor values, since they can quickly compute near-
optimal approximations for given time series. Suppose that time values
t; vary within a range [min(¢;), max(¢;)]. We, then, obtain normalized
time values ¢, within a range [—1,1], by using the following transfor-
mation function f(¢;) and its inverse transformation function f~1(t.) as
follows:

fts) = (ti _ max(t;) ;-min(ti)> * max(t,) i min(t;)’ (2.10)

£l = (t; ~max(t;) ; min(ti)> N max(t;) —2+— min(ti)‘ (2.11)

Next, given a degree d, Chebyshev polynomial is defined as:
vij = 7 (cos(d - cosTH(f (t))))-

Figure 2.6 illustrates a data cleaning process using degree-2 Cheby-
shev polynomials. Here, the raw sensor values are plotted as green
curves, while the inferred values, obtained by fitting a Chebyshev poly-
nomials, are overlaid by black curves. The anomaly points are then
indicated by the underlying red histograms as well as red circles.

A Survey of Model-based Sensor Data Acquisition and Management 25

M zir_temp
_ Ml processed
is :
W dirtiness 165:1044
177:13.04
. 1:10.94 (-0.

=

7 Thresh. IU.S
select (thres)

Use ctrl/shift to

2009/6/18 2009/6/19 2009/6/19 2009/6/19 2009/6/19 2009/6/19
select multiple items

20:00 0:00 4:00 8:00 12:00 16:00

Figure 2.6. Detected anomalies based on 2-degree Chebyshev regression.

3.2.2 Probabilistic Models. In sensor data cleaning, infer-
ring sensor values is perhaps the most important task, since systems can
then detect and clean dirty sensor values by comparing raw sensor val-
ues with the corresponding inferred sensor values. Figure 2.7 shows an
example of the data cleaning process using probabilistic models. At time
t; = 6, the probabilistic model infers a probability distribution using the
previous values vgj,...,vs; in the sliding window. The expected value
Usj (e.g., the mean of the Gaussian distribution in the future) is then
considered as the inferred sensor value for sensor s;.

Next, the anomaly detector checks whether the raw sensor value vg;
resides within a reasonably accurate area. This is done in order to check
whether the value is normal. For instance, the 30 range can cover 99.7
% of the density in the figure, where vg; is supposed to appear. Thus,
the data cleaning process can consider that vg; is not an error. Att; =7,
the window slides and now contains raw sensor values vs;,...,vgj. By
repeating the same process, the anomaly detector finds v7; resides out
of the error bound (3¢ range) in the inferred probability distribution,
and is identified as an anomaly [57].

A vast body of research work has utilized probabilistic models for
computing inferred values. The Kalman filter is perhaps one of the most

26 MANAGING AND MINING SENSOR DATA

probability
distribution inferred

expected value \\A?

anomaly —a
oV .

7j

value

v, e o V.? o
zjt o 513 o Vi 6 7
sliding window 3o

Figure 2.7. An example of data cleaning based on a probabilistic model.

common probabilistic models to compute inferred values corresponding
to raw sensor values. The Kalman filter is a stochastic and recursive data
filtering algorithm that models the raw sensor value v;; as a function of
its previous value (or state) v(;_1); as follows:

vij = Av_1); + Bu; + wi,

where A and B are matrices defining the state transition from time ¢;
to time t;, u; is the time-varying input at time ¢;, and w; is the process
noise drawn from a zero mean multi-variate Gaussian distribution. In
[63], the Kalman filter is used for detecting erroneous values, as well as
inter /extrapolating missing sensor values. Jain et al. [29] also use the
Kalman filter for filtering possible dirty values.

Similarly, Elnahrawy and Nath [21] proposed to use Bayes’ theorem to
estimate a probability distribution F;; at time ¢; from raw sensor values
v;j, and associate them with an error model, typically a normal distri-
bution. Built on the same principle, a neuro-fuzzy regression model [52]
and a belief propagation model based on Markov chains [13] were used
to identify anomalies. Tran et al. [65] propose a method to infer missing
or erroneous values in RFID data. All the techniques for inferring sen-
sor values also enable quality-aware processing of sensor data streams
[36, 37], since inferred sensor values can serve as the bases for indicating
the quality or precision of the raw sensor values.

3.2.3 Outlier Detection Models. An outlier is a sensor value
that largely deviates from the other sensor values. Obviously, outlier
detection is closely related to the process of sensor data cleaning. The
outlier-detection techniques are well-categorized in the survey studies of
[51, 8].

A Survey of Model-based Sensor Data Acquisition and Management 27

In particular, some of the outlier detection methods focus on sensor
data [59, 71, 15]. Zhang et al. [71] offer an overview of such outlier detec-
tion techniques for sensor network applications. Deligiannakis et al. [15]
consider correlation, extended Jaccard coefficients, and regression-based
approximation for model-based data cleaning. Shen et al. [59] propose
to use a histogram-based method to capture outliers. Subramaniam et
al. [62] introduce distance- and density-based metrics that can identify
outliers. In addition, the ORDEN system [23] detects polygonal outliers
using the triangulated wireframe surface model.

3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, supporting a
declarative interface is important since it allows users to easily control
the system. This idea is reflected in a wide range of prior work that pro-
poses SQL-like interfaces for data cleaning [32, 46, 54]. These proposals
hide complicated mechanisms of data processing or model utilization
from the users, and facilitate data cleaning in sensor network applica-
tions.

More specifically, Jeffery et al. [31, 32] divide the data cleaning pro-
cess into five tasks: Point, Smooth, Merge, Arbitrate, and Virtualize.
These tasks are then supported within a database system. For exam-
ple, the SQL statement in Query 2.2 performs anomaly detection within
a spatial granule by determining the average of the sensor values from
different sensors in the same proximity group. Then, individual sensor
values are rejected if they are outside of one standard deviation from the
mean.

As another approach, Rao et al. [54] focus on a systemic solution,
based on rewriting queries using a set of cleansing rules. Specifically,
the system offers the rule grammar shown in Figure 2.8 to define and
execute various data cleaning tasks. Unlike the prior relational database
approaches, Mayfield et al. [46] model data as a graph consisting of
nodes and links. They, then, provide an SQL-based, declarative frame-

DEFINE [rule name]
ON [table name]
FROM [table name]

CLUSTER BY [cluster keyl]
SEQUENCE BY [sequence key]

AS [pattern]
WHERE [condition]
ACTION [DELETE | MODIFY | KEEP]

Figure 2.8. An example of anomaly detection using a SQL statement.

28 MANAGING AND MINING SENSOR DATA

SELECT spatial granule, AVG(temp)
FROM data s [Range By 5 min]
(SELECT spatial granule, avg(temp) as avg,
stdev(temp) as stdev
FROM data [Range By 5 min]) as a
WHERE a.spatial granule = s.spatial granule
AND a.avg + (2xa.stdev) < s.temp
AND a.avg - (2xa.stdev) > s.temp

Query 2.2: An example of anomaly detection using a SQL statement.

work that enables data owners to specify or discover groups of attributes
that are correlated, and apply statistical methods that validate and clean
the sensor values using such dependencies.

4. Model-Based Query Processing

In this section we elaborate another important task in sensor data
management — query processing. We primarily focus on in-network and
centralized query processing approaches. We consider different queries
assuming the sensor network described in Section 2.1, and then discuss
how each approach processes these queries. In Section 2, however, we
followed an approach where we chose a singe query (i.e., Query 2.1)
and demonstrated how different techniques processed this query. On the
contrary, in this section, we chose different queries for all the approaches,
and then discuss these approaches along with the queries. We follow this
procedure since, unlike Section 2, the assumptions made by each query
processing technique are different. Thus, for highlighting the impact
of these assumptions and simplifying the discussion, we select different
queries for each approach.

4.1 In-Network Query Processing

In-network query processing first builds an overlay network (like, the
SRT discussed in Section 2.3.1). Then, the overlay network is used
for increasing the efficiency of aggregating sensor values and processing
queries. For instance, while processing a threshold query, parent nodes
send the query to the child nodes only when the query threshold con-
dition overlaps with the range of sensor values contained in the child
nodes, which is stored in the parent node’s local memory.

Consider the threshold query given in Query 2.3. Query 2.3 requests
the sensor identifiers of all the sensors that have sensed a temperature
greater than 10°C at the current time instance. Before answering this
query, we assume that we have already constructed a SRT as described

A Survey of Model-based Sensor Data Acquisition and Management 29

in Section 2.2 (refer Figure 2.4). Query 2.3 is sent by the root node of
the SRT to its children that are a part of the query response. The child
nodes check whether the sensor value they have sensed is greater than
10°C. If the sensor value is greater than 10°C at a child node, then
that child node appends its sensor identifier to the query response. The
child node, then, forwards the query to its children and waits for their
response. Once all the children of a particular node have responded,
then that node forwards the response of its entire sub-tree to its parent.
In the end, the root node receives all the sensor identifiers s; that have
recorded temperature greater than 10°C.

SELECT s; FROM sensor values WHERE v;; > 10°C AND ¢; == NOW()

Query 2.3: Return the sensor identifiers s; where v;; > 10°C.

4.2 Model-Based Views

The MauveDB [18] approach proposes standard database views [19] as
an abstraction layer for processing queries. These views are maintained
in a form of a regression model; thus they are called model-based views.
The main advantage of this approach is that the model-based view can
be incrementally updated as fresh sensor values are obtained from the
sensors. Furthermore, incremental updates is an attractive feature, since
such updates are computationally efficient.

Before processing any queries in MauveDB, we have to first create a
model-based view. The query for creating a model-based view is shown
in Query 2.4. The model-based view created by this query is called
RegModel. RegModel is a regression model in which the temperature is
the dependent variable and the sensor position (z;,y;) is an independent
variable (refer Figure 2.9). Note that RegModel is incrementally updated
by MauveDB. At time t; values from sensors si, s3 and at time to the
value from sensor s, are respectively used to update the view. The view
update mechanism exploits the fact that regression functions can be
updated. Further details regarding the update mechanism can be found
in [18].

CREATE VIEW RegModel AS FIT v OVER 22, zy,y?, =,y
TRAINING DATA SELECT z;,y;,v:; FROM sensor values
WHERE ©; > tstart AND €; < tend

Query 2.4: Model-based view creation query.

Once this step is performed many types of queries can be evaluated
using the RegModel view. For instance, consider Query 2.5. MauveDB

30 MANAGING AND MINING SENSOR DATA

evaluates this query by interpolating the value of temperature at fixed
intervals on the x- and y-axis; this is similar to database view material-
ization [19]. Then the positions (x,y) where the interpolated tempera-
ture value is greater than 10°C are returned.

Admittedly, although updating the model-based view is efficient, but
for processing queries the model-based view should be materialized at
a certain fixed set of points. This procedure produces a large amount
of overhead when the number of independent variables is large, since it
dramatically increases the number of points where the view should be
materialized.

SELECT z,y FROM RegModel WHERE v > 10°C

Query 2.5: Querying model-based views.

4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [64] system. Func-
tionDB, like MauveDB, also interpolates the values of the dependent
variable, and then uses the interpolated values for query processing.

As discussed before, the main problem with value interpolation is that
the number of points, where the sensor values should be interpolated,
increase dramatically as a function of the number of independent vari-
ables. As a solution to this problem, FunctionDB symbolically executes
the filter (for example, the WHERE clause in Query 2.5) and obtains feasi-
ble regions of the independent variables. These feasible regions are the
regions that include the exact response to the query, at the same time
contain a significantly low number of values to interpolate. FunctionDB

model-based
views

model-based

views are)
continuously ; U time
1

updated

® —- sensors O -- sensor values

Figure 2.9. Example of the RegModel view with three sensors. RegModel is incre-
mentally updated as new sensor values are acquired.

A Survey of Model-based Sensor Data Acquisition and Management 31

evaluates the query by interpolating values only in the feasible regions,
followed by a straightforward evaluation of the query.

Moreover, FunctionDB treats the temperature of the sensor s; as a
continuous function of time f;(t), instead of treating it as discrete values
sampled at time stamps t;. An example of a query in the FunctionDB
framework is given in Query 2.6. This query returns the time values ¢
between tg44r+ and t.,q where the temperature of the sensor sy is greater
than 10°C. Note that the time values ¢ are not necessarily the time
stamps t; where a particular sensor value was recorded.

SELECT ¢ WHERE f1(¢) > 10°C AND ¢ > tstart AND ¢ < tepg GRID t 1s

Query 2.6: Continuous threshold query.

For defining the values of the time axis ¢ (or any continuous variable),
FunctionDB proposes the GRID operator. The GRID operator specifies
the interval at which the function fi(¢) should be interpolated between
time tgqr+ and te,q. For instance, GRID t 1s indicates that the time
axis should be interpolated at one second intervals between time ¢4
and tepq. To process Query 2.6, FunctionDB first symbolically executes
the WHERE clause and obtains the feasible regions of the time axis (in-
dependent variable). Then, using the GRID operator, it generates time
stamps 17 in the feasible regions. The sensor value is interpolated at
the time stamps 77 using regression functions. Lastly, the query is pro-
cessed on these interpolated values, and time stamps 77 C T7 where the
temperature is greater than 10°C are returned.

4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that sensor data is
inherently uncertain. This uncertainty can arise due to various factors:
loss of calibration over time, faulty sensors, unsuitable environmental
conditions, low sensor accuracy, etc. Thus, the approaches that treat
sensor data as uncertain, assume that each sensor value is associated with
a random variable, and is drawn from a distribution. In this subsection,
we discuss two such methods that model uncertain data by either a
dynamic probabilistic model or a static probability distribution.

4.4.1 Dynamic Probabilistic Models. Dynamic probabilis-
tic models (DPMs) are proposed for query processing in [33, 29]. These
models continuously estimate a probability distribution. The estimated
probability distribution is used for query processing. Mainly, there are
two types of models that are frequently used for estimating dynamic
probability distributions: particle filters and Kalman filters. Particle

32 MANAGING AND MINING SENSOR DATA

filters are generalized form of Kalman filters. Since we have already
discussed Kalman filters in Section 3.2, here we will focus on particle
filtering.

Consider a single sensor, say s1, the particle filtering approach [4], at
each time instant t¢;, estimates and stores p weighted tuples
{(wh,vY),..., (wh,vh)}, where the weight w} denotes the probabil-
ity of Uill being the sensor value of the sensor s; at time t;, and so on.
An example of particle filtering is shown in the pf sensor values table
in Figure 2.10.

Now, consider the Query 2.7 that requests the average temperature
AVG(UU) between time tgqr+ and tepq. To evaluate this query, we assume
that we already have executed the particle filtering algorithm at each
time instance t; and have created the pf sensor values table. We,
then, perform the following two operations:

1. For each time t; between tstmnt and tey,q, we compute the expected

temperature v;; = l 1 wﬁl Uzl The formal SQL syntax for com-
puting the expected values using the pf sensor values table is as
follows:

SELECT ¢t;, l 1 wZl 21 FROM pf sensor values WHERE &; > tstqrt
AND t; < teng GROUP BY i;

2. The final result is the average of all the v;; that we computed in
Step 1.

Essentially, the tuples {(w};,v}), ..., (wh,v?)} represent a discretized
pdf for the random variable V;;. Moreover, the most challenging tasks
in particle filtering are to continuously infer weights w}, ... ,wh and to
select the optimal number of particles p, keeping in mind a particular
scenario and type of data [4].

Pt s 5|y p ||
1/01:00| 1(34|72|1 |1.1/|0.1
1101:00| 1(34|72|2 |3.0/0.6
1/01:000 1|34|72| 3 |52|0.3
2 |101:05| 25285 |1 (31|04
210105 25285 | 2 (79|03
2 |101:05| 25285 |3 [6.4(0.3

pf_sensor_values

Figure 2.10. Particle filtering stores p weighted sensor values for each time instance
ti.

A Survey of Model-based Sensor Data Acquisition and Management 33

SELECT AVG(U“) FROM pf sensor values WHERE ¢ > tstart AND ¢ < feng

Query 2.7: Compute the average temperature between time tg 4+ and
tend-

4.4.2 Static Probabilistic Models. Cheng et al. [9-11]
model the sensor value as obtained from an user-defined uncertainty
range. For example, if the value of a temperature sensor is 15°C, then
the actual value could vary between 13°C and 17°C. Furthermore, the
assumption is that the sensor value is drawn from a static probability
distribution that has support over the uncertainty range.

Thus, for each sensor s; we associate an uncertainty range between
l;; and u;;, in which the actual sensor values can be found. In addition,
the pdf of the sensor values of sensor s; is denoted as p;;(v). Note that
the pdf has non-zero support only between [;; and u;;. Consider a query
that requests the average temperature of the sensors s; and sg at time
t;. Since the values of the sensors s; and sy are uncertain in nature, the
response to this query is a pdf, denoted as pgyq(v). This pdf gives us the
probability of the sensor value v being the average. pqug(v) is computed
using the following formula:

min(i1,u—1;5)
pavg(v) = / pi1(Y)piz(v — z)dx. (2.12)

maz(lit,v—u;y)

Naturally, Eq. (2.12) becomes more complicated when there are many
(and not only two) sensors involved in the query. Additional details
about handling such scenarios can be found in [9].

4.5 Query Processing over Semantic States

The MIST framework [5] proposes to use Hidden Markov Models
(HMMs) for deriving semantic meaning from the sensor values. HMMs
allow us to capture the hidden states, which are sometimes of more in-
terest than the actual sensor values. Consider, as an example, a scenario
where the sensors S are used to monitor the temperature in all the rooms
of a building. Generally, we are only interested to know which rooms
are hot or cold, rather than the actual temperature in those rooms. We,
then, can use a two-state HMM with states Hot (denoted as H) and
Cold (denoted as C) to continuously infer the semantic states of the
temperature in all the rooms.

Furthermore, MIST proposes an in-network index structure for in-
dexing the HMMs. This index can be used for improving the perfor-
mance of query processing. For instance, if we are interested in finding

34 MANAGING AND MINING SENSOR DATA

the rooms that are Hot with probability greater than 0.9, then the in-
network model index can efficiently prune the rooms that are surely not
a part of the query response. Due to the lack of space, we shall not
cover the details of index construction and pruning. We encourage the
interested reader to read the following paper [5].

4.6 Processing Event Queries

Event queries are another important class of queries that are proposed
in the literature. These queries continuously monitor for a particular
event that could probably occur in sensor data. Consider a setup con-
sisting of RFID sensors in a building. An event query could monitor
an event of a person entering a room or taking coffee, etc. Moreover,
event queries can also be registered, not only to monitor a single event,
but a sequence of events that are important to the user. Again, due to
space constraints, we shall not cover any of the event query processing
approaches in detail. The interested reader is referred to the prior works
on this subject [55, 65, 68, 45].

5. Model-Based Sensor Data Compression

Recent advances in sensor technology has resulted in the availability
of a multitude of (often privately-held) sensors. Embedded sensing func-
tionality (e.g., sound, accelerometer, temperature, GPS, RFID, etc.) is
now included in mobile devices, like, phones, cars, or buses. The large
number of these devices and the huge volume of raw monitored data
pose new challenges for sustainable storage and efficient retrieval of the
sensor data streams. To this end, a multitude of model-based regression,
transformation and filtering techniques have been proposed for approxi-
mation of sensor data streams. This section categorizes and reviews the
most important model-based approaches towards compression of sensor
data. These models often exploit spatio-temporal correlations within
data streams to compress the data within a certain error norm; this is
also known as lossy compression. Moreover, several standard orthogonal
transformation methods (like, Fourier or wavelet transform) reduce the
amount of storage space required by reducing the dimensionality of data.

Unlike the assumptions of Section 2, where we assumed a sensor net-
work consisting of several sensors, here we assume that we only have
a single sensor. We have dropped the several sensors assumption to
simplify the notation and discussion in this section. Furthermore, we
assume that the sensor values from the single sensor are in a form of a
data stream. Let us denote such a data stream as a sequence of data
tuples (t;,v;), where v; is the sensor value at time ¢;.

A Survey of Model-based Sensor Data Acquisition and Management 35

5.1 Overview of Sensor Data Compression
System

The goal of the sensor data compression system is to approximate a
sensor data stream by a set of functions. Data compression methods
that we are going to study in this section permit the occurrence of ap-
proximation errors. These errors are characterized by a specific error
norm. Furthermore, a standard approach to sensor data compression is
to segment the data stream into data segments, and then approximate
each data segment, so that a specific error norm is satisfied. For exam-
ple, if we are considering the L., norm, then each sensor value of the
data stream is approximated within an error bound e.

Let us assume that we have K segments of a data stream. We denote

these segments as g¢', ¢2,...,¢’, where ¢! approximates the data tu-
ples ((t1,v1), ..., (ti,vi;)), while ¢*, where k = 2,..., K, approximates
the data items ((ti,_,+1,Vi,_1+1)s (Fip_ 42, Vip_y+1)s -« -5 (tif» Vi,). Simi-

lar to [20], we distinguish between two classes of the segments used for
approximation, namely connected segments and disconnected segments.
In connected segments, the ending point of the previous segment is the
starting point of the new segment. On the contrary, in disconnected
segments, the approximation of the new segment starts from the sub-
sequent data item in the stream. Disconnected segments offer more
approximation flexibility and may lead to fewer segments; however, for
linear approximation [35], they necessitate the storage of two data tu-
ples (i.e., start tuple and end tuple) per data segment, as opposed to
connected segments.

Since functions are employed for approximating data segments, only
the approximated data segments are stored in the database, instead
of the raw sensor values of the data stream [64, 50]. A schema for
linear segments is presented in [64], consisting of a table, referred to
as FunctionTable, where each row represents a linear model with at-
tributes start time, end time, slope and intercept (i.e., base) of the
segment. In case of connected segments [20], the end time attribute can
be omitted.

A more generic schema for storing data streams, approximated by
multiple models, was proposed in [50]. It consists of one table, referred
to as the (SegmentTable) for storing data segments, and a second table
(ModelTable) for storing the model functions, as depicted in Figure
2.11. A tuple of SegmentTable contains the approximation data for a
segment in the time interval [start time, end time]. The attribute
id stands for identification of the model that is used in the segment.
The primary key in the SegmentTable is the start time, while in the

36 MANAGING AND MINING SENSOR DATA

Multi-model approximation

< 60 —H&—segment 1

g

: {

g 50 «+ohee segment 2

ModelTable £ %

Z 40 . = =segment 3

id | function o ' ?
0 N ——segment 4

1 Swing ad

20
2 PolynomialRegression(3) 1208340000 1208360000 1208380000 1208400000 1208420000

System time (seconds)

MidRange

materialization

SegmentTable

id | start_time | end_time | left_value | right_value | model_params

3 | 1208362379 |1208367429 29.706 31.2355

3 | 1208367549 |1208372116 24.954 26.9715

1 | 1208375723 (1208392716 34.547 43.49363

2 | 1208396323 |1208412797 56.496 78.81476 8, 8, 65

Figure 2.11. 'The database schema for multi-model materialization.

ModelTable it is id. When, both, linear and non-linear models are
employed for approximation, left value is the lowest raw sensor value
encountered in the segment, and right value is the highest raw sensor
value encountered in the segment. In this case, start time, end time,
left value and right value define a rectangular bucket that contains
the values of the segment.

The attribute model params stores the parameters of the model asso-
ciated with the model identifier id. For example, regression coefficients
are stored for the regression model. The attribute model params has
variable length (e.g., VARCHAR or VARBINARY data types in SQL) and it
stores the concatenation of the parameters or their compressed repre-
sentation, by means of standard lossless compression techniques (refer
Section 5.7) or by a bitmap coding of approximate values, as proposed
in [3]. Each tuple in the ModelTable corresponds to a model with a
particular id and function. The attribute function represents the
name of the model and it maps to the names of two user defined func-
tions (UDFs) stored in the database. The first function implements the
mathematical formula of the model, and the second function implements
the inverse mathematical formula of the model, if any. Both the UDFs
are employed for answering value-based queries. While the first function
is used for value regeneration over fixed time steps (also referred to as
gridding), the second function is used for solving equations.

A Survey of Model-based Sensor Data Acquisition and Management 37

5.2 Methods for Data Segmentation

In [34], the piecewise linear approximation algorithms are categorized
in three groups: sliding window, top-down and bottom-up. The slid-
ing window approach expands the data segment as long as the data
tuples fit. The bottom-up approach first applies basic data segmenta-
tion employing the sliding window approach. Then, for two consecutive
segments, it calculates merging cost in terms of an approximation error.
Subsequently, it merges the segments with the minimum cost within the
maximum allowed approximation error, and updates the merging costs
of the updated segments. The process ends when no further merging
can be done without violating the maximum approximation error. The
top-down approach recursively splits the stream into two segments, so
as to obtain longest segments with the lowest error until all segments
are approximated within the maximum allowed error.

Among these three groups, only the sliding window approach can be
used online, but it employs look-ahead. The other two approaches per-
form better than the sliding window approach, but they need to scan
all data, hence they cannot be used for approximating streaming data.
Based on this observation, Keogh et al. [34] propose a new algorithm
that combines the online processing property of the sliding window ap-
proach and the performance of the bottom-up approach. This approach
needs a predefined buffer length. If the buffer is small, then it may
produce many small data segments; if the buffer is large, then there is
a delay in returning the approximated data segment. The maximum
look-ahead size is constrained by the maximum allowed delay between
data production and data reporting or data archiving.

5.3 Piecewise Approximation

Among several different data stream approximation techniques, piece-
wise linear approximation has been the most widely used [34, 39]. Piece-
wise linear approximation models the data stream with a separate linear
function per data segment. Piecewise constant approximation (PCA) ap-
proximates a data segment with a constant value, which can be the first
value of the segment (referred to as the cache filter) [47], the mean value
or the median value (referred to as poor man’s compression - midrange
(PMC-MR) [39]).

In the cache filter, for all the sensor values in a segment ¢*, the fol-
lowing condition should be satisfied:

Vi 14 — Vig_141| <€ forp=1,... i, (2.13)

38 MANAGING AND MINING SENSOR DATA

26.15

® Raw Data

— PMC-MR

Temperature (°C)
N
(o))

25.95

25.9
04.22.08 20:09 04.23.08 00:57

Date & Time (mm/dd/yy hours:min)

Figure 2.12. Poor Man’s Compression - MidRange (PMC-MR).

where € is the maximum allowed approximation error according to the
Lo norm. Also, for PMC-Mean and PMC-MR the sensor values in a
segment ¢* should satisfy the following condition:

max v; — min v; < 2¢. 2.14
1<p<iy, TP agpy, TS 214)

Furthermore, for PMC-Mean, the approximation value for the segment
g* is given by the mean value of the sensor values in segment ¢g*. But,

for PMC-MR it is given as follows:

maxi <p<iy, Vig_q+p — MIN1<p<y, Vi _1+p

2

The data segmentation approach for PMC-MR is illustrated in Figure
2.12.

Moreover, the linear filter [34] is a simple piecewise linear approxi-
mation technique in which the sensor values are approximated by a line
connecting the first and second point of the segment. When a new data
tuple cannot be approximated by this line with the specified error bound,
a new segment is started. In [20], two new piecewise linear approxima-
tion models were proposed, namely Swing and Slide, that achieve much
higher compression compared to the cache and linear filters. We briefly
discuss the swing and slide filters below.

5.3.1 Swing and Slide Filters. The swing filter is capable of
approximating multi-dimensional data. But, for simplicity, we describe

A Survey of Model-based Sensor Data Acquisition and Management 39

its algorithm for one-dimensional data. Given the arrival of two data
tuples (t1,v1) and (t2,v2) of the first segment of the data stream, the
swing filter maintains a set of lines, bounded by an upper line u' and a
lower line ['. u! is defined by the pair of points (t;,v1) and (t2,vs + €),
while I! is defined by the pair of points (1, v;) and (t2, va — €), where € is
the maximum approximation error bound. Any line segment between u!
and I' can represent the first two data tuples. When (t3,v3) arrives, first
it is checked whether it falls within the lines [*, u'. Then, in order to
maintain the invariant that all lines within the set can represent all data
tuples so far, [! (respectively u!') may have to be adjusted to the higher-
slope (respectively lower-slope) line defined by the pair of data tuples
((t1,v1), (t3,v3 —€)) (respectively ((t1,v1), (t3,v3+¢€))). Lines below this
new [! or above this new u! cannot represent the data tuple (t3,v3). The
segment estimation continues until the new data tuple falls out of the
upper and lower lines for a segment. The generated line segment for the
completed filtering interval is chosen so as to minimize the mean square
error for the data tuples observed in that interval. As opposed to the
slide filter (described below), in the swing filter the new data segment
starts from the end point of the previous data segment.

In the slide filter, the operation is similar to the swing filter, but upper
and lower lines u and [are defined differently. Specifically, after (¢1,v;)
and (tp,v9) arrive, u' is defined by the pair of data tuples (t1,v; —
€) and (t2,v2 + €), while I! is defined by (t1,v1 + €) and (ta, vy — €).
After the arrival of (t3,v3), I' (respectively u!) may need to be adjusted
to the higher-slope (respectively lower-slope) line defined by ((¢;,v; +
€), (ts,v3—e¢)) (respectively ((t;,v; —¢), (t3,v3+¢€))), where ¢ € [1,2]. The
slide filter also includes a look-ahead of one segment, in order to produce
connected segments instead of disconnected segments, when possible.

Palpanas et al. [48] employ amnesic functions and propose novel tech-
niques that are applicable to a wide range of user-defined approximating
functions. According to amnesic functions, recent data is approximated
with higher accuracy, while higher error can be tolerated for older data.
Yi and Faloutsos [70] suggested approximating a data stream by dividing
it into equal-length segments and recording the mean value of the sen-
sor values that fall within the segment (referred to as segmented means
or as piecewise aggregate approximation (PAA)). On the other hand,
adaptive piecewise constant approximation (APCA) [6] allows segments
to have arbitrary lengths.

5.3.2 Piecewise Linear Approximation. The piecewise
linear approximation uses the linear regression model for compressing

40 MANAGING AND MINING SENSOR DATA
data streams. The linear regression model of a data segment is given as:
vi =8-1; + b, (2.15)

where b and s are known as the base and the slope respectively. The
difference between v; and ¢; is known as the residual for time ¢;. For
fitting a linear regression model of Eq. (2.15) to the sensor values v; :
t; € [tp;te], the ordinary least squares (OLS) estimator is employed. The
OLS estimator selects b and s such that they minimize the following sum
of squared residuals:

RSS(b,s) = i [v; — (s - t; + b)]2.

ti=typ

Therefore, b and s are given as:

le tl _ tb+te
b= 2 (%)
tiz:;b Zt::tb (ti - tbgte)tz’
te
s — Ztiztb Ui o btb + te
te —tp+ 1 2

(2.16)

Here, the storage record of each data segment of the data stream consists
of ([tp;te]; b, s), where [tp;t.] is the segment interval, and s and b are the
slope and base of the linear regression, as obtained from Eq. (2.16).

Similarly, instead of the linear regression model, a polynomial regres-
sion model (refer Eq. (2.9)) can also be utilized for approximating each
segment of the data stream. The storage record of the polynomial regres-
sion model is similar to the linear regression model. The only difference
is that for the polynomial regression model the storage record contains
parameters aq, ..., aq instead of the parameters b and s.

5.4 Compressing Correlated Data Streams

Several approaches [14, 42, 24] exploit correlations among different
data streams for compression. The GAMPS approach [24] dynami-
cally identifies and exploits correlations among different data segments
and then jointly compresses them within an error bound employing a
polynomial-time approximation algorithm. In the first phase, data seg-
ments are individually approximated based on piecewise constant ap-
proximation (specifically the PMC-Mean described in Section 5.3). In
the second phase, each data segment is approximated by a ratio with
respect to a base segment. The segment formed by the ratios is called
the ratio segment. GAMPS proposes to store the base segment and the

A Survey of Model-based Sensor Data Acquisition and Management 41

ratio segment, instead of storing the original data segment. The idea
here is that, in practice, the ratio segment is flat and therefore can be
significantly compressed as compared to the original data segment.

Furthermore, the objective of the GAMPS approach is to identify a
set of base segments, and associate every data segment with a base seg-
ment, such that the ratio segment can be used for reconstructing the
data segment within a L., error bound. The problem of identification
of the base segments is posed as a facility location problem. Since this
problem is NP-hard, a polynomial-time approximation algorithm is used
for solving it, and producing the base segments and the assignment be-
tween the base segments and data segments.

Prior to GAMPS, Deligiannakis et al. [14] proposed the self-based
regression (SBR) algorithm that also finds a base-signal for compressing
historical sensor data based on spatial correlations among different data
streams. The base-signal for each segment captures the prominent fea-
tures of the other signals, and SBR finds piecewise correlations (based
on linear regression) to the base-signal. Lin et al. [42] proposed an algo-
rithm, referred to as adaptive linear vector quantization (ALVQ), which
improves SBR in two ways: (i) it increases the precision of compres-
sion, and (ii) it reduces the bandwidth consumption by compressing the
update of the base signal.

5.5 Multi-Model Data Compression

The potential burstiness of the data streams and the error introduced
by the sensors often result in limited effectiveness of a single model for
approximating a data stream within the prescribed error bound. Ac-
knowledging this, Lazaridis et al. [39] argue that a global approximation
model may not be the best approach and mention the potential need for
using multiple models. In [40], it is also recognized that different ap-
proximation models are more appropriate for data streams of different
statistical properties. The approach in [40] aims to find the best model
approximating the data stream based on the overall hit ratio (i.e., the
ratio of the number of data tuples fitting the model to the total number
of data tuples).

Papaioannou et al. [50] aim to effectively find the best combination
of different models for approximating various segments of the stream
regardless of the error norm. They argue that the selection of the most
efficient model depends on the characteristics of the data stream, namely
rate, burstiness, data range, etc., which cannot be always known a priori
for sensors and they can even be dynamic. Their approach dynamically
adapts to the properties of the data stream and approximates each data

42 MANAGING AND MINING SENSOR DATA

segment with the most suitable model. They propose a greedy approach
in which they employ multiple models for each segment of the data
stream and store the model that achieves the highest compression ratio
for the segment. They experimentally proved that their multi-model
approximation approach always produces fewer or equal data segments
than those of the best individual model. Their approach could also be
used to exploit spatial correlations among different attributes from the
same location, e.g., humidity and temperature from the same stationary
sensor.

5.6 Orthogonal Transformations

The main application of the orthogonal transformation approaches
has been in dimensionality reduction, since reducing the dimensional-
ity improves performance of indexing techniques for similarity search
in large collections of data streams. Typically, sequences of fixed length
are mapped to points in an N-dimensional Euclidean space; then, multi-
dimensional access methods, such as R-tree family, can be used for fast
access of those points. Since, sequences are usually long, a straightfor-
ward application of the above approach, which does not use dimension-
ality reduction, suffers from performance degradation due to the curse
of dimensionality [56].

The process of dimensionality reduction can be described as follows.
The original data stream or signal is a finite sequence of real values or co-
efficients, recorded over time. This signal is transformed (using a specific
transformation function) into a signal in a transformed space. To achieve
dimensionality reduction, a subset of the coefficients of the orthogonal
transformation are selected as features. These features form a feature
space, which is simply a projection of the transformed space. The basic
idea is to approximate the original data stream with a few coefficients of
the orthogonal transformation; thus reducing the dimensionality of the
data stream.

5.6.1 Discrete Fourier Transform (DFT). The Fourier trans-
form is the most popular orthogonal transformation. It is based on the
simple observation that every signal can be represented by a superposi-
tion of sine and cosine functions. The discrete Fourier transform (DFT)
and discrete cosine transform (DCT) are efficient forms of the Fourier
transform often used in applications. The DFT is the most popular
orthogonal transformation and was first used in [1, 22]. The Discrete
Fourier Transform of a time sequence x = xg,...,ZTN_1 IS a sequence

A Survey of Model-based Sensor Data Acquisition and Management 43

X = Xp,...,Xn_1 of complex numbers given by:
e
Xp =) e ™, (2.17)
§=0

The original signal can be reconstructed by the inverse Fourier transform
of X, which is given by:

N—-1
v =Y XN, (2.18)
k=0

In [1], Agrawal et al. suggest using the DFT for dimensionality re-
duction of long observation sequences. They argue that most real sig-
nals only require a few DFT coefficients for their approximation. Thus
similarity search can be performed only over the first few DFT coeffi-
cients, instead of the full observation sequence. This provides an effi-
cient and approximate solution to the problem of similarity search in
high-dimensional spaces. They use the Euclidean distance as the dis-
similarity measure.

5.6.2 Discrete Wavelet Transform. Wavelets can be thought
of as a generalization of the Fourier transform to a much larger family of
functions than sine and cosine. Mathematically, a wavelet is a function
;1. defined on the real numbers R, which includes an integer transla-
tion by k, also called a shift, and a dyadic dilation (a product by the
powers of two), known as stretching. The functions v, play a similar
role as the exponential functions in the Fourier transform: 1);; form an
orthonormal basis for the L?(R) space. The L?(R) space consists of all
the functions whose Lo norm is finite. Particularly, the functions v, ,
where j and k are integers are given as follows:

Wi k() = 272 (20t — k). (2.19)

Similar to the Fourier transform, by using the orthonormal basis func-
tions 1, we can uniquely express a function f € L?(R) as a linear
combination of the basis functions v;; as follows:

F=Y" < ik > ik, (2.20)

J,k€EZ

where < f,g >:= [g Jgdx is the usual inner product of two functions in
L2(R).

44 MANAGING AND MINING SENSOR DATA

The Haar wavelets are the most elementary example of wavelets. The
mother wavelet ¢ for the Haar wavelets is the following function:

1, if0<t<0.5,
VHaar(t) = ¢ —1, if 0.5 <t < 1, (2.21)
0, otherwise.

Ganesan et al. [26, 25] proposed in-network storage of wavelet-based
summaries of sensor data. Recently, discrete wavelet transform (DWT)
was also proposed in [53, 7] for sensor data compression. For sustainable
storage and querying, they propose progressive aging of summaries and
load sharing techniques.

5.6.3 Discussion. The basis functions of some wavelet trans-
forms are non-zero only on a finite interval. Therefore, wavelets may
be only able to capture local (time dependent) properties of the data,
as opposed to Fourier transforms, which can capture global properties.
The computational efficiency of the wavelet transforms is higher than the
Fast Fourier transform (FFT). However, while the Fourier transform can
accurately approximate arbitrary signals, the Haar wavelet is not likely
to approximate a smooth function using few features.

The wavelet transform representation is intrinsically coupled with ap-
proximating sequences whose length is a power of two. Using wavelets
with sequences that have other lengths require ad-hoc measures that
reduce the fidelity of the approximation, and increase the complexity of
the implementation. DFT and DCT have been successfully adapted to
incremental computation [72]. However, as each DFT/DCT coefficient
makes a global contribution to the entire data stream, assigning less
significance to the past data is not obvious with these transformations.

5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately reconstruct the origi-
nal data, lossy compression techniques approximate data streams within
a certain error bound. Most lossless compression schemes perform two
steps in sequence: the first step generates a statistical model for the
input data, and the second step uses this model to map input data to
bit sequences. These bit sequences are mapped in such a way that fre-
quently encountered data will produce shorter output than infrequent
data. General-purpose compression schemes include DEFLATE (em-
ployed by gzip, ZIP, PNG, etc.), LZW (employed by GIF, compress,
etc.), LZMA (employed by 7zip). The primary encoding algorithms used
to produce bit sequences are Huffman coding (also used by DEFLATE)

A Survey of Model-based Sensor Data Acquisition and Management 45

and arithmetic coding. Arithmetic coding achieves compression rates
close to the best possible, for a particular statistical model, which is
given by the information entropy. On the other hand, Huffman com-
pression is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adequate for a num-
ber of reasons: (a) as experimentally found in [39], gzip lossless compres-
sion achieves poor compression (50%) compared to lossy techniques, (b)
lossless compression and decompression are usually more computation-
ally intensive than lossy techniques, and (c¢) indexing cannot be employed
for archived data with lossless compression.

6. Summary

In this chapter, we presented a comprehensive overview of the various
aspects of model-based sensor data acquisition and management. Pri-
marily, the objectives of the model-based techniques are efficient data
acquisition, handling missing data, outlier detection, data compression,
data aggregation and summarization. We started with acquisition tech-
niques like TinyDB [45], Ken [12], PRESTO [41]. In particular, we
focused on how acqusitional queries are disseminated in the sensor net-
work using routing trees [44]. Then we surveyed various approaches for
sensor data cleaning, including polynomial-based [73], probabilistic [21,
63, 52, 65] and declarative [31, 46].

For processing spatial, temporal and threshold queries, we detailed
query processing approaches like MauveDB [18], FunctionDB [64], par-
ticle filtering [33], MIST [5], etc. Here, our primary objective was to
demonstrate how model-based techniques are used for improving various
aspects of query processing over sensor data. Lastly, we discussed data
compression techniques, like, linear approximation [34, 39, 48], multi-
model approximations [39, 40, 50] and orthogonal transformations [1,
22, 53, 7].

All the methods that we presented in this chapter were model-based.
They utilized models — statistical or otherwise — for describing, simpli-
fying or abstracting various components of sensor data acquisition and
management.

Acknowledgments

This work was supported by the OpenSense project (Nano-Tera ref-
erence number 839 401), NCCR-MICS (http://www.mics.org), and by
the OpenloT project (EU FP7-ICT 287305).

http://www.mics.org

46

MANAGING AND MINING SENSOR DATA

References

1]

2]

R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search
in sequence databases. In Foundations of Data Organization and
Algorithms, pages 69-84, 1993.

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. En-
ergy conservation in wireless sensor networks: A survey. Ad Hoc
Networks, 7(3):537-568, 2009.

A. Arion, H. Jeung, and K. Aberer. Efficiently maintaining dis-
tributed model-based views on real-time data streams. In GLOBE-
COM, pages 1-6, 2011.

M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tuto-
rial on particle filters for online nonlinear /non-gaussian bayesian
tracking. IEEE Transactions on Signal Processing, 50(2):174-188,
2002.

A. Bhattacharya, A. Meka, and A. Singh. MIST: Distributed in-
dexing and querying in sensor networks using statistical models. In
VLDB, pages 854-865, 2007.

K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Lo-
cally adaptive dimensionality reduction for indexing large time se-
ries databases. ACM Transactions on Database Systems (TODS),
27(2):188-228, 2002.

K. Chan and W. Fu. Efficient time series matching by wavelets. In
ICDE, pages 126-133, 1999.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A
survey. ACM Computing Surveys, 41(3):1-58, 2009.

R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating proba-
bilistic queries over imprecise data. In SIGMOD, pages 551-562,
2003.

R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluation of prob-
abilistic queries over imprecise data in constantly-evolving environ-
ments. Information Systems, 32(1):104-130, 2007.

R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system
for managing constantly-evolving data. In VLDB, pages 1271-1274,
2005.

D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate
data collection in sensor networks using probabilistic models. In
ICDE, pages 48-48, 2006.

F. Chu, Y. Wang, S. Parker, and C. Zaniolo. Data cleaning using
belief propagation. In IQIS, pages 99-104, 2005.

A Survey of Model-based Sensor Data Acquisition and Management 47

[14]

A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing
historical information in sensor networks. In SIGMOD, pages 527—
538, 2004.

A. Deligiannakis, V. Stoumpos, Y. Kotidis, V. Vassalos, and
A. Delis. Outlier-aware data aggregation in sensor networks. In
ICDE, pages 1448-1450, 2008.

A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting
correlated attributes in acquisitional query processing. In ICDE,
pages 143-154, 2005.

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In
VLDB, pages 588-599, 2004.

A. Deshpande and S. Madden. MauveDB: Supporting model-based
user views in database systems. In SIGMOD, pages 73-84, 2006.

R. Elmasri and S. Navathe. Fundamentals of database systems.
Addison Wesley, 6 edition, 2010.

H. Elmeleegy, A. Elmagarmid, E. Cecchet, W. Aref, and
W. Zwaenepoel. Online piece-wise linear approximation of numer-
ical streams with precision guarantees. In VLDB, pages 145-156,
2009.

E. Elnahrawy and B. Nath. Cleaning and querying noisy sensors.
In WSNA, pages 78-87, 2003.

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast sub-
sequence matching in time-series databases. In SIGMOD, pages
419-429, 1994.

C. Franke and M. Gertz. ORDEN: Outlier region detection and ex-
ploration in sensor networks. In SIGMOD, pages 1075-1077, 2009.

S. Gandhi, S. Nath, S. Suri, and J. Liu. GAMPS: Compressing
multi sensor data by grouping and amplitude scaling. In SIGMOD,
pages 771-784, 2009.

D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do

we need a new data handling architecture for sensor networks? In
SIGCOMM, pages 143-148, 2003.

D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and H. J.
An evaluation of multi-resolution storage for sensor networks. In
SenSys, pages 89-102, 2003.

C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden.

Distributed regression: An efficient framework for modeling sensor
network data. In IPSN, pages 1-10, 2004.

48

28]

MANAGING AND MINING SENSOR DATA

H. Gupta, V. Navda, S. Das, and V. Chowdhary. Efficient gathering
of correlated data in sensor networks. ACM Transactions on Sensor
Networks (TOSN), 4(1):4, 2008.

A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource
management using Kalman Filters. In SIGMOD, pages 11-22, 2004.

S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. A
pipelined framework for online cleaning of sensor data streams. In
ICDE, page 140, 2006.

S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. Declar-
ative support for sensor data cleaning. In Pervasive, pages 83-100,
2006.

S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive cleaning for
RFID data streams. In VLDB, pages 163-174, 2006.

B. Kanagal and A. Deshpande. Online filtering, smoothing and
probabilistic modeling of streaming data. In ICDE, pages 1160—
1169, 2008.

E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm
for segmenting time series. In ICDM, pages 289-296, 2001.

E. Keogh and M. Pazzani. An enhanced representation of time
series which allows fast and accurate classification, clustering and
relevance feedback. In SIGKDD, pages 239241, 1998.

A. Klein. Incorporating quality aspects in sensor data streams. In
PIKM, pages 77-84, 2007.

A. Klein and W. Lehner. Representing data quality in sensor data
streaming environments. Journal of Data and Information Quality,
1(2):1-28, 2009.

Y. Kotidis. Snapshot queries: Towards data-centric sensor networks.
In ICDE, pages 131-142, 2005.

I. Lazaridis and S. Mehrotra. Capturing sensor-generated time se-
ries with quality guarantees. In ICDE, pages 429440, March 2003.

Y. Le Borgne, S. Santini, and G. Bontempi. Adaptive model selec-
tion for time series prediction in wireless sensor networks. Signal
Processing, 87(12):3010-3020, 2007.

M. Li, D. Ganesan, and P. Shenoy. PRESTO: Feedback-driven data
management in sensor networks. IEEE/ACM Transactions on Net-
working (TON), 17(4):1256-1269, 2009.

S. Lin, V. Kalogeraki, D. Gunopulos, and S. Lonardi. Online in-
formation compression in sensor networks. In IEEFE International
Conference on Communications, 2006.

A Survey of Model-based Sensor Data Acquisition and Management 49

[43]

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A
tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS
Operating Systems Review, 36(SI):131-146, 2002.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of
an acquisitional query processor for sensor networks. In SIGMOD,
pages 491-502, 2003.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An
acquisitional query processing system for sensor networks. TODS,
30(1):122-173, 2005.

C. Mayfield, J. Neville, and S. Prabhakar. ERACER: A database

approach for statistical inference and data cleaning. In SIGMOD,
pages 75-86, 2010.

C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous
queries over distributed data streams. In SIGMOD, pages 563-574,
2003.

T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel.
Online amnesic approximation of streaming time series. In ICDE,
pages 339-349, 2004.

S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern
discovery in multiple time-series. In VLDB, pages 697-708, 2005.

T. Papaioannou, M. Riahi, and K. Aberer. Towards online multi-
model approximation of time series. In IEEE MDM, pages 33-38,
2011.

A. Patcha and J.-M. Park. An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends. Computer
Networks, 51(12):3448-3470, 2007.

A. Petrosino and A. Staiano. A neuro-fuzzy approach for sensor
network data cleaning. In KFES, pages 140-147, 2007.

I. Popivanov. Similarity search over time series data using wavelets.
In ICDFE, pages 212221, 2002.

J. Rao, S. Doraiswamy, H. Thakkar, and L. Colby. A deferred cleans-
ing method for RFID data analytics. In VLDB, pages 175-186,
2006.

C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on
correlated probabilistic streams. In SIGMOD, pages 715-728, 2008.

H. Samet. Foundations of multidimensional and metric data struc-
tures. Morgan Kaufmann, 2006.

S. Sathe, H. Jeung, and K. Aberer. Creating probabilistic databases
from imprecise time-series data. In ICDE, pages 327-338, 2011.

50

[58]

MANAGING AND MINING SENSOR DATA

M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. TiNA: A
scheme for temporal coherency-aware in-network aggregation. In
MobiDFE, pages 69-76, 2003.

B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor
networks. In MobiHoc, pages 219-228, 2007.

R. Shumway and D. Stoffer. Time series analysis and its applica-
tions. Springer-Verlag, New York, 2005.

A. Silberstein, R. Braynard, G. Filpus, G. Puggioni, A. Gelfand,
K. Munagala, and J. Yang. Data-driven processing in sensor net-
works. In CIDR, 2007.

S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos. Online outlier detection in sensor data using
non-parametric models. In VLDB, pages 187-198, 2006.

Y. Tan, V. Sehgal, and H. Shahri. SensoClean: Handling noisy
and incomplete data in sensor networks using modeling. Technical
report, University of Maryland, 2005.

A. Thiagarajan and S. Madden. Querying continuous functions in
a database system. In SIGMOD, pages 791-804, 2008.

T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy.
Probabilistic inference over RFID streams in mobile environments.
In ICDE, pages 1096-1107, 2009.

D. Tulone and S. Madden. PAQ: Time series forecasting for approx-
imate query answering in sensor networks. In FWSN, pages 21-37,
2006.

L. Wang and A. Deshpande. Predictive modeling-based data col-
lection in wireless sensor networks. In EWSN, pages 34-51, 2008.
E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In SIGMOD, pages 407-418, 2006.

Y. Yao and J. Gehrke. Query processing in sensor networks. In
CIDR, 2003.

B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar
time sequences under time warping. In ICDE, pages 201-208, 1998.
Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection tech-
niques for wireless sensor networks: A survey. IEEE Communica-
tions Survey & Tutorials, 12(2), 2010.

Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thou-
sands of data streams in real time. In VLDB, pages 358-369, 2002.
Y. Zhuang, L. Chen, X. Wang, and X. Lian. A weighted mov-
ing average-based approach for cleaning sensor data. In ICDCS,
page 38, 2007.

	Chapter 2 A SURVEY OF MODEL-BASED SENSOR DATA ACQUISITION AND MANAGEMENT
	1. Introduction
	2. Model-Based Sensor Data Acquisition
	2.1 Preliminaries
	2.2 The Sensor Data Acquisition Query
	2.3 Pull-Based Data Acquisition
	2.3.1 In-Network Data Acquisition.
	2.3.2 Multi-Dimensional Gaussian Distributions.

	2.4 Push-Based Data Acquisition
	2.4.1 PRESTO.
	2.4.2 Ken.
	2.4.3 A Generic Push-Based Approach.

	3. Model-Based Sensor Data Cleaning
	3.1 Overview of Sensor Data Cleaning System
	3.2 Models for Sensor Data Cleaning
	3.2.1 Regression Models.
	3.2.2 Probabilistic Models.
	3.2.3 Outlier Detection Models.

	3.3 Declarative Data Cleaning Approaches

	4. Model-Based Query Processing
	4.1 In-Network Query Processing
	4.2 Model-Based Views
	4.3 Symbolic Query Evaluation
	4.4 Processing Queries over Uncertain Data
	4.4.1 Dynamic Probabilistic Models.
	4.4.2 Static Probabilistic Models.

	4.5 Query Processing over Semantic States
	4.6 Processing Event Queries

	5. Model-Based Sensor Data Compression
	5.1 Overview of Sensor Data Compression System
	5.2 Methods for Data Segmentation
	5.3 Piecewise Approximation
	5.3.1 Swing and Slide Filters.
	5.3.2 Piecewise Linear Approximation.

	5.4 Compressing Correlated Data Streams
	5.5 Multi-Model Data Compression
	5.6 Orthogonal Transformations
	5.6.1 Discrete Fourier Transform (DFT).
	5.6.2 DiscreteWavelet Transform.
	5.6.3 Discussion.

	5.7 Lossless vs. Lossy Compression

	6. Summary
	Acknowledgments
	References

