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Abstract Advances in sensor data collection technology, such as pervasive and
embedded devices, and RFID Technology have lead to a large number
of smart devices which are connected to the net and continuously trans-
mit their data over time. It has been estimated that the number of
internet connected devices has overtaken the number of humans on the
planet, since 2008. The collection and processing of such data leads
to unprecedented challenges in mining and processing such data. Such
data needs to be processed in real-time and the processing may be highly
distributed in nature. Even in cases, where the data is stored offline,
the size of the data is often so large and distributed, that it requires the
use of big data analytical tools for processing. In addition, such data
is often sensitive, and brings a number of privacy challenges associated
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with it. This chapter will discuss a data analytics perspective about
mining and managing data associated with this phenomenon, which is
now known as the internet of things.

Keywords: The Internet of Things, Pervasive Computing, Ubiquitous Computing

1. Introduction

The internet of things [14] refers to uniquely addressable objects and
their virtual representations in an Internet-like structure. Such objects
may link to information about them, or may transmit real-time sensor
data about their state or other useful properties associated with the
object. Radio-Frequency Identification Technology (RFID) [23, 47, 93,
94] is generally seen as a key enabler of the internet of things, because
of its ability to track a large number of uniquely identifiable objects
with the use of Electronic Product Codes (EPC). However, other kinds
of ubiquitous sensor devices, barcodes, or 2D-codes may also be used to
enable the Internet of Things (IoT). The concepts of pervasive computing
and ubiquitous computing are related to the internet of things, in the
sense that all of these paradigms are enabled by large-scale embedded
sensor devices.

The vision of the internet of things is that individual objects of ev-
eryday life such as cars, roadways, pacemakers, wirelessly connected
pill-shaped cameras in digestive tracks, smart billboards which adjust to
the passersby, refrigerators, or even cattle can be equipped with sensors,
which can track useful information about these objects. Furthermore,
if the objects are uniquely addressable and connected to the internet,
then the information about them can flow through the same protocol
that connects our computers to the internet. Since these objects can
sense the environment and communicate, they have become tools for un-
derstanding complexity, and may often enable autonomic responses to
challenging scenarios without human intervention. This broader princi-
ple is popularly used in IBM’s Smarter Planet initiative for autonomic
computing.

Since the internet of things is built upon the ability to uniquely iden-
tify internet-connected objects, the addressable space must be large
enough to accommodate the uniquely assigned IP-addresses to the differ-
ent devices. The original internet protocol IPv4 uses 32-bit addresses,
which allows for only about 4.3 billion unique addresses. This was a
reasonable design at the time when IPv4 was proposed, since the total
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number of internet connected devices was a small fraction of this number.
With an increasing number of devices being connected to the internet,
and with each requiring its IP-address (for full peer-to-peer communi-
cation and functionality), the available IP-addresses are in short supply.
As of 2008, the number of internet connected devices exceeded the total
number of people on the planet. Fortunately, the new IPv6 protocol
which is being adopted has 128-bit addressability, and therefore has an
address space of 2128. This is likely to solve the addressability bottleneck
being faced by the internet of things phenomenon.

It is clear that from a data centric perspective, scalability, distributed
processing, and real time analytics will be critical for effective enable-
ment. The large number of devices simultaneously producing data in
an automated way will greatly dwarf the information which individu-
als can enter manually. Humans are constrained by time and physical
limits in terms of how much a single human can enter into the sys-
tem manually, and this constraint is unlikely to change very much over
time. On the other hand, the physical limitations on how much data
can be effectively collected from embedded sensor devices have steadily
been increasing with advances in hardware technology. Furthermore,
with increasing numbers of devices which are connected to the internet,
the number of such streams also continue to increase in time. Simply
speaking, automated sensor data is likely to greatly overwhelm the data
which are available from more traditional human-centered sources such
as social media. In fact, it is the trend towards ubiquitous and pervasive
computing, which is the greatest driving force towards big data analytics.

Aside from scalability issues, privacy continues to be a challenge for
data collection [40, 58–62, 69, 71, 78, 81, 82, 111]. Since the individual
objects can be tracked, they can also lead to privacy concerns, when
these objects are associated with individuals. A common example in
the case of RFID technology is one in which a tagged object (such as
clothing) is bought by an individual, and then the individual can be
tracked because of the presence of the tag on their person. In cases,
where such information is available on the internet, the individual can
be tracked from almost anywhere, which could lead to unprecedented
violations of privacy.

The material in this chapter is closely related to two other chapters
[8, 9] in this book corresponding to social sensing and RFID processing
respectively. However, we have devoted a separate chapter to the inter-
net of things, since it is a somewhat separate concept in its own right,
though it is related to the afore-mentioned technologies in the following
ways:
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RFID technology is a key enabler for the internet of things, be-
cause it allows the simultaneous identification of large numbers of
objects with cost-effective tags [108]. However, in practice many
other kinds of embedded sensor technology may be used for enable-
ment. Furthermore, where more sophisticated sensor information
is required about the object, RFID technology can only provide a
partial component of the data required for full enablement.

Social sensing is a paradigm which refers to the interaction between
people with embedded sensor devices, which are typically mobile
phones. However, the internet of things is a more general concept,
where even mundane objects of everyday life such as refrigerators,
consumer products, televisions, or cars may be highly connected,
and may be utilized for making smarter and automated decisions.

1.1 The Internet of Things: Broader Vision

The Internet of Things is a vision, which is currently being built–
there is considerable diversity in its interpretation by different commu-
nities, who are involved in an inherently cross-disciplinary effort, involv-
ing sensor networking, data management and the world wide web. This
diversity is also a result of the technical breadth of the consortiums,
industries and communities which support the vision. Correspondingly,
this is also reflected in the diversity of the technologies, which are being
developed by the different communities. Nevertheless, there are numer-
ous common features across the different visions about what the internet
of things may constitute, and it is one of the goals of this paper to bring
together these visions from a data-centric perspective.

A simple and broad definition of the internet of things [41, 16] is as
follows: “The basic idea of this concept is the pervasive presence around
us of a variety of things or objects – such as Radio-Frequency IDenti-
fication (RFID) tags, sensors, actuators, mobile phones, etc. – which,
through unique addressing schemes, are able to interact with each other
and cooperate with their neighbors to reach common goals”. The pro-
cess of machines communicating with one another, is also referred to as
the Machine-to-Machine (M2M) paradigm. This requires tremendous
data-centric capabilities, which is the primary medium of communica-
tion between the different entities. Therefore, the ability to securely
and privately collect, manage, index, query and process large amounts
of data is critical.

In order to enable these goals, a variety of research efforts have been
initiated supporting various aspects of these goals. Each of these visions
has a slightly different emphasis on different parts of this data-centric
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pipeline. There are three primary visions [16] around which most of the
research in this area is focussed:

Things-oriented Vision: This vision is largely supported by the
RFID vision of tracking objects with tags [108]. This vision sup-
ports the use of the Electronic Product Code (EPC) in conjunction
with RFID technology to collect and track sensor data. The EPC-
global framework [118] is based on this vision of unique product
identification and tracking.

The things-oriented vision is by far the dominant vision today, and
RFID technology is often (mistakenly) assumed to be synonymous
with the internet of things. It is important to note that while
RFID technology will continue to be a very important enabler of
this phenomenon (especially because of the unique identifiability
provided by the EPC), it is certainly not the only technology which
can be used for data collection. The things-vision includes data
generated by other kinds of embedded sensor devices, actuators,
or mobile phones. In fact, more sophisticated sensor technology
(beyond tags) is usually required in conjunction with RFID in or-
der to collect and transmit useful information about the objects
being tracked. An example of this is the Wireless Identification
and Sensing Platform (WISP) [121] being constructed at Intel.
WISPs are powered by standard RFID readers, and can be used
to measure sensing quantities in the physical environment, such
as temperature. The overall vision is that of RFID-based Sensor
Networks [22], which integrate RFID technology, small sensing and
computing devices, RFID readers (which provide a key intermedi-
ate layer between the “things” and the “internet”), and internet
connectivity.

Internet-oriented Vision: The internet-oriented vision corre-
sponds to construction of the IP protocols for enabling smart ob-
jects, which are internet connected. This is typically spearheaded
by the IPSO alliance [122]. Typically, this technology goes beyond
RFID.

A theoretical concept, which has emerged in this direction is that
of the spime, [99] an object, which is uniquely identifiable, and may
of its real-time attributes (such as location) can be continuously
tracked. Examples of this concept include smart objects, which
are tiny computers which have sensors or actuators, and a com-
munication device. These can be embedded in cars, light switches,
thermometers, billboards, or machinery. Typically these objects
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have CPU, memory, a low power communication device, and are
battery operated. Since, each of these devices would require its
own IP-address, a large part of this vision is also about develop-
ing the internet infrastructure to accommodate the ever-expanding
number of “things” which require connectivity. A classic example
of the efforts in this space include the development of IPv6, which
has a much larger addressable IP-space. This vision also supports
the development of the web of things, in which the focus is to
re-use the web-based internet standards and protocols to connect
the expanding eco-system of embedded devices built into everyday
smart objects [45]. This re-use ensures that widely accepted and
understood standards such as URI, HTTP, etc. are used to access
the functionality of the smart objects. This approach exposes the
synchronous functionality of smart objects through a REST inter-
face. The REST interface defines the notion of a resource as any
component of an application that is worth being uniquely iden-
tified and linked to. On the Web, the identification of resources
relies on Uniform Resource Identifiers (URIs), and representations
retrieved through resource interactions contain links to other re-
sources [46]. This means that applications can follow links through
an interconnected web of resources. Similar to the web, clients of
such services can follow these links in order to find resources to
interact with. Therefore, a client may explore a service by brows-
ing it, and the services will use different link types to represent
different relationships.

Semantic-oriented Vision: The semantic vision addresses the
issues of data management which arise in the context of the vast
amounts of information which are exchanged by smart objects, and
the resources which are available through the web interface. The
idea is that standardized resource descriptions are critical to enable
interoperability of the heterogeneous resources available through
the web of things. The semantic vision is really about the separa-
tion of the meanings of data, from the actual data itself. The idea
here is that the semantic meanings of objects are stored separately
from the data itself, and effective tools for the management of this
information. A key capability that this enables in semantic inter-
operability and integration 5semantic i.e., across the sensor data
from various sensors.

The diversity of these visions is a result of the diversity in the stake-
holders involved in the building of this vision, and also because the vast



The Internet of Things: A Survey from the Data-Centric Perspective 389

infrastructure required by this vision naturally requires the technical
expertise from different areas of data analytics, and networking.

This chapter is organized as follows. The next section will discuss
applications supported by the internet of things. In section 3, we will
present networking issues, and their relationship to the data collection
process. Section 4 will discuss issues in data management. This includes
methods for querying, indexing, and real-time data analytics. Privacy
issues are discussed in section 5. Section 6 contains the conclusions and
summary.

2. Applications: Current and Future Potential

The ability of machines and sensors to collect, transmit data and
communicate with one another can lead to unprecedented flexibility in
terms of the variety of applications which can be supported with this
paradigm. While the full potential of the IoT vision is yet to be real-
ized, we will review some of the early potential of existing applications,
and also discuss future possibilities. The latter set of possibilities are
considered ambitious, but reasonable goals in the longer term, as a part
of this broader vision.

Product Inventory Tracking and Logistics This is perhaps one
of the most popular applications of the internet of things, and was one
of the first large scale applications of RFID technology. The movements
of large amounts of products can be tracked by inexpensive RFID tags.
For large franchises and organizations, the underlying RFID readers may
serve as an intermediate layer between the data collection and internet-
connectivity. This provides unprecedented opportunities for product
tracking in an automated way. In addition, it is possible to design soft-
ware, which uses the information from the transmitted data in order to
trigger alerts in response to specific events.

Smarter Environment More sophisticated embedded sensor tech-
nology can be used in order to monitor and transmit critical environ-
mental parameters such as temperature, humidity, pressure etc. In some
cases, RFID technology can be coupled with more sophisticated sensors,
in order to send back information which is related to specific objects
[106, 107]. Such information can also be used to control the environment
in an energy-efficient way. For example, smart sensors in a building can
be used in order to decide when the lights or air-conditioning in a room
in the building should be switched off, if the room is not currently being
used.
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Social Sensing Social sensing is an integral paradigm of the internet
of things, when the objects being tracked are associated with individual
people. Examples of such sensing objects include mobile phones, wear-
able sensors and piedometers. Such paradigms have tremendous value in
enabling social networking paradigms in conjunction with sensing. The
increasing ability of commodity hardware to track a wide variety of real-
life information such as location, speed, acceleration, sound, video and
audio leads to unprecedented opportunity in enabling an increasingly
connected and mobile world of users that are ubiquitously connected to
the internet. This is also a natural mode in which humans and things
can interact with one another in a seamless way over the internet. A
detailed discussion on social sensing may be found in [8].

Smarter Devices In the future, it is envisioned that a variety of
devices in our day-to-day life such as refrigerators, televisions and cars
will be smarter in terms of being equipped with a variety of sensors
and will also have internet connectivity in order to publish the collected
data. For example, refrigerators may have smart sensors which can
detect the quantities of various items and the freshness of perishable
items. The internet connectivity may provide the means to communicate
with and alert the user to a variety of such information. The user may
themselves be connected with the use of one a social sensing device such
as a mobile phone. Similarly, sensor equipped and internet connected
cars can both provide information to and draw from the repository of
data on traffic status and road conditions. In addition, as has recently
been demonstrated by the Google Car project, sensor-equipped cars have
the capability to perform assisted driving for a variety of applications
[124]. A further advancement of this technology and vision would be the
development of internet connected cars, which can perform automated
driving in a way which is sensitive to traffic conditions, with the use of
aggregate data from other network connected cars.

Identification and Access Control RFID tags can be used for a
wide variety of access control applications. For example, RFID sensors
can be used for fast access control on highways, instead of manual toll
booths. Similarly, a significant number of library systems have imple-
mented smart check out systems with tags on items. When the collected
data is allowed to have network connectivity for further (aggregate) anal-
ysis and processing, over multiple access points, this also enables signif-
icant tracking and analysis capabilities for a variety of applications. For
example, in a network of connected libraries, automated tracking can
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provide the insights required to decide which books to acquire for the
different locations, based on the aggregate analysis.

Electronic Payment Systems Numerous electronic payment sys-
tems are now being developed with the use of a variety of smart tech-
nologies. The connectivity of RFID readers to the internet can be used
in order to implement payment systems. An example is the Texas Instru-
ments’s Speedpass, pay-at-pump system, which was introduced in Mobil
stations in the mid-nineties. This system uses RFID technology in order
to detect the identity of the customer buying gas, and this information is
used in order to debit the money from the customer’s bank account. An-
other popular payment system, which is becoming available with many
mobile phones is based on Near Field Communications (NFC). Many of
the latest Android phones have already implemented such systems for
mobile payments.

Health Applications RFID and sensor technology have been shown
to be very useful in a variety of health applications [100]. For exam-
ple, RFID chips can be implanted in patients in order to track their
medical history. Sensor technology is also very useful in automated
monitoring of patients with heart or alzheimer’s conditions, assisted liv-
ing, emergency response, and health monitoring applications [31, 36,
74]. Internet-connected devices can also directly communicate with the
required emergency services when required, in order ro respond to emer-
gences, when the sensed data shows the likelihood of significant deteri-
oration in the patient’s condition. Smart healthcare technology has the
potential to save lives, by significantly improving emergency response
times.

3. Networking Issues: Impact on Data
Collection

The primary networking issues for the internet of things arise during
the data collection phase. At this phase, a variety of technologies are
used for data collection, each of which have different tradeoffs in terms
of capabilities, energy efficiency, and connectivity, and may also impact
both the cleanliness of the data, and how it is transmitted and managed.
Therefore, we will first discuss the key networking technologies used for
data collection. This will further influence our discussion on data-centric
issues of privacy, cleaning and management:
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3.1 RFID Technology

At the most basic level, the definition of Radio Frequency Identi-
fication (RFID) is as follows: RFID is a technology which allows a
sensor (reader) to read, from a distance, and without line of sight, a
unique product identification code (EPC) associated with a tag. Thus,
the unique code from the tag is transmitted to one or more sensor
reader(s), which in turn, transmit(s) the readings to one or more server(s).
The data at the server is aggregated in order to track all the different
product codes which are associated with the tags. We note that such
RFID tags do not need to be equipped with a battery, since they are pow-
ered by the sensor reader. This is a key advantage from the perspective
of providing a high life time to the tracking process. The sensor readers
provide a key intermediate layer between the data collection process and
network connectivity. The RFID tags typically need to be present at a
short distance from the readers in order for the reading process to work
effectively. From a data-centric perspective the major limitations of the
basic RFID technology are the following:

The basic RFID technology has limited capabilities in terms of pro-
viding more detailed sensing information, especially when passive
tags are used.

The range of the tags is quite small, and is typically of the order of
between 5 to 20 meters. As a result significant numbers of readings
are dropped.

The data collected is massively noisy, incomplete and redundant.
Sensor readers may repeatedly scan EPC tags which are at the
same location (with no addition of knowledge), and multiple read-
ers in the same locality may scan the same EPC tag. This leads to
numerous challenges from the perspective of data cleaning. This
cleaning typically needs to be performed in the middleware within
the sensor reader.

RFID collection technology leads to considerable privacy chal-
lenges, especially when the tags are associated with individual.
The tags are susceptible to a wide variety of eavesdropping mech-
anisms, since covert readers can be used in order to track the
locations of individuals.

A detailed discussion of the data-centric issues associated with RFID
technology may be found in [9].
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3.2 Active and Passive RFID Sensor Networks

The major limitation of the basic RFID sensor technology is that it
does not enable detailed sensing information. However, a number of
recent methods have been proposed to incorporate sensing into RFID
capabilities. One possibility is to use an onboard battery [106, 107]
in order to transmit more detailed sensing information about the en-
vironment. This is referred to as an active RFID tag. Of course, the
major limitation of such an approach is that the life-time of the tag is
limited by the battery. If a large number of objects are being tracked
at given time, then it is not practical to replace the battery or tag on
such a basis. Nevertheless, a significant amount of smart object tech-
nology is constructed with this approach. The major challenge from the
data-centric perspective is to clean or impute the missing data from the
underlying collection.

Recently, a number of efforts have focussed on the creating the abil-
ity to perform the sensing with passive RFID tags. Recently, a number
of efforts in this direction [22, 121] are designed to sense more detailed
information with the use of passive tags. The major challenge of this
approach is that the typical range at which the reader must be placed to
the tag is even smaller than the basic RFID technology, and may some-
times be less than three meters. This could lead to even more challenges
in terms of the dropped readings in a wide variety of application scenar-
ios. On the other hand, since the tag is passive, there are no limitations
on the life time because of battery-power consumption.

3.3 Wireless Sensor Networks

A possible solution is to use conventional wireless sensing technology
for building the internet of things. One, some, or all nodes in the sensor
network may function as gateways to the internet. The major advantage
is that peer-to-peer communications among the nodes are possible with
this kind of approach. Of course, this kind of approach is significantly
more expensive in large-scale applications and is limited by the battery
life. The battery-life would be further limited by the fact, that most
IP protocols cannot accommodate the sleep modes required by sensor
motes in order to conserve battery life. Since the network connectivity
of the internet of things is based on the IP protocols, this would require
the sensor devices to be on constantly. This would turn out to be a very
significant challenge in terms of battery life. The energy requirements
can reduced by a variety of methods such as lower sampling or trans-
mission rates, but this can impact the timeliness and quality of the data
available for the underlying applications. Wireless sensor networks also
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have some quality issues because of the conversion process from volt-
ages to measured values, and other kinds of noise. Nevertheless, from a
comparative point of view, wireless sensor networks do have a number
of advantages in terms of the quality, range, privacy and security of the
data collected and transmitted, and are likely to play a significant role
in the internet of things.

3.4 Mobile Connectivity

A significant number of objects in the internet of things, such as mo-
bile phones can be connected by 3G and WiFi connectivity. However,
the power usage of such systems is quite high. Such solutions are of
course sometimes workable, because such objects fall within the social
sensing paradigm, where each mobile object belongs to a participant
who is responsible for maintaining the battery and other connectivity
aspects of the sensing object which is transmitting the data. In such
cases, however, the privacy of the transmitted data (eg. GPS location)
becomes sensitive, and it is important to design privacy preservation
paradigms in order to either limit the data transmission, or reduce the
fidelity of the transmitted data. This is of course not desirable from the
data analytics perspective, because it reduces the quality of the data
analytics output. Correspondingly, the user-trust in the data analytics
results are also reduced.

Since mobile phones are usually designed for communication-centric
applications, they may only have certain sensors such as GPS, accelerom-
eters, microphones, or video-cameras, which are largely user centric.
Also they may allow direct human input into the sensor process. Never-
theless, they do have a number of limitations in not being able to collect
arbitrarily kinds of sensed data (eg. humidity). Therefore, the applica-
bility of such devices is often in the context of user-centric applications
such as social sensing [8], or working with other smart devices in the
context of a broader smart infrastructure.

Since such connectivity has high power requirements, it is important
to make the data collection as energy efficient as possible. A salient
point to be kept in mind is that data collection can sometimes be per-
formed with the use of multiple methods in the same devices (eg. ap-
proximate cell phone tower positioning vs. accurate GPS for location
information). Furthermore, tradeoffs are also possible during data trans-
mission between timeliness and energy consumption (eg. real-time 3G
vs. opportunistic WiFi). A variety of methods have been proposed in
recent years, for calibrating these different tradeoffs, so that the energy
efficiency is maximized with significantly compromising the data-centric
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needs of the application [30, 84, 91, 117]. Examples of specific meth-
ods include energy-timeliness tradeoffs [91], adaptive sampling [84], and
application-specific collection modes [117]. We note that the impact of
such collection policies on data management and processing applications
is likely be significant. Therefore, it is critical to design appropriate data
cleaning and processing methods, which take such issues of data quality
into consideration.

4. Data Management and Analytics

The key to the power of the internet of things paradigm is the abil-
ity to provide real time data from many different distributed sources to
other machines, smart entities and people for a variety of services. One
major challenge is that the underlying data from different resources are
extremely heterogeneous, can be very noisy, and are usually very large
scale and distributed. Furthermore, it is hard for other entities to use
the data effectively, without a clear description of what is available for
processing. In order to enable effective use of this very heterogeneous
and distributed data, frameworks are required to describe the data in
a sufficiently intuitive way, so that it becomes more easily usable i.e.,
the problem of semantic interoperability is addressed. This leads to un-
precedented challenges both in terms of providing high quality, scalable
and real time analytics, and also in terms of intuitively describing to
users information about what kind of data and services are available in
a variety of scenarios. Therefore, methods are required to clean, man-
age, query and analyze the data in the distributed way. The cleaning
is usually performed at data collection time, and is often embedded in
the middleware which interfaces with the sensor devices. Therefore, the
research on data cleaning is often studied in the context of the things-
oriented vision. The issues of providing standardized descriptions and
access to the data for smart services are generally studied in the context
of standardized web protocols and interfaces, and description/querying
frameworks such as offered by semantic web technology. The idea is
to reuse the existing web infrastructure in an intuitive way, so the het-
erogeneity and distributed nature of the different data sources can be
seamlessly integrated with the different services. These issues are usually
studied in the context of the web of things and the semantic web visions.
Thus, the end-to-end data management of IoT technology requires the
unification and collaboration between the different aspects of how these
technologies are developed, in order to provide a seamless and effective
infrastructure.
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Unlike the world wide web of documents, in which the objects them-
selves are described in terms of a natural lexicon, the objects and data
in the internet of things, are heterogeneous, and may not be naturally
available in a sufficiently descriptive way to be searchable, unless an ef-
fort is made to create standardized descriptions of these objects in terms
of their properties. Frameworks such as RDF provide such a standard-
ized descriptive framework, which greatly eases various functions such
as search and querying in the context of the underlying heterogeneity
and lack of naturally available descriptions of the objects and the data.
Semantic technologies are viewed as a key to resolving the problems
of inter-operability and integration within this heterogeneous world of
ubiquitously interconnected objects and systems [65]. Thus, the Inter-
net of Things will become a Semantic Web of Things. It is generally
recognized that this interoperability cannot be achieved by making ev-
eryone comply to too many rigid standards in ubiquitous environments.
Therefore, the interoperability can be achieved by designing middleware
[65], which acts as a seamless interface for joining heterogeneous com-
ponents together in a particular IoT application. Such a middleware
offers application programming interfaces, communications and other
services to applications. Clearly, some data-centric standards are still
necessary, in order to represent and describe the properties of the data
in a homogenous way across heterogeneous environments.

The internet of things requires a plethora of different middlewares, at
different parts of the pipeline for data collection and cleaning, service en-
ablement etc. In this section, we will study the data management issues
at different stages of this pipeline. First, we will start with data cleaning
and pre-processing issues, which need to be performed at data collection
time. We will follow this up with issues of data and ontology representa-
tion. Finally, we will describe important data-centric applications such
as mining with big data analytics, search and indexing.

4.1 Data Cleaning Issues

The data cleaning in IoT technology may be required for a variety
of reasons: (a) When is data is collected from conventional sensors, it
may be noisy, incomplete, or may require probabilistic uncertain mod-
eling [34]. (b) RFID data is extremely noisy, incomplete and redun-
dant because a large fraction of the readings are dropped, and there are
cross-reads from multiple sensor readers. (c) The process of privacy-
preservation may require an intentional reduction of data quality, in
which case methods are required for privacy-sensitive data processing
[6].
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Conventional sensor data is noisy because sensor readings are often
created by converting other measured quantities (such as voltage) into
measured quantities such as the temperature. This process can be very
noisy, since the conversion process is not precise. Furthermore, system-
atic errors are also introduced, because of changes in external conditions
or ageing of the sensor. In order to reduce such errors, it is possible to
either re-calibrate the sensor [25], or perform data-driven cleaning and
uncertainty modeling [34]. Furthermore, the data may sometimes be
incomplete because of periodic failure of some of the sensors. A detailed
discussion of methods for cleaning conventional sensor data is provided
in Chapter 2 of this book.

RFID data is even noisier than conventional sensor data, because of
the inherent errors associated with the reader-tag communication pro-
cess. Furthermore, since RFID data is repeatedly scanned by the reader,
even when the data is stationary, it is massively redundant. Techniques
for cleaning RFID data are discussed in [9]. Therefore, we will provide a
brief discussion of these issues and refer the readers to the other chapters
for more details. In the context of many different kinds of sources such
as conventional sensor data, RFID data, and privacy-preserving data
mining, uncertain probabilistic modeling seems to be a solution, which
is preferred in a variety of different contexts [6, 34, 66], because of recent
advances in the field of probabilistic databases [7]. The broad idea is that
when the data can be represented in probabilistic format (which reflects
its errors and uncertainty), it can be used more effectively for mining
purposes. Nevertheless, probabilistic databases are still an emerging
field, and, as far as we are aware, all commercial solutions work with
conventional (deterministic) representations of the sensor data. There-
fore, more direct solutions are required in order to clean the data as
deterministic entities.

In order to address the issue of lost readings in RFID data, many
data cleaning systems [47, 120] is to use a temporal smoothing filter,
in which a sliding window over the reader’s data stream interpolates
for lost readings from each tag within the time window. The idea is to
provide each tag more opportunities to be read within the smoothing
window. Since the window size is a critical parameter, the work in
[55] proposes SMURF (Statistical sMoothing for Unreliable RFid data),
which is an adaptive smoothing filter for raw RFID data streams. This
technique determines the most effective window size automatically, and
continuously changes it over the course of the RFID stream. Many of
these cleaning methods use declarative methods in the cleaning process
are discussed in [54, 56, 55]. The broad idea is to specify cleaning stages
with the use of high-level declarative queries over relational data streams.
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In addition, RFID data exhibits a considerable amount of redundancy
because of multiple scans of the same item, even when it is stationary at
a given location. In practice, one needs to track only interesting move-
ments and activities on the item. The work in [42] proposes methods for
reducing this redundancy. RFID tag readings also exhibit a considerable
amount of spatial redundancy because of scans of the same object from
the RFID readers placed in multiple zones. This is primarily because of
the spatial overlap in the range of different sensor readers. This provides
seemingly inconsistent readings because of the inconsistent (virtual) lo-
cations reported by the different sensors scanning the same object. While
the redundancy causes inconsistent readings, it also provides useful in-
formation about the location of an object in cases, where the intended
reader fails to perform its intended function. The work in [28] proposes
a Bayesian inference framework, which takes full advantage of the du-
plicate readings, and the additional background information in order to
maximize the accuracy of RFID data collection.

4.2 Semantic Sensor Web

Sensor networks provide the challenge of too much data, and too lit-
tle inter-operability and also too little knowledge about the ability to
use the different resources which are available in real time. The Sensor
Web Enablement initiative of the Open Geospatial Consortium defines
service interfaces which enable an interoperable usage of sensor resources
by enabling their discovery, access, tasking, eventing and alerting [21].
Such standardized interfaces are very useful, because such a web hides
the heterogeneity of the underlying sensor network from the applica-
tions that use it. This initiative defines the term Sensor Web as an
“infrastructure enabling access to sensor networks and archived sensor
data that can be discovered and accessed using standard protocols and
application programming interfaces.” This is critical in order to ensure
that the low level sensor details become transparent to application pro-
grammers, who may now use higher level abstractions in order to write
their applications. Clearly, the goal of the sensor web is to enable real
time situation awareness in order to ensure timely responses to a wide
variety of events. The main services and language suite specifications
include the following:

Observations and Measurements (O&M): These are the standard
models and schema, which are used to encode the real-time mea-
surements from a sensor.

Sensor Model Language (SML): These models and schema de-
scribe sensor systems and processes. These provide the informa-
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tion needed for discovering sensors, locating sensor observations,
processing low level sensor observations, and listing taskable prop-
erties.

Transducer Model Language (TML): These are standard models
and XML schema for describing transducers and supporting real-
time streaming of data to and from sensor systems.

Sensor Observation Service (SOS): This is the standard Web ser-
vice interface for requesting, filtering, and retrieving observations
and sensor system information.

Sensor Alert Service (SAS): This is the standard Web service in-
terface for publishing and subscribing to alerts from sensors.

Sensor Planning Service (SPS): This is the standard Web service
interface for requesting user-driven acquisitions and observations.

Web Notification Services (WNS): This is the standard Web ser-
vice interface for delivery of messages or alerts from Sensor Alert
Service and Sensor Planing Services.

We note that all of the above services are useful for different aspects of
sensor data processing, and this may be done in different ways based on
the underlying scenario. For example, the discovery of the appropriate
sensors is a critical task for the user, though it is not always easy to know
a-priori about the nature of the discovery that a user may request. For
example, a user may be interested in discovering physical sensors based
on specific criteria such as location, measurement type, semantic meta-
information etc., or they may be interested in specific sensor related
functionality such as alerting [57]. Either goal may be achieved with
an appropriate implementation of the SML module [21, 57]. Thus, the
specific design of each module will dictate the functionality which is
available in a given infrastructure.

The World Wide Web Consortium (W3C) has also initiated the Se-
mantic Sensor Networks Incubator Group (SSN-XL) to develop Seman-
tic Sensor Network Ontologies, which can model sensor devices, pro-
cesses, systems and observations. This ontology enables expressive rep-
resentation of sensors, sensor observations, and knowledge of the envi-
ronment. This is already being adopted widely by the sensor networking
community, and has resulted in improved management of sensor data on
the Web, involving annotation, integration, publishing, and search. In
the case of sensor data, the amounts of data are so large, that the seman-
tic annotation of the underlying data is extremely important in order to
enable effective discovery and search of the underlying resources. This
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annotation can be either spatial, temporal, or may be semantic in na-
ture. Interesting discussions of research issues which arise in the context
of the semantic and database management issues of the sensor web may
be found in [96, 17].

The semantic web encodes meta-data about the data collected by
sensors, in order to make it effectively searchable and usable by the
underlying services. This comprises the following primary components:

The data is encoded with self-describing XML identifiers. This
also enables a standard XML parser to parse the data.

The identifiers are expressed using the Resource Description Frame-
work (RDF). RDF encodes the meaning in sets of triples, with each
triple being a subject, verb, and object of an element. Each ele-
ment defines a Uniform Resource Identifier on the Web.

Ontologies can express relationships between identifiers. For ex-
ample, one accelerometer sensor, can express the speed in miles
per hour, whereas another will express the speed in terms of Kilo-
meters per hour. The ontologies can represent the relationships
among these sensors in order to be able to make the appropriate
conversion.

We will describe each of these components in the description below.
While the availability of real-time sensor data on a large scale in do-

mains ranging from traffic monitoring to weather forecasting to home-
land security to entertainment to disaster response is a reality today,
major benefits of such sensor data can only be realized if and only if
we have the infrastructure and mechanisms to synthesize, interpret, and
apply this data intelligently via automated means. The Semantic Web
vision [73] was to make the World Wide Web more intelligent by lay-
ering the networked Web content with semantics. The idea was that
a semantic layer would enable the realization of automated agents and
applications that “understand” or “comprehend” Web content for spe-
cific tasks and applications. Similarly the Semantic Sensor Web puts
the layer of intelligence and semantics on top of the deluge of data com-
ing from sensors. In simple terms, it is the Semantic Sensor Web that
allows automated applications to understand, interpret and reason with
basic but critical semantic notions such as “nearby”, “far”, “soon”, “im-
mediately”, “dangerously high”, “safe”, “blocked”, or “smooth”, when
talking about data coming from sensors, and the associated geo-spatial
and spatio-temporal reasoning that must accompany it. In summary, it
enables true semantic interoperability and integration over sensor data.
In this section, we describe multiple aspects of Semantic Sensor Web
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technology that enables the advancement of sensor data mining applica-
tions in a variety of critical domains.

4.2.1 Ontologies. Ontologies are at the heart of any semantic
technology, including the Semantic Sensor Web. An ontology, defined
formally as a specification of a conceptualization [43], is a mechanism
for knowledge sharing and reuse. In this chapter, we will illustrate two
important ontologies that are particularly relevant to the sensor data
domain. Our aim is to provide an understanding of ontologies and on-
tological frameworks per se, as well as highlight the utility of existing
ontologies for (further) developing practical sensor data applications.
Ontologies are essentially knowledge representation systems. Any knowl-
edge representation system must have mechanisms for (i) Representation
and (ii) Inference. In this context, we provide a brief introduction to two
important Semantic-Web ontology representation formalisms - namely
RDF and OWL.

RDF stands for the “Resource Description Framework” and is a lan-
guage to describe resources [76]. A resource is literally any thing or
concept in the world. For instance, it could be a person, a place, a
restaurant entree etc. Each resource is uniquely identified by a URI,
which corresponds to a Unique Resource Identifier. What RDF enables
us to do is to:

Unambiguously describe a concept or a resource.

Specify how resources are related.

Do inferencing.

The building blocks of RDF are triples, where a triple is a 3-tuple of
the form < subject, predicate, object > where subject, predicate and
object are interpreted as in a natural language sentence. For instance
the triple representation of the sentence “Washington DC is the capital
of the United States” is illustrated in Figure 12.1.

RDF Triple: <URI1#Washington DC>  <URI2#capitalOf>  <URI3#USA>

subject objectpredicate

Figure 12.1. RDF Triples
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The subject and predicate must be resources. This means that they
are things or concepts having a URI. The object however can be a re-
source or a literal (such as the string “USA” or the number “10”).

It is most helpful to perceive RDF as a graph, where subject resources
are represented in ovals, literals in rectangles, and predicate (relation-
ships) represented as directed edges between ovals or between ovals and
rectangles. An example is illustrated in Figure 12.2.

URI1#Washington DC

URI4#City

URI2#USA

618,000

Figure 12.2. RDF as a Graph

The most popular representation for RDF is RDF/XML. In this case,
the RDF is represented in XML format, as illustrated in Figure 12.3,
where XML elements are used to capture the fundamental resources
and relationships in any RDF triple.

<rdf:Descriptionrdf:about=“URI1#WashingtonDC">
<rdf:typerdf:resource=“URI4#City"/>
<URI2#isCapitalOfrdf:resource=“URI3#USA"/>
</rdf:Description>

Figure 12.3. RDF XML Representation

RDF(S) stands for RDF (Schema) [76]. This can be viewed as a meta-
model that is used to define the vocabulary used in an RDF document.
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RDF(S) is used for defining classes, properties, hierarchies, collections,
reification, documentation and basic entailments for reasoning.

City

Capital City

Rdfs:subClassOf

<rdfs:Classrdf:ID=“someURI#CapitalCity”>
<rdfs:subClassOfrdf:resource=“someURI#City”/>

</rdfs:Class>

Figure 12.4. RDF Schema

For instance, let us say that we need to define a separate collection of
cities that are capital cities of any country. A capital city is of course a
sub-class of cities in general. This is represented in RDF(S) as shown in
Figure 12.4.

OWL stands for Web Ontology Language [76]. This is another ontol-
ogy formalism that was developed to overcome the challenges with RDF.
RDF (and RDF Schema) are limited in that they do not provide ways
to represent constraints (such as domain or range constraints). Further,
transitive, inverse or closure properties cannot be represented in RDF(S).
Extending RDF(s) with the use of standards (XML, RDF etc.,), making
it easy to use and understand, and providing a Formal specification is
what results in OWL. Both RDF and OWL ontology formats have ex-
tensive developer community support in terms of the availability of tools
for ontology creation and authoring. An example is Protege [101], which
supports RDF and OWL formats, data storage and management stores
such as OpenSesame, for efficient storage and querying of data in RDF
or OWL formats. Furthermore, there is significant availability of actual
ontologies in a variety of domains in the RDF and OWL formats.

Specific ontologies: We now describe two such ontologies – SSN
[119] and SWEET [92] that are particularly relevant to sensor data se-
mantics. Both these ontologies have been created with the intention of
being generic and widely applicable for practical application tasks. SSN
is more sensor management centric, whereas SWEET has a particular
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focus on earth and environmental data (a vast majority of the data col-
lected by sensors). The Semantic Sensor Network (SSN) ontology [119]
is an OWL ontology developed by the W3C Semantic Sensor Network In-
cubator group (the SSN-XG) [119] to describe sensors and observations.
The SSN ontology can describe sensors in terms of their capabilities,
measurement processes, observations and deployments. The SSN ontol-
ogy development working group (SSN-XG) targeted the SSN ontology
development towards four use cases, namely (i) Data discovery and link-
ing, (ii) Device discovery and selection, (iii) Provenance and diagnosis,
and (iv) Device operation, tasking and programming. The SSN ontology
is aligned with the DOLCE Ultra Lite (DUL) upper ontology [39] (an up-
per ontology is an ontology of more generic, higher level concepts that
more specific ontologies can anchor their concepts to) . This has helped
to normalize the structure of the ontology to assist its use in conjunction
with ontologies or linked data resources developed elsewhere. DUL was
chosen as the upper ontology because it is more lightweight than other
options, while having an ontological framework and basis. In this case,
qualities, regions and object categories are consistent with the group’s
modeling of SSN. The SSN ontology itself, is organized, conceptually
but not physically, into ten modules as shown in Figure 12.5. The SSN
ontology is built around a central Ontology Design Pattern (ODP) de-
scribing the relationships between sensors, stimulus, and observations,
the Stimulus-Sensor- Observation (SSO) pattern. The ontology can be
seen from four main perspectives:

A sensor perspective, with a focus on what senses, how it senses,
and what is sensed.

An observation perspective, with a focus on observation data and
related metadata.

A system perspective, with a focus on systems of sensors and de-
ployments.

A feature and property perspective, focusing on what senses a
particular property or what observations have been made about a
property.

The full ontology consists of 41 concepts and 39 object properties,
directly inherited from 11 DUL concepts and 14 DUL object proper-
ties. The ontology can describe sensors, the accuracy and capabilities of
such sensors, observations and methods used for sensing. Concepts for
operating and survival ranges are also included, as these are often part
of a given specification for a sensor, along with its performance within
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those ranges. Finally, a structure for field deployments is included to de-
scribe deployment lifetimes and sensing purposes of the deployed macro
instrument.

Figure 12.5. The Ten Modules in the SSN Ontology

<owl:Classrdf:about="http://purl.oclc.org/NET/ssnx/ssn#SensingDevice">
<rdfs:label>SensingDevice</rdfs:label>
<rdfs:subClassOfrdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Device"/>
<rdfs:subClassOfrdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Sensor"/>
<dc:source>http://www.w3.org/2005/Incubator/ssn/</dc:source>
<rdfs:comment>A sensing device is a device that implements sensing.</rdfs:comment>
<rdfs:isDefinedBy>http://purl.oclc.org/NET/ssnx/ssn</rdfs:isDefinedBy>
<rdfs:seeAlso>
http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Sensor#Measuring
</rdfs:seeAlso>
</owl:Class>

Figure 12.6. Schema for the Sensor Class

SWEET: The motivation for developing SWEET (The Semantic Web
of Earth and Environmental Terminology) stemmed from the realization
of making vast amounts of earth science related sensor data collected
continuously by NASA more understandable and useful [92]. This effort

http://purl.oclc.org/NET/ssnx/ssn#SensingDevice
http://purl.oclc.org/NET/ssnx/ssn#Device"/
http://purl.oclc.org/NET/ssnx/ssn#Sensor"/
http://www.w3.org/2005/Incubator/ssn/</dc:source
http://purl.oclc.org/NET/ssnx/ssn</rdfs:isDefinedBy
http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Sensor#Measuring


406 MANAGING AND MINING SENSOR DATA

resulted in a) a collection of ontologies for describing Earth science data
and knowledge, and b) an ontology-aided search tool to demonstrate
the use of these ontologies. The set of keywords in the NASA Global
Change Master Directory (GCMD) (Global Change Master Directory,
2003) form the starting point for the SWEET ontology. This collec-
tion includes both controlled and uncontrolled keywords. The controlled
keywords include approximately 1000 Earth science terms represented
in a subject taxonomy. Several hundred additional controlled keywords
are defined for ancillary support, such as: instruments, data centers,
missions, etc. The controlled keywords are represented as a taxonomy.
The uncontrolled keywords consist of 20,000 terms submitted by data
providers. These terms tend to be more general than or synonymous
with the controlled terms. Examples of frequently submitted terms in-
clude: climatology, remote sensing, EOSDIS, statistics, marine, geology,
vegetation, etc.

Some of the SWEET ontologies represent the Earth realm and phe-
nomena and/or physical aspects and phenomena. These include the
“Earth Realm” ontology which has elements related to “atmosphere”,
“ocean” etc., Physical aspects ontologies represent things like substances,
living elements and physical properties. However the ontologies most
relevant to sensor data are those representing (i) Units, (ii) Numerical
entities, (iii) Temporal entities, (iv) Spatial entities, and (v) Phenomena.

4.2.2 Query Languages. While RDF, OWL and other for-
malisms serve the purpose of data and knowledge representation, one
also needs a mechanism for querying any data and knowledge stored.
SPARQL (SPARQL Protocol and RDF Query Language) [88] is an RDF
query language for querying and manipulating data stored in the RDF
format. SPARQL allows writing queries over data as perceived as triples.
It allows for a query to consist of triple patterns, conjunctions, disjunc-
tions, and optional patterns. SPARQL closely follows SQL syntax. As a
result, its query processing mechanisms are able to inherit from standard
database query processing techniques. A simple example of an SPARQL
query, which returns the name and email of every person in a data set is
provided in Figure 12.7. Significantly, this query can be distributed to
multiple SPARQL endpoints for computation, gathering and generation
of results. This is referred to as a Federated Query.

SPARQLstream [89] is an extension of SPARQL that facilitates query-
ing over RDF streams. This is particularly valuable in the context of sen-
sor data, which is generally stream-based. An RDF stream is defined as a
sequence of pairs (Ti, i) where Ti is an RDF triple< hsi; pi; oii > and i is a
time-stamp which comes from a monotonically non-decreasing sequence.
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PREFIXfoaf:<http://xmlns.com/foaf/0.1/>
SELECT?name?email
WHERE{
?personafoaf:Person.
?personfoaf:name?name.
?personfoaf:mbox?email.
}

Figure 12.7. Simple SPARQL Example

An RDF stream is identified by an IRI, which provides the location of
the data source. An example SPARQL stream query is provided in Fig-
ure 12.8 whichillustrates a query that obtains all wind-speed observation
values greater than some threshold (e.g., 10) in the last 5 hours, from the
sensors virtual rdf stream swissex:WannengratWindSensors.srdf.

Figure 12.8. SPARQL Stream Example

4.2.3 Linked Data. Realization of the Semantic-Web vision
has indeed faced challenges on multiple fronts, some impediments in-
cluding having to define and develop ontologies that domain experts
and representatives can agree upon, ensuring that data on the Web is
indeed marked up in semantic formats, etc. The Linked Data vision

http://xmlns.com/foaf/0.1/
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[109] is a more recent initiative that can perhaps be described as a
“light-weight” Semantic Web. In a nutshell, Linked Data describes a
paradigm shift from a Web of linked documents towards a Web of linked
data. Flexible, minimalistic, and local vocabularies are required to inter-
link single, context-specific data fragments on the Web. In conjunction
with ontologies, such raw data can be combined and reused on-the-fly.
In comparison to SDIs, the Linked Data paradigm is relatively simple
and, therefore, can help to open up SDIs to casual users. Within the
last years, Linked Data has become the most promising vision for the
Future Internet and has been widely adopted by academia and industry.
The Linking Open Data cloud diagram provides a good and up-to-date
overview. Some of the foundational work for taking sensor data to the
Linked Data paradigm has been in the context of Digital Earth [109],
which calls for more dynamic information systems, new sources of infor-
mation, and stronger capabilities for their integration. Sensor networks
have been identified as a major information source for the Digital Earth,
while Semantic Web technologies have been proposed to facilitate inte-
gration. So far, sensor data is stored and published using the Observa-
tions and Measurements standard of the Open Geospatial Consortium
(OGC) as data model. With the advent of Volunteered Geographic In-
formation and the Semantic Sensor Web, work on an ontological model
gained importance within Sensor Web Enablement. In contrast to data
models, an ontological approach abstracts from implementation details
by focusing on modeling the physical world from the perspective of a
particular domain. Ontologies restrict the interpretation of vocabularies
towards their intended meaning. The ongoing paradigm shift towards
Linked Sensor Data complements this attempt. Two questions need to
be addressed:

How to refer to changing and frequently updated data sets using
Uniform Resource Identifiers.

How to establish meaningful links between those data sets, i.e.,
observations, sensors, features of interest, and observed properties?

The work in [109] presents a Linked Data model and a RESTful proxy
for OGC’s Sensor Observation Service to improve integration and inter-
linkage of observation data for the Digital Earth.

In summary, today with the existence of practical and real-world sen-
sor domain ontologies (such as SSN and SWEET), RDF storage and
streaming query language mechanisms, and the availability of linked
sensor data - we are in a position to use such infrastructure for building
practical sensor data mining applications.
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4.3 Semantic Web Data Management

One of the most challenging aspects of RDF data management is that
they are represented in the form of triples which conceptually represents
a graph structure of a particular type. The conventional method to
represent RDF data is in the form of triple stores. In these cases, giant
triples tables are used in order to represent the underlying RDF data
[11, 12, 18, 24, 49, 50, 85, 113, 114]. In these systems, the RDF data
is decomposed into a large number of statements or triples that are
stored in conventional relational tables, or hash tables. Such systems
can effectively support statement-based queries, in which the query is
missing some parts of the triple, and these parts are then provided by
the response. On the other hand, many queries cannot be answered
from a single property table, but from multiple property tables. One
major problem with such solutions is that because a relational structure
is imposed on inherently structured data, it results in sparse tables with
many null values. This causes numerous scalability challenges, because
of the computational overhead in processing such sparse tables.

A natural solution is to index the RDF data directly as a graph. This
has the virtue of recognizing the inherently structured nature of the data
for storage and processing [13, 20, 53, 103]. A number of graph-based
methods also use the measurement of similarity within the Semantic
Web [67], and selectivity estimation techniques for query optimization
of RDF data [97]. Many of these techniques require combinatorial graph
exploration techniques with main memory operations necessitated by the
random storage access inherent in graph analytics. Such approaches can
doom the scalability of RDF management. Other methods use path-
based techniques [68, 75] for storing and retrieving RDF data. These
methods essentially store subgraphs into relational tables. As discussed
earlier, approaches which are based on relational data have fundamental
limitations which cannot be addressed by these methods.

A different approach is to use multiple indexing approaches [51, 116]
in which information about the context is added to the triple. Thus, we
now have a quad instead of a triple which has 24 = 16 possible access
patterns. The work in [51] creates six indexes which cover all these
16 access patterns. Thus, a query, which contains any subset of these
variables can be easily satisfied with this approach. These methods are
also designed for statement-based queries, and do not provide efficient
support for more complex queries.

4.3.1 Vertical Partitioning Approach. A fundamental
paradigm shift in the management of RDF data is with the use of a
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vertical partitioning approach [1]. This is closely related to the develop-
ment of column-oriented databases for sensor data management [98, 2,
3]. Consider a situation in which we have m different properties in the
data. In such a case, a total of m two-column tables are created. Each
table contains a subject and object column, and if a subject is related to
multiple objects, this corresponds to the different rows in the table. The
tables may be stored by subject, and this can enable quick location of
a specific subject. Furthermore, each table is sorted by subject, so that
particular subjects can be located quickly, and fast merge-joins can be
used to reconstruct information about multiple properties for subsets of
subjects. This approach is combined with a column-oriented database
system [98] in order to achieve better compression and performance. In
addition, the object columns of the scheme can be indexed with the use
of a B+-Tree or any other index. It was argued in [110] that the scheme
in [1] is also not particularly effective, unless the properties appear as
bound variables.

It was observed in [110] that while the work in [1] argued against con-
ventional property-table solutions, their solution turned out to be a spe-
cial variation of property tables, and therefore share all its disadvantages.
The two-column tables of [1] are similar to the multi-valued property ta-
bles introduced in [113], and the real novelty of the work in [1] was to
integrate the column-oriented database systems into two-column prop-
erty tables. Therefore, the work in [110] combines a multiple-indexing
scheme with the vertical partitioning approach proposed in [1] in order
to obtain more effective results. The use of multiple indexes has tremen-
dous potential to be extremely effective for semantic web management,
because of its simultaneous exploitations of different access patterns,
while incorporating the virtues of a vertical approach. Multiple index-
based techniques have also been used successfully for a variety of other
database applications such as join processing [15, 79, 80].

4.4 Real-time and Big Data Analytics for The
Internet of Things

Since RFID and conventional sensors form the backbone of the data
collection mechanisms in the internet of things, the volume of the data
collected is likely to be extremely large. We note that this large size is
not just because of the streaming nature of the collected data, but also
because smart infrastructures typically have a large number of objects
simultaneously collecting data and communicating with one another. In
many cases, the communications and data transfers between the objects
may be required to enable smart analytics. Such communications and
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transfers may require both bandwidth and energy consumption, which
are usually a limited resource in real scenarios. Furthermore, the ana-
lytics required for such applications is often real-time, and therefore it
requires the design of methods which can provide real-time insights in a
distributed way, with communication requirements. Discussions of such
techniques for a wide variety of data mining problems can be found in
the earlier chapters of thus book, and also in [5].

In addition to the real-time insights, it is desirable to glean histori-
cal insights from the underlying data. In such cases, the insights may
need to be gleaned from massive amounts of archived sensor data. In
this context, Google’s MapReduce framework [33] provides an effective
method for analysis of the sensor data, especially when the nature of the
computations involve linearly computable statistical functions over the
elements of the data streams (such as MIN, MAX, SUM, MEAN etc.). A
primer on the MapReduce framework implementation on Apache Hadoop
may be found in [115]. Google’s original MapReduce framework was de-
signed for analyzing large amounts of web logs, and more specifically
deriving such linearly computable statistics from the logs. Sensor data
has a number of conceptual similarities to logs, in that they are simi-
larly repetitive, and the typical statistical computations which are often
performed on sensor data for many applications are linear in nature.
Therefore, it is quite natural to use this framework for sensor data ana-
lytics.

In order to understand this framework, let us consider the case, when
we are trying to determine the maximum temperature in each year,
from sensor data recorded over a long period of time. The Map and
Reduce functions of MapReduce are defined with respect to data struc-
tured in (key, value) pairs. The Map function, takes a list of pairs
(k1, v1) from one domain, returns a list of pairs (k2, v2). This compu-
tation is typically performed in parallel by dividing the key value pairs
across different distributed computers. For example, in our example
above consider the case, where the data is in the form of (year, value),
where the year is the key. Then, the Map function, also returns a list
of (year, local max value) pairs, where local max value represents the
local maximum in the subset of the data processed by that node.

At this point, the MapReduce framework collects all pairs with the
same key from all lists and groups them together, thus creating one
group for each one of the different generated keys. We note that this
step requires communication between the different nodes, but the cost of
this communication is much lower than moving the original data around,
because the Map step has already created a compact summary from the
data processed within its node. We note that the exact implementation
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of this step depends upon the particular implementation of MapReduce
which is used, and exact nature of the distributed data. For example,
the data may be distributed over a local cluster of computers (with the
use of an implementation such as Hadoop), or it may be geographically
distributed because the data was originally created at that location, and
it is too expensive to move the data around. The latter scenario is much
more likely in the IoT framework. Nevertheless, the steps for collect-
ing the intermediate results from the different Map steps may depend
upon the specific implementation and scenario in which the MapReduce
framework is used.

The Reduce function is then applied in parallel to each group, which in
turn produces a collection of values in the same domain. Next, we apply
Reduce(k2, list(v2)) in order to create list(v3). Typically the Reduce
calls over the different keys are distributed over the different nodes, and
each such call will return one value, though it is possible for the call to
return more than one value. In the previous example, the input to Reduce
will be a list of the form (Y ear, [local max1, local max2, . . . local maxr]),
where the local maximum values are determined by the execution of the
different Map functions. The Reduce function will then determine the
maximum value over the corresponding list in each call of the Reduce
function.

The MapReduce framework is very powerful in terms of enabling dis-
tributed search and indexing capabilities across the semantic web. An
overview paper in this direction [77] explores the various data processing
capabilities of MapReduce used by Y ahoo! for enabling efficient search
and indexing. The MapReduce framework has also been used for dis-
tributed reasoning across the semantic web [104, 105]. The work in
[105] addresses the issue of semantic web compression with the use of
the MapReduce framework. The work is based on the fact that since the
number of RDF statements are rapidly increasing over time (because of
a corresponding increase in the number of “things”), the compression of
these strings would be useful for storage and retrieval. One of the most
often used techniques for compressing data is called dictionary encod-
ing. It has been experimentally estimated that the statements on the
semantic web require about 150–210 bytes. If this text is replaced with
8 byte numbers, the same statement requires only 24 bytes, which is a
significant saving. The work in [105] presents methods for performing
this compression with the use of the MapReduce framework. Methods for
computing the closure of the RDF graph with the use of the MapReduce
framework are proposed in [104].

The Hadoop implementation of the MapReduce framework is an open
source implementation provided by Apache. This framework implements
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a Hadoop Distributed File System (HDFS), which is similar to Google’s
file system. HDFS provides a distributed file system, in which data is
distributed across multiple machines, with some replication, in order
to provide resilience to disk failures. The Hadoop framework handles
the process of task sub-division, and mapping the Map and Reduce sub-
tasks to the different machines. This process is completely transparent
to the programmer, who can focus their attention on building the Map
and Reduce functions. There are two other related big-data technologies
which are very useful for data management in the semantic web.

HBase The HBase is a database abstraction within the Hadoop frame-
work, which is similar to the original BigTable system [27, 126]. The
HBase has column which serves as the key, and is the only index which
may be used to retrieve the rows. The data in HBase is also stored as
(key, value) pairs, where the content in the non-key columns may be
considered the values.

Pig The Pig implementation builds upon the Hadoop framework in or-
der to provide further database-like functionality. A table in Pig is a set
of tuples, and each field is either a value or a set of tuples. Thus, this
framework allows for nested tables, which is a rather powerful abstrac-
tion. Pig also provides a scripting language [83] called PigLatin, which
provides all the familiar constructs of SQL such as projections, joins,
sorting, grouping etc. Different from SQL, PigLatin scripts are proce-
dural, and are rather easy for programmers to pick up. The PigLatin
language provides a higher abstraction level to the MapReduce frame-
work, because a query in PigLatin can be transformed into a sequence
of MapReduce jobs.

One interesting aspect of Pig is that its data model and transfor-
mation language are similar to RDF and the SPARQL query language
respectively. Therefore, Pig was recently extended [77] to perform RDF
querying and transformations. Specifically, Load and Save functions were
defined to convert RDF into Pig’s data model, and a complete mapping
was created between SPARQL and PigLatin.

All of these technologies play a very useful role in crawling storing and
analyzing the massive RDF data sets, which are possible and likely in the
massive scale involved in the internet of things. In the next subsection,
we will discuss some of the ways in which these technologies can be used
for search and indexing.
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4.5 Crawling and Searching the Internet of
Things

The Internet of Things is the beginning of the data-centric web era,
where the data could be about events, locations or people, as is collected
by the sensor infrastructure, and richly described in the form of RDF
meta-data. Therefore, it is natural to move to the next stage of smart
semantic web search, where data and services about arbitrary “things”
such as people, events and locations can be easily accessed. Providing
such search functionality will be extremely challenging, because the size
of the semantic web continues to grow rapidly, and is expected to be sev-
eral orders of magnitude larger than the conventional web. This leads to
numerous challenging in crawling, indexing and retrieving search results
on the semantic web. While the RDF framework solves the representa-
tion issues for effective search and indexing, the data scalability issue
continues to be an enormous challenge. Nevertheless, such a function-
ality is critical, because search engines can locate the data and services
that other applications may need in a M2M world.

Some early frameworks for semantic web search may be found in
[44, 72]. Some real implementations of meta-data search engines are
Swoogle [35, 129] and Sindice [102, 127]. Among these different frame-
works and implementations, only the last one is recent enough to in-
corporate the full advantages of the MapReduce framework. Generally
speaking, since the semantic web is similar to the conventional web in
terms of being a linked entity, algorithms which are similar to PageRank
can be implemented with a MapReduce framework for efficient retrieval.
The semantic web may require slightly more sophisticated algorithms for
indexing, as compared to the conventional web, because of the greater
richness in the semantic web in terms of accommodating different types
of links. Other tasks such as crawling, are also very similar to the con-
ventional web, in terms of using the linkage structure during the crawling
process. Again, some additional intelligence may be incorporated into
the crawling process, depending upon the importance of different links
and crawling strategies for resource discovery.

A very recent large-scale framework for search and indexing of the web
is Sindice [102, 127]. We will discuss this engine in more detail, because
the high level of scalability, which is incorporated in all aspects of its
design choices. In particular, this is achieved with the use of the MapRe-
duce framework. The first step is to harvest the web with a crawler called
SindiceBot, that collects web and RDF documents. This crawler utilizes
Hadoop in order to distribute the crawling job across multiple machines.
An extension to the Sitemap protocol [128] allows the data sets to be
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a described in such a way, that they can be downloaded as a dump,
rather than having to download each references URI individually. Nev-
ertheless, the processing of such dumps in order to create indexed RDF
representations is computationally intensive. This is achieved with the
use of the MapReduce framework [127].

In order to create the index, the first step is to process the raw data
from HBase. The semantics of the raw data are extracted and repre-
sented in RDF. At this point, reasoning is applied to fact sets in order to
increase the richness of the indexing for query processing purposes. Fi-
nally entities are consolidated with appropriate cross-references between
the data and its index.

Once the index is created, traditional information retrieval techniques
are used in order answer textual and semantic queries over large collec-
tions of documents. We note that this phase is relatively efficient, once
the index has been materialized, and does not necessarily require the
use of the MapReduce framework. However, the initial stage of crawling,
processing and indexing the data is extremely computationally intensive,
and cannot be easily achieved without efficient distributed techniques.

5. Privacy and Security

Privacy and security are an important concern in systems, which are
as open as the internet of things. The issues of data privacy may arise
both during data collection, and during data transmission and sharing.
Privacy in data collection issues typically arise because of the widespread
use of RFID technology, in which the tags carried by a person may be-
come a unique identifier for that person. Privacy in data sharing and
management may arise because much of the information being trans-
mitted (eg. GPS location) can be sensitive, but it may also be required
(on an aggregate basis) to enable useful real-time applications such as
traffic analysis. In this section, we will discuss both issues. In addition,
a number of security issues also arise involving the access control of the
managed data. We will discuss these issues below.

5.1 Privacy in Data Collection

As discussed above, the ability to track the RFID data with covert
readers is a significant challenge in the data collection process. We
have discussed details of methods for reducing the privacy risks in the
data collection process in the chapter on RFID processing in this book
[9]. In this section, we will provide an abbreviated discussion about
these issues. Once an RFID-based smart object is carried by a user on
their person (as would be natural in many applications), the EPC then
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becomes a unique identifier for that person. The information about
object movement can be used either to track the whereabouts of the
person, or even for corporate espionage in a product supply chain.

The simplest solution to privacy with RFID data is the use of the kill
command. The Auto-Id Center designed the “kill” command, which are
intended to be executed at the point of sale. The kill command can be
triggered by a signal, which explicitly disables the tag [63, 64]. If de-
sired, a short 8-bit password can be included with the “kill” command.
The tag is subsequently “dead” and no longer emits the EPC, which is
needed to identify it. However, the killing of a tag, was mostly designed
for cases where tags were associated with products, which have a limited
lifespan (before point of sale) for tracking purposes. This may not work
with smart products, where the tags are essential to its functioning over
the entire lifetime [40]. Another mechanism is to use a locking and un-
locking mechanism for the tags [111], if the data collection from the tag
is known to be needed only in specific periods, where the data collection
is relatively secure from eavesdropping. This can work in some smart
applications, where such periods are known in advance.

More robust solutions are possible with cryptographic methods. For
example, it is possible to encrypt the code in a tag before transmission.
However, such a solution may not be very effective, because this only
protects the content of the tag, but not the ability to uniquely identify
the tag. For example, the encoded tag is itself a kind of meta-tag, which
can be used for the purposes of tracking. Another solution is to embed
dynamic encryption ability within the tag. Such a solution, however,
comes at a cost, because it requires the chip to have the ability to perform
such an encryption computation. Therefore, a recent solution [58] avoids
this by performing the cryptographic computations at the reader end,
and store the resulting information in the tags. This solution of course
requires careful modification of the reader-tag protocols. A number of
cryptographic protocols for privacy protection of library RFID activity
are discussed in [78]. Some of the cryptographic schemes [62, 69, 82]
work with re-writable memory in the tags in order to increase security.
The tags are encrypted, and the reader is able to decrypt them when
they send them to the server, in order to determine the unique meta-
information in the tag. The reader also has the capability to re-encrypt
the tag with a different key and write it to its memory, so that the
(encrypted) tag signal for an eavesdropper is different at different times.
Such a scheme provides additional protection because of repeated change
in the encrypted representation of the tag, and prevents the eavesdropper
from uniquely identifying the tag at different times.
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An interesting solution for making it difficult to read tags in an unau-
thorized way is the use of blocker tags [59, 60]. Blocker tags exploit
the collision properties of RFID transmission, which are inherent in this
technology. The key idea is that when two RFID tags transmit dis-
tinct signals to a reader at the same time, a broadcast collision occurs,
which prevents the reader from deciphering either response. Such col-
lisions are in fact very likely to occur during the normal operation of
the RFID infrastructure. In order to handle this issue, RFID readers
typically use anti-collision protocols. The purpose of blocker tags is to
emit signals (or spam) which can defeat these anti-collision protocols,
thereby causing the reader to stall. The idea is that blocker tags should
be implemented in a way, that it will only spam unauthorized readers,
thereby allowing the authorized readers to behave normally. Details of
the blocking approach are discussed in [9].

It was inferred in [111] that the greater threat to privacy arises from
the eavesdropping of signals sent from the reader (which can be detected
much further away), rather than reading the tag itself (which can be done
only at a much closer distance). In fact, the IDs being read by the tree-
walking protocol can be inferred merely by listening to the signals being
broadcast by the reader. Therefore, it has been proposed in [111] to
encrypt the signals being sent by the reader in order to prevent privacy
attacks by eavesdropping of reader signals.

It is also possible to modify RFID tags to cycle through a set of
pseudonyms rather than emit a unique serial number [58]. Thus, the tag
cycles through a set of k pseudonyms and emits them sequentially. This
makes it more difficult for an attacker to identify the tags, because they
may only be able to scan different pseudonyms of the tags at different
times. Of course, if the attacker is aware of the method being used in
order to mask the tag, they may try to scan the tag over a longer period
of time, in order to learn all the pseudonyms associated with the tag.
This process can be made more difficult for an attacker by increasing
the time it takes for the tag to switch from one pseudonym to another.

5.2 Privacy in Data Sharing and Management

Since the functionality of the internet of things is based on the data
communication between different entities, and the underlying data may
often be person-centric, the ability to provide privacy during the data
transmission and sharing process is critical. For example, in a mobile
application, the GPS data for a user may be collected exactly, but may
not necessarily be shared exactly. A variety of techniques may be used
in order to reduce the privacy challenges during data sharing:
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Many applications may require only aggregate information col-
lected by the sensors, rather than exact information about indi-
viduals. For example, traffic conditions in a vehicular sensing ap-
plications can be inferred with the use of aggregate data. Examples
of systems which use aggregate data for privacy-preserving queries
in smart vehicular sensing environments are discussed in [87].

A variety of privacy-preservation mechanisms such as k-anonymity,
�-diversity, and t-closeness reduce the accuracy of the data before
sharing it with other entities [10]. For example, for video data, the
faces in the videos can be blurred in order to reduce the likelihood
of identification [112]. In the context of mobile and location data, a
variety of methods such as spatial cloaking, spatial delays, adding
noise to locations etc. [29, 8] are incorporated in order to increase
data privacy. A detailed discussion of methods for increasing lo-
cation privacy are provided in [8].

In practice, it is desirable to set up a set of policies which can allow users
to specify which kinds of data they would like to share about themselves.
The W3C group has defined the Platform for Privacy Preferences (P3P)
[125], which provides a language for description of privacy preferences.
This allows the user to set specific privacy requirements, and also allows
for automatic negotiation between the personal information needs of a
user and their privacy preferences.

The issue of privacy has also been addressed in the context of the se-
mantic web [38, 64]. The broad idea in [38] is that users are able to retain
control over who has access to their personal information under different
conditions. For instance, one may allow their colleagues to access their
calender over the weekend, but not over weekdays. In addition, it is
desirable to fine tune the granularity of the query responses, depending
upon the identity of the person who is performing the queries. A seman-
tic web architecture is proposed in [38], which supports the automated
discovery and access of personal resources for a variety of context-aware
applications. Each source of contextual information (e.g. a calendar,
location tracking functionality, collections of relevant user preferences,
organizational databases) is represented as a semantic web service. A
semantic e-Wallet acts as a directory of contextual resources for a given
user, while enforcing her privacy preferences. Privacy preferences enable
users to specify what information can be provided to whom in different
contexts. They also allow users to specify obfuscation rules, which con-
trol the accuracy or inaccuracy of the information provided in response
to different queries under different conditions.
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5.3 Data Security Issues

Since the data collection nodes in the internet of things spend a lot
of time unattended, it opens up the system to a number of security
threats. For example, data integrity is often a concern, because a mali-
cious adversary can change the data at various stages in the pipeline. In
order to address these issues, a number of methods have been designed
to password-protect the writing of the memory in the RFID tags or the
sensor nodes. A number of solutions for password protection in the con-
text of sensor data are proposed in [4, 70]. For RFID data, this is a
greater challenge because the password-protection process requires the
use of energy-intensive cryptographic algorithms. This would require an
onboard battery (active tag) for enablement, and larger energy consump-
tion requirements are usually undesirable. In this context, a number of
methods, which have low energy requirements for these cryptographic
solutions in RFID have been proposed recently [26, 37].

The use of RFID technology also has a number of other security con-
cerns. For example, RFID technology is highly dependent on the use
of radio signals which are easily jammed. This can open the system to
a variety of infrastructure threats, that can disrupt the data collection
process. It has recently been demonstrated [19], that RFID tags can be
cloned to emit the same identification code as another tag. This opens
the system to fraud, when the RFID tag is used for the purpose of sen-
sitive tasks such as payment, authentication or access control. As in the
previous case, a number of cryptographic solutions are being proposed
to increase the security of RFID technology [19].

A number of security issues also arise in the context of data represen-
tations on the semantic web. The data on the semantic web is dynamic
and open, which makes it a challenge from a security perspective. There-
fore, methods have been proposed for marking up web entities with a
semantic policy language, and the use of distributed policy management
as a tool for security [63]. The major challenge which is identified with
implementing such security policies for the semantic web is the decen-
tralized nature of the semantic web, with a large number of entities, each
with its resources, services, agents, users, and their heterogeneity. The
work in [63] proposes a distributed policy framework, in which every
entity can specify their own policy, since there is no centralized policy.
A policy language is proposed, based on RDF-S, in order to markup
security information. The policies are specified in terms of properties
of users, agents, services or resources, rather than identities, since full
authentication is not possible on the web. A related privacy-preserving
ontology framework, based on OWL-S, is proposed in [64].
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6. Conclusions

The internet of things is a vision, which is currently being built. It is
based on the unique addressability of a large number of objects which
may be RFID-based tags, sensors, actuators, or other embedded de-
vices, which can collect and transmit data in an automated way. The
massive scale of the internet of things brings a number of corresponding
challenges of scale in terms of IP-addressability, privacy, security, and
data management and analytics. The internet-of-things has a long data-
processing pipeline in terms of collection, storage, and processing, and
the decisions made at the earlier stages of the pipeline can significantly
impact the processing at later stages. Numerous research choices exist
at the different stages of the pipelines, as is clear from the discussion in
this chapter. This has lead to a fertile area for research, which is likely
to remain of great interest to multiple communities of researchers over
the next few years.
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