
Chapter 4
Existence Theory of Swirling Flow

4.1 Leray’s Theory

We will consider the stochastic Navier–Stokes equation for the swirling flow (1.23),
see Sect. 1.4, in the next three sections. Similar results hold for the stochastic
Navier–Stokes equation (1.65) describing fully developed turbulence. However, to
emphasize that (1.23) and (1.65) are not the same equations we will set the coef-
ficients ck to ck = hk in (1.23) below. The hks can then be large but decay with
increasing k. In this section we will first explain the probabilistic setting and prove
some a priori estimates.

We let (Ω ,F ,P), Ω is a set (of events) and F a σ -algebra on Ω , denote a
probability space with P the probability measure of Brownian motion and Ft a
filtration generated by all the Brownian motions bk

t on [t,∞). If f : Ω → H is a
random variable, mapping Ω into a Hilbert space H, for example, H = L2(T3), then
L2(Ω ,F ,P;H) is a Hilbert space with norm:

‖ f‖2
L2(Ω ,F ,P;H) = E(| f (ω)|22) =

∫
Ω
| f (ω)|22P(dω) =

∫
H
|x|2 f#P(dx),

where E denotes the expectation with respect to P and f#P denotes the pull back of
the measure P to H. A stochastic process ft in L 2 = L2([0,T ];L2(Ω ,F ,P;H)) has
the norm

‖ ft‖2
L 2 =

∫ T

0
E(| f (t,ω)|22)dt

and ft has the following properties; see [51].

Definition 4.1.

1. f (t,ω) : R+ ×Ω → R is measurable with respect to B ×F where B is the
σ -algebra of the Borel sets on [0,∞), ω ∈ Ω .

2. f (t,ω) is adapted to the filtration Ft .
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76 4 Existence Theory of Swirling Flow

3.

E

(∫ T

0
f 2(t,ω)dt

)
< ∞.

We are mostly interested in the Hilbert spaces H = Hm(T3) = W (m,2) that are the
Sobolev spaces based on L2 with the Sobolev norm

‖u‖2
m = |(1−Δ 2)m/2u|22.

The corresponding norm on L 2
m = L2([0,T ];L2(Ω ,F ,P;Hm(T3))) is

‖u‖L 2
m
=

[∫ T

0
E(‖u‖2

m)dt

]1/2

more information about Sobolev spaces can be found in [1]. We will abuse notation
slightly in this section by writing u instead of U ; see Sect. 1.4. This is done for future
reference and an easier comparison with Leray’s classical estimates.

Let 〈·, ·〉 denote the inner product on L2(T3). The following a priori estimates
provide the foundation of the probabilistic version of Leray’s theory.

Lemma 4.1. The L2 norms |u|2(ω , t) and |∇u|2(ω , t) satisfy the identity

d|u|22 + 2ν|∇u|22dt = 2 ∑
k �=0

〈u,h1/2
k ek〉dbk

t + ∑
k �=0

hkdt (4.1)

and the bounds

|u|22(ω , t) ≤ |u|22(0)e−2νλ1t + 2 ∑
k �=0

∫ t

0
e−2νλ1(t−s)〈u,h1/2

k ek〉dbk
s (4.2)

+
1− e−2νλ1t

2νλ1
∑
k �=0

hk,

∫ t

0
|∇u|22(ω ,s)ds ≤ 1

2ν
(|u|22(0)−|U|2)+ 1

ν ∑
k �=0

∫ t

0
〈u,h1/2

k ek〉dbk
s +

t
2ν ∑

k �=0

hk,

(4.3)

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on

the box [0,1]3 and hk = |h1/2
k |2. U is the velocity vector from Sect. 1.4. The expecta-

tions of these norms are also bounded:

E(|u|22)(t) ≤ E(|u|22(0))e−2νλ1t +
1− e−2νλ1t

2νλ1
∑
k �=0

hk, (4.4)

E

(∫ t

0
|∇u|22(s)ds

)
≤ 1

2ν
[E(|u|22(0))−|U|2]+ t

2ν ∑
k �=0

hk. (4.5)
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Proof. The identity (4.1) follows from Leray’s theory and Ito’s lemma. We apply
Ito’s lemma to the L2 norm of u squared:

d
∫
T3
|u|2dx = 2

∫
T3

∂u
∂ t

·udxdt + 2 ∑
k �=0

∫
T3

u ·h1/2
k ekdxdbk

t + ∑
k �=0

hk

∫
T3

dxdt, (4.6)

where k ∈ Z
3 and h1/2

k ∈R
3. Now by use of the Navier–Stokes equation (1.21)

d|u|22 = 2
∫
T3

νΔu ·u+(−u ·∇u+∇Δ−1(trace(∇u)2) ·udxdt

+2 ∑
k �=0

∫
T3

u ·h1/2
k ekdxdbk

t + ∑
k �=0

hkdt

= −2ν|∇u|22dt + 2 ∑
k �=0

∫
T3

u ·h1/2
k ekdxdbk

t + ∑
k �=0

hkdt

since the divergent-free vector u is orthogonal both to the gradient ∇Δ−1(trace(∇u)2)
and u ·∇u by the divergence theorem. Notice that the inner product (average) of u
and the stirring force f in (1.21) vanish, 〈u, f 〉= ū · f = 0, so f can be omitted in the
computation. The first term in the last expression is obtained by integration by parts.
This is the identity (4.1). The inequality (4.2) is obtained by applying Poincaré’s in-
equality

λ1|u|22 ≤ |∇u|22, (4.7)

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on
the cube [0,1]3.1 By Poincaré’s inequality

d|u|22 + 2νλ1|u|22dt ≤ d|u|22 + 2ν|∇u|22dt

= 2 ∑
k �=0

〈u,h1/2
k ek〉dbk

t + ∑
k �=0

hkdt.

Solving the inequality gives (4.2). Equation (4.3) is obtained by integrating (4.1)

|u|22(t)+ 2ν
∫ t

0
|∇u|22(s)ds = |u|22(0)+ 2 ∑

k �=0

∫ t

0
〈u,h1/2

k ek〉dbk
s + t ∑

k �=0

hk

and dropping |u−U|22(t)> 0, by use of (1.37).
Finally we take the expectations of (4.2) and (4.3) to obtain, respectively, (4.4)

and (4.5), using that the function 〈u,h1/2
k ek〉(ω , t) is adapted to the filtration Ft .

The following amplification of Leray’s a priori estimates will play an important
role in the a priori estimates of the solution of the stochastic Navier–Stokes equation
below.

1 We should subtract the mean from u in Poincaré’s inequality because of the periodic boundary
conditions, but the mean just washes out in the estimates.
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Lemma 4.2. Let u 1
2B

= u(x, t+ 1
2B) denote the translation of u in time by the number

1
2B . Then the L2 norms of the differences |u− u 1

2B
|2(ω , t) and |∇u−∇u 1

2B
|2(ω , t)

satisfy the identity

d|u− u 1
2B
|22 + 2ν|∇u−∇u 1

2B
|22dt = 2 ∑

k �=0

〈u− u 1
2B
,h1/2

k ek〉d(bk
t − bk

t+ 1
2B
) (4.8)

and the bounds

|u− u 1
2B
|22(ω , t) ≤ |u− u 1

2B
|22(0)e−2νλ1t

+2 ∑
k �=0

∫ t

0
e−2νλ1(t−s)〈u− u 1

2B
,h1/2

k ek〉d(bk
s − bk

t+ 1
2B
)

(4.9)∫ t

0
|∇u−∇u 1

2B
|22(ω ,s)ds ≤ 1

2ν
|u− u 1

2B
|22(0)

+
1
ν ∑

k �=0

∫ t

0
〈u− u 1

2B
,h1/2

k ek〉d(bk
s − bk

t+ 1
2B
), (4.10)

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on

the box [0,1]3 and hk = |h1/2
k |2. The expectations of these norms are also bounded

E(|u−∇u 1
2B
|22)(t) ≤ E(|u−∇u 1

2B
|22(0))e−2νλ1t (4.11)

E

(∫ t

0
|∇u−∇u 1

2B
|22(s)ds

)
≤ 1

2ν
E(|u−∇u 1

2B
|22(0)) (4.12)

by the expectations of the initial data of the differences.

The proof of this lemma is analogous to the proof of Lemma 4.1 and can be found
in [17].

Remark 4.1. Notice that in the notation of Sect. 1.4 |U −U 1
2B
|22 = |u−u 1

2B
|22 because

the constant velocity U cancels out.

4.2 The A Priori Estimate of the Turbulent Solutions

The mechanism of the turbulence production are fast oscillations driving large tur-
bulent noise that was initially seeded by small white noise, as explained in the pre-
vious section. These fast oscillations are generated by the fast constant flow U =U1,
where we have dropped the subscript 1, and the flow is rotating with amplitude A and
angular velocity Ω . The frequency of these oscillations increases with U and AΩ .
The bigger U and AΩ are the more efficient this turbulence production mechanism
becomes.
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In this section we will establish an a priori estimate on the norm of the tur-
bulent solution that allows us to extend the local existence and uniqueness to the
whole real-time axis. Thus the a priori estimates suffice to give global existence and
uniqueness. We recall the oscillatory kernel (1.34) from Sect. 1.4:

∑
k �=0

h1/2
k

∫ t

0
e−(4π2|k|2+2π iU1k1)(t−s)−2π iA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)]dbk

sek(x). (4.13)

The imaginary part of the argument of the exponential creates oscillations and as U1

and AΩ become larger these oscillations become faster. We take advantage of this
mechanism to produce the a priori estimates.

Next lemma plays a key role in the proof of the useful estimate of the turbu-
lent solution. It is a version of the Riemann–Lebesgue lemma which captures the
averaging effect (mixing) of the oscillations.

Lemma 4.3. Let the Fourier transform in time be

w̃ =

∫ T

0
w(s)e−2π i(k1U+A(k2,k3)Ω)sds,

where A(k2,k3) = A
√

k2
2 + k2

3 and w = w(k, t), k = (k1,k2,k3), is a vector with three

components. If T is an even integer multiple of 1
k1U+A(k2,k3)Ω

, then

w̃ = #̃w, (4.14)

where

#w =
1
2

[
w(s)−w

(
s+

1
2[k1U +A(k2,k3)Ω ]

)]
=

1
2

∫ s

s+ 1
2|k1U+A(k2,k3)Ω |

∂w
∂ r

dr

(4.15)

and #w satisfies the estimate

|#w| ≤ 1
4|k1U +A(k2,k3)Ω |ess sup[s,s+ 1

2(k1U1+A(k2,k3)Ω)
]

∣∣∣∣∂w
∂ s

∣∣∣∣ . (4.16)

Proof. The proof is similar to the proof of the Riemann–Lebesgue lemma for the
Fourier transform in time, let B(k) = k1U +A(k2,k3)Ω :

w̃(k) =
∫ T

0
w(s)e−2π iBsds

= −
∫ T

0
w(s)e−2π iB(s− 1

2B )ds

= −
∫ T

0
w

(
s+

1
2B

)
e−2π iBsds,
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where we have used in the last step that w is a periodic function on the interval [0,T ].
Taking the average of the first and the last expression we get

w̃ =
1
2

∫ T

0

(
w(s)−w

(
s+

1
2B

))
e−2π iBsds = #̃w.

Now

|#w| = 1
2

∣∣∣∣
(

w(s)−w

(
s+

1
2B

))∣∣∣∣
≤ 1

2

∫ s+ 1
2B

s

∣∣∣∣∂w
∂ r

∣∣∣∣dr

≤ 1
4|B|ess sup[s,s+ 1

2B ]

∣∣∣∣∂w
∂ s

∣∣∣∣
by the mean-value theorem.

Corollary 4.1. If T is not an even integer multiple of 1
B(k) =

1
k1U+A(k2,k3)Ω

, then

w̃ = #̃w− 1
2

∫ 0

− 1
2B

w

(
s+

1
2B

)
e−2π iBsds+

1
2

∫ T

T− 1
2B

w

(
s+

1
2B

)
e−2π iBsds, (4.17)

where w̃ satisfies the estimate

|w̃| ≤ |#̃w|+ 1
|B|ess sup[− 1

2B ,0]∩[T− 1
2B ,T ]

∣∣∣∣w
(

s+
1

2B

)∣∣∣∣ . (4.18)

Proof. The proof is the same as of the lemma except for the step

w̃(k) =
∫ T

0
w(s)e−2π iBsds =−

∫ T

0
w(s)e−2π iB(s− 1

2B )ds

= −
∫ T

0
w(s+

1
2B

)e−2π iBsds−
∫ 0

− 1
2B

w

(
s+

1
2B

)
e−2π iBsds

+

∫ T

T− 1
2B

w

(
s+

1
2B

)
e−2π iBsds.

The lemma allows us to estimate the Fourier transform (in t) of w in terms of the time
derivative of w, with a gain of (k1U +A(k2,k3)Ω)−1. Below we will use it in an esti-
mate showing that the limit of #w is zero when |B(k)|= |(k1U +A(k2,k3)Ω)| → ∞.

Lemma 4.4. The integral

∫ t

0
(2π |k|)pe−(4π2ν|k|2+2π i[B(k)(t−s)+g])ds,
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where B(k) = k1U +A(k2,k3)Ω , is bounded by

(2π)p
∫ t

0
|k|pe−4π2ν|k|2(t−s)ds ≤C t1− p

2 (4.19)

for 0 ≤ p < 2, where C is a constant. In particular,

∫ t

t−δ
(2π |k|)pe−(4π2ν|k|2+2π i[B(k)(t−s)+g])ds ≤C δ 1− p

2 . (4.20)

Proof. We estimate the integral

∫ t

0
|k|pe−4π2ν|k|2(t−s)ds =

∫ t

0
|k|pe−4π2ν|k|2rdr

≤
( p

4π2

) p
2

e−p
∫ t

0
r−

p
2 dr =Ct1− p

2 ,

where

k =
1

2π

√
p
r

is the value of k where the integrand achieves its maximum.

The rotation can resonate with the uniform (linear) flow due to the nonlinearities
in the Navier–Stokes equation. The following lemma restricts the values of velocity
coefficients so that no resonance occurs.

Lemma 4.5. Suppose that for k1 < 0 and
√

k2
2+k2

3
|k1| �= 0 or ∞, the constants U, A, and

Ω satisfy the non-resonance condition

∣∣∣∣∣∣
U

AΩ
+

√
k2

2 + k2
3

k1

∣∣∣∣∣∣≥
C

|k1|r , (4.21)

where C is a constant and 0 < r < 1; then for all k = (k1,k2,k2) �= 0,

|Uk1 +AΩ
√

k2
2 + k2

3| �= 0 (4.22)

and

lim
|k|→∞

|Uk1 +AΩ
√

k2
2 + k2

3|= ∞. (4.23)

Moreover,

|Uk1 +AΩ
√

k2
2 + k2

3| ≥ B = min(U,AΩ ,CAΩ). (4.24)
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Proof. If k1 > 1, then
∣∣∣∣Uk1 +AΩ

√
k2

2 + k2
3

∣∣∣∣=U |k1|+AΩ
√

k2
2 + k2

3 > 0

so (4.22) and (4.23) hold. If k1 < 0, then by (4.21)
∣∣∣∣Uk1 +AΩ

√
k2

2 + k2
3

∣∣∣∣≥C ΩA|k1|1−r > 0

and

lim
|k|→∞

∣∣∣∣Uk1 +AΩ
√

k2
2 + k2

3

∣∣∣∣≥C ΩA lim
|k1|→∞

|k1|1−r = ∞

if |k1|→ ∞. If on the other hand |k1|<∞ when |k| →∞ then (4.23) also holds. When
k1 = 0, (4.22) and (4.23) are obvious and also if k2 = k3 = 0.

The lower bound (4.24) is read of
∣∣∣∣Uk1 +AΩ

√
k2

2 + k2
3

∣∣∣∣
when k1 ≥ 1. Then it is either U or AΩ . When k1 = 0 then it is AΩ and by (4.21),
when k1 ≤−1, it is greater than or equal CAΩ .

The next question to ask is in which space do the turbulent solutions live? This
was pointed out by Onsager in 1945 [53]. He pointed out that if the solutions satisfy
the Kolmogorov scaling down to the smallest scales, they must be Hölder continuous
function with Hölder exponent 1/3. In three dimensions this means that they live in

the Sobolev space H
11
6 +ε based on L2(T3).

If q
p is a rational number let q

p
+ denote any real number s > q

p .

Theorem 4.1. Let the velocity U = U1 of the mean flow and the product AΩ of the
amplitude A and the frequency Ω of the rotation be sufficiently large, in the uni-
form rotating flow (1.19), with U, AΩ also satisfying the non-resonance conditions
(4.21). Then the solution of the integral equation (1.32) is uniformly bounded in
L 2

11
6
+ ,

ess supt∈[0,∞)E(‖u‖2
11
6
+)(t)≤

(
1−C

(
1

B2 +δ
1
6
−
))−1

[
∑
k �=0

3(1+(2π|k|) 11
3
+

)

8π2ν|k|2 hk +
C′

B

]
,

(4.25)

where B = min(|U |,AΩ ,CAΩ) is large, δ small, and C and C′ are constants.

Corollary 4.2 (Onsager’s Observation). The solutions of the integral equation
(1.32) are Hölder continuous with exponent 1/3.
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Remark 4.2. The estimate (4.25) provides the answer to the question we posed in

Sect. 1.4 how fast the coefficients h1/2
k had to decay in Fourier space. They have to

decay sufficiently fast for the expectation of the H
11
6
+

= W ( 11
6
+
, 2) Sobolev norm of

the initial function u0, to be finite. This expectation appear on the right-hand side of
(4.25). In other words the L 2

11
6
+ norm of the initial function u0 has to be finite.

The proof of the theorem involves long estimates and can be found in [17]. An
outline of the proof is given in Appendix A.

We consider the integral equation

u(x, t) = ∑
k �=0

[
h1/2

k Ak
t −

∫ t

0
e−[4π2ν|k|2+2π iB(k)](t−s)−2π ig(k,t,s)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

]
ek(x),

where B(k) =Uk1 +A(k2,k3)Ω .

Lemma 4.6. The initial condition (u− u 1
2B
)(0) satisfies the estimate

|u− u 1
2B
|22(0)≤ 2 ∑

j �=0

|A j
1

2B(k)
|2 + C

|B(k)|2 ess supt∈[0, 1
2B ]

‖u‖2
11
6
+ . (4.26)

Proof. We use the integral equation

u− u 1
2B

= ∑
k �=0

[
h1/2

k (Ak
t −Ak

t+ 1
2B
)

−
(∫ t

0
e−[4π2ν|k|2+2π iB(k)](t−s)−2π ig(k,t,s)

)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

−
∫ t+ 1

2B

0
e−[4π2ν|k|2+2π iB(k)](t+ 1

2B−s)−2π ig(k,t+ 1
2B ,s)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

]
ek(x),

where B(k) =Uk1 +A(k2,k3)Ω . At t = 0,

|u− u 1
2B
|2(0) = |u 1

2B
|2(0) = 2 ∑

j �=0

h j|A j
1

2B
|2 + C

|B(k)|2 ess supt∈[0, 1
2B ]

‖u‖2
11
6
+

by the same estimates as above.
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Lemma 4.7. The identity (4.1) in Lemma 4.1 can be modified for a > 0

d(eνat |u|22)+2νeνat |∇u|22dt=νaeνat |u|22dt+2eνat ∑
k �=0

〈u,h1/2
k ek〉dbk

t +eνat ∑
k �=0

hkdt

(4.27)

and produces the estimates

|u|22(t) ≤ |u|22(0)
(

e−νat +
ae−2νλ1t

(a− 2λ1)

)
+ 2 ∑

k �=0

∫ t

0
e−νa(t−s)〈u,h1/2

k ek〉dbk
s

(4.28)

+2 ∑
k �=0

∫ t

0
e−νa(t−s)

∫ s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dbk
rds+

1
ν

(
1
a
+

1
2λ1

)
∑
k �=0

hk

and

∫ t

0
e−νa(t−s)|∇u|22(s)ds ≤ 1

2ν
(|u|22(0)−|U|2)

(
e−νat +

ae−2νλ1t

(a− 2λ1)

)

+
1
ν ∑

k �=0

∫ t

0
e−νa(t−s)〈u,h1/2

k ek〉dbk
s (4.29)

+
1
ν ∑

k �=0

∫ t

0
e−νa(t−s)

∫ s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dbk
rds

+
1

2ν2

(
1
a
+

1
2λ1

)
∑
k �=0

hk,

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on

the box [0,1]3 and hk = |h1/2
k |2.

Proof. We multiply the identity (4.1) in Lemma 4.1 by eνat to get (4.27). Then
integration gives the equality

|u|22(t)+ 2ν
∫ t

0
e−νa(t−s)|∇u|22(s)ds = |u|22(0)e−νat +νa

∫ t

0
e−νa(t−s)|u|22(s)ds

+2 ∑
k �=0

∫ t

0
e−νa(t−s)〈u,h1/2

k ek〉dbk
s

+
(1− e−νa(t−s))

νa ∑
k �=0

hk.

Now substituting the estimate (4.2), from Lemma 4.1, for |u|22 on the right-hand side
gives the two inequalities (4.28) and (4.29) as in Lemma 4.1.
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Lemma 4.8. The functions H,K, and L in the proof of Theorem 4.1 satisfy the
estimate

E(H +K+L) ≤ C
|B(k)|2 E(ess supt∈[0, 1

2B ]
‖u‖2

11
6
+)+

C′

B
(4.30)

with B = min(U,AΩ ,CAΩ).

The proof of the lemma involves long formulas for H,K, and L and can be found
in [17].

Remark 4.3. Corollary 4.2 is the resolution of a famous question in turbulence, for
the swirling flows: Is turbulence always caused by the blow up of the velocity u? The
answer according to Theorem 4.1 is no; the solutions are not singular. However, they
are not smooth either, contrary to the belief, stemming from Leray’s theory [42], that
if solutions are not singular then they are smooth. By Corollary 4.2 the solutions are
Hölder continuous with exponent 1/3 in three dimensions. This confirms an obser-
vation made by Onsager [54] in 1945. In particular the gradient ∇u and vorticity
∇× u are not continuous in general as discussed in Sect. 3.7.

Remark 4.4. U and AΩ do not have to be made very large for the estimate (4.25) to
be satisfied, because B(k)→ ∞ as |k| → ∞. How big U and AΩ have to be for (4.25)
to hold is probably best answered by a numerical simulation.

We can now prove that ess supt∈[0,∞)‖u(t)‖2
11
6
+ is bounded with probability close

to one.

Lemma 4.9. For all ε > 0 there exists an R such that

P(ess supt∈[0,∞)‖u(t)‖2
11
6
+ < R)> 1− ε. (4.31)

Proof. By Chebyshev’s inequality and the estimate (4.25) we get that

P(ess supt∈[0,∞)‖u(t)‖2
11
6
+ ≥ R)<

C
R
< ε

for R sufficiently large.

4.3 Existence Theory of the Stochastic Navier–Stokes Equation

In this section we prove the existence of the turbulent solutions of the initial value
problem (1.23). The following theorem states the existence of turbulent solutions
in three dimensions. First we write the initial value problem (1.23) as the integral
equation (4.32)
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u(x, t) = u0(x, t)−
∫ t

0
eK(t−s) ∗ [u ·∇u−∇Δ−1tr(∇u)2]ds. (4.32)

Here eKt is the oscillatory heat kernel (1.33) and

u0(x, t) = ∑
k �=0

h1/2
k Ak

t ek(x)

the Ak
t s being the oscillatory Ornstein–Uhlenbeck-type processes from (1.34).

Theorem 4.2. If the uniform flow U and product of the amplitude and frequency
AΩ , of the rotation, are sufficiently large, B = min(|U |,AΩ ,CAΩ), δ is small and
the non-resonance conditions (4.21) are satisfied, so that the a priori bound (4.25)
holds, then the integral equation (4.32) has unique global solution u(x, t) in the

space C([0,∞);L2(Ω ,F ,P;H
11
6
+

)), u is adapted to the filtration generated by the
stochastic process

u0(x, t) = ∑
k �=0

h1/2
k Ak

t ek

and

E

(∫ t

0
‖u‖2

11
6
+ds

)
≤
(

1−C

(
1

B2 + δ
1
6
−
))−1

[
∑
k �=0

3(1+(2π |k|) 11
3
+

)

8π2ν|k|2 hk +
C′

B

]
t.

(4.33)

This theorem is a standard application of the contraction mapping principle to prove
global existence and uniqueness. Then the unique local solution is extended to the
whole positive time axis by use of the a priori bound (4.25). A detailed proof can be
found in [17].

We now add the initial condition u(x,0) = u0(x), with mean zero, to the integral
equation (4.32).

Theorem 4.3. If the uniform flow U and the product of the amplitude AΩ and fre-
quency of the rotation, B = min(|U |,AΩ ,CAΩ), are sufficiently large, δ small, and
the non-resonance conditions (4.21) are satisfied, so that the a priori bound (4.25)
holds, then the integral equation

u(x, t) = eKt ∗ u0(x)+ u0(x, t)−
∫ t

0
eK(t−s) ∗ (u ·∇u−∇Δ−1(∇u)2) ds, (4.34)

where eKt is the oscillating kernel in (1.33), has unique global solution u(x, t) in the

space C([0,∞);L2(Ω ,F ,P;H
11
6
+

)), u is adapted to the filtration generated by the
stochastic process

u0(x, t) = ∑
k �=0

h1/2
k Ak

t ek
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and

E

(∫ t

0
‖u‖2

11
6
+ds

)
≤
(

1−C

(
1

B2 + δ
1
6
−
))−1

[
∑
k �=0

(1+(2π |k|) 11
3
+

)

2π2ν|k|2 hk +
C′

B

]
t.

(4.35)

The proof of the theorem is exactly the same as the proof of Theorem 4.2 once the
a priori bound (4.25) is established. A proof can be found in [17].

Corollary 4.3. For any initial data u0 ∈ L̇2(T3), the L2 space with mean zero, and
any t0 > 0, there exists a mean flow U, an amplitude and angular velocity AΩ , and

δ small, such that (4.34) has a unique solution in C([t0,∞);L2(Ω ,F ,P;H
11
6
+

)).

Proof. For t > 0, eKt ∗ u0(x) is smooth. Now apply Theorem 4.3.

Next we prove a Gronwall estimate that can be use to prove local (in t) stability
and irreducibility; see [17].

Lemma 4.10. Let u be a solution of (4.32) with an initial function u0(x, t) =

∑k �=0 h1/2
k Ak

t ek and initial condition u0(x) and y a solution of

yt +U ·∇y = νΔy− y ·∇y+∇Δ−1tr(∇y)2 + f (4.36)

with initial condition y0(x), then

‖u− y‖2
11
6
+(t) ≤ [3‖u0 − y0‖2

11
6
+ +3‖ ∑

k �=0

h1/2
k Ak

t ek − eKt ∗ f ‖2
11
6
+

+δ 2C1ess sups∈[t−δ ,t](‖u‖2
11
6
+ +‖y‖2

11
6
+)]e

C2
∫ t−δ

0 (1+‖u‖2
11
6
++‖y‖2

11
6
+)ds

,

(4.37)

where C1 and C2 are constants and δ can be made arbitrarily small. The Ak
t s are

the oscillatory Ornstein–Uhlenbeck-type processes (1.35) and eKt is the oscillatory
kernel in (1.33).

Proof. We subtract the integral equation for y from that of u:

u = u0 + ∑
k �=0

h1/2
k Ak

t ek + eKt ∗ (−u ·∇u+∇Δ−1tr(∇u)2),

y = y0 + eKt ∗ f + eKt ∗ (−y ·∇y+∇Δ−1tr(∇y)2).

Thus

‖u− y‖2
11
6
+(t) ≤ [3‖u0− y0‖2

11
6
+ + 3‖ ∑

k �=0

h1/2
k Ak

t ek − eKt ∗ f‖2
11
6
+

+3‖eKt ∗ (−w∇u− y∇w+∇Δ−1tr∇α ·∇w)‖2
11
6
+],
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where w = u− y and α = u+ y. Now the same estimates as in Theorem 4.1 give

‖u− y‖2
11
6
+(t) ≤ 3‖u0 − y0‖2

11
6
+ + 3‖ ∑

k �=0

h1/2
k Ak

t ek − eKt ∗ f‖2
11
6
+

+C1δ 2ess sups∈[t−δ ,t](‖u‖2
11
6
+ + ‖y‖2

11
6
+)

+C2

∫ t−δ

0
(1+ ‖u‖2

11
6
+ + ‖y‖2

11
6
+)(‖u− y‖2

11
6
+)ds.

Then Grönwall’s inequality gives (4.37).
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