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Preface

In this book we present the recently developed statistical theory of turbulence in a
form that can be appreciated by physicists, mathematicians, and engineers. The the-
ory is grounded in probability theory and we develop from probability all the results
that are necessary to understand the turbulence theory, without proofs. However,
references are given to standard texts where the proofs and more background details
can be found. The goals are to find estimates for structure functions of turbulence
that are realized in simulation and experiments; to derive the invariant measure of
turbulence both for the one-point statistics and the two-point statistics; and finally
to derive the probability density function (PDF) for the statistics that are used in
practice. We do not assume any mathematical background but familiarity with basic
probability theory and partial differential equations obviously helps.

We will see that the Navier–Stokes equation for all but the largest scales in tur-
bulent flow can be expressed as a stochastic Navier–Stokes equation (1.65). The
stochastic forcing results from instabilities of the flow that magnifies small ambient
noise and saturates its growth into large stochastic forcing. This has been mod-
eled before by a Reynolds decomposition and by a coarse graining of the flow. The
stochastic force is generic and is determined by the general principles of probability
with a minimum of physical inputs. It consists of two components: additive noise
and multiplicative noise and the additive component is determined by the central
limit theorem and the large deviation principle. The physical input is that these two
terms must produce similar scalings because they are the detailed description of the
same dissipative processes. This determines the rate in the large deviation principle.
The multiplicative noise multiplies the fluid velocity and models jumps (vorticity
concentrations) in the velocity gradient. It is expressed by a generic Poisson process
where only the rate needs to be given. This rate is determined by the spectral analy-
sis of the (linearized) Navier–Stokes operator and the requirement, following [64],
that the dimension of the most singular vorticity structure (filaments) is one. Thus
the stochastic forcing is generic and determined with two mild physical inputs.

The stochastic Navier–Stokes equation can be expressed as an integral equation
(2.17) and the log-Poissonian processes found by She and Leveque and explored
by She and Waymire and Dubrulle are produced from the multiplicative noise by
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viii Preface

the Feynman–Kac formula. This gives a satisfying mathematical derivation of the
intermittency phenomena that had earlier been derived from impirical considera-
tions. Moreover, the integral equations show how the Navier–Stokes evolution and
the log-Poissonian intermittency processes act on the dissipation processes to pro-
duce the intermittency in the dissipation. This is a mathematical derivation of the
experimental observation that intermittent dissipation processes accompany inter-
mittent velocity variations. Using the integral equation, we get an estimate on all
the structure functions of the velocity differences in turbulence. The evidence from
simulations and experiments is that this upper bound is reached in turbulent flow.
Why the inertial cascade achieves this maximal efficiency in the energy transfer
remains to be explained.

We then build on Hopf’s [29] ideas to compute the invariant measure of turbulent
flow. This measure can be computed because it solves a linear functional differential
equation, the Kolmogorov–Hopf equation; see [56]. It turns out to be an infinite-
dimensional Gaussian multiplied by a (discrete) Poisson distribution. This Poisson
distribution corresponds to the intermittency and the log-Poisson processes. Then by
taking the trace of the invariant measure we get the PDF of the velocity differences.
We first derive the functional differential equation (PDE) for the PDF and then show
that there are infinitely many PDFs, each corresponding to a particular moment
because of the intermittency corrections. The PDE (3.15) for the sequence of PDFs
can also be solved and the PDFs turn out to be the normalized inverse Gaussian
(NIG) distributions of Barndorff–Nielsen [7]. Their parameters are easly computed
and we see how to do this for both simulations and experiments.

It is interesting to notice that although the solution of the Navier–Stokes equation
may not be unique or smooth the invariant measure of the velocity differences (3.12)
is still well defined by Leray’s [42] existence theory. Moreover, different velocities
produce equivalent measures, so the statistical observables of turbulence are unique
although the turbulent velocity may not be.

The theory presented in this book must be complemented by a dynamical systems
theory for the large-scale structures in fluid flow and eventually one wants to work
out how the small-scale flow presented here influences the large-scale dynamics.
This is a material for future research, but hopefully the tools presented in this book
will also be helpful in that endeavor.

Santa Barbara, California, Björn Birnir
United States
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Chapter 1
The Mathematical Formulation of Fully
Developed Turbulence

1.1 Introduction to Turbulence

The purpose of the research discussed in this book is to develop new mathematical
tools that open the theory of turbulence up to theoretical investigations. Great strides
are currently being made both in turbulence experiments and simulations, but the
new mathematical development will allow theoreticians to compare with both sim-
ulations and experiments and make new predictions useful to both areas.

The ultimate goal of turbulence research is to develop methods to systematically
improve the simulations of turbulent systems. Such methods have been ad hoc so
far, with different techniques applied to each situations. The new theory will permit
a systematic approach where the simulations and experiment can be made increas-
ingly accurate in a stepwise fashion.

These developments will eventually have a big effect on technology permitting
improvements in aircraft and car design, more efficient travel in and out of space,
less pollution, more fuel efficiency, and greater efficiency of wind turbines and
wave energy farms. It will help to understand weather patterns and greatly advance
weather predictions. In addition it will aid a wide variety of applications of turbu-
lence in industry and science.

In 1941 Kolmogorov and Obukhov [34, 35, 49] proposed a statistical theory of
turbulence based on dimensional arguments. The main consequence and test of this
theory was that the structure functions of the velocity differences of a turbulent fluid

E(|u(x, t)− u(x+ l, t)|p) = Sp =Cplp/3

should scale with the distance (lag variable) l between them, to the power p/3. This
theory was immediately criticized by Landau for not taking into account the influ-
ence of the large flow structure on the constants Cp and later for not including the
influence of the intermittency, in the velocity fluctuations, on the scaling exponents.

In 1962 Kolmogorov and Obukhov [36, 50] proposed a corrected theory where
both of those issues were addressed. They also pointed out that the scaling exponents

B. Birnir, The Kolmogorov-Obukhov Theory of Turbulence: A Mathematical
Theory of Turbulence, SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-6262-0 1,
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2 1 The Mathematical Formulation of Fully Developed Turbulence

for the first two structure functions could be corrected by log-normal processes.
For higher-order structure functions the log-normal processes gave intermittency
corrections inconsistent with contemporary simulations and experiments.

In [18] the author showed how the central limit theorem and large deviation
principle produce additive noise that must be added to the Navier–Stokes equa-
tion for a proper description of fully developed turbulence. In addition, jumps in
the velocity gradients produce multiplicative noise that must also be added to the
deterministic equation. Following Hopf’s work in 1952 [29], he used this stochas-
tic Navier–Stokes equation to compute the scaling of the structure functions and
compute the probability density function (PDF) of the velocity differences. The
Feynman–Kac formula produces log-Poisson processes from the stochastic Navier–
Stokes equation. These processes, first found by She and Leveque [64], Waymire
[65], and Dubrulle in 1995 [23], give the correct intermittency corrections to the
structure functions of turbulence.

The PDF of the velocity differences (two-point statistics) turned out to be the
generalized hyperbolic distribution first suggested by Barndorff-Nielsen in 1977 [6].
The author compared the theoretical PDF with PDFs obtained from DNS simula-
tions and wind tunnel experiments and found excellent agreement [18].

In this book the Kolmogorov–Obukhov statistical theory of turbulence, with
intermittency corrections, is derived from a stochastic Navier–Stokes equation with
generic noise. Various aspects of the theory are proven and its extension to turbulent
vorticity developed. In collaboration with both experimental groups and researchers
doing direct Navier–Stokes simulations (DNS) the theory is verified and used to
predict both the experimental and numerical results.

The literature on turbulence is vast and we will not attempt to survey it here.
However, we will mention some important texts and recent papers that have
addressed different aspects of the theory. First the two encyclopedic books by
Momin and Yaglom [46, 47] laid the foundation for much of the later research and
set the stage for the questions that needed to be answered. In particular they stressed
Kolmogorov’s point of view that the theory of turbulence was statistical and the
ultimate goal was to find the invariant measure of turbulence. Then the invariant
measure should be used to show that, if large-scale structures that characterize dif-
ferent flows are removed, the turbulent flow is uniquely ergodic in a statistical sense.

The earlier mathematical books on the subject, [5, 61, 74], emphasized the theory
of finite-dimensional attractors, see also [25], and tried to build the turbulence the-
ory on them. There seems to be fundamental reasons why this cannot work. The
attractors of dissipative nonlinear partial differential equations (PDEs) on compact
domains are finite-dimensional, see [62, 63], and using ideas of Milnor, see [31, 45],
it can show that the core of the attractors that attracts a (prevalent) set of full mea-
sure in phase space is typically low-dimensional. Thus these attractors cannot be
used to describe fully developed turbulence that is for all practical purposes infinite-
dimensional and continues to explore the full phase space for all time. In fact, the
role of the attractor is played by the invariant measure for turbulence systems and
this invariant measure is supported on the whole infinite-dimensional space. The
techniques developed by the above authors have, however, proven to be very useful
in the development of the stochastic theory of turbulence presented in this book.
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The physics and engineering literature has been more faithful, with the exception
of [74], to the infinite-dimensionality and ergodicity of turbulent flow, see [10, 26,
55], and the 1-point statistics were essentially worked out by Batchelor [9] and
Townsend [72] using the symmetries of homogeneous and isotropic turbulence.
Good reviews can be found in [48] and [68]. The theory by Kraichnan of passive
scalar is a milestone in turbulence theory, see [20], and a guiding light for later de-
velopments; see also his other works [37–39]. The multi-fractal theory detailed in
[26] is able to reproduce many results from experiments and simulations. However,
it involves a large number of parameters and is not fully satisfying from a mathe-
matical perspective.

Although it has been understood from the time of Taylor [70] that the theory of
turbulence is statistical it is only recently that serious attempts have been made to
develop the stochastic theory of turbulence. This theory was initiated for nonlinear
PDEs by Sinai [67] and much of it has been developed by him with his students
and collaborators. The stochastic forcing that is added to the deterministic Navier–
Stokes equation models the influence of the random environment on the fluid in fully
developed turbulence. Some of the authors who have developed this theory are Da
Prato and Zabczyk [57, 58], Flandoli and Gatarek [24], Kuksin and Shirikyan [41],
Mattingly and Hairer [27, 28], and Debussche and Odasso [21], to name a few. The
results have mostly been for the two-dimensional stochastic Navier–Stokes equation
and/or noise that is white both in time and space.

In retrospect it is clear why more progress has not made on the stochastic theory
of turbulence until [18]. There were three problems blocking the way: Firstly, the na-
ture of the noise was not understood. It cannot be white but is in fact a homogeneous
Lévy process, see Sect. 1.7.1; this form of the noise was inspired by McKean [44].
Secondly, the mistaken belief that the uniqueness of the three-dimensional solutions
had to be known for the invariant measure to exist. In fact, the existence of the
measure only requires Leray’s theory; see Sect. 4.1. Thirdly, the theory of infinite-
dimensional Ito processes was not developed until the book [56] by Da Prado ap-
peared in 2006 and only then could it be adapted to the stochastic Navier–Stokes
equation, as will be explained in this book.

We will use the Reynolds decomposition below to decompose the flow into
large-scale flow and small-scale flow describing Kolmogorov’s inertial range; see
Sect. 1.7. The deterministic Navier–Stokes equation describes the laminar small-
scale flow; it is unstable at large Reynolds numbers because of small noise present
in any fluid; see Sect. 1.4. The existence of the invariant measure for the laminar
flow is easily proven, see [25], but it can also be computed. It is a special case of the
measure in Theorem 3.1, when E, Q, and pk

mk
→ 0. We have been told after a vis-

itor to Kolmogorov in the 1980s, that Kolmogorov had then already computed this
invariant measure, or the solution of Hopf’s equation, and was very disappointed
to find it to be trivial. Namely, the invariant measure for the small-scale laminar
flow is a delta function centered at the origin, which is a trivial stationary solution.
Thus the deterministic Navier–Stokes equation (1.1) describes laminar flow and the
stochastic Navier–Stokes equation (1.65) describes fully developed turbulent flow.
The statistical theory of this turbulent flow is explained in this book.
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1.2 The Navier–Stokes Equation for Fluid Flow

Fluid flow is described by the deterministic Navier–Stokes equation

ut + u ·∇u = νΔu−∇p (1.1)

u(x,0) = u0(x)

with the incompressibility conditions

∇ ·u = 0, (1.2)

where u(x),x ∈ R
3, is the velocity of the fluid and ν is the kinematic viscosity.

Eliminating the pressure p using (1.2) gives the equation

ut + u ·∇u = νΔu+∇{Δ−1[trace(∇u)2]}. (1.3)

The pressure is eliminated by taking the divergence of (1.1) using the vector identity

∇ · (u ·∇u) = trace(∇u)2 + u ·∇(∇ ·u) = trace(∇u)2

by condition (1.2). This gives the equation

Δp = trace(∇u)2 (1.4)

for the pressure that is solved with periodic or Neumann boundary conditions. The
solvability condition

∫
D

∇ · (u ·∇u)dx =
∫

∂D
(u ·∇u) ·ndσ = 0

is clearly satisfied with periodic boundary conditions on a torus D = T
3, where dσ

denotes the surface element. In the case of Neumann boundary conditions f = ∂ p
∂n ,

on ∂D, must also satisfy the solvability condition

∫
∂D

f dσ =

∫
∂D

(u ·∇u) ·ndσ .

If these conditions are satisfied and the forcing trace(∇u)2 reasonably smooth, the
pressure equation (1.4) has a unique solution p = Δ−1[trace(∇u)2].

The turbulence of the fluid is quantified by the dimensionless Reynolds number
Re = UL

ν where U is a typical velocity of the flow and L is a typical length scale

associated with the flow. A more physically relevant Reynolds number is Rλ = Uλ
ν ,

where λ is the Taylor correlation length in turbulence. A rule of thumb for moderate
Reynolds number is Rλ ∼√

15Re. Thus the transition to turbulence occurs at Rλ ∼
100, flows are typically fully turbulent at Rλ ∼ 200, and a small stream can have
Reynolds number Rλ ∼ 400 and a large river Rλ ∼ 4,000; see [16].
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The deterministic Navier–Stokes equation describes laminar flow that may exist
when the Reynolds number is large, but then laminar flow is usually unstable. Small
noise prevalent in nature is magnified by the instabilities in the flow and it becomes
more useful to consider the velocity u(x) in turbulent flow to be a stochastic process;
see [35]. Then u satisfies a stochastic Navier–Stokes equation

du = (νΔu− u ·∇u+∇{Δ−1[trace(∇u)2]})dt + d ft , (1.5)

u(x,0) = u0(x).

Here d ft denotes the stochastic forcing in fully developed turbulence.
Much effort has gone into trying to derive the form of the stochastic forcing d ft

in the stochastic Navier–Stokes equation (1.5) for particular cases of fluid flow and
flow boundaries. Most of these efforts have been in vain because the noise in fully
developed turbulence does not seem to care how it arose, at least not sufficiently far
away from the boundary. Instead the noise seems to take a general form, depend-
ing only on small environmental noise that was magnified by the fluid instabilities
and this growth then saturated by the nonlinearities present in the flow (and in the
Navier–Stokes equation); see [15]. Below we will assume that the stochastic forcing
has a general form stipulated by probability theory and use this form and the struc-
ture of the Navier–Stokes equation to derive the invariant measure and the PDF for
turbulence. Then we will compare this PDF with PDFs obtained from simulations
and fluid experiments.

1.2.1 Energy and Dissipation

If we let D denote the volume in space and put periodic or vanishing (no-slip) veloc-
ity boundary condition on the boundary ∂D, then we derive a differential equation
relating the mean energy and the mean enstrophy:

E =
1

2|D|
∫

D
|u(x, t)|2dx, C =

1
2|D|

∫
D
|∇u(x, t)|2dx. (1.6)

Here |D| denotes the volume of D and “mean” refers to the fact that we are dividing
the energy and enstrophy by the volume. Multiplying (1.1) by u and integrating over
D we get, by integration by parts,

d
dt

E =−2νC ,

because all the other terms integrate to zero by the vanishing boundary conditions.
This equation will play a big role in the Leray theory in Sect. 4.1. Similarly, one can
get the equation

d
dt

H =−2νHω ,
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where ω = ∇× u is the vorticity and

H =
1

2|D|
∫

D
u ·ω(x, t)dx, Hω =

1
2|D|

∫
D

ω ·∇×ω(x, t)dx, (1.7)

are called, respectively, the mean helicity and mean vortical helicity; see [26]. We
now define the mean energy dissipation

ε =− d
dt

E . (1.8)

It will play a central role in the statistical theory in Chap. 2.

1.3 Laminar Versus Turbulent Flow

It has been clear to investigators of fluid flow at least from the time of the great
hydraulic engineer Leonardo da Vinci (1452–1519) that the flow has two forms:
one regular and another highly irregular. In the words of another engineer Osborne
Reynolds in 1883, see [60],

The internal motion of water assumes one or other of two broadly distinguishable forms-
either the elements of the fluid follow one another along lines of motion which lead in the
most direct manner to their destination or they eddy about in sinuous paths the most indirect
possible.

In modern terminology these flows are called respectively laminar and turbulent
and it was O. Reynolds who realized that which kind of flow one observed was a
question of the ratio of the inertial and viscous forces. He also identified the dimen-
sionless parameter, expressing this ratio, the Reynolds number,

Re =
UL
ν

(1.9)

that determined whether the flow is laminar or turbulent. Here U is a typical velocity
of the flow, L is a typical length scale in the flow, and ν is the kinematic viscosity.
Reynolds also found the onset of turbulence experimentally to be at Re = 500 and
the fluid to be fully turbulent at Re = 2,000. In fluid flow in a pipe the length scale
L is the diameter of the pipe and for flow in a channel L is the depth or width of
the channel. But for isotropic or homogeneous flow L is not obviously determined
by the physical domain of flow and then it makes sense to use the more general
Taylor–Reynolds number

Rλ =
Uλ
ν

,
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Fig. 1.1 A sphere in laminar flow with a turbulent wake.

where λ is the typical correlation length in the flow; see Sect. 1.2. In fully devel-
oped turbulent flow, the turbulence is not uniformly distributed throughout the flow
but forms turbulent structures that are interspersed by laminar flow. This is called
intermittency. As stated by Marusic and Nickels in [20]:

Spatial intermittency of the small-scale motion refers to the fact that the dissipation of
energy (and other characteristics of the flow) is not uniformly distributed throughout the
flow, as had been previously thought, but instead occurs in very intense events that are
sparsely distributed. The spatial means values are then averages of very large, very rare
events.

Intermittency of turbulence was already noticed by Reynolds and investigated in
great detail by, for example, Townsend [72]. He considered, in [71], models of the
fine-scale motion consisting of

a random distribution of vortex sheets and lines, in which the vorticity distribution is effec-
tively stationary in time, due to balance between the opposing effects of vorticity diffusion
by molecular viscosity, and vorticity production and convection by the turbulent shear

Using that the skewness of the velocity fluctuations is empirically negative,
Townsend showed that a random array of sheets is more likely than a random ar-
ray of vortex lines. For more along these lines, see [79, 80].

Kraichnan [40] pointed out that there are several different sources of intermit-
tency. First, non-Gaussian statistics of the energy-containing scales (large eddies)
can influence the statistics of the inertial range. Second, the intermittency can build
up in the inertial range cascade. Thirdly, intermittency effects intrinsic to the dissipa-
tion range can also influence the inertial range statistics. At finite Reynolds numbers
these different sources of intermittency may be impossible to separate.

The laminar solution may persist after the Reynolds number has become so high
that the flow is fully turbulent. But then it has become unstable and is physically
irrelevant. We will illustrate this with examples in the next section.
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1.4 Two Examples of Fluid Instability Creating Large Noise

Consider the Navier–Stokes equation (1.1) describing turbulent flow in the center
of a wide and deep river. We consider the flow to be in a box representing a typical
stretch of the river and impose periodic boundary conditions on the box. Since we
are mostly interested in what happens in the direction along the river we take our
x-axis to be in that direction.

We will assume that the river flows fast and pick an initial condition of the form

U(0) =U0e1, (1.10)

where U0 is a large constant and e1 is a unit vector in the x direction. Clearly this
initial condition is not sufficient because the fast flow may be unstable and the white
noise ubiquitous in nature will grow into small velocity and pressure oscillations;
see, for example, [11]. But we perform a thought experiment where white noise is
introduced into the fast flow at t = 0. This experiment may be hard to perform in
nature, but it is easily done numerically. It means that we should look for a solution
of the form

U(x, t) =U0e1 + u(x, t), (1.11)

where u(x, t) is smaller than U0 but not necessarily small. However, in a small initial
interval [0, t0] , u is small and satisfies (1.5) linearized about the fast flow U0:

ut +U0∂xu = Δu+ ḟ , (1.12)

u(x,0) = 0,

ḟ = d f
dt

, driven by the noise

f = ∑
k �=0

c1/2
k bk

t ek.

The ek = e2π ik·x are (three-dimensional) Fourier components and each comes with its

own independent Brownian motion bk
t . None of the coefficients of the vectors c1/2

k =

(c1/2
1 ,c1/2

2 ,c1/2
3 ) vanish because the turbulent noise was seeded by truly white noise

(white both in space and in time). f is not white in space because the coefficients c1/2
k

must have some decay in k so that the noise term in (1.12) makes sense. However,

to determine the decay of the c1/2
k s will now be a part of the problem. The form of

the turbulent noise f expresses the fact that in turbulent flow there is a continuous
source of small white noise that grows and saturates into turbulent noise that drives

the fluid flow. The decay of the coefficients c1/2
k expresses the spatial coloring of

this larger noise in turbulent flow. We have set the kinematic viscosity ν equal to
one for computational convenience, but it can easily be restored in the formulas.

This modeling of the noise is the key idea that makes everything else work. The
physical reasoning is that the white noise ubiquitous in nature grows into the noise
f that is characteristic for turbulence and the differentiability properties of the tur-
bulent velocity u are the same as those of the turbulent noise.
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The justification for considering the initial value problem (1.12) is that for a short
time interval [0, t0] we can ignore the nonlinear terms

−u ·∇u+∇{Δ−1[trace(∇u)2]}
in (1.5). But this is only true for a short time t0; after this time we have to start with
the solution of (1.12):

u0(x, t) = ∑
k �=0

c1/2
k

∫ t

0
e(−4π2|k|2+2π iU0k1)(t−s)dbk

sek(x) (1.13)

as the first iterate in the integral equation

u(x, t) = u0(x, t)+
∫ t

t0
eK(t−s) ∗ [−u ·∇u+∇Δ−1(trace(∇u)2)]ds, (1.14)

where eKt is the (oscillatory heat) kernel in (1.13). In other words to get the turbulent
solution we must take the solution of the linear equation (1.12) and use it as the first
term in (1.32). It will also be the first guess in a Picard iteration. The solution of
(1.12) can be written in the form

u0(x, t) = ∑
k �=0

c1/2
k Ak

t ek(x),

where the

Ak
t =

∫ t

0
e(−4π2|k|2+2π iU0k1)(t−s)dbk

s (1.15)

are independent Ornstein–Uhlenbeck processes with mean zero; see, for
example, [58].

Now it is easy to see that the solution of the integral equation (1.14) u(x, t) satis-
fies the driven Navier–Stokes equation:

ut +U0∂xu = Δu− u ·∇u+∇Δ−1(trace(∇u)2)+ ∑
k �=0

c1/2
k ḃk

t ek, t > t0,

(1.16)

ut +U0∂xu = Δu+ ∑
k �=0

c1/2
k ḃk

t ek, u(x,0) = 0, t ≤ t0,

and the above argument is the justification for studying the initial value problem
(1.16). We will do so numerically in the next section. The solution u of (1.16) still
satisfies the periodic boundary conditions and the incompressibility condition

∇ ·u = 0. (1.17)

The mean of the solution u0 of the linear equation (1.12) is zero by the formula
(1.13) and this implies that the solution u of (1.16) also has mean zero:

u(t) =
∫
T3

u(x, t)dx = 0. (1.18)
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Fig. 1.2 The traveling wave solution of the heat equation for the flow velocity U0 = 85. The per-
turbations are frozen in the flow. The x-axis is space, the y-axis time, and the z-axis velocity u.

1.4.1 Stability

The uniform flow U = U0e1 seems to be a stable solution of (1.12) judging from
the solution (1.13). Namely, all the Fourier coefficients are decaying. However, this
is deceiving; first the Brownian motion bk

t is going to make the amplitude of the
kth Fourier coefficient large in due time with probability one. More importantly if
U0 is large then (1.12) has traveling wave solutions that are perturbations “frozen
in the flow,” and for U0 even larger these traveling waves are unstable and start
growing. For U0 large enough this happens after a very short initial time interval
and makes the flow immediately become fully turbulent. The role of the white noise
is then not to cause enough growth eventually for the nonlinearities to become im-
portant, but rather to immediately pick up (large) perturbations that grow exponen-
tially. These are the large fluctuations that are observed in most turbulent flows.
In Fig. 1.1, we show the traveling wave solution of the transported heat equation
(1.12), with U0 = 85. In Fig. 1.2, where the flow has increased to U0 = 94, the trav-
eling wave has become unstable and grows exponentially. Notice the difference in
vertical scale between the figures.

Thus the white noise grows into a traveling wave that grows exponentially. This
exponential growth is saturated by the nonlinearities and subsequently the flow
becomes turbulent. This is the mechanism of explosive growth of turbulence of a
uniform stream; see Fig. 1.3.
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Fig. 1.3 The traveling wave solution of the heat equation for the flow velocity U0 = 94. The per-
turbations are growing exponentially. The x-axis is space, the y-axis time, and the z-axis velocity u.

Now we turn from the previous numerical example to an analytic one. We can
assume that the velocity of the flow is of the form

U = U+ u,

where U is a prescribed flow (vector) and establishes the existence of the correction
u which constitutes the turbulent part of the velocity. This is a perturbative approach
but u is not necessarily small. It can typically be as large, but not larger, as U.

We will denote the mean flow in the fully developed turbulent state by U1 and
assume that uniform flow with rotation is of the form

∂x
∂ t

= U =U1 j1 −Asin(Ω t +θ0) j2 +Acos(Ω t +θ0) j3, (1.19)

where the rotation can be extended in a periodic fashion from T
3 to R

3.1 One can
also extend a convection cell pattern from four copies of T3 to R

3 and we will use
that below. This implies that the deterministic particle motion in the rotating uniform
flow is simply

x(t) = [U1 j1 +
A
Ω

cos(Ω t +θ0) j2 +
A
Ω

sin(Ω t +θ0) j3]. (1.20)

1 For physical applications, see [30], cylindrical coordinates are more appropriate but cumbersome.
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By the same reasoning as above we can choose the coordinates so that the mean
flow component U1 j1 (1.19) is in the x1 direction and this direction is the axis of the
rotation.

First consider the stirred Navier–Stokes equation

Ut +U ·∇U = νΔU −∇Δ−1trace(∇U)2

−AΩ cos(Ω t +θ0) j2 −AΩ sin(Ω t +θ0) j3 (1.21)

U(x,0) = U1 j1 −Asin(θ0) j2 +Acos(θ0) j3,

where we have used the incompressibility conditions

∇ ·U = 0 (1.22)

to eliminate the pressure term. We want to consider turbulent flow driven by a uni-
directional mean flow and to do that we consider the flow to be in a box and impose
periodic boundary conditions on the box. Since we are mostly interested in what
happens in the direction along the unidirectional flow we take our x1-axis to be in
that direction. The source of the small (white) noise can be thought of as fluctuations
in the stirring rate of the uniform flow in (1.21).

The corresponding stochastic Navier–Stokes equation can be written as

du = (νΔu−U1∂x1 u+Asin(Ω t +θ )∂x2u−Acos(Ω t +θ )∂x3u

−u ·∇u+∇Δ−1[trace(∇u)2])dt + ∑
k �=0

c1/2
k dbk

t ek, (1.23)

where

∂u
∂ t

+U1∂x1u−Asin(Ω t +θ )∂x2u+Acos(Ω t +θ )∂x3u+ u ·∇u

= νΔu+∇Δ−1[trace(∇u)2] (1.24)

is the driven Navier–Stokes equation (1.21) for u = U −U1 j1 +Asin(Ω t + θ ) j2 −
Acos(Ω t +θ ) j3. U1 j1 is now the constant mean flow of the (fully developed) turbu-

lent fluid and ∑k �=0 c1/2
k dbk

t ek models the noise in fully developed turbulent flow. We
will take the initial condition to be zero, u(x,0) = 0, for convenience and assume
that the incompressibility condition

∇ ·u(x, t) = 0

is satisfied. However, the problem is just as easily solved with a nontrivial initial
condition; see Theorem 4.3.

The first question one might ask about (1.23) is how the noise got introduced into
the equation; see [15]. To answer that question consider the Navier–Stokes equation

Ut +U ·∇U = νΔU +∇{Δ−1[trace(∇U)2]} (1.25)
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and linearize it about the divergence-free initial flow U =U0 j1+U ′(x1,− x2
2 ,− x3

2 )
T.

Here T denotes transpose and U is construed to be the periodic extension of the
above formula from T

3 to R
3:

ut +U0∂x1 u+U ′
⎛
⎝ u1

− u2
2− u3
2

⎞
⎠+U ′

⎛
⎝ x1

− x2
2− x3
2

⎞
⎠ ·∇u+U ′U0 j1 +(U ′)2

⎛
⎝ x1

x2
4x3
4

⎞
⎠

= νΔu+∇Δ−1
(

3
2

U ′2 + 2U ′(∂x1 u1 − ∂x2u2 − ∂x3u3)

)
, (1.26)

u(x,0) = 0.

We assume that there is small noise

d f 0 = ∑
k �=0

h1/2
k dbk

t ek (1.27)

present in the fluid. Note that the coefficients h1/2
k �= c1/2

k are small. Then u satisfies
the linear stochastic PDE:

du =

⎡
⎣νΔu−U0∂x1 u−U ′

⎛
⎝ u1

− u2
2− u3
2

⎞
⎠−U ′

⎛
⎝ x1

− x2
2− x3
2

⎞
⎠ ·∇u−U ′U0 j1

−(U ′)2

⎛
⎝ x1

x2
4x3
4

⎞
⎠ ·∇u+∇ Δ−1

(
3
2

U ′2 + 2U ′(∂x1 u1 − ∂x2u2 − ∂x3u3)

)⎤
⎦dt

+ ∑
k �=0

h1/2
k dbk

t ek, (1.28)

where the term ∑k �=0 h1/2
k dbk

t ek represents stochastic forcing by the small ambient
noise.

The solution of this linear equation can be found by use of a Fourier series and
it is

u(x, t) = ∑
k �=0

∫ t

0
e−(4νπ2|k|2+2π iU0k1)(t−s)

×
(

h1/2
k (1)e−U ′(t−s) j1 + h1/2

k (2)e
U ′
2 (t−s) j2 + h1/2

k (3)e
U ′
2 (t−s) j3

)
dbk

t ek

+ O(|U ′|),

where h1/2
k (i), i = 1,2,3, denotes the ith entry of the three vectors h1/2

k . Now the
expectation of u(x, t) vanishes, but the variation is
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E(|u|22)(t) = ∑
k �=0

∫ t

0
e−8νπ2|k|2(t−s) (1.29)

×
(

ck(1)e
−2U ′(t−s) + ck(2)e

U ′(t−s) + ck(3)e
U ′(t−s)

)
ds

+ O(|U ′|2).

This shows that on one hand the small noise will grow exponentially in time, in the
ek j1 direction, if

U ′ < 0 (1.30)

and if |U ′| > 8π2ν|k|2 for some k ∈ Z
3 \ {0}, but |U ′| is small compared to the

exponentially growing term. If on the other hand

U ′ > 0 (1.31)

the small noise will grow exponentially in the ek j2 and ek j3 directions (in function
space), again with |U ′| small compared to the exponentially growing term.

The exponential growth of the noise will, however, only continue for a limited
time. The growth is quickly saturated by the nonlinear terms in the equation and
fluid becomes fully turbulent.

The initial value problem (1.23) can also be written as an integral equation

u(x, t) = u0(x, t)−
∫ t

0
eK(t−s) ∗ (u ·∇u−∇Δ−1[trace(∇u)2])ds, (1.32)

where eKt is the (oscillatory heat) kernel

eKt ∗ f = ∑
k �=0

∫ t

0
e−(4π2|k|2+2π iU1k1)(t−s)−2π iA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)] f̂ (k,s)ds ek,

(1.33)

A(k2,k3) = A
√

k2
2 + k2

3, θ = tan−1( k2
k3
)−θ0 and

u0(x, t) = ∑
k �=0

c1/2
k

∫ t

0
e−(4π2|k|2+2π iU1k1)(t−s)−2π iA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)]dbk

sek(x)

(1.34)

is a sum of independent oscillatory processes,

Ak
t =

∫ t

0
e−(4π2|k|2+2π iU1k1)(t−s)−2π iA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)]dbk

s (1.35)

with mean zero; see, for example, [58]. These processes are reminiscent of Ornstein–
Uhlenbeck processes and we will call them oscillatory Ornstein–Uhlenbeck-type
processes below.
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The mean (average) of the solution u0 of the linear equation is zero by the formula
(1.34) and this implies that the solution u of (1.23) also has mean (average) zero:

ū(t) =
∫
T3

u(x, t)dx = 0. (1.36)

It also implies that

|U |22 = |U|2 + |u|22 (1.37)

for U = U + u and U = U1 j1 − Asin(Ω t + θ0) j2 + Acos(Ω t + θ0) j3 with |U| =√
U2

1 +A2. We will derive a priori estimates for U in Sect. 4.1 but then apply them
to u in Sects. 4.2–4.3 using (1.37).

1.5 The Central Limit Theorem and the Large Deviation
Principle, in Probability Theory

We will now start our excursion into probability with the aim of introducing the
reader to the basic concepts but referring to standard texts for all the details. A triple
(Ω ,F ,P) is called a probability space where Ω is a set, F is a sigma algebra
of the subsets (events) of Ω , and P is a probability measure. An F measurable
function X : Ω → R

n is called a random variable and any random variable induces
a probability measure on R

n:

μX(B) = P(X−1(B)), B ⊂ R
n,

called the distribution of X . For more information about probability spaces and ran-
dom variables, see [13, 14, 51].

The central limit theorem and the strong law of large numbers are a refinement
of the weak law of large numbers; see [14]. The weak law of large numbers says
that if

Mn =
X1 +X2 + · · ·+Xn

n

is the average of independent and identically distributed random variables Xk, k =
1, . . . ,n, on a probability space (X ,F ,P), then

lim
n→∞

P(|Mn −m| ≥ ε) = 0,

where m = E(Xk), the common mean of the random variables, is assumed to exist.
The strong law of large numbers is a stronger version of this statement, namely,

Theorem 1.1. If the Xk, k = 1, . . . ,n are independent and identically distributed
random variables and m = E(Xk), then
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P( lim
n→∞

Mn = m) = 1.

For proof see [14], where the following example is also presented.

Example 1.1. The strong law of large number for Bernoulli trials (flipping of a
biased coin) is the classical example. Then P(Xk = 1) = p, P(Xk = 0) = 1 − p,
E(Xk) = m = p; Mn represents the averaged number of successes in n trials and
Mn → p, with probability one, as n → ∞.

If the variation is finite (which is a sufficient but not necessary condition) Cheby-
shev’s inequality, see [14], can be used to prove the weak law of large numbers,
namely,

P(|Mn −m| ≥ ε)≤ Var(Mn)

nε2 → 0

as n → ∞.
The central limit theorem specifies the random variable that the (scaled) differ-

ence Mn−m converges to. Let N(0,1) be the standard random variable with a normal
distribution, means zero, and variance 1.

Theorem 1.2 (The Central Limit Theorem). Suppose that {Xk} is an independent
sequence of random variables, with the same distribution, with mean m and a finite
positive variances σ2. Then

lim
n→∞

√
n(Mn −m)

σ
= N(0,1)

in distribution.

For a proof of the central limit theorem and the various ways in which the hypothesis
of independence can be weakened and for the following example, see [14].

Example 1.2 (The de Moivre–Laplace Theorem).
Let Xk take the values 1 and 0 with probability p and 1− p, respectively. Then m= p
and σ2 = p(1− p). Mn is the averaged number of successes in n trials and

lim
n→∞

√
n(Mn − p)√
p(1− p)

= N(0,1)

in distribution.

The large deviation principle characterizes the limiting behavior, as ε → 0 (think
of ε as 1

n ), of a family of probability measures {με} on (X ,B) in terms of a rate
function. The characterization is in terms of asymptotic upper and lower exponen-
tial bounds on the values that με assigns to measurable subsets of X . Here X is a
complete metric space and B is the Borel σ -field. (Typically X is a function space
or a space of measures.)

Definition 1.1. A rate function I is a nonnegative, lower semi-continuous mapping
I : X → [0,∞), with level sets {x : I(x) ≤ l} that are closed subsets of X , for each
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l < ∞. A good rate function is a rate function for which all the level sets are compact
subsets of X . The domain of I, DI is the set of points of X that have a finite rate,
I(x)< ∞.

Definition 1.2. {με} satisfies the large deviation principle with a rate function I if
for all U ∈ B,

− inf
x∈Uo

I(x)≤ lim
ε→0

infε log(με (U)) (1.38)

and

lim
ε→0

supε log(με (U))≤− inf
x∈Ū

I(x). (1.39)

Here Uo and Ū denote the interior and the closure of the Borel set U . In particular if

inf
x∈Uo

I(x) = inf
x∈U

I(x) = inf
x∈Ū

I(x)

then

lim
ε→0

ε logPε(U) =− inf
x∈U

I(x).

1.5.1 Cramér’s Theorem

The most common example of large deviation is when μn is the distribution on the
real line corresponding to the mean

Mn =
1
n

n

∑
j=1

p j

of independent random variables with a common distribution μ . Suppose that the
moment-generating function

M(θ ) = E(exp(θ p)) =
∫ ∞

−∞
eθxdμ(x)

is finite for all θ . We assume, for simplicity, that the random variable p is neither
bounded above nor below; see [73]. Consider the function

I(x) = sup
θ
[θx− logM(θ )]. (1.40)

Then we get the following theorem.

Theorem 1.3 (Cramér’s Theorem). The sequence of probability measures μn sat-
isfies the large deviation principle with the good rate function (1.40).

For proof, see [73].
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Example 1.3 (The Intensity Function for Poisson Random Variables). Let {p j} be
Poisson distributed with rate λ , then the moment-generating function of a random
variable p with distribution μ is

M(θ ) =
∞

∑
n=0

(λ eθ )ne−λ

n!
= eλ (eθ−1).

Cramér’s function is

I(x) = max
θ

(xθ − lnM(θ )) = max
θ

(xθ −λ (eθ − 1)) = x ln
( x

λ

)
− x+λ ,

by differentiation, with respect to θ to find the maximum, and substituting in the
maximum.

In higher dimensions Cramér’s theorem is similar but one has to work with convex
sets. Suppose that μ is a probability distribution R

n, θ ∈R
n and that the momentum

generating function

M(θ ) = E(exp < θ , p >) =

∫
Rn

exp < θ ,x > μ(dx)

is finite for every θ . Now define the rate function

I(y) = sup
θ
[< θ ,y >− logM(θ )]. (1.41)

Then I(·) is convex, nonnegative, semi-continuous (actually continuous) and has the
minimum value 0, at the mean y = m of the distribution μ :

m = ∇M(0) =
∫
Rn

xμ(dx).

Let {μk} be as above and the distributions of {Mk} have a common distribution μ ,
then the large deviation principle holds.

Theorem 1.4. The sequence of probability measures μk satisfies the large deviation
principle with the good rate function (1.42).

The main new fact needed in the proof is the minimax theorem, which states that
for any compact convex set U ⊂ R

n

inf
y∈U

I(y) = inf
y∈U

sup
θ
[< θ ,y >− logM(θ )] = sup

θ
inf
y∈U

[< θ ,y >− logM(θ )]; (1.42)

see [73].

1.5.2 Stochastic Processes and Time Change

We follow [12] in defining a stochastic process.
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Definition 1.3. Given an index set I, a stochastic process indexed by I is a collection
of random variables {xλ} on a probability space (Ω ,F ,P) taking values in a set S.
The set S is called the state space of the process.

We will take I = R
+ in most of this book and S = R

n or the natural numbers N

(including zero). In this case the stochastic process will be denoted respectively xt ,
or Nt , t ≥ 0. Many more examples and properties of stochastic processes can be
found in [12]. Our main examples in Sect. 1.6 below will be the Poisson process and
the Brownian motion process.

We now consider the large deviation principle with a time change. Suppose that xt

is a stochastic process with stationary independent increments that has no Gaussian
component. Suppose that the infinitely divisible random variable xT has a finite
moment-generating function M(θ ) for θ bounded. Assume that xT has no Gaussian
component. Let μ be a probability measure on [0,T ] and define

zε
t = εx(ε−1μ [0, t]), for 0 ≤ t ≤ T.

Let f ∈ BV [0,T ] be a function of bounded variations on [0,T ], then f = f1 + f2,
where f1 � μ and f2 ⊥ μ . Moreover, f2 has a Hahn decomposition:

f2 = h1 − h2,

where h1,h2 ∈ M[0,T ] are bounded nonnegative measures on [0,T ]. The following
theorem holds; see [43].

Theorem 1.5. Let {με} be the probability distributions of zε(t), 0 ≤ t ≤ T, then
{με} satisfies the large deviation principle with the rate function

I( f ) =
∫
R

I( ḟ )dμ +C1h1([0,T ])+C2h2([0,T ]), (1.43)

where f ∈ BV [0,T ], f = h1 − h2, and

C1 = lim
x→∞

I(x)
x

, C2 = lim
x→−∞

I(x)
x

.

The proof can be found in [43].

Remark 1.1. In Sect. 1.7 we will use the central limit theorem and the large deviation
principle to construct the noise in fully developed turbulence. It is neither necessary
that the dissipation processes are independent nor Poisson processes. The assump-
tion of independence can be weakened in various ways in the central limit theorem,
as mentioned above, and the deterministic bounds that we get from the large devia-
tion principle hold for a much larger class of processes than just Poisson processes.
The way to think about this is that the central limit theorem captures the mean of the
dissipation, and the large deviation principle gives a bound on the fluctuations (large
excursion) in the mean of the dissipation, which can have non-trivial correlations.
Then we will also need a multiplicative noise term to capture the large excursions
of the velocity, but this is all that is required to obtain a universal stochastic forcing.
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Example 1.4 (Poisson Processes). Let {x j
t } be Poisson processes with a constant

rate λ . Consider their average Mn and let z
{ 1

n }
t = 1

n(Mn−m)(nμ [0, t]) as above. Here
μ is Lebesgue measure. Notice that the scaling 1

n is different from the scaling
√

n
above that gives the Brownian motion. Then an application of Theorem 1.5 gives

that z
{ 1

n }
t satisfies the large deviation principle with the rate function

I( f ) =
∫
R

ḟ log

(
ḟ
λ

)
dμ +λ − f [0,T ], (1.44)

if f is absolutely continuous with respect to Lebesgue measure, and I = ∞, other-
wise. Here ḟ = d f

dt , f = f1, h1 = h2 = 0, and C1 = ∞.

1.6 Poisson Processes and Brownian Motion

The Poisson process is the simplest random process imaginable when the random
variables are independent. If we start with the binomial distribution investigated by
S.-D. Poisson in 1837, it gives the probability of r heads and n− r tails in n tosses
of a coin, with probability p getting a head and probability 1− p getting a tail:

b(n, p;r) =

(
n
r

)
pr(1− p)n−r.

(
n
r

)
= n!

r!(n−r)! is the binomial coefficient. If we keep the average number of heads

λ = np constant, while n → ∞ and p → 0, then we get a limit

πr(λ ) = lim
n→∞

b(n, p;r) = λ r e−λ

r!

for r ≥ 0. This limit is called the Poisson distribution P(λ ) with parameter (rate) λ .
In the context of turbulence we will be interested in how often a dissipation event

or a velocity excursion takes place in a set A ⊂ R
3 in three-dimensional space. Our

random variable counts the number of these events in A. in an interval of time.
A Poisson random variable X has the Poisson distribution where the possible

values of X are nonnegative integers and

P(X = n) = πn(λ ) = λ n e−λ

n!
(1.45)

for n ≥ 0; see [33]. We will denote the distribution concentrated at 0 by P(0):

P(X = 0) = 1
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and the distribution concentrated at ∞ by P(∞):

P(X = ∞) = 1.

It immediately follows that the mean is

E(X) =
∞

∑
n=0

nλ n e−λ

n!
= λ (1.46)

and if z is a complex number, then zX is finite so that

E(zX ) =
∞

∑
n=0

znλ n e−λ

n!
= e−λ

∞

∑
n=0

(λ z)n

n!
= e−λ (1−z). (1.47)

The moments follow by differentiation:

E(X) = λ
E(X(X − 1)) = λ 2

E(X(X − 1)(X − 2)) = λ 3,

etc. This gives the moments

E(X) = λ , Var(X) = λ +λ 2, E(X3) = λ + 3λ 2 +λ 3, (1.48)

etc.
A great simplifying property of Poisson random variables is their additivity or

the closure of the distribution under convolution. Let X and Y be independent ran-
dom variables with Poisson distributions P(λ ) and P(μ), respectively. Then for
r ≥ 0, s ≥ 0,

P(X = r, Y = s) = P(X = r)P(Y = s) = λ r e−λ

r!
μ s e−μ

s!
.

If we sum X and Y then the distribution of X +Y is

P(X +Y = n) = P(X = r, Y = n− r) =
n

∑
r=0

λ r e−λ

r!
μn−r e−μ

(n− r)!

=
e−(λ+μ)

n!

n

∑
r=0

(
n
r

)
λ rμn−r =

(λ + μ)ne−(λ+μ)

n!
.

This shows that X +Y has the distribution P(λ +μ). In fact this holds for a count-
able number of random variables,

Theorem 1.6. Let Xj, j = 1,2, . . . be independent random variables and assume
that Xj has the Poisson distribution P(λ j). If

λ =
∞

∑
j=1

λ j (1.49)
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converges, then

X =
∞

∑
j=1

Xj (1.50)

converges with probability 1 and has the distribution P(λ ). If on the other hand
(1.49) diverges, then X diverges with probability 1.

See [33] for the statement and the proof of the theorem.
We will now let (Ω ,F ,P) be a probability space and define the Poisson pro-

cesses. A Poisson process is a map Π from Ω into a state space S, for example, R3,
such that the count function

N(A) = #{Π ∩A}

is a well-defined random variable. In other words Π lies in the countable subsets S∞

of the state space S, for all measurable sets A ⊂ S.
Suppose that S is a measurable space such that the diagonal

D = {(x,y);x = y}

is measurable on the product space S× S. This implies that every singleton {x} ∈ S
is measurable.

Definition 1.4. A Poisson process on S is a random countable subset Π of S such
that:

1. For any disjoint measurable subsets A1,A2, . . . ,An of S, the random variables
N(A1),N(A2), . . . ,N(An) are independent.

2. N(A) has the Poisson distribution P(λ ) where 0 ≤ λ ≤ ∞.
3. The measure

μ(A) = E(N(A))

is the mean measure (or the Lévy measure) of the Poisson process Π .

This definition implies that if μ(A) is finite, then A is finite with probability 1 and
empty if μ(A) = 0. If μ(A) = ∞, Π ∩A is countably infinite with probability 1. It
also follows that if A =

⋃∞
j=1 A j and the A js have empty intersections, then

N(A) =
∞

∑
j=1

N(A j)

and

μ(A) =
∞

∑
j=1

μ(A j),

see [33] for more properties and information.
We now define Poisson processes with a continuous parameter t following [12].
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Definition 1.5. The Poisson process {Nt ;t ≥ 0} with intensity function ρ is a
process with state space S = {0,1,2, . . .} = N, having independent increments
distributed as

P(Nt −Ns = j) =
(
∫ t

s ρ(r)dr) j

j!
exp

(
−
∫ t

s
ρ(r)dr

)

for j = 0,1,2, . . . , s < t, where ρ(r),r ≥ 0, is a continuous nonnegative function.

Because of the independent increments Nt is a Markov process; see [12]. In the case
ρ(r) = λ (constant), the transition probabilities become

pi j(s, t) =
[λ (t − s)] j−s

( j− s)!
e−λ (t−s), i ≤ j

= 0, j > i,

so pi j(s, t) = pi j(t − s) and the transition law is time-homogeneous. In this case the
process is referred to as the Poisson process with parameter (or rate) λ .

Definition 1.6 (The Compound Poisson Process). Let {Nt} be a Poisson process
with parameter λ > 0 starting at 0, and let Y1,Y2, . . . be independent, identically dis-
tributed random variables, independent of {Nt}, and having a common probability
mass function f . The process {xt} defined by

xt =
Nt

∑
k=0

Yk,

where Y0 is independent of {Nt} and the processes Y1,Y2, . . . , is called the compound
Poisson process.

The compound Poisson process also has independent increments and is a Markov
process. Its transition probabilities are given by

pi j(s, t) = E(P(xt − xs = j− i|Nt −Ns))

=
∞

∑
k=0

f ∗
k
( j− i)

[λ (t − s)]k

k!
e−λ (t−s),

where f ∗k
is the kth-fold convolution of f with f ∗0

(0) = 0. Thus {xt} also has a
time-homogeneous transition law; see [12] for more information.

Example 1.5 (Log-Poisson Processes).

1. Suppose the Poisson process Nk has the mean λ = − γ ln |k|
β−1 , then it is straightfor-

ward to compute the mean of the log-Poisson process |k|γ β Nk . Namely,

E(|k|γ β Nk) =
∞

∑
j=0

|k|γ β j λ j

j!
e−λ = |k|γ

∞

∑
j=0

(β λ ) j

j!
e−λ = |k|γ e(β−1)λ .
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Thus

ln[E(|k|γ β Nk)] = γ ln |k|+(β − 1)λ = γ ln |k|− (β − 1)
γ

β − 1
ln |k|= 0,

and we get the mean E(|k|γβ Nk ) = 1.
2. Now we compute the p/3 moment E([|k|γ β Nk ]p/3) of the log-Poisson process

|k|γ β Nk above. By a similar computations as above,

E([|k|γβ Nk ]p/3) = |k| pγ
3 e(β

p/3−1)λ ,

where λ is the mean from part 1; therefore,

ln[E([|k|γ β Nk ]p/3)] =
p
3

γ ln |k|+(β p/3− 1)λ =

(
p
3
− (β p/3 − 1)

β − 1

)
γ ln |k|.

Finally, we get that

E([|k|γ β Nk ]p/3) = |k|γ
(

p
3 − (β p/3−1)

β−1

)
.

1.6.1 Finite-Dimensional Brownian Motion

The Scottish botanist Robert Brown observed in 1828 that grains of pollen in liquid
execute an irregular motion, which was later explained as the result of many random
collisions with the molecules of the liquid. It is natural to model the motion of the
grains ω by a stochastic process bt(ω) interpreted as the position at time t of the
grain. We will consider the motion of such a process in R

n; see [51].
We first let x ∈ R

n and define the Gaussian (or normal) probability distribution

p(t,x,y) =
1

(2πt)n/2
exp

(
−|x− y|2

2t

)
, y ∈ R

n, t ≥ 0. (1.51)

Before defining Brownian motion we review the basic properties of normal ran-
dom variable following Oksendal [51].

Definition 1.7. Let (Ω ,F ,Px) be a probability space. A random variables X : Ω →
R is normal if it has the PDF,

pX(x) =
1

σ
√

2π
exp

(
− (x−m)2

2σ2

)
, (1.52)

where σ ≥ 0 and m are constants. In other words,

P[X ∈ A] =
∫

A
pX(x)dx

for all Borel sets A ⊂ R.
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Then the mean of X is

E(X) =

∫
Ω

XdP=

∫
R

xpX(x)dx = m (1.53)

and the variance of X is

var(X) = E([X −m]2) =
∫
R

(x−m)2 pX(x)dx = σ2. (1.54)

More generally X : Ω → R
n is a normal variable in n dimensions, with a law

N (m,C), if the distributions of X have the density

pX(x) =

√
|C−1|√
(2π)n

exp(−〈(x−m),C−1(x−m)〉), (1.55)

where the mean of X is

E(x) =
∫

Ω
XdP=

∫
R

xpX(x)dx = m (1.56)

and C−1 is a symmetric positive definite matrix that is the inverse of the covariance
matrix of X ,

E(〈(X −m),(X −m)〉) =C = [c j,k] = [E(〈(Xj −m j),(Xk −mk)〉)] (1.57)

x and m are n vectors in R
n and C ∈ R

n×n and 〈·, ·〉 denotes the (inner) product of
vectors in R

n.

Definition 1.8. The characteristic function of a random variable X : Ω → R
n is the

Fourier transform of X , φX (h) : Rn → C:

φX (h) = E(exp(i〈X ,h〉)) =
∫
Rn

ei〈X ,h〉
P(X ∈ dx), (1.58)

h ∈ R
n.

It is now clear that the characteristic function determines the random variable X ∈
L2(Ω) uniquely, since it is the Fourier transform, and for a normal variable the
characteristic function is

φX (h) = exp

(
−1

2
〈h,Ch〉+ i〈h,m〉

)
. (1.59)

Using the characteristic function it is now easy to show that X = (X1, . . . ,Xn) is
constituted of normal variables if and only if any linear combination Y = ∑n

j=1 Xj is
normal, see [51] and that real normal variables X0 and X1, . . . ,Xn are independent if
and only if E(〈(X0−m0),(Xj−m j)〉) = 0 for all j = 1, . . . ,n. We end with a theorem
from Oksendal [51] about the convergence of normal variables.
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Theorem 1.7. Suppose that Xk : Ω → R
n are normal for all k and that Xk → X as

k → ∞, or
E(|Xk −X |2)→ 0, as k → ∞.

Then X is normal.

Proof. Since
|ei〈h,x〉 − ei〈h,y〉| ≤ |u| · |x− y|,

E([ei〈h,Xk〉 − ei〈h,X〉]2)≤ |h|2 ·E(|Xk −X |2)→ 0

as k → ∞. Thus

E(ei〈h,Xk〉)→ E(ei〈h,X〉)

as k → ∞. By use of the characteristic function above, this implies that X is normal
with mean E(X) = limk→∞ E(Xk) and covariance C = limk→∞ covariance(Xk).

1.6.2 The Wiener Process

We are now ready to define Brownian motion or a Wiener process following [13,
14]. This process will be infinite-dimensional in the sense that the paths bt(ω) will
be functions lying in the infinite-dimensional function space C[0,∞). However, for
t0 fixed, we still have bt0 ∈ R. If bt ∈ R

n, then each component of bt(ω) lies in
C[0,∞) and below we will let 0 ∈ R

n denote an n-vector with zero entries.

Definition 1.9. A Brownian motion or a Wiener process is a stochastic process
{bt ; t ≥ 0} on some probability space (Ω ,F ,P), having the following four prop-
erties:

1. The process starts at 0:

P(b0 = 0) = 1.

2. The increments are independent: If 0 ≤ t0 ≤ t1 ≤ ·· · ≤ tk and Ai ∈ F , then

P(bti − bti−1 ∈ Ai, i ≤ k) = ∏
i≤k

P(bti − bti−1 ∈ Ai).

3. For s ≤ 0 ≤ t the increments bt − bs are normally distributed with mean 0 and
variance n(t − s):

P(bt − bs ∈ A) =
1

(2π(t − s))n/2

∫
A

e
− |x|2

2(t−s) dx.

4. For each ω ∈ Ω , the path bt(ω) is continuous in t and b0(ω) = 0.

The distribution P ◦ b−1 of the process b = {bt ;t ≥ 0} is a probability measure
concentrated on the Borel σ -field of C[0,∞), referred to as Wiener measure.
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Now the finite-dimensional distributions of bt are given by

P(bt1 ∈ A1,bt2 ∈ A2, . . . ,btk ∈ Ak) (1.60)

=
∫

A1×···×Ak

p(t1,x,x1) · · · p(tk − tk−1,xk−1,xk)dx1 ·dxk,

where A j ∈ F . The existence of (Ω ,F ,P) and bt is given by Kolmogorov’s exten-
sion theorem; see [14, 51]. However, Kolmogorov’s theorem does not imply Con-
dition 4. The problem is that the Kolmogorov σ -field does not include the set of
continuous functions C[0,∞). It only consists of sets determined by countably many
coordinates and this is insufficient to determine whether a function is continuous,
a question involving uncountably many points; see [12] for more information on
this issue. Consequently, we have to use the construction by Wiener of Brownian
motion; see [14]. A simpler modern construction, the Lévy–Ciesielski construction
by wavelets, is given in [13]. We refer the reader to these references for the proof
of Condition 4. Together Kolmogorov’s theorem and Wiener’s construction give the
following theorem; see [14].

Theorem 1.8. There exists a stochastic process called Brownian motion, satisfying
Conditions 1–4 in Definition 1.9.

We can now show that Brownian motion has the following properties, see [51]:

1. Brownian motion is normal (a Gaussian process) with law N (m,σ2). The mean
of a one-dimensional Brownian motion starting at b0 = m is (we will omit the
dependence of E on m, E = em),

E(bt) = E(bt −m+m) =

∫
R

[(x−m)+m]pX(x)dx = m

by (1.53). Similarly, the variance is

E([bt −m]2) = σ2 = t

by (1.53) and (1.51) where σ2 = t. Now if bt ∈ R
n is an n vector, then its mean

is also an n vector:

E(bt) = m ∈ R
n, (1.61)

and the variance is

E([bt −m]2) = nσ2 = nt, (1.62)

where we have summed the contributions t from the n entries of bt . It is easy to
see that the characteristic function of bt evaluated at k times, 0 ≤ t1 ≤ t2 · · · ≤ tk,
is of the form (1.59), see [51], and therefore bt is normal. Then one computes

E([bt −m][bs−m]) = n min (t,s) (1.63)

and

E([bt − bs]
2) = n(t − s). (1.64)
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Namely, (1.63) follows from (1.62) and (1.64) by the computation

E([bt − bs]
2) = E([bt −m]2 − 2[bt −m][bs−m]+ [bs−m]2)

= n(t − 2s+ s) = n(t − s),

if t ≥ s; see [51].
2. Brownian motion has independent increments. Namely, the random variables

bt1 ,bt2 − bt1 , . . . ,btk − btk−1

are independent for all 0 ≤ t1 ≤ t2 · · · ≤ tk. We prove this by showing that these
variables are uncorrelated. It implies the they are independents as discussed
above:

E([bti − bti−1 ][bt j − bt j−1 ]) = 0, for ti ≤ t j−1.

This follows from (1.63):

E([bti − bti−1 ][bt j − bt j−1 ]) = E(btibt j − bti−1bt j − btibt j−1 + bti−1bt j−1)

= n(ti − ti−1 − ti + ti−1) = 0.

3. Brownian motion has continuous paths. This follows from Wiener’s construction;
see [13].

We leave it to the reader to compute the Fourier transform of a Gaussian,
∫
R

eih(x−m)

√
2πσ

e−
(x−m)2

2σ2 dx = e−
1
2 h2+i hm

and use it to prove (1.59). The characteristic function E(eibth) = e−
1
2 h2

can also be
used to compute the moments

E(b2k
t ) =

(2k)!
2kk!

tk, k ∈ N,

and E(b2k+1
t ) = 0, of Brownian motion, and to prove that bt − bt0 , with t0 fixed, is

also a Brownian motion.
The compound Poisson process and Brownian motion are the building blocks

of all processes with independent increments; see [12, 13]. We will see in the next
section how the generic noise in turbulence can be expressed in terms of these pro-
cesses.

1.7 The Noise in Fully Developed Turbulence

We will assume that the fluid satisfies periodic boundary conditions on its domain.
This is done for convenience and can easily be relaxed. Then the velocity lies in
a nice Hilbert space, namely, u(x) ∈ L2(T3), or the underlying domain D can be
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taken to be a three torus T
3, and the fluid velocity lies in the space of functions

square integrable on the torus. By a classical result by Leray [42], see Sect. 4.1, one
knows that if ∇u(x,0) lies in L2, then u(x, t) lies in L2, for all t, and that one can
also make sense of the gradient ∇u for almost every t, at least for the deterministic
equation (1.1).

The stochastic Navier–Stokes equation describing fully developed turbulence is

du = (νΔu− u ·∇u+∇Δ−1tr(∇u)2)dt + ∑
k∈Z3

c
1
2
k dbk

t ek(x)

+ ∑
k �=0

dkηkdtek(x)+ u
m

∑
k �=0

∫
R

hkN̄k(dt,dz) (1.65)

u(x,0) = u0(x),

where, in the additive noise, each Fourier component ek = e2π ik·x comes with its own

independent Brownian motion bk
t and a deterministic term ηkt. The coefficients c

1
2
k

and dk decay sufficiently fast so that the Fourier series converges. The sizes of the
jumps hk in the velocity gradient do not decay, but for t < ∞, only finitely many
hks, |k| ≤ m, are nonzero.

The stochastic processes bk
t are independent. The discrete processes Nk

t are
also independent, for different ks, but can be associated with bk and ηkt, for the
same k. This link is manifested in the experimentally observed fact that large veloc-
ity excursion is accompanied by large dissipation events.

The situation described by (1.65) is the general situation in turbulent flow. There
is some large-scale flow that drives all the small scale and one can decompose the
velocity field into two parts U + u where U describes the large-scale flow and u
describes the smaller-scale turbulence. In physics u is said to describe the fluctua-
tions. The large-scale flow generates a force acting on the small scale and the noise
in (1.65) is a model of this force. We will argue below that based on probability the-
ory this force has a general form in fully developed turbulence. This decomposition
of the velocity field can also be thought of as the classical Reynolds decomposition
and then the force, exerted by the small scales u on the large scales U , is the well-
known eddy viscosity. Still another way of thinking about (1.65) is in terms of the
coarse graining of the Navier–Stokes equation, where U describes the mean flow
and (1.65) is the equation describing the fluctuations u.

Turbulent flow consists of complicated and sometimes violent motion that is dis-
sipated in the flow. We split the torus into small boxes and let p j denote the stochas-
tic dissipation process in the jth box. We assume that the p js in different boxes are
weakly coupled and have mean m. By the Central Limit Theorem 1.2, in probability
theory, the average

Mn =
1
n

n

∑
j=1

p j
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converges to a normal (Gaussian) random variable
√

n(Mn −m)/σ → N(0,1) as
n → ∞, with mean zero and variance one, as we let the number of boxes (n) increase
to infinity. We now let

Sn =
n

∑
j=1

p j

denote the sum and define the stochastic processes:

xn
t =

S[tn]− nm√
nσ

,

where [tn] denotes integer value. Then if the p js are independent and identically
distributed with variance σ2 > 0 and mean m, the Functional Central Limit Theo-
rem, see Theorem 8.1 in [12], says that the stochastic processes {xn

t , t ≥ 0} converge
(in distribution) to a Brownian motion bt , starting at the origin with zero drift and
diffusion coefficient 1, as n → ∞. This must be done in the direction of any Fourier
component (ek = exp(2π ik ·x)), that forms a basis in the infinite-dimensional space
L2, and the result is the differential of an infinite-dimensional Brownian motion

d f 1
t = ∑

k∈Z3

c
1
2
k dbk

t ek(x).

Here each Fourier component comes with its independent Brownian motion bk
t and

the c1/2
k s are constant vectors.

The Central Limit Theorem 1.2 says that the average of the dissipation processes
converges to a Gaussian, but there also exist large excursion or fluctuations in the
mean. The effects of these fluctuations are frequently captured by the large deviation
principle; see Definition 1.2. If these excursions are completely random, then they
can, for example, be modeled by a Poisson process with the rate λ . If, moreover,
these processes have a bias, an application of the large deviation principle, Defini-
tion 1.2, shows that the large deviations of Mn are bounded above by a deterministic
term which is a constant determining the direction of the bias, times the rate η . By
Theorems 1.3 and 1.5 and Examples 1.3 and 1.4, since the rate λk →∞ as k →∞, the
rate function is bounded by η = λ . This also holds in the direction of each Fourier
component and gives the term,

d f 2
t = ∑

k �=0

dkηkdtek(x),

the second term in the additive noise in stochastic Navier–Stokes equation. Here
the dks are constant vectors, representing the bias in a particular direction in Fourier
space, and the ηk are the rates in the kth direction. We will choose the rate ηk = |k|1/3

below. This makes the two terms in the additive noise give similar scaling in the
Fourier variable k. This must be the case, because the second term in capturing the
fluctuations in the mean by an application of the Large Deviation Principle 1.2, and
thus together the two terms give a more accurate description of the mean. In other
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words there is only one additive noise term d f1+d f2. It turns out, see below, that to-
gether the two terms produce the Kolmogorov–Obukhov ’42 scaling. Intermittency
in the dissipation is then an additional effect caused by the interaction of the mul-
tiplicative and additive noise with the Navier–Stokes evolution. This will be made
clear below.

We must also capture the large excursions and intermittency in the velocity
and this gives rise to a multiplicative noise term (multiplying the velocity) in the
stochastic Navier–Stokes equations. The velocity fluctuations, are discrete and if
they are completely random, they can be modeled by the Poisson jump process xk

t ,
with its number process Nk

t denoting the integer number of velocity excursions,
associated with kth wave number, which has occurred at time t. The differential
dNk(t) = Nk(t + dt)−Nk(t) denotes the number of these excursions in the time
interval (t, t + dt]. The process

∑
k �=0

∫
R

hk(t,z)N̄
k(dt,dz),

in the multiplicative noise, models the excursions (jumps) in the velocity gradient;
see [52]. The hk are the sizes of the jumps in the velocity gradients and N̄k is the
compensated number (of jumps) process. We will include a term in the Poissonian
distribution for the jump process that correlates Nk with only the kth Fourier mode.
This models the link between large velocity and dissipation events.

Equation (1.65) represents the stochastic Navier–Stokes equation for the small
scales with the general form of turbulent noise. The two terms in the additive noise
result from scaling the average of the dissipation processes in different ways in n
(number of processes), but they must both be present, and together they accurately

describe the mean dissipation. The coefficients c1/2
k and dk give their relative size

that varies from experiments to experiment, for small k. For large k this ratio should
be universal. The central limit theorem and the large deviation principle determine
the additive noise in fully developed turbulence, but the multiplicative noise is mod-
eled in (1.65) as a general (Poisson) jump process. It would also be possible to
formulate the equation as the deterministic equation (1.1) if we continuously modi-
fied the initial data so as to absorb the evolving noise. This amounts to continuously
modifying the initial data with a stochastic process and is what is effectively done
in direct Navier–Stokes simulations (DNS). Clearly, these two formulations must be
equivalent.

1.7.1 The Generic Noise

In this section we will ask the question: In what sense is the noise in the stochas-
tic Navier–Stokes equation (1.65) generic? The mathematical answer is that it is
modeled by a homogeneous Lévy process, which is as general as you would expect
the noise in fully developed turbulence to be. A homogeneous Lévy process can be
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written as a sum of a Brownian motion and a limit of independent superpositions
of compound Poisson processes with varying jump sizes; see Theorem 1.3. in [12].
We have used the large deviation principle, Definition 1.2, to estimate probabilities
of the Poisson processes, but apart from that, our noise is a perfectly general ho-
mogeneous Lévy process. The time-homogeneity means that the increments of your
noise process only depend on the time interval that has passed, not on the starting
time. This is what one would expect from the noise in fully developed turbulence.
In this sense we have generic noise in every Fourier component.

The question still remains why we are representing the noise in (1.65) by a con-
vergent Fourier series? Why do we not take noise that is white both in space and
time? Surely, the tiny ambient noise in nature is, white both in space and time. The
reason for this is as explained in Sect. 1.4, that we are modeling the noise in fully de-
veloped turbulence, not small ambient noise in nature. The latter noise is the source
for the noise in fully developed turbulence, but that noise has developed through the
Navier–Stokes evolution or the fluid flow, where the tiny white noise gets magnified
by the flow instabilities and saturated and colored as explained in Sect. 1.4.

Physically it is also clear that the noise in fully developed turbulence cannot
be white both in time and space. The heat equation with such noise is solved in
Walsh [75] and found to have continuous solutions only in one or two dimensions.
In dimensions three and greater the solutions are distributions without any spatial
smoothness. This is contrary to what is observed in turbulent flow. This has direct
relevance for the Navier–Stokes equation because the linear part of the equation is
the same as that of the heat equation. The fluid velocity seems to be continuous in
space even in very-high Reynolds number flow; see Sect. 4.2 for more information
on this. The convergence of the Fourier series in (1.65) is the minimal requirement
that one can make to get a spatially smoothness of the fluid velocity observed in
turbulent flow. In this sense the noise is also physically generic.

1.8 The Stochastic Navier–Stokes Equation for Fully Developed
Turbulence

Adding the additive noise given by the Central Limit Theorem 1.2 and the large de-
viation principle, Definition 1.2, and the multiplicative noise produced by the jumps
in velocity to the deterministic equation (1.1), see Sect. 1.7, we get the stochastic
Navier–Stokes equations describing fully developed turbulence:

du = (νΔu− u ·∇u+∇Δ−1tr(∇u)2)dt + ∑
k∈Z3

c
1
2
k dbk

t ek(x)

+ ∑
k �=0

dk|k|1/3dtek(x)+ u
m

∑
k �=0

∫
R

hkN̄k(dt,dz), (1.66)

u(x,0) = u0(x),
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where, in the additive noise, each Fourier component ek comes with its own
independent Brownian motion bk

t and a deterministic term |k|1/3t. The coefficients

c
1
2
k and dk decay sufficiently fast so that the Fourier series converges. The sizes of

the jumps hk in the velocity gradient do not decay, but for t < ∞, only finitely many
hks, k ≤ m, are nonzero.

We will now state the basic existence theorem of nonlinear stochastic partial
differential equations (SPDEs) in infinite-dimensional space following Da Prato and
Zabczyk [57], Theorem 7.4 on page 186. Consider the initial value problem for the
SPDE:

du = (Au+F(t,u))dt +G(t,u)dBt , u(x,0) = u0. (1.67)

We assume that a probability space (Ω ,F ,P), with a filtration {Ft}t≥0, see Defini-
tion 2.1, is given. As a function of x, u lies in a separable Hilbert space or a Banach
space H and the initial data u0(ω ,x) is a F0 measurable random variable with values
in H. The infinite-dimensional Brownian motion Bt = (b1

t ,b
2
t , . . .) (Wiener process)

lies in another Hilbert space U and C1/2 : U → U0, a subset U0 ⊂ U defined by
U0 =C1/2U , where C is the covariance matrix of Bt ; see (1.57). Since Bt is infinite-
dimensional, we will assume that C is trace class or that trace C = ∑k∈Z3\{0} ck < ∞.

The operator A is the generator of a strongly continuous semigroup eAt , t ≥ 0, in H.

Definition 1.10. A stochastic process u(ω ,x, t) is a mild solution of (1.67) if

u(t) = eAtu0 +

∫ t

0
eA(t−s)F(s,u(s))ds+

∫ t

0
eA(t−s)G(s,u(s))dBs, (1.68)

P-almost surely, and

P

(∫ t

0
‖u‖2(s)ds < ∞

)
= 1, (1.69)

where ‖ · ‖ denotes Hilbert or Banach space norm.

We can then state the general existence theorem of mild solutions.

Theorem 1.9. Suppose that F and G are deterministic maps from [0,T ]×Ω ×H
into H and L0

2 = L2(U0,H), respectively. Furthermore assume that there exists a
constant c such that

1. ‖F(t,u)−F(t,w)‖+ ‖G(t,u)−G(t,w)‖L0
2
≤ c‖u−w‖

and
2. ‖F(t,u)‖2 + ‖G(t,u)‖2

L0
2
≤ c2(1+ ‖u‖2),

for all t ∈ [0,T ] and ω ∈ Ω . Then there exists a unique mild solution to (1.67); more-
over, this solution has a continuous version among the equivalence class defined by
(1.69):
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1. For any p ≥ 2, there exists a constant Cp,T such that

sup
t∈[0,T ]

E(‖u‖p(t))≤Cp,T (1+E(‖u0‖p). (1.70)

2. For any p > 2, there exists a constant C̃p,T such that

E( sup
t∈[0,T ]

‖u‖p(t))≤ C̃p,T (1+E(‖u0‖p). (1.71)

It is of course not necessary to assume that F and G are deterministic; it suffices that
they are measurable with respect to the correct σ -algebras; see [57].

Theorem 1.9 does not apply to (1.66). This is because the multiplicative noise
term (1.66) involves jumps rather than Brownian motion. However, the theorem can
be modified to give the local existence of solutions to (1.66). The existence of global
(in t) solutions is much harder and can only be proven in special cases. One of these
cases is explained in Chap. 4.



Chapter 2
Probability and the Statistical Theory
of Turbulence

2.1 Ito Processes and Ito’s Calculus

In this section we will define Ito processes that depend on the notion of the Ito
integral. A very readable definition of the Ito integral and its properties can be
found in Chap. 3 of Oksendal [51]. If (Ω ,F ,P) is a probability space the following
definition and example are also given in [51].

Definition 2.1. A filtration on (Ω ,F ) is a family {Ht}t≥0 of σ -algebras such
that Hs ⊂ Ht , 0 ≤ s ≤ t, or Ht is increasing. A n-dimensional stochastic process
{Mt}t≥0 on (Ω ,F ,P) is called a martingale with respect to the filtration {Ht}t≥0 if:

1. Mt is Ht -measurable for all t
2. E(|Mt |)≤ ∞ for all t
3. E(Mt |Hs) = Ms for all t ≥ s

The expectation in (2) and the conditional expectations in (3) are the expectation
with respect to the Gaussian density (1.51), and more information about the condi-
tional expectation can be found in Appendix A in Oksendal [51].

Example 2.1. Brownian motion in R
n is a martingale with respect to the σ -algebras

Fs generated by {bs;s ≤ t}:

1. Follows by definition.
2. E(|bt |)2 = E(|bt − b0 + b0|2) = |b0|2 + nt. Now use that the square root is an

increasing function.
3. E(bt |Fs) = E([bt − bs]+ bs|Fs) = E(bt − bs|Fs)+E(bs|Fs) = 0+ bs.

Now it turns out, see [51], that the Ito integral
∫

f dbt can be defined as long
as there exists an increasing filtration {Ht}t≥0 such that bt is a martingale with
respect to it and f is measurable with respect to Ht . We then say that f is adapted
to {Ht}t≥0.

We define an Ito process, following Oksendal [51].

B. Birnir, The Kolmogorov-Obukhov Theory of Turbulence: A Mathematical
Theory of Turbulence, SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-6262-0 2,
© Björn Birnir 2013
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Definition 2.2. Let bt be a one-dimensional Brownian motion on the probability
space (Ω ,F ,P). An Ito process is a stochastic process on (Ω ,F ,P) of the form

xt = x0 +

∫ t

0
u(x,ω)ds+

∫ t

0
w(s,ω)dbs, (2.1)

where there exists an increasing filtration {Ht}t≥0 such that bt is a martingale with
respect to it, w is Ht adapted, and

P

(∫ t

0
w(s,ω)2ds < ∞, for all t ≥ 0

)
= 1.

We assume u is also Ht adapted and

P

(∫ t

0
|u(s,ω)|ds < ∞, for all t ≥ 0

)
= 1.

We will use the shorthand

dxt = u(t,ω)dt +w(t,ω)dbt (2.2)

for an Ito process.
Now any Ito integral is a martingale with respect to the filtration {Ft} generated

by {bs;s ≤ t}. Conversely, the martingale representation theorem, see [51], says that
any martingale with respect to {Ft} can be written as an Ito integral.

The main computational tool in Ito’s calculus is

Lemma 2.1 (One-Dimensional Ito’s Formula). Let xt be the Ito process

dxt = udt +wdbt ,

and let g(x, t) ∈C2([0,∞)×R) be twice continuously differentiable. Then

yt = g(t,xt)

is also an Ito process and

dyt =
∂g
∂ t

(t,xt)dt +
∂g
∂x

(t,xt)dxt +
1
2

∂ 2g
∂x2 (t,xt)(dxt)

2, (2.3)

where (dxt)
2 is computed by the rules

(dt)2 = dt ·dbt = dbt ·dt = 0, but (dbt)
2 = dt.

We now give an example how one uses (2.3) to solve a differential equation.

Example 2.2 (Geometric Brownian Motion).
Let xt be the Ito process dxt = rdt +αdbt and solve the differential equation

dzt = ztdxt = rzt dt +αztdbt .
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Dividing by zt

dzt

zt
= rdt +αdbt = dxt

we see that a reasonable guess for the function g is

yt = g(zt) = ln(zt).

Applying Ito’s formula (2.3), we get

dyt =
∂g
∂x

(t,zt)dzt +
1
2

∂ 2g
∂x2 (t,zt)(dzt)

2

=
zt

zt
dxt − 1

2
(zt )

2

(zt )2 (dxt)
2 =

(
r− α2

2

)
dt +αdbt ,

since ∂g
∂ t = 0. Integrating

dyt = dln(zt) =

(
r− α2

2

)
dt +αdbt

with respect to t and exponentiating, we get that

zt = z0 e{(r−
α2
2 )t+αbt}.

This process is called geometric Brownian motion.

2.2 The Generator of an Ito Diffusion and Kolmogorov’s
Equation

In this section we will show how to use Ito processes to solve second-order partial
differential equations following Oksendal [51].

Definition 2.3. A time-homogeneous Ito diffusion is a stochastic process xt : [0,∞)×
Ω → R

n satisfying the stochastic ordinary differential equation

dxt = u(xt)dt +w(xt)dbt , x0 = x, (2.4)

where bt is m-dimensional Brownian motion, u : Rn → R
n, and w : Rn → R

n×m.

We can then define the generator of an Ito process.

Definition 2.4. Let xt be a time-homogeneous Ito diffusion in R
n. The infinitesimal

generator A of xt is defined by

A f (x) = lim
t↓0

Ex[ f (xt )]− f (x)
t

; x ∈ R
n. (2.5)
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The set of functions f : Rn → R so that the limit exists at x is denoted D(A)(x),
whereas D(A) is the domain of functions for which the limit exists for every x ∈R

n.

We now compute the generator of a time-homogeneous Ito diffusion.

Lemma 2.2. Let xt be the Ito diffusion

dxt = u(xt)dt +w(xt)dbt .

If f ∈C2
0(R

n) or f is twice differentiable with compact support, then f ∈ DA and

A f (x) =
n

∑
j=1

u j(x)
∂ f
∂x j

+
1
2

n

∑
{ j,k}=1

(wwT){ j,k}(x)
∂ 2 f

∂x j∂xk
. (2.6)

We can then use Ito processes to solve partial differential equations.

Theorem 2.1 (Kolmogorov’s Backward Equation). Let f ∈C2
0(R

n) and consider

u(x, t) = Ex( f (xt )). (2.7)

Then u(·, t) ∈ DA for each t and u is the unique solution of the initial value problem
for the partial differential equation

∂u
∂ t

= Au, t > 0, x ∈ R
n,

u(x,0) = f (x), x ∈ R
n. (2.8)

Example 2.3 (The Heat Equation).
Consider the Ito process

dxt = dbt , in R
n.

The generator of this process is

A f =
1
2

Δ f

by Ito’s formula. Thus by Theorem 2.1 the unique solution of the partial differential
equation

∂u
∂ t

=
1
2

Δu, t > 0, x ∈R
n

u(x,0) = f (x), x ∈ R
n

is

u(x, t) = Ex( f (xt )).

This is the probabilistic (Kac) solution of the heat equation.
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2.2.1 The Feynman–Kac Formula

We now investigate how to solve a partial differential equation such as (2.8) that has
an additional linear term (a potential).

Lemma 2.3 (The Feynman–Kac Formula). Let f ∈ C2
0(R

n) and assume that q ∈
R

n is bounded from below. Then the function

u(x, t) = Ex(e{−
∫ t

0 q(xs)ds} f (xt )) (2.9)

satisfies u(·, t) ∈ DA for each t and u is the unique solution of the initial value
problem for the partial differential equation

∂u
∂ t

= Au− qu, t > 0, x ∈R
n, (2.10)

u(x,0) = f (x), x ∈ R
n. (2.11)

The upshot of the Feynman–Kac formula, Lemma 2.3, is that we can use the factor
e{−

∫ t
0 q(xs)ds} to remove the term −qu from the equation and solve the usual (2.8)

generated by the new Ito process yt = e{−
∫ t

0 q(xs)ds}xt .

2.2.2 Girsanov’s Theorem and Cameron–Martin

We will show in this section how one can make a time change of a Brownian motion.

Theorem 2.2 (Girsanov’s Theorem). Let yt ∈ R
n by an Ito process of the form

dyt = u(t,ω)dt + dbt , t ≤ T, y0 = 0,

where T ≤ ∞ is given and bt is n-dimensional Brownian motion. Let

Mt = e(
∫ t

0 u(s,ω)dbs− 1
2
∫ t

0 u2(s,ω)ds), (2.12)

where u satisfies Novikov’s conditions

E(e{
1
2
∫ T

0 u2(s,ω)ds})< ∞, (2.13)

E being the expectation with respect to P the law of Brownian motion. Define the
measure

dQ(ω) = MT (ω)dP(ω); (2.14)

then ut is an n-dimensional Brownian motion with respect to the probability law Q
for t ≤ T.
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We can now use Cameron-Martin to remove the transport term u · ∇w from the
partial differential equation

∂w
∂ t

=−u ·∇w+
1
2

Δw.

Example 2.4 (Cameron–Martin). Let

yt = Mtxt = e(−
∫ t

0 u(s,ω)dbs− 1
2
∫ t

0 |u(s,ω)|2ds)xt .

If xt has the generator A1 = −u ·∇+ 1
2 Δ , then yt has the generator A2 = 1

2 Δ ; now
apply Theorem 2.1.

2.3 Jumps and Lévy Processes

We will now define stochastic processes with jumps, following Oksendal and Sulem
[52], where more information can be found. A Lévy process is a stochastic process
on a filtered probability space (Ω ,F ,{Ft}t≥0,P) that takes its values in R and
is continuous in probability and has stationary independent increments. One can
always find a version of ηt that is right continuous with limits from the left; such
processes are called cadlag. ηt is {Ft} adapted and η0 = 0 almost surely.

Definition 2.5. Let bt be a one-dimensional Brownian motion on the probability
space (Ω ,F ,P) and suppose that N(t,z) is the number process of a Lévy process ηt .
An Ito–Lévy process is a stochastic process on (Ω ,F ,P) of the form

dxt = u(t,ω)dt +w(t,ω)dbt +

∫
R

γ(t,z,ω)N̄(dz,dt). (2.15)

N̄ is called the compensated jump measure of ηt ,

N̄(dz,dt) = N(dz,dt)−m(dz)dt, if |z|< R,

and

N̄(dz,dt) = N(dz,dt), if |z| ≥ R,

where m(U) =
∫

U E(N(dz,1)) is the so-called Lévy measure of ηt ; see Sect. 1.6.

The main computational tool in Ito’s calculus for Ito–Lévy processes is

Lemma 2.4 (One-Dimensional Ito’s Formula). Let xt be the Ito–Lévy process

dxt = udt +wdbt +

∫
R

h(z, t)N̄(dz,dt).

Let g(x, t) ∈C2([0,∞)×R) be twice continuously differentiable. Then

yt = g(t,xt)
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is also an Ito–Lévy process and

dyt =
∂g
∂ t

(t,xt)dt +
∂g
∂x

(t,xt)(udt +wdbt)+
1
2

∂ 2g
∂x2 (t,xt)(udt +wdbt)

2

+

∫
z<R

(
g(t,xt + γ(t,z))− g(t,xt)− ∂g

∂x
(t,xt)γ(t,x)

)
m(dz)dt

+
∫
R

(g(t,xt + γ(t,z))− g(t,xt)) N̄(dz,dt), (2.16)

where (udt +wdbt)
2 is computed by the rules

(dt)2 = dt ·dbt = dbt ·dt = 0, but (dbt)
2 = dt.

We now give an example how one uses (2.16) to solve a differential equation.

Example 2.5 (Geometric Lévy Process).
We solve the differential equation

dzt = zt [rdt +αdbt +

∫
R

h(z, t)N̄(dz,dt)].

Dividing by zt

dzt

zt
= rdt +αdbt +

∫
R

h(z, t)N̄(dz,dt),

we see that a reasonable guess for the function g is

yt = ln(zt ).

Applying Ito’s formula (2.16), we get

dyt =
∂ ln(zt )

∂x
(t,xt)zt(rdt +αdbt)+

1
2

∂ 2 ln(zt)

∂x2 (t,xt)(zt )
2(rdt +αdbt)

2

+

∫
R

ln(1+ h(t,z))N̄(dz,dt)+
∫
R

(ln(1+ h(t,z))− h(t,z))m(dz)dt

=
zt

zt
(rdt +αdbt)− 1

2
(zt)

2

(zt)2 (rdt +αdbt)
2 +

∫
R

ln(1+ h(t,z))N̄(dz,dt)

+

∫
R

(ln(1+ h(t,z))− h(t,z))m(dz)dt

=

(
r− α2

2

)
dt +αdbt +

∫
R

ln(1+ h(t,z))N̄(dz,dt)

+

∫
R

(ln(1+ h(t,z))− h(t,z))m(dz)dt,

since ∂g
∂ t = ∂ ln(zt )

∂ t = 0. Integrating
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dyt = dln(zt) =

(
r− α2

2

)
dt +αdbt +

∫
R

ln(1+ h(s,z))N̄(dz,ds)

+

∫
R

(ln(1+ h(s,z))− h(s,z))m(dz)

with respect to t and exponentiating, we get that

zt = z0 e{(r−
α2
2 )t+αbt+

∫ t
0
∫
R

ln(1+h(s,z))N̄(dz,ds)+
∫ t

0
∫
R
(ln(1+h(s,z))−h(s,z))m(dz)ds}.

This process is called the geometric Lévy process.

2.4 Spectral Theory for the Operator K

We write the stochastic Navier–Stokes equation in integral form

u = eK(t)e
∫ t

0 dqMtu
0 + ∑

k �=0

c1/2
k

∫ t

0
eK(t−s)e

∫ t
s dqMt−sdbk

sek(x)

+ ∑
k �=0

dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s|k|1/3dt ek(x), (2.17)

where K is the linear (Navier–Stokes) operator

K = νΔ +∇Δ−1tr(∇u∇),

Mt = exp{−
∫

u(Bs,s)dBs − 1
2

∫ t

0
|u(Bs,s)|2ds}

is a martingale with Bt ∈ R
3 an auxiliary Brownian motion, and

3
∫ t

s
dq =

m

∑
k �=0

{∫ t

0

∫
R

ln(1+ hk)N̄
k(ds,dz)+

∫ t

0

∫
R

(ln(1+ hk)− hk)mk(ds,dz)

}
,

by Ito’s formula and a computation similar to the one that produces the geometric
Lévy process; see [52]. We have set the rates ηk = |k|1/3 since the two terms in
the additive noise are really two parts of the same noise term; see Sect. 1.7. The
operator K does not generate a semi-group because of its dependence on u, but with
some conditions on u, see below, it generates a flow. The notation eK(t−s) f (s) simply
means that we solve the equation ft = K f , with initial data f (s) for the time interval
[s, t]; see Lemma 2.6 below.

The form of the integral equation (2.17) requires a couple of assumptions. The
first observation is that the pressure term ∇Δ−1tr(∇u ·∇·) is independent of the fluid
velocity u(x, t) at the point x. This is of course true since x is a set of measure zero
and we can be set the integrand to any value at x without changing the integral. In
other words, the pressure gradient can be treated as a global force that depends on
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the velocity field as a whole not only on some particular fluid particle. This is con-
sistent with the view of pressure in most of fluid dynamics. The other assumption is
that pressure acts as additional diffusion and the integral equation (2.17) describes
a (Ito) diffusion. This is also consistent with most researchers view of pressure but
seems to be a more radical assumption from a mathematical point of view. However,
it can be proven to be true using the vorticity formulation of the Navier–Stokes equa-
tion; see Sect. 3.7. The first assumption implies that the right-hand side of (2.17) is
independent of u(x, t) so that by Ito’s formula the integral equation (2.17) is equiva-
lent to the initial value problem (1.65). The second assumption implies that we can
apply Girsanov’s Theorem 2.2 to remove the inertial (drift) term from the linearized
Navier-Stokes operator in lieu of the martingale Mt .

To proceed we need to develop the spectral theory of the operator K. The exis-
tence of unique turbulent solutions to the stochastic Navier–Stokes equation (1.65)
can be proven in some cases. For example, if the equation is driven by a strong
swirling flow, see [17] and Chap. 4. This result is not terribly surprising. If the ini-
tial data had the symmetry of the swirl then the deterministic problem would be
two-dimensional and the global existence of the two-dimensional Navier–Stokes
equation is well known. It is also well known that if the initial data is close to such
a two-dimensional flow then global existence can be extended to this case also; see
[3, 4] for another such example.

In [17] the author obtained the global bound for the Sobolev space norm of u,
based on L2(T3) with index 11

6
+
= 11

6 + ε , ε small, for a swirling flow:

E(‖u‖2
11
6
+(t))≤C, (2.18)

where E denotes the expectation and the constant C is independent of t. The Sobolev
space consists of Hölder continuous functions of Hölder index 1/3, as pointed out
by Onsager [54]. Sobolev spaces are defined in Sect. 4.1.

We will now derive a bound for the pressure operator. Consider the linearized
Navier–Stokes equation that will be discussed in more detail in Sect. 2.8:

zt = B(u)z = νΔz− u ·∇z− z ·∇u+ 2∇Δ−1tr(∇u ·∇z) = K̄(u)z− u ·∇z− z ·∇u.

(2.19)

We start with a standard estimate of the pressure term and let p
q
+ denote a real

number strictly greater than p
q .

Lemma 2.5. Let Dw = 2∇Δ−1tr∇u ·∇w. Then

|Dw|2 ≤C‖u‖ 3
2
+ |w|2 (2.20)

and for functions with mean zero

|Dw|2 ≤C|∇u|2|∇w|2, (2.21)

where C is a constant.
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Proof.

1
2
|Dw|2 ≤ |∇Δ−1tr∇u ·∇w|2 ≤ ‖∇u ·∇w‖(−1,2) ≤ ‖∇u‖(−1,4)‖∇w‖(−1,4)

≤C‖∇u‖
(− 1

4
+
,2)
‖∇w‖

(− 1
4
+
,2)

≤C|∇u|2|∇w|2

by Schwartze’s and Sobolev’s inequalities and the Sobolev imbedding. The last
inequality only holds for functions with means zero. Moreover,

1
2
|Dw|2 ≤ |∇Δ−1tr∇u ·∇w|2 ≤ ‖∇u ·∇w‖(−1,2) ≤ ‖∇u‖(−1+α ,4)‖∇w‖(−1−α ,4)

≤C‖∇u‖
(α− 1

4
+
,2)
‖∇w‖

(−α− 1
4
+
,2)

≤C‖u‖ 3
2
+ |w|2,

by the same inequalities as above, the duality of the Sobolev spaces with a positive
and a negative index and by choosing α = 3

4
+

.

Lemma 2.6. Suppose that

E(‖u‖2
3
2
+)≤C, (2.22)

then the operator B, in (2.19), generates a flow for initial data f0 ∈ L2(T3) denoted
by eBt . The same conclusion holds for the operator K̄ in (2.19).

Proof. The proof follows the proof of Lemma 7.2 in [16]. Consider the operators
Aw = νΔw and

Sw =−u ·∇w−w ·∇u+ 2∇Δ−1tr(∇u ·∇w).

A generates a contraction semigroup and we now show that S is A bounded or that
there exists a constant C such that

|Sw|2 ≤C|w|2 + 1
2
|Aw|2.

By Minkowski’s inequality

|Sw|2 ≤ |u ·∇w|2 + |w ·∇u|2 + 2|∇Δ−1tr(∇u ·∇w)|2
≤ |u|∞|∇w|2 + |∇u|2|w|∞ +C‖u‖ 3

2
+ |w|2

≤ C‖u‖ 3
2
+‖w‖1 +C|∇u|2‖w‖ 3

2
+

by Lemma 2.5 and Sobolev’s inequalities

≤C‖u‖ 3
2
+ |w|2 + 1

2
|νΔw|2

by interpolation. Moreover in the space of divergence-free function S is dissipative,
namely,

〈w,Sw〉=−〈w,u ·∇w〉− 〈w,w ·∇u〉+ 2〈w,∇Δ−1tr(∇u∇w)〉= 0
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by use of the periodic boundary conditions. The remainder of the proof follows the
proof of Lemma 7.2 in [16]. The last inequality implies that

‖Sw‖2 ≤C′‖w‖2 +
1
2
‖νΔw‖2,

where the norm is defined by ‖w‖ =
√

E(|w|22), and we have used the hypothesis
(2.18) and that A is deterministic. This shows that S is A bounded in the (probability)
space L2((Ω ,F ,P);L2(T3)); see Sect. 4.1 for a definition of this space. Since S is
dissipative and A bounded B= A+S also generates a flow eBt in this space, see [32].
The same conclusion follows for the operator K̄ in (2.19) (and K) by setting S = D,
where D is the pressure operator in Lemma 2.5.

Then using the bound (2.18), we get a (spectral) estimate on the operator K.

Lemma 2.7. Suppose that (2.18) holds, then the pressure operator is bounded by
the spectrum of a symmetric operator with discrete spectrum λ 2

k and satisfies the
estimate

−C|k|2/3 ≤−λk ≤ |∇Δ−1tr∇u ·∇Pk|2 ≤ λk ≤C|k|2/3, k ∈ Z
3, (2.23)

on the Hilbert space H
11
6
+

(T3), in the inertial range; see below. Pk is the projection
onto the kth eigenspace of the symmetric operator. Moreover, in the inertial range,
the operator K satisfies the bound

−C|k|2/3 − 4νπ2|k|2 ≤ |KPk|2 ≤C|k|2/3 + 4νπ2|k|2, k ∈ Z
3. (2.24)

We will use this estimate below in order to compute the structure functions of
turbulence or the moments of the velocity difference at two points in the fluid, in
the inertial range of turbulence, where 1/L ≤ |k| ≤ 1/η , k0 = 1/η = (ε/ν3)1/4, a
constant. η = 1/k0 is called the Kolmogorov length scale, ε is the energy dissipation
rate (1.8), and L is a typical length scale associated with the large eddies in the flow.
The above estimate implies that for a large Reynolds number where ν is small and
1/L ≤ |k| ≤ 1/η , we can think of the spectrum of K growing as a constant times
|k|2/3, with the error 4νπ2|k|2, in the inertial range.

The proof of Lemma 2.7 and the bounds (2.23) and (2.24) is the following.

Proof. A general vector w in L2(T3) can be decomposed into a divergence-free and
an irrotational part

w = u+ v = ∇×A+∇φ ,

respectively. The pressure operator D f = ∇Δ−1tr∇u ·∇ f maps the subspace U of
divergence-free vectors in L2(T3) to the subspace of the irrotational vectors V in
L2(T3). Thus D has no eigenvalues or eigenvectors in U . However, the magnitude
of the pressure gradient, the force that keeps the fluid velocity in U , is measured by
the norm |D f |2 or by

|D f |22 = 〈D f ,D f 〉 = 〈 f ,DTD f 〉,
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where DT is the transpose of D on V . Thus the magnitude of D is measured by |λk|
where the λ 2

k are the eigenvalues of the symmetric operator DTD on the eigenspaces
Pk in U , if DTD has discrete spectrum. We will establish the discreteness of the
spectrum and estimate the spectrum of DTD by comparing it with the spectrum of

the symmetric operator (∂ 2/3
x )2 on U . For f ∈ H2/3, the Sobolev space based on

L2(T3) with index 2/3, see Sect. 4.1, D satisfies the estimate

|D f |2 ≤C‖u‖ 11
6
+ |∂ 2/3

x f |2. (2.25)

The estimate (2.25) follows from Fourier transform

D̂ f = ̂∇Δ−1tr∇u ·∇ f =
2π ik
|k|2 tr ∑

j �=0

(k− j)⊗ û(k− j) j⊗ f̂ ( j)

≤ 2π
1

|k|3/2
tr ∑

j �=0

|k|1/2| j|1/3|k− j||û(k− j)|| j|2/3| f̂ ( j)|

≤ 1

(2π)3/2|k|3/2+

(
∑
j �=0

|
̂

∂
11
6
+

x u(k− j)|2
)1/2(

∑
j �=0

|̂∂ 2/3
x f ( j)|2

)1/2

by Schwartz’s inequality. Now squaring and summing in k we get (2.25).
Thus for nondegenerate fluid velocities u that satisfy (2.18), DTD maps a dense

subset of H2/3(T3)∩U onto L2(T 3)∩U . This means that the resolvent (I−DTD)−1

maps L2(T3)∩U onto H2/3(T3)∩U . Since the latter space sits compactly in the
former, (I −DTD)−1 is a compact operator with discrete spectrum. This implies
that DTD also has discrete spectrum.

The estimate (2.23) follows from the minimax principle, see [32], comparing the
eigenvalues of the symmetric operators

DTD ≤C2‖u‖2
11
6
+(∂ 2/3

x )2

and taking both branches of the square root. Similarly, (2.23) follows by comparing
the eigenvalues of the symmetric operators:

(−νΔ+D)T(−νΔ+D) = ν2Δ 2 −ν(DTΔ +ΔD)+DTD ≤ (C‖u‖ 11
6
−∂ 2/3

x −νΔ)2.

This concludes the proof of Lemma 2.7.

2.5 The Feynman–Kac Formula and the Log-Poissonian
Processes

The processes found by She and Leveque [64], and shown to be log-Poisson pro-
cesses by She and Waymire [65] and by Dubrulle [23], are produced by applying the
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Feynman–Kac formula, Lemma 2.3, to the potential dq. Namely, e
∫ t

0 dq = e∑m
k �=0

∫ t
0 dqk

and by setting hk = β − 1 and computing the mean of Nk
t

E(Nk
t ) =

∫
R

mk(t,dz) =− γ ln |k|
β − 1

, (2.26)

we get that

3
∫ t

0
dqk =

∫ t

0

∫
R

ln(1+ hk)N̄
k(ds,dz)+

∫ t

0

∫
R

(ln(1+ hk)− hk)mk(ds,dz)

= Nk(t) ln(β )+ (β − 1)

(
γ

ln |k|
β − 1

)
.

The upshot is the term

e
∫ t

0 dqk = e(γ ln |k|+Nk lnβ )/3 =
(|k|γ β Nk

)1/3
=
(
|k|γ β Nk

t

)1/3
(2.27)

in the (implicit) solution (2.17) of the stochastic Navier–Stokes equation. These are
exactly the log-Poisson processes found by the above authors. This gives

lnE((eγ ln |k|+Nk lnβ )
p
3 ) = lnE((|k|γ β Nk)

p
3 ) = γ

(
p
3
− β p/3 − 1

β − 1

)
ln |k|=−τp ln |k|,

(2.28)

for the logarithm of the pth moment, where τp are the intermittency corrections in
(2.35). Now the expression

τp =−γ

(
p
3
− β p/3 − 1

β − 1

)

implies that τ0 = 0 and τ3 = 0 independently of γ . The latter condition is required
by the Kolmogorov 4/5th law; see [26]. However, to be consistent with the spectral
theory of the operator D above, that moves energy around in quanta of |k|2/3, we
should set γ = 2/3. This means that the log-Poissionian processes also move energy
in quanta of |k|2/3 in Fourier space. However, |k|2/3 is multiplied by β Nk

t in (2.27)
above, namely, the number of jumps on the kth level contributes to the transfer of en-
ergy, and so far β is a free parameter. We follow [64] in making the assumption that
determines β ; see also [66]. The basic assumption is that most singular structures
in the turbulent fluid are one-dimensional vortex lines (filaments) that the highest
moments capture. Thus (assuming 0 < β < 1) by the Lagrange transformation, see
[64],

τp =−2
3

( p
3

)
+

2
3

1
1−β

− 2
3

β p/3

1−β
→−2

3

( p
3

)
+

2
3

1
1−β

=−2
3

( p
3

)
+C0

as p → ∞, where C0 = 2 is the codimension of the one-dimensional vortex lines and
this implies that β = 2/3. We will make this choice of β .
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Thus we see that the jumps multiplying u in (1.65) produce the log-Poisson pro-

cesses (|k| 2
3
(

2
3

)Nk
t )

1
3 in the integral equation for u:

u = eK(t)

(
m

∏
k

|k| 2
3 (2/3)Nk

t

) 1
3

Mtu0

+ ∑
k �=0

c1/2
k

∫ t

0
eK(t−s)

(
m

∏
j
| j| 2

3 (2/3)
N j
(t−s)

) 1
3

Mt−sdbk
sek(x)

+ ∑
k �=0

dk

∫ t

0
eK(t−s)

(
m

∏
j
| j| 2

3 (2/3)
N j
(t−s)

) 1
3

Mt−s|k|1/3dt ek(x)

since only the kth log-Poissonian processes are correlated with the kth Fourier com-
ponent. This equation clearly shows how the intermittency in the velocity (in (1.65))
causes intermittency in the dissipation through the Navier–Stokes evolution, if we
recall how the discrete (Poisson) distribution picks the kth term (associated with ek)
out of the product. Mt is the martingale

Mt = exp

{
−
∫ t

0
u(Bs,s) ·dBs − 1

2

∫ t

0
|u(Bs,s)|2ds

}
. (2.29)

It is the Radon–Nikodym derivative of the measure, see Theorem 2.2, of the associ-
ated Ito process

dxt =−udt+
√

2νdBt ,

u being the fluid velocity and Bt = (B1
t ,B

2
t ,B

3
t ) a three-dimensional vector of auxil-

iary Brownian motions, with respect to the usual Brownian measure.

2.6 The Kolmogorov–Obukhov–She–Leveque Theory

In 1941 Kolmogorov and Obukhov [34, 35, 49] proposed a statistical theory of tur-
bulence based on dimensional arguments. The main consequence and test of this
theory was that the structure functions of the velocity differences of a turbulent fluid

E(|u(x, t)− u(x+ l, t)|p) = Sp =Cplp/3

should scale with the distance (lag variable) l between them, to the power p/3. This
theory was immediately criticized by Landau for not taking into account the influ-
ence of the large flow structure on the constants Cp and later for not including the
influence of the intermittency in the velocity fluctuations on the scaling exponents;
see [2].
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In 1962 Kolmogorov and Obukhov [36, 50] proposed a corrected theory were
both of the above issues were addressed. They presented their refined similarity
hypothesis

Sp =C′
p < ε̃ p/3 > l p/3, (2.30)

where l is the lag variable and the averaged energy dissipation rate is

ε̃ =
1

4
3 π l3

∫
|s|≤l

ε(x+ s)ds, (2.31)

ε being the mean energy dissipation rate (1.8). They also pointed out that the scal-
ing exponents for the first two structure functions could be corrected by log-normal
processes. However, for higher-order structure functions, the log-normal processes
gave intermittency corrections inconsistent with contemporary simulations and ex-
periments.

In the refined similarity hypothesis (2.30) the averaged dissipation rate ε̃ will
depend on the large flow structure, so its addition addresses Landau’s objections at
least partially. The assumption is that

< ε̃ p/3 >∼ lτp ,

because of intermittency, where the τp are called the intermittency corrections (to
the scaling). Consequently, intermittency corrections are also produced:

Sp =C′
p < ε̃ p/3 > l p/3 =Cplp/3+τp =Cplζp ,

where

ζp =
p
3
+ τp

are the scaling exponents, with intermittency corrections included, and the Cps are
not universal but depend on the large flow structure. We will see below that starting
with (1.65), this scaling hypothesis in fact holds.

The She–Leveque intermittency corrections are

τp =−2p
9

+ 2(1− (2/3)p/3),

given by the log-Poissonian processes derived above. These intermittency corrections
are consistent with contemporary simulations and experiments; see [2, 59, 64, 66].

2.7 Estimates of the Structure Functions

We will now show how the integral form (2.17) of the stochastic Navier-Stokes
equation can be used to compute an estimate for the structure functions of
turbulence.
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In order to compute the structure functions of turbulence or the moments of the
velocity difference at two points in the fluid, we need to estimate the operator K
above and compare (2.23). Recall the eigenvalues λk > 0 that are the square roots
of the eigenvalues of the symmetric operator DTD above, with Pk the projector onto
the corresponding eigenspace. Then (2.24) can be reformulated as

−C|k|2/3 − 4νπ2|k|2 ≤−λk −ν4π2|k|2 ≤ |KPk|2 (2.32)

≤ λk +ν4π2|k|2 ≤C|k|2/3 +ν4π2|k|2,

if u satisfies the bound

E(‖u‖ 11
6
+)(t)≤C, (2.33)

by the above. For a large Reynolds number ν is small and since |k|2 ≤ k2
0, k0 =

(ε/ν3)1/4, where k0 is the inverse of the Kolmogorov length, we can now think of
the spectrum of K growing as a constant times |k|2/3 in the inertial range. ε is the
dissipation rate (1.8). The coefficient C is a constant times a Sobolov space norm of
u, by the estimate (2.25); see [17].

Now estimates of the structure function are possible and we get the follow-
ing result. Suppose that the coefficients ck and dk in (1.65) satisfy the conditions
∑k∈Z3\{0} ck < ∞ and ∑k∈Z3\{0} |k|1/3|dk| < ∞. Then the scaling of the structure
functions of (1.65) is

Sp ∼Cp|x− y|ζp , (2.34)

where

ζp =
p
3
+ τp =

p
9
+ 2(1− (2/3)p/3), (2.35)

p
3 being the Kolmogorov–Obukhov ’41 scaling and τp the She–Leveque intermit-
tency corrections, when the lag variable |x− y| is small.

The values in (2.35) agree with experimental values in [59]; they are in agreement
with the Kolmogorov–Obukhov scaling hypothesis with intermittency corrections,
computed by She and Leveque, but disagree with the log-normal distribution [36,
50], for the intermittency corrections.

The estimate of the first structure function is straightforward:

S1(x,y, t) = E(|u(x, t)− u(y, t)|)
= 2 ∑

k∈Z3\{0}
dk

∫ t

0
e−λk(t−s)|k|1/3ds E([eγ ln |k|+Nk ln(β )]1/3)sin(πk · (x− y))

≤ 2
C ∑

k∈Z3\{0}
|dk| (1− e−λkt)

|k|ζ1
|sin(πk · (x− y))|. (2.36)
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We have estimated K(t) by λk = C|k|2/3 in the second line (we use this approxi-
mation, ν = 0, throughout the computations) and also used the expectation of the
Poisson jump process:

E([eγ ln |k|+Nk ln(β )]1/3) =
1

|k|τ1
.

We used the lower estimate in (2.32) and this makes the estimate in (2.36) be an
overestimate of the efficiency of the cascade. The measure of the discrete process
must be written as

∞

∑
l=−∞

δl,k

m

∏
j �=l

δ
N j

t

∞

∑
j=0

(·)m j
l

j!
e(−ml ), (2.37)

where δl,k = 0, l �= k,1, l = k is the Kronecker delta function, because Nk
t depends

on the kth Fourier component ek (or dbk
t and |k|1/3dt) but is independent of the

components with different wave numbers. The δ functions in the product imply that
the probabilities of all the N j

t s, j �= k concentrate at 0.
Now, if ∑k∈Z3\{0} |dk|< ∞, then we get a stationary state as t → ∞:

S1(x,y,∞) ≤ 2
C ∑

k∈Z3\{0}

|dk|
|k|ζ1

|sin(πk · (x− y))|,

and for |x− y| small

S1(x,y,∞) ∼ 2πζ1

C ∑
k∈Z3\{0}

|dk||x− y|ζ1 ,

where ζ1 = 1/3+ τ1 ≈ 0.37.
A similar computation gives the second structure function:

S2 = E(|u(x, t)− u(y, t)|2)

≤ 2
C ∑

k∈Z3\{0}
ck

1− e−2λkt

|k|ζ2
sin2(πk · (x− y))

+
4

C2 ∑
k∈Z3\{0}

dk
2 (1− e−λkt)2

|k|ζ2
sin2(πk · (x− y)),

again by using the lower estimate in (2.32). As t → ∞, we get

S2(x,y,∞) ∼ 4πζ2

C2 ∑
k∈Z3\{0}

[
dk

2 +

(
C
2

)
ck

]
|x− y|ζ2 ,

when |x− y| is small, where ζ2 = 2/3+ τ2 ≈ 0.696.
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Similarly

S3 = E(|u(x, t)− u(y, t)|3)

≤ 23

C3 ∑
k∈Z3\{0}

[|dk|3(1− e−λkt)3 + 3(C/2)ck|dk|(1− e−2λkt)(1− e−λkt)]

|k|
×|sin3(πk · (x− y))|,

and

S3(x,y,∞) ∼ 23π
C3 ∑

k∈Z3\{0}
[|dk|3 + 3(C/2)ck|dk|]|x− y|,

where τ3 = 0.
All the structure functions are computed in a similar manner; for the pth structure

functions, we get that Sp is estimated by

Sp ≤ 2p

Cp ∑
k∈Z3\{0}

σ p · (−i
√

2)p U
(− 1

2 p, 1
2 ,− 1

2(M/σ)2
)

|k|ζp
|sinp(πk · (x− y))|,

where U is the confluent hypergeometric function, M = |dk|(1− e−λkt), and σ =√
(C/2)ck(1− e−2λkt). Thus the coefficients of Sp are given by the raw moments of

a Gaussian, the first few of which are listed in Table 2.1. Now Sp(x,y,∞) is

Table 2.1 Moments of a Gaussian

Order Raw moment Central moment Cumulant

1 M 0 M
2 M2 + σ 2 σ 2 σ 2

3 M3 + 3Mσ 2 0 0
4 M4 + 6M2σ 2 + 3σ 4 3σ 4 0
5 M5 + 10M3σ 2 + 15Mσ 4 0 0
6 M6 + 15M4σ 2 + 45M2σ 4 + 15σ 6 15σ 6 0
7 M7 + 21M5σ 2 + 105M3σ 4 + 105Mσ 6 0 0
8 M8 + 28M6σ 2 + 210M4σ 4 + 420M2σ 6 + 105 σ 8 105σ 8 0

Sp ∼ 2pπζp

Cp ∑
k∈Z3\{0}

((C/2)ck)
p/2 · (−i

√
2)p U

(
−1

2
p,

1
2
,− d2

k

Cck

)
|x− y|ζp ,

to leading order for |x− y| small. We also obtain Kolmogorov’s 4/5 law, see [26],

S3 =−4
5

ε(0)|x− y|,

to leading order, where ε is the mean energy dissipation rate (1.8).
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2.8 The Solution of the Stochastic Linearized
Navier–Stokes Equation

In this section we will study the Navier–Stokes equation (1.1) linearized but with the
same noise as the stochastic Navier–Stokes equation (1.66). This will allow us to use
some of the methods already discussed in this chapter and write the following initial
value problem as an integral equation. The operator K plays a central role again and
the Feynman–Kac formula, Lemma 2.3, from Sect. 2.2.1 utilized. We will also find
the martingale that removes the transport term from the equation. The linearized
Navier–Stokes equation with fully developed turbulent noise is

dz = (νΔz− u ·∇z− z ·∇u+ 2∇Δ−1tr(∇u∇z))dt + ∑
k �=0

c
1
2
k dbk

t ek(x)

+ ∑
k �=0

dk|k|1/3dtek(x)+ z
M

∑
k �=0

∫
R

hkN̄k(dt,dz),

z(x,0) = z0(x). (2.38)

In distinction to the Navier–Stokes equations (1.66), (2.38) can be solved by use
the Feynman–Kac formula, Lemma 2.3, and Cameron–Martin (or Girsanov’s The-
orem 2.2). The solution can be written as

z = eKte
∫ t

0 dqMtz
0 + ∑

k �=0

c1/2
k

∫ t

0
eK(t−s)e

∫ t
s dqMt−sdbk

sek(x)

+ ∑
k �=0

dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s|k|1/3ds ek(x), (2.39)

where K is the operator

K = νΔ + 2∇Δ−1tr(∇u∇),

(that was called K̄ above) and

3
∫ t

s
dq =

M

∑
k �=0

{∫ t

0

∫
R

ln(1+ hk)N̄
k(ds,dz)+

∫ t

0

∫
R

(ln(1+ hk)− hk)mk(ds,dz)

}

= ln(|k|2/3(2/3)Nk
t ),

by Ito’s formula and a computation similar to the one that produces the geometric
Lévy process, see Sect. 2.3, mk(dt,dz) being the kth Lévy measure. As in Sects. 2.4
and 2.5, Mt is the martingale:

Mt = exp{−
∫ t

0
u(Bs,s) ·dBs − 1

2

∫ t

0
|u(Bs,s)|2ds}. (2.40)
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It is the Radon–Nikodym derivative of the measure, see Theorem 2.2, of the
associated Ito process

dxt =−udt+
√

2νdBt ,

u being the fluid velocity and Bt = (B1
t ,B

2
t ,B

3
t ) a three-dimensional vector of auxil-

iary Brownian motions, with respect to the usual Brownian measure.
In the next chapter we will use the stochastic linearized Navier–Stokes equation

to construct the invariant measure of turbulence.



Chapter 3
The Invariant Measure and the Probability
Density Function

3.1 The Invariant Measure of the Stochastic
Navier–Stokes Equation

The invariant measure of the stochastic Navier–Stokes equation determines all the
one-point statistics of turbulence, or the statistics of quantities defined at one point x
in the flow. This quantity determines all the statistical properties of the turbulent ve-
locity field, see [56], and in distinction to the nonlinear Navier–Stokes equation, the
invariant measure satisfies a linear but a functional differential equation; see [56]. In
fact Hopf [29] found a linear equation for the characteristic function (Fourier trans-
form) of the invariant measure in 1952, but at that time methods for solving such an
equation were not available. In Hopf’s equation the noise for fully developed turbu-
lence was missing, but in Kolmogorov’s equation for the invariant measure the noise
is always supplied. Since only the linearized Navier–Stokes equation (2.38) appears
below in the Kolmogorov–Hopf equation for the invariant measure, we will think
about the linearized Navier–Stokes equation as the infinite-dimensional Ito process,
whose generator gives the Kolmogorov–Hopf equation. Thus associated with such
an Ito process is a diffusion equation, a linear functional differential equation, that
is the Kolmogorov–Hopf equation determining the invariant measure. We will now
derive this equation. This will make clear how to compute the coefficients in the
Kolmogorov–Hopf equation.

The Kolmogorov–Hopf equation for the invariant measure is

∂φ
∂ t

=
1
2

tr[PtCP∗
t Δφ ]+ tr[PtD̄∇φ ]+ 〈K̄(z)Pt ,∇φ〉, (3.1)

where D̄ = (|k|1/3dk), φ(z) is a bounded function of z and |x|= 〈x,x〉1/2 where 〈·, ·〉
is the inner product on H. Here C1/2, D ∈ L(H) are linear operators on H = L2(T3),
defined by

C1/2u = ∑
k �=0

C
1
2
k ûkek, Du = ∑

k �=0

Dkûkek

B. Birnir, The Kolmogorov-Obukhov Theory of Turbulence: A Mathematical
Theory of Turbulence, SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-6262-0 3,
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for u = ∑k �=0 ûkek ∈ L2(T3), C1/2
k and Dk are 3-by-3 diagonal matrices with entries

c1/2
k, j and dk, j, j = 1,2,3 on the diagonal:

Pt = e−
∫ t

0 ∇u dr
m

∏
k

(|k|2/3(2/3)Nk
t )

1
3 ,

by the computation of how the log-Poisson processes are produced, from the
stochastic Navier–Stokes equation, by the Feynman–Kac formula (2.27) above. The
operator K̄ is the linearized Navier–Stokes operator

K̄ = νΔ − u ·∇+ 2∇Δ−1tr(∇u∇) = K − u ·∇,

and z is the solution of the linearized Navier–Stokes equation (2.38). Notice that
now K has 2 in front of the pressure term as in Sect. 2.8.

To find the infinite-dimensional Ito process whose Kolmogrov’s backward
equation is (3.1), we consider the linearized Navier–Stokes equation with the same
noise as (1.65); see Sect. 2.8. This is the functional derivative of the deterministic
Navier–Stokes equation (1.1), driven with the same noise as the stochastic equation
(1.65), to give an Ito process in function space. It is analogous to the stochastic
evolution of the volume element in finite dimensions, but here the Ito process de-
termines the evolution of any bounded function of u, in infinite dimensions; see
[56]. The solution of the linearized Navier–Stokes equation (2.38) can be written in
integral form as

z = eKtPtMtz
0 + ∑

k �=0

c1/2
k

∫ t

0
eK(t−s)Pt−sMt−sdbk

sek(x)

+ ∑
k �=0

dk

∫ t

0
eK(t−s)Pt−sMt−s|k|1/3ds ek(x) (3.2)

by the Feynman–Kac formula, where the operator K generates the flow eKt and

Mt = exp

{
−
∫

u(Bs,s)dBs − 1
2

∫ t

0
|u(Bs,s)|2ds

}

is a martingale with Bt ∈ R
3 an auxiliary Browninan motion; see Sect. 2.8.

Now we define the variance

Qt =

∫ t

0
eK(s)PsMsCMsP

∗
s eK∗(s)ds (3.3)

and drift

Et =
∫ t

0
eK(s)PsMsD̄ds (3.4)

operators. Then the solution of the Kolmogorov–Hopf equation (3.1) can be written
in the form
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Rtφ(z) =
∫

H
φ(y)N(eKt Pt Mt z+EtI,Qt )

∗PPt (dy)

=

∫
H

φ(eKt PtMtz+EtI+ y)N(0,Qt) ∗PPt (dy),

where PPt is the Poisson law of Pt . Nm,Qt denotes the infinite-dimensional normal
distribution on H with mean m and variance Qt ; see [56], I = ∑ek and EtI ∈ H.

3.1.1 The Invariant Measure of Turbulence

We can now write a formula for the invariant measure of turbulence.

Theorem 3.1. The invariant measure of the stochastic Navier–Stokes equation on
Hc = H3/2+(T3) has the form

μ(dx) = e〈Q
−1/2EI, Q−1/2x〉− 1

2 |Q−1/2EI|2N(0,Q)(dx)∑
k

δk,l

m

∏
j �=l

δ
N j

t

∞

∑
j=0

p j
ml

δ(Nl
t − j),

(3.5)

where Q = Q∞, E = E∞, mk = ln |k|2/3 is the mean of the log-Poisson processes

(2.26) and p j
mk =

(mk)
je−mk

j! is the probability of Nk
∞ = Nk having exactly j jumps,

and δk,l is the Kronecker delta function.

Suppose that the operator Q is trace-class, E(Q1/2H) ⊂ Q1/2(H), and that

eKtPtMt(H)⊂ Q1/2
t (H), t > 0, where H = Hc, then, with u given, the invariant mea-

sure μ is unique, ergodic, and strongly mixing. We know that the above invariant
measure is unique for the strong swirl [17] and strong rotation [3, 4], but it depends
on u, and its uniqueness for general turbulent flows depends on the uniqueness of u.

The proof of Theorem 3.1 uses the above machinery and is analogous to the proof
of Theorem 8.20 in [56].

Proof. The (log) Poissonian part of the invariant measure is the same for all t, so
we just have to proof that the infinite-dimensional Gaussian is invariant or that

∫
H

Rtφ(y)N(E∞x,Q∞)(dy) =
∫

H
φ(y)N(E∞x,Q∞)(dy),

where E∞ = E . We set Pnew
t = Pold

t Mt for the ease of writing. Recall that

Rtφ(z) =
∫

H
φ(y)N(eKt Pt z+Etx,Qt )(dy) =

∫
H

φ(eKtPtz+Etx+ y)N(0,Qt)(dy).

We let φ(z) = ei〈z,h〉; then
∫

H
ei〈y,h〉N(E∞x,Q∞)(dy) = ei〈E∞x,h〉− 1

2 〈Q∞h,h〉
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by a standard computation and
∫

H
Rtφ(y)N(E∞x,Q∞)(dy) =

∫
H

ei〈y,h〉N(eKt Pt z+Et x,Qt ) ∗N(E∞x,Q∞)(dy)

=

∫
H

ei〈eKt Pt z+Etx,h〉− 1
2 〈Qt h,h〉N(E∞x,Q∞)(dy)

= ei〈Et x,h〉− 1
2 〈Qt h,h〉ei〈E∞x,P∗

t eK∗t h〉− 1
2 〈Q∞P∗

t eK∗t h,P∗
t eK∗t h〉

= ei〈E∞x,h〉− 1
2 〈Q∞h,h〉

if eKtPtQtP
∗
t eK∗t +Qt = Q∞

and

eKtPtE∞ +Et = E∞.

The last two equations are easily verified using the definitions (3.3) and (3.4), if we
interpret

eKtPteKsPs = eK(t+s)P(t+s),

as solving the linearized stochastic Navier–Stokes equation with initial data eKsPs

for the time interval [s, t + s]. The equality hold by existence of the flow; see
Lemma 2.6.

Next we show that given u the invariant measure μ is unique. Again it suffices to
show this for the infinite-dimensional Gaussian. We consider the Fourier transform
of μ ; by the invariance of μ

μ̂(P∗
t eK∗t h)ei〈Etx,h〉− 1

2 〈Qt h,h〉 = μ̂(h)

as t → ∞, we get

μ̂(h) = ei〈E∞x,h〉− 1
2 〈Q∞h,h〉,

since P∗
t eK∗t h → 0. Now E∞ and Q∞ depend on u but given u the Fourier transform

is unique and thus

μ = N(E∞x,Q∞).

Finally we show that

lim
t→∞

Rtφ(z) =
∫

H
φ(y)N(E∞z,Q∞)(dy)

in L2(H,μ), z ∈ H. This implies that μ is ergodic and strongly mixing, since the
Poissonian part of the measure is the same for all t. We consider φ(z) = ei〈z,h〉 again:

lim
t→∞

Rtφ = lim
t→∞

ei〈Etx,h〉− 1
2 〈Qt h,h〉e〈z,P

∗
t eK∗t h〉

= ei〈E∞x,h〉− 1
2 〈Q∞h,h〉 = μ̂(h).

The conclusion follows by the uniqueness of the Fourier transform.
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3.2 The Invariant Measure for the Velocity Differences

We will now find the Kolmogorov–Hopf functional differential equation for the in-
variant measure of the Navier–Stokes equation for the velocity differences:

z = u−w = u(x, t)− u(y, t).

The previous measure was the measure determining the one-point statistics, but the
measure for the velocity difference will determine the two-point statistics. We are
simplifying this a little using isotrophy; namely, in general, the velocity difference
is a tensor. The linearized Navier–Stokes operator is now

K̄ = νΔ − u ·∇+∇Δ−1tr((∇u+∇w)∇),

but otherwise the derivation is similar to the derivation of the 1-point measure above.
The formula for the 2-point measure is the same (3.5), but now the operator K de-
pends on the two points x and y and therefore the variance (3.3) and the drift (3.4)
will also depend on these two points. In fact the measure depends on the lag variable
x− y. A better way of capturing the dependence on the lag variable is to write the
difference of the inertial terms as

−u ·∇w+w ·∇u=−u ·∇(u−w)− (u−w) ·∇u+(u−w) ·∇(u−w).

This produces the new operator

K̃ = νΔ − u ·∇+ z ·∇−∇u+∇Δ−1tr((∇u+∇w)∇) = K − u ·∇+ z ·∇−∇u

with the understanding that now K is a function of
(
(u+w)

2

)
through the pressure

term. The last three terms are removed by a combination of Feynman–Kac and the
Cameron-Martin formula (Girsanov’s theorem) and we get the martingale

Mt = exp

{∫ t

0
u(x−B−s+ y,s) ·dB−s+

∫ t

0
z(Bs) ·dBs

−1
2

∫ t

0
|u(x−B−s+ y,s)+ z(Bs),s)|2ds

}

after a time reversal of the auxiliary Brownian motion Bt ; see [44]. The computation
of the measure follows the procedure for the computation of the measure for the 1-
point statistics. The difference of the two equations (for u and w) is written as an
integral equation

z = eK(t)e−
∫ t

0 ∇u dse
∫ t

0 dqMtz
0 + ∑

k �=0

c1/2
k

∫ t

0
eK(t−s)e−

∫ t
s ∇u dre

∫ t
s dqMt−sdbk

sek(x)

+ ∑
k �=0

dk

∫ t

0
eK(t−s)e−

∫ t
s ∇u dre

∫ t
s dqMt−s|k|1/3ds ek(x) (3.6)
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by the Feynman–Kac formula and Girsanov’s theorem where K is the operator

K = νΔ +∇Δ−1tr((∇u+∇w)∇), (3.7)

and

Pt = e−
∫ t

0 ∇u dse
∫ t

0 dqMt = e−
∫ t

0 ∇u dr ∏
k

|k|2/3(2/3)Nk
t Mt .

The Kolmogorov–Hopf equation for the Ito processes (3.6) now becomes

∂φ
∂ t

=
1
2

tr[PtCP∗
t Δφ ]+ tr[PtD̄∇φ ]+ 〈K(z)Pt ,∇φ〉, (3.8)

where D̄ = (|k|1/3Dk) and φ(z) is a bounded function of z. It is also the Kolmogorov
backward equation of the Ito process (3.6).

The variance is

Qt =
∫ t

0
eK(s)PsCP∗

s eK∗(s)ds (3.9)

and the drift is

Et =

∫ t

0
eK(s)PsD̄ds. (3.10)

Then the solution of the Kolmogorov–Hopf equation (3.8) can be written in the form

Rtφ(z) =
∫

H
φ(y)N(eK(t)Pt z+Et I,Qt )

∗N(0,2ν) ∗PPt (dy)

=

∫
H

φ(eK(t)Ptz+EtI+ y)N(0,Qt) ∗N(0,2ν) ∗PPt (dy), (3.11)

where PPt is the Poisson law of Pt ; see [56]. Here |x| = 〈x,x〉1/2 where 〈·, ·〉 is the
inner product on H and z = z0. Nm,Qt denotes the infinite-dimensional normal distri-
bution on H with mean m and variance Qt , I = ∑ek,EtI ∈ H and N(0,2ν) the law of
the three-dimensional Brownian motion in the martingale Mt . If Qt is of trace-class
Qt ∈ L+(H), then Rt is Markovian.

Theorem 3.2. The invariant measure for the velocity differences (two-point statis-
tics) of the Navier–Stokes equation on Hc = H3/2+(T3) has the form

μ(dx,dy) = e〈Q
−1/2EI, Q−1/2x〉− 1

2 |Q−1/2EI|2N(0,Q)(dx)

∗N(0,2ν)(dy)∑
k

δk,l

∞

∑
j=0

p j
ml

δ(Nl− j), (3.12)

where Q =Q∞, E = E∞. Here mk = ln |k|2/3 is the mean of the log-Poisson processes

(2.26) and p j
mk =

(mk)
je−mk

j! is the the probability of Nk
∞ = Nk having exactly j jumps,

and δk,l is the Kronecker delta function.
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Suppose that the operator Q is trace-class, E(Q1/2H)⊂ Q1/2(H), and that eK(t)PtMt

(H) ⊂ Q1/2
t (H), t > 0, where H = L2(T3), then, given u, the invariant measure μ

is unique, ergodic, and strongly mixing. The proof of Theorem 3.2 is similar to the
proof of Theorem 3.1.

It is easy to check that the moments of the invariant measure for the two-point
statistics give the estimates for the structure functions above. The variable in the
latter three-dimensional Gaussian N(0,2ν)(dy) in the invariant measure is the lag
variable.

The same comments as above apply to the measure (3.12) as the invariant mea-
sure for the one-point statistics (3.5). It is unique for the strong swirl [17] and strong
rotation [3, 4], but its uniqueness for general turbulent flows depends on the unique-
ness of u.

3.3 The Differential Equation for the Probability
Density Function

We must compute the probability density function (PDF) of the invariant measure
(3.5), for the velocity differences, in order to compare with PDFs constructed from
simulations and experiments. The simplest way of doing this is to derive the differ-
ential equation for the distribution function from the Kolmogorov–Hopf equation
(3.1). We start by rewriting the equation Kolmogorov–Hopf (3.1) in the form

∂φ
∂ t

=
1
2

tr[QtΔφ ]+ tr[Et∇φ ], (3.13)

where Qt and Et are respectively the variance (3.9) and drift (3.10), but computed
with the operator K in (3.7). This can be done by redefining the underlying infinite-
dimensional Ito process with the formulas (3.9) and (3.10) for the variance and the
drift. We have to take the trace of the functional variables to get the equation for the
PDF. The resulting equation is

∂φ
∂ t

=
1
2

Δφ +
1√
2t

c ·∇φ , (3.14)

where ĉ(|k|) = (Q−1/2
t Et)k are Fourier coefficients of c, after we scale by the vari-

ance Qt . Now scaling the equation by −2t and sending t → ∞ gives the equation

1
2

Δφ + c ·∇φ = φ , (3.15)

with a trivial rescaling of time. This is the (stationary) equation for the distribution
function. Now the PDF is for the absolute value of the velocity differences w =
|u(x, t)− u(y, t)|, by (3.20) below, so the angle derivatives of w do not appear, and
ĉ = (Q−1/2E)k ∼ c̄|k|1/3/|k|1/3 = c̄ for k large. (The intermittency corrections wash
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out.) Thus, taking the trace of the spatial (lag) variables also, we get that c = c̄
w . In

polar cordinates Δφ = φww + 2
w φw, in three dimensions. Thus (3.15) becomes

1
2

φww +
1+ c̄

w
φw = φ . (3.16)

This is the stationary equation satisfied by the PDF.

Example 3.1. The above computation is clarified by the following example. Con-
sider the equation

φt = φxx +
c√
2t

φx,

where φ = e−(x−a)2/b√
πb

is a Gaussian. It is easy to check that this equation holds if

at =− c√
2t

and bt = 4, so a=−c
√

2t and b= 4t. Thus invariant measure is produced
by scaling out t:

φ(y)dy =
e−

(y+c)2

2√
2π

dy =
e
(y− a√

b/2
)2

2√
2π

dy = φ(x, t)dx,

where y = x/
√

2t. This invariant measure satisfies the stationary equation (3.15).

3.4 The PDF for the Turbulent Velocity Differences

It is now possible to compute the PDF for the velocity differences in turbulence.
The form of (3.16) suggests that we should look for a solution of the form f = xaKλ
where Kλ is a modified Bessel’s function of the second kind, satisfying the equation

Kxx +
1
x

Kx −
(

1+
λ 2

x2

)
K = 0.

A substitution of this ansatz into (3.16) gives a = −c̄ and λ =

√
c̄(c̄+1)

2 . The solu-
tion is the generalized hyperbolic distribution; see Barndorff-Nielsen [6] and Ap-
pendix C. It has an algebraic cusp at the origin and exponential tails and is con-
structed by multiplying the modified Bessel’s function of the second kind Kλ , by
x−λ . For the zeroth moment we get a distinguished solution λ = c̄ = 1 which give
the normalized inverse Gaussian (NIG) distribution that was also investigated by
Barndorff-Nielsen [7] and used by Barndorff-Nielsen, Blæsild, and Schmiegel to
model PDF of velocity increments for several data sets in [8]. It turns out that the
distribution functions for all of the moments can be expressed by the NIG distri-
bution function. However, since the intermittency corrections are different for the
different moments, the NIG distributions for the different moments have different
parameters, as will be explained below.
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The PDF of the NIG is

αδK1

(
α
√

δ 2 +(x− μ)2
)

π
√

δ 2 +(x− μ)2
eδγ+β (x−μ). (3.17)

The parameters are:

α heavyness of the tail, β asymmetry, δ scaling

μ centering, and γ =
√

α2 −β 2.

The NIG distribution has very nice properties that are summarized in [8]. In partic-
ular its characteristic function and all of its moments are easily computed. However,
the moments of the velocity differences are not the moments of the same NIG dis-
tributions, because of the intermittency correction. In fact, the invariant measure
(3.12) has both a continuous and a discrete part and because of this each moment
comes with its own PDF, as mentioned above. All of these PDFs are solutions of the
stationary equation (3.16) and they can be expressed in terms of NIG distributions.
However, their parameters α,β ,δ , and μ all depend on the particular moment for
which one is computing the PDF. Thus these parameters are different for the dif-
ferent moments. The cumulant-generating function μz+ δ (γ −√

α2 − (β + z)2) is
particularly simple for the NIG and this makes the moments easy to compute; see
[8]. The first few moments and the characteristic function of the NIG distribution
are:

Mean μ + δβ/γ
Variance δα2/γ3

Skewness 3β/(α
√

δγ) (3.18)

Excess kurtosis or flatness 3(1+ 4β 2/α2)/(δγ)

Characteristic function eiμz+δ (γ−
√

α2−(β+iz)2).

However, since the parameters α,β ,δ , and μ are different for different moments,
care must be taken when the moments above are used to compute these parameters.
This will be discussed in more details in the next section.

Thus we see that the PDF of the velocity increment is a normalized inverse Gaus-
sian (NIG) distribution that is a generalized hyperbolic distributions with index 1.
Using the invariances of the NIG it is given by the four-parameter formula

f j(x,α,β ,δ ,μ) =
αδ eδγ K1

(
α
√

δ 2 +(x− μ)2
)

π
√

δ 2 +(x− μ)2
eβ (x−μ), j = 1,2, (3.19)

where α measures how heavy the exponential part of the tail of the distribution is,
β measures how skew the distribution is, δ is a scaling parameter and μ determines



64 3 The Invariant Measure and the Probability Density Function

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-4 -2 2 4

Fig. 3.1 The PDFs from simulations and fits for the longitudinal direction. The PDFs for increasing
values of the lag variable are displaced downward. The last PDF looks distinctly Gaussian.

the location (center) of the distribution, γ =
√

α2 −β 2. K1 is the modified Bessel’s
function of the second kind with index 1. Now the 1st moment of the velocity dif-
ferences is

E(δ ju) = E([u(x+ s, ·)− u(x, ·)] · r) = E(|u(x+ s, ·)− u(x, ·)||r|cos(θ ))

=

∫ ∞

∞
(x f j)(x,α,β ,δ ,μ)dx, (3.20)

where j = 1, if r = ŝ is the longitudinal direction (that is the direction along the
lag vector s), and j = 2, if r = t̂ where t ⊥ s is a transversal direction and r̂ and
t̂ being unit vectors. θ is the angle between the vectors [u(x+ s, ·)− u(x, ·)] and r,
and the absolute value of the former is the reason why the angle derivatives wash
out in (3.16). The PDF is symmetric in the transversal direction; then β = μ = 0. In
that case there are only two independent adjustable parameters, α is the exponential
decay at x =±∞ and δ is the “peakedness” at the origin. In the nonsymmetric case,
there are two more independent adjustable parameters, the skewness parameter β
and the centering parameter μ .

The PDF for the velocity increments has the asymptotics,

f j ∼ δeδγ

π
eβ (x−μ)

(δ 2 +(x− μ)2)

for (x−μ) small. This is the algebraic (rational) cusp at the origin. The exponential
tails are

f j ∼
√

2δαeδγ−β μ

π3/2

e−α |x|+β x

|x|3/2

for |x| large.
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Fig. 3.2 The log of the PDFs from simulations and fits for the longitudinal direction; compare
Fig. 4.5 in [76]. Again the logs of PDFs for increasing values of the lag variable are displaced
downward. The last ones look Gaussian.
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Fig. 3.3 The PDFs from simulations and fits for the transversal direction. The PDFs for increasing
values of the lag variable are displaced downward. The last PDF looks distinctly Gaussian.

The exponential tails of the PDF are caused by occasional sharp velocity gradi-
ents (rounded-off shocks), whereas the cusp at the origin is caused by the random
and gentile fluid motion in the center of the ramps leading up to the sharp velocity
gradients; see [40].
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Fig. 3.4 The log of the PDFs from simulations and fits for the transversal direction; compare
Fig. 4.6 in [76]. Again the logs of PDFs for increasing values of the lag variable are displaced
downward. The last ones look Gaussian and all of them are symmetric and centered at 0.

For large values of the lag variable, the NIG distribution must also approximate
a Gaussian. It turns out to do just that. Letting α,δ → ∞, in the formulas for f j(x)
above, in such a way that δ/α → σ , we get that

f j → e−
(x−μ)2

2σ√
2πσ

eβ (x−μ).

3.5 Comparison with Simulations and Experiments

We now compare the above PDFs with the PDFs found in simulations and experi-
ments, using the first moment g j(x) = (x f j)(x,α,β ,δ ,μ), where f j , j = 1,2 are the
PDFs in formula (3.19). Because of the discrete jump measure (2.37) all the higher
moments come with their own PDF. The PDF for the pth moment is given by the
formula

f p
j (α ,β ,δ ,μ)(p)

(x) =
αδ eδγ K1

(
α
√

δ 2 +(x− μ)2
)

π
√

δ 2 +(x− μ)2
eβ (x−μ), (3.21)

where γ =
√

α2 −β 2 and K1 is the modified Bessel’s function of the second kind
with index 1, similar to (3.19). The density of the pth moment itself is

xp f p
j (α ,β ,δ ,μ)(p)

(x) =
α1−pδ eδγK1

(
α
√

δ 2 +(x− μ)2
)

π(δ 2 +(x− μ)2)(1−p)/2
eβ (x−μ), (3.22)
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Fig. 3.5 The PDFs from experiments and fits. The PDFs for increasing values of the lag variable
are displaced downward.
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Fig. 3.6 The log of the PDFs from experiments and fits. Again the logs of PDFs for increasing
values of the lag variable are displaced downward.

where j = 1, for the longitudinal, and j = 2 for the transverse component, as in
(3.19). All the four parameters α,β ,δ , and μ are functions of p because of inter-
mittency.

If the first four moments in (3.18) are given, then the four parameters in the NIG
distribution can be computed directly. However, this is probably not the best way
to do so. Firstly, this would only give the parameters for the first four moments
and the parameters for the higher moments would have to be computed separately.
Secondly, since both the longitudinal and the transverse moments can be mea-
sured, see Formula (3.20), giving the first four moments may overdetermine the



68 3 The Invariant Measure and the Probability Density Function

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 2 4 6 8 10

Fig. 3.7 The exponents of the structure functions as a function of order, theory, or Kolmogorov–
Obukhov–She–Leveque scaling (red), experiments (disks), dns simulations (circles), from [19],
and experiments (X), from [64]. The Kolmogorov–Obukhov ’41 scaling is also shown as a blue
line for comparison.
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Fig. 3.8 The exponents of the structure functions as a function of order (−1,2], theory, or
Kolmogorov–Obukhov–She–Leveque scaling (red), experiments (disks), and dns simulations
(circles), from [19]. The Kolmogorov–Obukhov ’41 scaling is also shown as a blue line for
comparison.

four parameters in NIG. A better method is to give both the longitudinal and trans-
verse measurements for two moments. This will determine the four parameters in
NIG and give the NIG for these two moments. One is actually giving the NIG of the
projection onto these two moments in moments space. From a theoretical point of
view it makes sense to always give the measurements for the third moment, because
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it does not have any intermittency corrections, corresponding to Kolmogorov’s 4/5
law. Thus one can say given the longitudinal and transverse measurements for the
third moment the PDF (NIG) for every moment is determined by the longitudinal
and transverse measurements for that moment. However, it may depend on the ex-
periment whether this is the most practical projection.

The direct Navier–Stokes simulations (DNS), in Figs. 3.1–3.4, were provided by
Michael Wilczek from his Ph.D. thesis; see [76]. The simulations are plotted in blue
and the fits in red. The experimental results in Figs. 3.5 and 3.6 are from the parti-
cle tracking experiments by Eberhard Bodenschatz’s group. The PDFs of Eulerian
velocity differences are obtained from the instantaneous particle velocities by con-
ditioning on given spatial separations; see [78]. In each case the fit was checked
by computing the normalized log-likelihood function. First the data point zero or
close to zero was removed and then the normalized log-likelihood function com-
puted for the remaining points.The experimental results are plotted in blue and the
fits in red. The experimental results in Figs. 3.7 and 3.8 are from Sreenivasan and
Dhruva [69] for the high Reynolds number atmospheric turbulence. The numbers
plotted are from Table 2 in [19] where both experimental and simulation results are
compared. We plotted the numbers from the latter simulation (10243) in Table 2,
in [19]. We thank all of these researchers for the permission to use their results to
compare with the theoretically computed PDFs. The NIG distribution was used by
Barndorff-Nielsen et al. [8] to obtain fits to the PDFs for three different experimental
data sets.

3.6 Description of Simulations and Experiments

First we described the simulations in the Ph.D. thesis of Michael Wilczek following
[76]. The DNS data was produced by a standard pseudospectral code with periodic
boundary conditions at a Taylor-based Reynolds number of 112. The simulations
were run in a statistically stationary state with a large-scale forcing that preserves
the kinetic energy of the flow and delivers approximately homogeneous isotropic
turbulence. For more details we refer the reader to Michael Wilczek’s Ph.D. thesis
[76, 77].

The experiment by Xu et al. is described in their paper [78]: The turbulence is
generated in a closed cylindrical chamber containing roughly 0.1 m3 of water using
counterrotating disks (French washing machine). The flow was seeded with trans-
parent polystyrene microspheres with a diameter of 25 μm (smaller than or compa-
rable to the smallest turbulent length scale) and a density 1.06 times that of water.
These particles have previously been shown to act as passive tracers in this flow. The
microspheres were illuminated by two pulsed Nd:YAG lasers, and their motion was
recorded in three dimensions by three high-speed cameras at rates of up to 27,000
frames per second so that the smallest turbulent time scales were well resolved. The
trajectories of individual tracer particles were reconstructed using particle track-
ing algorithms. Once the raw particle tracks were obtained, Lagrangian velocities
were obtained by convolution with a Gaussian smoothing and differentiating kernel.
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The smoothing operation works as a filter to suppress the measurement noise while
the differentiation operation gives the derivative of the filtered signal.

The data from [69] consists of a series of measurements in atmospheric turbu-
lence at Talylor microscale Reynolds number ∼√

15R ranging between 10,000 and
20,000. The Taylor frozen hypothesis is used, but it was verified by comparison
with true spatial data obtained from two probes separated by a known streamwise
distance; see [69]. The parameter values are listed in Table 3.1; see [19].

Table 3.1 Some relevant parameters for the atmospheric data

U u′ ε η λ Rλ
7.6 ms−1 1.36 ms−1 0.032 m2 s−3 0.57 mm 11.4 mm 10,340

Here, U is the mean speed, u′ is the root-mean-square velocity, ε is the mean rate of energy dissi-
pation, η and λ are the Kolmogorov and Taylor microscales, respectively, and Rλ = uλ/ν , ν being
the kinematic viscosity of air at the measurement temperature

Hotwire measurements were made in the atmospheric surface layer at a height
of 35 m above the ground using a standard meteorological tower at Brookhaven
National Laboratory. The tower itself presented very little obstacle to the wind
because of its low solidity. The data set analyzed here is part of a more comprehen-
sive batch of data obtained at the tower. The hotwire, 0.7 mm in length and 0.5 μm in
diameter, was placed facing the wind, about two meters away from the tower. (For
monitoring the wind direction, the tower was equipped with a vane anemometer
placed two meters away from the measurement station.) The calibration was per-
formed in situ using a TSI calibrator and checked later in a wind tunnel. The signals
were low pass filtered at 5 kHz and sampled at 10 kHz. The anemometer and signal
conditioners were placed nearby at the height of measurement, and the conditioned
signal was transmitted to the ground and digitized using a 12-bit A/D converter.
Typical data records contained between 10 and 40 million samples, during which
time the wind direction and its mean speed were deemed acceptably constant. More
details are given in Dhruva [22], but the essential features for this particular set of
data are listed in Table 3.1. The wind conditions were somewhat unstable.

3.7 The Invariant Measure of the Stochastic Vorticity Equation

We first derive the stochastic vorticity equation from the stochastic Navier–Stokes
equation (1.65),

ut + u ·∇u = νΔu−∇p+ ∑
k �=0

c
1
2
k dbk

t ek(x)

+ ∑
k �=0

dk|k|1/3dtek(x)+ u
m

∑
k �=0

∫
R

hkN̄k(dt,dz), (3.23)

u(x,0) = u0(x),
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with the incompressibility conditions

∇ ·u = 0, (3.24)

where u(x), x ∈ R, is the velocity of the fluid and ν is the kinematic viscosity. Let
ω =∇×u. Taking the curl of the Navier–Stokes equation (3.23) and using the vector
identity

∇× (u ·∇u) = u ·∇ω −ω ·∇u+(∇ ·u)ω = u ·∇ω −ω ·∇u,

because of the incompressibility condition (3.24), we get the vorticity equation

ωt + u ·∇ω = νΔω +ω ·∇u+ 2π i ∑
k �=0

k× c
1
2
k dbk

t ek(x)

+2π i ∑
k �=0

k× dk|k|1/3dtek(x)+ω
m

∑
k �=0

∫
R

hkN̄k(dt,dz), (3.25)

ω(x,0) = ω0(x).

This equation is linear in ω and we can solve it explicitly (in terms of u), using the
Cameron-Martin formula (Girsanov’s Theorem 2.2) and the Feynman–Kac formula,
Lemma 2.3, as we did in Sects. 2.5 and 2.8. The solution is

ω = eKte
∫ t

0 dqMtω0 + 2π i ∑
k �=0

k× c1/2
k

∫ t

0
eK(t−s)e

∫ t
s dqe

∫ t
s ∇udrMt−sdbk

sek(x)

+2π i ∑
k �=0

k× dk

∫ t

0
eK(t−s)e

∫ t
s dqe

∫ t
s ∇udrMt−s|k|1/3ds ek(x), (3.26)

where K is the heat operator
K = νΔ ,

and

3
∫ t

s
dq =

M

∑
k �=0

{∫ t

0

∫
R

ln(1+ hk)N̄
k(ds,dz)+

∫ t

0

∫
R

(ln(1+ hk)− hk)mk(ds,dz)

}

= ln(|k|2/3(2/3)Nk
t ),

by Ito’s formula and a computation similar to the one that produces the geometric
Lévy process in Sect. 2.3, mk(dt,dz) being the kth Lévy measure; see Sect. 2.5. As
in Sects. 2.5 and 2.8, Mt is the martingale

Mt = exp

{
−
∫ t

0
u(Bs,s) ·dBs − 1

2

∫ t

0
|u(Bs,s)|2ds

}
. (3.27)

It is the Radon–Nikodym derivative of the measure, see Theorem 2.2, of the associ-
ated Ito process

dxt =−udt+
√

2νdBt ,
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u being the fluid velocity and Bt = (B1
t ,B

2
t ,B

3
t ) a three-dimensional vector of auxil-

iary Brownian motions, with respect to the usual Brownian measure.
One can check that the vorticity does not depend on the velocity at any particular

point (it only depends on the gradients of the velocity components). Similarly, we
have used in the computation of (3.26) that the velocity at (x, t) is independent of the
vorticity at the same point. The velocity only depends on the whole vorticity field
through the Biot–Savart law

u(x, t) =− 1
4π

∫
R3

(x− y)×ω(y, t)
|x− y|3 dy, (3.28)

where we have used the periodicity condition to extend the vorticity field to the
whole of R3. The independence of u(x, t) of ω(x, t) is seen by setting ω(x, t) = 0,
since {x} is a set of measure zero the integral in (3.28) is unchanged. The formula
(3.26) also makes it clear that ω is an infinite-dimensional Ito–Lévy process; see
[56]. Then by the Biot–Savart law u is also an infinite-dimensional Ito–Lévy pro-
cess. This justifies the statements made in Sect. 2.5.

Now we define the variance

Qt =

∫ t

0
Pse

K(s)CeK∗(s)P∗
s ds (3.29)

and drift

Et =

∫ t

0
eK(s)PsD̄ds (3.30)

operators, where

Pt = e
∫ t

0 dqe
∫ t

0 ∇udsMt =
m

∏
k

(|k|2/3(2/3)Nk
t )

1
3 e

∫ t
0 ∇udsMt

and K is the heat operator. Then the Kolmogorov–Hopf equation for the vorticity
can be written

∂φ
∂ t

=
1
2

tr[PtCP∗
t Δφ ]+ tr[PtD̄∇φ ]+ 〈K(ω)Pt ,∇φ〉, (3.31)

where D̄ = (|k|1/3Dk) and φ(ω) is a bounded function of ω . The operators C and D
are as in Sect. 3.1. It is also the Kolmogorov backward equation of the Ito process
(3.26). The solution of (3.31) can be written in the form

Rtφ(ω) =

∫
H

φ(y)N(eKt Pt ω+EtI,Qt )
∗PPt (dy)

=
∫

H
φ(eKt Ptω +EtI+ y)N(0,Qt) ∗PPt (dy),

where PPt is the Poisson law of Pt ; see [56]. Here |x| = 〈x,x〉1/2 where 〈·, ·〉 is the
inner product on H and ω = ω0. Nm,Qt denotes the normal distribution on H with
mean m and variance Qt , I = ∑ek, and EtI ∈ H.
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3.7.1 The Invariant Measure of Turbulent Vorticity

We can now write a formula for the invariant measure of vorticity turbulence.

Theorem 3.3. The invariant measure of the stochastic vorticity Navier–Stokes equa-
tion (3.25) on H = L2(T3) has the form

μ(dx) = e〈Q
−1/2EI, Q−1/2x〉− 1

2 |Q−1/2EI|2N(0,Q)(dx)∑
k

δk,l

m

∏
j �=l

δ
N j

t

∞

∑
j=0

p j
ml

δ(Nl
t − j),

(3.32)
where Q = Q∞, E = E∞, mk = ln |k|2/3 is the mean of the log-Poisson processes

(2.26) and p j
mk =

(mk)
je−mk

j! is the probability of Nk
∞ = Nk having exactly j jumps,

and δk,l is the Kronecker delta function.

Suppose that the operator Q is trace-class, E(Q1/2H) ⊂ Q1/2(H), and that

eKtPt(H) ⊂ Q1/2
t (H), t > 0, then, with u given, the invariant measure μ is unique,

ergodic, and strongly mixing. We know that the above invariant measure is unique
for the strong swirl [17] and strong rotation [3, 4], but it depends on u, and its
uniqueness for general turbulent flows depends on the uniqueness of u.

The proof of Theorem 3.3 uses the above machinery and is analogous to the proof
of Theorem 3.1 and Theorem 8.20 in [56].

The problem is that the vorticity may not be continuous although the velocity is.
This is the reason why we use the Hilbert space L2(T3) in Theorem 3.3. In fact, we
expect the vorticity to lack 1/3 of a derivative see Corollary 4.2 below. This means
that care must be taken when moments of the vorticity are computed and one may
have to normalize the moments in order to get a finite answer. Nevertheless with
proper normalization we can still project onto well-defined PDFs as in Sect. 3.3.
The reason is that ĉ = limk→∞(Q−1/2E)k = |k× dk||k|1/3/|k× ck||k|1/3 = c̄, or the
effect of the curl vanishes in the normalization, see Sect. 3.3. Therefore we still get
the same stationary equation (3.16) for the PDF. Consequently, the four parameters
in NIG in Sect. 3.4 are also the PDFs for the turbulent vorticity and its (normalized)
moments.



Chapter 4
Existence Theory of Swirling Flow

4.1 Leray’s Theory

We will consider the stochastic Navier–Stokes equation for the swirling flow (1.23),
see Sect. 1.4, in the next three sections. Similar results hold for the stochastic
Navier–Stokes equation (1.65) describing fully developed turbulence. However, to
emphasize that (1.23) and (1.65) are not the same equations we will set the coef-
ficients ck to ck = hk in (1.23) below. The hks can then be large but decay with
increasing k. In this section we will first explain the probabilistic setting and prove
some a priori estimates.

We let (Ω ,F ,P), Ω is a set (of events) and F a σ -algebra on Ω , denote a
probability space with P the probability measure of Brownian motion and Ft a
filtration generated by all the Brownian motions bk

t on [t,∞). If f : Ω → H is a
random variable, mapping Ω into a Hilbert space H, for example, H = L2(T3), then
L2(Ω ,F ,P;H) is a Hilbert space with norm:

‖ f‖2
L2(Ω ,F ,P;H) = E(| f (ω)|22) =

∫
Ω
| f (ω)|22P(dω) =

∫
H
|x|2 f#P(dx),

where E denotes the expectation with respect to P and f#P denotes the pull back of
the measure P to H. A stochastic process ft in L 2 = L2([0,T ];L2(Ω ,F ,P;H)) has
the norm

‖ ft‖2
L 2 =

∫ T

0
E(| f (t,ω)|22)dt

and ft has the following properties; see [51].

Definition 4.1.

1. f (t,ω) : R+ ×Ω → R is measurable with respect to B ×F where B is the
σ -algebra of the Borel sets on [0,∞), ω ∈ Ω .

2. f (t,ω) is adapted to the filtration Ft .

B. Birnir, The Kolmogorov-Obukhov Theory of Turbulence: A Mathematical
Theory of Turbulence, SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-6262-0 4,
© Björn Birnir 2013
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3.

E

(∫ T

0
f 2(t,ω)dt

)
< ∞.

We are mostly interested in the Hilbert spaces H = Hm(T3) = W (m,2) that are the
Sobolev spaces based on L2 with the Sobolev norm

‖u‖2
m = |(1−Δ 2)m/2u|22.

The corresponding norm on L 2
m = L2([0,T ];L2(Ω ,F ,P;Hm(T3))) is

‖u‖L 2
m
=

[∫ T

0
E(‖u‖2

m)dt

]1/2

more information about Sobolev spaces can be found in [1]. We will abuse notation
slightly in this section by writing u instead of U ; see Sect. 1.4. This is done for future
reference and an easier comparison with Leray’s classical estimates.

Let 〈·, ·〉 denote the inner product on L2(T3). The following a priori estimates
provide the foundation of the probabilistic version of Leray’s theory.

Lemma 4.1. The L2 norms |u|2(ω , t) and |∇u|2(ω , t) satisfy the identity

d|u|22 + 2ν|∇u|22dt = 2 ∑
k �=0

〈u,h1/2
k ek〉dbk

t + ∑
k �=0

hkdt (4.1)

and the bounds

|u|22(ω , t) ≤ |u|22(0)e−2νλ1t + 2 ∑
k �=0

∫ t

0
e−2νλ1(t−s)〈u,h1/2

k ek〉dbk
s (4.2)

+
1− e−2νλ1t

2νλ1
∑
k �=0

hk,

∫ t

0
|∇u|22(ω ,s)ds ≤ 1

2ν
(|u|22(0)−|U|2)+ 1

ν ∑
k �=0

∫ t

0
〈u,h1/2

k ek〉dbk
s +

t
2ν ∑

k �=0

hk,

(4.3)

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on

the box [0,1]3 and hk = |h1/2
k |2. U is the velocity vector from Sect. 1.4. The expecta-

tions of these norms are also bounded:

E(|u|22)(t) ≤ E(|u|22(0))e−2νλ1t +
1− e−2νλ1t

2νλ1
∑
k �=0

hk, (4.4)

E

(∫ t

0
|∇u|22(s)ds

)
≤ 1

2ν
[E(|u|22(0))−|U|2]+ t

2ν ∑
k �=0

hk. (4.5)
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Proof. The identity (4.1) follows from Leray’s theory and Ito’s lemma. We apply
Ito’s lemma to the L2 norm of u squared:

d
∫
T3
|u|2dx = 2

∫
T3

∂u
∂ t

·udxdt + 2 ∑
k �=0

∫
T3

u ·h1/2
k ekdxdbk

t + ∑
k �=0

hk

∫
T3

dxdt, (4.6)

where k ∈ Z
3 and h1/2

k ∈R
3. Now by use of the Navier–Stokes equation (1.21)

d|u|22 = 2
∫
T3

νΔu ·u+(−u ·∇u+∇Δ−1(trace(∇u)2) ·udxdt

+2 ∑
k �=0

∫
T3

u ·h1/2
k ekdxdbk

t + ∑
k �=0

hkdt

= −2ν|∇u|22dt + 2 ∑
k �=0

∫
T3

u ·h1/2
k ekdxdbk

t + ∑
k �=0

hkdt

since the divergent-free vector u is orthogonal both to the gradient ∇Δ−1(trace(∇u)2)
and u ·∇u by the divergence theorem. Notice that the inner product (average) of u
and the stirring force f in (1.21) vanish, 〈u, f 〉= ū · f = 0, so f can be omitted in the
computation. The first term in the last expression is obtained by integration by parts.
This is the identity (4.1). The inequality (4.2) is obtained by applying Poincaré’s in-
equality

λ1|u|22 ≤ |∇u|22, (4.7)

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on
the cube [0,1]3.1 By Poincaré’s inequality

d|u|22 + 2νλ1|u|22dt ≤ d|u|22 + 2ν|∇u|22dt

= 2 ∑
k �=0

〈u,h1/2
k ek〉dbk

t + ∑
k �=0

hkdt.

Solving the inequality gives (4.2). Equation (4.3) is obtained by integrating (4.1)

|u|22(t)+ 2ν
∫ t

0
|∇u|22(s)ds = |u|22(0)+ 2 ∑

k �=0

∫ t

0
〈u,h1/2

k ek〉dbk
s + t ∑

k �=0

hk

and dropping |u−U|22(t)> 0, by use of (1.37).
Finally we take the expectations of (4.2) and (4.3) to obtain, respectively, (4.4)

and (4.5), using that the function 〈u,h1/2
k ek〉(ω , t) is adapted to the filtration Ft .

The following amplification of Leray’s a priori estimates will play an important
role in the a priori estimates of the solution of the stochastic Navier–Stokes equation
below.

1 We should subtract the mean from u in Poincaré’s inequality because of the periodic boundary
conditions, but the mean just washes out in the estimates.
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Lemma 4.2. Let u 1
2B

= u(x, t+ 1
2B) denote the translation of u in time by the number

1
2B . Then the L2 norms of the differences |u− u 1

2B
|2(ω , t) and |∇u−∇u 1

2B
|2(ω , t)

satisfy the identity

d|u− u 1
2B
|22 + 2ν|∇u−∇u 1

2B
|22dt = 2 ∑

k �=0

〈u− u 1
2B
,h1/2

k ek〉d(bk
t − bk

t+ 1
2B
) (4.8)

and the bounds

|u− u 1
2B
|22(ω , t) ≤ |u− u 1

2B
|22(0)e−2νλ1t

+2 ∑
k �=0

∫ t

0
e−2νλ1(t−s)〈u− u 1

2B
,h1/2

k ek〉d(bk
s − bk

t+ 1
2B
)

(4.9)∫ t

0
|∇u−∇u 1

2B
|22(ω ,s)ds ≤ 1

2ν
|u− u 1

2B
|22(0)

+
1
ν ∑

k �=0

∫ t

0
〈u− u 1

2B
,h1/2

k ek〉d(bk
s − bk

t+ 1
2B
), (4.10)

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on

the box [0,1]3 and hk = |h1/2
k |2. The expectations of these norms are also bounded

E(|u−∇u 1
2B
|22)(t) ≤ E(|u−∇u 1

2B
|22(0))e−2νλ1t (4.11)

E

(∫ t

0
|∇u−∇u 1

2B
|22(s)ds

)
≤ 1

2ν
E(|u−∇u 1

2B
|22(0)) (4.12)

by the expectations of the initial data of the differences.

The proof of this lemma is analogous to the proof of Lemma 4.1 and can be found
in [17].

Remark 4.1. Notice that in the notation of Sect. 1.4 |U −U 1
2B
|22 = |u−u 1

2B
|22 because

the constant velocity U cancels out.

4.2 The A Priori Estimate of the Turbulent Solutions

The mechanism of the turbulence production are fast oscillations driving large tur-
bulent noise that was initially seeded by small white noise, as explained in the pre-
vious section. These fast oscillations are generated by the fast constant flow U =U1,
where we have dropped the subscript 1, and the flow is rotating with amplitude A and
angular velocity Ω . The frequency of these oscillations increases with U and AΩ .
The bigger U and AΩ are the more efficient this turbulence production mechanism
becomes.
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In this section we will establish an a priori estimate on the norm of the tur-
bulent solution that allows us to extend the local existence and uniqueness to the
whole real-time axis. Thus the a priori estimates suffice to give global existence and
uniqueness. We recall the oscillatory kernel (1.34) from Sect. 1.4:

∑
k �=0

h1/2
k

∫ t

0
e−(4π2|k|2+2π iU1k1)(t−s)−2π iA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)]dbk

sek(x). (4.13)

The imaginary part of the argument of the exponential creates oscillations and as U1

and AΩ become larger these oscillations become faster. We take advantage of this
mechanism to produce the a priori estimates.

Next lemma plays a key role in the proof of the useful estimate of the turbu-
lent solution. It is a version of the Riemann–Lebesgue lemma which captures the
averaging effect (mixing) of the oscillations.

Lemma 4.3. Let the Fourier transform in time be

w̃ =

∫ T

0
w(s)e−2π i(k1U+A(k2,k3)Ω)sds,

where A(k2,k3) = A
√

k2
2 + k2

3 and w = w(k, t), k = (k1,k2,k3), is a vector with three

components. If T is an even integer multiple of 1
k1U+A(k2,k3)Ω

, then

w̃ = #̃w, (4.14)

where

#w =
1
2

[
w(s)−w

(
s+

1
2[k1U +A(k2,k3)Ω ]

)]
=

1
2

∫ s

s+ 1
2|k1U+A(k2,k3)Ω |

∂w
∂ r

dr

(4.15)

and #w satisfies the estimate

|#w| ≤ 1
4|k1U +A(k2,k3)Ω |ess sup[s,s+ 1

2(k1U1+A(k2,k3)Ω)
]

∣∣∣∣∂w
∂ s

∣∣∣∣ . (4.16)

Proof. The proof is similar to the proof of the Riemann–Lebesgue lemma for the
Fourier transform in time, let B(k) = k1U +A(k2,k3)Ω :

w̃(k) =
∫ T

0
w(s)e−2π iBsds

= −
∫ T

0
w(s)e−2π iB(s− 1

2B )ds

= −
∫ T

0
w

(
s+

1
2B

)
e−2π iBsds,
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where we have used in the last step that w is a periodic function on the interval [0,T ].
Taking the average of the first and the last expression we get

w̃ =
1
2

∫ T

0

(
w(s)−w

(
s+

1
2B

))
e−2π iBsds = #̃w.

Now

|#w| = 1
2

∣∣∣∣
(

w(s)−w

(
s+

1
2B

))∣∣∣∣
≤ 1

2

∫ s+ 1
2B

s

∣∣∣∣∂w
∂ r

∣∣∣∣dr

≤ 1
4|B|ess sup[s,s+ 1

2B ]

∣∣∣∣∂w
∂ s

∣∣∣∣
by the mean-value theorem.

Corollary 4.1. If T is not an even integer multiple of 1
B(k) =

1
k1U+A(k2,k3)Ω

, then

w̃ = #̃w− 1
2

∫ 0

− 1
2B

w

(
s+

1
2B

)
e−2π iBsds+

1
2

∫ T

T− 1
2B

w

(
s+

1
2B

)
e−2π iBsds, (4.17)

where w̃ satisfies the estimate

|w̃| ≤ |#̃w|+ 1
|B|ess sup[− 1

2B ,0]∩[T− 1
2B ,T ]

∣∣∣∣w
(

s+
1

2B

)∣∣∣∣ . (4.18)

Proof. The proof is the same as of the lemma except for the step

w̃(k) =
∫ T

0
w(s)e−2π iBsds =−

∫ T

0
w(s)e−2π iB(s− 1

2B )ds

= −
∫ T

0
w(s+

1
2B

)e−2π iBsds−
∫ 0

− 1
2B

w

(
s+

1
2B

)
e−2π iBsds

+

∫ T

T− 1
2B

w

(
s+

1
2B

)
e−2π iBsds.

The lemma allows us to estimate the Fourier transform (in t) of w in terms of the time
derivative of w, with a gain of (k1U +A(k2,k3)Ω)−1. Below we will use it in an esti-
mate showing that the limit of #w is zero when |B(k)|= |(k1U +A(k2,k3)Ω)| → ∞.

Lemma 4.4. The integral

∫ t

0
(2π |k|)pe−(4π2ν|k|2+2π i[B(k)(t−s)+g])ds,
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where B(k) = k1U +A(k2,k3)Ω , is bounded by

(2π)p
∫ t

0
|k|pe−4π2ν|k|2(t−s)ds ≤C t1− p

2 (4.19)

for 0 ≤ p < 2, where C is a constant. In particular,

∫ t

t−δ
(2π |k|)pe−(4π2ν|k|2+2π i[B(k)(t−s)+g])ds ≤C δ 1− p

2 . (4.20)

Proof. We estimate the integral

∫ t

0
|k|pe−4π2ν|k|2(t−s)ds =

∫ t

0
|k|pe−4π2ν|k|2rdr

≤
( p

4π2

) p
2

e−p
∫ t

0
r−

p
2 dr =Ct1− p

2 ,

where

k =
1

2π

√
p
r

is the value of k where the integrand achieves its maximum.

The rotation can resonate with the uniform (linear) flow due to the nonlinearities
in the Navier–Stokes equation. The following lemma restricts the values of velocity
coefficients so that no resonance occurs.

Lemma 4.5. Suppose that for k1 < 0 and
√

k2
2+k2

3
|k1| �= 0 or ∞, the constants U, A, and

Ω satisfy the non-resonance condition

∣∣∣∣∣∣
U

AΩ
+

√
k2

2 + k2
3

k1

∣∣∣∣∣∣≥
C

|k1|r , (4.21)

where C is a constant and 0 < r < 1; then for all k = (k1,k2,k2) �= 0,

|Uk1 +AΩ
√

k2
2 + k2

3| �= 0 (4.22)

and

lim
|k|→∞

|Uk1 +AΩ
√

k2
2 + k2

3|= ∞. (4.23)

Moreover,

|Uk1 +AΩ
√

k2
2 + k2

3| ≥ B = min(U,AΩ ,CAΩ). (4.24)
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Proof. If k1 > 1, then
∣∣∣∣Uk1 +AΩ

√
k2

2 + k2
3

∣∣∣∣=U |k1|+AΩ
√

k2
2 + k2

3 > 0

so (4.22) and (4.23) hold. If k1 < 0, then by (4.21)
∣∣∣∣Uk1 +AΩ

√
k2

2 + k2
3

∣∣∣∣≥C ΩA|k1|1−r > 0

and

lim
|k|→∞

∣∣∣∣Uk1 +AΩ
√

k2
2 + k2

3

∣∣∣∣≥C ΩA lim
|k1|→∞

|k1|1−r = ∞

if |k1|→ ∞. If on the other hand |k1|<∞ when |k| →∞ then (4.23) also holds. When
k1 = 0, (4.22) and (4.23) are obvious and also if k2 = k3 = 0.

The lower bound (4.24) is read of
∣∣∣∣Uk1 +AΩ

√
k2

2 + k2
3

∣∣∣∣
when k1 ≥ 1. Then it is either U or AΩ . When k1 = 0 then it is AΩ and by (4.21),
when k1 ≤−1, it is greater than or equal CAΩ .

The next question to ask is in which space do the turbulent solutions live? This
was pointed out by Onsager in 1945 [53]. He pointed out that if the solutions satisfy
the Kolmogorov scaling down to the smallest scales, they must be Hölder continuous
function with Hölder exponent 1/3. In three dimensions this means that they live in

the Sobolev space H
11
6 +ε based on L2(T3).

If q
p is a rational number let q

p
+ denote any real number s > q

p .

Theorem 4.1. Let the velocity U = U1 of the mean flow and the product AΩ of the
amplitude A and the frequency Ω of the rotation be sufficiently large, in the uni-
form rotating flow (1.19), with U, AΩ also satisfying the non-resonance conditions
(4.21). Then the solution of the integral equation (1.32) is uniformly bounded in
L 2

11
6
+ ,

ess supt∈[0,∞)E(‖u‖2
11
6
+)(t)≤

(
1−C

(
1

B2 +δ
1
6
−
))−1

[
∑
k �=0

3(1+(2π|k|) 11
3
+

)

8π2ν|k|2 hk +
C′

B

]
,

(4.25)

where B = min(|U |,AΩ ,CAΩ) is large, δ small, and C and C′ are constants.

Corollary 4.2 (Onsager’s Observation). The solutions of the integral equation
(1.32) are Hölder continuous with exponent 1/3.
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Remark 4.2. The estimate (4.25) provides the answer to the question we posed in

Sect. 1.4 how fast the coefficients h1/2
k had to decay in Fourier space. They have to

decay sufficiently fast for the expectation of the H
11
6
+

= W ( 11
6
+
, 2) Sobolev norm of

the initial function u0, to be finite. This expectation appear on the right-hand side of
(4.25). In other words the L 2

11
6
+ norm of the initial function u0 has to be finite.

The proof of the theorem involves long estimates and can be found in [17]. An
outline of the proof is given in Appendix A.

We consider the integral equation

u(x, t) = ∑
k �=0

[
h1/2

k Ak
t −

∫ t

0
e−[4π2ν|k|2+2π iB(k)](t−s)−2π ig(k,t,s)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

]
ek(x),

where B(k) =Uk1 +A(k2,k3)Ω .

Lemma 4.6. The initial condition (u− u 1
2B
)(0) satisfies the estimate

|u− u 1
2B
|22(0)≤ 2 ∑

j �=0

|A j
1

2B(k)
|2 + C

|B(k)|2 ess supt∈[0, 1
2B ]

‖u‖2
11
6
+ . (4.26)

Proof. We use the integral equation

u− u 1
2B

= ∑
k �=0

[
h1/2

k (Ak
t −Ak

t+ 1
2B
)

−
(∫ t

0
e−[4π2ν|k|2+2π iB(k)](t−s)−2π ig(k,t,s)

)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

−
∫ t+ 1

2B

0
e−[4π2ν|k|2+2π iB(k)](t+ 1

2B−s)−2π ig(k,t+ 1
2B ,s)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

]
ek(x),

where B(k) =Uk1 +A(k2,k3)Ω . At t = 0,

|u− u 1
2B
|2(0) = |u 1

2B
|2(0) = 2 ∑

j �=0

h j|A j
1

2B
|2 + C

|B(k)|2 ess supt∈[0, 1
2B ]

‖u‖2
11
6
+

by the same estimates as above.
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Lemma 4.7. The identity (4.1) in Lemma 4.1 can be modified for a > 0

d(eνat |u|22)+2νeνat |∇u|22dt=νaeνat |u|22dt+2eνat ∑
k �=0

〈u,h1/2
k ek〉dbk

t +eνat ∑
k �=0

hkdt

(4.27)

and produces the estimates

|u|22(t) ≤ |u|22(0)
(

e−νat +
ae−2νλ1t

(a− 2λ1)

)
+ 2 ∑

k �=0

∫ t

0
e−νa(t−s)〈u,h1/2

k ek〉dbk
s

(4.28)

+2 ∑
k �=0

∫ t

0
e−νa(t−s)

∫ s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dbk
rds+

1
ν

(
1
a
+

1
2λ1

)
∑
k �=0

hk

and

∫ t

0
e−νa(t−s)|∇u|22(s)ds ≤ 1

2ν
(|u|22(0)−|U|2)

(
e−νat +

ae−2νλ1t

(a− 2λ1)

)

+
1
ν ∑

k �=0

∫ t

0
e−νa(t−s)〈u,h1/2

k ek〉dbk
s (4.29)

+
1
ν ∑

k �=0

∫ t

0
e−νa(t−s)

∫ s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dbk
rds

+
1

2ν2

(
1
a
+

1
2λ1

)
∑
k �=0

hk,

where λ1 is the smallest eigenvalue of −Δ with vanishing boundary conditions on

the box [0,1]3 and hk = |h1/2
k |2.

Proof. We multiply the identity (4.1) in Lemma 4.1 by eνat to get (4.27). Then
integration gives the equality

|u|22(t)+ 2ν
∫ t

0
e−νa(t−s)|∇u|22(s)ds = |u|22(0)e−νat +νa

∫ t

0
e−νa(t−s)|u|22(s)ds

+2 ∑
k �=0

∫ t

0
e−νa(t−s)〈u,h1/2

k ek〉dbk
s

+
(1− e−νa(t−s))

νa ∑
k �=0

hk.

Now substituting the estimate (4.2), from Lemma 4.1, for |u|22 on the right-hand side
gives the two inequalities (4.28) and (4.29) as in Lemma 4.1.
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Lemma 4.8. The functions H,K, and L in the proof of Theorem 4.1 satisfy the
estimate

E(H +K+L) ≤ C
|B(k)|2 E(ess supt∈[0, 1

2B ]
‖u‖2

11
6
+)+

C′

B
(4.30)

with B = min(U,AΩ ,CAΩ).

The proof of the lemma involves long formulas for H,K, and L and can be found
in [17].

Remark 4.3. Corollary 4.2 is the resolution of a famous question in turbulence, for
the swirling flows: Is turbulence always caused by the blow up of the velocity u? The
answer according to Theorem 4.1 is no; the solutions are not singular. However, they
are not smooth either, contrary to the belief, stemming from Leray’s theory [42], that
if solutions are not singular then they are smooth. By Corollary 4.2 the solutions are
Hölder continuous with exponent 1/3 in three dimensions. This confirms an obser-
vation made by Onsager [54] in 1945. In particular the gradient ∇u and vorticity
∇× u are not continuous in general as discussed in Sect. 3.7.

Remark 4.4. U and AΩ do not have to be made very large for the estimate (4.25) to
be satisfied, because B(k)→ ∞ as |k| → ∞. How big U and AΩ have to be for (4.25)
to hold is probably best answered by a numerical simulation.

We can now prove that ess supt∈[0,∞)‖u(t)‖2
11
6
+ is bounded with probability close

to one.

Lemma 4.9. For all ε > 0 there exists an R such that

P(ess supt∈[0,∞)‖u(t)‖2
11
6
+ < R)> 1− ε. (4.31)

Proof. By Chebyshev’s inequality and the estimate (4.25) we get that

P(ess supt∈[0,∞)‖u(t)‖2
11
6
+ ≥ R)<

C
R
< ε

for R sufficiently large.

4.3 Existence Theory of the Stochastic Navier–Stokes Equation

In this section we prove the existence of the turbulent solutions of the initial value
problem (1.23). The following theorem states the existence of turbulent solutions
in three dimensions. First we write the initial value problem (1.23) as the integral
equation (4.32)
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u(x, t) = u0(x, t)−
∫ t

0
eK(t−s) ∗ [u ·∇u−∇Δ−1tr(∇u)2]ds. (4.32)

Here eKt is the oscillatory heat kernel (1.33) and

u0(x, t) = ∑
k �=0

h1/2
k Ak

t ek(x)

the Ak
t s being the oscillatory Ornstein–Uhlenbeck-type processes from (1.34).

Theorem 4.2. If the uniform flow U and product of the amplitude and frequency
AΩ , of the rotation, are sufficiently large, B = min(|U |,AΩ ,CAΩ), δ is small and
the non-resonance conditions (4.21) are satisfied, so that the a priori bound (4.25)
holds, then the integral equation (4.32) has unique global solution u(x, t) in the

space C([0,∞);L2(Ω ,F ,P;H
11
6
+

)), u is adapted to the filtration generated by the
stochastic process

u0(x, t) = ∑
k �=0

h1/2
k Ak

t ek

and

E

(∫ t

0
‖u‖2

11
6
+ds

)
≤
(

1−C

(
1

B2 + δ
1
6
−
))−1

[
∑
k �=0

3(1+(2π |k|) 11
3
+

)

8π2ν|k|2 hk +
C′

B

]
t.

(4.33)

This theorem is a standard application of the contraction mapping principle to prove
global existence and uniqueness. Then the unique local solution is extended to the
whole positive time axis by use of the a priori bound (4.25). A detailed proof can be
found in [17].

We now add the initial condition u(x,0) = u0(x), with mean zero, to the integral
equation (4.32).

Theorem 4.3. If the uniform flow U and the product of the amplitude AΩ and fre-
quency of the rotation, B = min(|U |,AΩ ,CAΩ), are sufficiently large, δ small, and
the non-resonance conditions (4.21) are satisfied, so that the a priori bound (4.25)
holds, then the integral equation

u(x, t) = eKt ∗ u0(x)+ u0(x, t)−
∫ t

0
eK(t−s) ∗ (u ·∇u−∇Δ−1(∇u)2) ds, (4.34)

where eKt is the oscillating kernel in (1.33), has unique global solution u(x, t) in the

space C([0,∞);L2(Ω ,F ,P;H
11
6
+

)), u is adapted to the filtration generated by the
stochastic process

u0(x, t) = ∑
k �=0

h1/2
k Ak

t ek
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and

E

(∫ t

0
‖u‖2

11
6
+ds

)
≤
(

1−C

(
1

B2 + δ
1
6
−
))−1

[
∑
k �=0

(1+(2π |k|) 11
3
+

)

2π2ν|k|2 hk +
C′

B

]
t.

(4.35)

The proof of the theorem is exactly the same as the proof of Theorem 4.2 once the
a priori bound (4.25) is established. A proof can be found in [17].

Corollary 4.3. For any initial data u0 ∈ L̇2(T3), the L2 space with mean zero, and
any t0 > 0, there exists a mean flow U, an amplitude and angular velocity AΩ , and

δ small, such that (4.34) has a unique solution in C([t0,∞);L2(Ω ,F ,P;H
11
6
+

)).

Proof. For t > 0, eKt ∗ u0(x) is smooth. Now apply Theorem 4.3.

Next we prove a Gronwall estimate that can be use to prove local (in t) stability
and irreducibility; see [17].

Lemma 4.10. Let u be a solution of (4.32) with an initial function u0(x, t) =

∑k �=0 h1/2
k Ak

t ek and initial condition u0(x) and y a solution of

yt +U ·∇y = νΔy− y ·∇y+∇Δ−1tr(∇y)2 + f (4.36)

with initial condition y0(x), then

‖u− y‖2
11
6
+(t) ≤ [3‖u0 − y0‖2

11
6
+ +3‖ ∑

k �=0

h1/2
k Ak

t ek − eKt ∗ f ‖2
11
6
+

+δ 2C1ess sups∈[t−δ ,t](‖u‖2
11
6
+ +‖y‖2

11
6
+)]e

C2
∫ t−δ

0 (1+‖u‖2
11
6
++‖y‖2

11
6
+)ds

,

(4.37)

where C1 and C2 are constants and δ can be made arbitrarily small. The Ak
t s are

the oscillatory Ornstein–Uhlenbeck-type processes (1.35) and eKt is the oscillatory
kernel in (1.33).

Proof. We subtract the integral equation for y from that of u:

u = u0 + ∑
k �=0

h1/2
k Ak

t ek + eKt ∗ (−u ·∇u+∇Δ−1tr(∇u)2),

y = y0 + eKt ∗ f + eKt ∗ (−y ·∇y+∇Δ−1tr(∇y)2).

Thus

‖u− y‖2
11
6
+(t) ≤ [3‖u0− y0‖2

11
6
+ + 3‖ ∑

k �=0

h1/2
k Ak

t ek − eKt ∗ f‖2
11
6
+

+3‖eKt ∗ (−w∇u− y∇w+∇Δ−1tr∇α ·∇w)‖2
11
6
+],



88 4 Existence Theory of Swirling Flow

where w = u− y and α = u+ y. Now the same estimates as in Theorem 4.1 give

‖u− y‖2
11
6
+(t) ≤ 3‖u0 − y0‖2

11
6
+ + 3‖ ∑

k �=0

h1/2
k Ak

t ek − eKt ∗ f‖2
11
6
+

+C1δ 2ess sups∈[t−δ ,t](‖u‖2
11
6
+ + ‖y‖2

11
6
+)

+C2

∫ t−δ

0
(1+ ‖u‖2

11
6
+ + ‖y‖2

11
6
+)(‖u− y‖2

11
6
+)ds.

Then Grönwall’s inequality gives (4.37).



Appendix A
The Bound for a Swirling Flow

Theorem A.1. Let the velocity U = U1 of the mean flow and the product AΩ of
the amplitude A and the frequency Ω of the rotation be sufficiently large, in the
uniform rotating flow (1.19), with U, AΩ also satisfying the non-resonance condi-
tions (4.21). Then the solution of the integral equation (1.32) is uniformly bounded
in L 2

11
6
+ ,

ess supt∈[0,∞)E

(
‖u‖2

11
6
+

)
(t) ≤

(
1−C

(
1

B2 + δ
1
6
−
))−1

×
[
∑
k �=0

3(1+(2π |k|) 11
3
+

)

8π2ν|k|2 hk +
C′

B

]
, (A.1)

where B = min(|U |,AΩ ,CAΩ) is large, δ small, and C and C′ are constants.

Corollary A.1 (Onsager’s Observation). The solutions of the integral equation
(1.32) are Hölder continuous with exponent 1/3.

Outline of Proof: We write the integral equation (1.32) in the form

u(x, t) = ∑
k �=0

[
h1/2

k Ak
t −

∫ t

0
e−({4π2ν|k|2+2π i[k1U1+A(k2,k3)Ω ]}(t−s)+2π ig(k,t,s))

×(û ·∇u− ̂∇Δ−1(tr(∇u)2))(k,s)ds

]
ek(x),

where ek = e2π ik·x are the Fourier components and the Ak
t are the oscillatory

Ornstein–Uhlenbeck-type processes (1.35) and tr(∇u)2 denotes the trace of the ma-

trix (∇u)2. The Fourier transform of the term ∇Δ−1(tr(∇u)2) is just −ik
2π |k|2

̂tr(∇u)2

and we will write the integral equation in the form
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u(x, t) = ∑
k �=0

[
h1/2

k Ak
t −

∫ t

0
e−[4π2ν|k|2+2π iB(k)](t−s)−2π ig(k,t,s)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

]
ek(x), (A.2)

where B(k) =Uk1 +A(k2,k3)Ω , from here on with

g(k, t,s) = A(k2,k3)[Ω(t − s)− (sin(Ω t +θ )− sin(Ωs+θ ))]. (A.3)

We will also assume the trivial non-resonance conditions that A and Ω are suffi-
ciently incommensurate for the rest of the chapter.

We split the t integral into the integral from 0 to t−δ , where δ is a small number,
and the integral from t − δ to t. This is done to first avoid the singularities of the
spatial derivatives of the heat kernel at s = t and then to deal with these singularities
in the latter integral. Now the first estimate is relatively straightforward. The L2

norm of

∑
k �=0

∫ t

t−δ
e−{(4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)}(−û ·∇u)ds ek

is

∑
k �=0

|
∫ t

t−δ
e−{(4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)}(−û ·∇u)ds|2

≤ δ ∑
k �=0

∫ t

t−δ
|û ·∇u|22(k)ds

≤ δ
∫ t

t−δ
|u ·∇u|22ds ≤ δ ess sup[t−δ ,t]|u|2∞

∫ t

t−δ
|∇u|22ds

≤
(

δ
ν

∫ t

t−δ
〈u,h1/2

k ek〉dbk
s +

δ 2

2ν ∑
k �=0

hk

)
ess sup[t−δ ,t]‖u‖ 3

2
+(s) (A.4)

since by the Gagliardo–Nirenberg inequalities

|u|∞ ≤C‖u‖ 3
2
+ ,

where δ is independent of U1 and C is a constant, and by the a priori estimate in
Lemma 4.1. Similarly, the L2 norm of

∑
k �=0

∫ t

t−δ
e−{(4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)}

(
ik

2π |k|2
̂(tr(∇u)2)

)
ds ek
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is

∑
k �=0

∣∣∣∣
∫ t

t−δ
e−{(4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)}

(
ik

2π |k|2
̂(tr(∇u)2)

)
ds

∣∣∣∣
2

(A.5)

≤ δ ∑
k �=0

∫ t

t−δ
|
(

ik
2π |k|2

̂(tr(∇u)2)

)
|22(k)ds

≤ δ
2π

∫ t

t−δ
|tr(w ·∇u)|22ds ≤ δ

2π
ess sup[t−δ ,t]|w|2∞

∫ t

t−δ
|∇u|22ds

≤
(

δ
2πν

∫ t

t−δ
〈u,h1/2

k ek〉dbk
s +

δ 2

4πν ∑
k �=0

hk

)
ess sup[t−δ ,t]‖u‖2

3
2
+(s), (A.6)

where w = ∑k �=0
k

|k|2 |k⊗ û(k,s)|ek , |w|2 = |u|2.

The other integrals are estimated by use of Lemma 4.3. The integral

∫ t−δ

0
e−{(4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)}û ·∇uds

can be estimated by Lemma 4.3; when t −δ is an even integer multiple of 1
B , we get

that
∫ t−δ

0
e−{4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)}û ·∇u(s)ds

=
1
2

∫ t−δ

0

[
e−{4π2ν|k|2(t−s)+2π ig(k,t,s)}û ·∇u(s)

−e−{4π2ν|k|2+2π iB)(t−(s+ 1
2B ))+2π ig(k,t,s+ 1

2B )}û ·∇u

(
s+

1
2B

)]
e−2π iB(t−s)ds

=
1
2

∫ t−δ

0

[(
e−{4π2ν|k|2(t−s)+2π ig(k,t,s)}

−e−{4π2ν|k|2(t−(s+ 1
2B ))+2π ig(k,t,s+ 1

2B )}
)

û ·∇u(s)
]

e−2π iB(t−s)ds

+
1
2

∫ t−δ

0

{
e−(4π2ν|k|2(t−(s+ 1

2B))+2π ig(k,t,s+ 1
2B )}

([
û(s)−

̂

u

(
s+

1
2B

)]
∗ ∇̂u(s)

+
̂

u

(
s+

1
2B

)
∗
[

∇̂u(s)−
̂

∇u

(
s+

1
2B

)])}
e−2π iB(t−s)ds.

The first term in the last line above is estimated by Schwarz’s inequality
∣∣∣∣
∫ t−δ

0

[(
e−{4π2ν|k|2(t−s)+2π ig(k,t,s)}

−e−{4π2ν|k|2(t−(s+ 1
2B ))+2π ig(k,t,s+ 1

2B )}
)

û ·∇u(s)
]

e−2π iB(t−s)ds
∣∣∣2

≤
∫ t−δ

0

∣∣∣e−{2π2ν|k|2(t−s)+2π ig(k,t,s)}
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−e−{2π2ν|k|2(t−(s+ 1
B ))+2π ig(k,t,s+ 1

2B )}
∣∣∣2 |u|22(s) ds

∫ t−δ

0
e−4π2ν|k|2(t−s)|∇u|22(s)ds

≤ e−2π2ν|k|δ
∫ t−δ

0

∣∣∣e−{2π2ν|k|2(t−s)+2π ig(k,t,s)}−e−{2π2ν|k|2(t−(s+ 1
B ))+2π ig(k,t,s+ 1

2B )}
∣∣∣2 ds

×
∫ t−δ

0
e−2π2ν|k|2(t−s)|∇u|22(s)ds ess sups∈[0,t−δ ]|u|22(s)

≤ Ce−2π2ν|k|δ

B2

∫ t−δ

0
e−2πν|k|2(t−s)|∇u|22(s)ds ess sups∈[0,t−δ ]|u|22(s)

by Lemma 4.3. Similarly the second term is estimated by

∣∣∣∣∣
∫ t−δ

0
e−(4π2ν|k|2(t−(s+ 1

2B ))+2π ig(k,t,s+ 1
2B )}

([
û(s)−

̂

u

(
s+

1
2B

)]
∗ ∇̂u(s)e−2π iB(t−s)

)
ds

∣∣∣∣∣
2

≤ e−4π2ν|k|2(δ− 1
2B )

∫ t−δ

0

∣∣∣∣u(s)−u

(
s+

1
2B

)∣∣∣∣
2

2
ds

∫ t−δ

0
e−4π2ν|k|2s|∇u|22(s)ds

using the Cauchy–Schwarz inequality both on the convolution and the time integral,
and the third term is estimated by

∣∣∣∣∣
∫ t−δ

0
e−(4π2ν|k|2(t−(s+ 1

2B ))+2πig(k,t,s+ 1
2B )}

(
̂

u

(
s+

1
2B

)
∗
[

∇̂u(s)−
̂

∇u

(
s+

1
2B

)]
e−2πiB(t−s)

)
ds

∣∣∣∣∣
2

≤ e−8π2ν|k|(δ− 1
2B )

8νπ2|k|2
∫ t−δ

0

∣∣∣∣∇u(s)−∇u

(
s+

1
2B

)∣∣∣∣
2

2
ds ess sups∈[0,t]|u|22

(
s+

1
2B

)
.

Now the terms

H =
∫ t−δ

0

∣∣∣∣u(s)− u

(
s+

1
2B

)∣∣∣∣
2

2
ds

∫ t−δ

0
e−4π2ν|k|2s|∇u|22(s)ds

and

K =
∫ t−δ

0

∣∣∣∣∇u(s)−∇u

(
s+

1
2B

)∣∣∣∣
2

2
ds ess sups∈[0,t]|u|22

(
s+

1
2B

)

are estimated by use of Lemmas 4.2 and 4.6. Thus the a priori bounds on the L2

norms of u and ∇u and their differences in those two lemmas and in Lemmas 4.1
and 4.7 give the inequality

∣∣∣∣
∫ t−δ

0
e−{(4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)}û ·∇u(s)ds

∣∣∣∣
2

≤Ce−4π2ν|k|(δ− 1
2B ) ess sups∈[0,t]

(
C
B2 +H +K + d(k)

)
,

where the terms H and K are estimated in Lemma 4.8 and the expectation of d(k)
vanishes.
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Now consider the pressure term. By use of Lemma 4.3, we get that

∫ t−δ

0
e−{4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)} ik

2π|k|2
̂tr(∇u)2ds

=
1
2

∫ t−δ

0

{
e−{4π2ν|k|2(t−s)+2π ig(k,t,s)} ik

2π|k|2
̂tr(∇u)2(s)

−e−{4π2ν|k|2(t−(s+ 1
2B ))+2π ig(k,t,s+ 1

2B )} ik
2π|k|2

̂tr(∇u)2

(
s+

1
2B

)}
e−2π iB(t−s)ds

=
1
2

∫ t−δ

0

{
e−{4π2ν|k|2(t−s)+2π ig(k,t,s)}

−e−{4π2ν|k|2(t−(s+ 1
2B ))+2π ig(k,t,s+ 1

2B )}
} ik

2π|k|2
̂tr(∇u)2(s)ds

+
1
2

∫ t−δ

0
e−{4π2ν|k|2(t−(s+ 1

2B ))+2π ig(k,t,s+ 1
2B )}

× ik
2π|k|2 tr

[(
∇̂u(s)−

̂

∇u

(
s+

1
2B

))
∗
(

∇̂u(s)+
̂

∇u

(
s+

1
2B

))]
e−2π iB(t−s)ds.

The first term in the last expression above is estimated as
∣∣∣∣
∫ t−δ

0

{
e−{4π2ν|k|2(t−s)+2π ig(k,t,s)}

− e−{4π2ν|k|2(t−(s+ 1
2B ))+2π ig(k,t,s+ 1

2B )}
} ik

2π|k|2
̂tr(∇u)2(s)ds

∣∣∣∣
2

≤
∫ t−δ

0

∣∣∣e−{2π2ν|k|2(t−s)+2π ig(k,t,s)}

− e−{2π2ν|k|2(t−(s+ 1
B ))+2π ig(k,t,s+ 1

2B )}
∣∣∣2 |w|22(s)ds

∫ t−δ

0
e−4πν|k|2(t−s)|∇u|22(s)ds

≤ e−2π2ν|k|δ
∫ t−δ

0

∣∣∣e−{2π2ν|k|2(t−s)+2π ig(k,t,s)}

− e−{2π2ν|k|2(t−(s+ 1
B ))+2π ig(k,t,s+ 1

2B )}
∣∣∣2 ds

∫ t−δ

0
e−2πν|k|2(t−s)|∇u|22(s)ds

×ess sups∈[0,t−δ ]|w|22(s)

≤ Ce−2π2ν|k|δ

B2

∫ t−δ

0
e−2πν|k|2(t−s)|∇u|22(s)ds ess sups∈[0,t−δ ], |u|22(s)

where w is the same function as above and by Lemma 4.3. The second term is
estimated by

∣∣∣∣
∫ t−δ

0
e−{4π2ν|k|2(t−(s+ 1

2B ))+2π ig(k,t,s+ 1
2B )}

× ik
2π|k|2 tr

[(
∇̂u(s)−

̂

∇u

(
s+

1
2B

))
∗
(

∇̂u(s)+
̂

∇u

(
s+

1
2B

))]
e−2π iB(t−s)ds

∣∣∣∣∣
2



94 A The Bound for a Swirling Flow

≤ e−4π2ν|k|(δ− 1
2B )

∫ t−δ

0

∣∣∣∣∇u(s)−∇u(s+
1

2B
)

∣∣∣∣
2

2
ds

∫ t−(δ− 1
2B )

0
e−4π2ν|k|2s|∇u|22(s)ds.

Thus

∣∣∣∣
∫ t−δ

0
e−{(4π2ν|k|2+2π iB)(t−s)+2π ig(k,t,s)} ik

2π |k|2
̂tr(∇u)2ds

∣∣∣∣
2

≤Ce−4π2ν|k|(δ− 1
2B ) ess sups∈[0,t]

(
C

|B(k)|2 +L+ d(k)

)
,

where the expectation of d(k) vanishes and the term

L =

∫ t−δ

0
|∇u(s)−∇u(s+

1
2B

)|22ds
∫ t−(δ− 1

2B )

0
e−4π2ν|k|2s|∇u|22(s)ds

is estimated in Lemma 4.8, again by the a priori bounds on the L2 norms of u and
∇u and their differences in Lemmas 4.1 and 4.7 and Lemmas 4.2 and 4.6.

When t − δ is not an even integer multiple of 1
B(k) we get the additional terms in

Corollary 4.1. However these are estimated exactly as the integrals from t − δ to t
and simply add another term multiplied by δ 2 if we choose 1

|B| = supk �=0
1

|B(k)| < δ .
Now we assemble the estimates. Up to terms that vanish when the expectation is

taken, the L2 norm of u is bounded by

|u|22 ≤ 3 ∑
k �=0

hk|Ak
t |2

+3 ∑
k �=0

(∣∣∣∣
∫ t−δ

0
e−({4π2ν|k|2+2π i[k1U1+A(k2,k3)Ω ]}(t−s)+2π ig(k,t,s))

×(û ·∇u− ̂∇Δ−1(tr(∇u)2))(k,s)ds
∣∣∣2
)
+ δ 2Cess sups∈[t−δ ,t]‖u‖2

11
6
+ (A.7)

≤ 3 ∑
k �=0

hk|Ak
t |2

+ ∑
k �=0

e−4π2ν|k|(δ− 1
2B )

[
C′

|B(k)|2 +H +K+L

]
(s)+ δ 2Cess sups∈[t−δ ,t]‖u‖2

11
6
+

≤ 3 ∑
k �=0

hk|Ak
t |2 +C

(
1

B2 + δ 2
)

ess sups∈[t−δ ,t]‖u‖2
11
6
+ +

C′

B

by Lemma 4.8.
We now act on the integral equation (A.2) with the operator ∇(11/6)+ to estimate

the derivative ∇(11/6)+u

∇(11/6)+u(x, t) = ∑
k �=0

[
(2π i|k|)(11/6)+h1/2

k Ak
t
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−
∫ t

0
(2π i|k|)(11/6)+e−[4π2ν|k|2+2π iB(k)](t−s)−2π ig(k,t,s)

×
(

û ·∇u+
ik

2π |k|2
̂(tr(∇u)2)

)
(k,s)ds

]
ek(x), (A.8)

where B(k) and g(k, t,s) are as in (A.2). An estimate similar to (A.8) now gives

|∇(11/6)+u|22 ≤ 3 ∑
k �=0

(2π|k|)(11/3)+hk|Ak
t |2

+3 ∑
k �=0

(∣∣∣∣
∫ t−δ

0
|k| 11

6
+

e−({4π2ν|k|2+2π i[k1U1+A(k2,k3)Ω ]}(t−s)+2π ig(k,t,s))

×(û ·∇u− ̂∇Δ−1(tr(∇u)2))(k,s)ds
∣∣∣2
)

+δ
1
6
−
Cess sups∈[t−δ ,t]‖u‖2

11
6
+ (A.9)

≤ 3 ∑
k �=0

(2π|k|)(11/3)+hk|Ak
t |2 + ess sups∈[0,t−δ ]

[
C′

B2 +H +K +L

]
(s)

+δ
1
6
−
C ess sups∈[t−δ ,t]‖u‖2

11
6
+ (A.10)

≤ 3 ∑
k �=0

(2π|k|)(11/3)+hk|Ak
t |2 +C

(
1

B2 +δ
1
6
−
)

ess sups∈[t−δ ,t]‖u‖2
11
6
+ +

C′

B

again by Lemma 4.8.
Combining the estimates (A.8) and (A.10) we now get that

‖u‖2
11
6
+ ≤ 3 ∑

k �=0

(1+(2π |k|) 11
3
+

)hk|Ak
t |2 +C

(
1

B2 + δ
1
6
−
)

ess sups∈[t−δ ,t]‖u‖2
11
6
++

C′

B
,

where 1
B and δ can be made arbitrarily small. Then taking the expectation we get

(
1−C

(
1

B2 + δ
1
6
−
))

E(ess sup[0,t]‖u‖2
11
6
+)≤ 3 ∑

k �=0

(1+(2π |k|) 11
3
+

)hkE(|Ak
t |2)+

C′

B

(A.11)
and evaluating the last expectation

∑
k �=0

(1+(2π |k|) 11
3
+

)hkE(|Ak
t |2) = ∑

k �=0

(1+(2π |k|) 11
3
+

)

8π2ν|k|2 hk



96 A The Bound for a Swirling Flow

gives the estimate (4.25)

(
1−C

(
1

B2 + δ
1
6
−
))

E(ess sup[0,t]‖u‖2
11
6
+)≤ 3 ∑

k �=0

(1+(2π |k|) 11
3
+

)

8π2ν|k|2 hk +
C′

B

By making δ and 1
B sufficiently small we conclude that (4.25) holds for all t. This

ends the outline of the proof; see [17] for more details.



Appendix B
Detailed Estimates of S2 and S3

In this appendix we will spell out all the details of the estimates of the structure
functions of turbulence S2 and S3 from Sect. 2.8. The point is that most researchers
may not need the full power of the invariant measures (3.5) and (3.12). Instead
they will need the ability to compute averages such as the one that gives us the
structure functions in Sect. 2.8, using the expectation E(·) that comes with the noise
in the stochastic Navier–Stokes equation (1.66). We will give all the details of this
computation below.

We start with the second structure function S2,

E((u(x, t)− u(y, t))2).

The expectation E is actually composed of two expectations; one for the infinite-
dimensional Brownian motion and the other for the log-Poisson process.

1. The expectation Eb is that of the Brownian motion bk
t . This is the integral over R

with the probability density (1.51) and in practice uses the identity (1.63). One
evaluates this mean with respect to all the ks, k = 1, . . . ,∞.

2. The second expectation comes from the jumps in the velocity gradients and the
multiplicative noise. It is the expectation of the (log) Poisson process Nk

Ep( f (Nk)) = ∑
n=0

f (n)λ n e−λ

n!
,

with the probability (1.45) and the rate λ from (2.26). In practice the function f
will be a power.

With these two expectations one can compute the expectation E above, namely,

E(·) = Eb ◦Ep(·),

where ◦ denotes composition of the distributions.
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We first write the difference

u(x, t)− u(y, t)

= ∑
k �=0

[
c1/2

k

∫ t

0
eK(t−s)e

∫ t
s dqMt−sdbk

s + dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s|k|1/3ds(ek(x)−ek(y))

]
.

The computation of S2 is now straightforward:

S2 = E((u(x, t)−u(y, t))2)

= E

(
∑
k �=0

[
c1/2

k

∫ t

0
eK(t−s)e

∫ t
s dqMt−sdbk

s +dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s|k|1/3ds(ek(x)−ek(y))

]

× ∑
k �=0

[
c1/2

k

∫ t

0
eK(t−s)e

∫ t
s dqMt−sdbk

s +dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s|k|1/3ds(ek(x)−ek(y))

])

= Eb

(
∑
k �=0

[
c1/2

k

∫ t

0
eK(t−s)Ep((|k|2/3(2/3)Nk

t )2/3)Mt−sdbk
s

+ dk

∫ t

0
eK(t−s)Ep((|k|2/3(2/3)Nk

t )2/3)Mt−s|k|1/3ds(ek(x)−ek(y))
2
])

,

where the application of the expectation Ep selects the “diagonal” j = k from all the
products of the Fourier components (ek(x)− ek(y))(e j(x)− e j(y)) and then evalu-

ates the mean Ep((|k|2/3(2/3)Nk
t )2/3) of the log-Poisson process; see Example 1.5.

Now multiplying out the terms in each Fourier component and taking the Brownian
motion expectation gives

S2 =− 4
C2 ∑

k∈Z3

[d2
k(1− e−λkt)2 +(C/2)ck(1− e−2λkt)]

|k|ζ2
e2π ik·(x+y) sin2(πk · (x− y)),

since Ep([|k|2/32/3Nk
t ]2/3) = |k|−τ2 by (2.28). We have set λk = C|k|2/3, its “maxi-

mum value” without viscosity, and then taking the absolute value we get the estimate

S2 ≤ 4
C2 ∑

k∈Z3

[d2
k(1− e−λkt)2 +(C/2)ck(1− e−2λkt)]

|k|ζ2
sin2(πk · (x− y)).

The computation of S3 is similar:

S3 = E((u(x, t)−u(y, t))2)

= E

⎛
⎝
(

∑
k �=0

[
c1/2

k

∫ t

0
eK(t−s)e

∫ t
s dqMt−sdbk

s+dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s|k|1/3ds(ek(x)−ek(y))

])3
⎞
⎠

= Eb

(
∑
k �=0

[
c1/2

k

∫ t

0
eK(t−s)Ep(|k|2/3(2/3)Nk

t )Mt−sdbk
s

+ dk

∫ t

0
eK(t−s)Ep(|k|2/3(2/3)Nk

t )Mt−s|k|1/3ds(ek(x)− ek(y))

]3
)
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=
23

C3 ∑
k �=0

[d3
k(1− e−λkt)2 +(C/2)ckdk(1− e−2λkt)(1− e−λkt)]

|k| e3πik·(x+y) sin3(πk · (x− y)),

since Ep(|k|2/32/3Nk
t ) = 1; see Example 1.5. Thus we get the estimate

S3 ≤ 23

C3 ∑
k �=0

[|dk|3(1−e−λkt)2+(C/2)ck|dk|(1−e−2λkt)(1−e−λkt)]

|k| |sin3(πk · (x−y))|.

The estimate of the higher-order structure functions is similar.



Appendix C
The Generalized Hyperbolic Distributions

The generalized hyperbolic distribution (GHD) was defined by Barndorff-Nielsen
[6] to explain the size distribution of windblown grains of sand. Its probability den-
sity function is given by the formula

H(λ ,α/a,β/a,aδ ,aμ + b) =
γλ

√
2πδ λ Kλ (δγ)

Kλ−1/2(α
√

δ 2 +(x− μ)2)

(
√

δ 2 +(x− μ)2/α)λ−1/2
eβ (x−μ),

(C.1)
where γ =

√
α2 −β 2, Kλ−1/2 and Kλ are modified Bessel’s function of the second

kind with index λ − 1/2 and λ , respectively. In (3.19) we set λ = 3/2. This is
a five-parameter distribution, if one counts the index λ with the four parameters
(α,β ,δ ,μ); recall that γ =

√
α2 −β 2. The ranges for the parameters are λ ∈ R,

α > 0, β ∈ (−α,α), δ > 0 and μ ∈ R.
The moment-generating function for the GHD is

M(λ ,α ,β ,δ ,μ)(z) = eμz (δγ)λ

Kλ (δγ)
Kλ (δ

√
α2 − (β + z)2)

(δ
√

α2 − (β + z)2)λ
. (C.2)

Using M we immediately compute the mean and the variance

E(X) = μ +
δβ Kλ+1(δγ)

γKλ (δγ)
(C.3)

and

var(X) =
δKλ+1(δγ)

γKλ (δγ)
+

β 2δ 2

γ2

(
Kλ+2(δγ)
Kλ (δγ)

− K2
λ+1(δγ)
K2

λ (δγ)

)
(C.4)

of the generalized hyperbolic random variable X .
The class of GHDs is closed under affine transformations. That is, if X ∼

H(λ ,α,β ,δ ,μ) and Y = aX + b for some positive a, we have

Y ∼ H(λ ,α/a,β/a,aδ ,aμ + b),
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where X ∼ H means that Y has the distribution H. It is sometime useful to
parametrize the GHD in terms of the parameters λ , τ , ζ , δ , and μ , where τ = β/γ ,
and ζ = δγ . The first three parameters λ , τ and ζ are invariant under an affine
transformation of X . In other words

Y ∼ H(λ ,τ,ζ ,aδ ,aμ + b),

where Y = aX + b as above. This shows that δ is a scaling parameter and μ centers
(or locates) the distribution. The parameters χ = β/α√

1+ζ
and ξ = 1√

1+ζ
are known

as the skewness and kurtosis parameters for the shape triangle of the GHD. Since
0 ≤ |χ | ≤ ξ < 1, the GHD parametrized by χ and ξ , can be represented by points
on a triangle, called the shape triangle; see [8].

The characteristic function is obtained from (C.2) using the relation

φX (h) = M(ih).

The Lévy–Khintchine representation of the characteristic function of GHDs is
given by

ln(φX (h)) = ihE(X)+
∫ ∞

−∞
(eihx − 1− ihx)g(x)dx, (C.5)

where g(x) is the density of the Lévy measure

g(x) =
eβ x

|x|

(∫ ∞

0

e−
√

2y+α2|x|

π2y(J2
λ (δ

√
2y)+Y 2

λ (δ
√

2y))
dy+λ e−α |x|

)
, if λ ≥ 0,

and

g(x) =
eβ x

|x|

(∫ ∞

0

e−
√

2y+α2|x|

π2y(J2
−λ (δ

√
2y)+Y2

−λ (δ
√

2y))
dy

)
, if λ < 0,

where Jλ and Yλ are Bessel’s function of the first and the second kind, respectively.
The NIG distribution is a GHD with the parameter value λ = 1.
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339(12):879–882, 2004.
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