
Chapter 10

SENSING FOR MOBILE OBJECTS

Nicholas D. Larusso
UC Santa Barbara
Dept. of Computer Science

nlarusso@cs.ucsb.edu

Ambuj K. Singh
UC Santa Barbara
Dept. of Computer Science

ambuj@cs.ucsb.edu

Abstract Recent advances in affordable positioning hardware and software have
made the availability of location data ubiquitous. Personal devices such
as tablet PCs, smart phones and even sport watches are all able to col-
lect and store a user’s location over time, providing an ever-growing
supply of spatiotemporal data. Managing this plethora of data is a rel-
atively new challenge and there has been a great deal of research in the
recent years devoted to the problems that arise from spatiotemporal
data. This book chapter surveys recent developments in the techniques
used for the management and mining of spatiotemporal data. We focus
our survey on three main areas: (i) data management, which includes
indexing and querying mobile objects, (ii) tracking, making use of noisy
location observations to infer an object’s actual or future position, and
(iii) mining, extracting interesting patterns from spatiotemporal data.
First, we cover recent advances in database systems for managing spa-
tiotemporal data, including index structures and efficient algorithms for
processing queries. Next, we review the problem of tracking for mobile
objects to estimate an object’s location given a sequence of noisy obser-
vations. We discuss some of the common approaches used for tracking
and examine some recent work which focuses specifically on tracking
vehicles using a road network. Then we review the recent literature on
mining spatiotemporal data. We conclude by discussing some interest-
ing areas of future research.

 Springer Science+Business Media New York 2013©
Managing and Mining Sensor Data, DOI 10.1007/978-1-4614-6309-2_10,C.C. Aggarwal (ed.), 299

mailto:nlarusso@cs.ucsb.edu
mailto:ambuj@cs.ucsb.edu

300 MANAGING AND MINING SENSOR DATA

Keywords: Mobility, Spatiotemporal Data Management, Querying Mobile Objects,
Movement Modeling,

1. Introduction

The use of sensors that capture user location information over time is
rapidly expanding and the various types of sensors are becoming ubiq-
uitous. Location sensors are integrated into a large number of personal
devices including PDAs, smartphones, and watches [104, 105]. Among
the sensors used to acquire spatiotemporal data, the most popular is the
Global Positioning System (GPS). GPS receivers are commonly embed-
ded into vehicles for trip navigation, sports watches to track and monitor
personal progress in hiking and running, and smart phones to provide
general purpose location aware querying. The increased availability of
positioning data has given rise to location based services (LBS), which
utilizes a user’s current position in order to personalize results. For in-
stance, suppose a user searches for coffee shops on her smartphone. The
query results will be filtered using both the relevancy from the search
string as well as her position to return popular coffee shops which are
physically close.

As an example of the availability of location data, figure 1 shows GPS
data uploaded to [106] by users in a region of Los Angeles, CA along
with a comparison to the underlying road network of the same area.
From the figure, we can see two things: first, there is a large amount of
spatiotemporal data available online. Second, the data is generated over
several modes of transportation. Given how well the GPS trajectories
outline the heavily traveled roads, it is clear that most of the data is
collected while users are in vehicles. However, upon closer inspection,
we can see that some trajectories cannot possibly be associated with
an automobile and therefore must have been collected using some other
mode of transportation (i.e. train, subway, or walking).

The adoption of new LBS has increased nearly as quickly as the tech-
nologies have become available. As of 2011, approximately 75% of smart-
phone users are using their devices for navigational purposes (e.g. driv-
ing directions) and 95% use their smart phones for location based search-
ing [104, 105]. Coupled with the increasing number of smartphones year
after year (approximately a 13% increase from 2010 to 2011 [104]), this
signals a steep upward trend for LBS.

Given the availability of large quantities of spatiotemporal data, it is
possible to ask several interesting questions about object movement. For
example, assume we have a database containing the current positions of a

Sensing for Mobile Objects 301

(a) GPS locations from trajectories (b) Corresponding map of Los Angeles, CA

Figure 10.1. Figure (a) shows a scatter plot of GPS points of approximately 200
GPS trajectories. Figure (b) is a road map of the underlying region of Los Angeles,
CA, from which these points were collected. In addition to providing an outline of
the highly traveled roads in LA, it can be seen that the GPS data represents multiple
modes of transportation (i.e. automobile, train, and walking).

fleet of taxis picking up and dropping off customers throughout the city.
There are several interesting queries and data management problems in
this setting. First, given the current position of each taxi as well as
the state (occupied or unoccupied), how can we efficiently direct the
nearest unoccupied unit to respond upon receiving an incoming call?
As taxis are continually moving, how can we keep the information in
the database current in an efficient manner? Secondly, if updates occur
only intermittently, what is the most accurate approach to answering
queries when data may be stale? Third, can we identify any interesting
movement patterns? Can we identify points of interest from common
stops made throughout the city? Is it possible to infer the efficient
routes for a particular origin and destination given historical movement
patterns?

The examples presented above introduce problems in three different
areas of managing spatiotemporal data: (i) querying and indexing, (ii)
tracking, and (iii) mining. Querying mobile objects, like any temporal
data, introduces challenges in defining expressive predicates that prop-
erly handle the time domain. Additionally, constructing and maintaining
an index structure to efficiently process queries over mobile objects is
difficult due to the high frequency of necessary updates. Because the
values (i.e. location) are constantly changing, the query workload is
skewed to become update-centric, forcing the index to update its struc-

302 MANAGING AND MINING SENSOR DATA

ture more frequently. Unless the index is specially designed for such a
query workload, frequent updates can be very costly and even outweigh
any benefit the index structure provides for query processing.

Tracking is critical to managing both the spatial and temporal un-
certainty in an object’s position. Accurate tracking is challenging, es-
pecially at the database scale (i.e. tracking thousands to hundreds of
thousands of objects), due to the computational constraints. Inferences
and predictions about an object’s position must be made quickly, and
should use all of the data that has been observed thus far.

The difficulties in mining for patterns in spatiotemporal data are sim-
ilar to those mentioned for querying. Core mining problems, such as
that of identifying groups or clusters, is made significantly more difficult
when the data change positions over time. New definitions and objec-
tives must be defined which take into account not only the current data
configuration, but also the past (or predicted) configurations.

Additionally, the problem of data uncertainty is inherent in all areas
of managing spatiotemporal data. Despite technological improvements,
the ability to localize mobile objects is still only available up to a degree
of error. Due to the nature of dealing with inexact data, new approaches
to indexing, querying, and mining are necessary to effectively account
for ambiguities in the data [32, 15, 82, 31]. Although data uncertainty
spawns from a variety of sources, it can be broadly categorized as one
of two types: spatial and temporal uncertainty.

Spatial Uncertainty is uncertainty in the location of an object at
the instance an observation is made. That is, spatial uncertainty
describes the limitations of a sensor to provide an accurate reading
of an object’s position. For example, high quality GPS sensors
typically provide measurement accuracy in the range of 1 − 10
meters, lower quality hardware is in the range of 10−50 meters, and
localization from cellular tower triangulation may resolve position
to only within 100− 2, 000 meters [6, 79].

Temporal Uncertainty is the uncertainty in an object’s position
since the previously received update. Temporal uncertainty arises
due to the update schedule of how frequently an object will send
information about its position to a database. Since objects may
move continuously but only report their positions intermittently,
there is a time-lag in which the database contains stale information.
In several datasets, GPS traces have shown incredible variance in
the frequency with which measurements are provided. The tem-
poral resolution ranges from very high (1 second intervals) to very
low (> 2 min. intervals) [97].

Sensing for Mobile Objects 303

In this chapter, we introduce the types of problems that arise from
managing spatiotemporal data and survey the recent research that ad-
dresses these issues. In our review, we attempt to cover work on data
management, object tracking (processing updates of moving objects),
and mining spatiotemporal data. Our aim in this chapter is twofold: (i)
to provide a review of the recent developments in each of the different ar-
eas of study relating to spatiotemporal data and (ii) to introduce work
on tracking and show how it relates to the database-centric research
(e.g. querying, indexing, and mining). While we attempt to provide
a broad overview of recent work in all of the mentioned areas, we pay
special attention to work which explicitly manages uncertainty in the
spatiotemporal data.

The rest of the chapter is organized as follows: first we will review
work on data management for spatiotemporal data, including indexing
and querying, in section 2. Next, we introduce the problem of tracking
and review some core and recent developments in that area in section 3.
In section 4, we review some recent work on mining spatiotemporal data
in three broad categories: (i) clustering, (ii) popular route discovery, and
(iii) identifying mobility patterns. We conclude by discussing directions
for future research.

2. Data Management for Mobile Objects

Database management systems for spatiotemporal data can be char-
acterized as one of two types: spatiotemporal database systems (STDB)
and moving object database systems (MOD). Both are used to manage
data collected from mobile objects, however, the specific problems each
solves is quite different. STDBs store the complete historic trajectory of
each object, and thus allows users to answer complex queries about user
movement over time. For example, “find all users that passed through
region A between 8 - 10am, through region B between 1 - 2pm and re-
gion C between 4 - 7pm”. In contrast, MODs only maintain the current
position of each object along with each object’s velocity or heading infor-
mation if it is available. Therefore, while STDBs contain more complete
information, MODs provide access to location data that is consistently
current (see figure 2). MODs are well suited to answer queries about the
current (and near-future) configuration of mobile objects. Both types of
database systems present a unique set of challenges due to the data they
manage. In this section, we introduce both systems, as well as some re-
cent work which addresses the challenges in efficient indexing and query
processing. In addition to the general issues with managing spatiotem-

304 MANAGING AND MINING SENSOR DATA

(a) Trajectory Object (b) Moving Object

Figure 10.2. Different types of data that may be extracted from mobile objects.
In (a), a full trajectory is stored which describes an object’s movement in space over
a historic time interval. In (b), the position and velocity of an object are stored at
the current time, however, historic information is not maintained.

poral data, we also introduce some specific problems in handling data
uncertainty.

Many of the index structures for spatiotemporal trajectories are based
on the R-tree [28, 5, 73]. For a comprehensive review of spatio-temporal
indexing methods we refer the interested reader to [57] and [55].

2.1 Spatiotemporal Database Systems

A STDB allows the user to efficiently query the historic movements
of a set of objects over a period of time (in the past). Although queries
over spatiotemporal data can be quite complex [29], the basic queries
that every STDB should answer are time-interval range and nearest-
neighbor queries. A time-interval range queries answers the question
“which objects traveled through region R between the times tstart and
tend?” (note that tend is some time point in the past). For instance, this
could be used to find out which vehicles traveled within a city during
rush hour. The semantics for the time-interval nearest neighbor query
may change slightly between systems, but the basic idea is to return the
set of objects closest to some query point over a given time interval.

Pfoser et al. [66] distinguish between two types of queries on trajec-
tories as topological queries and navigational queries. Topological
queries are concerned with finding a set of trajectories that satisfy some
spatial and temporal constraint. Range and nearest-neighbor queries
over a time slice or interval are prime examples of topological queries.
Navigational queries are based on derived information extracted from
the trajectory and may involve dynamic information about the objects

Sensing for Mobile Objects 305

such as speed and heading. For example, it may be interesting to iden-
tify an object’s top speed over a time interval, or find the set of objects
with a particular heading at a specified time. Combining topological and
navigational queries provide a powerful approach for analyzing complex
spatiotemporal patterns.

To efficiently answer topological queries over trajectories, Pfoser et
al. [66] introduce two index structures, the spatiotemporal R-tree (STR-
tree) and the trajectory bundle tree (TB-tree). both structures naturally
extend the basic R-tree [28] to handle trajectories in a more efficient
manner. The problem with directly applying the R-tree to index tra-
jectories is the amount of dead space typically incurred. To maintain a
nearly O(logN) access time, whole trajectories must be stored as single
units; this reduces the discriminative power of the index structure due to
the large area necessary to bound such a region. Alternatively, splitting
each trajectory into a set of line segments improves the discrimination
of each bounding box, however, access time is now dependent on the
length of each trajectory (i.e. access time O(klogN)).

The approach utilized in the STR-tree is to segment trajectories while
keeping parts of the same trajectory close within the index structure to
improve the efficiency of queries over large time intervals. As compared
to the R-tree, the major contributions of this index are new insertion and
split methods which provide different optimization criteria. The authors
assume that each trajectory is associated with a unique identifier and
has already been partitioned so the index may already contain a partial
trajectory for an object. The insertion algorithm first attempts to fit the
new segment in the same minimum bounding box (MBR) as the previous
segment from the same trajectory. We may split this index node if it is
full as long as the parent is not full. Otherwise, the trajectory segment is
inserted using the original ChooseLeaf algorithm, which locates the leaf
node for which inserting the current segment will incur the lowest cost in
terms of MBR overlap, area and dead space [28]. The split algorithm also
considers how pairs of trajectory segments are related when optimizing
the split. Segments that are not related to any other segments in the
node (i.e. they come from different objects), may be placed into the new
node, otherwise, if all segments are related the node is partitioned by
time such that the newest segments will remain together. In general,
the insert and split procedures first optimize for trajectory preservation
(i.e. keeping segments of the same object nearby in the index structure)
and then for spatial closeness (i.e. minimizing the increase in an MBR).

In contrast to the STR-tree, the TB-tree takes a more dramatic ap-
proach and groups segments of the trajectory to ensure that they are
all ‘bundled’ together for fast retrieval. The leaf nodes of a TB-tree are

306 MANAGING AND MINING SENSOR DATA

forced to only contain segments belonging to the same trajectory, thus
making much larger concessions in MBR overlap. The insertion strategy
for the TB-tree is simply to find the previous segment of the trajectory
being inserted and place this segment in the same MBR. If this is not
possible, instead of splitting which would break apart segments from
the same trajectory, a new node is constructed for the segment and is
inserted in the first non-full parent. All of the leaf nodes containing a
trajectory are connected through a doubly-linked list so that an individ-
ual object can be retrieved from any individual segment.

As compared to a 3-dimensional R-tree, both the STR-tree and the
TB-tree result in more compact index structures with space utilization,
or how tightly packed the nodes of the index structure are, approach-
ing 100%. Additionally, both structure provide improved query times
for range queries over a small numbers of moving objects, however, as
the number of objects increased, the R-tree typically provided fewer
node accesses. However, for combined queries, which retrieve trajecto-
ries through various means, the TB-tree outperformed the STR-tree and
the R-tree by an order of magnitude even for a large number of mobile
objects.

Chakka et al. [11] introduce a scheme for indexing spatiotemporal
trajectories called Scalable and Efficient Trajectory Index (SETI). The
idea proposed by the authors is that splitting the space dimensions from
time, allows spatially close trajectory segments to be grouped together
and then indexed by time, which provides a more compact and efficiently
searchable structure. Their approach is to first statically partition the
space over which objects move and then maintain an index structure
only over the time intervals of segments contained within each disjoint
spatial partition. Each trajectory segment in a space partition is indexed
with an R-tree by a two dimensional point representing the start and
end time of that segment.

Queries are processed using a spatial and temporal filtering followed
by a refinement step to construct the answer set. The spatial filtering
simply returns all of the spatial partitions contained within the spatial
partitions that are contained within (or overlap with) the query region.
The subsequent temporal filtering simply poses a range query to the
R-tree in each spatial partition to retrieve the individual trajectory seg-
ments. A refinement step is necessary only over those spatial cells that
partially intersect with the query region.

This conceptually simple idea of splitting the time and space dimen-
sions was shown to provide significant improvements in query processing
time over TB-tree. Experimental results show that SETI consistently
provides lower query processing times for spatial range queries over time

Sensing for Mobile Objects 307

Figure 10.3. In (A), only point a has been processed and is thus the NN for both
SPs s and e. In (B), after processing point b, we update the NN of e and create a
new SP s1.

intervals (as well as time slices). However, it is not clear how SETI
compares to TB-tree for combined queries, in which the query is both
topological and navigational (mentioned in [66]), where processing may
be required to access different segments of the same trajectory (which
TB-tree does efficiently). A similar approach was simultaneously devel-
oped by Song et al. [75] in which the authors split the space and time
dimensions.

In addition to the range query, nearest-neighbor and k-NN queries are
also fundamental for any spatiotemporal data management system. For
identifying nearby objects in the context of trajectory data, the contin-
uous nearest-neighbor (CNN) query has been proposed in which a se-
quence of nearest neighbors are returned such that the nearest-neighbor
(NN) is known for every time interval [27, 77]. Tao et al. [77] introduce
the CNN query and develop an efficient query processing algorithm.
The objective in processing a CNN is to identify, for every time range
within the query interval, the nearest object to the query trajectory.
The authors use a geometric approach in which a set of split points, lo-
cations at which the NN of the query trajectory changes, is maintained
and incrementally updated during processing. Trajectories are processed
by considering each line segment separately and aggregating the results
through post-processing. The algorithm starts with the end points of
the line segment being the two split points (SPs). Objects (i.e. spatial
points) in the database are processed sequentially. For each object, we
first check if it is the NN to any split points. This is done by maintaining
a circle centered at each split point such that the radius is the distance
to the closest (known) object. If a new object lies within this circle, then
we must update the SPs and adjust the radii. Updates to SPs are made
by computing the perpendicular bisector, the point at which this line
intersects the trajectory will become a new SP. This process is shown in
figure 2.1.

308 MANAGING AND MINING SENSOR DATA

More recently, Guting et al. [27] introduce algorithms that provide
more efficient query processing efficiency of CNN queries. The authors
assume the trajectories are indexed using a 3d R-tree and they develop
a filter-and-refine approach for processing queries which uses geometric
pruning techniques. In the filtering step, we traverse the R-tree, pruning
nodes from the candidate set based on the geometrical properties of the
bounding box. The refinement step performs a modified plane-sweep
algorithm over the candidate set of trajectories to test over what time
intervals, if any, the trajectory is the nearest-neighbor to the query.
The authors experimentally show that their method offers significantly
faster query processing time and fewer disk accesses as both the size of
the database and the query range increase as compared to other CNN
processing algorithms.

Trajcevski et al. [81] also develop a query processing algorithm and
index structure for the CNN query, however, they address this query
when trajectories are uncertain. An uncertain trajectory is modeled
as a cylinder in which the mobile object may have traveled anywhere
within the enclosed area (i.e. the object’s true location is assumed to
be uniformly distributed within the cylinder). Further details about the
uncertainty model for trajectories and how it is used in general query
processing is provided in [80, 82]. The authors first extend the earlier
work by allowing queries over pairs of objects in the database instead of
known regions of interest by specifying a query as an uncertain trajec-
tory [82]. The authors then show that they can order objects by their
probability of being the nearest neighbor to the query (at any given
time) by ranking objects according to their expected distances to the
query location for any symmetric distribution function. This provides
an ordering in which to process the objects (using a similar methodology
as introduced in [15]).

To identify which objects are the nearest neighbors over a given time
interval, the authors of [81] propose a hierarchical data structure such
that for each node in the tree, that object has the highest probability,
besides the parent, of being the nearest neighbor to the query within
the time interval bounded by the parent. That is, the first level of the
tree would be the nearest neighbors, each over its disjunct time interval.
The second level would be nodes that are second nearest neighbors over
disjunct time intervals bounded by their parent, and so on. They show
how to construct this structure and use it to answer the NN query and
several deviations.

In addition to range and nearest-neighbor queries, other, more com-
plicated, queries have been defined on spatiotemporal data [4, 29]. For
instance, Bakalov et al. [4] introduce a spatiotemporal join query that

Sensing for Mobile Objects 309

finds all pairs of objects with (nearly) matching subtrajectories over a
given time interval. This query could be useful in clustering subtra-
jectories or simply identifying groups of mobile objects that traversed
similar paths. More formally, the authors define the spatiotemporal join
query to take two sets of trajectories, a distance threshold, ε, and time
interval, δt, and returns all pairs such that there exists a subregion of
each trajectory of length δt where the distance between the subregions
is at most ε. The query is called a time relaxed spatiotemporal trajec-
tory join (TRSTJ), because the query only constrains the length of the
trajectory subregion, not the specific start time. To answer the TRSTJ,
the authors propose a filter and refine approach where they use a com-
pact trajectory representation and lower bound the Euclidean distance
between trajectories.

2.2 Moving Object Databases

Unlike STDBs, a moving object database (MOD) only stores the cur-
rent position of each object. MODs constantly contain up-to-date in-
formation about the location of each object and are therefore useful in
real-time applications of managing a large number of mobile objects (e.g.
navigation or emergency response dispatch). Similar types of queries are
supported on MODs, however, the time intervals over which the data
may be queries is limited to the present and future. Instead of asking
where an object has been, a MOD answers the query “where is object
A now”? or “where will it be in 5 minutes”? In order to answer such
queries, the system must have some method to predict the future location
of each object given its current location and its velocity. We will cover
different approaches for updating and predicting location information in
detail in section 3.

Similar to STDBs, a primary difficulty for MODs is constructing and
maintaining an index structure. However, the cause of the difficulty
in the two systems is quite different. Here, the problem is keeping the
location information for all objects up to date, which requires frequent
updates to the index. Continually modifying an index structure is likely
to cause the discriminative capabilities of the structure to degrade over
time unless special care is taken.

Cheng et al. [15] introduce a method for answering range queries and
nearest neighbor queries with probabilistic guarantees when the location
of objects is uncertain. The authors propose an uncertainty model that
specifies a bounded region within which a mobile objects may be located
with equal probability. The authors were the first to define and propose
a solution to the probabilistic nearest neighbor query (PNNQ). They

310 MANAGING AND MINING SENSOR DATA

use a filter-and-refine approach in which objects located far away can be
pruned (i.e. their shortest distance is larger than the longest distance
of a closer object). After filtering objects that obviously do not satisfy
the query, the space in which objects need to be evaluated (i.e. over
which the integral needs to be performed) can be bounded. Lastly, the
remaining objects are evaluated by computing the integral in Eq. 10.1.

pi =

∫ f

ni

pi(r)

|S|∏
k �=i

(1− Pk(r))dr (10.1)

In Eq. 10.1, ni is the shortest distance from object Oi to the query point
q, and f is the bounded region over which objects must be evaluated.
The integration can be interpreted as the probability that Oi is at a
distance of r from q while all other points in the candidate set, S, are
at a distance greater than r, which is evaluated over all possible values
of r. The authors introduce a more efficient approach to evaluating
this integral by sorting S and breaking up the integration limits to only
the region in which pi(r) is non-zero. Furthermore, they also utilize
an R-tree based index structure, called the velocity constrained index
(VCI) [68], to improve processing time for large datasets.

Saltenis et al. [71] introduce a general index structure for efficiently
processing queries on mobile objects called the time parameterized R-
tree (TPR-tree). The idea behind the TPR-tree is to allow MBRs to
grow and change position as a function of time in order to reduce the
number of necessary updates to the index structure from objects moving
(see figure 2.2). The authors propose conservative bounds, in which the
MBR expands by the maximum velocity of the contained set of objects in
each dimension. That is, considering the number line in which values to
the left are smaller and those to the right are larger, the MBR expansions
in both directions of one dimension are given in Eq. 10.1.

←−x = min(oi.pos(t))−min(oi.vel)(tdiff)
−→x = max(oi.pos(t)) + max(oi.vel)(tdiff) (10.2)

Non-leaf level MBRs are constructed by aggregating the bounds from
each of their children. For each dimension, the expansion in each direc-
tion is the maximum over all of its children.

Although the TPR-tree may be used to index mobile objects indefi-
nitely, it is optimized only for a particular time horizon, after which the
performance of the index may deteriorate. Specifically, the index struc-
ture requires two parameters: the querying window, W , which defines
how far queries may look into the future and the index usage time, U ,
which defines how long users will query the index. Combining both of

Sensing for Mobile Objects 311

these values we get the time horizon, H = U+W , which is the time over
which the index structure must be able to answer queries. Using these
values, the index structure can be optimized since there is a limit as to
how far into the future the index will be required to answer queries.

The TPR-tree uses the same optimization concepts from the R*-
tree [5], specifically the area of MBRs, perimeter length, and overlap
area, except they are minimized over a time horizon instead of simply
minimizing the current state of the index. If we consider an objective
function that minimizes overlap between MBRs A(t), then we would like

to optimize this function over the given time horizon:
∫ t+H
t A(t)dt. The

operations used in the TPR-tree are all analogous to the R*-tree, with
the only difference being the function splitNode(), which determines how
objects contained in full nodes should be partitioned. Since MBRs are
dynamic, the TPR-tree split is based on optimizing over both the current
positions and velocities.

Query processing in the TPR-tree is similar to the R-tree [28]. Since
all of the MBRs are parameterized by time, answering a time-slice range
query remains completely unchanged. To answer a time-interval range
query or a moving range query, it is necessary to identify intersections
between the MBR and the query region over the specified time interval
in each dimension and check that the intersections happened over the
same time interval in all dimensions. This is computed in a straight for-
ward manner by comparing line segments of the query region and MBR
boundaries in each dimension over time (the lines describing movement
in the both the x and y dimensions over a time interval).

The simplicity of the TPR-tree has made it a popular choice for in-
dexing MODs. Tao et al. [78] have extended the original work by intro-
ducing the TPR*-tree, where they improve upon the optimizations in-
troduced in [71]. The TPR*-tree tightens the bounds of the MBRs thus
making the index more discriminative. Experiments show substantial
improvements in performance over the TPR-tree for large datasets. To
handle spatial uncertainty in mobile objects, Hosbond et al. [31] adapt
the TPR-tree to index moving objects with inexact location informa-
tion. The authors essentially model location uncertainty as a Δ term in
which each object can vary some amount from its stated position. They
incorporate this error term into the MBR parameterization to guarantee
each object is properly bounded over time.

In [98], the authors present both a movement model for mobile objects
with uncertainty as well as an index structure for efficient query process-
ing. The proposed uncertain moving object model defines a probabil-
ity distribution over location and velocity (independently). The model
works by griding the space at some resolution and assigning each cell

312 MANAGING AND MINING SENSOR DATA

Figure 10.4. An example of how the TPR optimizes MBRs over time. The right
panel (A) shows the MBR optimized for the current configuration, whereas the left
(B) considers both the current object position as well as velocity.

a probability thereby constructing a discrete distribution over possible
locations (velocities). Combining the current location and velocity dis-
tributions, it is then possible to predict an object’s future location. Uti-
lizing a gridded space technique allows the representation of arbitrary
distributions, however, it also incurs a heavier cost for prediction since
sampling must be employed. The authors then adapt the Bx-tree [35] to
handle objects with uncertain locations. For each object, every non-zero
probability grid cell of the object’s location is inserted into the index
structure, thus accounting for location uncertainty. Thus a trade-off is
made between location accuracy and the space consumption and search
time of the index structure.

Chung et al. [17] develop query processing and indexing techniques
to efficiently answer probabilistic range queries when uncertainty in the
trajectories is described with Gaussian noise. The authors assume that
objects are moving along a known path and thus treat each object as
moving in 1-dimensional space over time. The movement uncertainty for
each object is modeled by Brownian motion in which the object’s velocity
is normally distributed. To avoid the linear scan of the database, the
authors apply the Hough transform, which maps lines to points, to the
expected trajectory of an object and use an R-tree to index these points
in the dual space. Queries are then transformed in the same manner,
although some additional work is required since the trajectories contain
some location uncertainty. The query region is expanded depending on
the probability threshold issued in the query. Although this approach
provides efficient processing of probabilistic range queries, it makes the
limiting assumption that objects move in 1-dimensional space.

Chen et al. [12] perform an experimental investigation of the effec-
tiveness of several index structures for MODs under various conditions.
The authors compare the TPR-tree [71], TPR*-tree [78], Bx-tree [35],
Bdual-tree [95], STRIPES [65], and RUM*-tree [92]. The R-tree with
Update Memo (RUM*-tree) employs main-memory memos to help avoid

Sensing for Mobile Objects 313

frequent disk accesses for deleting old record entries. This reduces the
cost of an updating an object’s position simply to that of inserting a
new object into the R-tree and old entries are deleted in batches. The
Bdual-tree and STRIPES are both indexes that utilize dual space. The
Bdual-tree maps an objects location and velocity to a 1-dimensional point
using a Hilbert curve. STRIPES maps a mobile object to a four dimen-
sional point and applies a quad-tree based structure to index the space.
The experimental evaluation provides a thorough comparison between
the different index structures on several aspects of updating and query-
ing mobile objects. Although each index performs well under certain
circumstances, the Bx-tree consistently performed near the top over all
experiments never costing more that 2X the best index structure. While
the TPR-trees were the most efficient indexes for the querying exper-
iments (in terms of time and I/O), they also performed the worst for
updates. Overall, this work highlights the need to clearly identify the
expected query workload distribution in order to select the most efficient
structure.

A problem that has received far less attention in the spatiotemporal
data management community is that of how to most efficiently update
the database with new positions for mobile objects. Wolfson et al. [90]
address this problem by framing it as an optimization problem. The au-
thors provide a model of the cost to poll an object in order to update its
location and a cost for answering a query given the current (estimated)
location uncertainty (i.e. how much error are we willing to tolerate)
and aim to minimize their total costs while handling a query workload.
The authors also introduce a spatial indexing scheme for moving objects
that considers the possible location error. For this, they use an R+-
tree [73] over three dimensions (the x, y plane and time). The index is
updated only when objects report their position to the database (using
the derived update policy).

2.3 Mobile Objects on Road Networks

The queries and index structures discussed thus far consider the case
of unrestricted movement, however, movement is often restricted to a
transportation network (i.e. road network). If the structure of the un-
derlying transportation network is known, then incorporating this ad-
ditional information can provide more accurate tracking and prediction
of object locations (and therefore more meaningful queries). Restricting
movement to the network structure brings about its own set of chal-
lenges.

314 MANAGING AND MINING SENSOR DATA

Zheng et al. [100] address the problem of managing moving objects
on road networks where the specific path traveled by an object is un-
certain. The authors represent the uncertain locations of objects as
time-dependent probability distributions and develop methods to effi-
ciently query the objects. They represent a road network as a graph
in which the edges have two attributes, the length of the road and the
maximum allowed speed along that path. There are two kinds of uncer-
tainty in this work: path uncertainty, that is, which path (sequence of
edges) did the object take to get from the last position to the next, and
location uncertainty, given the path, the actual location of the object at
time t. Path uncertainty arises from the object selecting a specific route
due to some criteria (i.e. traffic, road work, landmarks) and location
uncertainty arises from the fact that we don’t know how fast the object
was moving the entire time, though we can bound this by the maximum
allowable speed on each segment.

In [100], the authors propose a novel index structure for processing
range queries on uncertain objects over road networks called the Uncer-
tain Trajectory Hierarchy (UTH). The UTH consists of three levels: (i)
a network edge hash table, (ii) a movement R-tree, and (iii) a trajec-
tory list. The edge hash table allows fast retrieval of any specific road
segment. The movement R-tree is an index over time for a specific road
segment which allows us to identify the set of objects traveling along
a road over a given time interval. Lastly, the trajectory list stores the
actual trajectory for each object. A filter and refinement approach to
answering uncertain path queries on road networks is developed by the
authors by leveraging the UTH index.

Hua and Pei [32] also study the problem of answering path queries
on road networks, however, in this case it is the edge speeds (or flow)
that are uncertain, not the positions of the moving objects. The authors
introduced a network model in which adjacent edges in the road network
were correlated and they introduce exact and more efficient approximate
methods for computing the probability of paths. They also provide an
A∗-like algorithm for efficiently finding the most probable paths under
specific speed constraints.

Kim et al. [43] develop an index structure for objects with movements
that are restricted to a road network called Indexing Moving Objects on
road sectors (IMORS). The index is composed of a static component,
that is made up of an R∗-tree over the road segments, and a dynamic
component, which contains a mapping from road segments to mobile
objects. The dynamic module of the index structure is essentially a
table indexed by object identifiers’ that contains attributes of the object
as well as its location and a pointer to the road segment it currently

Sensing for Mobile Objects 315

occupies. To process an update, the object record is found, its location
is updated and we check if it has changed road segments. If so, we
search the R-tree based on the new coordinates and fix the pointer in
the object record to point to the updated road segment. The IMORS
provides significant efficiency gains in processing updates over the TPR-
tree (to which it was compared in the experiments), by utilizing the
static nature of the road network. Since locations of roads do not move,
object positions are modified by updated the road segment to which
they point, however, all searching is done over the road network indexed
R∗-tree.

When dealing with mobile objects that have restricted movement,
such as automobiles on a road network, this gain in efficiency in index-
ing and query, and increased accuracy in predicting future locations is
common. The idea of integrating all available information about the
object movement is important as it allows us to identify object posi-
tions and movement more reliably. Utilizing extra information can help
combat against the problems of spatial and temporal uncertainty when
managing spatiotemporal data.

Additionally, there is a plethora of work in the area of efficiently pro-
cessing routing queries for navigation queries. For instance, computing
the quickest (or most efficient) route between two points considering the
dynamics of the road network is of great interest. Incorporating extra in-
formation like speed limits, predicted traffic patterns, and road closures
can greatly improve routing and therefore help relieve traffic congestion.

Nikolova et al. [63] show several theoretical results related to problems
of optimal route planning. The authors show the surprising result that
the problem of finding an optimal route and start time can be solved
using standard shortest path algorithms for certain cost functions while
the optimal route planning problem when the start time is fixed is NP-
hard. Similarly, Wilkie et al. [89] consider the routing problem on a
stochastic traffic network, however, they integrate the effect of the plan-
ner into future predictions. That is, vehicles will query the planning
system to ask for directions, assuming the vehicles stick to these routes,
the planner has additional information about the state of the traffic in
the future. Malviya et al. [54] introduce an approach for continuously
monitoring a set of shortest path for mobile objects. The authors first
precompute a set of good routes using a road network and historic travel
times and then re-rank these paths by integrating information about
real-time traffic. Gonzalez et al. [24] developed a fastest-path algorithm
which utilizes historic information about traffic and weather conditions
to provide reliable routes. The authors also introduce a network par-
titioning algorithm which reduces the search space by focusing on the

316 MANAGING AND MINING SENSOR DATA

Figure 10.5. An example of turning noisy location observations into a trajectory. The
filtering model attempts to identify the most likely path that would have generated
the noisy observations given a specific movement model (linear in this case: Xt =
Xt−1 + Ẋt−1 (Δt)).

most traveled roadways (i.e. highways) and only expanding extra edges
when they have historically exhibited improved performance.

3. Probabilistic Models for Tracking

Processing location updates from mobile objects is a crucial compo-
nent of managing spatiotemporal data because the raw locations ob-
tained from a sensor are often noisy. Even GPS has been shown to
contain errors on the order tens or hundreds of meters [6]. Because lo-
cations at adjacent time steps are not independent (see figure 3), it is
possible to incorporate information about the dynamics of the mobile
object in order to improve upon its current position. This is exactly
what tracking accomplishes. By explicitly modeling the dependencies
between locations observed at adjacent time steps, we can filter the
raw data to produce a cleaner estimate of the object’s trajectory which
accounts for noise in the sensor as well as the system dynamics (e.g. fric-
tion). Additional constraints over an object’s possible movements (e.g.
road network) can also be incorporated to further improve the filtered
trajectory.

Due to the inherent uncertainty in the problem of tracking mobile ob-
jects, probabilistic models such as dynamic Bayesian networks (DBNs)
have been applied to several tracking scenarios with great success [50,
60]. In this section, we will first introduce the basic problems involved
in tracking mobile objects. We pose the tracking problem as Bayesian

Sensing for Mobile Objects 317

Figure 10.6. The (general) architecture of a STDB or a MOD. Both systems require
an algorithm to turn the raw location estimates from the moving objects into a usable
trajectory. In the case of the MOD, this conversion happens in real-time as new
locations are made available (filtering) and in the the case of STDB, the complete
sequence of locations and time stamps are available (smoothing). The quality of the
inferred locations directly affects query accuracy, thus the tracking algorithm is a
vital component of the data management system.

filtering task, then we review the Kalman filter model (KFM) [39, 88]
in detail. Lastly, we discuss some methods which address the track-
ing problem when objects are constrained to move on a road network.
Table 10.1 contains a list of notation used throughout this section.

3.1 The Tracking Problem

The general task of tracking can be formulated as a Bayesian filtering
problem where we would like to estimate the value of an unobserved ran-
dom variable x, given an observation z. Because x defines the state of
a mobile object (position, velocity, altitude, etc.), this value will change
over time and we would like to re-estimate it each time a new observa-
tion becomes available. The general problem of Bayesian filtering is then
to update our beliefs about xt, incorporating all available information
(i.e. z1:t) by computing the posterior distribution p(xt|z1:t). To keep our
presentation clear, we will assume that the state of a mobile object, x,
is described by a vector containing the object’s current position and ve-

318 MANAGING AND MINING SENSOR DATA

Table 10.1. Notation

Notation Explanation

xt Belief state (hidden) for at time t

X Location component of belief state

Ẋ Velocity component of belief state

z0:t Observations from time 0..t

A Deterministic transition matrix

H Deterministic observation mask

Q Covariance matrix for the movement dynamics. Determines the amount
of uncertainty we have in our transition model.

R Observation covariance matrix. Determines the amount of uncertainty
we have in our observations.

N (μ,Σ) Gaussian distribution with expected value μ and covariance matrix Σ.

locity (xt = [X,Y, Ẋ, Ẏ]) and the location measurement, zt is described
by a position (zt = [X,Y]).

p(xt|z1:t) =
p(zt|xt)p(xt−1|z1:t−1)

p(z1:t)

∝ p(zt|xt)p(xt−1|z1:t−1) (10.3)

The first term in Eq. 10.2 is the likelihood function which describes
the relationship between xt and zt (i.e. describes the sensor error).
For example, GPS sensors are typically assumed to have error that is
normally distributed about the true location. In this case, p(zt|xt) =
N (zt;xt, σ), where σ describes how much variation we expect to see in
the measurement.

The second term, p(xt−1|z1:t−1), is the posterior distribution of xt−1.
That is, this term is the result of filtering at the previous time step. From
this equation, we see that it is possible to recursively update our belief
about the state of a mobile object online (as new data arrive). All of
the information about xt−1 is captured in p(xt−1|z1:t−1), thus there is no
need to revisit old datum. Lastly, the denominator is the marginal prob-
ability of the sequence of observations. Since the observations remain
fixed (this data is observed), this term may be considered a normaliz-
ing constant and ignored for our purposes. For a readable introduction
to Bayesian statistics in a more general context, we refer the interested
reader to [30].

While tracking is an online problem (i.e. updates must be made as
data arrive), in general there are three types of inference we may be in-
terested in for any DBN: (i) prediction, (ii) filtering and (iii) smoothing.

Sensing for Mobile Objects 319

A graphical representation of each type of inference for a simple chain
model with a single hidden variable is shown in figure 3.1. Prediction
and filtering are computable online, while smoothing requires observa-
tions from future instances in order to correct our estimate of an object’s
state given more information. In the context of data management sys-
tems, filtering and prediction would be used in a MOD, while smoothing
would be used to obtain complete historic trajectories of mobile objects
for a STDB.

Figure 10.7. KFM Inference steps: Prediction predicts the value of xt from the
last known position of the object, zt−1 and the movement model. This is computed
in the graphical model by integrating out the unobserved value of xt−1. Filtering
corrects the value of xt by incorporating the latest uncertain observation, zt. Smooth-
ing updates the filtered estimate for xt by also incorporating information from later
observations (z1..T).

In general, it is rarely possible to evaluate Eq. 10.2 exactly, and ap-
proximate methods have become quite common [13, 19, 59]. However,
under certain modeling assumptions, exact inference is tractable. Next,
we introduce the Kalman filter model (KFM), a popular model for which
exact inference is tractable. Due to the popularity of the KFM and its
widespread adoption in tracking and sequential data processing [40, 41,
74, 91, 51, 94], we discuss this model in some depth. Our objective in the
following section is to briefly introduce the Kalman filter to unfamiliar
readers, including some intuition as to how and why the model works.

3.2 Kalman Filter

The Kalman filter model [39] (KFM) is a linear dynamic system that
offers an efficient exact inference procedure. The efficiency stems from
the fact that all of the variables in the model are assumed to come from
a joint Gaussian distribution. As a result, both the observation noise
(Eq. 10.4) and the system dynamics (Eq. 10.5) are assumed to be Gaus-
sian distributions. The observation noise describes how observations
are related to the actual belief state. In this case, we expect observa-
tions to be distributed normally about the true state with the degree of

320 MANAGING AND MINING SENSOR DATA

uncertainty given by the covariance matrix, R. The system dynamics
describe how the state changes between time steps. In the KFM, we
assume the current state is a linear function of the previous state (e.g.
xt = xt−1 + ẋt).

p(zt|xt) = N (xt, R) (10.4)

p(xt|xt−1) = N (Axt, Q) (10.5)

Eq. 10.5 describes the model dynamics and Eq. 10.4 describes the noisy
observation process. The transition probability of the previous belief
state xt−1 to the current belief state xt depends on the deterministic
transition matrix A and the transition covariance matrix Q. To explain
the ideas behind the Kalman filter we consider a simple example in which
we are tracking a moving object in one-dimension. The representation
of our belief state, x, contains the object’s current location and velocity.
Therefore, the transition matrix A, is defined to encode Xt = Xt−1 +
˙Xt−1t and Ẋt = ˙Xt−1, that is A =

[
1 1
0 1

]
. The covariance matrix Q

describes the noise in the dynamic process, such as head/tail winds, loss
of power due to friction, changing altitudes, etc. Suppose that we are
only able to observe the object’s location at discrete time steps, but have
no way of acquiring the velocity directly. In this case the deterministic
observation mask H =

[
1 0

]
, and we must infer velocity completely

from the location observations. The covariance matrix R, describes how
much uncertainty exists in these observations. For example, if we were
using a GPS sensor to track the object, R would be relatively small,
allowing the observations to vary only a couple of meters from the actual
location. In contrast, if we relied on cellular tower triangulation to track
the moving object, R would be very large, allowing observed locations
to be hundreds of meters from the true location.

Since the state variable, xt is assumed to be normally distributed,
we need only maintain the mean and variance of the distribution at
each time step to completely describe our knowledge about xt. Because
of this, and some nice analytic properties of the normal distribution,
simple update equations for the necessary parameters are tractable. This
simplicity makes the KFM a popular choice for modeling dynamic, real-
valued data. Because of its popularity, in this section we will describe
the KFM filtering and smoothing algorithms and provide the reader with
some intuition as to how the update equations work. Before getting
started on the KFM, we first digress slightly to review some important
properties of the Gaussian distribution.

Sensing for Mobile Objects 321

3.2.1 Joint, Marginal, and Conditional Gaussians. In
this section we interchange the terms normal and Gaussian distribution.
In both cases, we are referring to the same density function (shown in
Eq. 10.6).

p(x1, ..., xρ) =
1

(2π)ρ/2|Σ|1/2 exp
(
−1

2
(x− μ)TΣ−1(x− μ)

)
(10.6)

For any set of random variables that are jointly normally distributed, all
marginal and conditional distributions associated with any individual
or subgroup of variables are also normally distributed. For example,
consider the simple bivariate normal distribution p(x, y) with parameters
given in Eq. 10.7.

p(x, y) = N (

[
μx

μy

]
,

[
Σx Σx,y

Σy,x Σy

]
)

The marginal distribution for x is computed by integrating over all pos-
sible values of y. That is, p(x) =

∫
p(x, y) dy. For a joint Gaussian,

marginalization or integrating out variables is a simple procedure, since
the result is a normal distribution we must only find the mean and
covariance matrix that specify the distribution. In this case, we sim-
ply take the mean and covariance sub-matrix corresponding only to the
variable(s) of interest and the marginal is again normally distributed.
For example, using the joint in Eq. 10.7, p(x) = N (μx,Σx).

Marginalization is the process of simply removing a variable from
our distribution. However, this process does not provide us with any
additional information about the variable of interest, it only serves to
simplify our distribution form by reducing dimensionality. Alternatively,
it may be possible to observe the value of a variable may provide us with
information about our variable of interest. In this case we are interested
in computing the conditional distribution. That is, the distribution over
x given that you have observed a specific value for y. In the case of jointly
distributed Gaussian variables, the conditional distribution is again a
Gaussian. The parameters for a conditional Gaussian are shown below.

p(x|y) = N (mx|y, Px|y)

mx|y = μx +Σx,yΣ
−1
y (y − μy) (10.7)

Px|y = Σx − Σx,yΣ
−1
y ΣT

y,x (10.8)

The interpretation of these updated parameter values is quite intuitive.
For instance, Eq. 10.7 says that the updated mean is the marginal mean
of x corrected by some value. This correction term depends on the cou-
pling between the two variables which is encoded in the covariance term,

322 MANAGING AND MINING SENSOR DATA

90 95 100 105 110

47

48

49

50

51

52

53

x

y

(a) Joint Gaussian

40 60 80 100 120
39

39.5

40

40.5

41

x

y

(b) Conditional Gaussian

Figure 10.8. A joint Gaussian distribution of two random variables is shown in fig-
ure (a). In (b), we show the result of the distribution over x after conditioning on the
value of y.

the original variance term for the observed variable as well as the shift of
the observation from the expected value. Notice that if our observation
matches the expected value, μy, or the covariance between x and y is
small, then the correction term is small and thus observing y provides
little information about x. Similarly, the covariance is corrected accord-
ing to the covariance and variance term of the observed variable. Notice
here that the correction term is subtracted from the original variance.
Since the covariance matrix is positive semi-definite, conditioning on an
observed value is guaranteed to decrease variance and therefore reduce
our uncertainty about the variable of interest.

Figure 3.2.1 shows an example of two variables that are jointly nor-
mally distributed. There is strong correlation between the two variables
and thus when we condition on y in figure 10.8(b), the marginal distri-
bution over x changes by shifting (correction to the mean) and scaling
(reduction in variance).

3.2.2 Filtering. There are three types of inference we will be
interested in computing with the KFM: prediction, filtering, and smooth-
ing. Figure 3.1 shows each of the different procedures, highlighting the
variables and connections which are used in each. We will first discuss
the filtering problem, updating our parameters of interest upon the ar-
rival of new observations, which subsumes the task of prediction. Then,
we will introduce smoothing, estimating parameters given past and fu-
ture observations, which is an offline task that typically provides more
accurate estimates with reduced uncertainty.

The objective of filtering is to update our estimates by incorporating
the most recent observation. For the KFM, the posterior takes the form

Sensing for Mobile Objects 323

of the Gaussian distribution. This means that to describe our current
belief state, xt, we only need to compute and store the mean vector
and covariance matrix. Rewriting the posterior in Eq. 10.9, we derive
the functional forms of the distributions to show how we end up with a
normally distributed posterior.

p(xt|z0:t) ∝ p(z0:t|xt)p(xt|z0:t−1)

From our model assumptions (Eq. 10.4), we have that p(z0:t|xt) is nor-
mally distributed. The second term is the predicted belief state given
all observations up to the previous time step. This distribution can be
rewritten in terms of the model dynamics and a recursion term as shown
in Eq. 10.8. We denote the posterior parameters of x from the previous
time step as μt−1 and Σt−1

p(xt|z0:t−1) =

∫
p(xt|xt−1)p(xt−1|z0:t−1)dxt−1

=

∫
N (xt;Axt−1, Q)N (xt−1;μt−1,Σt−1)

= N (Aμt−1, AΣt−1AT +Q) (10.9)

To predict the state at time t, we simply apply the model dynamics
to the estimate of the state at t − 1, integrating over all possibilities.
The integration over the previous state is necessary since we are actually
uncertain of the true value of x at any given time and thus must consider
all possibilities. We use the second term, the posterior of x from the
previous time step, weight each guess of the previous state based on our
posterior distribution for xt−1. We denote the predicted parameters for
xt as shown in Eq. 10.10 and 10.11.

mt = Aμt−1 (10.10)

Pt = AΣt−1AT +Q (10.11)

Combining the observation and prior distributions of the belief state
(Eq. 10.4 and 10.8), we can reconstruct the joint distribution over xt
and zt.

p(xt, zt|zt−1) = N (

[
mt

Hmt

]
,

[
Pt PtH

T

HPt HPtH
T +R

]
)

324 MANAGING AND MINING SENSOR DATA

Algorithm 5 Kalman filtering algorithm

Input: μt−1,Σt−1, zt
// predict the current state from previous values
mt = Aμt−1

Pt = AΣt−1A
T +Q

// compute Kalman gain
K = (PtH

T)(H ∗ Pt ∗HT +R)−1

// apply correction to predictions using new observation
μt = mt +K(zt −Hmt)
Σt = (I −KH)Pt

Conditioning on zt, we have the measurement update step from 10.7
and 10.8.

p(xt|z0:t) = N (μ,Σ)

K = HPt(HPtH
T +R)−1

μ = mt +K(zt −Hmt) (10.12)

Σ = Pt −K(HPt)
T (10.13)

Where K is referred to as the Kalman Gain. The inference algorithm for
the KFM proceeds by first predicting the t+1st state of x which updates
the parameters as described in Eq. 10.8. Then, upon observing a new
measurement, zt, we perform the measurement correction step, which
updates the parameters for xt according to equations 10.12 and 10.13.
We show the complete filtering inference algorithm for the KFM in al-
gorithm 5 for completeness. From the update equations above, we see
how updating belief states upon the arrival of new observations can be
computed efficiently, using matrix multiplications and a matrix inverse
operation.

3.2.3 Smoothing. Before we get into the smoothing equations
for the KFM, we first provide some notation below to identify the differ-
ent versions of parameters. The first line shows the filtered probability
distribution for xt (explained in the previous section) which we still iden-
tify with the parameters μ and Σ. The second line shows the smoothed
probability distribution, for which we use the parameters ν and Φ for
the mean and covariance to differentiate from the filtered parameters.

p(xt|z1:t) = N (xt;μt,Σt)

p(xt|z1:T) = N (xt+1; νt+1,Φt+1)

Smoothing utilizes observations from the past, present, and future to
provide an improved estimate of the belief state. Inference for smoothing

Sensing for Mobile Objects 325

consists of a forward pass through the chain (i.e. filtering) followed by an
additional backward recursion in which we consider future observations
as well. Specifically, we wish to compute the conditional distribution
shown in equation 10.13. Note that in the second step, conditioning on
xt+1 makes zt+1:T independent of xt, which is why the extra observations
are dropped from this term.

p(xt|z0:T) =

∫
xt+1

p(xt+1, xt|z0:T)

=

∫
xt+1

p(xt|xt+1, z0:t)p(xt+1|z0:T) (10.14)

We recognize that p(xt+1|z0:T) defines our backward recursion, since this
is the smoothed estimate for xt+1 given all observations. Therefore, we
must derive the parameters for p(xt|xt+1, z0:t) before we can solve the
integral in Eq. 10.13. Since we are not given this distribution directly,
we will start with the joint distribution over two timesteps, and continue
by conditioning on xt+1 to get the final distribution.

p(xt, xt+1|z0:t) = N (

[
μt

Aμt

]
,

[
Σt ΣtA

T

AΣt AΣtA
T +Q

]
)

Conditioning on xt+1, we derive the following.

p(xt|xt+1, z0:t) = N (xt;mt|t+1, Pt|t+1)

J = ΣtA
T (AΣtA

T +Q)−1

mt|t+1 = μt + J(xt+1 −Aμt)

Pt|t+1 = Σt − JΣtA
T

Plugging these values into equation 10.13, we can now solve the integral.

p(xt|z0:T) =

∫
xt+1

p(xt|xt+1, z0:t)p(xt+1|z0:T)

=

∫
xt+1

N (xt;mt|t+1, Pt|t+1)N (xt+1; νt+1,Φt+1)

= N (μt + J(νt+1 −A),Σt − JAΣt) (10.15)

Equation 10.14 shows the final distribution and the parameters for the
smoothed estimate of xt given z0:T . The smoothing algorithm works by
correcting the filtered estimate of xt by trying to minimize the difference
between the predicted value of the next state and the smoothed estimate
for the (t+1)st time step. Finally, the smoothing algorithm initializes the

326 MANAGING AND MINING SENSOR DATA

Algorithm 6 Kalman smoothing algorithm

Input: μt,Σt, νt+1,Φt+1

// predict state using filtered estimate
m+ = Aμt

P+ = AΣtA
T +Q

// compute Kalman smoother gain
J = (ΣtA

T)P−1
+

// apply correction to filtered estimate
νt = μt + J(νt+1 −m+)
Φt = Σt + J(Φt+1 − P+)J

T

smoothed parameters for the xT to be the same as the filtered estimate
for the state at that time, then proceeds backwards through the chain
starting at t = T − 1 updating each belief state and covariance matrix
using the update equations in Eq. 10.16 and 10.17.

νt = μt + J(νt+1 −Aμt) (10.16)

Φt = Σt − JΣtA
T (10.17)

Lastly, algorithm 6 provides the update algorithm (for a single time
step) of the basic Kalman smoother. The algorithm takes as input the
filtered parameters of the current time step as well as the smoothed
estimates from the t + 1st estimate and produces a smoothed estimate
for state t. Similar to the filtering algorithm, we see that the updates
are quite efficient, requiring only a few matrix operations.

To conclude this section, we provide a tracking example in figure 3.2.3.
The red line represents the true trajectory, the blue points are the obser-
vations at each time step. The figure also plots the filtered and smoothed
estimates of the trajectory along with a dashed line at a distance of
1σ2 to represent the estimate uncertainty. It is clear that the filtered
trajectory is a substantial improvement over simply connecting the ob-
servations. Furthermore, the smoothed estimate improves upon the fil-
tered estimate, resulting in a very close match to the actual trajectory
with significantly reduced uncertainty (showing more confidence in the
smoothed estimate).

This figure illustrates the importance of applying tracking algorithms
when sensors provide noisy data. Simply using the raw sensor data may
result in inaccurate trajectories which, if used in a MOD or STDB, will
subsequently result in erroneous query results.

Unfortunately, the assumptions upon which the Kalman filter is based
(i.e. linear dynamics, Gaussian measurement and system noise) may be
too restrictive for some applications and therefore more general tech-
niques are required. In these situations, exact inference becomes in-

Sensing for Mobile Objects 327

0 2 4 6 8 10 12 14 16 18 20
80

60

40

20

0

20

40

60

80

100

120

Time

True Signal

Smoothed
Estimate

Filtered
Estimate

Observations

Figure 10.9. An example output of the Kalman filtering and smoothing estimates
given a set of noisy observations.

tractable and approximate techniques must be utilized. In the case
of non-linear movement, two extensions to the KFM have been intro-
duced which provide local approximations of non-linear movement while
(nearly) maintaining the simple filtering update equations. The Ex-
tended Kalman Filter (EKF) locally linearizes the state estimation, us-
ing partial derivatives of the model dynamics and measurements to ap-
proximate updates. Similarly, the Unscented Kalman Filter (UKF) [38]
attempts to maintain the efficient update equations of the KFM in the
case of non-linear system dynamics by applying the unscented transform,
a deterministic sampling technique, to propagate the state distribution
through the non-linear dynamics before recovering the parameters of the
normal distribution.

Although these approximations provide the convenience of the sim-
ple KFM update equations, they typically fail when the dynamics or
observation errors result in multi-modal distributions [3]. This is due
to the fact that both the EKF and UKF both represent the posterior
distribution over xt as a Gaussian. To represent more complicated densi-
ties, a different representation scheme is required as well as approximate
inference methods. One of the most popular methods for approximate
inference for non-linear dynamics is known as particle filtering [19, 20, 3,
26, 10, 13]. Particle filtering is a generic framework for computing infer-
ence in dynamic models in which no special structure exists. The main
idea is to represent the probability density function (pdf) describing our
belief state of the world as a finite set of weighted point masses. Each

328 MANAGING AND MINING SENSOR DATA

Figure 10.10. An example of the raw trajectory observations overlaid on a (given)
road network. Incorporating extra structure, we are able to provide a more accurate
path over which the object is likely to have traveled.

point mass is propagated through the model dynamics to predict future
states, and is then re-weighted according to the observation likelihood
given the predicted value for each. As the number of point masses tends
toward infinity, this representation will tend toward the underlying den-
sity function and thus can provide a very accurate representation of the
system. Several excellent and practical introductions to particle filtering
can be found in [20, 10, 3].

3.3 Tracking with Road Networks

Incorporating road network structure into tracking algorithms to im-
prove accuracy has been a popular area of research lately [86, 18, 56,
44]. One such example is the work by Agate and Sullivan [2] in which
the authors develop a model for tracking mobile objects that utilizes a
road network to constrain object movement and hence improve tracking
accuracy. The authors focus on tracking when both ground moving tar-
get indicator (GMTI) and high-range resolution (HRR) radar readings
are available and thus their observation likelihood models are specific
to these measurements. The dynamic model encodes the restriction of
the object to only move along the known road segments. Given the
road segment upon which the object is currently located, the probabil-
ity of the next state is a function of the structure of the network since
the object is limited to transition to adjacent roads. The state variable

Sensing for Mobile Objects 329

then maintains the current road segment (a discrete ID), a position on
that road segment, and a deviation from the road to allow for errors in
the road network. Inference for the proposed model is computed using
a particle filter which is typical for these complex, non-linear dynamic
models. The future position of an object is computed by allowing each
particle to take a random walk along the road network for a limited time.
Each road segment has a distribution over the amount of time it would
take to traverse this segment, thus the point at which the particles stop
when time runs out provides a reasonable estimate of the object’s next
state. The results show substantial improvements over a basic KFM for
tracking.

A similar problem is that of map-matching [69], in which an object’s
noisy position observation is aligned with a known restricted movement
surface (e.g. road network). The difficulty in map-matching is the un-
certainty in an object’s observed location at a given time. Additionally,
the road network may be uncertain as well (e.g. user generated maps).
Lastly, the problem typically needs to be solved in real-time so the ob-
ject can identify its true current position and continue navigating to its
destination.

A natural model for the task of map-matching is the hidden Markov
model (HMM) since it combines information about the distribution over
the current state of an object with new (noisy) observations. Newson
and Krumm [60] apply an HMM for the map-matching problem using
GPS as the observed value and individual road segments as the hidden
states. The authors defined the transitions between roads to be based on
the distance and connectivity between segments. For instance, a vehicle
is more likely to transition to a connected road segment than one that is
far away. A similar model is also introduced by Pink and Hummel [67].
In this case, the authors utilize inferred heading information about the
vehicle paired with a more accurate representation of the road network
based on smooth polynomials instead of linear segments to improve ac-
curacy. Both of these methods rely on consistent and high frequency
GPS measurements.

In practice, GPS observations are often obtained irregularly and at
low-sampling rates (i.e. 1/120Hz or lower). In these situations, the map-
matching problem becomes that of inferring the specific route (sequence
of roads traveled) between two GPS observations in an offline setting.
Several approaches have been developed specifically for this scenario.

Similar to previous works, Lou et al. [52] address the low sampling fre-
quency map-matching problem by introducing an algorithm that com-
bines a spatial and temporal analysis into an HMM-like model. The
Spatio-Temporal-matching (ST-matching) algorithm first attempts to

330 MANAGING AND MINING SENSOR DATA

match each GPS reading to a road segment, then considers the loca-
tion of the surrounding readings to correct the matched road segment.
The underlying assumption behind this approach is that the most direct
route is typically the correct one. The temporal analysis utilizes the
average speed along each road link. Yuan et al. [97] develop a voting-
based map-matching algorithm, called interactive voting map-matching
(IVMM), specifically for low sampling rate GPS data. Mapped points
are allowed to influence neighboring points with a weight inversely pro-
portional to their distances. The algorithm uses dynamic programming
to find the best scoring path given the observations.

Zheng et al. [101] introduce the first data-driven method for resolving
the inherent uncertainty of a trajectory collected using a very low GPS
sampling rate. The idea is to utilize a collection of historic trajectories
and find popular (partial) paths between the sporadic GPS observations.
The authors introduce two algorithms for solving the local path prob-
lem, one based on greedy-like search process and the other which first
extracts a traversal graph containing all of the relevant nodes and edges
between two observations and performs a shortest path search in the
reduced space. Complete trajectories are then constructed using a dy-
namic programming algorithm (and a decomposable scoring function).
In their experiments, the authors show that their approach significantly
outperforms previous methods for dealing with low-sampling-rate tra-
jectories.

Although GPS observations are the most popular type of data for
tracking and identifying an object’s position, there are other options
as well. In fact, continuous collection of GPS can be quite expensive
(in terms of power consumption) for a mobile sensor. Therefore, Thi-
agarajan et al. [79] aim to utilize only the signal from cellular towers,
which requires much less energy to collect, to perform map-matching.
The authors pose this as a supervised learning problem. In this context
the training data is pairs of cellular tower fingerprints (tower IDs and
their respective signal strengths) and their corresponding GPS locations
(considered to be the labeled data). That is, using the cellular finger-
prints as a feature vector, and the GPS location of the user as the actual
location, they pose map-matching as a classification problem. Their ap-
proach grids the area of interest and uses a HMM to determine the grid
after observing the cell tower fingerprint. The authors introduce several
additional methods to clean and refine the signal, including integrating
information from other sensors on the cell phone (e.g. accelerometer
or compass). The experimental results show their method to be a very
accurate, energy efficient alternative to constantly using GPS.

Sensing for Mobile Objects 331

Additionally, several other works on map-matching have been intro-
duced that assume spatially and temporally high resolution GPS data
is available [6, 7, 25, 34]. These models are similar in that they assume
a small degree of error in the observations which allows them to use
relatively simple nearest-neighbor approaches to map the object’s GPS
observation to a road segment on the known road network.

3.4 Tracking for External Sensing

The work mentioned up until this point has all assumed that the
mobile objects were providing their location willingly in order to navigate
or be queried. However, once this assumption is removed, the problem
becomes significantly more challenging. At the core of these challenges is
the fact that we do not know which observations belong to which mobile
objects, referred to as the data association problem. For instance, if
two objects are nearby, their observations may get switched, thus the
trajectory we obtain would actually be composed of the movements of
two different objects.

Although the data association problem makes external sensing a much
more complicated problem, it is not the only issue in this scenario. Be-
cause sensing occurs in an incredibly noisy environment, we may detect
false positives as well as miss the detection of actual objects (false neg-
atives). Moreover, the total number of mobile objects is considered to
be unknown. New tracking algorithms have been developed for this sce-
nario, making use of particle filtering methods and finite set statistics
(FSS) [42, 53, 61, 64, 86, 85]. The problem scenario of external sens-
ing has not been addressed in the database community, mainly because
the current solutions only scale to managing 5 − 10 objects, as high
dimensional filtering is known to be an open problem.

4. Mining Mobility Data

Querying spatiotemporal data is able to provide answers to simple
questions, such as what are the closest coffee shops to me? or how
many objects have passed through this area over a given time interval?
However, extracting semantically higher-order information from such low
level data is a difficult problem. For instance, it may be of interest
to identify those mobile objects that behave similarly (e.g. travel to
similar locations), identify popular or efficient routes, or just to be able
to quantitatively characterize and predict user movements.

We partition this section into three major areas that cover recent work
in mining spatiotemporal data: (i) clustering, (ii) route detection, and
(iii) movement patterns. The first, covers work on clustering moving

332 MANAGING AND MINING SENSOR DATA

objects or grouping similar trajectories. Clustering is a crucial task in
many data management and analysis tasks since it can be used for com-
pression and indexing as well as understanding similarities in the move-
ments of objects. Second, we cover work on popular route detection.
This section reviews some recently developed methods for identifying
often-traveled paths. The intuition is that the transportation network
may not represent all of the factors that influence the decision to take
one path over another (e.g. long stop lights, traffic congestion, etc.). By
mining previous travel patterns, it is possible to identify the frequently
traveled paths. This information can then be used for managing traffic
congestion, finding efficient routes, or simply studying the effectiveness
of the given road network. The third section focuses on problems related
to quantitatively assessing individual user movement patterns. Instead
of looking at aggregate behavior, as the work in popular route detec-
tion does, the work in this section focuses on the individual. Here the
interesting problems are predicting future locations and high-order un-
derstanding of user movement (e.g. is the user going to work or to the
store?).

Clustering. In the spatiotemporal data setting, clustering aims to
group together objects which are within close proximity of one another
and will remain so over time. Li et al. [47] propose a technique for clus-
tering moving objects by extending the ideas of micro-clustering [99] to
handle data that changes over time. To maintain good clusters over time,
the authors propose computing a minimum bounding rectangle (MBR)
for each cluster. When the MBR reaches a predefined threshold, a split
event occurs in which the object furthest from the center of the cluster is
removed and reassigned to the nearest microclucster. The resulting time
complexity of the clustering approach is O((N +T)log2(N +T)log(N)),
where N is the number of mobile objects and T is the total time over
which the clustering is to be maintained. Similarly, Jensen et al. [36]
also propose an online method for efficiently clustering moving objects
based on [99]. The authors introduce a dissimilarity measure for mobile
objects which takes the weighted sum of the differences between the lo-
cations of two objects over m time steps. The weights are monotonically
decreasing as they become further into the future i.e. the current time is
weighted more heavily than future positions. Utilizing the BIRCH clus-
tering framework [99], the authors extend the clustering feature vector
to include object positions and velocities in a format that is efficient to
update. Computing a radius for each cluster (at each time step), fu-
ture necessary cluster split points can be predicted and then processed
efficiently by reassigning.

Sensing for Mobile Objects 333

(a) Flocks (b) Convoys (c) Swarms

Figure 10.11. An example of (a) flocks, (b) convoys, and (c) swarms. Each of these
patterns captures groups of objects that tend to move together over time, though
they each specify slightly different constraints as highlighted in this figure.

In addition to the basic notions of clustering for mobile objects, newer
definitions have also been introduced which provide a stronger notion
that objects must move together. Recently, the notion of flocks, convoys
and swarms have been introduce which impose varying constraints on
how tightly packed objects must remain over time. Specifically, in [87], a
flock is defined as a set of at least μ trajectories that are located within a
given disk with radius ε

2 , for δ or more time steps. A flock query returns
all sets of trajectories such that the predicate flock(μ, ε, δ) is met. To
answer the flock query, the authors propose first griding the space such
that each grid is a square with edge lengths ε. This reduces the necessary
number of comparisons between points and allows the authors to provide
an exact answer to the flock query in polynomial time. The authors
provide a basic query processing algorithm along with several filtering
approaches to improve the algorithm efficiency.

Jeung et a. [37] relax the definition of a flock by using the notion of
density connected groups of objects over time. The new spatiotemporal
groups are called convoys and the authors introduce a filter-and-refine
algorithm called convoy discovery using trajectory simplification (CuTS)
to search for convoys in a given database. The authors first simplify
trajectories using linear approximations of subtrajectories such that a
maximum error bound is maintained. The simplified trajectories contain
fewer points than the originals and are thus easier to manage. The
filtering step in CuTS involves a trajectory simplification followed by
a density based clustering. In the refinement step, the full trajectories
are run through the density clustering again to account for the δ error
introduced in the trajectory simplification. The resulting set of clustered
trajectories are guaranteed to be convoys.

Furthermore, Li et al. [48, 49] define a swarm, which again relaxes the
notion of a convoy by removing the restriction that objects must remain

334 MANAGING AND MINING SENSOR DATA

together over consecutive time steps. A swarm is defined as a set of at
least mino objects that remain clustered for at least mint time steps
over a given interval. That is, a swarm is defined by a set of objects, O
and a set of time steps, T , over which the objects remain clustered. To
avoid repeatedly identifying subsets of the same objectset, the authors
define a closed swarm to be a swarm such that the objectset and the
timeset are maximal (i.e. adding another object will shrink the timeset
and adding another time step will shrink the valid objectset).

Li et al. [48, 49] develop an algorithm for finding swarms which is
based on the Apriori (frequent itemset) framework. To manage the
exponential search space, three pruning rules are introduced. The first
rule says that if |T | < mint, then there is no superset of O in which
the time constraint will be satisfied, thus we can stop growing this set.
The second pruning rule, backward pruning, states that if the maximum
time set of an objectset, O, does not decrease by adding one more object,
thenO, may be pruned and we can continue expanding the new objectset
O′ = {O ∪ oi}. Lastly, forward pruning, by similar means to backward
pruning, allows us to determine if an objectset is not closed. Using these
pruning rules, the ObjectGrowth algorithm performs a depth-first search
(on the space of swarms) and identifies all closed swarms.

Popular Route Discovery. Closely related to the problem of
clustering, is that of discovering popular routes. Whereas clustering is
an object-centric task, the goal of popular route discovery is to identify
specific paths that are heavily traveled. We review two recent approaches
to this problem, the first finds heavily traveled paths conditioned upon
a specific origin and destination and the second finds all paths such that
the amount of traffic is greater than a given threshold.

Chen et al. [14] introduce a new approach for discovering popular
routes only given a set of GPS trajectories. The authors assume that a
road network is not available and construct one directly from the data.
They use a density based clustering routine for identifying the underlying
road network (specifically the intersections) from a set of individual GPS
trajectories. The clustering algorithm is an adaptation of DBSCAN [21]
with a different connectivity metric which is based on the angle of in-
tersection between trajectories (since roads typically intersect at nearly
right angles).

Using the constructed road network, Chen et al. [14] a random walk
based approach for identifying popular paths with respect to a specific
destination node. The authors assign a transition probability at each
intersection by counting the number of objects that took each path from
the GPS trajectories. Since the objective is to identify popular routes

Sensing for Mobile Objects 335

between a given source and destination, each trajectory is weighted by
the likelihood that it is heading toward the specified destination. That
is, separate random walk probabilities are constructed for each specified
destination. Using this network, the authors run a random walk using
the destination node as an absorbing state to compute a score for each
node. The paths are scored by computing the product of the individual
node popularity scores (i.e.

∏
v∈V p(v)) and the path with the maximum

popularity is computed using an adaptation of Dijkstra’s shortest path
search. Although it is not clear if the algorithms will scale to large
networks or answering queries online (due to the preprocessing costs),
the experimental results presented in [14] are promising.

Similarly, Li et al. [46] propose a method for identifying all of the
heavily traveled routes in a given road network, independent of a spe-
cific starting and stopping point. The authors introduce a new al-
gorithm, called FlowScan, which combines ideas from both individual
and aggregate-level analyses over trajectories to identify popular routes.
FlowScan iteratively expands a route starting with a given road edge,
r, by identifying those edges that are within ε hops of r and satisfy the
minimum traffic support (i.e. number of trajectories that pass through
that road segment). The traffic support is computed as |traffic(r) ∩
traffic(s)| ≥ MinTraffic, which says that the two roads must share
some minimum amount of traffic (i.e. the same trajectories must travel
through both road segments). Starting from an edge satisfying the min-
imum traffic threshold, the algorithm proceeds by adding edges until the
conditions are not satisfiable.

The proposed algorithm manages finding popular routes even in diffi-
cult instances where routes may partially overlap with one another and
there may be sparse regions in which objects may choose from several
roads to connect two portions of the same ‘route’. The authors exper-
iment with their method on simulated data on a real road network to
show the quality of the identified routes obtained by their approach and
compare it to prior work. They show that FlowScan is able to identify
correct popular routes when the other methods failed, either by grouping
overlapping routes together or missing parts of routes due to gaps.

Mobility Patterns. The last group of work we discuss is broadly
categorized as mining mobility patterns. By mobility patterns, we refer
to the common movements exhibited either by the same object over a
long history, or movements repeated by several different objects. For
instance, it may be common for residents to use a similar path during
their morning commute to get from the suburbs where they live to the
downtown area in which they work. Identifying such patterns may be

336 MANAGING AND MINING SENSOR DATA

useful in designing an efficient highway system or estimating road wear
over time.

Perhaps the most basic problem involving movement patterns is that
of predicting an object’s future position given its current location. Tao
et al. [76] introduce the recursive motion function (RMF) for predict-
ing the future position of a moving object. It formulates an object’s

location at time t as loct =
∑f

i Km(i)loct−i, where Km(i) is a constant
matrix that represents the type of motion performed by the object and
f , called retrospect, is the minimum number of the most recent times-
tamps which are required to compute the elements of all Km(i). The
Km(i) matrices represent m = 1..M different motion types (e.g. linear,
circular, sine, polynomial, ...) and the motion estimation is done by de-
termining which pattern results in the lowest summed squared distances
between the object’s actual and predicted trajectory. To manage the
large set of potential motion patterns, the authors also propose the spa-
tiotemporal prediction tree (STP-tree), an R-tree based index mobility
functions. The STP-tree maintains a set of polynomial curves which
represent object movement over time, in the case when the all of the
predicted patterns produce linear functions, the STP-tree reduces to the
TPR-tree. Although RMFs have performed very well at predicting fu-
ture locations of mobile objects with complex mobility patterns, they
have some weaknesses. Because predictions are based on past move-
ments, RMFs are not able to capture sudden changes in direction (such
as a U-turn). Additionally, predictions made several time steps into the
future tend to loose accuracy since objects tend to only follow a given
motion type for a limited time.

To address these issues, Jeung et al. [37] use previous trajectories
from objects to provide a method that is able to accurately predict an
object’s location multiple time steps in the future. The authors utilize
the object’s past behavior by performing frequent item-set mining to
find common locations (i.e. given that the object is at the mall at 4pm,
she will be at the beach at 5pm with confidence c). This work addresses
the problem of answering prediction queries by assuming each object
has an underlying repetitive pattern. The proposed algorithms are ex-
perimentally shown to outperform RMFs, previously the state-of-the-art
method for predicting future locations.

Another important aspect of mobility is periodicity as users tend to
exhibit many regularities in their movements (e.g. going to work every
morning). Li et al. [48, 49] develop a novel technique for identifying pe-
riodic movements of a user where the period lengths are also extracted
from the data. To robustly identify periodic patterns at various reso-
lutions, the authors propose the idea of using references spots for each

Sensing for Mobile Objects 337

individual. Reference spots are highly visited areas in space which are
found using density estimation. Given a reference spot, the movement of
a user can be described as a binary sequence in which the user is either at
that spot or not. Periodic movement may then be detected by applying
a Discrete Fourier Transform (DFT) and selecting all frequencies higher
than a threshold. This procedure is repeated for each reference location,
thus identifying various period lengths which are robust to noise in the
spatial movement of the user.

Periodic movement patterns are then described as a probability dis-
tribution (computed via maximum likelihood) over reference locations
at each time step within a given period. Using these probability dis-
tributions, the next step is to identify the specific patterns. This is
accomplished through a hierarchical clustering of the probability dis-
tributions, using KL-divergence as the distance measure. Patterns are
combined and an overall clustering score is maintained such that when
the score increases too much, the clustering stops and hence picks k, the
number of clusters, automatically. Experimental evaluation found the
proposed methods to be able to accurately identify interesting periodic
movement behaviors. Additionally, the authors applied their method to
a real data set, the location of a bald eagle over three years, and they
were able to identify the migration patterns of the eagle over that time.

In addition to utilizing the large quantities of available trajectory
data to identify interesting patterns, it is also possible to identify object
movements that do not follow the expected behavior. That is, given
enough data we can identify common behavior patterns and use this to
detect anomalies. To this end, Li et al. [46] introduce a rule and motif
based anomaly detection method for moving objects (ROAM). The idea
in this work is to partition trajectories into several prototypical sub-
movements and use features extracted from these movements to classify
each trajectory as normal or abnormal. In this work, the authors pose
anomaly detection as a supervised learning problem and thus assume a
training set of labeled trajectories is available. The proposed algorithm
is composed of three steps: (i) motif extraction, (ii) feature generation
and (iii) classification.

The motif extraction phase slides a window (of fixed length) over each
trajectory and the set of subtrajectories (i.e. each window) is clustered.
The cluster centroids are referred to asmotifs, and a second pass through
the dataset determines which trajectories express each motif (i.e. have
a subtrajectory that matches with error less than ε). Next, features are
generated for each motif and the values are discretized (or clustered)
to ensure generalization (e.g. (right-turn, speed, 11mph) or (right-turn,
time, 2am)). Additionally, a hierarchy is built over the value space

338 MANAGING AND MINING SENSOR DATA

for each specific feature (e.g. ‘right-turn speed’) to provide a multi-
resolution view of the data. Lastly, to utilize this feature hierarchy, the
authors propose classification using hierarchical prediction rules (CHIP)
which is based on FOIL [70]. CHIP learns a set of rules by exploring
features in a top down manner, such that it will first attempt to classify
based on high level features in the hierarchy. To determine if it should
expand a lower feature level, CHIP computes the information gain from
using the higher resolution features. The experiments show that the
proposed technique significantly outperforms a basic SVM classification.
In fact, ROAM is shown to consistently outperform competing methods
as both the number of trajectories and the number of motifs increases.

Combining several of these ideas, [8, 50] build high-order models of
user movements in which subtrajectories may be identified as complet-
ing specific tasks. By high-order modeling, we refer to the ability of a
model to assign semantically meaningful labels to segments of a trajec-
tory (e.g. “going to work”) and include more abstract attributes (e.g.
mode of transportation) over the raw trajectory data. In this work, the
objective is to be able to answer queries not about the specific trajec-
tory, but about the purpose of the movement (e.g. given a trajectory is
it more likely that the subject is going to work or the grocery store?).
Specifically, Liao et al. [50] introduce a dynamic Bayesian network model
which incorporates high level goals, such as “going to work” or “going
to the supermarket” into the model which may be inferred from low
level location data (e.g. GPS). The result is a model which is capa-
ble of querying a variety of aspects of a user’s movement. The authors
show that their proposed model can be learned in a completely unsuper-
vised manner, though applying the semantic categories such as “going
to work” must be supervised, and is able to identify locations of interest
and abnormal behavior in a real data trace.

In addition to mining patterns of movement, a related problem is to
identify those locations that are visited by a large number of trajectories.
Using the abundant amount of GPS trace data available over a region,
it is possible to find specific locations that are of interest (e.g. Statue of
Liberty, good restaurants, popular bars, etc.) [9, 84, 102]. For instance,
Zheng et al. [102] develop a PageRank-like algorithm for mining interest-
ing locations by considering each user’s travel experience. The basic idea
is that users that are well traveled within a region of interest will likely
know more of the relevant locations and thus a visit from one of these
travel authorities should be weighted more than a visit from a tourist
who does not know the local area well. Alternatively, Uddin et al. [84]
identify regions of interest (ROIs) from trajectory data by looking for
dense areas (at least N mobile objects in a fixed area) in which mobile

Sensing for Mobile Objects 339

objects spend some minimum amount of time. The authors index trajec-
tories by velocity, then extend the Pointwise Dense Region (PDR) [62]
method to identify ROIs.

Similarly, the work by Giannotti et al. [22] combine aspects of mining
interesting locations, with understanding and predicting movement pat-
terns. The authors extend prior work on mining frequent patterns and
define a spatiotemporal sequence (ST-sequence), which is a sequence of
locations visited by a set of users with a given level of support. The goal
in this work, much like in the frequent itemset mining, is to identify a
frequently visited sequence of locations over time. The authors address
the problem when the locations, or regions-of-interest (ROI), are known
as well as when they must be extracted from the data. More recent work
has built upon these concepts of pattern mining in the spatiotemporal
domain as well [58, 72].

5. Discussion and Future Research Directions

Over the past two decades, we have seen significant advancements in
all areas related to managing spatiotemporal data. In this chapter, we
attempt to cover the state-of-the-art solutions to the current challenges
specific to managing spatiotemporal data. Our review focused on data
management techniques as these are fundamental to nearly all applica-
tions involving mobility data. Additionally, we also covered some of the
core and recent work on tracking mobile objects. Lastly, we introduced
some of the recent applications of mining spatiotemporal data to extract
interesting patterns.

Despite the multitude of work in these areas, new and challenging
problems are constantly being introduced. Below we briefly outline a
few potentially interesting areas of future research.

Combining spatiotemporal information with social net-
works: Work on social network analysis in the recent years has
been plentiful due to the explosion of the availability of social data
from sites such as Facebook, Twitter, MySpace, and various other
relationship or communication networks. The analysis of users and
their connections has largely focused on the concept of homophily,
which is the tendency of individuals to connect to others that are
similar to themselves. However, physical space is another signifi-
cant factor which influences how users interact with one another.
Combining information about a user’s movement with her social
network presents an exciting research direction [16, 96].

Data-driven Techniques: Large quantities of spatiotemporal
data are becoming readily available through several research ef-

340 MANAGING AND MINING SENSOR DATA

forts and sharing sites [106–108]. For example, the California De-
partment of Transportation has made the data it collects from
highway loop counters publicly available (for free) [107]. Utilizing
these data stores and developing data-driven techniques to tackle
core problems such as map-matching [101], identifying locations of
interest [102] or traffic analysis [33] continues to be a promising
area of research.

Communication Efficiency: Communication between mobile
objects, as well as between mobile objects and a central database,
remains an expensive operation in terms of power and bandwidth
consumption. Making use of low quality sensors which use less
power, or scheduling the transfer of data in a more effective manner
can both help to reduce these costs [79, 83].

Information Movement: In this chapter, we have focused on
managing the mobility data of physical objects traveling through
space, however, studying the flow of information offers a similar
set of challenges. With the growth of the internet, there has been
an astronomical increase in the availability and sharing of infor-
mation. Only recently have researchers started to ask questions
about how information gets disseminated over time [1, 23, 45, 93].
Additionally, combining the challenges invovled in tracking infor-
mation and moving objects, which are used to transfer informa-
tion, results in yet another set of interesting problems known as
data ferrying [103].

Acknowledgements

This work was partially supported by the National Science Foundation
under grant IIS-0917149.

References

[1] E. Adar and L. Adamic. Tracking information epidemics in
blogspace. In Web Intelligence, pages 207–214. Ieee, 2005.

[2] C. S. Agate and K. J. Sullivan. Road-Constrained Target Tracking
and Identification Using a Particle Filter. In SPIE, number 805,
2003.

[3] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tuto-
rial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking. IEEE Transactions on Signal Processing, 50(2):174–188,
2002.

Sensing for Mobile Objects 341

[4] P. Bakalov, M. Hadjieleftheriou, and V. Tsotras. Time relaxed
spatiotemporal trajectory joins. In GIS, pages 182–191. ACM,
2005.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
an efficient and robust access method for points and rectangles.
19(2), 1990.

[6] M. Bierlaire, J. Chen, and J. Newman. A Probabilistic Map Match-
ing Method for Smartphone GPS data. Technical report, EPFL,
2010.

[7] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-
Matching Vehicle Tracking Data. In VLDB, pages 853–864, 2005.

[8] H. H. Bui. A General Model for Online Probabilistic Plan Recog-
nition. In IJCAI, 2003.

[9] X. Cao, G. Cong, and C. Jensen. Mining significant semantic
locations from gps data. Proceedings of the VLDB Endowment,
3(1-2):1009–1020, 2010.

[10] O. Cappe, S. J. Godsill, and E. Moulines. An Overview of Ex-
isting Methods and Recent Advances in Sequential Monte Carlo.
Proceedings of the IEEE, 95(5):899–924, May 2007.

[11] V. P. Chakka, A. C. Everspaugh, and J. M. Patel. Indexing Large
Trajectory Data Sets With SETI. In CIDR, 2003.

[12] S. Chen, C. S. Jensen, and D. Lin. A Benchmark for Evaluating
Moving Object Indexes. In PVLDB, pages 1574–1585, 2008.

[13] Z. Chen. Bayesian Filtering: From Kalman Filters to Particle Fil-
ters, and Beyond. Technical report, Adaptive Systems Lab, Mc-
Master University, Hamilton, Ontario, 2003.

[14] Z. Chen, H. T. Shen, and X. Zhou. Discovering Popular Routes
from Trajectories. In ICDE, 2011.

[15] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying Impre-
cise Data in Moving Object Environments. TKDE, 16(9):1112–
1127, 2004.

[16] E. Cho, S. Myers, and J. Leskovec. Friendship and mobility: User
movement in location-based social networks. In SIGKDD, pages
1082–1090. ACM, 2011.

[17] B. S. E. Chung, W.-C. Lee, and A. L. P. Chen. Processing prob-
abilistic spatio-temporal range queries over moving objects with
uncertainty. In EDBT. ACM Press, 2009.

[18] A. Civilis, C. S. Jensen, and S. Pakalnis. Techniques for Efficient
Road-Network-Based Tracking of Moving Objects. IEEE Trans-

342 MANAGING AND MINING SENSOR DATA

actions on Knowledge and Data Engineering, 17(5):698–712, May
2005.

[19] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo
sampling methods for Bayesian filtering. Statistics and Computing,
10:197–208, 2000.

[20] A. Doucet and A. M. Johansen. A Tutorial on Particle Filtering
and Smoothing : Fifteen years later. Technical Report December,
2008.

[21] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data mining, volume 1996, pages 226–231. AAAI
Press, 1996.

[22] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Trajectory
Pattern Mining. In KDD, pages 330–339, 2007.

[23] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring net-
works of diffusion and influence. ACM Transactions on Knowledge
Discovery from Data (TKDD), 5(4):21, 2012.

[24] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. Sondag. Adap-
tive fastest path computation on a road network: A traffic mining
approach. In VLDB, pages 794–805. VLDB Endowment, 2007.

[25] J. S. Greenfeld. Matching GPS Observations to Locations on a
Digital Map. Environmental Engineering, 1(3):164–173, 2002.

[26] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund. Particle filters for positioning,
navigation, and tracking. IEEE Transactions on Signal Processing,
50(2):425–437, 2002.

[27] R. H. Guting, T. Behr, and J. Xu. Efficient k-nearest neigh-
bor search on moving object trajectories. The VLDB Journal,
19(5):687–714, Apr. 2010.

[28] A. Guttman. R-trees: A dynamic index structure for spatial search-
ing. In ACM SIGMOD Conference, 1984.

[29] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras.
Complex spatio-temporal pattern queries. In VLDB, 2005.

[30] P. Hoff. A first course in Bayesian statistical methods. Springer
Verlag, 2009.

[31] J. Hosbond, S. Saltenis, and R. Ortoft. Indexing uncertainty of
continuously moving objects. In Database and Expert Systems
Applications, 2003. Proceedings. 14th International Workshop on,
pages 911–915. IEEE, 2003.

Sensing for Mobile Objects 343

[32] M. Hua and J. Pei. Probabilistic Path Queries in Road Networks:
Traffic Uncertainty Aware Path Selection. In EDBT, 2010.

[33] A. Ihler, J. Hutchins, and P. Smyth. Adaptive Event Detection
with Time-Varying Poisson Processes. In KDD, 2006.

[34] A. Jawad and K. Kersting. Kernelized Map Matching for Noisy
Trajectories. In SIG SPATIAL, 2010.

[35] C. Jensen, D. Lin, and B. Ooi. Query and update efficient b+-
tree based indexing of moving objects. In VLDB, pages 768–779.
VLDB Endowment, 2004.

[36] C. Jensen, D. Lin, and B. Ooi. Continuous clustering of moving
objects. Knowledge and Data Engineering, IEEE Transactions on,
19(9):1161–1174, 2007.

[37] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A Hybrid Prediction
Model for Moving Objects. In ICDE. IEEE, Apr. 2008.

[38] S. Julier and J. Uhlmann. A new extension of the kalman filter
to nonlinear systems. In Int. Symp. Aerospace/Defense Sensing,
Simul. and Controls, volume 3, page 26. Spie Bellingham, WA,
1997.

[39] R. Kalman et al. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960.

[40] B. Kanagal and A. Deshpande. Online Filtering, Smoothing and
Probabilistic Modeling of Streaming data. In ICDE, 2008.

[41] U. Khan and J. Moura. Distributing the kalman filter for large-
scale systems. Signal Processing, 56(10):4919–4935, 2008.

[42] Z. Khan, T. Balch, and F. Dellaert. MCMC-based particle filtering
for tracking a variable number of interacting targets. IEEE trans-
actions on pattern analysis and machine intelligence, 27(11):1805–
19, Nov. 2005.

[43] K.-S. Kim, S.-W. Kim, T.-W. Kim, and K.-J. Li. Fast indexing
and updating method for moving objects on road networks. In
Web Information Systems Engineering Workshops, pages 34–42.
Ieee, 2003.

[44] W. Koch. On Bayesian Tracking of Extended Objects. InMultisen-
sor Fusion and Integration for Intelligent Systems, pages 209–216.
Ieee, Sept. 2006.

[45] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and
the dynamics of the news cycle. In SIGKDD, pages 497–506. ACM,
2009.

344 MANAGING AND MINING SENSOR DATA

[46] X. Li, J. Han, J. Lee, and H. Gonzalez. Traffic density-based
discovery of hot routes in road networks. Advances in Spatial and
Temporal Databases, pages 441–459, 2007.

[47] Y. Li, J. Han, and J. Yang. Clustering Moving Objects. In KDD,
2004.

[48] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed
temporal moving object clusters. VLDB Endowment, 3(1-2):723–
734, 2010.

[49] Z. Li, J. Han, M. Ji, L. Tang, Y. Yu, B. Ding, J. Lee, and R. Kays.
Movemine: Mining moving object data for discovery of animal
movement patterns. ACM Transactions on Intelligent Systems
and Technology (TIST), 2(4):37, 2011.

[50] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and infer-
ring transportation routines. Artificial Intelligence, 171(5-6):311–
331, Apr. 2007.

[51] H. Loose, U. Franke, and C. Stiller. Kalman particle filter for lane
recognition on rural roads. In Intelligent Vehicles Symposium, 2009
IEEE, pages 60–65. IEEE, 2009.

[52] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang.
Map-matching for low-sampling-rate GPS trajectories. In GIS,
number c. ACM Press, 2009.

[53] R. P. S. Mahler. Multitarget bayes filtering via first-order multi-
target moments. IEEE Transactions on Aerospace and Electronic
Systems, 39(4):1152–1178, Oct. 2003.

[54] N. Malviya, S. Madden, and A. Bhattacharya. A Continuous
Query System for Dynamic Route Planning. In ICDE, 2011.

[55] Y. Manolopoulos, A. Nanopoulos, and Y. Theodoridis. R-trees:
Theory and Applications. Springer-Verlag New York Inc, 2006.

[56] O. Mazhelis. Using Recursive Bayesian Estimation for Matching
GPS Measurements to Imperfect Road Network Data. In Intelli-
gent Transportation Systems, pages 1492–1497, 2010.

[57] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal
Access Methods. IEEE Data Engineering Bulletin, 2010.

[58] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext:
a location predictor on trajectory pattern mining. In SIGKDD,
pages 637–646. ACM, 2009.

[59] K. P. Murphy. Dynamic Bayesian Networks: Representation, In-
ference, and Learning. Phd, University of California, Berkeley,
1994.

Sensing for Mobile Objects 345

[60] P. Newson and J. Krumm. Hidden Markov Map Matching Through
Noise and Sparseness. In SIG SPATIAL, 2009.

[61] W. Ng, J. Li, S. J. Godsill, and S. K. Pang. Multitarget Initiation,
Tracking and Termination Using Bayesian Monte Carlo Methods.
The Computer Journal, 50(6):674–693, Sept. 2007.

[62] J. Ni and C. Ravishankar. Pointwise-dense region queries in spatio-
temporal databases. InData Engineering, 2007. ICDE 2007. IEEE
23rd International Conference on, pages 1066–1075. IEEE, 2007.

[63] E. Nikolova, M. Brand, and D. R. Karger. Optimal Route Plan-
ning under Uncertainty. In International Conference on Automated
Planning and Scheduling, 2006.

[64] S. K. Pang, J. Li, and S. J. Godsill. Detection and Tracking of
Coordinated Groups. IEEE Transactions On Aerospace And Elec-
tronic Systems, 47(1), 2009.

[65] J. Patel, Y. Chen, and V. Chakka. Stripes: an efficient index for
predicted trajectories. In SIGMOD, pages 635–646. ACM, 2004.

[66] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Approaches
to the Indexing of Moving Object Trajectories. In VLDB, pages
395–406, 2000.

[67] O. Pink and B. Hummel. A statistical approach to map match-
ing using road network geometry , topology and vehicular motion
constraints. In Intelligent Transportation Systems, pages 862–867,
2008.

[68] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambr-
usch. Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects. IEEE Trans-
actions on Computers, 51(10):1124–1140, 2002.

[69] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. Current map-
matching algorithms for transport applications: State-of-the art
and future research directions. Transportation Research Part C,
15(5):312–328, Oct. 2007.

[70] J. Quinlan and R. Cameron-Jones. Foil: A midterm report. In
ECML, pages 1–20. Springer, 1993.

[71] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. In-
dexing the positions of continuously moving objects. In SIGMOD,
pages 331–342, June 2000.

[72] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. Campbell.
Nextplace: a spatio-temporal prediction framework for pervasive
systems. Pervasive Computing, pages 152–169, 2011.

346 MANAGING AND MINING SENSOR DATA

[73] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: a
Dynamic Index for Multi-Dimensional Objects. In VLDB, 1987.

[74] D. Simon. Kalman filtering with state constraints: a survey of
linear and nonlinear algorithms. Control Theory and Applications,
IET, 4:1303 – 1318, 2010.

[75] Z. Song and N. Roussopoulos. Seb-tree: An approach to index
continuously moving objects. In Mobile Data Management, pages
340–344. Springer, 2003.

[76] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and
indexing of moving objects with unknown motion patterns. In
SIGMOD. ACM Press, 2004.

[77] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor
search. In VLDB, pages 287–298. VLDB Endowment, 2002.

[78] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized
Spatio-Temporal Access Method for Predictive Queries. In VLDB,
2003.

[79] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden,
and L. Girod. Accurate, Low-Energy Trajectory Mapping for Mo-
bile Devices. In Networked Systems Design and Implementation
(NSDI), 2011.

[80] G. Trajcevski. Probabilistic range queries in moving objects
databases with uncertainty. In MobiDE, pages 39–45. ACM Press,
2003.

[81] G. Trajcevski, R. Tamassia, P. Scheuermann, and I. F. Cruz. Con-
tinuous Probabilistic Nearest-Neighbor Queries for Uncertain Tra-
jectories. In EDBT, 2009.

[82] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Man-
aging uncertainty in moving objects databases. ACM Transactions
on Database Systems (TODS), 29(3):463–507, 2004.

[83] H. Tsai, D. Yang, and M. Chen. Mining group movement pat-
terns for tracking moving objects efficiently. Knowledge and Data
Engineering, IEEE Transactions on, 23(2):266–281, 2011.

[84] M. Uddin, C. Ravishankar, and V. Tsotras. Finding regions of in-
terest from trajectory data. In Mobile Data Management (MDM),
2011 12th IEEE International Conference on, volume 1, pages 39–
48. IEEE, 2011.

[85] M. Ulmke, F. Fkie, and P. Willett. Gaussian Mixture Cardinalized
PHD Filter for Ground Moving Target Tracking. In Information
Fusion, number 3, 2007.

Sensing for Mobile Objects 347

[86] M. Ulmke and W. Koch. Road-map Assisted Ground Moving Tar-
get Tracking. IEEE Transactions on Aerospace and Electronic
Systems, 42(4):1264–1274, Oct. 2006.

[87] M. Vieira, P. Bakalov, and V. Tsotras. On-line discovery of flock
patterns in spatio-temporal data. In SIGSPATIAL, pages 286–295.
ACM, 2009.

[88] G. Welch and G. Bishop. An Introduction to the Kalman Fil-
ter. Technical report, University of North Carolina at Chapel Hill,
2006.

[89] D. Wilkie, J. V. D. Berg, M. Lin, and D. Manocha. Self-Aware
Traffic Route Planning. In Artificial Intelligence, pages 1521–1527,
2011.

[90] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez.
Cost and imprecision in modeling the position of moving objects.
In Data Engineering, 1998. Proceedings., 14th International Con-
ference on, pages 588–596. IEEE, 1998.

[91] S. Won, W. Melek, F. Golnaraghi, et al. A kalman/particle filter-
based position and orientation estimation method using a position
sensor/inertial measurement unit hybrid system. Industrial Elec-
tronics, 57(5):1787–1798, 2010.

[92] X. Xiong and W. Aref. R-trees with update memos. In ICDE,
pages 22–22. IEEE, 2006.

[93] J. Yang and J. Leskovec. Modeling information diffusion in implicit
networks. In ICDM, pages 599–608. IEEE, 2010.

[94] J. Yim, J. Joo, and C. Park. A kalman filter updating method for
the indoor moving object database. Expert Systems with Applica-
tions, 38(12):15075 – 15083, 2011.

[95] M. Yiu, Y. Tao, and N. Mamoulis. The b dual-tree: indexing
moving objects by space filling curves in the dual space. The
VLDB Journal, 17(3):379–400, 2008.

[96] X. Yu, A. Pan, L. Tang, Z. Li, and J. Han. Geo-friends recommen-
dation in gps-based cyber-physical social network. In ASONAM,
2011.

[97] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun. An
Interactive-Voting Based Map Matching Algorithm. In Mobile
Data Management, pages 43–52, 2010.

[98] M. Zhang, S. Chen, and C. S. Jensen. Effectively Indexing Uncer-
tain Moving Objects for Predictive Queries. In VLDB, 2009.

348 MANAGING AND MINING SENSOR DATA

[99] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data
clustering method for very large databases. In ACM SIGMOD
Record, volume 25, pages 103–114. ACM, 1996.

[100] K. Zheng, G. Trajcevski, X. Zhou, and P. Scheuermann. Proba-
bilistic range queries for uncertain trajectories on road networks.
In EDBT, pages 283–294. ACM, 2011.

[101] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing Uncertainty
of Low-Sampling-Rate Trajectories. In ICDE, 2011.

[102] Y. Zheng, L. Zhang, X. Xie, and W.-y. Ma. Mining Interesting
Locations and Travel Sequences from GPS Trajectories. InWWW,
pages 791–800, 2009.

[103] Y. Zhu, W. Wu, and V. Leung. Energy-efficient tree-based mes-
sage ferrying routing schemes for wireless sensor networks. Mobile
Networks and Applications, 16(1):58–70, 2011.

[104] http://www.gstatic.com/ads/research/en/2011\

_TheMobileMovement.pdf.

[105] http://www.idc.com/getdoc.jsp?containerId=prUS23112511.

[106] http://www.openstreetmap.org/.

[107] http://pems.dot.ca.gov/.

[108] http://www.movebank.org/.

http://www.gstatic.com/ads/research/en/2011_TheMobileMovement.pdf
http://www.idc.com/getdoc.jsp?containerId=prUS23112511
http://www.openstreetmap.org/
http://pems.dot.ca.gov/
http://www.movebank.org/
http://www.gstatic.com/ads/research/en/2011_TheMobileMovement.pdf

	Chapter 10 SENSING FOR MOBILE OBJECTS
	1. Introduction
	2. Data Management for Mobile Objects
	2.1 Spatiotemporal Database Systems
	2.2 Moving Object Databases
	2.3 Mobile Objects on Road Networks

	3. Probabilistic Models for Tracking
	3.1 The Tracking Problem
	3.2 Kalman Filter
	3.2.1 Joint, Marginal, and Conditional Gaussians.
	3.2.2 Filtering.
	3.2.3 Smoothing.

	3.3 Tracking with Road Networks
	3.4 Tracking for External Sensing

	4. Mining Mobility Data
	5. Discussion and Future Research Directions
	Acknowledgements
	References

